专题07 整式的加减
部编数学七年级上册专题07整式的加减(知识大串讲)(解析版)含答案

专题07 整式的加减(知识大串讲)【知识点梳理】考点1 同类项1.定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
2.合并同类项:(1)合并同类项的概念:把多项式中的同类项合并成一项叫做合并同类项。
(2)合并同类项的法则: 同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
(3)合并同类项步骤: a.准确的找出同类项。
b.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
c.写出合并后的结果。
(4)在掌握合并同类项时注意: a.如果两个同类项的系数互为相反数,合并同类项后,结果为0. b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
说明:合并同类项的关键是正确判断同类项。
考点2 去括号(1)如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;(2)如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
考点3整式的加减几个整式相加减的一般步骤:(1)列出代数式:用括号把每个整式括起来,再用加减号连接。
(2)按去括号法则去括号。
(3)合并同类项。
【典例分析】【考点1 同类项的判断】【典例1】(2022春•兰西县校级期末)下列各组两项中,是同类项的是( )A.xy与﹣xy B.ac与abcC.﹣3ab与﹣2xy D.3xy2与3x2y【答案】A【解答】解:A.根据同类项的定义,xy与﹣xy是同类项,那么A符合题意.B.根据同类项的定义,与不是同类项,那么B不符合题意.C.根据同类项的定义,﹣3ab与﹣2xy不是同类项,那么C不符合题意.D.根据同类项的定义,3xy2与3x2y不是同类项,那么D不符合题意.故选:A.【变式1】(2021秋•乌当区期末)在下列各组单项式中,不是同类项的是( )A.5x2y和﹣7x2y B.m2n和2mn2C.﹣3和99D.﹣abc和9abc【答案】B【解答】解:A.5x2y和﹣7x2y所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意;B.m2n和2mn2所含字母相同,但相同字母的指数不相同,故不是同类项,故本选项符合题意;C.﹣3和99是同类项,故本选项不合题意;D.﹣abc和9abc所含字母相同,并且相同字母的指数也相同,是同类项,故本选项不合题意.故选:B.【考点2 已知同类项求指数中字母的值】【典例2】(2021秋•北辰区期末)如果2x3n y m+1与﹣3x12y4是同类项,那么m,n的值分别是( )A.m=﹣2,n=3B.m=2,n=3C.m=﹣3,n=2D.m=3,n=4【答案】D【解答】解:∵2x3n y m+1与﹣3x12y4是同类项,∴3n=12,m+1=4,解得m=3,n=4,故选:D.【变式2-1】(2022春•龙凤区期末)如果单项式﹣xy b+1与x a﹣2y3是同类项,那么(a﹣b)2022=( )A.1B.﹣1C.52022D.﹣52022【答案】A【解答】解:∵单项式﹣xy b+1与x a﹣2y3是同类项,∴a﹣2=1,b+1=3,解得:a=3,b=2,∴(a﹣b)2022=(3﹣2)2022=12022=1.故选:A.【变式2-2】(2022春•潍坊期末)若单项式20x m﹣n y14与可以合并成一项,则m n的值是( )A.B.2C.D.﹣2【答案】A【解答】解:由题意可知:m﹣n=3,3m﹣8n=14,∴m=2,n=﹣1,∴m n=.故选:A.【考点3 合并同类项】【典例3】(2022•清苑区二模)下列算式中正确的是( )A.4x﹣3x=1B.2x+3y=3xyC.3x2+2x3=5x5D.x2﹣3x2=﹣2x2【答案】D【解答】解:A、原式=x,故A不符合题意.B、2x与3y不是同类项,不能合并,故B不符合题意.C、3x2与2x3不是同类项,不能合并,故C不符合题意.D、x2﹣3x2=﹣2x2,故D符合题意.故选:D.【变式3】(2022•钱塘区一模)化简:﹣5x+4x=( )A.﹣1B.﹣x C.9x D.﹣9x 【答案】B【解答】解:原式=(﹣5+4)x=﹣x.故选:B【考点4 去括号或添括号】【典例4-1】(2022春•宁波期末)下列添括号正确的是( )A.﹣b﹣c=﹣(b﹣c)B.﹣2x+6y=﹣2(x﹣6y)C.a﹣b=+(a﹣b)D.x﹣y﹣1=x﹣(y﹣1)【答案】C【解答】解:A.﹣b﹣c=﹣(b+c),故此选项不合题意;B.﹣2x+6y=﹣2(x﹣3y),故此选项不合题意;C.a﹣b=+(a﹣b),故此选项符合题意;D.x﹣y﹣1=x﹣(y+1),故此选项不合题意;故选:C.【典例4-2】(2021秋•望城区期末)下列各题中去括号正确的是( )A.5﹣3(x+1)=5﹣3x﹣1B.2﹣4(x+)=2﹣4x+1C.2﹣4(x+1)=2﹣x﹣4D.2(x﹣2)﹣3(y﹣1)=2x﹣4﹣3y﹣3【答案】C【解答】解:A.5﹣3(x+1)=5﹣3x﹣3,故A不符合题意.B.2﹣4(x+)=2﹣4x﹣1,故B不符合题意.C.2﹣4(x+1)=2﹣x﹣4,故C符合题意.D.2(x﹣2)﹣3(y﹣1)=2x﹣4﹣3y+3,故D不符合题意.故选:C.【变式4-1】(2022•馆陶县)等号左右两边一定相等的一组是( )A.﹣(a+b)=﹣a+b B.a3=a+a+aC.﹣2(a+b)=﹣2a﹣2b D.﹣(a﹣b)=﹣a﹣b【答案】C【解答】解:A、原式=﹣a﹣b,原去括号错误,故此选项不符合题意;B、a3=a•a•a,a+a+a=3a,原式左右两边不相等,故此选项不符合题意;C、原式=﹣2a﹣2b,原去括号正确,故此选项符合题意;D、原式=﹣a+b,原去括号错误,故此选项不符合题意.故选:C.【变式4-2】(2021秋•海门市期末)计算﹣(4a﹣5b),结果是( )A.﹣4a﹣5b B.﹣4a+5b C.4a﹣5b D.4a+5b【答案】B【解答】解:﹣(4a﹣5b)=﹣4a+5b,故选:B【考点5 整式加减的运算】【典例5】(2022•南京模拟)先去括号,再合并同类项;(1)(3x2+4﹣5x3)﹣(x3﹣3+3x2)(2)(3x2﹣xy﹣2y2)﹣2(x2+xy﹣2y2)(3)2x﹣[2(x+3y)﹣3(x﹣2y)](4)(a+b)2﹣(a+b)﹣(a+b)2+(﹣3)2(a+b).【解答】解:(1)原式=3x2+4﹣5x3﹣x3+3﹣3x2=﹣6x3+7;(2)原式=3x2﹣xy﹣2y2﹣2x2﹣2xy+4y2=x2﹣3xy+2y2;(3)原式=2x﹣2x﹣6y+3x﹣6y=3x﹣12y;(4)原式=﹣(a+b)﹣(a+b)2+9(a+b)=﹣(a+b)2+(a+b).【变式5-1】(河南期中)先去括号,再合并同类项(1)2(2b﹣3a)+3(2a﹣3b)(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)【解答】解:(1)2(2b﹣3a)+3(2a﹣3b)=4b﹣6a+6a﹣9b=﹣5b;(2)4a2+2(3ab﹣2a2)﹣(7ab﹣1)=4a2+6ab﹣4a2﹣7ab+1=﹣ab+1.【变式5-2】(乐清市校级月考)去括号,合并同类项:(1)﹣3(2x﹣3)+7x+8;(2)3(x2﹣y2)﹣(4x2﹣3y2).【解答】解:(1)﹣3(2x﹣3)+7x+8=﹣6x+9+7x+8,=(﹣6x+7x)+(9+8),=x+17,(2)3(x2﹣y2)﹣(4x2﹣3y2)=3x2﹣y2﹣2x2+y2,=3x2﹣2x2+(﹣y2+y2),=x2.【考点6 化简求值】【典例6】(2022春•杜尔伯特县期中)代入求值.(1)已知|a﹣2|+(b+1)2=0,求代数式5ab﹣[2a2b﹣(4b2+2a2b)]的值;(2)2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=1,y=﹣1.【解答】解:(1)原式=5ab﹣(2a2b﹣4b2﹣2a2b)=5ab﹣2a2b+4b2+2a2b=5ab+4b2,由题意可知:a﹣2=0,b+1=0,∴a=2,b=﹣1,原式=5×2×(﹣1)+4×1=﹣10+4=﹣6.(2)原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=1,y=﹣1时,原式=﹣5×1×(﹣1)+5×1×(﹣1)=5﹣5=0.【变式6-1】(2021秋•兴庆区校级期末)先化简,再求值.(1)3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2),其中(x+2)2+|y﹣1|=0;(2)(﹣a2+3ab﹣2b)﹣2(﹣a2+4ab﹣b2),其中a=3,b=﹣2.【解答】解:(1)3y2﹣x2+2(2x2﹣3xy)﹣3(x2+y2)=3y2﹣x2+4x2﹣6xy﹣3x2﹣3y2=﹣6xy,∵(x+2)2+|y﹣1|=0,(x+2)2≥0,|y﹣1|≥0,∴x+2=0,y﹣1=0.∴x=﹣2,y=1.当x=﹣2,y=1时,原式=﹣6×(﹣2)×1=12.(2)(﹣a2+3ab﹣2b)﹣2(﹣a2+4ab﹣b2)=﹣a2+3ab﹣2b+a2﹣8ab+3b2=﹣5ab+3b2﹣2b,当a=3,b=﹣2时,原式=﹣5×3×(﹣2)+3×(﹣2)2﹣2×(﹣2)=30+3×4+4=30+12+4=46.【变式6-2】(2021秋•梁平区期末)先化简再求值:(1)﹣(x2﹣y2)﹣[3xy﹣(x2﹣y2)],其中x=﹣3,y=﹣4.(2),其中|2+y|+(x﹣1)2=0.【解答】解:(1)﹣(x2﹣y2)﹣[3xy﹣(x2﹣y2)]=﹣x2+y2﹣3xy+x2﹣y2=﹣3xy,当x=﹣3,y=﹣4时,原式=﹣3xy=﹣3×(﹣3)×(﹣4)=﹣36;(2)=5x2y﹣(3xy2﹣6xy2+7x2y)=5x2y﹣3xy2+6xy2﹣7x2y=﹣2x2y+3xy2,因为|2+y|+(x﹣1)2=0,所以y=﹣2,x=1,所以原式=﹣2×1×(﹣2)+3×1×4=16.【考点7 整式加减的无关型问题】【典例7】(2021秋•东港区期末)(1)先化简,再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣,y=2.(2)已知A=y2+3ay﹣1,B=by2+4y﹣1,且4A﹣3B的值与y的取值无关,求a,b的值.【解答】解:(1)原式=3x2y﹣(2x2y﹣6xy+3x2y﹣xy)=3x2y﹣2x2y+6xy﹣3x2y+xy=﹣2x2y+7xy,当,y=2时,原式=.(2)4A﹣3B==3y2+12ay﹣4﹣3by2﹣12y+3=(3﹣3b)y2+(12a﹣12)y﹣1,∵4A﹣3B的值与y的取值无关,∴3﹣3b=0,12a﹣12=0,∴a=1,b=1.【变式7-1】(2022春•泰州期末)已知:A=3x2+2xy+3y﹣1,B=x2﹣xy.(1)计算:A﹣3B;(2)若A﹣3B的值与y的取值无关,求x的值.【解答】解:(1)A﹣3B=(3x2+2xy+3y﹣1)﹣3(x2﹣xy)=3x2+2xy+3y﹣1﹣3x2+3xy=5xy+3y﹣1;(2)∵A﹣3B=5xy+3y﹣1=(5x+3)y﹣1,又∵A﹣3B的值与y的取值无关,∴5x+3=0,∴x=﹣.【变式7-2】(2021秋•井研县期末)已知A=2x2+xy+3y﹣1,B=x2﹣xy.(1)当x=﹣1,y=3时,求A﹣2B的值;(2)若3A﹣6B的值与y的值无关,求x的值.【解答】解:(1)∵A=2x2+xy+3y﹣1,B=x2﹣xy,∴A﹣2B=(2x2+xy+3y﹣1)﹣2(x2﹣xy)=2x2+xy+3y﹣1﹣2x2+2xy=3xy+3y﹣1,当x=﹣1,y=3时,原式=3×(﹣1)×3+3×3﹣1=﹣9+9﹣1=﹣1;(2)∵A=2x2+xy+3y﹣1,B=x2﹣xy,∴3A﹣6B=3(2x2+xy+3y﹣1)﹣6(x2﹣xy)=6x2+3xy+9y﹣3﹣6x2+6xy=9xy+9y﹣3=(9x+9)y﹣3,∵3A﹣6B的值与y的值无关,∴9x+9=0,∴x=﹣1.【考点8 整式加减的看错问题】【典例8】(2021秋•济宁期末)已知多项式M,N,其中M=2x2﹣x﹣1,小马在计算2M﹣N时,由于粗心把2M﹣N看成了2M+N求得结果为﹣3x2+2x﹣1,请你帮小马算出:(1)多项式N;(2)多项式2M﹣N的正确结果.求当x=﹣1时,2M﹣N的值.【解答】解:(1)根据题意得:N=﹣3x2+2x﹣1﹣2(2x2﹣x﹣1)=﹣3x2+2x﹣1﹣4x2+2x+2=﹣7x2+4x+1;(2)2M﹣N=2(2x2﹣x﹣1)﹣(﹣7x2+4x+1)=4x2﹣2x﹣2+7x2﹣4x﹣1=11x2﹣6x﹣3,当x=﹣1时,2M﹣N=11+6﹣3=14.【变式8】(2021秋•禹州市期末)某同学做一道题,已知两个多项式A、B,求A﹣2B的值.他误将“A﹣2B”看成“A+2B”,经过正确计算得到的结果是x2+14x﹣6.已知A=﹣2x2+5x﹣1.(1)请你帮助这位同学求出正确的结果;(2)若x是最大的负整数,求A﹣2B的值.【解答】解:(1)由题意得:2B=x2+14x﹣6﹣(﹣2x2+5x﹣1)=x2+14x﹣6+2x2﹣5x+1=3x2+9x﹣5,所以,A﹣2B=﹣2x2+5x﹣1﹣(3x2+9x﹣5)=﹣2x2+5x﹣1﹣3x2﹣9x+5=﹣5x2﹣4x+4;(2)由x是最大的负整数,可知x=﹣1,所以,A﹣2B=﹣5×(﹣1)2﹣4×(﹣1)+4=﹣5+4+4=3【考点8整式加减的应用】【典例9】(2021秋•海沧区期末)为了促进“资源节约和环境友好型”社会建设,引导居民合理用电.某市结合实际,决定提供两种家庭用电计费方式供居民选择.方式一:峰谷计价.收费标准为:峰时段(上午8:00~晚上21:00)用电的电价为0.65元/度,谷时段(晚上21:00~次日晨8:00)用电的电价为0.35元/度.方式二:阶梯计价.收费标准如下表:超过400度的部分居民一个月用电量不超过200度超过200度但不超过400度的部分电价(单位:元/度)0.500.600.75(1)若该市居民小王家某月用电300度,其中,峰时段用电200度,谷时段用电100度.他家选择哪种计费方式费用较低?(2)若该市居民小张家某月总用电量为a度,其中80%为峰时段的用电量.请用含a的式子分别表示两种计费方式应缴的电费.【解答】解:(1)方式一:200×0.65+100×0.35=130+35=165(元).方式二:200×0.50+(300﹣200)×0.60=100+100×0.60=100+60=160(元).160元<165元,所以他家选择方式二计费方式费用较低.(2)方式一:80%a×0.65+(1﹣80%)×a×0.35=0.8a×0.65+0.2a×0.35=0.52a+0.07a=0.59a(元).方式二:当a不超过200时,电费为:a×0.5=0.5a(元).当a超过200但不超过400时,电费为:200×0.5+(a﹣200)×0.6=100+0.6a﹣120=0.60﹣(120﹣100)=(0.6a﹣20)(元).当a超过400时,电费为:200×0.50+(400﹣200)×0.60+(a﹣400)×0.75=100+120+0.75a﹣400×0.75=220+0.75a﹣300=0.75a﹣(300﹣220)=(0.75a﹣80)(元).答:小张家按方式一计费方式应缴电费0.59元.方式二计费时,当a不超过200时,应缴电费0.5a元;当a超过200但不超过400时,应缴电费(0.6a一20)元;当a超过400时,应缴电费(0.75a一80)元.【变式9】(2021秋•沐川县期末)滴滴快车是一种便捷的出行工具,计价规则如下表:计费项目里程费时长费远途费单价 1.8元/公里0.45元/分钟0.4元/公里注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收0.4元.(1)若小东乘坐滴滴快车,行车里程为5公里,行车时间为10分钟,则需付车费多少元;(2)若小明乘坐滴滴快车,行车里程为a公里,行车时间为b分钟,则小明应付车费多少元?(用含a、b的代数式表示,并化简)(3)小王与小张各自乘坐滴滴快车,行车里程分别为9.5公里与14.5公里,并且小王的行车时间比小张的行车时间多24分钟,请计算说明两人下车时所付车费有何关系?【解答】解:(1)1.8×5+0.45×10=13.5(元),答:需付车费13.5元;(2)当a≤10时,小明应付费(1.8a+0.45b)元;当a>10时,小明应付费1.8a+0.45b+0.4(a﹣10)=(2.2a+0.45b﹣4)元;(3)设小王与小张乘坐滴滴快车分别为a分钟、(a﹣24)分钟,则小王应付车费1.8×9.5+0.45a=17.1+0.45a,小张应付车费1.8×14.5+0.45(a﹣24)+0.4×(14.5﹣10)=17.1+0.45a,因此,两人车费一样多【典例10】(2021秋•新泰市期末)如图是一块长方形花园,内部修有两个凉亭及过道,其余部分种植花圃(阴影部分).(1)用整式表示花圃的面积;(2)若a=3m,修建花圃的成本是每平方米60元,求修建花圃所需费用.【解答】解:(1)根据题意得:(7.5+12.5)×(a+2a+2a+2a+a)﹣12.5•2a×2=20•8a﹣50a=160a﹣50a=110a(m2),所以,花圃的面积为:110a;(2)当a=3m、修建花圃的成本是每平方米60元时,修建花圃所需费用为110×3×60=19800(元),所以,修建花圃所需费用为19800元.【变式10】(2022春•莱州市期末)如图是一个长方形游乐场,其宽是4a米,长是6a 米.其中半圆形休息区和长方形游泳区以外的地方都是绿地.已知半圆形休息区的直径和长方形游泳区的宽是2a米,游泳区的长是3a米.(1)该游乐场休息区的面积为 a2 m2,游泳区的面积为 6a2 m2.(用含有a 的式子表示)(2)若长方形游乐场的宽为40米,绿化草地每平方米需要费用30元,求这个游乐场中绿化草地的费用.【解答】解:(1)休息区的面积为:×π×a2=a2(m2);游泳区的面积为:3a×2a=6a2(m2).故答案为:a2,6a2;(2)∵长方形游乐场的宽为40米,∴a=10米.所以(6a×4a﹣6a2﹣a2)×30≈(24a2﹣6a2﹣1.57a2)×30=16.43a2×30=492.9a2.当a=10时,原式=49290(元).答:游乐场中绿化草地的费用为49290元.【典例11】(2021秋•连城县期中)某商场销售一种西装和领带,西装每套定价1000元,领带每条定价200元,“国庆节”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一套西装送一条领带:方案二:西装和领带都按定价的90%付款.现某客户要到该商场购买西装20套,领带x条(x>20).(1)若该客户按方案一购买,需付款 元.(用含x的代数式表示)若该客户按方案二购买,需付款 元.(用含x的代数式表示)(2)若x=40,通过计算说明此时按哪种方案购买较为合算?(3)当x=40时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法.并算出需要付款多少元?【解答】解:(1)客户要到该商场购买西装20套,领带x条(x>20).方案一费用:20×1000+(x﹣20)×200=(200x+16000)元,方案二费用:(20×1000+200x)×0.9=(180x+18000)元,故答案为:(200x+16000),(180x+18000).(2)当x=40时,方案一:200×40+16000=24000(元),方案二:180×40+18000=25200(元),所以,按方案一购买较合算.(3)能给出一种更为省钱的购买方案;先按方案一购买20套西装获赠送20条领带,再按方案二购买20条领带;需要付款:20000+200×20×90%=23600(元).【变式11】(2021秋•淅川县期中)某校羽毛球队需要购买6支羽毛球拍和x盒羽毛球(x>6),羽毛球拍市场价为150元/支,羽毛球为30元/盒.甲商场优惠方案为:所有商品九折.乙商场优惠方案为:买1支羽毛球拍送1盒羽毛球,其余原价销售.(1)分别用x的代数式表示在甲商场和乙商场购买所有物品的费用.(2)当x=20时,请通过计算说明选择哪个商场购买比较省钱.【答案】(1甲:27x+810乙:30x+720(2)乙商场购买比较省钱【解答】解:(1)在甲商场购买所有物品的费用为:0.9(6×150+30x)=27x+810,在乙商场购买所有物品的费用为:6×150+30(x﹣6)=30x+720;(2)当x=20时,27x+810=1350(元);30x+720=1320(元);1350>1320,答:选择乙商场购买比较省钱.。
整式的加减运算

