第5讲 找规律(一)(学生版)

合集下载

2[1].1.1找规律及定义新运算.讲义学生版(精)

2[1].1.1找规律及定义新运算.讲义学生版(精)
2.1.1找规律及定义新运算讲义·学生版page 1 of 18
板块一、找规律
模块一、代数中的找规律
【例1】⑴点1A、2A、3A、„、n A (n为正整数都在数轴上.点1A在原点O的左边,且1
1AO =;点2A在点1A的右边,且212A A =;点3A在点2A的左边,且323A A =;点4A在点3A的右边,且434A A =; „„,
中考要求
找规律及定义新运算
2.1.1找规律及定义新运算讲义·学生版page 2 of 18
字母C第2n +1次出现时(n为正整数,恰好数到的数是(用含n的代数式表示。
⑵(2010河北中考将正方体骰子(相对面上的点数分别为1和6、2和5、3和4放置于水平桌面上,如图1.在图2中,将骰子向右翻滚90︒,然后在桌面上按逆时针方向旋转90︒,则完成一次变换.若骰子的初始位置为图1所示的状态,那么按上述规则连续完成10次变换后,骰子
根钢管
.
① ② ③
【例2】⑴(2010年北京中考右图为手的示意图,在各个手指间标记字母A B C D ,
, ,。请你按图中箭头所指方向(即... A B C D C B A B C →→→→→→→→→的方式从A开始数连续的正整数1, 2, 3, 4… ,当数到12时,对应的字母是C第201次出现时,恰好数到的数是;当
⑶(2010山东青岛如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要
19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要枚棋子,摆第n个图案需要枚棋子.
⑷(2010安徽中考下面两个多位数1248624„„、6248624„„,都是按照如下方法得到的:将第
看得见, 0个看不见;如图2中:共有8个小立方体,其中7个看得见, 1个看不见;如图3中:共

