Jwdfei高考数学难点突破 难点22 轨迹方程的求法
高考数学一轮备考必考知识点:轨迹方程的求解

高考数学一轮备考必考知识点:轨迹方程的求解符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹,下文是高考数学一轮备考必考知识点,期望能够关心到同学们。
一、求动点的轨迹方程的差不多步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直截了当将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:假如能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直截了当关系难以找到时,往往先查找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
直译法:求动点轨迹方程的一样步骤①建系——建立适当的坐标系;②设点——设轨迹上的任一点P(x,y);③列式——列出动点p所满足的关系式;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明——证明所求方程即为符合条件的动点轨迹方程。
“师”之概念,大体是从先秦时期的“师长、师傅、先生”而来。
其中“师傅”更早则意指春秋时国君的老师。
《说文解字》中有注曰:“师教人以道者之称也”。
“师”之含义,现在泛指从事教育工作或是传授知识技术也或是某方面有特长值得学习者。
高考数学难点突破 难点22 轨迹方程的求法

难点22 轨迹方程的求法求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.●难点磁场(★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线.●案例探究[例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目.知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程.错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题.技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2)又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=2,241+=+y y x , 代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0 整理得:x 2+y 2=56,这就是所求的轨迹方程.[例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招)命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目. 知识依托:直线与抛物线的位置关系.错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.技巧与方法:将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系.解法一:设A (x 1,y 1),B (x 2,y 2),M (x ,y )依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x y x y px y px y ①-②得(y 1-y 2)(y 1+y 2)=4p (x 1-x 2) 若x 1≠x 2,则有2121214y y px x y y +=--⑥①³②,得y 12²y 22=16p 2x 1x 2③代入上式有y 1y 2=-16p 2 ⑦ ⑥代入④,得yxy y p -=+214⑧⑥代入⑤,得pyx y y x x y y y y p442111121--=--=+ 所以211214)(44y px y y p y y p --=+ 即4px -y 12=y (y 1+y 2)-y 12-y 1y 2⑦、⑧代入上式,得x 2+y 2-4px =0(x ≠0)当x 1=x 2时,AB ⊥x 轴,易得M (4p ,0)仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0(x ≠0)它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设M (x ,y ),直线AB 的方程为y =kx +b由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+(2kb -4p )x +b 2=0所以x 1x 2=22kb ,消x ,得ky 2-4py +4pb =0① ② ③ ④ ⑤所以y 1y 2=kpb4,由OA ⊥OB ,得y 1y 2=-x 1x 2 所以kpk4=-22k b ,b =-4kp故y =kx +b =k (x -4p ),用k =-yx代入,得x 2+y 2-4px =0(x ≠0) 故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.[例3]某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图:本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力,属★★★★★级题目.知识依托:圆锥曲线的定义,求两曲线的交点.错解分析:正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键.技巧与方法:研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程.解:设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则 |P A |+|PO |=1+r +1.5-r =2.5∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ① 同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ② 由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76cm. ●锦囊妙计求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法.(1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程.(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.●歼灭难点训练 一、选择题1.(★★★★)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2.(★★★★)设A 1、A 2是椭圆4922y x +=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y x B.14922=+x y C.14922=-y xD.14922=-x y 二、填空题3.(★★★★)△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a,0),且满足条件sin C -sin B =21sin A ,则动点A 的轨迹方程为_________. 4.(★★★★)高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.三、解答题5.(★★★★)已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6.