运筹学第三章作业的参考答案
《运筹学教程》第三章习题答案
![《运筹学教程》第三章习题答案](https://img.taocdn.com/s3/m/e167afb8f524ccbff121849b.png)
《运筹学教程》第三章习题答案1.影子价格是根据资源在生产中作出的贡献而做的估价。
它是一种边际价格,其值相当于在资源得到最有效利用的生产条件下,资源每变化一个单位时目标函数的增量变化。
又称效率价格。
影子价格是指社会处于某种最优状态下,能够反映社会劳动消耗、资源稀缺程度和最终产品需求状况的价格,是社会对货物真实价值的度量。
只有在完善的市场条件下才会出现,然而这种完善的市场条件是不存在的,因此现成的影子价格也是不存在的。
市场价格是物品和服务在市场上销售的实际价格,是由供求关系决定的。
2.证明:当原问题约束条件右端变为b i′时,原问题变为: maxz=∑C i X js.t. ∑a ij X i≤b i′(i=1,2,3,……,m)X j≥0 (j=1,2,3,……,n)对偶问题为: minp=∑b i′y is.t. ∑a ij y i≥C iy i≥0(i=1,2,3,……,m) (j=1,2,3,……,n) 设,当b i变为b i′原问题有最优解(X1′X2′X3′……X n-1′X n′)时,对偶问题的最优解为(y1′y2′y3′……y n-1′y n′),则有:又因为当原问题有最优解时,对偶问题也有最优解,且相等,则有:所以3(1).minp=6y1 + 2y2s.t. -y1+2y2≥-33y1+3y2≥4y1,y2≥0(2)解:令X2=X2′-X2〞,X4= X4′-X4〞,X2′,X2〞,X4′,X4〞≥0 ,原式化为:maxz=2X1 +2X2′-2X2〞-5X3 +2X4′-2X4〞s.t. 2X1 -X2′+X2〞+3X3 +3X4′-3X4〞≤-5-2X1 +X2′-X2〞-3X3 -3X4′+3X4〞≤5-6X1 -5X2′+5X2〞+X3 -5X4′+5X4〞≤-610X1 -9X2′+9X2〞+6X3 +4X4′-4X4〞≤12X1, X2′,X2〞,X3, X4′,X4〞≥0则对偶规划为:.minp= -5y1′+ 5y1〞-6y2 + 12y3s.t. 2y1′-2y1〞-6y2 + 10y3≥2-y1′+y1〞-5y2 -9y3≥2y1′-y1〞+5y2 + 9y3≥-23y1′-3y1〞+y2 + 6y3≥-53y1′-3y1〞-5y2 + 4y3≥2-3y1′+3y1〞+5y2 -4y3≥-2即:minp= -5y1′+ 5y1〞-6y2 + 12y3s.t. 2y1′-2y1〞-6y2 + 10y3≥2-y1′+y1〞-5y2 -9y3=23y1′-3y1〞+y2 + 6y3≥-53y1′-3y1〞+5y2 + 4y3=2令 y1〞- y1′= y1,得:minp= 5y1 -6y2 + 12y3s.t. -2y1-6y2 + 10y3≥2y1-5y2 -9y3=2-3y1+y2 + 6y3≥-5-3y1-5y2 + 4y3=24、试用对偶理论讨论下列原问题与他们的对偶问题是否有最优解。
运筹学习题答案(第三章)
![运筹学习题答案(第三章)](https://img.taocdn.com/s3/m/2d3d254390c69ec3d5bb75c2.png)
page 15 3 April 2020
School of Management
运筹学教程
第三章习题解答
表3-35
食品厂
面粉厂
1
2
3
产量
Ⅰ
3 10
2 20
Ⅱ
4 11
8 30
Ⅲ
8 11
4 20
销量
15 25 20
page 16 3 April 2020
School of Management
运筹学教程
page 19 3 April 2020
School of Management
运筹学教程
第三章习题解答
(4)若所有价值系数均乘以2,最优解是否改变? 为什么?
答:最优解不变。因为检验数不变。
(5)写出该运输问题的对偶问题,并给出其对偶问 题的最优解。
解:对偶问题如下:
m
n
max Z aiui bjv j
page 8 3 April 2020
School of Management
运筹学教程
第三章习题解答
3.7 试判断表3-30和表3-31中给出的调运方案可 否作为表上作业法迭代时的基可行解?为什么?