高二数学经典讲义 第5讲 数列与等差数列学生版

高二数学经典讲义 第5讲 数列与等差数列学生版

满分晋级第5讲数列和等差数列数列1级数列初步数列2级数列的小伙伴们数列3级求和知识切片考点1:数列的定义与分类1.数列的概念按照一定次序排列的一列数称为数列.数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…,所以,数列的一般形式可以写成:123a a a L ,,,简记为{}n a . 2.数列的分类① 按照数列的项数的多少可分为:有穷数列与无穷数列.项数有限的数列叫有穷数列,项数无限的数列叫无穷数列.② 按照数列的每一项随序号变化的情况可分为:递增数列、递减数列、常数列、摆动数列.从第2项起,每一项都大于它的前一项的数列叫做递增数列;从第2项起,每一项都小于它的前一项的数列叫做递减数列;各项相等的数列叫做常数列;从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列叫做摆动数列.③ 按照任何一项的绝对值是否小于某一正数可分为:有界数列和无界数列.【例1】 ⑴下面数列哪些是递增数列,递减数列,常数列,摆动数列?哪些是有穷数列,无穷数列?①全体自然数组成数列:0,1,2,3,…;②某校6个班学生人数构成的数列:15,16,18,20,22,30;2.1数列的认识经典精讲知识点睛③数列:5,1-,3, 2.6-, 1.5-,8; ④数列:5,5,5,5,5;⑤数列:100,90,80,70,60,50,…. ⑵根据数列的规律填空①1 1 2 3 5 8 __②5 3 10 6 15 12 __ __ ③3 5 9 17 33 __④1 2 2 3 4 6 __ ⑶给出下面的数表序列:12845314311表3表2表1 其中表(123)n n =L ,,,有n 行,第1行的n 个数是1,3,5,…,21n -,从第2行起,每行中的每个数都等于它肩上的两数之和,写出表4.【趣味答题】请写出下列数列的下一项:2,12,1112,3112,211213,______.2.按规律填空:①17 __ 9 100;②3 6 21 42 84 69 291 __ __;考点2:数列的通项公式与递推公式数列的表示方法:⑴ 图象法:数列是以正整数集*N (或它的有限子集{}12n L ,,,)为定义域的函数()n a f n =,当自变量按照从小到大的顺序取值时,所对应的项是一系列函数值.所以,可以以序号为横坐标,相应的项为纵坐标,描点作图来表示这个数列.全体正偶数组成的数列246L ,,,用图象法表示为(如图): 数列图象与一般函数图象的区别在于数列的图象是一系列孤立的点.⑵ 列表法:与函数一样,数列也可以用列表的方法来表示.n 1 2 3 … k …n a2 4 6 … 2k …整的反映一个数列,或数列的具体规律,所以并不是每一个数列都可以用列表的方法表示.⑶ 递推公式法:如果已知数列{}n a 的第1项(或前几项),且任意一项n a 与它相邻的一项(或几项)间的关系可以用一个公式来表示,那么这个公式就叫做数列的递推公式.如:数列知识点睛10865443221Ona n5,6,7,…用递推公式可这样表示:13a =,11n n a a +=+,n *∈N .⑷ 通项公式法:数列{}n a 的第n 项n a 也叫做数列的通项.如果数列{}n a 的第n 项n a 与n 之间的关系可用一个函数关系()n a f n =来表示,这个公式就叫做这个数列的通项公式.⑶中的数列可以用()*2n a n n =+∈N 来表示.【例2】 ⑴观察数列前几项,求出下列数列的一个通项公式① 1111--L ,,,,; ② 0101L ,,,,; ③ 1234--L ,,,,; ④ 1111111111L ,,,,; ⑤ 131793832435--L ,,,,,; ⑥ 11315228432,,,,,…; ⑵已知数列{}n a 满足11a =,11n n n a a n -=+(*2n n ∈N ,≥),则2a =_____;5a =______. ⑶已知数列{}n a 满足11a =,121n n a a -=+(*2n n ∈N ,≥)),则2a =_____;10a =______.⑷(目标班专用)我们可以利用数列{}n a 的递推公式2,,n n n n a a n ⎧⎪=⎨⎪⎩为奇数为偶数()n *∈N ,求出这个数列各项的值,使得这个数列中的每一项都是奇数.则2425a a +=_________;研究发现,该数列中的奇数都会重复出现,那么第8个5是该数列的第_____项.【例3】 ⑴根据下列数列的前几项,写出数列的一个通项公式,并分析. ① 24816⋅⋅⋅,求出()n a f n =,n a 是否有最大、最小值?②111124816⋅⋅⋅,求出()n a f n =,n a 是否有最大、最小值? ③111124816----⋅⋅⋅,求出()n a f n =,n a 是否有最大、最小值? ④ 111124816--⋅⋅⋅,求出()n a f n =,n a 是否有最大、最小值? ⑵类比函数的单调性、有界性来分析数列的性质.① 数列{}n a 的通项公式是2610n a n n =-+,*n ∈N ,当n 取何值时,n a 最小? ② 数列{}n a 的通项公式是()23.61n a n =-+,*n ∈N ,当n 取何值时,n a 最小?【拓展】若25n a n n λ=-+,当且仅当3n =时n a 有最小值,问λ的取值范围.考点3:数列的前n 项和n S经典精讲数列{}n a 的前n 项和用n S 来表示,如果n S 与n 的关系可用一个公式表示,这个公式就叫做这个数列的前n 项和公式.数列的前n 项和121n n n S a a a a -=++++L .于是有1112n nn S n a S S n -=⎧=⎨-⎩,,≥111n n n S S n a S n --=⎨=⎩,≥,【铺垫】⑴已知数列{}n a 的前n 项和3n S n =,则1a =______,3a =_____,通项n a =______.⑵已知数列{}n a 的前n 项和1n n S n+=,则1a =_____,6a =______. 【例4】 ⑴已知数列{}n a 的前n 项和29n S n n =-,则其通项n a =__;若它的第k 项满足58k a <<,则k =__.⑵已知数列{}n a 的前n 项和21n n S =-,则其通项n a =______;满足2013k a <的最大正整数k 为______.1.已知数列{}n a 的前n 项和22n S n n =+-,求n a .2.已知数列{}n a 的前n 项和2n n S =,求n a .知识点睛经典精讲前n 项和减去前1n -项和第1项 12n n S a a a =+++L<教师备案>前面我们对于一般的数列学习了一些基本概念和知识,总体而言,大部分数列是没什么规律的,小部分规律明显,接下来我们学习一类有迹可循的特殊数列.例如:自然数数列,每个数都比它后面的数小1,正偶数数列,从第二项起,每项都比它前面的数多2,等等.这一类特殊的数列就是等差数列.考点4:等差数列的概念定义:一般地,如果一个数列从第二项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫等差数列.这个常数叫做等差数列的公差,常用字母d 表示.【例5】 下列数列是等差数列吗?如果是求出公差,如果不是请说明理由.①13579L ,,,,,;②5137--L ,,,,;③5555L ,,,,; ④222222---L ,,,,,,;⑤531123---L ,,,,,,;考点5:等差数列的通项公式已知等差数列{}n a ,首项为1a ,公差为d ,第n 项(通项)为n a ,通项公式:()11n a a n d =+-.)1a n d +-【例6】 ⑴已知等差数列{}n a 的通项公式为73n a n =-,则公差为_______,首项为_____.