(★★★★)双曲线2222by a x -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.7.(★★★★★)已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.(★★★★★)已知椭圆2222by a x +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案难点磁场解:建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0). 设M (x ,y )是轨迹上任意一点.则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴).(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0.点M 的轨迹是以(-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆. 歼灭难点训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆. 答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0) ∵A 1、P 1、P 共线,∴300+=--x yx x y y ∵A 2、P 2、P 共线,∴300-=-+x yx x y y解得x 0=149,149,3,92220200=-=-=y x y x x y y x 即代入得 答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a , ∴应为双曲线一支,且实轴长为2a,故方程为)4(1316162222a x a y a x >=-. 答案:)4(1316162222ax a y a x >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC | =|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122y x +=1(y ≠0) 6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ). ∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x a x y a x y a x y a x y 220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2.即b 2(-x 2)-a 2(ya x 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0), 则A 1P 的方程为:y =)(11m x mx y ++ ①A 2Q 的方程为:y =-)(11m x mx y -- ②①³②得:y 2=-)(2222121m x mx y -- ③又因点P 在双曲线上,故).(,12212221221221m x m n y n y m x -==-即代入③并整理得2222ny m x +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nm m -,离心率e =mn m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n -,离心率e =nm n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ , ∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0).|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0)(2)如右图,∵S △AOB =21|OA |²|OB |²sin AOB =22a sin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
高考数学难点突破_难点22__轨迹方程的求法

高考数学难点突破_难点22__轨迹方程的求法在高考数学中,轨迹方程的求法是一个比较常见但也较为复杂的难点。
在解决这类问题时,我们需要考虑几个关键因素,如何确定相关点、如何利用已知条件及使用适当的数学知识等。
一、确定相关点对于轨迹方程的求法,首先需要明确或确定一些与所求轨迹相关的点。
这些点可以从已知条件中得出,如一个点的坐标、两个点的距离、特定点到直线的距离等。
这些已知条件将成为我们解题的基础。
二、利用已知条件在确定了相关的点之后,我们需要利用已知条件来求解轨迹方程。
对于不同的条件,我们可以使用不同的数学知识和方法来解决问题。
下面是一些常见的已知条件及相应的解决思路:1.已知点的坐标:如果已知轨迹上的其中一点的坐标,我们可以将这个点的坐标代入轨迹方程中,得到一个等式,并根据这个等式求解出其他未知量,从而得到轨迹方程。
例如,已知轨迹上的点的坐标满足$x^2+y^2=1$,则这是一个以原点为中心、半径为1的圆的轨迹方程。
2.已知点到另一点的距离:如果已知轨迹上的其中一点到另一点的距离等于一定值,我们可以根据距离公式来求解轨迹方程。
例如,已知轨迹上的点到点$(2,1)$的距离等于2,则可以列出方程$\sqrt{(x-2)^2 + (y-1)^2} = 2$,进而求解出轨迹方程。
3.已知点到直线的距离:如果已知轨迹上的其中一点到直线的距离等于一定值,我们可以利用距离公式和直线方程来求解轨迹方程。
例如,已知轨迹上的点到直线$2x+ 3y = 6$的距离等于3,则可以列出方程$\frac{,2x + 3y -6,}{\sqrt{2^2 + 3^2}} = 3$,进一步求解出轨迹方程。
三、使用适当的数学知识在解决轨迹方程的问题中,我们可能需要应用到一些特定的数学知识,如圆的性质、直线的性质、二次曲线方程等。
我们需要结合问题的具体情况,合理地选择和应用这些知识来解决问题。
总结起来,要解决轨迹方程的问题,我们需要明确相关点、利用已知条件和适当应用数学知识。
高考数学二轮复习轨迹方程的求解方法

2019年高考数学二轮复习轨迹方程的求解方法符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹.下面是编辑老师整理的轨迹方程的求解方法,希望对您提高学习效率有所帮助.轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
高三必读:轨迹方程的求解

高三必读:轨迹方程的求解【】:目前高三同学已经进入第一轮备考阶段,查字典数学网为大家整理了各科目知识点,以下是小编为大家推荐的高三数学轨迹方程求解步骤及方法一文,希望对大家的复习有所帮助。
符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹. 轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
高三数学轨迹方程求解步骤及方法:一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条件的动点轨迹方程。
2022届高考数学难点突破难点22 轨迹方程的求法