答:都不是。数字格的数量不等于m+n-1。
销地
产地
B1
A1
0
A2
A3
5
销量
5
表3-30
B2
B3
15 15
3
8
56
3
3
2
2
page 13 3 April 2020
School of Management
运筹学教程
第三章习题解答
运筹学(胡运权版)第三章运输问题课后习题答案
![运筹学(胡运权版)第三章运输问题课后习题答案](https://img.taocdn.com/s3/m/624d8af4ad51f01dc281f15c.png)
P66: 8.某部门有3个生产同类产品的工厂(产地),生产的产品由4个销售点出售,各工厂A 1, A 2,A 3的生产量、各销售点B 1,B 2,B 3,B 4的销售量(假定单位为t )以及各工厂到销售点的单位运价(元/t )示于下表中,问如何调运才能使总运费最小?表解:一、该运输问题的数学模型为:可以证明:约束矩阵的秩为r (A) = 6. 从而基变量的个数为 6.34333231242322213141141312116115893102114124min x x x x x x x x x x x x x c z i j ij ij +++++++++++==∑∑==⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==≥=++=++=++=++=+++=+++=+++4,3,2,1;3,2,1,01412148221016342414332313322212312111343332312423222114131211j i x x x x x x x x x x x x x x x x x x x x x x x x x ij 111213142122232431323334x x x x x x x x x x x x 712111111111111111111111111⨯⎛⎫ ⎪⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪⎝⎭二、给出运输问题的初始可行解(初始调运方案)1. 最小元素法思想:优先满足运价(或运距)最小的供销业务。
其余(非基)变量全等于零。
此解满足所有约束条件,且基变量(非零变量)的个数为6(等于m+n-1=3+4-1=6).总运费为(目标函数值) ,1013=x ,821=x ,223=x ,1432=x ,834=x ,614=x ∑∑===3141i j ijij x c Z2. 伏格尔(Vogel)法伏格尔法的基本思想:运输表中各行各列的最小运价与次小运价之差值(罚数)应尽可能地小。
或者说:优先供应罚数最大行(或列)中最小运费的方格,以避免将运量分配到该行(或该列)次小运距的方格中。
运筹学第三章作业的参考答案
![运筹学第三章作业的参考答案](https://img.taocdn.com/s3/m/01e40bc48bd63186bcebbc27.png)
第三章作业的参考答案
99P 3、用Gomory 割平面法求解下面的ILP 问题.
⎪⎪⎩⎪⎪⎨⎧=≥≥-≤+-=.2,1,0482..5min 212121i x x x x x t s x x z i 整数, 解:将原问题标准化
⎪⎪⎩⎪⎪⎨⎧=≥=--=++-=.
4,3,2,1,0482..5min 42132121i x x x x x x x t s x x z i 整数, 将第二个等式乘以)1(-加到第一个等式,可得线性方程组的典式
⎪⎪⎩⎪⎪⎨⎧=≥=--=++-=.4,3,2,1,0443..5min 42143221i x x x x x x x t s x x z i 整数,
所以,其松驰问题(P0)的第一张单纯形表为
把零行化成检验行,得
1x 2x 3x 4x RHS z
3x 1x
以2x 为进基变量,3x 为离基变量,旋转得
所以,松驰问题(P0)的最优解为T x )0,0,3
4,316(
0=, 它不是整数向量。
所以由第一行生成的割平面条件为 31313143≥+x x .
对应的割平面为
313131143-=+--s x x .
把它加入到松驰问题(P0)的最优单纯形表中,得到改进的松弛问题(P1)的
1x 2x 3x 4x RHS z 2x 1x
利用对偶单纯形方法求解. 以1s 为离基变量,3x 为进基变量,旋转得
所以,松弛问题(P 1)的最优解为T x )0,0,1,1,5(1=。
因此,原问题的最优解为T x )1,5(*=,最优值为0. 1x 2x 3x 4x 1s RHS z
2x 1x 3x。
管理运筹学(第四版)第三章习题答案
![管理运筹学(第四版)第三章习题答案](https://img.taocdn.com/s3/m/a2faea9c8e9951e79a892771.png)
3.1(1)解:, 53351042..715min 212112121≥≥+≥≥++=y y y y y y y t s y y ω(2)解:无限制32132131323213121,0,0 2520474235323..86max y y y y y y y y y y y y y y y t s y y ≤≥=++≤-=+≥+--≤++=ω3.4解:例3原问题6,,1,0603020506070..min 166554433221654321 =≥≥+≥+≥+≥+≥+≥++++++=j x x x x x x x x x x x x x t s x x x x x x z j对偶问题:6,,1,0111111..603020506070max 655443322161654321 =≥≤+≤+≤+≤+≤+≤++++++=j y y y x y y y y y y y y y t s y y y y y y j ω3.5解:(1)由最优单纯形表可以知道原问题求max ,其初始基变量为54,x x ,最优基的逆阵为⎪⎪⎪⎪⎭⎫ ⎝⎛-=-31610211B 。
由P32式(2.16)(2.17)(2.18)可知b B b 1-=',5,,1,,1 ='-=='-j P C c P B P j B j j j j σ,其中b 和j P 都是初始数据。