⑵等差数列951L ,,,的第4项4a =_______,第20项20a =_______.2.2等差数列基本量计算经典精讲知识点睛经典精讲知识点睛首项公差 等差数列{}n a 第n 项⑶等差数列3711103L ,,,,的项数n =______,第5项为_______.⑷已知数列{}n a 是等差数列,且22a =-,510a =,则数列{}n a 的通项n a =_______.【挑战5分钟】 ⑴已知43n a n =-,则d =______.⑵已知1001n a n =-,则d =______.⑶已知123a d ==,,则n a =______.⑷已知512a d ==-,,则n a =______.⑸已知4132a d ==,,则n a =______.⑹已知315122a d ==-,,则n a =_____.⑺等差数列34575L ,,,,的项数为______. ⑻等差数列42026-L ,,,,的项数为_______. ⑼等差数列3032013-L ,,,,的项数为______. ⑽等差数列110824--L ,,,,的项数为______.考点6:等差数列的求和公式已知等差数列{}n a ,首项为1a ,公差为d ,通项为n a ,前n 项和为n S . 前n 项和n S 的公式:⑴()12n n n a a S +=;⑵()112n n n S na d -=+.1n n a d n a S ,,,,知三求二,可考虑根据公式统一转化为两个基本量.()()11122n n n a a n n S na d +-==+【铺垫】⑴等差数列371179L ,,,,的各项的和为_______.⑵已知数列{}n a 是等差数列,13a =,2d =,则20S =________.经典精讲知识点睛项数 首项 等差数列前n 项和 第n 项 公差【例7】 ⑴已知数列{}n a 是等差数列,15a =,525a =,则前n 项和n S =________.⑵已知数列{}n a 是等差数列,14a =,716a =,则使得154n S =的项数n =________. ⑶已知等差数列{}n a 的前n 项和236n S n n =+,则1a =_____,n a =_______. ⑷设n S 为等差数列{}n a 的前n 项和,若36324S S ==,,则9a = .⑸已知正整数按如下规律排成一列:()1,1、()1,2、()2,1、()1,3、()2,2,()3,1,()1,4,()2,3,()3,2,()4,1,……,则第60个数对是( )A .()10,1B .()2,10C .()5,7D .()7,5考点7:等差数列的性质1.等差中项:若x A y ,,成等差数列,则A 称为x y ,的等差中项,2x yA +=. 2.等差数列{}n a 的简单性质(其中公差为d ): ⑴ ()n m a a n m d =+-(*m n ∈N ,);⑵ 若p q m n +=+,则有p q m n a a a a +=+;若2m p q =+,则有2m p q a a a =+(p ,q ,m ,n *∈N );n +p q m n⑶ 在等差数列中,等距离取出若干项也构成一个等差数列,即n a ,n m a +,2n m a +K ,,为等差数列,公差为md ;⑷{}n a 的前n 项和为n S ,则()2121n n S n a -=-. (2121n S n -=-【铺垫】⑴在等差数列{}n a 中,1910a a +=,则5a 的值为( )2.3 等差数列性质初步 经典精讲知识点睛下标和相等对应项的和相等211221n n S a a a --=+++L项数中间项A .5B .6C .8D .10⑵在等差数列{}n a 中,37513a a ==,,则d =_______.11a =______.13S =_______.【例8】 ⑴①a 是42-与42+的等差中项,则a = ;②220180a ,,为等差数列,则a = .⑵如果等差数列{}n a 中,34512a a a ++=,那么127a a a +++=L ( ) A .14 B .21 C .28 D .35⑶设n S 是等差数列{}n a 的前n 项和,128a =-,99S =-,则16S = . ⑷已知等差数列{}n a 满足244a a +=,7910a a +=,则其前10项的和10S =______.⑸(目标班专用)在等差数列{}n a 中,若4681012120a a a a a ++++=,则91113a a -的值为________.【演练1】 写出下列数列{}n a 的通项n a :⑴ 9999999999L ,,,,;⑵1313L ,,,;⑶24816--L ,,,,.【演练2】 数列{}n a :111234L ,,,,求出()n a f n =,n a 是否有最大、最小值?【演练3】 已知数列{}n a 是一个等差数列,且48a =-,820a =-,则数列{}n a 的通项n a =______.【演练4】 ⑴已知等差数列{}n a 满足3824a a +=,则它的前10项的和10S 为________.⑵在等差数列{}n a 中,{}n a 的前n 项和为n S ,若515S =,则24a a += .实战演练【演练5】 设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,求5a 的值,当n S 取最小值时n 的值.【演练6】 第1列 第2列 第3列... 第1行 1 2 3 ... 第2行 2 4 6 (3)369… … … … ……列的数是 .1.已知数列{}n a 的前n 项和为n S ,则n a =___________.2.等差数列{}n a 的前n 项和公式n S =_______________=_____________. 3.等差数列{}n a ,若2p q m +=,则p q a a +____2m a概念要点回顾11谷神星的发现1766年,德国有一位名叫提丢斯的中学数学教师,把下面的数列:3,6,12,24,48,96,192……的前面加上0,即:0,3,6,12,24,48,96,192……然后再把每个数字都加上4,就得到了下面的数列:4,7,10,16,28,52,100,196……再把每个数都除以10,最后得到:0.40.711.6 2.8 5.21019.6L ,,,,,,,,令提丢斯惊奇的是,他发现这个数列的每一项与当时已知的六大行星(即水星、金星、地球、火星、木星、提丢斯的朋友,天文学家波得深知这一发现的重要意义,就于1772年公布了提丢斯的这一发现,这串数从此引起了科学家的极大重视;并被称为提丢斯——波得定则即太阳系行星与太阳的平均距离.当时,人们还没有发现天王星、海王星,以为土星就是距太阳最远的行星.1781年,英籍德国人赫歇尔在接近19.6的位置上(即数列中的第八项)发现了天王星,从此,人们就对这一定则深信不疑了.根据这一定则,在数列的第五项即2.8的位置上也应该对应一颗行星,只是还没有被发现.于是,许多天文学家和天文爱好者便以极大的热情,踏上了寻找这颗新行星的征程.1801年新年的晚上,意大利天文学家皮亚齐还在聚精会神地观察着星空.突然,他从望远镜里发现了一颗非常小的星星,正好在提丢斯——波得定则中2.8的位置上.可是,当皮亚齐再想进一步观察这颗小行星时,他却病倒了.等到他恢复健康,再想寻找这颗小行星时,它却不知去向了.皮亚齐没有放弃这一偶然的机会,他认为这可能就是人们一直没有发现的那颗行星,并把它命名为“谷神星”.在高斯之前,著名数学家欧拉曾经研究出了一种计算行星轨道的方法.可是,这个方法太麻烦.高斯决心去寻找一种简便易行的方法.在前人的基础上,高斯经过艰苦的运算,以其卓越的数学才能创立了一种崭新的行星轨道计算理论.他根据皮亚齐的观测资料,利用这种方法,只用了一个小时就算出了谷神星的轨道形状,并指出它将于何时出现在哪一片天空里.1801年12月31日夜,德国天文爱好者奥伯斯,在高斯预言的时间里,用望远镜对准了这片天空.果然不出所料,谷神星出现了!高斯的计算方法成功了.高斯从笔尖上寻找到的这颗行星,在隐藏了整整一年后,向人们显示了数学在科学研究中的巨大作用.。

