平面几何辅助线添加技巧

合集下载

平行线中添辅助线的方法

平行线中添辅助线的方法

平行线中添辅助线的方法在几何学中,平行线是指在同一个平面内,永远不会相交的线。

平行线可以用于解决许多几何问题。

有时,为了更好地理解和解决问题,我们可能需要在已知的平行线中添加辅助线。

这篇文章将介绍一些经常在平行线中添加辅助线的方法,以及如何利用这些辅助线解决几何问题。

方法一:创建平行线之间的等距线段这是最常见的方法之一,可以通过创建平行线之间的等距线段来添加辅助线。

这个方法可以在几何证明中使用,以创建所需的形状或角度。

下面是一个例子:假设有两个平行线AB和CD,在这两条平行线上选择两个等距点E和F。

然后,通过连接EF,你就创建了一个辅助线,使得EF平行于AB和CD。

这样,你就可以利用这个平行四边形来证明或解决其他几何问题。

方法二:使用交叉线段这个方法涉及到在平行线上选择一个点,并通过它绘制一条与其他平行线相交的线段。

这种方法通常用于证明几何性质。

例如,假设有两个平行线AB和CD,我们可以在AB上选择一个点E,并通过它绘制一条线段EF与CD相交。

然后,通过观察EF与AB的关系,可以证明一些三角形的性质或者其他几何关系。

方法三:利用平行线之间的相似三角形利用平行线之间的相似三角形是另一种常用的方法。

通过观察平行线和与它们相交的第三条线,可以找到相似的三角形。

然后,利用这些相似三角形的性质来解决几何问题。

例如,假设有两个平行线AB和CD,以及一条与它们相交的第三条线EF。

通过观察,可以发现三角形ADE与三角形BCF相似。

这意味着可以使用相似三角形的性质来计算未知角度或线段的长度。

方法四:利用中位线和对角线这个方法通常涉及到在平行线形成的平行四边形中绘制中位线或对角线。

中位线是连接平行四边形两对相对顶点的线段,对角线是连接两对非相邻顶点的线段。

这些辅助线可以帮助我们找到形状的性质,或计算线段的长度。

例如,假设有一个平行四边形ABCD,你可以通过绘制对角线AC来创建两个互相重叠的三角形ABC和ADC。

通过观察这些三角形的性质,可以得出许多结论,例如它们的面积相等或角度相等。

初中平面几何常见添加辅助线的方法

初中平面几何常见添加辅助线的方法

初中几何辅助线做法辅助线,如何添把握定理和概念;还要刻苦加钻研,找出规律凭经验;三角形图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;线段垂直平分线,常向两端把线连;要证线段倍与半,延长缩短可试验;三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;四边形平行四边形出现,对称中心等分点;梯形里面作高线,平移一腰试试看;平行移动对角线,补成三角形常见;证相似,比线段,添线平行成习惯;等积式子比例换,寻找线段很关键;直接证明有困难,等量代换少麻烦;斜边上面作高线,比例中项一大片;圆半径与弦长计算,弦心距来中间站;圆上若有一切线,切点圆心半径连;切线长度的计算,勾股定理最方便;要想证明是切线,半径垂线仔细辨;是直径,成半圆,想成直角径连弦;弧有中点圆心连,垂径定理要记全;圆周角边两条弦,直径和弦端点连;弦切角边切线弦,同弧对角等找完;要想作个外接圆,各边作出中垂线;还要作个内接圆,内角平分线梦圆;如果遇到相交圆,不要忘作公共弦;内外相切的两圆,经过切点公切线;若是添上连心线,切点肯定在上面;要作等角添个圆,证明题目少困难;辅助线,是虚线,画图注意勿改变; 假如图形较分散,对称旋转去实验;基本作图很关键,平时掌握要熟练; 解题还要多心眼,经常总结方法显;切勿盲目乱添线,方法灵活应多变; 分析综合方法选,困难再多也会减;一、见中点引中位线,见中线延长一倍在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题;二、在比例线段证明中,常作平行线;作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来;三、对于梯形问题,常用的添加辅助线的方法有1、过上底的两端点向下底作垂线2、过上底的一个端点作一腰的平行线3、过上底的一个端点作一对角线的平行线4、过一腰的中点作另一腰的平行线5、过上底一端点和一腰中点的直线与下底的延长线相交6、作梯形的中位线7、延长两腰使之相交四、在解决圆的问题中1、两圆相交连公共弦;2、两圆相切,过切点引公切线;3、见直径想直角4、遇切线问题,连结过切点的半径是常用辅助线5、解决有关弦的问题时,常常作弦心距;。