整式的加减运算整式是指由常数、变量及它们的积和积的幂次和(其中幂次是非负整数)构成的式子。
整式的加减运算是指将两个整式进行相加或相减的操作。
在进行整式的加减运算时,需注意一些规则和步骤。
一、加法运算整式的加法运算是将两个整式的各项按照同类项进行相加,并将得到的同类项合并。
下面通过几个具体的例子来介绍整式的加法运算。
例一:将多项式3x^2+2x+5和4x^2-3x+1相加。
解:首先将同类项相加,即将x^2的系数相加,x的系数相加,常数项相加。
3x^2 + 2x + 5+ 4x^2 - 3x + 1_______________7x^2 - x + 6因此,3x^2+2x+5和4x^2-3x+1相加的结果为7x^2-x+6。
例二:将多项式2x^3+4x^2-3x+7和-3x^3-2x^2+5x-2相加。
解:按照同类项相加的原则进行计算。
2x^3 + 4x^2 - 3x + 7+ (-3x^3) + (-2x^2) + 5x + (-2)_____________________________-x^3 + 2x^2 + 2x + 5因此,2x^3+4x^2-3x+7和-3x^3-2x^2+5x-2相加的结果为-x^3+2x^2+2x+5。
二、减法运算整式的减法运算是将两个整式的各项按照同类项进行相减,并将得到的同类项合并。
下面通过几个具体的例子来介绍整式的减法运算。
例一:将多项式6x^2+2x-3和2x^2-5x-2相减。
解:将减数的每一项加上相反数再按照同类项相加。
6x^2 + 2x - 3- (2x^2 - 5x - 2)________________4x^2 + 7x - 1因此,6x^2+2x-3和2x^2-5x-2相减的结果为4x^2+7x-1。
例二:将多项式5x^3-4x^2+3x-1和-2x^3+5x^2+4x-2相减。
解:按照同类项相减的原则进行计算。
5x^3 - 4x^2 + 3x - 1- (-2x^3 + 5x^2 + 4x - 2)________________________7x^3 - 9x^2 - x + 1因此,5x^3-4x^2+3x-1和-2x^3+5x^2+4x-2相减的结果为7x^3-9x^2-x+1。
7年级上册数学整式的加减

7年级上册数学整式的加减
7年级上册数学整式的加减,指的是在七年级上学期数学课程中,学习整式加减的内容。
整式加减是代数中的基础知识点,主要涉及单项式、多项式、同类项、合并同类项等概念,以及整式的加减运算。
整式加减的示例包括:
1.单项式的加减:例如,2x和3x的加法,结果为5x。
2.多项式的加减:例如,2x+3y和3x+4y的加法,结果为5x+7y。
3.同类项的合并:例如,2x+3x可以合并为5x,2y-2y可以合并为0。
4.整式的加减混合运算:例如,(2x+3y)-(-4x+5y)可以化简为6x-2y。
总结:7年级上册数学整式的加减指的是七年级上学期数学课程中学习的整式加减的知识点。
通过学习整式的加减,学生可以掌握单项式、多项式、同类项等概念,并能够进行整式的加减运算和化简。
这些知识点是代数学习的基础,对于培养学生的数学思维和解决问题的能力具有重要意义。
专题07 整式的加减(原卷版)