设⎪⎪⎭⎫ ⎝⎛=21b b b ,5,,1,21 =⎪⎪⎭⎫⎝⎛=j a a P j j j ,()321,,c c c C =,则⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-⇒='-25253161021211b b b B b ,即⎪⎩⎪⎨⎧=+-=2531612521211b b b ,解得⎩⎨⎧==10521b b ⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-⇒='-0211121031610212322211312111a a a a a a P B P j j ,即 ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=+-=-=+-==+-=03161121213161212113161021231313221212211111a a a a a a a a a ,解得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==-====121130231322122111a a a a a a()()()⎪⎪⎪⎪⎭⎫⎝⎛---=---⇒'-=31612102121,0,0,2,4,4132c c c P C c j B j j σ,即 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=+--=+-2314612142121113132c c c c c c ,解得⎪⎩⎪⎨⎧==-=6102132c c c所以原问题为:,, 10352..1026max 32132132321≥≤+-≤++-=x x x x x x x x t s x x x z 对偶问题为:, 102263..105min 212121221≥≥+-≥-≥+=y y y y y y y t s y y ω(2)由于对偶问题的最优解为()()()2,4,,5454*=-=-=σσσc c C Y IB IB3.6解:(1)因为3x 的检验数0353≤⨯-c ,所以3c 的可变范围是153≤c 。
运筹学习题答案(第三章)概要
![运筹学习题答案(第三章)概要](https://img.taocdn.com/s3/m/88af63d8aef8941ea76e05cf.png)
90 240
210 80 410 550 330 20 70
300 100
School of Management
运筹学教程
第三章习题解答
3.8 表3-32和表3-33分别给出了各产地和各销地 的产量和销量,以及各产地至各销地的单位运价,试 用表上作业法求最优解。 表3-32 销地 产地 A1 A2 A3 销量
运筹学教程(第二版) 习题解答
运筹学教程
第三章习题解答
3.1 与一般线性规划的数学模型相比,运输问题 的数学模型具有什么特征? 答: 1、运输问题一定有有限最优解。 2、约束系数只取0或1。 3、约束系数矩阵的每列有两个1, 而且只有两个 1。前m行中有一个1,或n行中有一个1。 4、对于产销平衡的运输问题,所有的约束都取 等式。
page 13 12 November 2018
School of Management
运筹学教程
第三章习题解答
习题3.9的解答 销地 产地 B1 B2 B3 B4 B5 产量
A1
A2 A3 销量
page 14 12 November 2018
3 3
2 4 3
7
4 3 3 3 2
6
2 3 8
2 4
School of Management
运筹学教程
第三章习题解答
3.7 试判断表3-30和表3-31中给出的调运方案可 否作为表上作业法迭代时的基可行解?为什么? 答:都不是。数字格的数量不等于m+n-1。 表3-30 销地 产地 A1 A2 A3 销量
page 9 12 November 2018
page 3 12 November 2018
管理运筹学(第四版)第三章习题答案参考word
![管理运筹学(第四版)第三章习题答案参考word](https://img.taocdn.com/s3/m/2d2118d3b52acfc788ebc9bf.png)
目标函数值为2×30+5×10+1×10+5×10+3×25+7×5+6×20+10×40=800目标函数值为2×30+5×10+1×10+5×10+3×25+7×5+6×20+10×40=800(2)最小元素法:先从311=c 开始分配先从325=c 开始分配,需迭代4次,具体见QM 的迭代 逼近法(结果同最小元素法——先从313=c 开始分配)vj2 2 0 u i1 2 3 产量 0 1 2 10 7 2 8 × 7 × 2 1 2 3 2 1 0 × 2 2 4 1 3 11 3 8 8 × 3 7 × 3 2 4 4 9 2 1 5 × 5 6 -2 5 0 0 0 4 0 × 2 × 4销量757目标函数值为33。
4.5第一种解法(求最大)A B C 产量 甲 18 16 21 180 乙 16 18 22 250 丙 19 14 19 320 销量 250300200用QM 解得玩 具利 润工人第二种解法(求最小)A B C产量甲526449180乙546248250丙516651320销量250300200用QM解得即甲工人做C玩具180个,乙工人做B玩具250个,丙工人做A玩具250个,做B玩具50个,做C玩具20个。
最大利润为:70×250+80×300+70×200-41390=14110元甲乙丙产量A151822400B212516450最低需求290250270最高需求320250350甲1甲2乙丙1丙2产量A1515182222400B2121251616450C M0M M070需求2903025027080用QM解得玩具费用工人地区运费厂家地区运费厂家即A厂供给甲地区化肥150万吨,供给乙地区化肥250万吨;B厂供给甲地区化肥140万吨,供给丙地区化肥310万吨,总运费为14650万元。