初中平面几何常见添加辅助线的方法

初中平面几何常见添加辅助线的方法

初中平面几何常见添加辅助线的方法平面几何是数学中的一个重要分支,通过在平面上描述和研究几何图形之间的关系和性质。

在解决平面几何问题中,添加辅助线是一种常见且有效的方法,可以帮助我们更好地理解和分析问题。

下面是初中平面几何常见的添加辅助线的方法:1.使用垂直辅助线:垂直辅助线是指与已知线段垂直的辅助线,可以用来分割和构造几何图形。

比如,在矩形中,可以通过连接矩形的对角线来构造一条垂直辅助线,从而将矩形分割为两个等腰直角三角形。

2.使用平行辅助线:平行辅助线是指与已知线段平行的辅助线,可以用来帮助构造平行线段和证明平行性质。

例如,在平行四边形中,可以通过连接相邻顶点和平行线段的端点来构造平行辅助线,从而证明平行四边形的对边相等。

3.使用角平分线:角平分线是指将一个角平分为两个等角的辅助线。

在解决涉及角的等分、相等或相似性质问题时,添加角平分线是非常有用的方法。

例如,在等腰三角形中,可以通过连结底边中点和顶角顶点的直线来构造角平分线,从而证明等腰三角形的顶角相等。

4.使用中线:中线是指连接一个几何图形的两边中点的辅助线。

在解决涉及几何图形的中点、平行四边形和三角形性质问题时,添加中线是一种常见的方法。

例如,在四边形中,可以通过连接相对边的中点来构造中线,从而证明中线互相平分。

5.使用高线:高线是指从多边形的一个顶点向对边所引的垂线。

在解决多边形的高、重心、垂心和外心问题时,添加高线是非常有用的方法。

例如,在三角形中,可以通过从一个顶点向对边引垂线来构造高线,从而证明高线汇聚于三角形的垂心。

6.使用辅助图形:有时,我们可以通过在平面上添加一些辅助图形来辅助解决几何问题。

例如,在求解平行四边形的面积时,可以通过添加一个垂直边和一个三角形来将平行四边形划分为两个高度相等的矩形,从而方便计算面积。

在实际应用中,我们可以根据具体问题的要求来灵活地选择合适的辅助线方法。

添加辅助线不仅可以帮助我们更好地理解和分析问题,还可以提高解题效率和准确性。

初二几何辅助线添加方法

初二几何辅助线添加方法

初二几何辅助线添加方法几何辅助线是在解决几何问题时,通过添加额外的线段或线条来帮助我们更好地理解和解决问题。

在初二阶段的几何学中,辅助线的使用是非常重要的,可以帮助我们找到问题的关键点,简化问题的分析和解决过程。

下面将介绍几个常见的初二几何辅助线添加方法。

第一种方法是绘制垂直辅助线。

在解决一些关于垂直关系的问题时,我们可以通过添加垂直辅助线来辅助解题。

例如,在求两条平行直线之间的距离时,我们可以通过在两条直线上分别取一点,然后通过添加垂直辅助线来构建一个直角三角形,从而求出距离。

第二种方法是绘制平行辅助线。

在求两条直线平行或相交关系时,我们可以通过添加平行辅助线来辅助解题。

例如,在求两条平行线之间的距离时,我们可以通过添加一条与两条平行线相交的直线,然后构建一个平行四边形,从而求出距离。

第三种方法是绘制角平分线。

在解决涉及到角度的问题时,我们可以通过添加角平分线来辅助解题。

例如,在求一个角的角平分线时,我们可以通过画出这个角的两条边的延长线,然后通过它们的交点来构建角平分线。

第四种方法是绘制对称线。

在求对称形状或对称位置的问题时,我们可以通过添加对称线来辅助解题。

例如,在求一个图形的对称轴时,我们可以通过添加对称线来找到对称轴的位置。

除了上述介绍的四种常见的几何辅助线添加方法外,还有许多其他的方法。

例如,绘制中垂线来求三角形的垂心和外心,绘制角的角平分线来求多边形的内角和,等等。

每个问题都有其特定的解题方法和特定的辅助线添加方法。

总结起来,初二几何辅助线的添加方法是非常多样的。

通过合理地添加辅助线,可以帮助我们更好地理解和解决几何问题。

在解题过程中,我们应该根据问题的特点和要求,选择合适的辅助线添加方法。

同时,多进行几何练习,多掌握不同的辅助线添加方法,可以提高我们的解题能力和思维灵活性。

初中数学中考几何如何巧妙做辅助线大全

初中数学中考几何如何巧妙做辅助线大全

人教版北师大初中数学中考几何如何巧妙做辅助线大全人们从来就就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这就是解决问题常用的策略。

一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

高中几何添加辅助线的常用技巧

高中几何添加辅助线的常用技巧

高中几何添加辅助线的常用技巧
高中几何学习中,添加辅助线是解决许多问题的有效方法。

以下是几种常用的几何辅助线技巧:
1、平移辅助线:通过将线段或图形平移,将其移动到更方便处理的位置来简化问题。

比如,对于一条直线外一点的角平分线,我们可以通过平移这条直线,使该点与角的顶点重合,然后再画出该点到角两边的垂线,这样就可以得到角平分线。

2、垂线辅助线:通过向一条直线引垂线来解决问题。

比如,对于一条直线上一点到另一条直线的垂线,我们可以通过在该点处引垂线使两条直线相交,然后再利用垂线的性质来解题。

3、相似三角形辅助线:利用相似三角形的性质来解决问题。

比如,对于一条直线外一点到两条平行线的距离,我们可以利用相似三角形的性质,构造出一个相似三角形,然后利用相似三角形的对应边比相等的性质来求出所需的距离。

4、角平分线辅助线:通过构造角平分线来解决问题。

比如,对于一个三角形的内角平分线,我们可以通过构造该角的外角平分线,然后利用外角和内角的性质来求出该角的内角平分线。

5、中垂线辅助线:通过构造线段中点的垂线来解决问题。

比如,对于一个三角形的垂心,我们可以通过构造三角形三边的中垂线,然后利用中垂线的性质来求出垂心的位置。

这些技巧可以帮助学生更好地理解几何概念和解题思路,提高几何水平。

平面几何辅助线的方法

平面几何辅助线的方法

平面几何辅助线的方法平面几何中,辅助线是指在解题过程中为了方便分析,辅助求解而引入的辅助线段、辅助点等。

常见的平面几何辅助线的方法包括:1. 过某点引直线或线段:在解决直线或线段相交、平行、垂直等问题时,可以通过引入过某一点的辅助线或线段,利用垂直关系或等角关系来求解。

例如,已知平面上直线AB与CD相交于点P,要证明直线AB与CD平行,可以引入线段AC和BD,利用等角关系,证明直线AB与线段CD平行,最终推出直线AB 与直线CD平行。

2. 过某线段中点引直线:在解决线段平分、线段比例等问题时,可以通过引入过线段中点的辅助线段或线段延长线,利用垂直关系或等角关系来求解。

例如,已知线段AB上有一点C,且AC:BC=1:2,要证明线段AB被点C平分,可以引入过点C的辅助线段AD和CE,利用等角关系,证明线段AB被点C平分,最终推出线段AB被点C平分。

3. 过某角的两边引直线:在解决角平分、角相等、角垂直等问题时,可以通过引入过角的两边的辅助直线或线段,利用垂直关系或等角关系来求解。

例如,已知角ABC,要证明角ABC被一条直线垂直平分,可以引入辅助线段AD和CE,利用等角关系和垂直关系,证明角ABC被直线DE垂直平分,最终推出角ABC 被一条直线垂直平分。

4. 引入垂直关系:在解决垂直关系问题时,可以通过引入垂直线段或垂直直线的辅助线段或线段延长线,来帮助求解。

例如,求解过一个点作与一条给定直线垂直的直线,可以通过引入过该点的辅助线段,选择一个任意点和该点连线,然后通过求解垂直关系来确定垂直直线的位置。

5. 引入平行关系:在解决平行关系问题时,可以通过引入平行线段或平行直线的辅助线段或线段延长线,来帮助求解。

例如,要证明两条直线平行,可以通过引入两条直线的平行线段或平行直线,然后通过运用平行关系来证明最初要证明的两条直线平行。

在实际应用中,选择合适的辅助线方法可以大大简化解题步骤,提高解题效率。

初中数学九年级上册几何添加辅助线规律整理(共99条)

初中数学九年级上册几何添加辅助线规律整理(共99条)

九年级数学上册几何添加辅助线规律整理(一)【规律】1如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条。