专题07 整式的加减知识网络重难突破知识点一同类项的概念1.同类项:所含字母相同且相同字母的指数也相同的项是同类项2. 同类项必需满足以下条件:①一是所含字母相同,二是相同字母的指数也相同,两者缺一不可;②同类项与系数的大小无关;③同类项与它们所含的字母顺序无关;④所有常数项都是同类项.【典例1】(2018秋•吴兴区期末)已知﹣a m b2和3a3b n﹣1是同类项,则m+n=()A.6 B.5 C.4 D.3【变式训练】1.(2018秋•金东区期末)下列单项式与3x2y是同类项的是()A.﹣3xy B.3x2yz C.2x2y D.3xy22.(2018秋•鄞州区期末)若﹣3x m y3和8x5y n是同类项,则它们的和是()A.5x10y6B.﹣11x10y6C.5x5y3D.﹣11x5y63.(2018秋•嘉兴期末)若单项式3x2m y n﹣1与单项式﹣x2y是同类项,则m﹣2n的值为()A.1 B.0 C.﹣1 D.﹣3知识点二合并同类项1.合并同类项:把多项式中的同类项合并成一项.2.合并同类项法则:(1)同类项的系数相加,所得的结果作为系数;(2)字母和字母的指数不变.【典例3】(2019•乐清市一模)计算3x2+2x2的结果()A.5 B.5x2C.5x4D.6x2【变式训练】1.(2019•台州)计算2a﹣3a,结果正确的是()A.﹣1 B.1 C.﹣a D.a 2.(2019•鹿城区校级二模)计算4a2﹣5a2的结果是()A.﹣a2 B.﹣1 C.a2 D.9 a23.(2019秋•海曙区期中)下列化简正确的是()A.8x﹣7y=xy B.a2b﹣2ab2=﹣ab2C.9a2b﹣4ba2=5a2b D.5m﹣4m=1知识点三去括号和添括号去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.【典例4】(2019秋•慈溪市期中)下列去括号正确的是()A.a﹣(b﹣c)=a﹣b﹣c B.x2﹣2(x﹣1)=x2﹣x+2C.x2﹣2(﹣3x+1)=x2+6x+2 D.x2﹣(﹣3x+1)=x2+3x+1【变式训练】1.(2018秋•鄞州区期中)下列等式中正确的是()A.﹣(3﹣x)=3+x B.﹣(a+b)=﹣a+bC.2(a+1)=2a+1 D.﹣(a﹣b)=b﹣a2.(2017秋•拱墅区期末)下列去括号正确的是()A.﹣2(x﹣y)=﹣x﹣2y B.﹣0.5(1﹣2x)=﹣0.5+xC.﹣(2x2﹣x+1)=﹣2x2﹣x+1 D.3(2x﹣3y)=6x﹣3y知识点四整式的加减整式的加减运算的步骤:①去括号②合并同类项【典例5】(2019秋•海曙区期中)化简:(1)2x+1﹣7x﹣2(2)3(x2﹣y2)﹣(4x2﹣3y2)【变式训练】1.(2019秋•温岭市校级期中)计算(1)a+7a﹣5a(2)8a+2b+(5a﹣b)2.(2019秋•慈溪市期中)先化简,再求值:,其中x=﹣4,y=.3.(2019秋•慈溪市期中)化简:(1)2mn2﹣3m2﹣3mn2+2m2+m2n;(2)2a﹣(5b﹣a)+b4.(2018秋•镇海区期末)先化简,再求值求当x=3,y=﹣时,代数式2(﹣3xy﹣y2)﹣(2x2﹣5xy﹣2y2)的值.巩固训练1.(2019秋•诸暨市期中)已知﹣5a m+4b和28a2b是同类项,则m的值是()A.﹣2 B.2 C.﹣4 D.42.(2018秋•嵊州市期末)下列各题中的两项是同类项的是()A.3x2y与﹣3x2y B.2a2b与0.2ab2C.11abc与9bc D.62与x23.(2018秋•黄岩区期末)下列各组整式中是同类项的是()A.a3与b3B.2a2b与﹣a2bC.﹣ab2c与﹣5b2c D.x2与2x4.(2018秋•鄞州区期末)下列各式运算正确的是()A.5x+3y=8xy B.3a+a=4a2C.3a2b﹣2a2b=a2b D.5a﹣3a=25.(2019秋•温岭市期中)化简:(1)2x2﹣3x+7﹣4x2+3x+1(2)2(8xy﹣x2+y2)﹣3(x2﹣2y2+8xy)6.(2019秋•温岭市期中)先化简,再求值:2(a2b+ab2)﹣3(a2b﹣1)﹣2ab2﹣4,其中a=2019,b=.7.(2018秋•金东区期末)化简:(1)2(x﹣3x2+1)﹣3(2x2﹣x﹣2)(2)5mn2+3m2n﹣mn2﹣2m2n﹣18.(2018秋•杭州期末)(1)已知代数式(kx2+6x+8)﹣(6x+5x2+2)化简后的结果是常数,求系数k的值.(2)先化简,再求值:2(﹣3xy﹣y2)﹣(2x2﹣7xy﹣2y2),其中x=3,y=﹣.。
七年级数学专题训练07 整式的加减(附答案)

七年级数学专题训练07 整式的加减阅读与思考整式的加减涉及许多概念,准确地把握这些概念并注意它们的区别与联系是解决有关问题的基础,概括起来就是要掌握好以下两点:1.透彻理解“三式”和“四数”的概念“三式”指的是单项式、多项式、整式;“四数”指的是单项式的系数、次数和多项式的系数、次数.2.熟练掌握“两种排列”和“三个法则”“两种排列”指的是把一个多项式按某一字母的升幂或降幂排列,“三个法则”指的是去括号法则、添括号法则及合并同类项法则.物以类聚,人以群分.我们把整式中那些所含字母相同、并且相同字母的次数也相同的单项式作为一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类项.这样,使得整式大为简化,整式的加减实质就是合并同类项.例题与求解[例1]如果代数式ax5+bx3+cx-5,当x=-2时的值是7,那么当x=7时,该式的值是______.(江苏省竞赛试题) 解题思路:解题的困难在于变元个数多,将x两个值代入,从寻找两个多项式的联系入手.[例2]已知-1<b<0,0<a<1,那么在代数式a-b,a+b,a+b2,a2+b中,对于任意a,b对应的代数式的值最大的是( )A.a+b B.a-b C.a+b2D.a2+b(“希望杯”初赛试题)解题思路:采用赋值法,令a=12,b=-12,计算四个式子的值,从中找出值最大的式子.[例3]已知x=2,y=-4时,代数式ax2+12by+5=1997,求当x=-4,y=-12时,代数式3ax-24by3+4986的值.(北京市“迎春杯”竞赛试题) 解题思路:一般的想法是先求出a,b的值,这是不可能的.解本例的关键是:将给定的x,y值分别代入对应的代数式,寻找已知与待求式子之间的联系,整体代入求值.[例4]已知关于x的二次多项式a(x3-x2+3x)+b(2x2+x)+x3-5.当x=2时的值为-17,求当x=-2时,该多项式的值.(北京市“迎春杯”竞赛试题) 解题思路:解题的突破口是根据多项式降幂排列、多项式次数等概念挖掘隐含的关于a,b的等式.[例5]一条公交线路上起点到终点有8个站.一辆公交车从起点站出发,前6站上车100人,前7站下车80人.问从前6站上车而在终点下车的乘客有多少人?(“希望杯”初赛试题) 解题思路:前7站上车总人数等于第2站到第8站下车总人数.本例目的是求第8站下车人数比第7站上车人数多出的数量.[例6]能否找到7个整数,使得这7个整数沿圆周排列成一圈后,任3个相邻数的和等于29?如果,请举出一例;如果不能,请简述理由.(“华罗庚金杯”少年邀请赛试题) 解题思路:假设存在7个整数a1,a2,a3,a4,a5,a6,a7排成一圈后,满足题意,由此展开推理,若推出矛盾,则假设不成立.能力训练A级1.若-4x m-2y3与23x3y7-2n是同类项,m2+2n=______.(“希望杯”初赛试题) 2.当x=1,y=-1时,ax+by-3=0,那么当x=-1,y=1时,ax+by-3=______.(北京市“迎春杯”竞赛试题) 3.若a+b<0,则化简|a+b-1|-|3-a-b|的结果是______.4.已知x2+x-1=0,那么整式x3+2x2+2002的值为______.5.设2332,4536,x y zx y z++=⎧⎨++=⎩则3x-2y+z=______.(2013年全国初中数学联赛试题)6.已知A=a2+b2-c2,B=-4a2+2b2+3c2,若A+B+C=0,则C=( ).A.5a2+3b2+2c2B.5a2-3b2+4c2A.3a2-3b2-2c2A.3a2+b2+4c27.同时都有字母a,b,c,且系数为1的7次单项式共有( ).A.4个B.12个C.15个D.25个(北京市竞赛题) 8.有理数a,b,c则代数式|a|-|a+b|+|c-a|+|b-c|化简后的结果是为( ).A.-a B.2a-2b C.2c-a D.a9.已知a+b=0,a≠b,则化简ba (a+1)+ab(b+1)得( ).A.2a B.2b C.+2 D.-210.已知单项式0.25x b y c与单项式-0.125x m-1y2n-1的和为0.625ax n y m,求abc的值.11.若a,b均为整数,且a+9b能被5整除,求证:8a+7b也能被5整除.(天津市竞赛试题)B级1.设a<-b<c<0,那么|a+b|+|b+c|-|c-a|+|a||+b|+|c|=______.(“祖冲之杯”邀请赛试题) 2.当x的取值范围为______时,式子-4x+|4-7x|-|1-3x|+4的值恒为一个常数,这个值是______.(北京市“迎春杯”竞赛试题)第8题图3.当x =2时,代数式ax 3-bx +1的值等于-17,那么当x =-1时,代数式12ax -3bx 3-5的值等于______.4.已知(x +5)2+|y 2+y -6|=0,则y 2-15xy +x 2+x 3=______. (“希望杯”邀请赛试题)5.已知a -b =2,b -c =-3,c -d =5,则(a -c )(b -d )÷(a -d )=______.6.如果对于某一特定范围内x 的任意允许值,P =|1-2x |+|1-3x |+…+|1-9x |+|1-10x |的值恒为一个常数,则此值为( ).A .2B .3C .4D .5(安徽省竞赛试题)7.如果(2x -1)6=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,那么a 0+a 1+a 2+a 3+a 4+a 5+a 6等于______;a 0+a 2+a 4+a 6等于______.A .1,365B .0,729C .1,729D .1,0(“希望杯”邀请赛试题)8.设b ,c 是整数,当x 依次取1,3,6,11时,某学生算得多项式x 2+bx +c 的值分别为3,5,21,93.经验证,只有一个结果是错误的,这个错误的结果是( ).A .当x =1时,x 2+bx +c =3B .当x =3时,x 2+bx +c =5C .当x =6时,x 2+bx +c =21D .当x =11时,x 2+bx +c =93(武汉市选拔赛试题)9.已知y =ax 7+bx 5+cx 3+dx +e ,其中a ,b ,c ,d ,e 为常数,当x =2时,y =23;当x =-2时,y =-35,那么e 的值是( ).A .-6B .6C .-12D .12(吉林省竞赛试题)10.已知a ,b ,c 三个数中有两个奇数,一个偶数,n 是整数,如果s =(a +n +1)·(b +2n +2)(c +3n +3),那么( ).A .s 是偶数B .s 是奇数C .s 的奇偶性与n 的奇偶性相同D .s 的奇偶性不能确定(江苏省竞赛试题)11.(1)如图1,用字母a 表示阴暗部分的面积;(2)如图2,用字母a ,b 表示阴暗部分的面积;(3)如图3,把一个长方体礼品盒用丝带打上包装(图中虚线为丝带),打蝴蝶结的部分需12.将一个三位数abc 中间数码去掉,成为一个两位数ac ,且满足abc =9ac +4c ,如155=9×15+4×5.试求出所有这样的三位数.a a a xy z 图3 ba b图2 a专题07答案整式的加减例1 -17例2 B例3 1998提示:由已知得4a-b=996,待求式=-3×(4a-b)+4986.例4 原多项式整理得:(a+1)x3+(2b-a)x3+(3a+b)x-5..又由题意知,该多项式为二次多项式,故a+1=0,得a=-1.把a=-1,a=2代入得:4(2b+1)+2×(b -3)-5=-17.解得b=-1,故原多项式为-x2-4 x-5.当x=-2时,-x2-4 x-5=-4+8-5=-1.例5 设前7站上车的乘客数量依次为a1,a2,a3,a4,a5,a6,a7人,从第2站到第8站下车的乘客数量依次为b2,b3,b4,b5,b6,b7,b8人,则a1+a2+a3+a4+a5+a6+a7=b2+b3+b4+b5+b6+b7+b8.又∵a1+a2+a3+a4+a5+a6=100,∴b2+b3+b4+b5+b6+b7=80,即100+a7=80+b8,前6站上车而在终点下车的人数为b8-a7=100-80=20(人).例6 如图,由题意得a1+a2+a3=29,a2+a3+a4=29,…a6+a7+a 1=29,a7+a1+a 2=29,将上述7式相加得,3(a1+a2+a3+a4+a5+a6+a7)=29×7.∴a1+a2+a3+a4+a5+a6+a7=672 3 .这与a1+a2+a3+a4+a5+a6+a7为整数矛盾.故不存在满足题设要求的7个整数.A级1. 292. -63. -24.20035. 10 提示:3 x-2 y+z=2×(2 x+y+3 z)-(x+4 y+5 z)=2×23-36=46-36=10.6.C7.C提示:设满足条件的单项式为a m b n c p的形式,其中m,n,p为自然数,且m+n+p=7.8.C9. D10. 1.2 提示:由题意得b=m-1=n,c=2 n-1=0,0.625 a=0.25+(-0.125).11. 提示:8 a+7 b=8(a+9 b)-65 b.B级1. -a+b+c2. ≥471 提示:x的系数之和为零,须使4-7 x≤0且1-3 x≤0.3. 224. -94 提示:由(x+5)2+| y 2+y-6|=0得x=-5,y 2+y=6. y 2-15x y+x 2+x 3=y 2+y+(-5)2+(-5)3=6+25-125=-94.5. -1 26. B 提示:利用绝对值的几何意义解此题. x的取值范围在18与17之间7. A提示:令x=1,可得a0+a1+a2+a3+a4+a5+a6=[2×1-1] 6=1①令x=-1,可得a0-a1+a2-a3+a4-a5+a6=[2×(-1)-1] 6=3 6=729②①+②,得2(a0+a2+a4+a6)=730,即a0+a2+a4+a6=365.8. C 9. A10. A提示:原式=a+b+c+6n+6是偶数.11. 提示:(1)4.5πa2S阴影=12(a+a+a)2=4.5πa2(2)12ab-12b2+14πb2 S阴影=12(a+a)b-(b2-14πb2)=12a b-12b 2+14πb2(3)3 x+3 y+2 z总长1=2 x+4 y+2 z+(x-y)=3 x+3 y+2 z.12. 因为abc=100 a+10 b+c,ac=10a+c.由题意得100a+10b+c=9(10a+c)+4c.化简得5(a+b)=6c(0≤a,b,c≤9,且a≠0)又∵5是质数,故5,6,ca b=⎧⎨+=⎩,从而1,2,3,4,5,6,5,4,3,2,1,0,ab=⎧⎨=⎩则符合条件的abc=155,245,335,425,515,605.。
整式的加减