难点22 轨迹方程的求法求曲线的轨迹方程是解析几何的两个基本问题之一求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点●难点磁场★★★★已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线●案例探究 [例1]如图所示,已知22)4(y x +-2,241+=+y y x 244)2()24(22+⋅-++x y x ⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x y y x y x y x y px y px y 2121214y y p x x y y +=--y xy y p -=+214py x y y x x y y y y p 442111121--=--=+211214)(44y px y y p y y p--=+y x 22kb k pb 4k pk 422k b y x 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少命题意图:本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力,属★★★★★级题目知识依托:圆锥曲线的定义,求两曲线的交点 错解分析:正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键 技巧与方法:研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程解:设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆3225)41(1622y x ++2134)1412,149(),1412,149(-Q P 73)1412()149(2322=+-76① ② ③ ④ ⑤●锦囊妙计求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法1直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程2定义法 若动点轨迹的条件符合某一基本轨迹的定义如椭圆、双曲线、抛物线、圆等,可用定义直接探求3相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程4参数法 若动点的坐标,中的,分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程求轨迹方程,一定要注意轨迹的纯粹性和完备性要注意区别“轨迹”与“轨迹方程”是两个不同的概念●歼灭难点训练 一、选择题1★★★★已知椭圆的焦点是F 1、F 2,4922y x +14922=+y x 14922=+x y 14922=-y x 14922=-x y 2a 2a 21和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A -5,0、B 5,0,则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________三、解答题5★★★★已知A 、B 、C 是直线上的三点,且|AB |=|BC |=6,⊙O ′切直线于点A ,又过B 、C 作⊙O ′异于的两切线,设这两切线交于点2222b y a x -2222ny m x ->0,n >0的顶点为A 1、A 2,与轴平行的直线交双曲线于点≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率8★★★★★已知椭圆2222by a x +=1a >b >0,点2||||MB MA 2222)()(y a x y a x +-++221)1(2λ-λ+a 221)1(λ-λ+a |1|22λ-λa 300+=--x yx x y y 300-=-+x yx x y y149,149,3,92220200=-=-=y x y x x y y x 即代入得21212a )4(1316162222ax a y a x >=-)4(1316162222ax ay a x >=-2222)5(3)5(5y x yx +-=++728122y x +⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y a x y a x x x ax y a x y a x y a x y220000000)( 11得y a x 22-,0,A 2m ,0, 则A 1)(11m x m x y ++)(11m x mx y --)(2222121m x mx y --).(,12212221221221m x m n y n y m x -==-即2222ny m x +≠n 时,M 的轨迹方程是椭圆 ⅰ当m >n 时,焦点坐标为±22n m -,0,准线方程为=±222nm m -,离心率e =mn m 22-;ⅱ当m <n 时,焦点坐标为0,±22n m -,准线方程为=±222mn n -,离心率e =nm n 22-8解:1∵点F 2关于的对称点为Q ,连接PQ , ∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R 0,0),Q 1,1,F 1-c ,0,F 2c ,0|F 1Q |=|F 2P ||PQ |=|F 1P ||PF 2|=2a ,则1c 212=2a 2又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x 得1=20-c ,1=20∴202202=2a 2,∴0202=a 2故R 的轨迹方程为:22=a 2≠02如右图,∵S △AOB =21|OA |·|OB |·in AOB =22a in AOB当∠AOB =90°时,S △AOB 最大值为21a 2 此时弦心距|OC |=21|2|kak +在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k k a ak OA OC。
高考数学难点突破_难点22__轨迹方程的求法

高考数学难点突破_难点22__轨迹方程的求法难点22:轨迹方程的求法轨迹是一个几何对象的运动过程中所留下的轨迹,轨迹方程是研究轨迹的数学工具之一、在高考中,轨迹方程往往是一道比较复杂的题目,考查学生对平面几何知识的掌握和应用能力。
本文将从轨迹方程的基本概念、推导方法和例题讲解三个方面来突破难点22一、轨迹方程的基本概念轨迹方程通常由若干个关联点的坐标关系确定。
可以是一条曲线、一个闭合图形或是一个点的集合,根据题目所给条件可以是直线、圆、椭圆、抛物线、双曲线等各种图形。
二、轨迹方程的推导方法在求解轨迹方程时,需要根据题目给出的条件列出方程式,然后根据方程式进行推导,最终得到轨迹方程。
(1)通过代数方法推导轨迹方程:通过解方程组,来获取图形上特定点的坐标关系,从而得到轨迹方程。
(2)通过几何性质推导轨迹方程:根据图形的几何性质进行推导。
例如,利用垂直、平行、相切等性质,可以推导出轨迹方程。
三、轨迹方程的例题讲解例1:已知直线l过坐标原点,并且向量(3,4)与直线l垂直。
求直线l的轨迹方程。
解析:设直线l的方程为y=kx,由题意可知直线l过坐标原点,因此方程为y=kx。
直线向量(3,4)与直线l垂直,说明这两个向量的点积为0。
即3k+4=0,解得k=-\frac{4}{3}。
因此,直线l的方程为y=-\frac{4}{3}x。
例2:已知点P(x,y)在椭圆C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1上,并且点P的切线与直线x=1垂直。
求椭圆C的轨迹方程。
解析:椭圆C的方程为\frac{x^2}{a^2}+\frac{y^2}{b^2}=1、设过点P(x,y)的切线方程为y=k(x-1),根据题意得知,点P的切线与直线x=1垂直,因此k的值为0。
代入点P的坐标得到y=0。
将点P的坐标带入椭圆C的方程,得到\frac{x^2}{a^2}=1、解得x=\pm a。
因此,椭圆C的轨迹方程为x=\pm a。
数学轨迹方程的求法

数学轨迹方程的求法在数学中,轨迹可以看做是一个物体在运动过程中留下的路径。
而轨迹方程则是描述这个路径的方程。