【规律】2平面上的n条直线最多可把平面分成〔n(n+1)/2+1〕个部分。

【规律】3如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条。

【规律】4线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半。

【规律】5有公共端点的n条射线所构成的角的个数一共有n(n-1)个。

【规律】6如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n-1)个。

【规律】7如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角。

【规律】8平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个。

【规律】9互为邻补角的两个角平分线所成的角的度数为90°。

【规律】10平面上有n条直线相交,最多交点的个数为n(n-1)个。

【规律】11互为补角中较小角的余角等于这两个互为补角的角的差的一半。

【规律】12当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直。

【规律】13在证明直线和圆相切时,常有以下两种引辅助线方法:(1)当已知直线经过圆上的一点,那么连结这点和圆心,得到辅助半径,再证明所作半径与这条直线垂直即可。

(2)如果不知直线与圆是否有交点时,那么过圆心作直线的垂线段,再证明垂线段的长度等于半径的长即可。

(二)【规律】14成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半。

【规律】15在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题。

注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题。

初中几何添加辅助线的99条规律

初中几何添加辅助线的99条规律

初中几何添加辅助线的99条规律规律1如果平面上有n(n≥2)个点,其中任何三点都不在同一直线上,那么每两点画一条直线,一共可以画出n(n-1)条。

规律2平面上的n条直线最多可把平面分成〔n(n+1)/2+1〕个部分。

规律3如果一条直线上有n个点,那么在这个图形中共有线段的条数为n(n-1)条。

规律4线段(或延长线)上任一点分线段为两段,这两条线段的中点的距离等于线段长的一半。

规律5有公共端点的n条射线所构成的角的个数一共有n(n-1)个。

规律6如果平面内有n条直线都经过同一点,则可构成小于平角的角共有2n(n -1)个。

规律7如果平面内有n条直线都经过同一点,则可构成n(n-1)对对顶角。

规律8平面上若有n(n≥3)个点,任意三个点不在同一直线上,过任意三点作三角形一共可作出n(n-1)(n-2)个。

规律9互为邻补角的两个角平分线所成的角的度数为90°。

规律10平面上有n条直线相交,最多交点的个数为n(n-1)个。

规律11互为补角中较小角的余角等于这两个互为补角的角的差的一半。

规律12当两直线平行时,同位角的角平分线互相平行,内错角的角平分线互相平行,同旁内角的角平分线互相垂直。

规律13在证明直线和圆相切时,常有以下两种引辅助线方法:(1)当已知直线经过圆上的一点,那么连结这点和圆心,得到辅助半径,再证明所作半径与这条直线垂直即可。

(2)如果不知直线与圆是否有交点时,那么过圆心作直线的垂线段,再证明垂线段的长度等于半径的长即可。

规律14成“8”字形的两个三角形的一对内角平分线相交所成的角等于另两个内角和的一半。

规律15在利用三角形三边关系证明线段不等关系时,如果直接证不出来,可连结两点或延长某边构造三角形,使结论中出现的线段在一个或几个三角形中,再利用三边关系定理及不等式性质证题。

注意:利用三角形三边关系定理及推论证题时,常通过引辅助线,把求证的量(或与求证有关的量)移到同一个或几个三角形中去然后再证题。

初中平面几何添加辅助线的方法与技巧

初中平面几何添加辅助线的方法与技巧

初中平面几何添加辅助线的方法与技巧第一章与角平分线有关的辅助线第一节角边等,造全等第二节点分线,垂两边第三节角分垂,等腰归第四节角分平,等腰呈第五节角平分线+直角=相似三角形第六节与圆周角(圆心角)平分线有关的辅助线第二章有中点时常用的引辅助线方法第一节有中线,可延长第二节作斜边中线,利用斜边中线性质证题第三节有中点,构造中位线第四节有底中点,连中线(造中垂)第五节与梯形中点有关的辅助线第六节有弧中点时常用的引辅助线方法第七节有弦中点时常用的引辅助线方法第三章与垂直有关的辅助线第一节与三角形的高有关的辅助线第二节构造射影型第三节有垂直,造垂直第四节有垂直,造中垂第五节圆中与垂线有关的辅助线第四章用分大、补小、化等法证不等关系第一节线段的截长补短法第二节角的截大补小法第三节弧的截长补短法第五章折半加倍法第一节角的折半加倍法第二节线段的折半加倍法第三节弧的折半加倍法第六章有垂直平分线时常用的引辅助线方法第七章平移引辅助线法第八章旋转引辅助线法第九章对称引辅助线法第十章证线段不等关系常用的引辅助线方法第十一章证角不等关系常用的辅助线第十二章与三角形有关的辅助线第一节等腰三角形常用的辅助线第二节直角三角形常用的辅助线第三节全等三角形的辅助线第四节相似三角形中常用的辅助线第十三章四边形中的辅助线第一节一般四边形常用的辅助线第二节多边形中常用的辅助线第三节平行四边形常用的辅助线(矩形、菱形、正方形与其相同)第四节有关梯形的辅助线第十四章有关特殊角及三角函数的辅助线第十五章有关圆的辅助线第一节与圆的性质有关的辅助线第二节与切线有关的辅助线第三节与两圆有关的辅助线。

几何题添加辅助线的标准

几何题添加辅助线的标准

几何题添加辅助线的标准在解几何题时,添加辅助线是常用的方法之一,用于连接已知条件和未知条件,以便更容易找到解题思路和求解方法。

下面介绍几种常见的添加辅助线的方法。

1. 定义法定义法是指根据题目所给的条件和结论,结合几何图形的性质和定义,直接在图形上画出满足条件的辅助线。

这种方法比较简单,但需要熟练掌握几何图形的性质和定义。

例如,在解直角三角形时,可以根据直角三角形的定义,直接在图形上画出直角三角形的高、中线和角平分线等辅助线。

2. 构造法构造法是指根据题目所给的条件和结论,构造一个满足条件的新的几何图形,并在该图形上画出需要的辅助线。

这种方法比较灵活,但需要充分了解各种几何图形的性质和特点。

例如,在解圆的问题时,可以通过构造一个直径、半径或圆心角等辅助线,将已知条件和未知条件连接起来。

3. 归纳法归纳法是指通过对一些特殊情况的观察和分析,总结归纳出一般规律,并在此基础上画出需要的辅助线。

这种方法比较抽象,但可以帮助我们发现新的规律和解题方法。

例如,在解多边形的问题时,可以通过归纳总结出多边形的内角和公式,并在此基础上画出需要的辅助线。

4. 反证法反证法是指先假设题目中的结论不成立,然后推导出矛盾的结论,从而证明结论的正确性。

这种方法比较间接,但可以帮助我们找到解题的突破口。

例如,在解平行线的问题时,可以通过反证法证明一条直线和另外两条平行线相交时所得到的同位角相等。

具体做法是先假设同位角不相等,然后推导出矛盾的结论,从而证明同位角相等。

5. 转化法添加辅助线的目的是为了将复杂的问题转化为简单的问题进行处理。

转化法是指通过添加辅助线将题目中的复杂图形转化为简单图形,以便更容易求解。

这种方法比较灵活,需要熟练掌握各种几何图形的性质和特点。

例如,在解四边形的问题时,可以通过添加辅助线将四边形转化为三角形、平行四边形或矩形等简单图形进行处理。

又如,在解圆的问题时,可以通过添加辅助线将圆转化为三角形、矩形或椭圆等简单图形进行处理。

几何证明辅助线添加技巧

几何证明辅助线添加技巧

初中数学几何证明辅助线添加技巧一、添辅助线有二种情况:1.按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线(还可以利用等腰三角形顶角的外角是底角的两倍添加辅助线)。