确定符号
在进行整式加减前,应先把每个整式简化到最简形式,以避免干扰计算。
化简
在整式加减中,需要把同类项合并在一起,以便于计算。
合并同类项
没有化简
有些学生在计算时没有化简就进行计算,导致计算结果复杂。
忽略符号
在计算时很容易忽略符号,造成计算结果错误。
没有合并同类项
有些学生没有把同类项合并在一起,导致计算复杂。
整式加减在生物学中有着广泛的应用。例如,在研究生物分子的结构与功能、基因的表达与调控、细胞信号转导等生物学问题时,需要用到整式加减来建立生物模型并进行计算。通过对这些整式的加减运算,可以得出实验数据、预测生物学现象的规律和性质。
化学
生物学
整式加减在其他学科中的应用
05
整式加减的注意事项和易错点
在整式加减中,需要先确定每个整式的符号,以防计算时出现错误。
总结词
这类题目需要先运用多项式的乘法、除法等法则进行化简,再合并同类项,要注意符号的变化。
详细描述
先移项,再合并同类项
总结词
这类题目需要先移项,再合并同类项,要注意移项时符号的变化以及如何运用乘法分配律进行合并同类项。
详细描述
详细描述
这类题目需要运用整式的加减法运算法则与方程的知识进行综合解题,要注意方程的解法和如何运用乘法分配律进行合并同类项。
整式加减中的合并同类项规则
03
整式加减的例题解析
简单的整式加减例题
直接合并同类项
总结词
详细描述
总结词
详细描述
这类题目主要考察对于整式加减法运算法则的掌握,解题时直接合并同类项即可。
去括号,再合并同类项
这类题目需要先去括号,再合并同类项,要注意去括号时各项符号的变化。
七年级数学整式的加减

七年级数学整式的加减【原创实用版】目录1.整式的概念2.整式的加减运算法则3.整式的加减运算实例4.整式的加减运算技巧和方法5.整式的加减运算在实际问题中的应用正文一、整式的概念整式是指由常数、变量和它们的积或和所组成的代数式,其中变量的次数是非负整数。
整式是代数学的基本对象之一,它在数学的各个领域中都有广泛的应用。
二、整式的加减运算法则整式的加减运算是指将两个或多个整式按照一定的规则进行合并。
整式的加减运算法则主要包括以下几点:1.同类项相加减:同类项是指具有相同变量和相同次数的项,例如 3x 和 2x 就是同类项,而 3x 和 2y 就不是同类项。
在进行整式的加减运算时,我们只需要将同类项的系数相加减,变量和次数保持不变。
2.合并同类项:将所有同类项的系数相加减,得到一个新的系数,然后将新的系数与原变量和次数组合成新的项。
3.保持变量和次数不变:在进行整式的加减运算时,我们只能改变项的系数,不能改变变量和次数。
三、整式的加减运算实例例如,对于整式 3x+2y-5x+y,我们可以按照以下步骤进行加减运算:1.找出同类项:3x 和 -5x 是同类项,2y 和 y 也是同类项。
2.合并同类项:3x 和 -5x 的和为 -2x,2y 和 y 的和为 3y。
3.将新的同类项组合成新的整式:-2x+3y。
四、整式的加减运算技巧和方法在进行整式的加减运算时,我们可以使用以下一些技巧和方法,以提高运算效率和准确性:1.先找出同类项,再进行加减运算。
2.使用括号将整式分组,以避免运算错误。
3.先化简每个括号内的整式,再进行加减运算。
五、整式的加减运算在实际问题中的应用整式的加减运算在实际问题中有广泛的应用,例如在物理、化学、经济等领域的问题中,我们常常需要对一些变量进行加减运算,以得到新的变量或结果。
《整式的加减法》课件

在整式除法中,需要注意符号和 系数的处理,以及利用公因式进 行化简。
整式的加减乘除混合运算
混合运算法则
整式的加减乘除混合运算遵循先 乘除后加减的顺序,即先进行乘 法和除法运算,再进行加法和减
法运算。
混合运算的顺序
在整式的加减乘除混合运算中,需 要注意运算的顺序,按照先乘除后 加减的顺序进行计算。
《整式的加减法》 ppt课件
REPORTING
• 整式的基本概念 • 整式的加减运算 • 整式的混合运算 • 整式加减法的应用 • 练习与巩固
目录
PART 01
整式的基本概念
REPORTING
什么是整式
整式是由常数、变数 、常数乘积组成的代 数式。
整式不包含分式和根 式。
整式中,变数的次数 都是非负整数。
证明代数恒等式
整式加减法可以用于证明一些代数恒等式,例如平方差公式、完全 平方公式等。
在日常生活中的应用
购物计算
01
在购物时,整式加减法可以用于计算找零、打折、优惠等活动
中的金额计算。
日常预算
02
整式加减法可以用于日常生活中的预算计算,例如计算每月的
水电煤气费、电话费、交通费等。
数据分析
03
整式加减法可以用于数据分析中的数据处理和整理,例如统计
数据、计算平均数、中位数、众数等。
PART 05
练习与巩固
REPORTING
基础练习题
总结词
帮助学生掌握整式加减法的基本概念 和运算规则。
详细描述
设计一系列简单的整式加减法题目, 包括单项式与单项式相加减、多项式 与多项式相加减等基础题型,供学生 练习。
提高练习题
整式的加减

整式的加减知识点一、同类项概念:指所含字母相同,并且相同字母的指数也相同的项。
例:25a b 与2a b -①字母相同:a b 、②相同字母指数相同:相同字母a 的指数都是2,相同字母b 的指数都是1二、合并同类项概念:把多项式中的同类项合并成一项,即把它们的系数相加(或相减),字母部分保持不变。
计算:225a b a b -解:222222551(51)4a b a b a b a b a b a b -=-=-=三、整式加减一般步骤:①去括号②合并同类项例:322323(2)4()x y xy x y xy x y -+--解:322323(2)4()x y xy x y xy x y -+-- 3223233644x y xy x y xy x y =-+-+3232234634x y x y x y xy xy =++--322767x y x y xy =+-注意事项:1.遇到括号时,需先去掉括号,注意括号前的符号。
如果括号前是“+”号,去掉括号后,原括号里各项的符号都不变;如果括号前是“-”号,去掉括号后,原括号里各项的符号都要改变。
2.在合并同类项时,只把系数相加(或相减),字母部分(包括字母和它的指数)保持不变。
知识巩固一、选择题1.若55m x y 与253x y - 是同类项,则m 的值是( )A.-1B.1C.2D.32.下列各式中,是43x y - 的同类项的是( )A.43x yB. 4x y -C.3xyD.42x y3.如果213m n x y + 与345x y 是同类项,则 m ,n 的值为( )A.m =-1,n =4B.m =1,n =4C.m =-1,n =-4D.m =1,n =-44.计算2235x y x y - 的结果正确的是( )A.22x yB. 22x y -C.2D.2-5. 若多项式2253x y mxy xy ++-合并同类项后是一个三次二项式,则m 满足条件( )A.m =﹣5B.m ≠-5C.m =5D.m ≠5二、填空题6. 若22132b x y -与15a x y +-是同类项,则a +b 的值是_______。
《整式的加减》课件

整式的分类
01
02
03
单项式
只包含一个项的整式,例 如:$x^2$、$5a$。
多项式
包含多个项的整式,例如 :$x^2 - 3x + 2$。
整式的次数
一个整式中,所有字母的 指数之和称为该整式的次 数,例如:$x^2$的次数 为2。
整式的加减运算规则
同类项合并
同类项是指具有相同字母和相同 指数的项,同类项可以合并,例 如:$2x^2 + 3x^2 = 5x^2$。
去括号法则
总结词
去括号法则是整式加减运算中的一项重要法则,用于消除括号并简化整式的形式。
详细描述
去括号法则包括两个步骤,一是消除括号前的正号或负号,二是将括号内的各项分别与括号前的符号相乘或相除 。例如,在整式2(x + 3y) - (2x - y)中,根据去括号法则,首先消除括号前的正号,得到2x + 6y - 2x + y,然后 分别将括号内的各项与括号前的符号相乘或相除,得到最终结果-5y。
移项法则
总结词
移项法则是整式加减运算中的另一项重要法则,用于将整式中的项从一边移动到另一边 。
详细描述
移项法则包括两个步骤,一是将整式中的项从一边移动到另一边,二是根据移动的方向 改变该项的符号。例如,在整式6x - 5 = 2x + 1中,要将-5移到等号的另一边,根据 移项法则,首先将-5从等号的左边移动到右边,并改变其符号得到+5,得到新的等式
05
练习与巩固
基础练习题
总结词
帮助学生掌握整式加减的基本概 念和运算规则。
详细描述
设计一些简单的整式加减题目, 如合并同类项、去括号等,让学 生通过练习加深对整式加减基本 概念和运算规则的理解。
七年级《整式的加减》案例

