带电粒子在复合场中的运动

合集下载

0906带电粒子在复合场中运动2

0906带电粒子在复合场中运动2

0906带电粒子在复合场中运动2一、复合场复合场是指、和重力场并存,或其中某两场并存,或分区域存在.二、带电粒子在复合场中的运动分类1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动.2.匀速圆周运动当带电粒子所受的重力与力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受的合外力的大小和方向均变化,且与初速度方向不在同一条直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.三、带电粒子在复合场中运动的应用实例速度选择器(如图所示)(1)平行板中电场强度E和磁感应强度B互相这种装置能把具有一定速度的粒子选择出来,所以叫做速度选择器.(2)带电粒子能够沿直线匀速通过速度选择器的条件是:qE=qvB,即v=.【针对训练】1.在两平行金属板间,有如图所示的互相正交的匀强电场和匀强磁场.α粒子以速度v0从两板的正中央垂直于电场方向和磁场方向射入时,恰好能沿直线匀速通过.供下列各小题选择的答案有A.不偏转B.向上偏转C.向下偏转D.向纸内或纸外偏转(1)若质子以速度v0从两板的正中央垂直于电场方向和磁场方向射入时,质子将________.(2)若电子以速度v0从两板的正中央垂直于电场方向和磁场方向射入时,电子将________.(3)若质子以大于v0的速度,沿垂直于匀强电场和匀强磁场的方向从两板正中央射入,质子将________.(4)若增大匀强磁场的磁感应强度,其他条件不变,电子以速度v0沿垂直于电场和磁场的方向,从两极正中央射入,电子将________.2.磁流体发电机(1)主要构造如图所示.(2)原理:等离子体(即高温下电离的气体,含有大量带正电和带负电的粒子,而从整体来说呈电中性)喷入磁场,正、负粒子在洛伦兹力的作用下发生上下偏转而聚集到A、B板上,产生电势差,设A、B平行金属板的面积为S,相距为L,等离子体的电阻率为ρ,喷入气体速度为v,板间磁场的磁感强度为B,板外电阻为R,当等离子体匀速通过A、B板间时,A、B板上聚集的电荷最多,板间电势差最大,相当于电源电动势E,此时离子受力平衡:E场q=qvB,E场=vB,电动势E=E场L=BLv,电源内电阻r=,所以R中电流为。

高中物理-第一篇 专题三 微专题4 带电粒子在复合场中的运动

高中物理-第一篇 专题三 微专题4 带电粒子在复合场中的运动
1234
(2)电场的电场强度大小E以及磁场的磁感应强度大小B;
答案
mv2 6qL
2 3mv 3qL
1234
对粒子从Q点运动到P点的过程,根据动能
定理有 -qEL=12mv2-12mv02 解得 E=6mqvL2
设粒子从Q点运动到P点的时间为t1,有
0+v0sin 2
θ·t1=L
1234
解得
t1=2
3mv02 3qE

竖直方向的位移 y=0+2 vyt=m6qvE02

则粒子发射位置到P点的距离为
d=
x2+y2=
13mv02 6qE

(2)求磁感应强度大小的取值范围; 答案 3-3q3lmv0<B<2mqlv0
设粒子在磁场中运动的速度为 v,结合题意及几何
关系可知,v=sinv60 0°=233v0
垂直于纸面向外的匀强磁场.OM上方存在电场强度大小为E的匀强电场,
方向竖直向上.在OM上距离O点3L处有一点A,在电场中距离A为d的位置
由静止释放一个质量为m、电荷量为q的带负电的粒子,经电场加速后该
粒子以一定速度从A点射入磁场后,第一次恰好不从ON边界射出.不计粒
子的重力.求:
(1)粒子运动到A点时的速率v0;
d.N边界右侧区域Ⅱ中存在磁感应强度大小为B、方向垂直于纸面向里的匀
强磁场.M边界左侧区域Ⅲ内,存在垂直于纸面向外的匀强磁场.边界线M
上的O点处有一离子源,水平向右发射同种正离子.已知初速度为v0的离子 第一次回到边界M时恰好到达O点,电场及两磁场区域
足够大,不考虑离子的重力和离子间的相互作用.
(1)求离子的比荷;
迹如图乙所示,设此时的轨迹圆圆心为O2,半

