高中立体几何证明线面平行的常见方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

E

D

C

B

A

高中立体几何证明线面平行问题(数学作业十七)

(1) 通过“平移”再利用平行四边形的性质

1.如图,四棱锥P -ABCD 的底面是平行四边形,点E 、F 分别为棱AB 、 PD 的中点.求证:AF ∥平面PCE ;

2、已知直三棱柱ABC -A 1B 1C 1中,D, E, F 分别为AA 1, CC 1, AB 的中点, M 为BE 的中点, AC⊥BE . 求证:

(Ⅰ)C 1D⊥BC; (Ⅱ)C 1D∥平面B 1FM.

3、如图所示, 四棱锥P -ABCD 底面是直角梯形, ,,AD CD AD BA ⊥⊥CD=2AB, E 为PC 的中点, 证明: //EB PAD 平面;

(2) 利用三角形中位线的性质

4、如图,已知E 、F 、G 、M 分别是四面体的棱AD 、CD 、BD 、BC 的中点,求证:AM ∥平面EFG 。

5、如图,ABCD 是正方形,O 是正方形的中心,E 是PC 的中点。 求证: PA ∥平面BDE

6.如图,三棱柱ABC —A 1B 1C 1中, D 为AC 的中点. 求证:AB 12

1

中点为PD E 求证:AE ∥平面PBC ;

(第1题图)

A

B

C

D

E

F G M

(4)利用对应线段成比例

9、如图:S 是平行四边形ABCD 平面外一点,M 、N 分别是SA 、BD 上的点,且

SM AM =ND

BN

, 求证:MN ∥平面SDC

(5)利用面面平行

10、如图,三棱锥中,底面,,PB=BC=CA , 为的中点,为的中点,点在上,且. (1)求证:平面; (2)求证:平面;

相关文档
最新文档