整式的加减是数学中的基本运算之一,也是我们日常生活中常常会用到的运算。
在解决实际问题时,我们经常需要进行整式的加减运算,这样可以整理、简化问题,更方便我们的分析和解答。
一、整式的加法整式的加法就是把相同的项相加,同时保持其次数不变。
例如,我们要计算3x+5y+2x+4y的值,我们可以先将同类项的系数相加,然后记住各项的字母部分不变。
通过这种方式,我们可以将3x+5y+2x+4y简化成5x+9y,从而得到结果。
二、整式的减法整式的减法是整式的加法的逆运算。
它的原则是,首先将减号后的整式中的各项的系数取反,然后根据整式的加法的规则进行计算。
例如,我们要计算2x+5y-(3x-4y)的值,我们可以将减号后边整式中的各项的系数取反,即得到2x+5y-3x+4y。
然后,按照整式加法的规则,我们将同类项的系数相加,从而得到-x+9y,即最后的结果。
通过上述的介绍,我们了解了整式的加减运算的原则和方法。
下面,我们将通过几个案例,来进一步巩固这些知识点。
案例一:小明有3张五角钱和7张一角钱的硬币,小红有5张五角钱和6张一角钱的硬币。
现在,他们将自己的硬币放在一起,问他们手中的硬币总共有多少钱?解答:小明有3张五角钱,即3*0.5=1.5元;小红有5张五角钱,即5*0.5=2.5元。
小明有7张一角钱,即7*0.1=0.7元;小红有6张一角钱,即6*0.1=0.6元。
因此,小明和小红手中的硬币总共有1.5+2.5+0.7+0.6=5.3元。
以上就是小明和小红手中的硬币总共的钱数。
案例二:小张每天都要背诵英语单词,第一天他背诵了30个单词,第二天他又背诵了17个单词。
请问小张这两天一共背诵了多少个单词?解答:第一天背诵了30个单词,第二天背诵了17个单词。
因此,小张这两天一共背诵了30+17=47个单词。
以上就是小张这两天背诵的单词总数。
案例三:小明去超市买了2箱牛奶,每箱牛奶有12瓶。
小红去超市买了4箱牛奶,每箱牛奶有9瓶。
整式的加减

整式的加减整式的加减概念总汇1.整式加减的相关概念1) 同类项:所含字母相同且相同字母的指数也相同的项,称为同类项。
几个常数项也是同类项。
例如,6x2y2和-4x2y2是同类项,-3和5也是同类项;但4ab和3ab不是同类项,因为相同字母的指数不相同。
2) 合并同类项:将多项式中的同类项合并成一项,即将同类项的系数相加,字母和字母的指数不变。
例如,6x2y2+(-4x2y2)=2x2y2.说明:①只有同类项可合并,不是同类项的不能合并;②合并同类项时,只合并系数,字母与字母的指数不变;③合并同类项后,若其系数是带分数,要将其化为假分数;④多项式中,如果两同类项的系数互为相反数,合并后这两项互相抵消,结果为0.3) 去括号法则:括号前面是正号,将括号和括号前的正号去掉后,括号里的各项不改变符号;括号前是负号,将括号和括号前的负号去掉,括号里的各项都要改变符号。
例如,A+(5A+3B)-(A-2B)=A+5A+3B-A+2B=5A+5B。
说明:去括号法则相当于乘法分配律的应用。
例如,A+(5A+3B)-(A-2B)=A+1×(5A+3B)+(-1)×(A-2B)=A+5A+3B+(-1)A+(-1)×(-2B)=A+5A+3B-A+2B=5A+5B。
如果括号前面有数字因数,就按乘法分配律去括号。
例如:3a2-2ab+4b2)-2(a2-ab-3b2)=a2-ab+2b2-a2+2ab+6b2=ab+8b24) 添括号法则:给括号前添正号,括在括号里的各项都不改变符号;给括号前添负号,括到括号里的各项都要改变符号。
说明:去括号与添括号是互逆的过程,它们的依据是乘法分配律的顺逆运用。
可以将+(a-b)看作(+1)(a-b),将-(a-b)看作(-1)(a-b),则有+(a-b)=a-b,-(a-b)=-a+b。
这样,乘法分配律的一个应用便是去括号;添括号可理解为乘法分配律的逆用。
整式的加减专题知识点 常考(典型)题型 重难点题型(含详细答案)

整式的加减专题知识点常考(典型)题型重难点题型(含详细答案)一、目录二、知识点1.整式的加减定义2.整式的加减原则3.整式的加减步骤三、常考题型1.基础练题2.提高练题四、重难点题型1.含有分式的整式加减2.含有根式的整式加减3.含有绝对值的整式加减五、详细答案二、知识点1.整式的加减定义整式加减是指将同类项合并,最终得到一个简化的整式的过程。
整式是由各种数的积和和式构成,包括常数项、一次项、二次项等。
2.整式的加减原则在整式加减中,只有同类项才能相加减。
同类项是指变量的指数相同的项,例如2x^2和5x^2就是同类项,但2x^2和5x^3不是同类项。
3.整式的加减步骤整式加减的步骤如下:1.将同类项放在一起。
2.对同类项的系数进行加减运算。
3.将结果合并,得到简化后的整式。
三、常考题型1.基础练题例题:将3x^2+5x-2和2x^2-3x+1相加。
解题思路:将同类项放在一起,得到5x^2+2x-1,即为答案。
答案:5x^2+2x-12.提高练题例题:将4x^2+3x-1和2x^2-5x+3相减。
解题思路:将同类项放在一起,得到2x^2+8x-4,即为答案。
答案:2x^2+8x-4四、重难点题型1.含有分式的整式加减例题:将(2x^2+3)/(x+1)和(3x-1)/(x+1)相加。
解题思路:先将分式化简为同分母,得到(2x^2+3+3x-1)/(x+1),化简后得到(2x^2+3x+2)/(x+1),即为答案。
答案:(2x^2+3x+2)/(x+1)2.含有根式的整式加减例题:将3√2x+5和5√2x-2相减。
解题思路:将同类项放在一起,得到(3-5)√2x+7,化简后得到-2√2x+7,即为答案。
答案:-2√2x+73.含有绝对值的整式加减例题:将|2x+1|+|3x-2|和|4x-3|相减。
解题思路:考虑绝对值的取值范围,将式子拆分为两部分,得到(2x+1+3x-2)-(4x-3)和(4x-3)-(2x+1+3x-2),化简后得到5x-1和-x,即为答案。
整式的加减

整式的加减
◎ 整式的加减的定义
整式的加减:
其实质是去括号和合并同类项,其一般步骤为:
(1)如果有括号,那么先去括号;
(2)如果有同类项,再合并同类项。
注:整式加减的最后结果中不能含有同类项,即要合并到不能再合并为止。
◎ 整式的加减的知识扩展
整式的加减:其实质是去括号和合并同类项,其一般步骤为:
(1)如果有括号,那么先去括号;
(2)如果有同类项,再合并同类项。
注:整式加减的最后结果中不能含有同类项,即要合并到不能再合并为止。
◎ 整式的加减的知识导图
整式的乘除法:
◎ 整式的加减的知识点拨
整式加减:
整式的加减即合并同类项。
把同类项相加减,不能计算的就直接拉下来。
合并同类项时要注意以下三点:
①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准.字母和字母指数;
②明确合并同类项的含义是把多项式中的同类项合并成一项,经
过合并同类项,式的项数会减少,达到化简多项式的目的;
③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变。
◎ 整式的加减的教学目标
1、了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项。
2、经历类比有理数的运算律,探究合并同类项法则,培养观察、探索、分类、归纳等能力。
3、掌握规范解题步骤,养成良好的学习习惯。
◎ 整式的加减的考试要求
能力要求:应用
课时要求:60
考试频率:必考
分值比重:2。
【好题汇编】专题07 整式的加减压轴题专项训练(解析版)-七年级数学上学期期中真题分类汇编

专题07整式的加减压轴题专项训练【答案】2023【分析】根据翻折,发现B所对应的数依次是:1,1,2.5,4,4,5.5,7,7,8.5是1,第四次和第五次对应的是4,第七次和第八次对应的是7,即:第n-,根据这一规律进行求解即可.的数字为:32=⨯-=-,【详解】解:∵20233675220252∴翻转2023次后,点B所对应的数是2023.故答案为:2023.故答案为:()460x +,()3.690x +;(2)解:若小丽同学要买50张宣纸,选择同心商店购买更划算;若小丽同学要买200张宣纸,选择繁鑫文印商店购买更划算,理由如下:当50x =时,46045060260x +=⨯+=,3.690 3.65090270x +=⨯+=,∵260270<,∴若小丽同学要买50张宣纸,选择同心商店购买更划算;当200x =时,460420060860x +=⨯+=,3.690 3.620090810x +=⨯+=,∵810860<,∴若小丽同学要买200张宣纸,选择繁鑫文印商店购买更划算.【点睛】本题主要考查了列代数式和代数式求值,正确理解题意是解题的关键.14.已知关于x 的多项式4323ax bx cx dx e ++++,其中a ,b ,c ,d 为互不相等的整数.(1)若4abcd =,求+++a b c d 的值;(2)在(1)的条件下,当1x =时,这个多项式的值为27,求e 的值;(3)在(1)、(2)条件下,若=1x -时,这个多项式4323ax bx cx dx e ++++的值是14,求a c +的值.【答案】(1)0(2)3e =(3) 6.5-【分析】(1)由a b c d 、、、是互不相等的整数,4abcd =可得这四个数由1-,1,2-,2组成,再进行计算即可得到答案;(2)把1x =代入432327ax bx cx dx e ++++=,即可求出e 的值;(3)把=1x -代入432314ax bx cx dx e ++++=,再根据0a b c d +++=,即可求出a c +的值.【详解】(1)解:4abcd = ,且a b c d 、、、是互不相等的整数,∴a b c d 、、、为1-,1,2-,2,0a b c d ∴+++=;(2)解:当1x =时,4323ax bx cx dx e ++++43231111a b c d e =⨯+⨯+⨯+⨯+3a b c d e =++++30e =+∴该户这个月应缴纳的水费为80元;(2)解:()()122012 1.5202a a n a +-⨯+-⨯1212240a a an a =++-()216na a =-元,∴当20n >时,该户应缴纳的水费为()216na a -元;故答案为:()216na a -;(3)解:∵12224⨯=,∴12x >,当1220x <≤时,甲用水量超过312m 但不超过320m ,乙用水量超过320m ,∴()()()12212 1.5212220122 1.5402022x x ⨯+-⨯⨯+⨯+-⨯⨯+--⨯⨯243362424804x x =+-+++-()116x =-元;当2028x <<时,甲的用水量超过320m ,乙的用水量超过312m 但不超过320m ,∴()()()1222012 1.522022122401223x x ⨯+-⨯⨯+-⨯⨯+⨯+--⨯⨯242448024843x x =++-++-()76x =+元,当2840x ≤≤时,甲的用水量超过320m ,乙的用水量不超过312m ,∴()()()1222012 1.522022402x x ⨯+-⨯⨯+-⨯⨯+-⨯2424480802x x =++-+-()248x =+元;综上所述,当1220x <≤时,甲,乙两户一个月共缴纳的水费()116x -元;当2028x <<时,甲,乙两户一个月共缴纳的水费()76x +元;当2840x ≤≤时,甲,乙两户一个月共缴纳的水费()248x +元.【点睛】本题主要考查了有理数的四则混合计算的实际应用,整式加减计算的实际应用,正确理解题意利用分类讨论的思想求解是解题的关键.。
《整式的加减》教案(五篇范文)