带电粒子在复合场中的运动问题

带电粒子在复合场中的运动问题

【正确解答】 粒子在磁场中的运动为匀速圆周运动,在电场中的运动为匀变速 直线运动.画出粒子运动的过程草图10-19.根据这张图可知粒子在 磁场中运动半个周期后第一次通过x轴进入电场,做匀减速运动至速 度为零,再反方向做匀加速直线运动,以原来的速度大小反方向进入 磁场.这就是第二次进入磁场,接着粒子在磁场中做圆周运动,半个 周期后第三次通过x轴.
2,带电粒子在复合场中的运动情况: ,带电粒子在复合场中的运动情况: 1)直线运动: )直线运动: 常见的情况有: 常见的情况有: 洛伦兹力为零( 平行), ①洛伦兹力为零(即V与B平行),重力与电场力平 与 平行),重力与电场力平 衡时,做匀速直线运动; 衡时,做匀速直线运动;合外力恒定时做匀变速直 线运动. 线运动. ②洛伦兹力与V垂直,且与重力和电场力的合力 洛伦兹力与 垂直, 垂直 或其中的一个力)平衡,做匀速直线运动. (或其中的一个力)平衡,做匀速直线运动. 2)圆周运动: )圆周运动: 当带电粒子所受到合外力充当向心力时, 当带电粒子所受到合外力充当向心力时,带电粒子 做匀速圆周运动. 做匀速圆周运动.此时一般情况下是重力恰好与电 场力平衡,洛伦兹力充当向心力. 场力平衡,洛伦兹力充当向心力. 3)一般的曲线运动: )一般的曲线运动: 当带电粒子所受的合力在大小,方向均不断变化时, 当带电粒子所受的合力在大小,方向均不断变化时, 则粒子将做非匀变速曲线运动. 则粒子将做非匀变速曲线运动.
解:不妨假设设小球带正电(带负电时电场力和洛伦兹力 都将反向,结论相同).刚释放时小球受重力,电场力, 弹力,摩擦力作用,向下加速;开始运动后又受到洛伦兹 力作用,弹力,摩擦力开始减小;当洛伦兹力等于电场力 时加速度最大为g.随着v的增大,洛伦兹力大于电场力, 弹力方向变为向右,且不断增大,摩擦力随着增大,加速 度减小,当摩擦力和重力大小相等时,小球速度达到最大.

高中物理人教版第十章-磁场 第七课时 带电粒子(质点)在复合场中的运动

高中物理人教版第十章-磁场 第七课时  带电粒子(质点)在复合场中的运动

a F合 qvB 2g
mm
y 1 at2,x vt,tan y
2
x
解得:t 3v,x 3v2
g
g
x
B o A θ F电
mg
B z
y
则A、B之间的距离为:L x 2 3v2 cos 60 g
电场力做功:W=EqL=6mv2
例4:如图所示,虚线上方有场强为E1=6×104 N/C的匀强 电场,方向竖直向上,虚线下方有场强为E2的匀强电场 (电场线用实线表示),另外在虚线上、下方均有匀强磁 场,磁感应强度相等,方向垂直纸面向里.ab是一根长为 L=0.3 m的绝缘细杆,沿E1电场线方向放置在虚线上方的 电磁场中,b端在虚线上.现将套在ab杆上的电荷量为q= -5×10−8 C的带电小环从a端由静止开始释放后,小环先 做加速运动后做匀速运动到达b端,小环与杆间的动摩擦 因数为μ=0.25,不计小环的重力,小环脱离ab杆后在虚线 下方仍沿原方向做匀速直线运动.
(1)求虚线下方的电场强度E2方向以及a 大E小1 ;
Bb
(2)若小环到达b点时立即撤去虚线下方的磁场,其他
条件不变,测得小环进入虚线下方区域后运动轨迹上一点
P到b点的水平距离为 L ,竖直距离为 L ,则小环从a
2
3
到b的运动过程中克服摩擦力做的功为多少?
解析:(1)小环脱离ab杆后
a E1
向下方向做匀速直线运动,受力
U qvB E电q d q
U
F电
F洛
v
v
即:E U Bvd
F洛
F电
3.电磁流量计
如图所示为原理图。一圆形导管直径为d,用非
磁性材料制成,其中有可以导电的液体向右流动。导

带电粒子在复合场中的运动

带电粒子在复合场中的运动

带电粒子在复合场中的运动一、知识梳理1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现.2.带电粒子在复合场中的运动形式当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止。

当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动. 当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动。

当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理。

3. 题型分析:带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零做初速度为零的匀加速直线运动保持静止初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点受恒力作用,做匀变速运动洛伦兹力不做功,动能不变“电偏转”和“磁偏转"的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力 F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力运动规律 匀速圆周运动r =mv 0Bq,T =错误!类平抛运动v x =v 0,v y =Eqm tx =v 0t ,y =错误!t 2运动时间 t =错误!T =错误!t =错误!,具有等时性动能 不变变化4。

常见模型(1)从电场进入磁场电场中:加速直线运动⇓磁场中:匀速圆周运动电场中:类平抛运动⇓磁场中:匀速圆周运动(2)从磁场进入电场磁场中:匀速圆周运动⇓错误!电场中:匀变速直线运动磁场中:匀速圆周运动⇓错误!电场中:类平抛运动二、针对练习1.在某一空间同时存在相互正交的匀强电场和匀强磁场,匀强电场的方向竖直向上,磁场方向如图。