人教版高数必修五第5讲:等差数列前n项和公式(学生版)

人教版高数必修五第5讲:等差数列前n项和公式(学生版)

等差数列的前n 项和__________________________________________________________________________________ __________________________________________________________________________________教学重点: 掌握等差数列前项和通项公式及性质, 数列最值的求解, 与函数的关系教学难点: 数列最值的求解及与函数的关系1. 数列的前n 项和一般地, 我们称为数列的前项和, 用表示;记法: 显然, 当时, 有 所以与的关系为n a = ①1S ()1n =②______________2. 等差数列的前n 项和公式___________________3. 等差数列前n 项和公式性质(1) 等差数列中, 依次项之和仍然是等差数列, 即 成等差数列, 且公差为_______(2) n S n ⎧⎫⎨⎬⎩⎭是等差数列 (3) 等差数列中, 若, 则;若 则(4) 若和均为等差数列, 前项和分别是和, 则有4. 项数为的等差数列, 有有偶 -奇 =, 奇 /偶 =5. 等差数列前n 项和公式与函数的关系等差数列前n 项和公式()112n n n S na d -=+可以写成____________________若令1,,22d d A a B =-=类型一: 数列及等差数列的求和公式例1.已知数列{}n a 的前n 项和22,n S n n =+ 求{}n a练习1.已知数列的前项和求.练习2: 已知数列的前项和求例2.已知等差数列的前项和为 , 求及练习3.已知等差数列的前项和为,,求.....练习4.已知等差数列的前项和为, 求.(1) 例3.在等差数列中, 前项和为(2) 若81248,168,S S ==求1a 和公差d(3) 若499,6,a a ==-求满足54n S =的所有n 的值练习5.设 是等差数列的前项和, 则___________练习6.在等差数列中, 则的前5项和 ______________类型二: 等差数列前项和公式的性质(1) 例4.在等差数列中,(2) 若, 求(3) 若共有项, 且前四项之和为21, 后四项之和为67, 前项和 , 求(4) 若10100100,10S S ==求110S练习7.(2014山东淄博一中期中)设 是等差数列的前项和, 若, 则等于() A.19 B.13 C.310 D.18练习8.(2014山东青岛期中)已知等差数列的公差, 则 ()A.2014B.2013C.1007D.1006例5.已知等差数列和的前项和分别为和, 且则=()A..........B...........C..........D..练习9.已知是等差数列, 为其前项和, 若则的值为______练习10.已知等差数列的公差为2, 项数是偶数, 所有奇数项之和为15, 所有偶数项之和为35, 则这个数列的项数为______________类型三: 等差数列前项和公式的最值及与函数的关系例6.已知数列{}n a 的前项和为2230n S n n =-(1) 这个数列是等差数列吗? 求出它的通项公式(2) 求使得n S 最小的n 值练习11.已知等差数列的前项和为, 为数列的前项和, 求数列的通项公式练习12.等差数列中, 若, 求=_____________例7.已知等差数列中, 求使该数列前项和取得最小值的的值练习13.已知等差数列中, 则使前项和取得最小值的值为()A.7B.8C.7或8D.6或7练习14.数列满足, 则使得其前项和取得最大值的等于()A.4B.5C.6D.71.四个数成等差数列, S4=32, a2a3=13, 则公差d 等于( )A. 8B. 16C. 4D. 02.设{an}是等差数列,Sn 为其前n 项和,且S5<S6,S6=S7>S8,则下列结论错误的是( )A. d<0B. a7=0C. S9>S5D. S6与S7均为Sn 的最大值.3.已知{an}为等差数列,a1+a3+a5=105,a2+a4+a6=99,Sn 是等差数列{an}的前n 项和,则使得Sn 达到最大值的n 是( )A. 21B. 20C. 19D. 184.已知等差数列{an}的前n 项和为Sn ,a5=5,S5=15,则数列{}的前100项和为( )A.100101B.99101C.99100D.1011005.在等差数列{an}中, 若S12=8S4, 且d ≠0, 则等于( )A. B. C. 2 D.6.设Sn 为等差数列{an}的前n 项和,若a1=1,公差d =2,Sk +2-Sk =24,则k =( )A. 8B. 7C. 6D. 57.(2014·福建理,3)等差数列{an}的前n 项和为Sn ,若a1=2,S3=12,则a6等于( )A. 8B. 10C. 12D. 14_________________________________________________________________________________ _________________________________________________________________________________基础巩固1.等差数列{an}的前n项和为Sn, 已知am-1+am+1-a=0, S2m-1=38, 则m=( )A. 38B. 20C. 10D. 92.数列{an}是等差数列, a1+a2+a3=-24, a18+a19+a20=78, 则此数列的前20项和等于( )A. 160B. 180C. 200D. 2203.等差数列{an}的公差为d, 前n项和为Sn, 当首项a1和d变化时, a2+a8+a11是一个定值, 则下列各数中也为定值的是( )A. S7B. S8C. S13D. S154.已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( )A. 5B. 4C. 3D. 25.在等差数列{an}中, a1>0, d=, an=3, Sn=, 则a1=________, n=________.6.设Sn是等差数列{an}(n∈N*)的前n项和, 且a1=1, a4=7, 则S5=________.7.设{an}是公差为-2的等差数列,若a1+a4+a7+…+a97=50,则a3+a6+a9+…+a99的值为________.8.若等差数列{an}满足a7+a8+a9>0, a7+a10<0, 则当n=________时, {an}的前n项和最大.9.已知等差数列{an}的前n项和Sn满足S3=0,S5=-5.(1)求{a n}的通项公式;(2)求数列{}的前n项和.10.设{an}是等差数列,前n项和记为Sn,已知a10=30,a20=50.(1)求通项a n;(2)若Sn=242, 求n的值.能力提升11.在等差数列{an}和{bn}中, a1=25, b1=15, a100+b100=139, 则数列{an+bn}的前100项的和为( )A. 0B. 4 475C. 8 950D. 10 00012.等差数列{an}中,a1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值为4,则抽取的项是( )A. a8B. a9C. a10D. a1113.一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n 等于( )A. 12B. 16C. 9D. 16或914.已知一个等差数列的前四项之和为21,末四项之和为67,前n 项和为286,则项数n 为( )A. 24B. 26C. 27D. 2815.设Sn 为等差数列{an}的前n 项和,S3=4a3,a7=-2,则a9=( )A. -6B. -4C. -2D. 216.设Sn 是等差数列{an}的前n 项和,若=,则等于( )A.310B.13C.18D.1917.已知等差数列{an}的前n 项和为Sn, 若=a1+a200, 且A.B.C 三点共线(该直线不过点O), 则S200=( )A. 100B. 101C. 200D. 20118.已知等差数列{an}的前n 项和为18, 若S3=1, an +an -1+an -2=3, 则n =________.19.已知数列{an}的前n 项和Sn =n2-8,则通项公式an =________.20.设{an}是递减的等差数列, 前三项的和是15, 前三项的积是105, 当该数列的前n 项和最大时, n 等于( )A. 4B. 5C. 6D. 721.等差数列{an}中, d<0, 若|a3|=|a9|, 则数列{an}的前n 项和取最大值时, n 的值为______________.22.设等差数列的前n 项和为Sn.已知a3=12,S12>0,S13<0.(1)求公差d 的取值范围;(2)指出S1, S2, …, S12中哪一个值最大, 并说明理由.23.已知等差数列{an}中, a1=1, a3=-3.(1)求数列{a n }的通项公式;(2)若数列{an}的前k 项和Sk =-35, 求k 的值.24.在等差数列{an}中:(1)已知a5+a10=58, a4+a9=50, 求S10;(2)已知S7=42, Sn =510, an -3=45, 求n.25.已知等差数列{an}的前n 项和Sn =-n2+n, 求数列{|an|}的前n 项和Tn.课程顾问签字: 教学主管签字:。

(高级老师用)第五讲:找规律

(高级老师用)第五讲:找规律

(高级老师用)第五讲:找规律————————————————————————————————作者:————————————————————————————————日期:23 / 6品·淘奥数(高年段 老师用)第五讲:找规律专题简析:事物的发展是有规律的,只有认为观察事物,找到事物发展变化的规律,才能深入地了解和掌握它,从而找到解决问题的方法和途径。

在数学竞赛中,常常出现按规律填数的题目,一般可以分为数列规律或数表规律。

找数列规律的方法可以归纳如下:1、根据相邻两数找出规律;2、根据相隔两数找出规律。

找出数表规律的方法可以归纳如下:1、如果是填出数表第几行第n 个数字是多少,那么就可以只观察数表各行的第n 个数;2、不要被错综复杂的数学所迷惑,从问题入手,可以倒推。

总之,规律并不一定唯一,只要能够言之有理,就可以认为是正确的。

★小试牛刀1、请找出下列各组数排列的规律,并根据规律在括号里填上适当的数。

(1)1,5,9,13,( ),21,25。

(2)3,6,12,24,( ),96,192。

(3)1,4,9,16,25,( ),49,64,81。

(4)2,3,5,8,12,17,( ),30,38。

(5)21,4,16,4,11,4,( ),( )。

(6)1,6,5,10,9,14,13,( ),( )。

分析与解答:(1) 相邻两数的差是4,括号内应该填17;(2) 后一个数是前一个数的2倍,所以括号内应填48; (3) 第n 个数是n 的平方,所以括号内应填36; (4) 第n 个数是前一个数加n-1,所以括号内应填23;(5) 偶位数都是4不变,奇位数比上一位数依次减5,所以括号内应填6,5; (6) 分别加5再减1,以相邻两个数为一个周期,所以括号内应填18,17。

2.找出下面各组数排列的规律,并根据规律在括号里填上合适的数。

(1)1,4,3,6,5,( ),( )。

小学四年级的举一反三—完整版本讲解

小学四年级的举一反三—完整版本讲解

第 1 讲找规律(一)一、知识重点察看是解决问题的依据。

经过察看,得以揭露失事物的发展和变化规律,在一般状况下,我们能够从以下几个方面来找规律:1.依据每组相邻两个数之间的关系,找出规律,推测出所要填的数;2.依据相隔的每两个数的关系,找出规律,推测出所要填的数;3.要擅长从整体上掌握数据之间的联系,从而很快找出规律;4.数之间的联系常常能够从不一样的角度来理解,只需言之有理,所得出的规律都可以以为是正确的。