求解轨迹方程是数学中常见的问题之一,本文将介绍一些常用的求解轨迹方程的方法。
一、直接解轨迹方程如果轨迹已知,那么可以直接解轨迹方程。
比如,一个运动物体在平面直角坐标系中的轨迹为一个圆形。
我们可以通过圆的标准方程x²+y²=r²求得轨迹方程。
二、利用参数方程求解轨迹方程如果轨迹无法用一般函数形式表示,那么我们可以用参数方程来描述它的轨迹。
参数方程表示成x=f(t),y=g(t),t为参数。
例如,一个点沿着单位圆按逆时针方向绕圈运动,可用参数方程 x=cos(t),y=sin(t),(0≤t≤2π)来描述它运动的轨迹,则轨迹方程为 x²+y²=1。
三、使用极坐标系求解轨迹方程在一些问题中,极坐标系比直角坐标系更加有用。
例如,极坐标系对于表示圆形更加简单。
若有圆心在原点处,半径为 R 的圆,圆上点的极坐标为(R,θ),则其方程为 r=R。
四、使用微积分求解轨迹方程微积分是解决轨迹方程问题的重要工具。
通过微积分的方法,我们可以求出运动物体的速度、加速度和位移,从而得出轨迹方程。
例如,若已知一个点做匀加速直线运动的位移和速度随时间的关系为s=at²/2+vt+s₀,则通过微积分可求出物体的轨迹方程s=a*t²/2+v*t+s₀。
总之,轨迹方程的求解方法多种多样,要根据不同的问题选择合适的方法。
熟练掌握这些方法,能够让我们更好地应对解决实际问题。
高考数学难点突破-轨迹方程的求法和求圆锥曲线方程

2
代入方程 x2+y2-4x-10=0,得
( x 4 )2 ( y )2 4 x 4 -10=0
2
2
2
整理得:x2+y2=56,这就是所求的轨迹方程.
[例 2]设点 A 和 B 为抛物线 y2=4px(p>0)上原点以外的两个动点,已知 OA⊥OB,OM⊥AB,求点 M
的轨迹方程,并说明它表示什么曲线.(2000 年北京、安徽春招)
难点 22 轨迹方程的求法
求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利 用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定 义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问 题成为高考命题的热点,也是同学们的一大难点.
命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目.
知识依托:直线与抛物线的位置关系.
错解分析:当设 A、B 两点的坐标分别为(x1,y1),(x2,y2)时,注意对“x1=x2”的讨论.
技巧与方法:将动点的坐标 x、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于 x、
技巧与方法:研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨
迹方程.
解:设直径为 3,2,1 的三圆圆心分别为 O、A、B,问题转化为求两等圆 P、
Q,使它们与⊙O 相内切,与⊙A、⊙B 相外切.
建立如图所示的坐标系,并设⊙P 的半径为 r,则
|PA|+|PO|=1+r+1.5-r=2.5
∴点 P 在以 A、O 为焦点,长轴长 2.5 的椭圆上,其方程为
高中数学考前归纳总结求轨迹方程的常用方法

求轨迹方程的常用方法一、求轨迹方程的一般方法:1,待定系数法:如果动点P的运动规律符合我们的某种曲线〔如圆、椭圆、双曲线、抛物线〕的定义,那么可先设出轨迹方程,再根据条件, 待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法.2,直译法:如果动点P的运动规律是否符合我们熟知的某些曲线的定义难以判断, 但点P满足的等量关系易于建立,那么可以先表示出点P所满足的几何上的等量关系, 再用点P的坐标〔x, y〕表示该等量关系式,即可得到轨迹方程.3 .参数法:如果采用直译法求轨迹方程难以奏效,那么可寻求引发动点P运动的某个几何量t ,以此量作为参变数,分别建立P点坐标x, y与该参数t 的函数关系x = f〔t〕, y = g 〔t〕,进而通过消参化为轨迹的普通方程 F 〔x, y〕 =0.4 .代入法〔相关点法〕:如果动点P的运动是由另外某一点P'的运动引发的, 而该点的运动规律,〔该点坐标满足某曲线方程〕,那么可以设出P 〔x, y〕,用〔x, y〕表示出相关点P'的坐标,然后把P'的坐标代入曲线方程,即可得到动点P的轨迹方程.5 .几何法:假设所求的轨迹满足某些几何性质〔如线段的垂直平分线,角平分线的性质等〕,可以用几何法,列出几何式,再代入点的坐标较简单.6:交轨法:在求动点轨迹时,有时会出现要求两动曲线交点的轨迹问题,这类问题通常通过解方程组得出交点〔含参数〕的坐标,再消去参数求得所求的轨迹方程〔假设能直接消去两方程的参数,也可直接消去参数得到轨迹方程〕,该法经常与参数法并用.二、求轨迹方程的考前须知:1 . 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律, 即P 点满足的等量关系,因此要学会动中求静,变中求不变.2 .轨迹方程既可用普通方程F〔x,y〕 0表示,又可用参数方程x f〔t〕〔t为参数〕y g〔t〕来表示,假设要判断轨迹方程表示何种曲线,那么往往需将参数方程化为普通程的某些解为坐标的点不在轨迹上〕,又要检验是否丢解.〔即轨迹上方程.3.求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解, 〔即以该方的某些点未能用所求的方程表示),出现增解那么要舍去,出现丢解,那么需补充.检验方法:研究运动中的特殊情形或极端情形.4 .求轨迹方程还有整体法等其他方法.在此不一一缀述.三、典例分析1,用定义法求曲线轨迹求曲线轨迹方程是解析几何的两个根本问题之一,求符合某种条件的动点轨迹方程,其实质就是利用题设中的几何条件,通过坐标互化将其转化为寻求变量之间的关系,在求与圆锥曲线有关的轨迹问题时,要特别注意圆锥曲线的定义在求轨迹中的作用,只要动点满足已知曲线定义时,通过待定系数法就可以直接得出方程.例1:ABC的顶点A, B的坐标分别为(-4 , 0) , (4, 0) , C为动点,且满足一一一5 .sin B sin A —sinC,求点C的轨迹.45 . . 5【解析】由sin B sin A -sinC,可知b a -c 10,即|AC| | BC | 10 ,满足椭4 42 2圆的定义.令椭圆方程为J 2 1,那么a' 5,c' 4 b' 3,2 2a b2 2那么轨迹方程为土2―1 (x 5),图形为椭圆(不含左,右顶点) .25 9【点评】熟悉一些根本曲线的定义是用定义法求曲线方程的关键.(1) 圆:到定点的距离等于定长(2) 椭圆:到两定点的距离之和为常数(大于两定点的距离)(3) 双曲线:到两定点距离之差的绝对值为常数(小于两定点的距离)(4) 到定点与定直线距离相等.【变式1]:1:圆尸=有的圆心为M,圆住一4尸4了, .的圆心为M, 一动圆与这两个圆外切,求动圆圆心P的轨迹方程.解:设动圆的半径为R,由两圆外切的条件可得:|P%l=R + 5 , |P叫l=R + l.,-.|PM1P5HPMJ-b|PM1|-|PM a|=4•••动圆圆心P的轨迹是以M、M2为焦点的双曲线的右支, c=4, a=2, b2=12.故所求轨迹方程为4 12M 的轨迹是:A:抛物线B:圆C:椭圆D:双曲线一支2.用直译法求曲线轨迹方程 此类问题重在寻找数量关系.例2: 一条线段AB 的长等于2a ,两个端点A 和B 分别在x 轴和y 轴上滑动,求 AB 中点P 的轨迹方程?解 设M 点的坐标为〔x, y 〕由平几的中线定理:在直角三角形 一— 1 一 1 八 AO 升,OM=AB - 2a a,2 2―22-222x y a,x y aM 点的轨迹是以O 为圆心,a 为半径的圆周.1【点评】此题中找到了 OM=1AB 这一等量关系是此题成功的关键所在.