电力出版社运筹学答案 第三章
![电力出版社运筹学答案 第三章](https://img.taocdn.com/s3/m/756fd11b6bd97f192279e962.png)
第3章训练题一.基本能力训练求解下列整数线性规划问题1.2194m in x x z --= 2.2m in x z -=为整数21212121,0,70207567 9xxx x x x x x ≥≤+≤+ 为整数,0,,,0236234321421321≥=++-=++x x x x x x x x x x3.5432134523m in x x x x x z --++= 4.21114m ax x x z +=5,4,3,2,1,1053361153437025421543154321==≤++-≤+++-≤+-+--j x x x x x x x x x x x x x x j 或 为整数2121212121,0,421652142x x x x x x x x x x ≥≤+-≤+≤-5.2143m ax x x z += 6.213m in x x z -=为整数21212121,0,16351149x x x x x x x x ≥≤-≤+ 为整数2121212121,0,52105433x x x x x x x x x x ≥≤+≥+≥+-7.215m in x x z +-= 8.21m in x x z --=为整数21212121,0,482x x x x x x x x ≥≤+-≤+ 10,20546212121或=≤+≤+x x x x x x9.321345min x x x z ++= 10.321161017m ax x x x z ++=10,,1334435232132321321或=≥+≥++≤+-x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧==≤++≤+-≤++≤+)3,2,1(107325732462562432132132132j x x x x x x x x x x x x j 或11.21m ax x x z += 12. 2132m ax x x z +=⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+-≤+且为整数0,3121451149212121x x x x x x ⎪⎩⎪⎨⎧≥≤+≤+且为整数0,36943575212121x x x x x x 13. 21m ax x x z += 14.2197m ax x x z +=⎪⎩⎪⎨⎧≥≤+≤+且为整数0,30561652212121x x x x x x ⎪⎩⎪⎨⎧≥≤+≤+-且为整数0,35763212121x x x x x x 15. 2154m in x x z += 16.321264m ax x x x z ++=⎪⎪⎩⎪⎪⎨⎧≥≥+≥+≥+且为整数0,235472321212121x x x x x x x x ⎪⎪⎩⎪⎪⎨⎧≥≤++-≤+-≤-且为整数0,,5565443213212121x x x x x x x x x x 17.21411m ax x x z += 18.5432132523m ax x x x x x z +--+=⎪⎪⎩⎪⎪⎨⎧≥≤-≤+≤+-且为整数,04216254221212121x x x x x x x x ⎪⎪⎩⎪⎪⎨⎧==≥-+-≤+-+≤++++)5,,1(1033361183437425421543154321 j x x x x x x x x x x x x x x j 或 19.543214352m ax x x x x x z +-+-= 20.5432157428m ax x x x x x z ---+=⎪⎩⎪⎨⎧==≤+-+-≤+-+-),,(或511002426457235432154321 j x x x x x x x x x x x j ⎪⎩⎪⎨⎧==≤+--+≤++++),,(或51104235432335432154321 j x x x x x x x x x x x j21.2123m ax x x z += 22.211020m ax x x z +=为整数21212121,0,921432x x x x x x x x ≥≤+≤+ ⎪⎪⎩⎪⎪⎨⎧≤+-≤-≤++-皆是非负整数32132132321,,32323442x x x x x x x x x x x23.2197m ax x x z += 24.32133m ax x x x z ++=⎪⎩⎪⎨⎧≥≤+≤+-为整数且12121210,35763x x x x x x x ⎪⎪⎩⎪⎪⎨⎧≥≤+-≤-≤++-为整数且3132132132321,,0,,32323442x x x x x x x x x x x x x 25.5432198765m ax x x x x x z ++++= 26.321523m ax x x x z +-=⎪⎪⎩⎪⎪⎨⎧==≥+++--≥+--+≥-++-)5,4,3,2,1(,10230223223543215432154321j x x x x x x x x x x x x x x x x j 或 ⎪⎪⎪⎩⎪⎪⎪⎨⎧=≤+≤+≤++≤-+10,,64344223213221321321或x x x x x x x x x x x x x 27.2175m ax x x z += 28.2158m ax x x z +=⎪⎩⎪⎨⎧≥≤+≤+且为整数0,182384247212121x x x x x x ⎪⎩⎪⎨⎧≥≤-≤+且为整数0,621232212121x x x x x x 27.最优解为34,)2,4(*=z T。
最新运筹学第3章答案
![最新运筹学第3章答案](https://img.taocdn.com/s3/m/bf88ec865a8102d277a22fa6.png)