二、精讲精练【例题 1】先找出以下数摆列的规律,并依据规律在括号里填上适合的数。

1, 4, 7, 10,(), 16,19【思路导航】在这列数中,相邻的两个数的差都是 3,即每一个数加上 3 都等于后边的数。

依据这一规律,括号里应填的数为:10+3=13或 16-3=13。

像上边依照必定的次序摆列的一串数叫做数列。

练习 1:先找出以下各列数的摆列规律,而后在括号里填上适合的数。

(1)2,6,10, 14,(), 22,26(2)3,6,9,12,(), 18, 21(3)33, 28,23,(), 13,(), 3(4)55, 49,43,(), 31,(), 19(5)3,6,12,(), 48,(), 192(6)2,6,18,(), 162,()(7)128,64,32,(), 8,(), 2(8)19, 3, 17,3,15,3,(),(), 11, 3..【例题 2】先找出以下数摆列的规律,而后在括号里填上适合的数。

1,2, 4, 7,(), 16,22【思路导航】在这列数中,前4 个数每相邻的两个数的差挨次是1,2,3。

由此能够计算 7 比括号里的数少 4,括号里应填: 7+4=11。

经考证,所填的数是正确的。

应填的数为: 7+4=11或 16-5=11。

练习 2:先找出以下数摆列的规律,而后在括号里填上适合的数。

(1)10, 11,13,16, 20,(), 31(2)1,4,9,16, 25,(), 49,64(3)3,2,5,2,7,2,(),(), 11, 2(4)53, 44,36,29,(), 18,(), 11,9,8(5)81, 64,49,36,(), 16,(), 4,1,0(6)28, 1, 26,1,24,1,(),(), 20, 1(7)30, 2, 26,2,22,2,(),(), 14, 2(8)1,6,4,8,7,10,(),(), 13,14【例题 3】先找出规律,而后在括号里填上适合的数。

小学数学奥数基础教程(三年级)目30讲全

小学数学奥数基础教程(三年级)目30讲全

小学奥数基础教程(三年级)- 1 -小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除一、两、三位数乘一位数(一)二、两、三位数乘一位数(二)三、乘法分配律数学智慧园(一)四、等量替换五、两、三位数除以一位数(一)六、两、三位数除以一位数(二)七、和差问题数学智慧园(二)八、图形空格填数九、归一问题十、和倍问题十一、差倍问题数学智慧园(三)十二、两积之和第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。

解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。

例如,求算式324+□=528中□所代表的数。

根据“加数=和-另一个加数”知,□=582-324=258。

又如,求右竖式中字母A,B所代表的数字。

显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。

解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。

这一讲介绍简单的算式(横式)数字谜的解法。

解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。

奥数-一年级-教案-第5讲[1].基础班.教师版

奥数-一年级-教案-第5讲[1].基础班.教师版

数数游戏本节课主要是给学生介绍一些不规则图形的计数方法,比如跳棋孔有多少个,蜘蛛网上有多少个点等问题。

把数数和生活联系起来,让学生在练习的过程中,能根据不同的情况,找到最简便的计数方法,这里也巧妙的巩固了前面所学的乘法,让学生进一步理解了乘法的意义。

1、教学点为各位老师提供了本节课挂图。

数数游戏【教学思路】课前通过这两个题的铺垫,让学生很块融入到学习中.第一道题,我们要注意引导学生在下图是由14个小正方形组成的图形。

在这个图形中包含有苹果的正方 形,共有多少个?猜一猜下图每个图中看不见的小方块有几个?数图形的时候不重复、不遗漏,那么在这个图形中包含苹果的正方形一共有6个,包含在1个小正方形里面的有1个,包含在4个小正方形里面的有3个,包含在9个小正方形里面的有2个,一共有6个.第二道题中要求我们数出我们看不见的小正方体,主要培养学生的空间想象能力.在这三个图形中第一个图形看不见的小正方体有3个,第二个图形看不见的小正方体有4个.小朋友们都是数数的小能手,在生活中有很多需要我们通过数数来解决的问题,在解决问题时数数的方法有很多,你会用什么方法来数呢?今天这节课就让我们这些小能手们再次来比试一下吧!你还背得这首诗吗?去掉标点后,这首诗一共有几个字?【教学思路】第一排有3个字,后面的三排每排有5个字,我们这样数比较简单:53318⨯+=(个)或35318⨯-=⨯+=(个).还这样把第一排也看成5个,然后把多数的两个减掉.54218(个)或45218⨯-=(个),在这道题中,引导学生把变加为乘的速算方法,灵活的应用到计数中来.小朋友们,请你数一数下面的图形里面有多少个.【教学思路】在数的过程中,我们要按顺序来计数.首先我们来看横行,每一横行能数出3个,4横行一共能数出,3412⨯=个.再来看竖行,每一竖行能数出3个,4竖行一共能数出,3412⨯=个.这样在这个图形中,一共能数出121224+=个.通过这道题进一步巩固乘法的意义.像下图这样摆出一个长方形,一共用了多少根小棒?摆出一个正方形,一共用了多少根小棒?【教学思路】摆出一个长方形,一共用了多少根小棒?可以这样数横着的小棒有8216⨯=(根)竖着的小棒一共有9根,合起来一共有16925+=(根),第二个图中摆出一个正方形,一共用了多少根小棒?可以这样数横着的小棒一共有3412⨯=(根),竖着的小棒一共有3412⨯=(根),合起来一共有121224+=(根).【教学思路】首先我们可以把这8个数进行分组:18275436+=+=+=+,每一组中的两个数相加都得9,有这样的四组数(1,8)、(2,7)、(3,6)、(4,5),我们只需要把任意的两组数组合到一起就可以了,答案不唯一.小新用圆片摆了“中国“两个字,你知道一共用了多少个“”?【教学思路】在这道题中,如果我们一个一个的数,那么会比较慢,在此老师要引导学生进行观察,通过找规律用简便方法来计算.每个字我们都可以分组来数:“中“一共有:7211111248⨯+++=(个)或1313521248++⨯+=(个)“国”一共有:1111101083773++++⨯+=(个)或12129283773++⨯+⨯+=(个)一共用了4873121+=(个)圆片.在这个题中有几个相同的数,如果这个数字超过了10,我们就直接加,不用乘法计算.幼儿园老师带领8个小朋友做游戏,他先用粉笔在8个孩子的背上写上了号码,然后把他们分成两组,一组的号码为:1、2、3、4;另一组的号码为5、6、7、8。

四年级数学奥数举一反三课程第1讲至第40讲全(精品)

四年级数学奥数举一反三课程第1讲至第40讲全(精品)

四年级数学奥数举一反三课程第1讲至第40讲全(精品)四年级奥数举一反三课程精品目录第1讲找规律简单推理应用题算式谜最优化问题巧妙求和第10讲变化规律错中求解简单列举和倍问题植树问题图形问题巧妙求和数数图形应用题第20讲速算与巧算速算与巧算平均数问题定义新运算差倍问题和差问题巧算年龄周期问题行程问题用假设法解题还原问题逻辑推理速算与巧算容斥原理二进制盈亏问题数学开放题四年级数学奥数培训资料姓名:__________________小学四年级奥数举一反三第1讲至第40讲全目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)- 1 -四年级奥数举一反三课程精品目录第1讲找规律简单推理应用题算式谜最优化问题巧妙求和第10讲变化规律错中求解简单列举和倍问题植树问题图形问题巧妙求和数数图形应用题第20讲速算与巧算速算与巧算平均数问题定义新运算差倍问题和差问题巧算年龄周期问题行程问题用假设法解题还原问题逻辑推理速算与巧算容斥原理二进制盈亏问题数学开放题第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。