《整式的加减》教案(五篇范文)第一篇:《整式的加减》教案整式的加减(一)教学目标1使学生掌握整式的加减运算,进一步巩固前面所学的去括号、合并同类项的方法;2使学生进一步增强运算能力教学重点和难点重点:整式的加减运算课堂教学过程设计一、复习提问1什么是同类项?怎样合并同类项? 2去括号法则如何叙述? 学生口答,订正无误后,指出,在学习“去括号”、“合并同类项”的基础上,今天我们学习整式的加减运算二、新知识的学习先看以下各题例1 求和与求差:(1)求100t,-252t的和;22(2)求3x-6x+5与4x+7x-6的和;2222(3)求2x+xy+3y与-x-xy+2y的差分析第(1)小题:请同学们想想,什么叫求几个数的和?至学生答出“把这几个数相加”之后,接着追问,那么什么叫求几个单项式的和?以使学生明确所谓求几单项式的和就是先用加号将这几个单项式连接,而后再合并同类项2222解:(1)5xy+(-2xy)+2xy+(-4xy)2222 =5xy-2xy+2xy-4xy 22 =-xy+2xy;分析第(2)(3)小题:同学们想想看,求多项式的和或差,一定要注意什么?使学生明确在列式时应首先用括号把多项式括起来,而后,再去括号、合并同类项.22解:(2)(3x-6x+5)+(4x+7x-6)22 =3x-6x+5+4x+7x-6 2 =7x+x-1;2222解:(3)(2x+xy+3y)-(-x-xy+2y)2222 =2x+xy+3y+x+xy-2y =3x+2x+y.同学们想想,通过此题大家发现整式的加减实际上就是运算什么?引导学生得出“整式的加减就是去括号、合并同类项”的结论.再看几个题11例2 化简3a-(2a-4b-6c)+3(-2c+2b)11解:原式=3a-2a+4b+6c-6c+6b 1 =-6a+10b.1131222例3 化简、求值2x-2(x-3y)+(-2x+3y),其中x=-2,y=-3.分析:整式的化简、求值,就是先通过去括号、合并同类项将整式化简,再将字母的值代入,计算出结果11312 2解2x-2(x-3y)+(-2x+3y)123122 =2x-2x+3y-2x+3y=-3x+y 22当x=-2,y=3时,22原式=-3×(-2)+(3)44 =6+9=69.三、课堂练习1求出下列单项式的和:1322222(1)-3x,-2x,-5x,5x;(2)-2n,5n,-5n2说出下列第一式减去第二式的差:2222(1)3ab,-2ab;(2)-4x,3x;(3)-5ax,-4xa3计算:2222(1)(-x+2x+5)+(-3+4x-6x);(6)(3a-ab+7)-(-4a+6ab+7).4.化简,求值:13⎛3223⎫121x--x-x⎪-x+(4x+6)-5x3⎭2⎝2(1)3,其中x=-12;12(2)2x-2⎛212⎫3⎛2212⎫4 x-y⎪--x+y⎪3⎭2⎝33⎭,其中x=-2,y=-3⎝四、小结今天我们学习了整式的加减,同学们回乙一下,整式的加减运算,其步骤是什么?待学生回答无误后,教师板书.整式的加减法:1有括号,先去括号;2合并同类项五、作业 1计算:23⎛3⎫ab+a2b+ab+-a2b⎪-1.3334⎝4⎭(1)(1)4x-(-6x)(-9x);(2)-32.计算:11222222(1)(8xy-x+y)+(-y+x-8xy);(2)(2x-2+3x)-4(x-x+2);(3)3x-[7x-(4x-3)-2x].3化简、求值:233(1)(-x+5+4x)+(-x+5x-4),其中x=-2;23332233(2)2(ab+2b-ab)+3a-(2ba-3ab+3a)-4b,其中a=-3,b=2课堂教学设计说明1整式的加减内容既是本节的重点,也是全章的重点,本节的核心内容是计算,因此,在教学中,应注意讲、练结合,本教学设计中,除了安排一定量的例题外,还安排了相当数量的练习,以使学生更好地落实计算的要求2因为整式的加减就是去括号、合并同类项,因此,本节所学的知识实际上是对前面所学知识的一个巩固、一个深化,所以,本节没有教学难点 22第二篇:整式加减教案§ 4.4整式的加减万国栋※ 学习目标:1、知识与技能:让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算。
2024_2025学年七年级数学上学期期中考点专题07整式的加减含解析新人教版