一般直译法有以下几2种情况:1〕代入题设中的等量关系:假设动点的规律由题设中的等量关系明显给出,那么采用直 接将数量关系代数化的方法求其轨迹.2〕列出符合题设条件的等式:有时题中无坐标系,需选定适当位置的坐标系,再根据题设条 件列出等式,得出其轨迹方程.3〕运用有关公式:有时要运用符合题设的有关公式,使其公式中含有动点坐标,并作相应的 恒等变换即得其轨迹方程.4〕借助平几中的有关定理和性质:有时动点规律的数量关系不明显,这时可借助平面几何中 的有关定理、性质、勾股定理、垂径定理、中线定理、连心线的性质等等,从而分析出其数 量的关系,这种借助几何定理的方法是求动点轨迹的重要方法^| PAI 一【变式2】:动点P(x,y)到两定点A(—3,0)和B(3,0)的距离的比等于2(即 2),|PB|求动点P 的轨迹方程?[解答]. . | PA = J(x 3)2__y 7/ PB | J(x 3)2父| PA | (x 3)2 y 2 2 2 22代入 ——1 2得 ——2 (x 3)2y 2 4(x 3)2 4y 22: 一动圆与圆O: x 2 y 21外切,而与圆C : x 22y 6x 8 0内切,那么动圆的圆心【解答】令动圆半径为R, 皿士 |MO| R那么有। ।| MC | R1c,那么 |MO|-|MC|=2 ,1满足双曲线定义.应选Do|PB| ..(x 3)2 y2化简彳导(x-5) 2+y2=16,轨迹是以(5, 0)为圆心,4为半径的圆.3.用参数法求曲线轨迹方程此类方法主要在于设置适宜的参数,求出参数方程,最后消参,化为普通方程.注意参数的取值范围.例3.过点P (2,4)作两条互相垂直的直线l i, 12,假设l i交x轴于A点,l 2交y轴于B点,求线段AB的中点M的轨迹方程.【解析】分析1:从运动的角度观察发现,点M的运动是由直线l i引发的,可设出l i的斜率k作为参数,建立动点M坐标(x, y)满足的参数方程.解法1:设M (x, y),设直线l i的方程为y-4= k (x-2), ( k w 0 )1 _由l i l2,那么直线l2的万程为y 4 —(x 2)k4l1与x轴交点A的坐标为(2 4,0),kl2与y轴交点B的坐标为(0,4 2), k・•.M为AB的中点,2k(k为参数)消去k,得x+ 2y—5=0.另外,当k = 0时,AB中点为M (1, 2),满足上述轨迹方程;当k不存在时,AB中点为M (1, 2),也满足上述轨迹方程.综上所述,M的轨迹方程为x+2y—5=0.分析2:解法1中在利用k1k2=- 1时,需注意匕、k2是否存在,故而分情形讨论,能否避开讨论呢?只需利用^ PAB为直角三角形的几何特性:1 . .|MP| 21ABi解法2:设M (x, y),连结MP 那么 A (2x, 0), B (0, 2y),•••l」l 2, PAB为直角三角形1 .由直角二角形的性质,|MP| 31ABi--------------- 2 2-1 -----------2 2..(x 2)2 (y 4)22;,(2x)2 (2y)2化简,得x + 2y-5 = 0,此即M 的轨迹方程.分析3::设M (x, y),由l i _L l 2,联想到两直线垂直的充要条件: k i k 2=—1,即可 列出轨迹方程,关键是如何用 M 点坐标表示 A 、B 两点坐标.事实上,由 M 为AB 的中点,易 找出它们的坐标之间的联系.解法3:设M (x, y), •「M 为AB 中点, 又l 1, l 2过点P (2, 4),且l/l 2••• PAX PB,从而 k PA • k PB= — 1, 中点M (1, 2),经检验,它也满足方程 x+2y-5=0 综上可知,点 M 的轨迹方程为x+2y-5=0o【点评】 解法1用了参数法,消参时应注意取值范围.解法 2, 3为直译法,运 1 ,k PA • k PB= - 1, | MP | - | AB|这些等量关系.用参数法求解时,一 般参数可选用具有某种物理或几何意义的量,如时间,速度,距离,角度, 有向线段的数量,直线的斜率,点的横,纵坐标等.也可以没有具体的意 义,选定参变量还要特别注意它的取值范围对动点坐标取值范围的影响【变式3】过圆O: x 2+y 2= 4外一点A(4,0),作圆的割线,求割线被圆截得的弦 BC 的中点M 的轨迹. 解法一:“几何法〞设点M 的坐标为(x,y ),由于点M 是弦BC 的中点,所以 OML BC, 所以 |OM | 2 + | MA | 2 =| OA | 2 ,即(x 2+y 2)+(x -4)2 +y 2=16化简得:(x —2) 2+ y 2=4 .................................. ①由方程 ① 与方程x 2+y 2= 4得两圆的交点的横坐标为 1,所以点M 的轨迹方程为 (x —2) 2+ y 2=4 (0<x<1)o 所以M 的轨迹是以(2, 0)为圆心,2为半径的圆在圆 O 内的局部. 解法二:“参数法〞设点M 的坐标为(x,y ), B (x 1,y0 ,C (x 2,y 2)直线AB 的方程为y=k(x -4), 由直线与圆的方程得(1+k 2) x 2—8k 2x +16k 2—4=0 .................... (*),由点M 为BC 的中点,所以x=x —x 2 」4k ) ................................ (1),2 1 k又 OMLBC,所以 k=Y (2)由方程(1) (2)消去k 得(x — 2) 2+ y 2=4,又由方程(* )的^> 0得k 2< 1,所以x< 1.3••• A (2x, 0),B (0, 2y).而k pA4 0 2 2x' 4 2y2 2x 2注意到l i^x 轴时,1,化简,得x 2y 5 0l 2±y 轴,此时 A (2, 0), B (0,4)用了2+ y 2=4 ( 0<x< 1)为圆心,2为半径的圆在圆 O 内的局部.【点评】代入法的关键在于找到动点和其相关点坐标间的等量关系【变式4】如下图, R4 , 0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足ZAPE =90 ,求矩形APBQ 勺顶点Q 的轨迹方程【解析】: 设AB 的中点为R,坐标为(x , y ),那么在Rt^ABP 中,|AR =| PR 又由于R 是弦 AB 的中点,依垂径定理在 Rt △ OAF^, | AR 2=| A .2—|OR 2=36—(x 2+y 2)又|AR =| P 帘(x 4)2 y 2所以有(x-4) 2+y 2=36- (x 2+y 2),即 x 2+y 2—4x —10=0因此点R 在一个圆上,而当 R 在此圆上运动时,Q 点即在所求 的轨迹上运动 设Qx ,y) , R (x 1, y 1),由于R 是PQ 的中点,所以 y o ,222x +y -4x- 10=0,得(_y )2 4 x 4 _10=022所以点M 的轨迹方程为(x-2)所以M 的轨迹是以(2, 0) 4,用代入法等其它方法求轨迹方程x 2例4.点B 是椭圆-2 a2与1上的动点,A(2a,0)为定点,求线段AB 的中点M 的 b 2轨迹方程.分析:题中涉及了三个点 A 、B 、M,其中A 为定点,而B 、M 为动点,且点 B 的运动是有 规律的,显然 M 的运动是由B 的运动而引发的,可见 M B 为相关点,故采用相关点法求动点 M 的轨迹方程.【解析】设动点 那么由M 为线段 M 的坐标为(x, y),而设B 点坐标为(xo, yo)AB 中点,可得x 0 2a 2 V . 0 2 x 0 2x 2aV . 2y即点 B 坐标可表为(2x - 2a, 2y)x 2点B(x°, y°)在椭圆-y a 2—1上b 22x 0 -2- a2〞1 b 2(2x 从而有——2a)2 2a叱1b 2整理,得动点M 的轨迹方程为4J a22a) 4y 1 b 2x 4 x1=—,y 1代入方程(7)22QR整理得 x 2+y 2=56,这就是所求的轨迹方程四、常见错误:【例题5】 ABC 中,B, C 坐标分别为(-3, 0), (3, 0),且三角形周长为16,求点A 的轨 迹方程.22【常见错误】由题意可知,|AB|+|AC|=10 ,满足椭圆的定义.