带电粒子在复合场中的运动

带电粒子在复合场中的运动

带电粒子在复合场中的运动基础知识归纳1.复合场复合场是指 电场 、 磁场 和 重力场 并存,或其中两场并存,或分区域存在,分析方法和力学问题的分析方法基本相同,不同之处是多了电场力和磁场力,分析方法除了力学三大观点(动力学、动量、能量)外,还应注意:(1) 洛伦兹力 永不做功.(2) 重力 和 电场力 做功与路径 无关 ,只由初末位置决定.还有因洛伦兹力随速度而变化,洛伦兹力的变化导致粒子所受 合力 变化,从而加速度变化,使粒子做 变加速 运动.2.带电粒子在复合场中无约束情况下的运动性质(1)当带电粒子所受合外力为零时,将 做匀速直线运动 或处于 静止 ,合外力恒定且与初速度同向时做匀变速直线运动,常见情况有:①洛伦兹力为零(v 与B 平行),重力与电场力平衡,做匀速直线运动,或重力与电场力合力恒定,做匀变速直线运动.②洛伦兹力与速度垂直,且与重力和电场力的合力平衡,做匀速直线运动.(2)当带电粒子所受合外力充当向心力,带电粒子做 匀速圆周运动 时,由于通常情况下,重力和电场力为恒力,故不能充当向心力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力充当向心力.(3)当带电粒子所受合外力的大小、方向均不断变化时,粒子将做非匀变速的 曲线运动 .3.带电粒子在复合场中有约束情况下的运动带电粒子所受约束,通常有面、杆、绳、圆轨道等,常见的运动形式有 直线运动 和圆周运动 ,此类问题应注意分析洛伦兹力所起的作用.4.带电粒子在交变场中的运动带电粒子在不同场中的运动性质可能不同,可分别进行讨论.粒子在不同场中的运动的联系点是速度,因为速度不能突变,在前一个场中运动的末速度,就是后一个场中运动的初速度.5.带电粒子在复合场中运动的实际应用(1)质谱仪①用途:质谱仪是一种测量带电粒子质量和分离同位素的仪器.②原理:如图所示,离子源S 产生质量为m ,电荷量为q 的正离子(重力不计),离子出来时速度很小(可忽略不计),经过电压为U 的电场加速后进入磁感应强度为B 的匀强磁场中做匀速圆周运动,经过半个周期而达到记录它的照相底片P 上,测得它在P 上的位置到入口处的距离为L ,则qU =21mv 2-0;q B v =m r v 2;L =2r 联立求解得m =UL qB 822,因此,只要知道q 、B 、L 与U ,就可计算出带电粒子的质量m ,若q 也未知,则228L B U m q 又因m ∝L 2,不同质量的同位素从不同处可得到分离,故质谱仪又是分离同位素的重要仪器.(2)回旋加速器①组成:两个D 形盒、大型电磁铁、高频振荡交变电压,D 型盒间可形成电压U .②作用:加速微观带电粒子.③原理:a .电场加速qU =ΔE kb .磁场约束偏转qBv =m rv 2,r =qB mv ∝v c .加速条件,高频电源的周期与带电粒子在D 形盒中运动的周期相同,即T 电场=T 回旋=qBm π2 带电粒子在D 形盒内沿螺旋线轨道逐渐趋于盒的边缘,达到预期的速率后,用特殊装置把它们引出.④要点深化a .将带电粒子在两盒狭缝之间的运动首尾相连起来可等效为一个初速度为零的匀加速直线运动.b .带电粒子每经电场加速一次,回旋半径就增大一次,所以各回旋半径之比为1∶2∶3∶…c .对于同一回旋加速器,其粒子回旋的最大半径是相同的.d .若已知最大能量为E km ,则回旋次数n =qUE 2k m e .最大动能:E km =mr B q 22m 22 f .粒子在回旋加速器内的运动时间:t =UBr 2π2m (3)速度选择器①原理:如图所示,由于所受重力可忽略不计,运动方向相同而速率不同的正粒子组成的粒子束射入相互正交的匀强电场和匀强磁场所组成的场区中,已知电场强度为B ,方向垂直于纸面向里,若粒子运动轨迹不发生偏转(重力不计),必须满足平衡条件:qBv =qE ,故v =BE ,这样就把满足v =BE 的粒子从速度选择器中选择出来了. ②特点:a .速度选择器只选择速度(大小、方向)而不选择粒子的质量和电荷量,如上图中若从右侧入射则不能穿过场区.b .速度选择器B 、E 、v 三个物理量的大小、方向互相约束,以保证粒子受到的电场力和洛伦兹力等大、反向,如上图中只改变磁场B 的方向,粒子将向下偏转.c .v ′>v =B E 时,则qBv ′>qE ,粒子向上偏转;当v ′<v =BE 时,qBv ′<qE ,粒子向下偏转. ③要点深化a .从力的角度看,电场力和洛伦兹力平衡qE =qvB ;b .从速度角度看,v =BE ; c .从功能角度看,洛伦兹力永不做功.(4)电磁流量计①如图所示,一圆形导管直径为d ,用非磁性材料制成,其中有可以导电的液体流过导管.②原理:导电液体中的自由电荷(正、负离子)在洛伦兹力作用下横向偏转,a 、b 间出现电势差,形成电场.当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定.由Bqv =Eq =dU q ,可得v =Bd U 液体流量Q =Sv =4π2d ·Bd U =BdU 4π (5)霍尔效应如图所示,高为h 、宽为d 的导体置于匀强磁场B 中,当电流通过导体时,在导体板的上表面A 和下表面A ′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.设霍尔导体中自由电荷(载流子)是自由电子.图中电流方向向右,则电子受洛伦兹力 向上 ,在上表面A 积聚电子,则qvB =qE ,E =Bv ,电势差U =Eh =Bhv .又I =nqSv导体的横截面积S =hd得v =nqhdI 所以U =Bhv =dBI k nqd BI k=nq1,称霍尔系数.重点难点突破一、解决复合场类问题的基本思路1.正确的受力分析.除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析.2.正确分析物体的运动状态.找出物体的速度、位置及其变化特点,分析运动过程,如果出现临界状态,要分析临界条件.3.恰当灵活地运用动力学三大方法解决问题.(1)用动力学观点分析,包括牛顿运动定律与运动学公式.