专题07 整式的加减重点突破学问点一整式的加减基础同类项概念:所含字母相同,并且相同字母的指数也相同的单项式是同类项.合并同类项法则:系数相加,字母与字母的指数不变(考察点).【合并同类项步骤】①找②移③合去(添)括号法则:➢去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;➢若括号前边是“-”号,括号里的各项都要变号.留意:1、要留意括号前面的符号,它是去括号后括号内各项是否变号的依据.2、去括号时应将括号前的符号连同括号一起去掉.3、括号前面是“-”时,去掉括号后,括号内的各项均要变更符号,不能只变更括号内第一项或前几项的符号,而遗忘变更其余的符号.4、括号前是数字因数时,要将数与括号内的各项分别相乘,不能只乘括号里的第一项.5、遇到多层括号一般由里到外,逐层去括号。
学问点二整式加减整式加减法法则:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项. 留意:多项式相加(减)时,必需用括号把多项式括起来,才能进行计算。
多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).留意:多项式计算的最终结果一般应当进行升幂(或降幂)排列.考查题型考查题型一同类项的推断典例1.(2024·六安市期末)下列各组代数式中,属于同类项的是()A .4ab 与4abcB .-mn 与32mnC .223a b 与223abD .2x y 与2x【答案】B 【提示】依据同类项是字母相同,且相同的字母指数也相同,可推断同类项. 【详解】∵−mn 与32mn ,字母相同且相同的字母指数也相同,∴−mn 与32mn 是同类项,故选:B. 【名师点拨】此题考查同类项,解题关键在于驾驭其定义.变式1-1.(2024·许昌市期末)下列各式中,与233x y 是同类项的是( )A .52xB .323x yC .2312x y -D .513y -【答案】C 【提示】依据同类项:所含字母相同,并且相同字母的指数也相同,进行推断即可. 【详解】解:A.52x 与233x y 不是同类项,故本选项错误;B.3x 3y 2与233x y 不是同类项,故本选项错误;C.2312x y -与233x y 是同类项,故本选项正确; D.513y -与233x y 不是同类项,故本选项错误;故选:C . 【名师点拨】本题考查了同类项的学问,解答本题的关键是理解同类项的定义. 变式1-2.(2024·鄂城区期中)下列不是同类项的是( ) A .3x 2y 与﹣6xy 2 B .﹣ab 3与b 3a C .12和0 D .2xyz 与-12zyx 【答案】A 【提示】依据同类项的定义,所含字母相同并且相同字母的指数也相同的项是同类项,逐一推断即可.【详解】A. 相同字母的指数不同,不是同类项;B.C.D 都是同类项, 故选:A. 【名师点拨】考查同类项的概念: 所含字母相同并且相同字母的指数也相同的项是同类项,与字母的位置无关. 考查题型二 已知同类项求指数中字母的值或代数式的值 典例2.(2024·巴马县期末)若单项式a m ﹣1b 2与212na b 的和仍是单项式,则n m 的值是( ) A .3 B .6 C .8D .9【答案】C 【解析】提示:首先可推断单项式a m-1b 2与12a 2b n是同类项,再由同类项的定义可得m 、n 的值,代入求解即可. 详解:∵单项式a m-1b 2与12a 2b n的和仍是单项式, ∴单项式a m-1b 2与12a 2b n是同类项, ∴m-1=2,n=2, ∴m=3,n=2, ∴n m=8. 故选C .名师点拨:本题考查了合并同类项的学问,解答本题的关键是驾驭同类项中的两个相同. 变式2-1.(2024·天东区期中)假如3ab 2m-1与9ab m +1是同类项,那么m 等于( ) A .2 B .1 C .﹣1 D .0【答案】A 【提示】依据同类项的定义得出m 的方程解答即可. 【详解】依据题意可得:2m ﹣1=m+1, 解得:m =2, 故选A. 【名师点拨】本题考查了同类项,解一元一次方程,正确把握同类项的概念是解题的关键.变式2-2.(2024·七台河市期末)若 3a2+m b3和(n﹣2)a4b3是同类项,且它们的和为 0,则 mn 的值是()A.﹣2 B.﹣1 C.2 D.1【答案】A【提示】因为它们是同类项,因此可以得到m+2=4,又因为它们和为0,所以它们的系数互为相反数.【详解】因为这两个单项式是同类项,所以m+2=4,所以m=2;又因为它们和为0,所以它们的系数互为相反数,故n-2=-3,故n=-1;则 mn 的值是-2.所以选择A.【名师点拨】本题考查的是同类项的有关学问,所含字母相同,并且相同字母的指数也分别相同的项叫做同类项,学生应娴熟驾驭.考查题型三合并同类项典例3.(2024·黄石市期末)下列运算中,正确的是().A.B.C.D.【答案】C【解析】试题提示:3a和2b不是同类项,不能合并,A错误;和不是同类项,不能合并,B错误;,C正确;,D错误,故选C.变式3-1.(2024·河南灵宝·初一期末)下列式子计算正确的个数有()①a2+a2=a4;②3xy2﹣2xy2=1;③3ab﹣2ab=ab;④(﹣2)3﹣(﹣3)2=﹣17.A.1个B.2个C.3个D.0个【答案】B【提示】依据合并同类项的法则和有理数的混合运算进行计算即可.【详解】依据合并同类项的法则,可知①a2+a2=2a2,②3xy2-2xy2=xy2;③3ab-2ab=ab;④(-2)3-(-3)2=-8-9=-17.故正确的个数为2个.故选B.【名师点拨】此题主要考查了合并同类项的法则应用,解题关键是确定同类项,依据同类项的概念,含有相同的字母,相同字母的指数相同,然后合并同类项即可,比较简洁.变式3-2.(2024·漯河市期中)计算3x2﹣x2的结果是()A.2 B.2x2 C.2x D.4x2【答案】B【提示】依据合并同类项的法则进行计算即可得.【详解】3x2﹣x2=(3-1)x2=2x2,故选B.【名师点拨】本题考查合并同类项,解题的关键是娴熟驾驭合并同类项法则.考查题型四去括号或添括号典例4.(2024·丰南区期中)下列各项去括号正确的是()A.﹣3(m+n)﹣mn=﹣3m+3n﹣mnB.﹣(5x﹣3y)+4(2xy﹣y2)=﹣5x+3y+8xy﹣4y2C.ab﹣5(﹣a+3)=ab+5a﹣3D.x2﹣2(2x﹣y+2)=x2﹣4x﹣2y+4【答案】B【提示】依据去括号法则逐个推断即可.【详解】A、-3(m+n)-mn=-3m-3n-mn,错误,故本选项不符合题意;B、-(5x-3y)+4(2xy-y2)=-5x+3y+8xy-4y2,正确,故本选项符合题意;C、ab-5(-a+3)=ab+5a-15,错误,故本选项不符合题意;D、x2-2(2x-y+2)=x2-4x+2y-4,错误,故本选项不符合题意;故选B.【名师点拨】本题考查了去括号法则,能熟记去括号法则的内容是解此题的关键.变式4-1.(2024·德州市期末)去括号后结果错误的是()A.(a+2b)=a+2b B.-(x-y+z)=-x+y-zC .2(3m-n )=6m-2nD .-(a-b )=-a-b【答案】D 【提示】依据去括号法则推断:假如括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;假如括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 【详解】A .(a+2b )=a+2b ,故本选项正确;B .-(x-y+z )=-x+y-z ,故本选项正确; C.2(3m-n )=6m-2n ,故本选项正确; D .-(a-b )=-a+b ,故本选项错误; 故选D . 【名师点拨】本题考查了去括号的法则,解题的关键是牢记法则,并能娴熟运用,去括号时特殊要留意符号的变更. 变式4-2.(2024·庐阳区期末)已知a b 5-=,c d 2+=,则()()b c a d +--的值是( ) A .3- B .3 C .7-D .7【答案】A 【提示】先把所求代数式去括号,再添括号化成已知的形式,再把已知整体代入即可求解. 【详解】 ∵a-b=5,c+d=2,∴(b+c )-(a-d )=(c+d )-(a-b )=2-5=-3. 故选A . 【名师点拨】本题考查去括号、添括号的应用.先将其去括号化简后再重新组合,利用整体思想是解决问题的关键. 变式4-3.(2024·普陀区期中)下列各式中,去括号或添括号正确的是( ) A .22(2)2a a b c a a b c --+=--+ B .321(321)a x y a x y -+-=+-+- C .[]35(21)3521x x x x x x ---=--+ D .21(2)(1)x y a x y a ---+=--+-【答案】B 【提示】依据去括号法则(括号前是“+”号,去括号时,把括号和它前面的“+”去掉,括号内的各项都不变,括号前是“-”号,去括号时,把括号和它前面的“-”去掉,括号内的各项都变号)去括号,即可得出答案.【详解】解:A. a2−(2a−b+c)=a2−2a+b−c,故错误;B. a−3x+2y−1=a+(−3x+2y−1),故正确;C. 3x−[5x−(2x−1)]=3x−5x+2x−1,故错误;D. −2x−y−a+1=−(2x+y)+(−a+1),故错误;只有B符合运算方法,正确.故选B.【名师点拨】本题考查去添括号,解题的关键是留意符号,运用好法则.考查题型五整式加减的运算典例5(2024·雄县期中)一个多项式减去x2﹣2y2等于x2+y2,则这个多项式是()A.﹣2x2+y2B.2x2﹣y2C.x2﹣2y2D.﹣x2+2y2【答案】B【提示】依据:被减式=减式+差,列式计算即可得出答案.【详解】解:这个多项式为:x2﹣2y2+(x2+y2),=(1+1)x2+(﹣2+1)y2,=2x2﹣y2,故选B.【名师点拨】本题主要考查整式的加减.娴熟应用整式加减法计算法则进行计算是解题的关键.变式5-1.(2024·来宾市期末)如图1,将一个边长为a的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为()A.2a﹣3b B.4a﹣8b C.2a﹣4b D.4a﹣10b【答案】B【解析】试题提示:依据题意得:2(a﹣b+a﹣3b)=2(2a﹣4b)=4a﹣8b,故选B变式5-2.(2024·合肥市期中)若M=x2-2xy+y2,N=x2+2xy+y2,则4xy等于()A.M-N B.M+N C.2M-N D.N-M【答案】D【提示】此题先依据合并同类项的法则分别进行计算,即可求出答案.【详解】∵M=x2-2xy+y2,N=x2+2xy+y2,∴-M=-x2+2xy-y2,∴-M+N=-x2+2xy-y2+x2+2xy+y2=4xy,∴运算结果等于4xy的是:-M+N;故选D.【名师点拨】此题考查了整式的加减;解决此类题目的关键是娴熟运用合并同类项的法则,这是各地中考的常考点.考查题型六化简求值典例6.(2024·宜城市期中)已知当x=1时,2ax2﹣bx的值为﹣1,则当x=﹣2时,ax2+bx的值为()A.2 B.﹣2 C.5 D.﹣5【答案】B【提示】首先把x=1代入2ax2-bx可得2a-b=-1,然后再把x=-2代入ax2+bx可得答案.【详解】解:∵当x=1时,2ax2-bx的值为-1,∴2a-b=-1,当x=-2时,ax2+bx=4a-2b=2(2a-b)=-2,故选:B.【名师点拨】此题主要考查了代数式求值,关键是驾驭求代数式的值可以干脆代入、计算.变式6-1.(2024·宜春市期中)假如|x﹣4|与(y+3)2互为相反数,则2x﹣(﹣2y+x)的值是()A.﹣2 B.10 C.7 D.6【答案】A【提示】利用互为相反数两数之和为0列出关系式,依据非负数的性质求出x与y的值,原式去括号合并后代入计算即可求出值.【详解】∵|x﹣4|与(y+3)2互为相反数,即|x﹣4|+(y+3)2=0,∴x=4,y=﹣3,则原式=2x+2y﹣x=x+2y=4﹣6=﹣2.故选A.【名师点拨】本题考查了整式的加减﹣化简求值,以及非负数的性质,娴熟驾驭运算法则是解答本题的关键.变式6-2.(2024·蚌埠市期末)已知1x y2-=,那么()3x y--+的结果为()A.52-B.52C.92D.92-【答案】A 【提示】把-(3-x+y)去括号,再把x-y=12代入即可.【详解】解:原式=-3+x-y,∵x-y=12,∴原式=-3+12=-52,故选A.【名师点拨】本题主要考查了整式的化简求值,解本题的要点在于将原式去括号,从而求出答案.考查题型七整式加减的无关型问题典例7.(2024·长沙市期末)多项式8x2﹣3x+5与3x3﹣4mx2﹣5x+7多项式相加后,不含二次项,则m的值是()A.2 B.4 C.﹣2 D.﹣4【答案】A【提示】将两个多项式进行合并后令二次项的系数为0即可求出m的值.【详解】(8x2﹣3x+5)+(3x3﹣4mx2﹣5x+7)=8x2﹣3x+5+3x3﹣4mx2﹣5x+7=3x3+(8﹣4m)x2﹣8x+13,令8﹣4m=0,∴m=2,故选A . 【名师点拨】本题考查整式的运算,解题的关键是娴熟运用整式的运算法则,本题属于基础题型.变式7-1.(2024·海安市期中)若代数式()()222x ax y 62bx 3x 5y 1(a,+-+----b 为常数)的值与字母x 的取值无关,则代数式a 2b +的值为( ) A .0 B .1- C .2或2- D .6【答案】B 【提示】先将代数式进行去括号合并,然后令含x 的项系数为0,即可求出a 与b 的值,最终代入所求的式子即可求得答案. 【详解】原式22262351x ax y bx x y =+-+-+++,()()222a+347x b x y =-+++,代数式的值与x 的取值无关 ,()()22=0a+3=0b ∴-,,b=1a=-3∴, ,当b=1,a=-3时 , a+2b=-3+2=-1, 所以B 选项是正确的. 【名师点拨】此题考查了学生对整式的加减和代数式求值的学问驾驭状况,娴熟驾驭运算法则是解本题的关键;做这类习题我们必需仔细和细心,搞清题意,这样问题就迎刃而解了.变式7-2.(2024·泉州市期末)代数式4x 3–3x 3y +8x 2y +3x 3+3x 3y –8x 2y –7x 3的值( ) A .与x ,y 有关 B .与x 有关 C .与y 有关 D .与x ,y 无关【答案】D 【解析】依据整式的加减—合并同类项,可知33233234383387x x y x y x x y x y x -+++--=0,因此多项式与x 、y 均无关. 故选D.考查题型八 整式加减的应用典例8.(2024·廉江市期中)若A 是一个七次多项式,B 也是一个七次多项式,则A+B 肯定是( )A .十四次多项式B .七次多项式C .不高于七次多项式或单项式D .六次多项式 【答案】C【提示】两个多项式相加后所得到的多项式的次数等于相加前次数大的那个多项式的次数.【详解】依据多项式相加的特点多项式次数不增加,项数增加或削减可得:A+B 肯定是不高于七次的多项式或单项式. 故选C .【名师点拨】本题主要考查多项式相加的特点,解决本题的关键是要娴熟驾驭并理解多项式相加的法则及特点.变式8-1.(2024清水市期中)萱萱的妈妈下岗了,在国家政策的扶持下开了一家商店,全家每个人都要出一份力,妈妈告知萱萱说,她第一次进货时以每件a 元的价格购进了35件牛奶;每件b 元的价格购进了50件洗发水,萱萱建议将这两种商品都以2a b +元的价格出售,则按萱萱的建议商品卖出后,商店( ) A .赚钱B .赔钱C .不嫌不赔D .无法确定赚与赔【答案】D【提示】此题可以先列出商品的总进价的代数式,再列出按萱萱建议卖出后的销售额,然后利用销售额减去总进价即可推断出该商店是否盈利.【详解】由题意得,商品的总进价为3050a b +, 商品卖出后的销售额为(3550)2a b +⨯+, 则15(3550)(3550)()22a b a b a b +⨯+-+=-, 因此,当a b >时,该商店赚钱:当a b <时,该商店赔钱;当a b =时,该商店不赔不赚.故答案为D.【名师点拨】本题主要考查列代数式及整数的加减,分类探讨的思想是解题的关键.变式8-2.(2024·正定县期末)如图,两个正方形的面积分别为16,9,两阴影部分的面积分别为a ,b ()a b >,则()-a b 等于( )A.8 B.7 C.6 D.5【答案】B【解析】设重叠部分面积为c,(a-b)可理解为(a+c)-(b+c),即两个正方形面积的差,所以a-b=(a+c)-(b+c)=16-9=7. 故选:B.名师点拨:本题考查了等积变换,将阴影部分的面积之差转换成整个图形的面积之差是解题的关键.。
七年级整式的加减

七年级整式的加减一、整式的相关概念。
1. 单项式。
- 定义:由数与字母的乘积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
例如:3x,-5,a等都是单项式。
- 系数:单项式中的数字因数叫做这个单项式的系数。
如在单项式3x中,系数是3;在单项式-5中,系数是-5。
- 次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如单项式3x^2的次数是2,单项式-2xy的次数是2(x的次数是1,y的次数是1,1 +1=2)。
2. 多项式。
- 定义:几个单项式的和叫做多项式。
例如2x+3y,x^2-2x + 1等都是多项式。
- 项:在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
在多项式x^2-2x+1中,x^2、-2x、1都是它的项,1是常数项。
- 次数:多项式里次数最高项的次数,叫做这个多项式的次数。
如多项式x^2-2x + 1的次数是2,因为次数最高的项x^2的次数是2。
3. 整式。
- 定义:单项式与多项式统称为整式。
二、整式的加减。
1. 同类项。
- 定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
例如3x^2y与-5x^2y是同类项,2与7是同类项。
- 合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
例如:3x^2y-5x^2y=(3 - 5)x^2y=-2x^2y。
2. 去括号法则。
- 括号前是“+”号,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。
例如a+(b - c)=a + b-c。
- 括号前是“-”号,把括号和它前面的“-”号去掉后,原括号里各项的符号都要改变。
例如a-(b - c)=a - b + c。
3. 整式加减的步骤。
- 先去括号,如果有同类项,再合并同类项。
例如计算(2x^2-3x+1)-(3x^2-2x - 5)- 去括号得:2x^2-3x + 1-3x^2+2x + 5- 合并同类项得:(2x^2-3x^2)+(-3x+2x)+(1 + 5)=-x^2-x+6。
专题07 整式的加减(原卷版)

专题07 整式的加减考点一 同类项的判断 考点二 已知同类项求指数字母的值或代数式的值 考点三 合并同类项 考点四 整式的加减运算考点五 整式的加减中的化简求值 考点六 整式的加减中的无关型问题考点一 同类项的判断 例题:(2022·贵州贵阳·七年级期末)下列各组式子中,是同类项的为( )A .2a 与2bB .2a b 与22abC .2ab 与3ba -D .23a b 与2a bc【变式训练】考点二 已知同类项求指数字母的值或代数式的值_________.【变式训练】1.(2022·甘肃·甘州中学七年级期末)若单项式﹣3x 2my 3与2x 4yn 是同类项,则m +n =_____.2.(2022·海南鑫源高级中学七年级期末)322x y 和22n m x y ﹣是同类项,则式子3m ﹣2n=________.考点三 合并同类项例题:(2022·湖南湘西·七年级期末)化简: 72ab ab -=____________.【变式训练】考点四 整式的加减运算例题:(2022·安徽·肥西县严店初级中学七年级阶段练习)计算:()()2235431x x x x -+--+.【变式训练】考点五 整式的加减中的化简求值【变式训练】1.(2022·全国·七年级单元测试)化简与求值:(1)先化简2(3a 2b ﹣ab 2)﹣3(﹣ab 2+2a 2b ),并求当a =2,b =﹣3时的值.(2)已知A =2x 2﹣3x ﹣5,B =﹣x 2+2x ﹣3,求A ﹣2B .2.(2022·山东威海·期末)计算:考点六整式的加减中的无关型问题例题:(2021·湖南·安仁县思源实验学校七年级期中)若代数式22x ax y bx x y+-+--+-的值与字母x(26)(2351)的值无关,求代数式24-的值.a ab【变式训练】。
专题07 整式加减中取值无关型的两种考法(解析版)(北师大版)