2.按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的第三条直线。

(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形(这个图形很重要!)。

(3)等腰三角形中的重要线段(即三线合一线,往往是加高用中点)是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形(这个图形很重要!)中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

(6)全等三角形(好好琢磨下这段文字,还是很有道理的):全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

初中数学辅助线的九种添加方法

初中数学辅助线的九种添加方法

初中数学辅助线的九种添加方法况种助1添辅线有二情按定义添辅助线:1;证线段倍半关系可倍相交后证交角为如证明二直线垂直可延长使它们,90°线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

按基本图形添辅助线:2把它叫做基本图形,添辅助我们每个几何定理都有与它相对应的几何图形,添线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“!这样可防止乱添线,添辅助线也有规律可循。

举例如下:”补图应该叫做线”“)平行线是个基本图形:1(当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线)等腰三角形是个简单的基本图形:(2当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

)等腰三角形中的重要线段是个重要的基本图形:3(.出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

)直角三角形斜边上中线基本图形(4出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

)三角形中位线基本图形5(几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中当有中位线三角形不完整时则需补完整三角形;点没有中位线时则添中位线,当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

)全等三角形:(6全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

.当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线)相似三角形:7(相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当)可添加平行线得平行出现相比线段重叠在一直线上时(中点可看成比为1线型相似三角形。

初中平面几何如何添加辅助线

初中平面几何如何添加辅助线

初中平面几何如何添加辅助线平面几何作为数学的一个重要分支,研究平面上的几何图形和它们之间的关系。

在解决平面几何问题时,添加辅助线是一种常用的方法,可以帮助我们更好地理解和解决问题。

接下来,我将详细介绍平面几何中添加辅助线的方法和技巧。

一、为了更好地理解问题和图形,我们可以根据题目的条件和要求,主动添加辅助线。

具体的添加方法有以下几种:1.平分辅助线:平分辅助线是一条将一些角度或线段平分为两等分的线。

我们可以将图形的一些角度平分,以便于进行计算或找出更多的几何性质。

平分辅助线对于证明问题的唯一性或求证一些等式非常有效。

2.垂直辅助线:垂直辅助线是指与目标线段或角度相交且垂直于之前的线段或角度的线。

它能够将原有的图形分割成更容易处理的几何图形,从而解决问题。

垂直辅助线常常用于求证两条线段垂直、平行四边形性质、直角三角形性质等问题。

3.平行辅助线:平行辅助线是指通过一个点与条线段平行的线。

通过添加平行辅助线,我们可以将原有的图形拆分为多个平行四边形或相似三角形,从而更好地理解和利用图形的对称性质、比例性质等。

平行辅助线常用于证明线段平行和求证两角相等或互补、邻补等等。

4.中垂线:中垂线是指连接一个线段的中点和它的垂直平分线的线段。

通过添加中垂线,我们可以找到线段的垂直平分线,并利用垂直平分线的性质,如:两条垂直平分线相交于线段中点、垂直平分线的垂足在线段上等等。

中垂线常用于证明一个角平分线和对边中点的连线垂直、线段中点和三角形顶点的连线互相垂直等问题。

以上是常用的几种添加辅助线的方法,根据问题的不同,我们可以选择不同的方法来添加辅助线,以期达到更好地解题目的效果。

二、在实际操作过程中,我们要根据具体的题目和要求,灵活运用添加辅助线的方法。

以下是一些关于添加辅助线的技巧和要点:1.选择合适的线段或角度:在选择辅助线时,我们应该尽量选择图形中已知的线段或角度,以便于减少未知的数量,简化问题。

2.利用对称性质:对称性质是几何图形中常见的性质,可用于添加辅助线。

浅谈初中平面几何几种常见添加辅助线的方法-上海北初级中学

浅谈初中平面几何几种常见添加辅助线的方法-上海北初级中学

浅谈初中平面几何常见添加辅助线的方法当今社会,数学作为一门基础学科,发挥着越来越来越重要的作用,学好数学尤为重要。

作为新世纪的教师,教学要坚持“以人为本,以学生的发展为本”,要能真正展现学生是数学学习的主人,使学生积极地参与教学活动,探索知识的形成过程,学得并掌握获取知识的方法和途径,使思维的能力在探索过程不断升华和发展。

因此我在教学过程中,相应地采用各种教学方法去启发和促进他们的求知和探索欲,引导学生归纳知识点之间的内在联系,总结解题规律,使数学的学习更有时效性。

初中数学包括代数与平面几何两大部分。

代数部分的学习,一般都有公式可套,题型较为集中,学生学习起来比较轻松。

而平面几何是一门提高学生逻辑思维和分析能力的学科。

对于大部分学生来说学习起来比较困难。

往往学生最为头痛的就是如何在这些错综复杂的几何图形去添加合适的辅助线,其实添加辅助线也是有规律可循,教师在教学的过程中,不但要引导学生对知识进行系统的整理,同时也要引导学生对教材(包括例、习题)深入挖掘、提炼总结其思想实质,揭示归纳方法因素,以其更好地发挥思想方法的整体功效,从而提高解题技巧。

这里介绍几种常见的添加辅助线的方法。

一、过分点添平行线相似形是初中数学的重要内容,由于近年来各地的中考试题向重视学生能力方面快速倾斜,我们在学习相似形内容时,不仅需要掌握相似形的一些基本概念、性质和基本题形,还需要灵活运用所学相似形的基本知识进行补充、延伸、拓宽。

这里,笔者通过大量的习题研究证明一些线段成比例的题型中,发现了过分点添平行线的一种比较好的添线方法,现说明如下:在证明一些线段成比例的题型中,若图形中未出现相似三角形中的基本题型:A字型与X型,通常需要通过找一些分点添平行线去构造这些基本题型。

而且找分点还是有规律可循。

通常可把条件中出现的已知比例或分点的线段和结论中所要证明的线段所在的直线称为热线,把几条热线的交点称为热点。

那么过分点添平行线即可实际操作为过热点添热线的平行线。

初中数学常用辅助线添加技巧

初中数学常用辅助线添加技巧

初中数学常用辅助线添加技巧人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加关心线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。

初中数学常用关心线添加技巧一.添关心线有二种状况:1按定义添关心线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添关心线。

2按基本图形添关心线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添关心线往往是具有基本图形的性质而基本图形不完好时补完好基本图形,因此“添线”应当叫做“补图”!这样可防止乱添线,添关心线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添关心线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简洁的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完好等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完好时则需补完好三角形; 当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