(2)用动量观点分析,包括动量定理与动量守恒定律.(3)用能量观点分析,包括动能定理和机械能(或能量)守恒定律.针对不同的问题灵活地选用,但必须弄清各种规律的成立条件与适用范围.二、复合场类问题中重力考虑与否分三种情况1.对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应考虑其重力.2.在题目中有明确交待是否要考虑重力的,这种情况比较正规,也比较简单.3.直接看不出是否要考虑重力的,在进行受力分析与运动分析时,要由分析结果,先进行定性确定是否要考虑重力.典例精析1.带电粒子在复合场中做直线运动的处理方法【例1】如图所示,足够长的光滑绝缘斜面与水平面间的夹角为α(sin α=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E =50 V/m ,方向水平向左,磁场方向垂直纸面向外.一个电荷量q =+4.0×10-2 C 、质量m =0.40 kg 的光滑小球,以初速度v 0=20 m/s 从斜面底端向上滑,然后又下滑,共经过3 s 脱离斜面.求磁场的磁感应强度(g 取10 m/s 2).【解析】小球沿斜面向上运动的过程中受力分析如图所示.由牛顿第二定律,得qE cos α+mg sin α=ma 1,故a 1=g sin α+mqE α cos =10×0.6 m/s 2+40.08.050100.42⨯⨯⨯- m/s 2=10 m/s 2,向上运动时间t 1=100a v --=2 s 小球在下滑过程中的受力分析如图所示.小球在离开斜面前做匀加速直线运动,a 2=10 m/s 2运动时间t 2=t -t 1=1 s脱离斜面时的速度v =a 2t 2=10 m/s在垂直于斜面方向上有:qvB +qE sin α=mg cos α故B =T 106.050-T 10100.48.01040.0 sin cos 2⨯⨯⨯⨯⨯=--v E qv mg αα=5 T 【思维提升】(1)知道洛伦兹力是变力,其大小随速度变化而变化,其方向随运动方向的反向而反向.能从运动过程及受力分析入手,分析可能存在的最大速度、最大加速度、最大位移等.(2)明确小球脱离斜面的条件是F N =0.【拓展1】如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m ,带电荷量为q ,小球可在棒上滑动,现将此棒竖直放入沿水平方向且互相垂直的匀强磁场和匀强电场中.设小球电荷量不变,小球由静止下滑的过程中( BD )A.小球加速度一直增大B.小球速度一直增大,直到最后匀速C.杆对小球的弹力一直减小D.小球所受洛伦兹力一直增大,直到最后不变【解析】小球由静止加速下滑,f 洛=Bqv 在不断增大,开始一段,如图(a):f 洛<F 电,水平方向有f 洛+F N =F 电,加速度a =mf mg -,其中f =μF N ,随着速度的增大,f 洛增大,F N 减小,加速度也增大,当f 洛=F 电时,a 达到最大;以后如图(b):f 洛>F 电,水平方向有f 洛=F 电+F N ,随着速度的增大,F N 也增大,f 也增大,a =mf mg -减小,当f =mg 时,a =0,此后做匀速运动,故a 先增大后减小,A 错,B 对,弹力先减小后增大,C 错,由f 洛=Bqv 知D 对.2.灵活运用动力学方法解决带电粒子在复合场中的运动问题【例2】如图所示,水平放置的M 、N 两金属板之间,有水平向里的匀强磁场,磁感应强度B =0.5 T.质量为m 1=9.995×10-7 kg 、电荷量为q =-1.0×10-8 C 的带电微粒,静止在N 板附近.在M 、N 两板间突然加上电压(M 板电势高于N 板电势)时,微粒开始运动,经一段时间后,该微粒水平匀速地碰撞原来静止的质量为m 2的中性微粒,并粘合在一起,然后共同沿一段圆弧做匀速圆周运动,最终落在N 板上.若两板间的电场强度E =1.0×103 V/m ,求:(1)两微粒碰撞前,质量为m 1的微粒的速度大小;(2)被碰撞微粒的质量m 2;(3)两微粒粘合后沿圆弧运动的轨道半径.【解析】(1)碰撞前,质量为m 1的微粒已沿水平方向做匀速运动,根据平衡条件有m 1g +qvB =qE解得碰撞前质量m 1的微粒的速度大小为v =5.0100.11010995.9100.1100.187381⨯⨯⨯⨯-⨯⨯⨯=----qB g m qE m/s =1 m/s (2)由于两微粒碰撞后一起做匀速圆周运动,说明两微粒所受的电场力与它们的重力相平衡,洛伦兹力提供做匀速圆周运动的向心力,故有(m 1+m 2)g =qE解得m 2=g qE 1m -=)10995.910100.1100.1(738--⨯-⨯⨯⨯ kg =5×10-10 kg (3)设两微粒一起做匀速圆周运动的速度大小为v ′,轨道半径为R ,根据牛顿第二定律有qv ′B =(m 1+m 2)Rv 2' 研究两微粒的碰撞过程,根据动量守恒定律有m 1v =(m 1+m 2)v ′以上两式联立解得R =5.0100.1110995.9)(87121⨯⨯⨯⨯=='+--qB v m qB v m m m≈200 m 【思维提升】(1)全面正确地进行受力分析和运动状态分析,f洛随速度的变化而变化导致运动状态发生新的变化.(2)若mg 、f 洛、F 电三力合力为零,粒子做匀速直线运动.(3)若F 电与重力平衡,则f 洛提供向心力,粒子做匀速圆周运动.(4)根据受力特点与运动特点,选择牛顿第二定律、动量定理、动能定理及动量守恒定律列方程求解.【拓展2】如图所示,在相互垂直的匀强磁场和匀强电场中,有一倾角为θ的足够长的光滑绝缘斜面.磁感应强度为B ,方向水平向外;电场强度为E ,方向竖直向上.有一质量为m 、带电荷量为+q 的小滑块静止在斜面顶端时对斜面的正压力恰好为零.(1)如果迅速把电场方向转为竖直向下,求小滑块能在斜面上连续滑行的最远距离L 和所用时间t ;(2)如果在距A 端L /4处的C 点放入一个质量与滑块相同但不带电的小物体,当滑块从A点静止下滑到C 点时两物体相碰并黏在一起.求此黏合体在斜面上还能再滑行多长时间和距离?