令椭圆方程为 : 4 1 ,那么a b22由定义可知a 5,c 3,那么b 4,得轨迹方程为—匕 1516【错因剖析】ABC 为三角形,故A, B, C 不能三点共线.【正确解答】ABC 为三角形,故 A, B, C 不能三点共线.轨迹方程里应除去点(5,0).( 5,0),22即轨迹方程为二匕 1(x5)25 16提示:1 :在求轨迹方程中易出错的是对轨迹纯粹性及完备性的忽略,除;另一方面,又要注意有无“漏网之鱼〞仍逍遥法外,2:求轨迹时方法选择尤为重要,首先应注意定义法,几何法,直接法等方 法的选择.3:求出轨迹后,一般画出所求轨迹,这样更易于检查是否有不合题意的部 分或漏掉的局部. 针对性练习:5 ___ 5、 一 一 22 一1:两点M(1,—), N( 4,一)给出以下曲线方程:① 4x 2y 1 0;②x y 3;③4 422— y 21y 21,在曲线上存在点 P 满足|MP | | NP |的所有曲线方程是(22A ①③B ②④C ①②③D ②③④【答案】:D【解答】:要使得曲线上存在点 P 满足|MP| |NP|,即要使得曲线与 MN 的中垂线y 有交点.把直线方程分别与四个曲线方程联立求解,只有①无解,那么选D2.两条直线x my 1 0与mx y 1 0的交点的轨迹方程是 : 【解答】:直接消去参数 m 即得(交轨法):x 2 y 2 x y 03:圆的方程为(x-1) 2+y 2=1,过原点O 作圆的弦0A,那么弦的中点M 的轨迹方程是 ^因此, 在求出曲线方程的方程之后,应仔细检查有无“不法分子〞掺杂其中, 将其剔要将其“捉拿归案〞.2x 3【解答】:令 M 点的坐标为(x, y),那么A 的坐标为(2 x,2y),代入圆的方程里面便可得到动点的轨迹方程.【解答】:抛物线方程可化为它的顶点坐标为消去参数m 得:(4, 0)的距离与它到直线 x 4的距离相等.那么点 M 的 4为准线的抛物线.故所求轨迹方程为 y 2 16x .6:求与两定点OO 1, 0、A3, 0距离的比为1: 2的点的轨迹方程为八, …, ,□… POl1一、… 一— 一〜…,一八【分析】:设动点为巳由题意- -,那么依照点P 在运动中所遵循的条件,可列出等量关| PA| 2系式.【解答】:设P x, y 是所求轨迹上一点,依题意得L1 O 得:(x 1)22y 2 :(x 0)4随意变化时,那么抛物线y x 2 2m 1 xm 2 1的顶点的轨迹方程为把所求轨迹上的动点坐标x, y 分别用已有的参数 m 来表示,然后消去参数 m故所求动点的轨迹方程为4x 4y 305:点M 到点F (4, 0) 的距离比它到直线50的距离小1 ,那么点M 的轨迹方程为【分析】:点M 到点F (4, 0)的距离比它到直线 50 的距离小1,意味着点M 到点F(4, 0)的距离与它到直线 x 40的距离相等. 由抛物线标准方程可写出点 M 的轨迹方程.【解答】:依题意,点M 到点F轨迹是以F (4, 0)为焦点、x由两点间距离公式得:x 2 y 21PO 1 PA 2化简彳导:x 2 y 2 2x 3027抛物线y 4x 的通径〔过焦点且垂直于对称轴的弦〕与抛物线交于 A 、B 两点,动点C 在抛物线上,求^ ABC 重心P 的轨迹方程.【分析】:抛物线y 4x 的焦点为F 1,0 .设^ ABC 重心P 的坐标为〔x, y 〕,点C 的坐 标为〔x 1, y 1〕.其中x 1 1【解答】:因点P x, y 是重心,那么由分点坐标公式得:x 另一2, y 也33即 x 1 3x 2, y 1 3y由点C x 1,y 1在抛物线y 2 4x 上,得:y 12 4x 124 2将x i3x 2, y i3y 代入并化简,得:y — x —( x 1) 338 .双曲线中央在原点且一个焦点为F 〔乔,0〕,直线y=x —1与其相交于 M N 两点,MNUI中点的横坐标为 5 ,求此双曲线方程.22【解答】:设双曲线方程为 2T 当 a b (b 2-a a)x a+ 2a ax- a 3- a ab a=0,此双曲线的方程为9 .动点P 到定点F 〔1, 0〕和直线x=3的距离之和等于【解答】:设点P 的坐标为〔x, y 〕,那么由题意可得1.将y=x — 1代入方程整理得由韦达定理得x 1 x 2解得 a 2 2,b 25.22aX I x 2~2~2 --a b 22 ,2a b2.又有+ 联立方程组,34,求点P 的轨迹方程.J (犬 _ + y* + | x — 31= 4(1)当xw3 时,方程变为J(x 1)2—y2 3 x 4,J(x 1)2―y2 x 1,化简得2y 4x(0 x 3).(2)当x>3 时,方程变为J(x 1)2—y7 x 3 4,J(x 1)2—y7 7 x,化简得y a = -12(x-4)(3<x<4)o毋足十的人口的-■铲曰必=4式.弓工43)一,= T2(x —4)0仃44)故所求的点P的轨迹方程是‘ 工 ,或, 八■10 .过原点作直线l和抛物线y x24x 6交于A、B两点,求线段AB的中点M的轨迹方程.【解答】:由题意分析知直线l的斜率一定存在,设直线l的方程y=kx.把它代入抛物线方程了=/一4天4®,得又‘一04•的白=口.由于直线和抛物线相交,所以△>0,解得x ( , 4 2而)(4 2^/6,).设A (叼打),B (叼力),M (x, y),由韦达定理得句中句=4*k.盯盯=6.产1 4k由户工一厂消去k得y=2x〞-必.又2黑f % =4 +上,所以x ( , V6)(后).,点M的轨迹方程为y 2x24x, x ( , <6) (<16, ) o。
高考数学轨迹方程的求解知识点总结

高考数学2021轨迹方程的求解知识点总结高考复习开始,查字典数学网为了帮助考生们掌握最新资讯,特分享轨迹方程的求解知识点,供大家阅读!符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹. 轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条件的动点轨迹方程。
高考数学轨迹方程的求解相关知识点

高考数学轨迹方程的求解相关知识点数学轨迹方程的求解是高考数学试卷中重要的一部分,下面是编辑老师整理的轨迹方程的求解方法,希望对您提高学习效率有所帮助.符合一定条件的动点所形成的图形,或者说,符合一定条件的点的全体所组成的集合,叫做满足该条件的点的轨迹. 轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也就是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】就是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的基本步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一般步骤①建系建立适当的坐标系;②设点设轨迹上的任一点P(x,y);③列式列出动点p所满足的关系式;④代换依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;⑤证明证明所求方程即为符合条件的动点轨迹方程。
高考数学辅导:轨迹方程的求解

高考数学辅导:轨迹方程的求解轨迹,包含两个方面的问题:凡在轨迹上的点都符合给定的条件,这叫做轨迹的纯粹性(也叫做必要性);凡不在轨迹上的点都不符合给定的条件,也确实是符合给定条件的点必在轨迹上,这叫做轨迹的完备性(也叫做充分性).【轨迹方程】确实是与几何轨迹对应的代数描述。
一、求动点的轨迹方程的差不多步骤⒈建立适当的坐标系,设出动点M的坐标;⒉写出点M的集合;⒊列出方程=0;⒋化简方程为最简形式;⒌检验。
