高中数学选修44坐标系
平面直角坐标系
D
E
120m
C
60 3m
45o 50m 60o A) 60m B A(O
x
二、极坐标系 极坐标(,)与(,+2k)(k∈Z)表示 同一个点.特别地,极点O的坐标为(0,) ( ∈R).和直角坐标不同,平面内一个 点的极坐标有无数种表示. 如果规定>0,0≤<2,那么除 极点外,平面内的点可用惟一的极坐标 (,)表示;同时,极坐标表示的点(,) 也是惟一确定的.
x x ② y 3 y 我们把②式叫做平面直角坐标系中的一个标伸长变换.
问题3:怎样由正弦曲线y=sinx得到曲线y=3sin2x? y 在正弦曲线y=sinx上任取一 点P(x, y),保持纵坐标不变, 将横坐标x缩为原来的1/2; O x 在此基础上,将纵坐标变为原来的 3倍,就得到正弦曲线y=3sin2x. 即在正弦曲线y=sinx上任取一点P(x,y),若设点 P(x,y)经变换得到点为P’(x’, y’),坐标对应关系 为: 1
5 6
2 3
2
B
A
3
6
2
5 6
2 3
2
3
E
B A D
6
2
7 6
7 6
4 3
C
3 2
5 3
11 6
4 3
C
F
3 2
5 3
11 6
例2、在图中,用点A,B,C,D,E
分别表示教学楼,体育馆,图书馆, 实验楼,办公楼的位置.建立适当的 极坐标系,写出各点的极坐标.
∵点M的直角坐标为 (1,
3)
y
M (1, 3)
θ
高中数学新人教A版选修4-4 柱坐标系与球坐标系简介
四柱坐标系与球坐标系简介1.柱坐标系(1)定义:建立空间直角坐标系Oxyz .设P 是空间任意一点,它在Oxy 平面上的射影为Q ,用(ρ,θ)(ρ≥0,0≤θ<2π)表示点Q 在平面Oxy 上的极坐标,这时点P 的位置可用有序数组(ρ,θ,z )(z ∈R)表示,这样,我们建立了空间的点与有序数组(ρ,θ,z )之间的一种对应关系,把建立上述对应关系的坐标系叫做柱坐标系,有序数组(ρ,θ,z )叫做点P 的柱坐标,记作P (ρ,θ,z ),其中ρ≥0,0≤θ<2π,z ∈R.(2)空间任意一点P 的直角坐标(x ,y ,z )与柱坐标(ρ,θ,z )之间的变换公式为⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z.2.球坐标系(1)定义:建立空间直角坐标系Oxyz .设P 是空间任意一点,连接OP ,记|OP |=r ,OP 与Oz 轴正向所夹的角为φ,设P 在Oxy 平面上的射影为Q ,Ox 轴按逆时针方向旋转到OQ 时所转过的最小正角为θ.这样点P 的位置就可以用有序数组(r ,φ,θ)表示.这样,空间的点与有序数组(r ,φ,θ)之间建立了一种对应关系,把建立上述对应关系的坐标系叫做球坐标系(或空间极坐标系),有序数组(r ,φ,θ)叫做点P 的球坐标,记作P (r ,φ,θ),其中r ≥0,0≤φ≤π,0≤θ<2π.(2)空间点P 的直角坐标(x ,y ,z )与球坐标(r ,φ,θ)之间的变换关系为⎩⎪⎨⎪⎧x =r sin φcos θ,y =r sin φsin θ,z =r cos φ.[例1] (1)设点A 的直角坐标为(1,3,5),求它的柱坐标. (2)已知点P 的柱坐标为⎝⎛⎭⎫4,π3,8,求它的直角坐标. [思路点拨] 直接利用变换公式求解.[解] (1)由变换公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,得ρ2=x 2+y 2,z =z ,即ρ2=12+(3)2=4,∴ρ=2. tan θ=yx =3,又x >0,y >0.∴θ=π3,∴点A 的柱坐标为⎝⎛⎭⎫2,π3,5. (2)由变换公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z得x =4cos π3=2,y =4sin π3=23,z =8.∴点P 的直角坐标为(2,23,8).由直角坐标系中的直角坐标求柱坐标,可设点的柱坐标为(ρ,θ,z ),代入变换公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z求ρ,也可利用ρ2=x 2+y 2,求ρ.利用tan θ=yx 求θ,在求θ的时候特别注意角θ所在的象限,从而确定θ的值;同理,可由柱坐标转化为直角坐标.1.已知点M 的直角坐标为(0,1,2),求它的柱坐标. 解:ρ=x 2+y 2=02+12=1.