【解析】(1)由题意知qE =mg场强转为竖直向下时,设滑块要离开斜面时的速度为v ,由动能定理有(mg +qE )L sin θ=221mv ,即2mgL sin θ=221mv 当滑块刚要离开斜面时由平衡条件有qvB =(mg +qE )cos θ,即v =qBmg θ cos 2 由以上两式解得L =θθ sin cos 2222B q g m 根据动量定理有t =θθ cot sin 2qBm mg mv = (2)两物体先后运动,设在C 点处碰撞前滑块的速度为v C ,则2mg ·4L sin θ=21mv 2 设碰后两物体速度为u ,碰撞前后由动量守恒有mv C =2mu设黏合体将要离开斜面时的速度为v ′,由平衡条件有qv ′B =(2mg +qE )cos θ=3mg cos θ由动能定理知,碰后两物体共同下滑的过程中有3mg sin θ·s =21·2mv ′2-21·2mu 2 联立以上几式解得s =12sin cos 32222L B q g m -θθ 将L 结果代入上式得s =θθ sin 12cos 352222B q g m 碰后两物体在斜面上还能滑行的时间可由动量定理求得t ′=qBm mg mu v m 35 sin 322=-'θcot θ【例3】在平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示.不计重力,求:(1)M 、N 两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r ;(3)粒子从M 点运动到P 点的总时间t .【解析】(1)设粒子过N 点时的速度为v ,有v v 0=cos θ ① v =2v 0 ②粒子从M 点运动到N 点的过程,有qU MN =2022121mv mv - ③ U MN =3mv 20/2q ④(2)粒子在磁场中以O ′为圆心做匀速圆周运动,半径为O ′N ,有qvB =rmv 2⑤ r =qBmv 02 ⑥ (3)由几何关系得ON =r sin θ⑦ 设粒子在电场中运动的时间为t 1,有ON =v 0t 1 ⑧ t 1=qB m 3 ⑨粒子在磁场中做匀速圆周运动的周期T =qB m π2 ⑩设粒子在磁场中运动的时间为t 2,有t 2=2ππθ-T ⑪ t 2=qB m 32π ⑫t =t 1+t 2=qBm 3π)233(+ 【思维提升】注重受力分析,尤其是运动过程分析以及圆心的确定,画好示意图,根据运动学规律及动能观点求解.【拓展3】如图所示,真空室内存在宽度为s =8 cm的匀强磁场区域,磁感应强度B =0.332 T ,磁场方向垂直于纸面向里.紧靠边界ab 放一点状α粒子放射源S ,可沿纸面向各个方向放射速率相同的α粒子.α粒子质量为m=6.64×10-27 kg ,电荷量为q =+3.2×10-19 C ,速率为v=3.2×106 m/s.磁场边界ab 、cd 足够长,cd 为厚度不计的金箔,金箔右侧cd 与MN 之间有一宽度为L =12.8 cm 的无场区域.MN 右侧为固定在O 点的电荷量为Q =-2.0×10-6 C 的点电荷形成的电场区域(点电荷左侧的电场分布以MN 为边界).不计α粒子的重力,静电力常量k =9.0×109 N·m 2/C 2,(取sin 37°=0.6,cos 37°=0.8)求:(1)金箔cd 被α粒子射中区域的长度y ;(2)打在金箔d 端离cd 中心最远的粒子沿直线穿出金箔,经过无场区进入电场就开始以O 点为圆心做匀速圆周运动,垂直打在放置于中心线上的荧光屏FH 上的E 点(未画出),计算OE 的长度;(3)计算此α粒子从金箔上穿出时损失的动能.【解析】(1)粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,有qvB =m Rv 2,得R =Bqmv =0.2 m如图所示,当α粒子运动的圆轨迹与cd 相切时,上端偏离O ′最远,由几何关系得O ′P =22)(s R R --=0.16 m 当α粒子沿Sb 方向射入时,下端偏离O ′最远,由几何关系得O ′Q =)(2s R R --=0.16 m故金箔cd 被α粒子射中区域的长度为y =O ′Q +O ′P =0.32 m(2)如上图所示,OE 即为α粒子绕O 点做圆周运动的半径r .α粒子在无场区域做匀速直线运动与MN 相交,下偏距离为y ′,则 tan 37°=43,y ′=L tan 37°=0.096 m 所以,圆周运动的半径为r =︒'+'37 cos Q O y =0.32 m (3)设α粒子穿出金箔时的速度为v ′,由牛顿第二定律有k r v m rQq 22'= α粒子从金箔上穿出时损失的动能为ΔE k =21mv 2-21mv ′2=2.5×10-14 J3.带电体在变力作用下的运动【例4】竖直的平行金属平板A 、B 相距为d ,板长为L ,板间的电压为U ,垂直于纸面向里、磁感应强度为B 的磁场只分布在两板之间,如图所示.带电荷量为+q 、质量为m 的油滴从正上方下落并在两板中央进入板内空间.已知刚进入时电场力大小等于磁场力大小,最后油滴从板的下端点离开,求油滴离开场区时速度的大小.【错解】由题设条件有Bqv =qE =qdU ,v =Bd U ;油滴离开场区时,水平方向有Bqv +qE =ma ,v 2x =2a ·mqU d 22= 竖直方向有v 2y =v 2+2gL 离开时的速度v ′=m qU dB U gL v v y x 2222222++=+ 【错因】洛伦兹力会随速度的改变而改变,对全程而言,带电体是在变力作用下的一个较为复杂的运动,对这样的运动不能用牛顿第二定律求解,只能用其他方法求解.【正解】由动能定理有mgL +qE 212122-'=v m d mv 2 由题设条件油滴进入磁场区域时有Bqv =qE ,E =U /d由此可以得到离开磁场区域时的速度v ′=m qU dB U gL ++2222 【思维提升】解题时应该注意物理过程和物理情景的把握,时刻注意情况的变化,然后结合物理过程中的受力特点和运动特点,利用适当的解题规律解决问题,遇到变力问题,特别要注意与能量有关规律的运用.【例5】回旋加速器是用来加速带电粒子的装置,如图所示。