工程 费 用 收入第一年 第二年 第三年 1 5 1 830 2 4 7 240 3 5 9 6204 75 2 15 5 8 6930资金拥有量 30 25 30 3.1某公司今后三年内有五项工程可以考虑投资。
每项工程的期望收入和年度费用 (万元)如表3-10所示。
表 3-10 模型为 【解】设X j -1投资j 项目 0不投资j 项目max Z = 30x 1 40x 2 20x 3 15x 4 30花 ‘5為 +4x 2 +5x 3 +7x 4 +8x 5 W30 +7x 2 +9x 3 +5x 4 +6x 5 兰 25 8为 +2x 2 +6x 3 +2& +9x 5 兰 30 Xj = 0 或 1,j =1,川,5 最优解X = (1,1,1,0,1) , Z=110万元,即选择项目1、2、3、5时总收入最大。
3.2址问题。
以汉江、长江为界将武汉市划分为汉 口、汉阳和武昌三镇。
某商业银行计划投资 9000 万元在武汉市备选的12个点考虑设立支行,如图 3-10所示。
每个点的投资额与一年的收益见表 3 —10。
计划汉口投资2〜3个支行,汉阳投资1〜2 个支行,武昌投资 3〜4个支行。
如何投资使总收益最大,建立该问题的数学模型, 说明是什么模型,可以用什么方法求解。
表 3-11 图 3-10地址i 1 2 3 4 5 6 7 8 9 10 11 12投资额(万) 900 1200 1000 750 680 800 720 1150 1200 1250 850 1000 收益(万元) 400 500 450 350 300 400 320 460 500 510 380 400【解】设为为投资第j 个点的状态,旳=1或0, j=1,2,…,12 maxZ 二 400x 1 500x 2 450x 3400心900X 1 1200X 2 1000X 3 川 850心 1000心乞 9000447712吃X j 色2正旳兰3正X j 王1,送召兰2,送X j 臭3 j& j# j 三 j=8 12,' X j 乞 4Xj =1或 0, j =1,川,12最优解:x1 = x5=x12=0,其余xj=1,总收益Z=3870万元,实际完成投资额 8920万元。
管理运筹学第四版 第三章习题6答案(P35)
![管理运筹学第四版 第三章习题6答案(P35)](https://img.taocdn.com/s3/m/7905006af242336c1eb95e43.png)
《数据、模型和决策》作业一学号:2461604112 姓名:王康兵班级:2016秋MBA2周末班一、第三章线性规划问题的计算机求解习题6 (P35)答:根据图3-10回答问题如下:(1)最优解即最优产品组合是产品Ⅰ每天的产量是150个,产品Ⅱ每天的产量是70个。
此时最大的目标函数即最大利润为103000元。
(2)车间1和车间3的加工工时数已使用完,车间2和车间4的加工工时数还没用完。
车间2的松弛变量即没用完的加工工时数为330工时,车间4的松弛变量即没用完的加工工时数为15工时。
(3)车间1的加工工时的对偶价格为50元,即增加一个工时就可能使总利润增加50元;车间2的加工工时的对偶价格为0元,即增加一个工时不会使总利润有所增加;车间3的加工工时的对偶价格为200元,即增加一个工时就可能使总利润增加200元;车间4的加工工时的对偶价格为0元,即增加一个工时不会使总利润有所增加。
(4)如果要在这四个车间选择一个车间进行加班生产,我会选择车间3。
因为在车间3的加工工时的对偶价格为200元,即每增加一个工时就可能使总利润增加200元,能为公司创造价值。
(5)目标函数中x1的系数c1,即每单位产品Ⅰ的利润值,当c1在400与+∞之间变化时,最优产品组合不变。
(6)目标函数中x2的系数c2,即每单位产品Ⅱ的利润值,当c2从400元提高到490元时,最优产品组合没有变化。
因为当c2=490元时,0《490《500,仍在c2的系数变化范围内,所以其最优产品组合没有变化。
(7)约束条件中的常数项的现在值由图3-10可知,b1=300,b2=540,b3=440,b4=300。
所谓常数项的上限和下限是指当约束条件中的常数项在此范围内变化时,与其对应的约束条件的对偶价格不变。
具体地说,当车间1的加工工时数在200到440的范围内时,其对偶价格都为50元;当车间2的加工工时数在210到+∞范围内时,其对偶价格为零;当车间3的加工工时数在300到460范围内时,其对偶价格都为200元;当车间4的加工工时数在285到+∞范围内时,其对偶价格为零。
运筹学第三章课后习题答案
![运筹学第三章课后习题答案](https://img.taocdn.com/s3/m/bb4cdb69c1c708a1284a44ed.png)
量 1 2 34
4 51 34
6 8 302
④
A2 A3 销量
31
2
25
30 8 1 1 5
⑤
3
7 15
1 4 224 ⑥
6
5
6
3
列12 罚22 数3
vj 4
111 11 11 1
②
①⑦
③
2020/1/1
9
从上表计算知:x12=5,x13=3,x21=3,x23=2,x24=3, x33=1。总费用=5×1+3×4+3×1+2×5+3×0+ 1×5=35,在上述三种计算方法中,这种方法计算所需 运输费用是最省的。但还不知是否最优。现用闭回路法 检验如下: 闭回路法检验如下:
2020/1/1
10
第一个闭回路σ11,走4→1→5→4线路
产地 销地
A1
B1
B2
B3
45 13 4
B4
6
A2 3 1
22 5 3 0
A3 销量
3
71 5
1
6
5
6
3
产量
8 8 4
σ11=4-1+5-4=4
2020/1/1
11
第二闭回路σ14,走6→0→5→4线路
产地 销地
A1
B1
B2
B3
45 13 4
2020/1/1
17
①最小元素法求解:
销地 B1
B2
产地
A1
13
7
A2
22
4
A3
4
33
销量
3
3
B3
B4 B5 产量
6 3 28 2
1 4 30
管理运筹学(第五版)韩伯棠主编第三章 线性规划问题的计算机求解课后习题参考答案