通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。

第5讲牛吃草问题拓展(学生版)

第5讲牛吃草问题拓展(学生版)

第5讲牛吃草问题变形【例题1】东升牧场南面一块2000平方米的牧场上长满牧草,牧草每天都在匀速生长,这片牧场可供18头牛吃16天,或者供27头牛吃8天.在东升牧场的西侧有一块6000平方米的牧场,可供多少头牛吃6天?【例题2】一个农夫有面积为2公顷、4公顷和6公顷的三块牧场.三块牧场上的草长得一样密,而且长得一样快.农夫将8头牛赶到2公顷的牧场,牛5天吃完了草;如果农夫将8头牛赶到4公顷的牧场,牛15天可吃完草.问:若农夫将这8头牛赶到6公顷的牧场,这块牧场可供这些牛吃几天?【例题3】4头牛28天可以吃完10公顷牧场上全部牧草,7头牛63天可以吃完30公顷牧场上全部牧草,那么60头牛多少天可以吃完40公顷牧场上全部牧草?(每公顷牧场上原有草量相等,且每公顷牧场上每天生长草量相等)【例题4】17头牛吃28公亩的草,84天可以吃完;22头牛吃同样牧场33公亩的草54天可吃完,几头牛吃同样牧场40公亩的草,24天可吃完?(假设每公亩牧草原草量相等,且匀速生长)【例题5】一只船发现漏水时,已经进了一些水,水匀速进入船内.如果10人淘水,3小时淘完;如5人淘水,8小时淘完.如果要求2小时淘完,要安排多少人淘水?【例题6】画展8:30开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点就不再有人排队;如果开5个入场口,8点45分就没有人排队。

求第一个观众到达的时间。

【例题7】在地铁车站中,从站台到地面有一架向上的自动扶梯.小强乘坐扶梯时,如果每秒向上迈一级台阶,那么他走过20级台阶后到达地面;如果每秒向上迈两级台阶,那么走过30级台阶到达地面.从站台到地面有级台阶.【例题8】小明从甲地步行去乙地,出发一段时间后,小亮有事去追赶他,若骑自行车,每小时行15千米,3小时可以追上;若骑摩托车,每小时行35千米,1小时可以追上;若开汽车,每小时行45千米,分钟能追上。

【练习1】有甲、乙两块匀速生长的草地,甲草地的面积是乙草地面积的3倍.30头牛12天能吃完甲草地上的草,20头牛4天能吃完乙草地上的草.问几头牛10天能同时吃完两块草地上的草?【练习2】有三块草地,面积分别为5公顷、15公顷和24公顷.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天.问:第三块草地可供多少头牛吃80天?【练习3】有三块草地,面积分别是4公顷、8公顷和10公顷.草地上的草一样厚而且长得一样快.第一块草地可供24头牛吃6周,第二块草地可供36头牛吃12周.问:第三块草地可供50头牛吃几周?【练习4】一只船发现漏水时,已经进了一些水,现在水匀速进入船内,如果3人淘水40分钟可以淘完;6人淘水16分钟可以把水淘完,那么,5人淘水几分钟可以把水淘完?【练习5】画展9点开门,但早有人来排队入场,从第一个观众来到时起,若每分钟来的观众一样多,如果开3个入场口,9点9分就不再有人排队;如果开5个入场口,9点5分就没有人排队.求第一个观众到达的时间.【练习6】两个顽皮的孩子逆着自动扶梯行驶的方向行走,男孩每秒可走3级梯级,女孩每秒可走2级梯级,结果从扶梯的一端到达另一端男孩走了100秒,女孩走了300秒。

四年级数学奥数举一反三课程第1讲至第40讲全【88页】

四年级数学奥数举一反三课程第1讲至第40讲全【88页】

小学四年级奥数举一反三第1讲至第40讲全目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。

通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。

二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。

1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。

根据这一规律,括号里应填的数为:10+3=13或16-3=13。

像上面按照一定的顺序排列的一串数叫做数列。

练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。

(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。

三年级数学奥数基础课程教案(30讲全)

三年级数学奥数基础课程教案(30讲全)

小学奥数基础教程(三年级)第1讲加减法的巧算第2讲横式数字谜(一)第3讲竖式数字谜(一)第4讲竖式数字谜(二)第5讲找规律(一)第6讲找规律(二)第7讲加减法应用题第8讲乘除法应用题第9讲平均数第10讲植树问题第11讲巧数图形第12讲巧求周长第13讲火柴棍游戏(一)第14讲火柴棍游戏(二)第15讲趣题巧解第16讲数阵图(一)第17讲数阵图(二)第18讲能被2,5整除的数的特征第19讲能被3整除的数的特征第20讲乘、除法的运算律和性质第21讲乘法中的巧算第22讲横式数字谜(二)第23讲竖式数字谜(三)第24讲和倍应用题第25讲差倍应用题第26讲和差应用题第27讲巧用矩形面积公式第28讲一笔画(一)第29讲一笔画(二)第30讲包含与排除第2讲横式数字谜(一)在一个数学式子(横式或竖式)中擦去部分数字,或用字母、文字来代替部分数字的不完整的算式或竖式,叫做数字谜题目。

解数字谜题就是求出这些被擦去的数或用字母、文字代替的数的数值。

例如,求算式324+□=528中□所代表的数。

根据“加数=和-另一个加数”知,□=582-324=258。

又如,求右竖式中字母A,B所代表的数字。

显然个位数相减时必须借位,所以,由12-B=5知,B=12-5=7;由A-1=3知,A=3+1=4。

解数字谜问题既能增强数字运用能力,又能加深对运算的理解,还是培养和提高分析问题能力的有效方法。

这一讲介绍简单的算式(横式)数字谜的解法。

解横式数字谜,首先要熟知下面的运算规则:(1)一个加数+另一个加数=和;(2)被减数-减数=差;(3)被乘数×乘数=积;(4)被除数÷除数=商。

由它们推演还可以得到以下运算规则:由(1),得和-一个加数=另一个加数;其次,要熟悉数字运算和拆分。

例如,8可用加法拆分为8=0+8=1+7=2+6=3+5=4+4;24可用乘法拆分为24=1×24=2×12=3×8=4×6(两个数之积)=1×2×12=2×2×6=…(三个数之积)=1×2×2×6=2×2×2×3=…(四个数之积)例1下列算式中,□,○,△,☆,*各代表什么数?(1)□+5=13-6;(2)28-○=15+7;(3)3×△=54;(4)☆÷3=87;(5)56÷*=7。