带电粒子在复合场

带电粒子在复合场
荧光屏产生图像的显示器件,广泛应 用于电视、计算机显示等领域。
电视显像管主要由电子枪、偏转线圈和荧光屏等部分组成,通过电子枪 发射电子束,经过偏转线圈的控制,轰击荧光屏上的荧光物质,产生图
像。
电视显像管具有亮度高、色彩鲜艳、视角宽广等优点,但也存在体积较 大、重量较重等缺点,随着液晶显示器的普及,电视显像管的应用逐渐 减少。
带电粒子在电场中的加速与减速
加速
速度变化规律
当带电粒子在电场中受到的电场力方 向与运动方向相同或成锐角时,将做 加速运动。
带电粒子在电场中的速度变化规律与 牛顿第二定律相似,即加速度与合外 力成正比,与质量成反比。
减速
当带电粒子在电场中受到的电场力方 向与运动方向相反或成钝角时,将做 减速运动。
04 带电粒子在复合场中的特 殊运动
回旋加速器
回旋加速器是一种利用磁场和电场控制 带电粒子运动轨迹的装置,常用于高能
物理实验和核物理研究。
回旋加速器通过不断加速带电粒子,使 其能量逐渐增加,最终用于轰击静止靶 或反应堆中子源,以研究原子核的结构
和性质。
回旋加速器主要由真空室、磁极、高频 加速腔和控制系统等部分组成,通过精 确控制磁场和电场,使带电粒子按照预 定轨迹运动,实现粒子的加速和聚焦。
散焦
当带电粒子在磁场中运动时,由于洛伦兹力的作用,粒子会散开在较大区域内, 形成较宽的分布。
03 电场对带电粒子的影响
电场力
电场力定义
带电粒子在电场中受到的力,大小与电荷量成正比,与电场强度 成正比,方向与电场方向相同或相反。
电场力作用
电场力是带电粒子在电场中运动的主要作用力,可以改变带电粒子 的运动状态和方向。
05 带电粒子在复合场中的应 用