平行四边形辅助线的常见添法

平行四边形辅助线的常见添法

平行四边形辅助线的常见添法平行四边形是一种特殊的四边形,其对边平行且相等。

在平面几何中,我们常常需要绘制平行四边形,而平行四边形的绘制又离不开辅助线。

本文将介绍平行四边形的常见添法及其应用。

一、基础概念1. 平行四边形:对边分别平行且相等的四边形。

2. 辅助线:在图形中引入的额外直线,以便更容易地进行计算或绘制。

二、常见添法1. 中点法中点法是最简单也是最基础的添法之一。

它的原理是在两条对角线上各取一个中点,然后连接这两个中点即可得到平行四边形。

步骤如下:(1)画出任意一个四边形ABCD;(2)连接AC和BD两条对角线;(3)在AC和BD上各取一个中点E和F;(4)连接EF即可得到平行四边形。

2. 三角形法三角形法也是一种简单易懂的添法。

它的原理是在原来图形上构造一个与之相似但比例不同的三角形,然后通过旋转或移动这个三角形,使其与原来的图形组成平行四边形。

步骤如下:(1)在原来的四边形ABCD上选择一个顶点A;(2)连接AC和AD两条边;(3)以A为顶点,做一个与△ACD相似但比例不同的三角形AEF;(4)将三角形AEF沿着AD旋转或移动到AB上,得到平行四边形ABFE。

3. 重心法重心法是一种比较常用的添法。

它的原理是在四边形的对角线交点处作一条平行于其中一条边的直线,然后将这条直线延长至四边形另一侧,再将这两条直线分别延长至与四边形相交即可得到平行四边形。

步骤如下:(1)画出任意一个四边形ABCD;(2)连接AC和BD两条对角线,并求出它们的交点O;(3)在O点处作一条平行于CD的直线EF,并延长至BC上;(4)将EF和BD分别延长至与AC相交,即可得到平行四边形ABFE。

4. 中垂线法中垂线法也是一种比较实用的添法。

它的原理是在任意一侧边上取一点,然后分别连接这个点与对角线的中点,再将这两条线段延长至另一侧边上即可得到平行四边形。

步骤如下:(1)画出任意一个四边形ABCD;(2)在AB上取一点E,并连接EC和AD的中点F;(3)在BC上取一点G,并连接AG和BD的中点H;(4)将EF和GH分别延长至CD上,即可得到平行四边形EFGH。