![管理运筹学(第五版)韩伯棠主编第三章 线性规划问题的计算机求解课后习题参考答案](https://img.taocdn.com/s3/m/f60da92680eb6294dc886c10.png)
第三章线性规划问题的计算机求解3-1(1)甲、乙两种柜的日产量是分别是4和8,这时最大利润是2720。
(2)油漆工艺生产增加1小时,可以使总利润提高13.333元。
(3)常数项的上下限是指常数项在指定的范围内变化时,与其对应的约束条件的对偶价格不变。
比如油漆时间变为100,因为100在40和160之间,所以其对偶价格不变仍为13.333。
(4)不变,因为还在120和480之间。
3-2(1)最优决策为截第一种钢板6张,第二种钢板7张。
(2)需要A种规格的小钢板成品个数在12和27范围内时,第一个约束条件的对偶价格不变。
(3)B种规格的小钢板成品的剩余变量值为4,表示此决策下,截得B种规格成品的实际数量比B种规格的成品的需求量多了4个。
3-3(1)农用车有12辆剩余。
(2)300到正无穷范围内。
(3)每增加一辆大卡车,总运费降低192元。
3-4(1)是最优解。
(2)此常数项在-∞到2范围内变化时,约束1的对偶价格不变。
3-5(1)圆桌和衣柜的生产件数分别是350和100件,这时最大利润是3100元。
(2)相差值为0代表,不需要对相应的目标函数系数进行改进就可以生产该产品。
(3)最优解不变,因为C1允许增加量200-6=140;C2允许减少量为100-30=70,所有允许增加百分比和允许减少百分比之和(75-60)/140+(100-90)/70<100%,所以最优解不变。
3-6(1)1150x=,270x=,即产品I的产量为150,产品II的产量为70;目标函数最优值103 000,即最大利润为103 000。
(2)1、3车间的加工工时数已使用完;2、4车间的加工工时数没用完;没用完的加工工时数为2车间330小时,4车间15小时。
(3)50,0,200,0。
含义:1车间每增加1工时,总利润增加50元;3车间每增加1工时,总利润增加200元;2车间与4车间每增加一个工时,总利润不增加。
(4)3车间,因为增加的利润最大。
《运筹学》第三章线性规划对偶理论与灵敏度分析习题及答案
![《运筹学》第三章线性规划对偶理论与灵敏度分析习题及答案](https://img.taocdn.com/s3/m/fca0ef8e988fcc22bcd126fff705cc1755275fb7.png)
《运筹学》第三章线性规划对偶理论与灵敏度分析习题及答案一、填空题1. 在线性规划问题中,若原问题存在最优解,则其对偶问题也一定存在最优解,这是线性规划的基本性质之一,称为______。
答案:对偶性2. 在线性规划问题中,若原问题与对偶问题均存在可行解,则它们均有______。
答案:最优解3. 对于线性规划问题,若原问题约束条件系数矩阵为A,目标函数系数向量为c,则其对偶问题的目标函数系数向量是______。
答案:c的转置(c^T)二、选择题1. 线性规划的原问题与对偶问题之间的关系是:A. 原问题的最优解和对偶问题的最优解相同B. 原问题的最优解是对偶问题的最优解的负数C. 原问题的最优解与对偶问题的最优解互为对偶D. 原问题的最优解和对偶问题的最优解没有关系答案:C2. 在线性规划中,若原问题不可行,则其对应的对偶问题:A. 可行B. 不可行C. 无界D. 无法确定答案:B三、判断题1. 线性规划的原问题和对偶问题具有相同的可行解。
()答案:错误2. 若线性规划的原问题存在唯一最优解,则其对偶问题也一定存在唯一最优解。
()答案:正确四、计算题1. 已知线性规划问题:max z = 3x1 + 2x2s.t.x1 + 2x2 ≤ 42x1 + x2 ≤ 5x1, x2 ≥ 0求该问题的对偶问题,并求解原问题和对偶问题的最优解。
答案:对偶问题为:min w = 4y1 + 5y2s.t.y1 + 2y2 ≥ 32y1 + y2 ≥ 2y1, y2 ≥ 0原问题和对偶问题的最优解如下:原问题最优解:x1 = 2, x2 = 1,最大利润z = 8对偶问题最优解:y1 = 2, y2 = 1,最小成本w = 82. 某工厂生产甲、乙两种产品,生产一件甲产品需要2小时的机器时间和3小时的工人劳动时间,生产一件乙产品需要1小时的机器时间和1小时的工人劳动时间。
工厂每周最多能使用12小时的机器时间和9小时的工人劳动时间。
运筹学习题答案注释(第3章)
![运筹学习题答案注释(第3章)](https://img.taocdn.com/s3/m/183effe9da38376baf1fae86.png)
第3章运输问题注意:本章习题解法不唯一,有的题目,最优解也可能不唯一。
3.8 表3-32和表3-33分别给出了各产地和各销地的产量和销量,以及各产地至各销地的单位运价,试用表上作业法求最优解。
表3-32解:由最小元素法求得上述运输问题的初始基可行解,其过程如下:表3.8-1由于0为最小,所以,取3与8的最小值放在x24位置上,划去B4列,得表3.8-2表3.8-2划去A2行,得表3.8-3在表3.8-3中的没画线的表格中,由于1最小,所以取8与5的最小值放在x12位置上,划去B2列,得表3.8-4在表3.8-4中没画线的表格中,由于3最小,所以取4与1的最小值放在x31位置上,划去B1列,得表3.8-5表3.8-4在表3.8-5中没画线的表格中,由于4最小,所以取3与6的最小值放在x13位置上,划去A1行,得表3.8-6在表3.8-6中没画线的表格中,由于5最小,所以取3与3的最小值放在x33位置上,划去A3行和B3列,得表3.8-7,这样就得到了一个初始基可行解,如表3.8-8所示。