四年级举一反三—完整版讲解

四年级举一反三—完整版讲解

第1讲找规律(一)一、知识要点观察是解决问题的根据。

通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。

二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。

1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。

根据这一规律,括号里应填的数为:10+3=13或16-3=13。

像上面按照一定的顺序排列的一串数叫做数列。

练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。

(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),19(5)3,6,12,(),48,(),192(6)2,6,18,(),162,()(7)128,64,32,(),8,(),2(8)19,3,17,3,15,3,(),(),11,3..【例题2】先找出下列数排列的规律,然后在括号里填上适当的数。

1,2,4,7,(),16,22【思路导航】在这列数中,前4个数每相邻的两个数的差依次是1,2,3。

由此可以推算7比括号里的数少4,括号里应填:7+4=11。

经验证,所填的数是正确的。

应填的数为:7+4=11或16-5=11。

练习2:先找出下列数排列的规律,然后在括号里填上适当的数。

(1)10,11,13,16,20,(),31(2)1,4,9,16,25,(),49,64(3)3,2,5,2,7,2,(),(),11,2(4)53,44,36,29,(),18,(),11,9,8(5)81,64,49,36,(),16,(),4,1,0(6)28,1,26,1,24,1,(),(),20,1(7)30,2,26,2,22,2,(),(),14,2(8)1,6,4,8,7,10,(),(),13,14【例题3】先找出规律,然后在括号里填上适当的数。

一年级下册《找规律》教学设计5篇

一年级下册《找规律》教学设计5篇

一年级下册《找规律》教学设计精选5篇《商不变的规律》是义务教育课程标准北师大版四班级数学上册第五单元“除法”中的的内容。

以下是我收集整理的一班级下册《找规律》教学设计精选5篇,仅供参考,盼望能够关心到大家。

一班级下册《找规律》教学设计本课是一班级下册教材中的《找规律》一课的延长,与之相比,不同之处是图形排列规律简单一些,呈现出外形和颜色的循环变化。

本节课的教学目标设计为:目标一是:通过观看、操作、推理等活动,能用自己的语言说出图形的排列规律,目标一基本达成,大部分同学能够用自己的语言说出图形的排列规律,但还有一少部分同学不能用语言说出图形的排列规律。

目标二是:能找诞生活中循环排列的规律图形。

这一目标达成效果不好,由于时间问题,只让同学观赏了一些有规律的图片,没有让同学从生活中找出有规律的的图形。

首先,我通过创设问题情境,激发同学的主动学习的乐观性。

通过让同学观看两排图形,发觉第一排图形比较简单记住,由于第一排图形有规律,让同学复习旧知,发觉规律就在我们身边,激发同学的奇怪心,提高同学学习的热忱。

在讲解新授课时,我通过让同学先观看聪聪家的墙面设计,先让同学找到墙面上都有什么颜色,什么图形,刚开头同学只说出了图形的外形,而没有说出颜色,后来,我就提示同学们说。

要说诞生么颜色的图形,这时同学们能够说完整。

然后让同学观看墙面上的图形排列有什么规律时,我直接让同学四个人一个小组依据老师的要求进行争论,在同学争论的过程中,我深化到同学的小组,问同学找到了那些规律,我发觉大部分同学能够找到斜着看的规律,这是我准时提示了他们,让他们横着看、竖着看有什么样的规律。

在老师的提示下,大部分同学能够找到横着看和竖着看的规律,但是在小组进行汇报的时候,我发觉同学用语言描述起来不较困难,让同学说的较少,针对循环规律应让同学多说。

讲完墙面的规律之后,只是我应当总结出循环规律的概念,但由于课堂上比较紧急,这一点老师应当总结出循环规律的概念,结果放到了同学说出地面颜色的规律后面一块总结了。

四年级数学奥数举一反三课程第1讲至第40讲全

四年级数学奥数举一反三课程第1讲至第40讲全

四年级数学奥数举一反三课程第1讲至第40讲全(精品)(总86页)页内文档均可自由编辑,此页仅为封面小学四年级奥数举一反三第1讲至第40讲全目录第1讲找规律(一)第2讲找规律(二)第3讲简单推理第4讲应用题(一)第5讲算式谜(一)第6讲算式谜(二)第7讲最优化问题第8讲巧妙求和(一)第9讲变化规律(一)第10讲变化规律第11讲错中求解第12讲简单列举第13讲和倍问题第14讲植树问题第15讲图形问题第16讲巧妙求和第17讲数数图形第18讲数数图形第19讲应用题第20讲速算与巧算第二十一周速算与巧算(二)第二十二周平均数问题第二十三周定义新运算第二十四周差倍问题第二十五周和差问题第二十六周巧算年龄第二十七周较复杂的和差倍问题第二十八周周期问题第二十九周行程问题(一)第三十周用假设法解题第三十一周还原问题第三十二周逻辑推理第三十三周速算与巧算(三)第三十四周行程问题(二)第三十五周容斥原理第三十六周二进制第三十七周应用题(三)第三十八周应用题(四)第三十九周盈亏问题第四十周数学开放题第1讲找规律(一)一、知识要点观察是解决问题的根据。

通过观察,得以揭示出事物的发展和变化规律,在一般情况下,我们可以从以下几个方面来找规律:1.根据每组相邻两个数之间的关系,找出规律,推断出所要填的数;2.根据相隔的每两个数的关系,找出规律,推断出所要填的数;3.要善于从整体上把握数据之间的联系,从而很快找出规律;4.数之间的联系往往可以从不同的角度来理解,只要言之有理,所得出的规律都可以认为是正确的。

二、精讲精练【例题1】先找出下列数排列的规律,并根据规律在括号里填上适当的数。

1,4,7,10,(),16,19【思路导航】在这列数中,相邻的两个数的差都是3,即每一个数加上3都等于后面的数。

根据这一规律,括号里应填的数为:10+3=13或16-3=13。

像上面按照一定的顺序排列的一串数叫做数列。

练习1:先找出下列各列数的排列规律,然后在括号里填上适当的数。

小六数学第5讲:递推与归纳(学生版)

小六数学第5讲:递推与归纳(学生版)

第五讲 递推与归纳知识梳理递推法:教学重难点1. 理解递推法的概念。

2. 会用递推法解题特色讲解:例1:999…999×999…999的乘积中有多少个数字是奇数?例2:如图所示:线段AB 上共有10个点(包括两个端点)那么这条线段上一共有多少条不同的线段?例3:计算13+23+33+43+53+63+73+83+93+103得值。

例4:2000个学生排成一行,依次从左到右编上1~2000号,然后从右到左按一、二报数,报一的离开队伍,剩下的人继续按一、二报数,报一的人离开队伍,……按这个规律如此下去,直至当队伍只剩下一人为止。