初中几何15中添加辅助线的方法

初中几何15中添加辅助线的方法

初中几何15中添加辅助线的方法在初中几何中,辅助线是解题时常常会使用的一种方法。

辅助线能够帮助我们理清思路,找到问题的关键,从而更容易解决问题。

在这里,我将介绍15种常见的添加辅助线的方法。

1.平行线辅助法:在平行的直线上添加一条辅助线,以便能够利用平行线的性质解题。

2.垂直线辅助法:在垂直的直线上添加一条辅助线,以便能够利用垂直线的性质解题。

3.切线辅助法:在圆和直线的切点处添加一条切线作为辅助线,以便能够利用切线的性质解题。

4.相等辅助法:在等长的线段上添加相等辅助线,以便能够利用线段相等的性质解题。

5.相似辅助法:在相似的图形中添加相似辅助线,以便能够利用相似图形的性质解题。

6.对称辅助法:在对称的图形中添加对称辅助线,以便能够利用对称图形的性质解题。

7.中垂线辅助法:在三角形的顶点处添加中垂线作为辅助线,以便能够利用中垂线的性质解题。

8.重心辅助法:在三角形的顶点处添加重心作为辅助线,以便能够利用重心的性质解题。

9.垂心辅助法:在三角形的顶点处添加垂心作为辅助线,以便能够利用垂心的性质解题。

10.外心辅助法:在三角形的顶点处添加外心作为辅助线,以便能够利用外心的性质解题。

11.内心辅助法:在三角形的顶点处添加内心作为辅助线,以便能够利用内心的性质解题。

12.中位线辅助法:在三角形的边上添加中位线作为辅助线,以便能够利用中位线的性质解题。

13.角平分线辅助法:在角的两边上添加角平分线作为辅助线,以便能够利用角平分线的性质解题。

14.高线辅助法:在三角形的一个顶点上添加高线作为辅助线,以便能够利用高线的性质解题。

15.弦辅助法:在圆上添加弦作为辅助线,以便能够利用弦的性质解题。

这些辅助线添加的方法,有助于我们在初中几何中更好地理解和解决问题。

当我们遇到几何问题时,可以灵活运用这些辅助线的方法,寻找问题的关键点,从而更轻松地解题。

通过多练习和实践,我们可以在初中几何中熟练地运用这些方法,从而提高解题的效率和准确性。

平面几何添加辅助线的技巧

平面几何添加辅助线的技巧

平面几何添加辅助线的技巧第一讲注意添加平行线证题在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线则能使证明顺畅、简洁.添加平行线证题,一般有如下四种情况.1 为了改变角的位置大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要.例1 设P、Q为线段BC上两点,且BP = CQ,A为BC外一动点(如图1).当点A运动到使/ BAP=Z CAQ时,△ ABC是什么三角形?试证明你的结论.答:当点A运动到使/ BAP=Z CAQ时,△ ABC为等腰三角形.证明:如图1,分别过点P、B作AC、AQ的平行线得交点D.连结DA.在厶DBP = /AQC 中,显然/ DBP = /AQC, / DPB = /C. 由BP =CQ,可知△ DBPAQC.有DP = AC, / BDP = / QAC.C 于是,DA // BP, / BAP=Z BDP.则A、D、B、P四点共圆,且四边形ADBP为等腰梯形.故AB= DP. 所以AB= AC.这里,通过作平行线,将/ QAC “平推”到/ BDP的位置.由于A、D、B、P四点共圆,使证明很顺畅.例2如图2,四边形ABCD为平行四边形, / BAF =/ BCE.求证:/ EBA=Z ADE. 证明:如图2,分别过点A、B作ED、EC 的平行线,得交点P,连PE.由AB £ CD,易知△ PBA^A ECD.有FA = ED, PB = EC.显然,四边形PBCE 、PADE 均为平行四边形.有/ BCE =Z BPE, / APE =/ ADE.由/ BAF = / BCE,可知 / BAF =/ BPE.有P 、B 、A 、E 四点共圆.于是,/ EBA =Z APE. 所以,/ EBA =Z ADE.这里,通过添加平行线,使已知与未知中的四个角通过 P 、B 、A 、E 四点共圆,紧密 联系起来./ APE 成为/ EBA 与/ ADE 相等的媒介,证法很巧妙.2 为了改变线段的位置利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添 加平行线,将某些线段“送”到恰当位置,以证题.例3在厶ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、 BC 的垂线,M 、N 、Q 为垂足.求证:PM + PN = PQ.证明:如图3,过点P 作AB 的平行线交BD 于F,过点F 作BC 的平行线分别交PQ 、AC 于 K 、G,连 PG.由BD 平行/ ABC,可知点F 到AB 、BC 两边距离相等.有KQ = PN. 显然,旦=巨=C G ,可知PG// EC.PD FD GD由CE 平分/ BCA,知GP 平分/ FGA.有PK = PM.于是, PM + PN = PK + KQ = PQ.这里,通过添加平行线,将PQ “掐开”成两段,证得PM = PK,就有PM + PN = PQ. 证法非常简捷.3 为了线段比的转化C图3由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到/ FDA _Z EDA.证明:如图5,过点A 作BC 的平行线,分 别交直线DE 、DF 、 BE 、CF 于 Q 、P 、N 、M.DCAM 有 BD - AM _ DC - AN. 亠 AP AF AM 由—_ _ ,BD FB BC显然,BD _ KD_ AN KA ⑴BD •M有 AP_ BC例4 设M i 、M 2是厶ABC 的BC 边上的点且BM i = CM 2.任作一直线分别交 AB 、 AC 、AM i 、AM 2于 P 、Q 、N i 、N 2.试证:AB AC AM 1AM 2+ = + .AP AQAN iAN 2证明:如图4,若PQ // BC,易证结论成立. 若PQ 与BC 不平行,设PQ 交直线BC 于D.过点A 作PQ 的平行线交直线BC 于 E.由 BM i = CM 2,可知 BE + CE = M i E + M 2E,易知AB _ BE AC _ CE AP _ DE ,AQ _ DE,AM i M i E AM 2 M 2E AN i _ DE ,AN 2 _ DE .则 AB + AC _ BE +CE _ M i ^M 2E _ AM i + AM 2 贝寸 + + AP AQ DE DE AN i AN 2AB , ACAM i , AM 2+ _ + -------------- AP AQ AN i AN 2这里,仅仅添加了一条平行线,将求证式中的四个线段比“通分”,使公分母为DE, 于是问题迎刃而解.例5 AD 是厶ABC 的高线,K 为AD 上一点,BK 交AC 于E, CK 交AB 于F.求证:图5,AQ AE ANi~n————由--- - ,DC EC BC((有AQ =竺型BCAP = AQ.显然AD 为PQ 的中垂线,故AD 平分/ PDQ.这里,原题并未涉及线段比,添加BC 的平行线,就有大量的比例式产生,恰当地运用 这些比例式,就使AP 与AQ 的相等关系显现出来.4 为了线段相等的传递 当题目给线段相等的关系传递开去例6在厶ABC 中,AD 是BC 边上的中线,点M 在AB 边上,点N 在AC 边上,并且 1 2 2 (AB 2+ AC 2).4/ MDN = 90° .如果 BM 2+ CN 2 = DM 2 + DN 2,求证:证明:如图6,过点B 作AC 的平行线交ND 延长线于E.连ME.由BD = DC,可知ED = DN.有△ BEDC显然,MD 为EN 的中垂线.有EM = MN. 由 BM 2+ BE 2= BM 2 + NC 2= MD 2+MN2_ EM 2,可知△ BEM 为直角三角z ABC +Z ACBABC +Z EBC = 90°.于是,z BAC = 90.所以,AD 2=扌212 2BC =一 (AB 2 + AC 2).、这里,添加AC 的平行线,将BC 的以D 为中点的性质传递给EN,使解题找到出路. 例7如图7, AB 为半圆直径,D 为AB 上一点,分别在半圆上取点E 、F,使EA = DA, FB = DB.过D 作AB 的垂线,交半圆于C.求证:CD 平分EF.证明:如图7,分别过点E 、F 作AB 的垂线,G 、H 为垂足,连FA EB.易知C此式表明,DM _ ME 的充要条件是 BN _ NC.DB 2= FB 2= AB • HB, AD 2=AE 2= AG • AB.二式相减,得 DB 2— AD 2=AB • (HB — AG)或(DB — AD) • AB = AB • (HB — AG). 于是,DB — AD = HB — AG, 或 DB — HB = AD — AG.就是 DH = GD. 显然,EG // CD // FH. 故 CD 平分 EF.这里,为证明CD 平分EF,想到可先证CD 平分GH.为此添加CD 的两条平行线EG 、 FH,从而得到G 、H 两点.证明很精彩.经过一点的若干直线称为一组直线束.一组直线束在一条直线上截得的线段相等,在该直线的平行直线上截得的线段也相如图8,三直线AB 、AN 、AC 构成一组直线束,DE 是与BC 平行的直线.于是,有DM _ AM _ ME BN _ AN _ NC DMME 卡 DM BN_ 或 _—— BN NC ME NC 利用平行线的这一性质,解决某些线段相等的问题会很漂亮 例8如图9, ABCD 为四边形,两组对边延长 后得交点E 、F,对角线BD // EF, AC 的延长 线交EF 于G.求证:EG _GF.证明:如图9,过C 作EF 的平行线分别交AE 、 AF 于 M 、N.由 BD // EF,可知 MN // BD.易知BEF _ S ^DEF . 有 S\BEC _ S ^n KG — *5 n DFC .可得 MC _ CN. 所以,EG _ GF.例9 如图10, O O 是厶ABC 的边BC 外的旁 切圆,D 、E 、F 分别为O O 与BC 、CA 、AB 的切点.若OD 与EF 相交于K,求证:AK 平 分BC.证明:如图10,过点K 作BC 的行平线分别图7交直线AB 、AC 于Q 、P 两点,连OP 、OQ 、 OE 、OF.由OD 丄BC,可知OK 丄PQ.由OF 丄AB,可知O 、K 、F 、Q 四点共圆,有 / FOQ =/ FKQ. 由OE 丄AC,可知O 、K 、P 、E 四点共圆.有/ EOP =Z EKP. 显然,/ FKQ = / EKP, 可知/ FOQ = / EOP.由 OF = OE,可知 Rt △ OFQ 也Rt A OEP.贝U OQ = OP. 于是,OK 为PQ 的中垂线,故QK = KP.所以,AK 平分BC.综上,我们介绍了平行线在平面几何问题中的应用•同学们在实践中应注意适时添 加平行线,让平行线在平面几何证题中发挥应有的作用第二讲巧添辅助圆在某些数学问题中,巧妙添置辅助圆常可以沟通直线形和圆的内在联系 ,通过圆的 有关性质找到解题途径•下面举例说明添置辅助圆的若干思路•1 挖掘隐含的辅助圆解题有些问题的题设或图形本身隐含着“点共圆”,此时若能把握问题提供的信息,恰当 补出辅助圆,并合理挖掘图形隐含的性质,就会使题设和结论的逻辑关系明朗化•1.1作出三角形的外接圆例1 如图1,在厶ABC 中,AB = AC, D 是底边BC 上一点,E 是线段AD 上一点且/ BED = 2 / CED = / A.求证:BD = 2CD.分析:关键是寻求/ BED = 2/CED 与结论的联系. 容易想到作/ BED 的平分线,但因BE M ED,故不能 直接证出BD = 2CD.若延长AD 交厶ABC 的外接圆 于F,则可得EB = EF,从而获取.证明:如图1,延长AD 与厶ABC 的外接圆相交于点F,连结CF 与BF,则/ BFA =Z BCA =Z ABC =Z AFC,即/ BFD = / CFD.故 BF:CF = BD: DC.又/ BEF = / BAC, / BFE =Z BCA,从而/ FBE =Z ABC =Z ACB =Z BFE. 