在表3.8-8中,使用闭回路法计算非基变量的检验数(括弧内的数),得表3.8-9:σ11 = c11-c13 + c33-c31 = 4-4+5-3 = 2σ14 = c14-c13 + c33-c31 + c21-c24 = 6-4+5-3+1-0 = 5表3.8-7σ22 = c22 -c12 + c13 - c33 + c31 - c21 = 2-1+4-5+3-1 = 2σ23 = c23 -c33 + c31 - c21 = 5-5+3-1 = 2σ32 = c32 -c33 + c13–c12 = 7-5+4-1 = 5σ34 = c34 -c24 + c21–c13 = 1-0+1-3 = -1在表3.8-9中,由于检验数σ34 = -1≤0 ,所以表3.8-9中的解不是最优解。
选x34运筹学习题答案及注释第3页为换入变量,找到闭回路为:x34 x24 x21 x31,由于3与1的最小数为1,故调整量为1,选x31为换出变量,调整后的解如表3.8-10所示表3.8-10在表3.8-10中,使用闭回路法计算各非基变量的检验数,得表3.8-11:表3.8-11在表3.8-11中,由于所有检验数均大于等于 0 ,所以表3.8-11中的解就是最优解,其最小运价为39 。
运筹学——3章作业答案
![运筹学——3章作业答案](https://img.taocdn.com/s3/m/d8c535f29e314332396893bd.png)
解题思路:根据原问题与对偶问题的关系(见表2-4),求出 解题思路 对偶问题。 参考答案:max z = 2 y1 + 3 y2 + 5 y3 参考答案
y1 + 2 y 2 + y 3 ≤ 2 3 y + y + 4 y ≤ 2 1 2 3 4 y1 + 3 y 2 + 3 y 3 = 4 y 1 ≥ 0 , y 2 ≤ 0 , y 3 无约束
作业3 作业3: 课本P74. 1. 课本P74.
(2)、 2.3 (2)、(3)
2、写出下列线性规划问题的对偶问题。
min z = 2 x1 + 2 x 2 + 4 x3 x1 + 3 x 2 + 4 x 3 ≥ 2 2 x + x + 3 x ≤ 3 1 2 3 x1 + 4 x 2 + 3 x 3 = 5 x 1 , x 2 ≥ 0 , x 3 无约束
作业4 作业4:
3、试用对偶单纯形法求解下列线性规划问题。
min z = x1 + x 2
2 x1 + x2 ≥ 4 x1 + 7 x2 ≤ 3 x , x ≥ 0 1 2
解题思路:先将原问题化为“近似标准形式”的线性规划问题依据 解题思路 对偶,列出初始单纯形表。然后按照对偶单纯形法计算步骤解题。 参考答案:最优解:X*=(2,0,0,1)T, min z = 2 P76. 2.9、现有线性规划问题 76. max z = −5 x1 + 5 x 2 + 题。 (1) z = 2 x1 + 2 x 2 + 4 x3 min
x1 + 3 x 2 + 4 x 3 ≥ 2 2 x + x + 3x ≤ 3 1 2 3 x1 + 4 x 2 + 3 x 3 = 5 x 1 , x 2 ≥ 0 , x 3 无约束
运筹学第3章答案.doc
![运筹学第3章答案.doc](https://img.taocdn.com/s3/m/a51e5f4c43323968001c9263.png)
3.1某公司今后三年内有五项工程可以考虑投资。
每项工程的期望收入和年度费用(万元)如表3-10所示。
表3-10工 程费 用收 入第一年 第二年 第三年 1 2 3 4 55 1 8 4 7 2 5 967 5 28 69 30 40 20 15 30 资金拥有量30 25 30每项工程都需要三年完成,应选择哪些项目使总收入最大,建立该问题的数学模型。
【解】设10j j x j ⎧=⎨⎩投资项目不投资项目,模型为12345123451234512345max 30402015305457830795625826293001,1,,5j Z x x x x x x x x x x x x x x x x x x x x x j =++++++++≤⎧⎪++++≤⎪⎨++++≤⎪⎪=⎩=或最优解X =(1,1,1,0,1),Z=110万元,即选择项目1、2、3、5时总收入最大。
3.2址问题。
以汉江、长江为界将武汉市划分为汉口、汉阳和武昌三镇。
某商业银行计划投资9000万元在武汉市备选的12个点考虑设立支行,如图3-10所示。
每个点的投资额与一年的收益见表3-10。
计划汉口投资2~3个支行,汉阳投资1~2个支行,武昌投资3~4个支行。
如何投资使总收益最大,建立该问题的数学模型,说明是什么模型,可以用什么方法求解。
表3-11地址i 1 2 3 4 5 6 7 8 9 10 11 12投资额(万元) 900 1200 1000 750 680 800 720 1150 1200 1250 850 1000 收益(万元) 400 500 450 350 300 400 320 460 500 510 380 400 【解】设x j 为投资第j 个点的状态,x j =1或0,j =1,2,…,1212312123111244771212115588max 40050045040090012001000850100090002,3,1,2,3,4101,,12j j j j j j j j j j j j jZ x x x x x x x x x x x x x x x x j =======++++⎧+++++≤⎪⎪≥≤≥≤≥≤⎨⎪⎪==⎩∑∑∑∑∑∑或, 图3-10最优解:x1=x5=x12=0,其余xj=1,总收益Z=3870万元,实际完成投资额8920万元。
运筹学第三章课后习题答案PPT课件
![运筹学第三章课后习题答案PPT课件](https://img.taocdn.com/s3/m/ac03a3c483d049649b665856.png)
16
表3-29
销地 B1
B2
B3
B4
产量
产地
A1
3
7
6
4
5
A2
2
4
3
2
2
A3
4
3
8
5
6
销量
3
3
2
2
解:(2)表3-29用三种方法计算,用位势法检验。因 为总产量=13,总销量=10,所以该题的总产量>总销 量,所以该题是产销不平衡的问题,故假设一销地B5 ①用最小元素法计算如下表所示
3.1 与一般线性规划的数学模型相比,运输问题的数 学模型具有什么特征?