第3讲带电粒子在复合场中的运动

第3讲带电粒子在复合场中的运动

qvB-(mg+qE)=ma
解得加速度 a=qvB-mmg+qE,方向竖直向上. (2)从 a 运动到 b,重力、电场力对 粒子做负功,洛伦兹力不做功,根据动
能定理得-qEd-mgd=12mv2Байду номын сангаас-12mv20
解得 vb=
v20-2qE+在组合场中的运动
从该混合场区域通过,不可采取的措施有(
A.适当增大电场强度 E
B.适当增大磁感应强度 B
C.适当增大加速极板间的宽度
D.适当增大加速电压 U
答案:BD智浪教育--普惠英才) 图 9-3-65.(双选)磁流体发电机原理如图 9-3-7,等离子体以 v 高速从左向右喷射,两极板间有如图方向的匀强磁场,磁感应
作用,磁感应强度大小为 B,方向垂直
于纸面向里.求粒子首次从Ⅱ区离开时
到出发点 P0 的距离.粒子的重]解:设粒子第一次过MN 时速度方向与水平方
向成α1 角,位移与水平方向成α2 角,且α2=45°,在电场 中做类平抛运动, 则有
y=x=v0t,y=12at2=12qmEt2,y=12vyt
tanθ=vv0y=2UU21Ld=
3 3
则 θ=30°.
【例 1】(2011 年全国卷)如图 9-3-9,与水平面成 45°角的 平面 MN 将空间分成Ⅰ和Ⅱ两个区域.一质量为 m、电荷量为 q(q
>0)的粒子以速度 v0 从平面 MN 上的点 P0 水平右射入Ⅰ区.粒子 在Ⅰ区运动时,只受到大小不变、方向
竖直向下的电场作用,电场强度大小为
E;在Ⅱ区运动时,只受到匀强磁场的
强磁场,则粒子射入磁场和射出磁场的 M、N 两点间的距离 d
随着 U 和 v0 的变化情况为( )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