问:最后留下的这个人原来的号码是多少?例5:圆周上两个点将圆周分为两半,在这两点上写上数1;然后将两段半圆弧对分,在两个分点上写上相邻两点上的数之和;再把4段圆弧等分,在分点上写上相邻两点上的数之和,如此继续下去,问第6步后,圆周上所有点上的之和是多少?例6: 4个人进行篮球训练,互相传球接球,要求每个人接球后马上传给别人,开始由甲发球,并作为第一次传球,第五次传球后,球又回到甲手中,问有多少种传球方式?当堂练习A1. 100条直线最多能把一个平面分成_____个部分。

2. 熊大叔是一个卖烧饼的师傅,他用一个平底锅煎饼,他是这样煎饼的:每次只能放两个饼,每个饼正反面都要煎,煎每一面都要1分钟,问他煎10个这样的饼需要_____分钟。

3. 上一段11阶楼梯,规定每一步只能上一级或两级,那么要登上第11级台阶有_____种不同的走法。

4.请先计算11×11,111×111,1111×1111,你能根据以上结果,不经过计算而直接写出11111111×11111111=________。

10个9 10个9 1 2 3 4 5 6 7 8 B5.我们知道三角形的内角和是180度,长方形的内角和是360度,那么正十边形的内角和是_____度。

五年级秋-第5讲-上游和下游(一)(学生版)

五年级秋-第5讲-上游和下游(一)(学生版)

某船在静水中的速度是每小时16千米,水速是每小时2千米,这只船从甲地到乙地顺水行驶需8小时,那么甲、乙两地相距多少千米?1、甲、乙两港间的距离为112千米,一艘货轮在静水中的航行速度是24千米/时,水速是4千米/时,那么这艘货轮从甲港顺流而下行驶到乙港,需要多少小时?一、船在江河里航行时,除了本身的动力外,还会受到流水的推送或顶逆的影响。

在这种情况下,计算船的航行速度、时间和路程,就叫做流水行船问题。

二、船在静水中航行的速度叫船速;江河水流动的速度叫水速;船从上游向下游顺水而行的速度叫顺水速度;船从下游向上游逆水而行的速度叫逆水速度。

它们之间的数量关系为:顺水速度=船静水速度+水速V 顺=V 船+V 水船静水速度=(顺水速度+逆水速度)÷2V 船=(V 顺+V 逆)÷2逆水速度=船静水速度-水速V 逆=V 船-V 水水速=(顺水速度-逆水速度)÷2V 水=(V 顺-V 逆)÷2三、两船在流水中的相遇(或追及)与在静水中、两车在陆地上的相遇(或追及)所花时间一样,与水速没有关系,但相遇位置与追及的位置有变化。

四、对于河流中的漂浮物:漂浮物速度=水速。

例1试一试例2一艘轮船在静水中每小时行驶18千米,它在水速为5千米/时的大河中,逆水行驶10小时能行驶多少千米?试一试2、一只小船在一条河中,逆水航行54千米需要6小时。

已知这只小船的静水速度为10千米/时,那么这条河的水流速度为多少千米/时?例3四季号客轮顺水而下行200千米要10小时,逆水而上行120千米也要10小时。

那么,它在静水中的航行速度是多少千米/时?试一试3、(1)某船在相距320千米的A、B两港间航行。

逆流而行时,全程需用16小时;顺流而行时,全程所用时间是逆流时的一半。

该船的静水速度是多少千米/时?3、(2)一条船在河里航行,顺流而行时航速为每小时36千米。

已知此船顺水航行5小时的路程和逆水航行9小时的路程相等,求水流速度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5讲找规律(一)
这一讲我们先介绍什么是“数列”,然后讲如何发现和寻找“数列”的规律。

按一定次序排列的一列数就叫数列。

例如,
(1) 1,2,3,4,5,6,…
(2) 1,2,4,8,16,32;
(3) 1,0,0,1,0,0,1,…
(4) 1,1,2,3,5,8,13。

一个数列中从左至右的第n个数,称为这个数列的第n项。

如,数列(1)的第3项是3,数列(2)的第3项是4。

一般地,我们将数列的第n项记作a n。

数列中的数可以是有限多个,如数列(2)(4),也可以是无限多个,如数列(1)(3)。

许多数列中的数是按一定规律排列的,我们这一讲就是讲如何发现这些规律。

数列(1)是按照自然数从小到大的次序排列的,也叫做自然数数列,其规律是:后项=前项+1,或第n项a n=n。

数列(2)的规律是:后项=前项×2,或第n项
数列(3)的规律是:“1,0,0”周而复始地出现。

数列(4)的规律是:从第三项起,每项等于它前面两项的和,即
a3=1+1=2,a4=1+2=3,a5=2+3=5,
a6=3+5=8,a7=5+8=13。

常见的较简单的数列规律有这样几类:
第一类是数列各项只与它的项数有关,或只与它的前一项有关。

例如数列(1)(2)。

第二类是前后几项为一组,以组为单元找关系才可找到规律。

例如数列(3)(4)。

第三类是数列本身要与其他数列对比才能发现其规律。

这类情形稍为复杂些,我们用后面的例3、例4来作一些说明。

例1:找出下列各数列的规律,并按其规律在( )内填上合适的数:
(1)4,7,10,13,( ),…
(2)84,72,60,( ),( );
(3)2,6,18,( ),( ),…
(4)625,125,25,( ),( );
(5)1,4,9,16,( ),…
(6)2,6,12,20,( ),( ),…
例2:找出下列各数列的规律,并按其规律在( )内填上合适的数:
(1)1,2,2,3,3,4,( ),( );
(2)( ),( ),10,5,12,6,14,7;
(3) 3,7,10,17,27,( );
(4) 1,2,2,4,8,32,( )。

例3:找出下列各数列的规律,并按其规律在( )内填上合适的数:
(1)18,20,24,30,( );
(2)11,12,14,18,26,( );
(3)2,5,11,23,47,( ),( )。

例4:找出下列各数列的规律,并按其规律在( )内填上合适的数
(1)12,15,17,30,22,45,( ),( );
(2) 2,8,5,6,8,4,( ),( )。

练习5
按其规律在下列各数列的( )内填数。

1. 56,49,42,35,( )。

2. 11,15,19,23,( ),…
3. 3,6,12,24,( )。

4.2,3,5,9,17,( ),…
5. 1,3,4,7,11,( )。

6. 1,3,7,13,21,( )。

7. 3,5,3,10,3,15,( ),( )。

8. 8,3,9,4,10,5,( ),( )。

9. 2,5,10,17,26,( )。

10. 15,21,18,19,21,17,( ),( )。

11. 数列1,3,5,7,11,13,15,17。

(1)如果其中缺少一个数,那么这个数是几?应补在何处?
(2)如果其中多了一个数,那么这个数是几?为什么?。

相关文档
最新文档