故 EB = EF.AG'" F图1作/ BEF的平分线交BF于G,则BG = GF.又S ABCD = S k ABD + S A BCD = 3.32故曲AOB=害.因/ GEF =丄/ BEF=/ CEF, / GFE = / CFE,故厶FEG ◎△ FEC.从而GF= FC.2于是,BF = 2CF.故BD= 2CD.1.2利用四点共圆例 2 凸四边形ABCD 中,/ ABC = 60° , / BAD =/ BCD = 90° ,AB= 2, CD = 1,对角线AC、BD交于点O,如图2. 贝U sin/AOB= _______________ .分析:由/ BAD = / BCD = 90° 可知A、B、C、D四点共圆,欲求sin/ AOB,联想到托勒密定理,只须求出BC、AD即可.解:因/BAD = / BCD = 90° ,故A、B、C、D四点共圆.延长BA、CD交于P,则/ ADP=/ ABC= 60设AD = x,有AP= ,3x, DP = 2x.由割线定理得(2 + , 3x)、、3x= 2x(1 + 2x).解得AD=x= 2 . 3 —2, BC= 1 BP = 4— 3 .2由托勒密定理有BD • CA= (4 —.3)(2 3 —2) + 2X 1 = 10.3 —12.例 3 已知:如图3, AB= BC= CA= AD, AH 丄CD于H, CP丄BC, CP交AH于P.求证:73△ ABC 的面积s= —AP • BD.4分析:因S k ABC=3 BC2= 3 AC • BC,只4 4须证AC • BC= AP • BD,转化为证厶APC sk BCD.这由A、B、C、Q四点共圆易证(Q为BD与AH交点).证明:记BD与AH交于点Q,则由AC = AD, AH丄CD得/ACQ=/ ADQ.又 AB = AD,故/ ADQ = / ABQ.从而,/ ABQ =Z ACQ.可知A 、B 、C 、Q 四点共圆. vZ APC = 90°+/ PCH = / BCD, / CBQ =/ CAQ, •••△ APC sA BCD.二 AC • BC = AP • BD. 于是,S = 3 AC • BC =3AP • BD.442 构造相关的辅助圆解题有些问题貌似与圆无关,但问题的题设或结论或图形提供了某些与圆的性质相似的 信息,此时可大胆联想构造出与题目相关的辅助圆,将原问题转化为与圆有关的问题加 以解决•2.1联想圆的定义构造辅助圆例4 如图4,四边形ABCD 中,AB // CD, AD = DC =DB = p, BC = q.求对角线AC 的长. 分析:由“ AD = DC = DB = p ”可知A 、B 、C 在 半径为p 的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 中点模型的构造当已知条件中出现一个中点时,你首选想到的作辅助线解题方法是什么?如果已知两个中点呢? 一、考情分析三角形是初中几何的重要内容之一,也是历年中考命题的热点.其中三角形各边的中点、线及中位线的有关性质的应用,是中考的必考内容,历年来多以计算和证明题的形式出现. 二、知识点回顾1、线段的中点如图所示,点M 将线段AB 分成相等的两条线段AM 与BM ,则点M 叫做线段AB 的中点.类似地,还有线段的三等分点,四等分点:2、等腰三角形(1)定义:如图所示,在ABC ∆中,如果AC AB =,则ABC ∆是等腰三角形.(2)性质:①等腰三角形的两个底角相等(简写成“等边对等角”).②等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“三线合一”).(3)判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”). 3、等边三角形(1)定义:三条边都相等的三角形叫作等边三角形(也叫正三角形).(2)性质:等边三角形的三个角都相等并且每一个角都等于o60;“三线合一”. (3)判定:①三个角都相等的三角形是等边三角形. ②有一个角是o60的等腰三角形是等边三角形. ③三边相等的三角形是等边三角形. 4、直角三角形(1)定义:有一个角是直角的三角形叫作直角三角形. (2)性质:①直角三角形中两锐角互余. ②直角三角形斜边中线等于斜边一半.③直角三角形中,如果一个锐角等于o30,那么它所对的直角边等于斜边的一半;④直角三角形中,两直角边的平方和等于斜边的平方——勾股定理,即如果直角三角形中两5、全等三角形(1)定义:能够完全重合的两个三角形叫作全等三角形; (2)性质:全等三角形的对应边相等,对应角相等; (3)判定:①三边对应相等的两个三角形全等(SSS);②两边和它们的夹角对应相等的两个三角形全等(SAS); ③两角和它们的夹边对应相等的两个三角形全等(ASA); ④两个角和其中一个角的对边对应相等的两个三角形全等(AAS); ⑤斜边和一条直角边对应相等的两个直角三角形全等(HL); 6、三角形的中位线(1)定义:连接三角形两边中点的线段叫作三角形的中位线.如图所示,在ABC ∆中,D 、E 分别是AB 、AC 的中点,则DE 叫作三角形ABC ∆的中位线.(2)定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.如图所示,在ABC ∆中,DE 是ABC ∆的中位线,则BC DE //且BC DE 21=.技巧提炼很多几何题会给出“点X”是线段XX 的中点”这样的条件,那么看到“中点”应该想到什么呢?“中点”有哪些作用呢?1、已知任意三角形一边上的中点,可以考虑:(1)倍长中位线或类中线(与中点有关的线段)构造全等三角形.如图(a )、(b )所示(2)三角形中位线定理2、已知直角三角形斜边中点,可以考虑构造斜边中线;3、已知等腰三角形底边中点,可以考虑与顶点连接用“三线合一”;4、有些题目的中点不直接给出,此时需要挖掘题目中的隐含中点,例如直角三角形中斜边中点,等腰例题选讲例1、如图所示,在ABC ∆中,12=AB ,20=AC ,求BC 边上的中线AD 的取值范围(思路点拔)因为AD 是中线,所以加倍延长AD 至点E ,使AD DE =,连接CE ,构造全等三角形即可.例2、如图所示,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,连接BE 并延长交AC 于点F ,EF AF =,求证:BE AC =.(思路点拔)遇到中线,可以考虑倍长中线或类中线(与中点有关的线段),因为AD 是中线,所以加倍延长AD 至点G 使DA DG =,连接BG ,构造全等三角形,进行导角;或者加倍延长DE ,构造全等三角形,再进行导角.⇒ 变式1如图所示,已知在ABC ∆中,AD 是BC 边上的中线,E 是AD 上一点,且AC BE =,延长BE 交AC 于点F ,AF 与EF 相等吗?为什么?(思路点拔)因为AD 是中线,所以加倍延长AD 至点G ,使AD DG =,连接BG ,构造全等三角形,进行导角,或者加倍延长DE ,构造全等三角形,再进行导角.⇒ 变式2如图所示,在ABC ∆中,AD 交BC 于点D ,点E 是BC 的中点,AD EF //交CA 的延长线于点F ,交AB 于点G ,若AD 为ABC ∆的角平分线,求证:CF BG =.(思路点拔)因为点E 是BC 的中点,所以加倍延长EF 至点H ,使EF EH =,连接BH ,构造全等三角形,进行导角.此题还有更多的解法.例3、如图所示,在ABC Rt ∆中,oBAC 90=∠,点D 为BC 的中点,点E 、F 分别为AB 、AC 上的点,且FD ED ⊥.以线段BE 、EF 、FC 为边能否构成一个三角形?若能,该三角形是锐角三角形,还是直角三角形或者钝角三角形?(思路点拔)此题需要把线段BE 、EF 、FC 集中到同一个三角形中,题目中出现了中点D ,可以考虑加倍延长FD 至点G ,使FD DG =,连接BG 、EG 构造全等三角形,利用三角形的三边关系得证.⇒ 变式1如图所示,已知M 为ABC ∆的边BC 的中点,AMB ∠、AMC ∠的平分线分别交AB 、AC 于点E 、F ,连接EF .求证:EF CF BE >+.(思路点拔)因为M 为BC 的中点,所以考虑加倍延长EM 至点D ,使EM DM =,连接CD 、DF ,利用三角形的三边关系求证.⇒ 变式2如图所示,D 是ABC ∆的边BC 中点,DN DM ⊥,如果2222DN DM CN BM +=+,求证:)(41222AC AB AD +=. (思路点拔)因为D 是BC 的中点,所以加倍延长MD 至点E ,使DM DE =,连接EC 、EN ,利用勾股定理可证.例4、如图所示,在ABC ∆中,BE 、CF 分别为AC 、AB 边上的高,D 为BC 的中点,EF DM ⊥,垂足为M .求证:EM FM =.(思路点拔)直角三角形斜边上有中点,通常考虑斜边中线,故连接DE 、DF 构造等腰三角形,再利用等腰三角形“三线合一”的性质证明.例5、如图所示,ABD ∆和ACE ∆都是直角三角形,且oACE ABD 90=∠=∠,连接DE ,设M 为DE 的中点,连接BM 、CM .求证:CM BM =.(思路点拔)由oACE ABD 90=∠=∠可得DB CE //,又M 为DE 的中点,可以考虑延长BM 交DE 于点H ,构造“8”字全等,利用直角三角形斜边中线性质可证.例6、问题一:如图所示,在四边形ABCD 中,CD AB =,E 、F 分别是BC 、AD 的中点,连接EF 并延长,分别与AB 、CD 的延长线交于点M 、N ,求证:CNE BME ∠=∠.(思路点拔)在四边形中,一组对边相等,另一组对边有中点,可以考虑连接其中一条对角线,然后取其中点,构造三角形中位线.不妨连接BD ,取BD 的中点H ,连接EH 、FH ,利用三角形中位线即可得证.问题二:如图所示,在四边形ABCD 中,AC 与BD 相交于点O ,BD AC =,E 、F 分别是CD 、AB 的中点,连接EF ,分别交BD 、AC 于点M 、N ,判断OMN ∆的形状,请直接写出结论.(思路点拔)在四边形中有对角线相等,一组对边有中点,可以考虑取另一组对边的其中一边的中点构造三角形中位线.不妨取AD 的中点H ,连接FH 、EH 即可.问题三:在ABC ∆中,AB AC >,D 在AC 上,CD AB =,E 、F 分别是BC 、AD 的中点,连接EF 并延长,与BA 的延长线交于点G ,若oEFC 60=∠,连接GD ,判断AGD ∆的形状并证明.(思路点拔)此题的方法与问题一类似,连接BD 取其中点H ,连接EH 、FH ,利用三角形中位线即可得证.(Key :∆Rt)例7、如图所示,已知ABC ∆中,AC AB =,CE 是AB 边上的中线,延长AB 至点D ,使AB BD =,求证:CE CD 2=(思路点拔)因为CE 是中线,考虑加倍延长CE 至点F ,连接EF 构造全等三角形即可得证.例8、问题一:如图所示,ABC ∆中,点D 是AB 边的中点,BC AE ⊥,AC BE ⊥,垂足分别为E 、F ,设AE 与BF 交于点M ,连接DE 、DF ,若kDF DE =,则____=k ;(思路点拔)利用直角三角形斜边中线等于斜边之半,易得DF DE =,从而1=k.问题二:如图所示,在ABC ∆中,CA CB =,点D 是AB 边的中点,点M 在ABC ∆内部,且MAC ∠MBC ∠=,过点M 分别作BC ME ⊥于E ,作AC MF ⊥于F ,连接DE 、DF .求证:DF DE =.(思路点拔)先证AMF ∆≌BME ∆得BE AF =,再据“SAS”公理证明BED ∆≌AFD ∆,从而使问题得证.问题三:如图所示,若将上面问题二中的条件“CA CB =”改为“CA CB ≠”,其他条件不变,试探究DE 与DF 之间的数量关系,并证明你的结论.(思路点拔)根据问题一得到启示:取AM 的中点G ,BM 的中点H ,连接DG 、FG 、DH 、EH ,然后利用三角形的中位线和直角三角形斜边中线证明DGF ∆≌EHD ∆.巩固练习1、 如图所示,在等腰ABC Rt ∆中,oABC 90=∠,D 为AC 边上的中点,过点D 作DF DE ⊥,交AB于点E ,交BC 于点F ,若4=AE ,3=FC ,求EF 的长。