专题07整式加减中取值无关型的两种考法类型一、不含某一项问题所以330b -=,20a +=,解得:1b =,2a =-.∴()992118117a b +=⨯-+=-+=-.【点睛】本题考查的是整式的加减运算,多项式的值与某字母的值无关,求解代数式的值,理解题意,列出运算式与方程是解本题的关键.类型二、错解型问题5.对于m ,n ,定义,若2m n +=,则称m 与n 是关于1的“对称数”.(1)填空:7与________是关于1的“对称数”,25x +与________是关于1的“对称数”(2)若2324a x x =-+-,()22523b x x x =-+-,判断a 与b 是不是关于1的“对称数”,并说明理由(3)已知()()2A x a x =+-,24B x x b =--+,其中a ,b 均为常数,且无论x 取何值,A 与B 都是关于1的“对称数”,求a ,b 的值;【答案】(1)5-,24x --(2)a 与b 是关于1的“对称数”,理由见解析(3)6,14a b ==【分析】(1)根据题中所给关于1的“对称数”的定义,即可进行解得;(2)将a 和b 相加,看结果是否为2,若为2,则a 与b 是关于1的“对称数”,否则不是;(3)根据无论x 取何值,A 与B 都是关于1的“对称数”可得A B +的结果等于2,且含有x 的项系数为0,即可进行求解.【详解】(1)解:设7与m 是关于1的“对称数”,则72m +=,解得5m =-,设25x +与n 是关于1的“对称数”,则251x n ++=,解得:24n x =--,故答案为:5-,24x --.(2)()222324523a b x x x x x +=-+-+-+-2223245226x x x x x =-+-+--+2=,∴a 与b 是关于1的“对称数”.(3)()()224A B x a x x x b+=+---+22224x x ax a x x b=-+---+62x ax a b=-+-+()62a x a b =-+-+,∵无论x 取何值,A 与B 都是关于1的“对称数”,∴6022a a b -+=⎧⎨-+=⎩,解得:614a b =⎧⎨=⎩.【点睛】本题主要考查了新定义的运算,解题的关键是熟练掌握整式的加减混合运算法则和运算顺序.6.某野生动物园门票价格为60元/张,并推出了两种购票方案,且两种方案不能同时使用.设某旅游团一次性购买门票x 张(x 为正整数).(1)如果选择方案一,求该旅游团购买门票的费用;(2)如果选择方案二,该旅游团爱心捐款m 个500元(m 为正整数).①该旅游团一共需要花费的总费用为____元;(用含m ,x 的代数式表示)②当40x >时,无论x 取什么值,都存在一个正整数m ,使选择方案二的总费用始终比选择方案一的费用多某个固定值,则m 的值为____,固定值为____.【答案】(1)当040x ≤<时,该旅游团购买门票的费用为60x 元;当40x >时,该旅游团购买门票的费用为(50400)x +元(2)①[500(602)]m m x +-或(500602)m x mx +-;②m 的值是5,固定值是2100【分析】对于(1),分040x ≤<,40x >,分别列出代数式即可;对于(2)①,直接列出关系式即可,对于②,用方案二的总费用-方案一的总费用,再根据整式加减法法则计算,然后根据题意求出m 的值和固定值.【详解】(1)当040x ≤<时,60x ;当40x >时,6040(6010)(40)240050200050400x x x ⨯+--=+-=+.答:当040x ≤<时,该旅游团购买门票的费用为60x 元;当40x >时,该旅游团购买门票的费用为(50400)x +元.(2)①[500(602)]m m x +-或(500602)m x mx +-;故答案为:[500(602)]m m x +-或(500602)m x mx +-;②500602(50400)m x mx x +--+=50060250400m x mx x +---=500(60250)400m m x +---=500(102)400m m x +--因为无论x 取什么值,都存在一个正整数m ,使选择方案二的总费用始终比选择方案一的费用多某个固定值,所以1020m -=,即5m =,当5m =时,原式=500540025004002100⨯-=-=.答:m 的值是5,固定值是2100.故答案为:5,2100.【点睛】本题主要考查了列代数式,整式的加减法运算,确定各数量之间的关系是解题的关键.7.已知代数式222573,2A x xy y B x xy =+--=-+.(1)当1,2x y =-=时,求3A B -的值;(2)若2A B -的值与y 的取值无关,求x 的值.【答案】(1)40-;(2)1x =【分析】(1)先把A 、B 的代数式代入3A B -化简,再把1,2x y =-=代入化简后的式子计算即可;(2)先把A 、B 的代数式代入2A B -化简,结合2A B -的值与y 的取值无关可得关于x 的方程,解方程即可.【详解】(1)3A B-()22257332x xy y x xy =+----+222573336x xy y x xy =+---+-2879x xy y =-+--;当1,2x y =-=时,原式()()21812729=--+⨯-⨯-⨯-116149=----40=-;(2)2A B-()22257322x xy y x xy +----+=222257324x xy y x xy +--+--=777xy y =--()717y x =--;∵2A B -的值与y 的取值无关,∴10x -=,解得:1x =.【点睛】本题考查了整式的加减,正确理解题意、熟练掌握整式加减运算的法则是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题07 整式的加减
阅读与思考
整式的加减涉及许多概念,准确地把握这些概念并注意它们的区别与联系是解决有关问题的基础,概括起来就是要掌握好以下两点:1.透彻理解“三式”和“四数”的概念
“三式”指的是单项式、多项式、整式;“四数”指的是单项式的系数、次数和多项式的系数、次数.
2.熟练掌握“两种排列”和“三个法则”
“两种排列”指的是把一个多项式按某一字母的升幂或降幂排列,“三个法则”指的是去括号法则、添括号法则及合并同类项法则.物以类聚,人以群分.我们把整式中那些所含字母相同、并且相同字母的次数也相同的单项式作为一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类项.这样,使得整式大为简化,整式的加减实质就是合并同类项.
例题与求解
[例1]如果代数式ax5+bx3+cx-5,当x=-2时的值是7,那么当x=7时,该式的值是______.
(江苏省竞赛试题) 解题思路:解题的困难在于变元个数多,将x两个值代入,从寻找两个多项式的联系入手.
[例2]已知-1<b<0,0<a<1,那么在代数式a-b,a+b,
a+b2,a2+b中,对于任意a,b对应的代数式的值最大的是( ) A.a+b B.a-b C.a+b2D.a2+b
(“希望杯”初赛试题)
解题思路:采用赋值法,令a=1
2,b=-1
2
,计算四个式子的值,
从中找出值最大的式子.
[例3]已知x=2,y=-4时,代数式ax2+1
2
by+5=1997,求
当x=-4,y=-1
2
时,代数式3ax-24by3+4986的值.
(北京市“迎春杯”竞赛试题) 解题思路:一般的想法是先求出a,b的值,这是不可能的.解本例的关键是:将给定的x,y值分别代入对应的代数式,寻找已知与待求式子之间的联系,整体代入求值.
[例4]已知关于x的二次多项式a(x3-x2+3x)+b(2x2+x)+x3-5.当x=2时的值为-17,求当x=-2时,该多项式的值.
(北京市“迎春杯”竞赛试题) 解题思路:解题的突破口是根据多项式降幂排列、多项式次数等概念挖掘隐含的关于a,b的等式.
[例5]一条公交线路上起点到终点有8个站.一辆公交车从起点站出发,前6站上车100人,前7站下车80人.问从前6站上车而在终点下车的乘客有多少人?
(“希望杯”初赛试题) 解题思路:前7站上车总人数等于第2站到第8站下车总人数.本例目的是求第8站下车人数比第7站上车人数多出的数量.
[例6] 能否找到7个整数,使得这7个整数沿圆周排列成一圈后,任3个相邻数的和等于29?如果,请举出一例;如果不能,请简述理由.
(“华罗庚金杯”少年邀请赛试题)
解题思路:假设存在7个整数a 1,a 2,a 3,a 4,a 5,a 6,a 7排成一圈后,满足题意,由此展开推理,若推出矛盾,则假设不成立.
能力训练
A 级
1.若-4x m -2y 3与23
x 3y 7-2n 是同类项,m 2+2n =______. (“希望杯”初赛试题)
2.当x =1,y =-1时,ax +by -3=0,那么当x =-1,y =1时,ax +by -3=______.
(北京市“迎春杯”竞赛试题)
3.若a +b <0,则化简|a +b -1|-|3-a -b |的结果是______.
4.已知x 2+x -1=0,那么整式x 3+2x 2+2002的值为______.
5.设2332,4536,x y z x y z ++=⎧⎨++=⎩则3x -2y +z =______.
(2013年全国初中数学联赛试题)
6.已知A =a 2+b 2-c 2,B =-4a 2+2b 2+3c 2,若A +B +C =0,则C =( ).
A .5a 2+3b 2+2c 2
B .5a 2-3b 2+4c 2
A .3a 2-3b 2-2c 2 A .3a 2+b 2+4c 2
7.同时都有字母a ,b ,c ,且系数为1的7次单项式共有( ).
A .4个
B .12个
C .15个
D .25个
(北京市竞赛题)
8.有理数a ,b ,c 在数轴上的位置如图所示:
则代数式|a |-|a +b |+|c -a |+|b -c |化简后的结果是为
( ).
A .-a
B .2a -2b
C .2c -a
D .a
9.已知a +b =0,a ≠b ,则化简b a (a +1)+a b
(b +1)得( ). A .2a B .2b C .+2 D .-2
10.已知单项式0.25x b y c 与单项式-0.125x m -1y 2n -1的和为0.625ax n y m ,求abc 的值.
11.若a ,b 均为整数,且a +9b 能被5整除,求证:8a +7b 也能被5整除.
(天津市竞赛试题)
B 级
1.设a <-b <c <0,那么|a +b |+|b +c |-|c -a |+|a ||+b |+|c |=______.
(“祖冲之杯”邀请赛试题)
2.当x 的取值范围为______时,式子-4x +|4-7x |-|1-3x |+4的值恒为一个常数,这个值是______.
(北京市“迎春杯”竞赛试题)
3.当x =2时,代数式ax 3-bx +1的值等于-17,那么当x =-
b a
c 第8题图
1时,代数式12ax-3bx3-5的值等于______.
4.已知(x+5)2+|y2+y-6|=0,则y2-1
xy+x2+x3=______.
5
(“希望杯”邀请赛试题) 5.已知a-b=2,b-c=-3,c-d=5,则(a-c)(b-d)÷(a-d)=______.
6.如果对于某一特定范围内x的任意允许值,P=|1-2x|+|1-3x|+…+|1-9x|+|1-10x|的值恒为一个常数,则此值为( ).A.2 B.3 C.4 D.5
(安徽省竞赛试题) 7.如果(2x-1)6=a0+a1x+a2x2+a3x3+a4x4+a5x5+a6x6,那么a0+a1+a2+a3+a4+a5+a6等于______;a0+a2+a4+a6等于______.A.1,365 B.0,729 C.1,729 D.1,0
(“希望杯”邀请赛试题) 8.设b,c是整数,当x依次取1,3,6,11时,某学生算得多项式x2+bx+c的值分别为3,5,21,93.经验证,只有一个结果是错误的,这个错误的结果是( ).
A.当x=1时,x2+bx+c=3 B.当x=3时,x2+bx+c=5 C.当x=6时,x2+bx+c=21 D.当x=11时,x2+bx+c =93
(武汉市选拔赛试题) 9.已知y=ax7+bx5+cx3+dx+e,其中a,b,c,d,e为常数,当x=2时,y=23;当x=-2时,y=-35,那么e的值是( ).
A .-6
B .6
C .-12
D .12
(吉林省竞赛试题)
10.已知a ,b ,c 三个数中有两个奇数,一个偶数,n 是整数,如果s =(a +n +1)·(b +2n +2)(c +3n +3),那么( ).
A .s 是偶数
B .s 是奇数
C .s 的奇偶性与n 的奇偶性相同
D .s 的奇偶性不能确定
(江苏省竞赛试题)
11.(1)如图1,用字母a 表示阴暗部分的面积;
(2)如图2,用字母a ,b 表示阴暗部分的面积;
(3)如图3,把一个长方体礼品盒用丝带打上包装(图中虚线为丝带),打蝴蝶结的部分需丝带(x -y )cm ,打好整个包装需用丝带总长度为多少?
12.将一个三位数abc 中间数码去掉,成为一个两位数ac ,且满足abc =9ac +4c ,如155=9×15+4×5.试求出所有这样的三位数.图1 a a a x
y
z 图3 b a
b
图2 a。