二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。
⒈直译法:直截了当将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。
⒉定义法:假如能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。
⒊相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。
⒋参数法:当动点坐标x、y之间的直截了当关系难以找到时,往往先查找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。
⒌交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。
*直译法:求动点轨迹方程的一样步骤①建系——建立适当的坐标系;②设点——设轨迹上的任一点P(x,y);③列式——列出动点p所满足的关系式;④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简;宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。
至元明清之县学一律循之不变。
明朝入选翰林院的进士之师称“教习”。
到清末,学堂兴起,各科教师仍沿用“教习”一称。
事实上“教谕”在明清时还有学官一意,即主管县一级的教育生员。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
秋风清,秋月明,落叶聚还散,寒鸦栖复惊。
难点22 轨迹方程的求法求曲线的轨迹方程是解析几何的两个基本问题之一.求符合某种条件的动点的轨迹方程,其实质就是利用题设中的几何条件,用“坐标化”将其转化为寻求变量间的关系.这类问题除了考查学生对圆锥曲线的定义,性质等基础知识的掌握,还充分考查了各种数学思想方法及一定的推理能力和运算能力,因此这类问题成为高考命题的热点,也是同学们的一大难点.●难点磁场(★★★★)已知A 、B 为两定点,动点M 到A 与到B 的距离比为常数λ,求点M 的轨迹方程,并注明轨迹是什么曲线.●案例探究[例1]如图所示,已知P (4,0)是圆x 2+y 2=36内的一点,A 、B 是圆上两动点,且满足∠APB =90°,求矩形APBQ 的顶点Q 的轨迹方程.命题意图:本题主要考查利用“相关点代入法”求曲线的轨迹方程,属★★★★★级题目.知识依托:利用平面几何的基本知识和两点间的距离公式建立线段AB 中点的轨迹方程.错解分析:欲求Q 的轨迹方程,应先求R 的轨迹方程,若学生思考不深刻,发现不了问题的实质,很难解决此题.技巧与方法:对某些较复杂的探求轨迹方程的问题,可先确定一个较易于求得的点的轨迹方程,再以此点作为主动点,所求的轨迹上的点为相关点,求得轨迹方程.解:设AB 的中点为R ,坐标为(x ,y ),则在Rt △ABP 中,|AR |=|PR |. 又因为R 是弦AB 的中点,依垂径定理:在Rt △OAR 中,|AR |2=|AO |2-|OR |2=36-(x 2+y 2) 又|AR |=|PR |=22)4(y x +-所以有(x -4)2+y 2=36-(x 2+y 2),即x 2+y 2-4x -10=0因此点R 在一个圆上,而当R 在此圆上运动时,Q 点即在所求的轨迹上运动. 设Q (x ,y ),R (x 1,y 1),因为R 是PQ 的中点,所以x 1=20,241+=+y y x ,代入方程x 2+y 2-4x -10=0,得244)2()24(22+⋅-++x y x -10=0整理得:x 2+y 2=56,这就是所求的轨迹方程.[例2]设点A 和B 为抛物线 y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线.(2000年北京、安徽春招)命题意图:本题主要考查“参数法”求曲线的轨迹方程,属★★★★★级题目.知识依托:直线与抛物线的位置关系.错解分析:当设A 、B 两点的坐标分别为(x 1,y 1),(x 2,y 2)时,注意对“x 1=x 2”的讨论.技巧与方法:将动点的坐标x 、y 用其他相关的量表示出来,然后再消掉这些量,从而就建立了关于x 、y 的关系.解法一:设A (x 1,y 1),B (x 2,y 2),M (x ,y )依题意,有⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧--=---=--⋅-=⋅==112121212122112221211144x x y y x x y y x x yy x y x y x y px y px y ①-②得(y 1-y 2)(y 1+y 2)=4p (x 1-x 2) 若x 1≠x 2,则有2121214y y p x x y y +=-- ⑥①³②,得y 12²y 22=16p 2x 1x 2③代入上式有y 1y 2=-16p 2 ⑦ ⑥代入④,得yx y y p -=+214⑧⑥代入⑤,得py x y y x x y y y y p 442111121--=--=+所以211214)(44y px y y p y y p --=+即4px -y 12=y (y 1+y 2)-y 12-y 1y 2⑦、⑧代入上式,得x 2+y 2-4px =0(x ≠0) 当x 1=x 2时,AB ⊥x 轴,易得M (4p ,0)仍满足方程.故点M 的轨迹方程为x 2+y 2-4px =0(x ≠0)它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.解法二:设M (x ,y ),直线AB 的方程为y =kx +b 由OM ⊥AB ,得k =-yx由y 2=4px 及y =kx +b ,消去y ,得k 2x 2+(2kb -4p )x +b 2=0① ② ③ ④ ⑤所以x 1x 2=22kb ,消x ,得ky 2-4py +4pb =0 所以y 1y 2=kpb 4,由OA ⊥OB ,得y 1y 2=-x 1x 2所以kpk 4=-22kb ,b =-4kp故y =kx +b =k (x -4p ),用k =-yx 代入,得x 2+y 2-4px =0(x ≠0)故动点M 的轨迹方程为x 2+y 2-4px =0(x ≠0),它表示以(2p ,0)为圆心,以2p 为半径的圆,去掉坐标原点.[例3]某检验员通常用一个直径为2 cm 和一个直径为1 cm 的标准圆柱,检测一个直径为3 cm 的圆柱,为保证质量,有人建议再插入两个合适的同号标准圆柱,问这两个标准圆柱的直径为多少?命题意图:本题考查“定义法”求曲线的轨迹方程,及将实际问题转化为数学问题的能力,属★★★★★级题目.知识依托:圆锥曲线的定义,求两曲线的交点.错解分析:正确理解题意及正确地将此实际问题转化为数学问题是顺利解答此题的关键.技巧与方法:研究所给圆柱的截面,建立恰当的坐标系,找到动圆圆心的轨迹方程.解:设直径为3,2,1的三圆圆心分别为O 、A 、B ,问题转化为求两等圆P 、Q ,使它们与⊙O 相内切,与⊙A 、⊙B 相外切.建立如图所示的坐标系,并设⊙P 的半径为r ,则|PA |+|PO |=1+r +1.5-r =2.5∴点P 在以A 、O 为焦点,长轴长2.5的椭圆上,其方程为3225)41(1622y x ++=1 ①同理P 也在以O 、B 为焦点,长轴长为2的椭圆上,其方程为 (x -21)2+34y 2=1 ②由①、②可解得)1412,149(),1412,149(-Q P ,∴r =73)1412()149(2322=+-故所求圆柱的直径为76 cm.●锦囊妙计求曲线的轨迹方程常采用的方法有直接法、定义法、代入法、参数法.(1)直接法 直接法是将动点满足的几何条件或者等量关系,直接坐标化,列出等式化简即得动点轨迹方程.(2)定义法 若动点轨迹的条件符合某一基本轨迹的定义(如椭圆、双曲线、抛物线、圆等),可用定义直接探求.