作业:
《专题五-课时2》
题型1 带电粒子在叠加场中的运动
• 例一: 如图所示,竖直平面(纸面)内有直角坐标系xOy, x轴沿水平方向.在x≤0的区域内存在方向垂直于纸面向里、 磁感应强度大小为B1的匀强磁场.在第二象限紧贴y轴固 定放置长为l、表面粗糙的不带电绝缘平板,平板平行于x 轴且与x轴相距h.在第一象限内的某区域存在方向相互垂 直的匀强磁场(磁感应强度大小为B2、方向垂直于纸面向 外)和匀强电场(图中未画出).一质量为m、不带电的小球 Q从平板下侧A点沿x轴正向抛出;另一质量也为m、带电 量为q的小球P从A点紧贴平板沿x轴正向运动,变为匀速 运动后从y轴上的D点进入电磁场区域做匀速圆周运动,经 圆周离开电磁场区域,沿y轴负方向运动,然后从x轴上的 K点进入第四象限.小球P、Q相遇在第四象限的某一点, 且竖直方向速度相同.设运动过程中小球P电量不变,小 球P和Q始终在纸面内运动且均看作质点,重力加速度为g.
求:
• (1)匀强电场的场强大小,并判断P球所带电荷的正负; • (2)小球Q的抛出速度v0的取值范围; • (3)B1是B2的多少倍?
题型2 带电粒子在组合场中的运动分析
例二:如图所示的平面直角坐标系xOy,在第Ⅰ象 限内有平行于y轴的匀强电场,方向沿y轴正方向; 在第Ⅳ象限的正三角形abc区域内有匀强磁场,方 向垂直于xOy平面向里,正三角形边长为L,且ab 边与y轴平行.一质量为m、电荷量为q的粒子, 从y轴上的P(0,h)点,以大小为v0的速度沿x轴正 方向射入电场,通过电场后从x轴上的a(2h,0)点 进入第Ⅳ象限,又经过磁场从y轴上的某点进入第 Ⅲ象限,且速度与y轴负方向成45°角,不计粒子 所受的重力.
பைடு நூலகம் 学习目标
• 1、理解复合场的特点及带电粒子在复合场中的常 见运动形式。
• 2、重点掌握带电粒子在复合场中运动问题的重要 习题类型及其解法。
• 考点地位:带电粒子在复合场中的运动问题是高 考的重点和难点,是每年高考的必考内容,在高 考试题中占有相当重要的地位,试题类型主要以 大型计算题形式为主,侧重于考查带电粒子在磁 场和电场、磁场和重力场以及磁场、电场、重力 场三场所形成的复合场中的运动问题,试题难度 大,综合性强,容易以大型压轴题形式出现。
• ②当带电粒子所受的重力与电场力等值反向,洛伦兹力提 供向心力时,带电粒子在垂直于磁场的平面内做匀速圆周 运动。
• ③当带电粒子所受的合外力是变力,且与初速度方向不在 一条直线上时,粒子做非匀变速曲线运动,这时粒子的运 动轨迹既不是圆弧,也不是抛物线,由于带电粒子可能连 续通过几个情况不同的复合场区,因此粒子的运动情况也 发生相应的变化,其运动过程可能由几种不同的运动阶段 所组成。
• ②当带电粒子在复合场中做匀速圆周运动时,往 往应用牛顿第二定律和平衡条件列方程联立求解。
• ③当带电粒子在复合场中做非匀变速曲线运动时, 应选用动能定理或能量守恒定律列方程求解。
• 说明:由于带电粒子在复合场中受力情况复杂, 运动情况多变,往往出现临界问题,这时应以题 目中的“恰好”“最大”“最高”“至少”等词 语为突破口,挖掘隐含条件,根据临界条件列出 辅助方程,再与其他方程联立求解。
• (3)洛伦兹力的大小跟速度与磁场方向的夹角有关,当 带电粒子的速度与磁场方向平行时,f=0;当带电粒子的 速度与磁场方向垂直时,f=qvB;洛伦兹力的方向垂直于 速度v和磁感应强度B所决定的平面,无论带电粒子做什么 运动,洛伦兹力都不做功。
• (2)灵活选用力学规律是解决问题的关键
• ①当带电粒子在复合场中做匀速运动时,应根据 平衡条件列方程求解。
求:
• (1)电场强度E的大小; (2)粒子到达a点时速度的大小和方向; (3)abc区域内磁场的磁感应强度B的最小 值.
• 例三:如图所示,在坐标系xOy所在平面 内有一半径为a的圆形区域,圆心坐标 O1(a,0),圆内分布有垂直xOy平面的匀强 磁场.在坐标原点O处有一个放射源,放 射源开口的张角为90°,x轴为它的角平分 线.带电粒子可以从放射源开口处在纸面 内朝各个方向射出,其速率v、质量m、电 荷量+q均相同.其中沿x轴正方向射出的 粒子恰好从O1点的正上方的P点射出.不 计带电粒子的重力,且不计带电粒子间的 相互作用.
带电粒子在复合场中运动规律分析
• 复合场一般包括:重力场、电场和磁 场,本专题所说的复合场指的是磁场与电 场、磁场与重力场,或者是三场合一
带电粒子在复合场中运动处理方法
• (1)正确分析带电粒子的受力及运动特征是解决问题的 前提
• ①带电粒子在复合场中做什么运动,取决于带电粒子所受 的合外力及其初始状态的速度,因此应把带电粒子的运动 情况和受力情况结合起来进行分析,当带电粒子在复合场 中所受合外力为零时,做匀速直线运动(如速度选择器)。
三种场力的特点
• (1)重力的大小为mg,方向竖直向下,重力做功与路径 无关,其数值除与带电粒子的质量有关外,还与初、末位 置的高度差有关。
• (2)电场力的大小为qE,方向与电场强度E及带电粒子 所带电荷的性质有关,电场力做功与路径无关,其数值除 与带电粒子的电荷量有关外,还与初、末位置的电势差有 关。
带电粒子在周期性变化的复合场中运动分析
• (1)求P在磁场中运动 时速度的大小v0;
• (2)求B0应满足的关系; • (3)在t0时刻释放P,求
P速度为零时的坐标.
• (1)t=时,求粒子的位 置坐标;
• (2)若t=5t0时粒子回 到原点,求0~5t0时 间内粒子距x轴的最大 距离;
• (3)若粒子能够回到原 点,求满足条件的所 有E0值.
• (1)求圆形区域内磁感应强度的大小和方向;
• (2)①判断沿什么方向射入磁场的带电粒子的运动时间最长, 并求最长时间;
• ②若在y≥a的区域内加一沿y轴负方向的匀强电场,放射 源射出的所有带电粒子运动过程中将在某一点会聚,若在 该点放一回收器可将放射源射出的带电粒子全部收回,分 析并说明回收器所放的位置.
相关文档
最新文档