2、如图所示,在ABC ∆中,D 为BC 延长线上一点,BC DC =,E 是CA 延长线上一点,AC AE 2=,若BE AD =,求证:ABC ∆是直角三角形。

3、如图所示,在正方形ABCD 中,F 是AB 中点,连接CF ,过点D 作CF DE ⊥交BC 于点E ,交CF 于点M ,求证:AD AM =4、如图所示,oDAE BAC 90=∠=∠,M 是BE 的中点,AC AB =,AE AD =,求证:CD AM ⊥5、如图所示,在等腰梯形ABCD 中,CD AB //,BC AD =,AC 与BD 交于点O ,oAOB 60=∠,P 、Q 、R 分别是OA 、BC 、OD 的中点,求证:PQR ∆是正三角形.6、如图所示,在ABC ∆中,若C B ∠=∠2,BC AD ⊥,E 为BC 边的中点,求证:DE AB 2=.7、如图所示,分别以ABC ∆的边AB 、AC 为边,向三角形的外侧作正方形ABDE 和正方形ACFG ,点M 为BC 中点.(1)求证:EG AM ⊥; (2)求证:AM EG 2=8、如图所示,在ABC ∆的两边AB 、AC 向形外作正方形ABDE 和ACFG ,取BE 、BC 、CG 的中点M 、Q 、N 。

相关文档
最新文档