(3)相关点法 根据相关点所满足的方程,通过转换而求动点的轨迹方程.(4)参数法 若动点的坐标(x ,y )中的x ,y 分别随另一变量的变化而变化,我们可以以这个变量为参数,建立轨迹的参数方程.求轨迹方程,一定要注意轨迹的纯粹性和完备性.要注意区别“轨迹”与“轨迹方程”是两个不同的概念.●歼灭难点训练 一、选择题1.(★★★★)已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是( )A.圆B.椭圆C.双曲线的一支D.抛物线2.(★★★★)设A 1、A 2是椭圆4922yx+=1的长轴两个端点,P 1、P 2是垂直于A 1A 2的弦的端点,则直线A 1P 1与A 2P 2交点的轨迹方程为( )A.14922=+y x B.14922=+x y C.14922=-yxD.14922=-xy二、填空题3.(★★★★)△ABC 中,A 为动点,B 、C 为定点,B (-2a ,0),C (2a ,0),且满足条件sin C-sin B =21sin A ,则动点A 的轨迹方程为_________.4.(★★★★)高为5 m 和3 m 的两根旗杆竖在水平地面上,且相距10 m ,如果把两旗杆底部的坐标分别确定为A (-5,0)、B (5,0),则地面观测两旗杆顶端仰角相等的点的轨迹方程是_________.三、解答题5.(★★★★)已知A 、B 、C 是直线l 上的三点,且|AB |=|BC |=6,⊙O ′切直线l 于点A ,又过B 、C 作⊙O ′异于l 的两切线,设这两切线交于点P ,求点P 的轨迹方程.6.(★★★★)双曲线2222by ax -=1的实轴为A 1A 2,点P 是双曲线上的一个动点,引A 1Q ⊥A 1P ,A 2Q ⊥A 2P ,A 1Q 与A 2Q 的交点为Q ,求Q 点的轨迹方程.7.(★★★★★)已知双曲线2222ny mx -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q .(1)求直线A 1P 与A 2Q 交点M 的轨迹方程;(2)当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.8.(★★★★★)已知椭圆2222by ax +=1(a >b >0),点P 为其上一点,F 1、F 2为椭圆的焦点,∠F 1PF 2的外角平分线为l ,点F 2关于l 的对称点为Q ,F 2Q 交l 于点R .(1)当P 点在椭圆上运动时,求R 形成的轨迹方程;(2)设点R 形成的曲线为C ,直线l :y =k (x +2a )与曲线C 相交于A 、B 两点,当△AOB 的面积取得最大值时,求k 的值.参考答案难点磁场解:建立坐标系如图所示, 设|AB |=2a ,则A (-a ,0),B (a ,0). 设M (x ,y )是轨迹上任意一点. 则由题设,得||||MB MA =λ,坐标代入,得2222)()(ya x y a x +-++=λ,化简得(1-λ2)x 2+(1-λ2)y 2+2a (1+λ2)x +(1-λ2)a 2=0(1)当λ=1时,即|M A|=|M B|时,点M 的轨迹方程是x =0,点M 的轨迹是直线(y 轴).(2)当λ≠1时,点M 的轨迹方程是x 2+y 2+221)1(2λ-λ+a x +a 2=0.点M 的轨迹是以(-221)1(λ-λ+a ,0)为圆心,|1|22λ-λa 为半径的圆.歼灭难点训练一、1.解析:∵|PF 1|+|PF 2|=2a ,|PQ |=|PF 2|, ∴|PF 1|+|PF 2|=|PF 1|+|PQ |=2a ,即|F 1Q |=2a ,∴动点Q 到定点F 1的距离等于定长2a ,故动点Q 的轨迹是圆. 答案:A2.解析:设交点P (x ,y ),A 1(-3,0),A 2(3,0),P 1(x 0,y 0),P 2(x 0,-y 0) ∵A 1、P 1、P 共线,∴30+=--x y x x y y∵A 2、P 2、P 共线,∴30-=-+x y x x y y解得x 0=149,149,3,92220200=-=-=yxy x xy y x即代入得答案:C二、3.解析:由sin C -sin B =21sin A ,得c -b =21a ,∴应为双曲线一支,且实轴长为2a ,故方程为)4(1316162222a x ay ax >=-.答案:)4(1316162222a x ay ax >=-4.解析:设P (x ,y ),依题意有2222)5(3)5(5yx yx +-=++,化简得P 点轨迹方程为4x 2+4y 2-85x +100=0.答案:4x 2+4y 2-85x +100=0三、5.解:设过B 、C 异于l 的两切线分别切⊙O ′于D 、E 两点,两切线交于点P .由切线的性质知:|BA |=|BD |,|PD |=|PE |,|CA |=|CE |,故|PB |+|PC |=|BD |+|PD |+|PC |=|BA |+|PE |+|PC | =|BA |+|CE |=|AB |+|CA |=6+12=18>6=|BC |,故由椭圆定义知,点P 的轨迹是以B 、C 为两焦点的椭圆,以l 所在的直线为x 轴,以BC 的中点为原点,建立坐标系,可求得动点P 的轨迹方程为728122yx+=1(y ≠0)6.解:设P (x 0,y 0)(x ≠±a ),Q (x ,y ). ∵A 1(-a ,0),A 2(a ,0).由条件⎪⎩⎪⎨⎧-=±≠-=⎪⎪⎩⎪⎪⎨⎧-=-⋅--=+⋅+y ax y a x x x a x y a xy a x y ax y220000000)( 11得 而点P (x 0,y 0)在双曲线上,∴b 2x 02-a 2y 02=a 2b 2. 即b 2(-x 2)-a 2(yax 22-)2=a 2b 2化简得Q 点的轨迹方程为:a 2x 2-b 2y 2=a 4(x ≠±a ).7.解:(1)设P 点的坐标为(x 1,y 1),则Q 点坐标为(x 1,-y 1),又有A 1(-m ,0),A 2(m ,0), 则A 1P 的方程为:y =)(11m x m x y ++①A 2Q 的方程为:y =-)(11m x mx y -- ②①³②得:y 2=-)(2222121m x mx y --③又因点P 在双曲线上,故).(,12212221221221m x mn y ny mx -==-即代入③并整理得2222ny mx +=1.此即为M 的轨迹方程.(2)当m ≠n 时,M 的轨迹方程是椭圆.(ⅰ)当m >n 时,焦点坐标为(±22n m -,0),准线方程为x =±222nmm-,离心率e =mn m 22-;(ⅱ)当m <n 时,焦点坐标为(0,±22n m -),准线方程为y =±222mn n-,离心率e =nm n 22-.8.解:(1)∵点F 2关于l 的对称点为Q ,连接PQ , ∴∠F 2PR =∠QPR ,|F 2R |=|QR |,|PQ |=|PF 2|又因为l 为∠F 1PF 2外角的平分线,故点F 1、P 、Q 在同一直线上,设存在R (x 0,y 0),Q (x 1,y 1),F 1(-c ,0),F 2(c ,0).|F 1Q |=|F 2P |+|PQ |=|F 1P |+|PF 2|=2a ,则(x 1+c )2+y 12=(2a )2.又⎪⎪⎩⎪⎪⎨⎧=+=221010y y c x x得x 1=2x 0-c ,y 1=2y 0.∴(2x 0)2+(2y 0)2=(2a )2,∴x 02+y 02=a 2. 故R 的轨迹方程为:x 2+y 2=a 2(y ≠0) (2)如右图,∵S △AOB =21|OA |²|OB |²sin AOB =22asin AOB当∠AOB =90°时,S △AOB 最大值为21a 2.此时弦心距|OC |=21|2|kak +.在Rt △AOC 中,∠AOC =45°,.33,2245cos 1|2|||||2±=∴=︒=+=∴k ka ak OA OC。