答: 与一般线性规划的数学模型相比,运输问题的数 学模型具有如下特征:1.运输问题不象一般线性规划问 题那样,线性规划问题有可能有无穷多最优解,运输问 题只有有限个最优。2.运输问题约束条件系数矩阵的元 素等于0或1;且每一列有两个非零元素。3.运输问题的 解的个数不可能大于(m+n-1)个。 3.2 运输问题的基可行解应满足什么条件?试判断形表 3-26和表3-27中给出的调运方案是否作为表上作业法迭 代时的基可行解?为什么?
17
①最小元素法求解:
销地 B1
B2
4
排运输。这就是最小元素法和沃格尔法质量不同的原因。
3.7 表3-28和表3-29分别给出了各产地和各销地的产量 和销量,以及各产地至各销地的单位运价,试用表上作业 法求最优解。
表3-28
销地 B1
B2
B3
B4
产量
产地
A1
4
1
4
6
8
A2
1
2
《运筹学》课后习题答案 第3章 运输问题
![《运筹学》课后习题答案 第3章 运输问题](https://img.taocdn.com/s3/m/4ed474165b8102d276a20029bd64783e09127d86.png)
一、选择题1. 2. 3. 4. 5. 6. 7.二、判断题1. 2. 3. 4. 5. 6. 7. 8. 9.三、表上作业法 3. 解:可知,有初始基本可行解1112132122230,10,20,10,35,0x x x x x x ======用闭回路法计算非基变量的检验数:1123(56)(84)10(98)(67)40σσ=+-+=-<=+-+=>因为110σ<,该解并不是最优解。
进行换基迭代,让11x 进基,考虑上述闭回路,调整量min(10,10)10θ==,调整后得到新的调运方案:A2 4 0645945销量10 45 20计算非基变量的检验数得:1223(84)(56)10(95)(47)30σσ=+-+=>=+-+=>故此方案为最优方案,最优解为:11121321222310,0,20,0,45,0x x x x x x ======最优值min 105207456460Z =⨯+⨯+⨯=用电子表格模型求解进行验算:4. 解:用西北角法求得初始基本可行解:1112131421222324313233344,0,0,0;1,2,4,2;0,0,0,4;x x x x x x x x x x x x ============ 用位势法计算检验数:1111212121131322214142233131324323243433333106()210167()861012()9455()12194()731010()47u u v u v v u v u v u u v u v v u v u v v u v u v v u v u v u σσσσσσ=⎧+==-+=⎧⎧⎪=⎪⎪⎪+==-+=⎪⎪⎪=⎪⎪++=-+=⎪⎪⇒=⇒⎨⎨⎨+==-+=-⎪⎪=-⎪⎪+==-+=-=⎪⎪+==-+=⎪⎪⎩=⎩⎪⎪⎪⎪⎪⎩因为3132,σσ小于0,该解不是最优解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章作业的参考答案
99P 3、用Gomory 割平面法求解下面的ILP 问题.
⎪⎪⎩⎪⎪⎨⎧=≥≥-≤+-=.2,1,0482..5min 212121i x x x x x t s x x z i 整数, 解:将原问题标准化
⎪⎪⎩⎪⎪⎨⎧=≥=--=++-=.
4,3,2,1,0482..5min 42132121i x x x x x x x t s x x z i 整数, 将第二个等式乘以)1(-加到第一个等式,可得线性方程组的典式
⎪⎪⎩⎪⎪⎨⎧=≥=--=++-=.4,3,2,1,0443..5min 42143221i x x x x x x x t s x x z i 整数,
所以,其松驰问题(P0)的第一张单纯形表为
把零行化成检验行,得
1x 2x 3x 4x RHS z
3x 1x
以2x 为进基变量,3x 为离基变量,旋转得
所以,松驰问题(P0)的最优解为T x )0,0,3
4,316(
0=, 它不是整数向量。
所以由第一行生成的割平面条件为 31313143≥+x x .
对应的割平面为
313131143-=+--s x x .
把它加入到松驰问题(P0)的最优单纯形表中,得到改进的松弛问题(P1)的
1x 2x 3x 4x RHS z 2x 1x
利用对偶单纯形方法求解. 以1s 为离基变量,3x 为进基变量,旋转得
所以,松弛问题(P 1)的最优解为T x )0,0,1,1,5(1=。
因此,原问题的最优解为T x )1,5(*=,最优值为0. 1x 2x 3x 4x 1s RHS z
2x 1x 3x。