∵x =0,y >0,∴θ=π2,∴点M 的柱坐标为⎝⎛⎭⎫1,π2,2. 2.将下列各点的柱坐标分别化为直角坐标. (1)⎝⎛⎭⎫2,π6,1;(2)⎝⎛⎭⎫6,5π3,-2;(3)()1,π,0. 解:设点的直角坐标为(x ,y ,z ). (1)∵(ρ,θ,z )=⎝⎛⎭⎫2,π6,1,∴⎩⎪⎨⎪⎧x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1,z =1,∴(3,1,1)为所求.(2)∵(ρ,θ,z )=⎝⎛⎭⎫6,5π3,-2, ∴⎩⎪⎨⎪⎧x =ρcos θ=6cos 5π3=3,y =ρsin θ=6sin 5π3=-33,z =-2,∴(3,-33,-2)为所求.(3)∵(ρ,θ,z )=(1,π,0),∴⎩⎪⎨⎪⎧x =ρcos θ=cos π=-1,y =ρsin θ=sin π=0,z =0,∴(-1,0,0)为所求.[例2] (1)已知点P 的球坐标为⎝⎛⎭⎫4,3π4, π4,求它的直角坐标; (2)已知点M 的直角坐标为(-2,-2,-22),求它的球坐标. [思路点拨] 直接套用坐标变换公式求解. [解] (1)由坐标变换公式得, x =r sin φcos θ=4sin3π4cos π4=2, y =r sin φsin θ=4sin 3π4sin π4=2,z =r cos φ=4cos 3π4=-22,故其直角坐标为(2,2,-22). (2)由坐标变换公式得,r =x 2+y 2+z 2=(-2)2+(-2)2+(-22)2=4. 由r cos φ=z =-22,得cos φ=-22r =-22,φ=3π4. 又tan θ=y x =1,则θ=5π4(M 在第三象限),从而知M 点的球坐标为⎝⎛⎭⎫4,3π4,5π4.由直角坐标化为球坐标时,可设点的球坐标为(r ,φ,θ),利用变换公式⎩⎪⎨⎪⎧x =r sin φcos θ,y =r sin φsin θ,z =r cos φ求出r ,φ,θ即可;也可以利用r 2=x 2+y 2+z 2,tan θ=y x ,cos φ=zr来求.要特别注意由直角坐标求球坐标时,要先弄清楚φ和θ所在的位置.3.将下列各点的球坐标分别化为直角坐标. (1)⎝⎛⎭⎫2,π6,π3;(2)⎝⎛⎭⎫6,π3,2π3. 解:设点的直角坐标为(x ,y ,z ). (1)∵(r ,φ,θ)=⎝⎛⎭⎫2,π6,π3, ∴⎩⎪⎨⎪⎧x =r sin φcos θ=2sin π6cos π3=12,y =r sin φsin θ=2sin π6sin π3=32,z =r cos φ=2cos π6=3,∴⎝⎛⎭⎫12,32,3为所求.(2)∵(r ,φ,θ)=⎝⎛⎭⎫6,π3,2π3, ∴⎩⎪⎨⎪⎧x =r sin φcos θ=6sin π3cos 2π3=-332,y =r sin φsin θ=6sin π3sin 2π3=92,z =r cos φ=6cos π3=3,∴⎝⎛⎭⎫-332,92,3为所求.4.求下列各点的球坐标.(1)M (1,3,2);(2)N (-1,1,-2). 解:(1)由变换公式得,r =x 2+y 2+z 2=12+(3)2+22=2 2. 由z =r cos φ,得cos φ=z r =222=22,∴φ=π4,又tan θ=y x =31=3,x >0,y >0,∴θ=π3,∴它的球坐标为⎝⎛⎭⎫22,π4,π3. (2)由变换公式得,r =x 2+y 2+z 2=(-1)2+12+(-2)2=2. 由z =r cos φ,得cos φ=z r =-22,∴φ=3π4.又tan θ=y x =1-1=-1,x <0,y >0,∴θ=3π4,∴它的球坐标为⎝⎛⎭⎫2,3π4,3π4.一、选择题1.在球坐标系中,方程r =2表示空间的( ) A .球 B .球面 C .圆D .直线解析:选B r =2,表示空间的点到原点的距离为2,即表示球心在原点,半径为2的球面.2.设点M 的直角坐标为(-1,-3,3),则它的柱坐标是( ) A.⎝⎛⎭⎫2,π3,3 B.⎝⎛⎭⎫2,2π3,3 C.⎝⎛⎭⎫2,4π3,3 D.⎝⎛⎭⎫2,5π3,3 解析:选C ρ=(-1)2+(-3)2=2,∵tan θ=y x =3,x <0,y <0,∴θ=4π3,又z=3,∴点M 的柱坐标为⎝⎛⎭⎫2,4π3,3. 3.若点M 的球坐标为⎝⎛⎭⎫8,π3,5π6,则它的直角坐标为( ) A .(-6,23,4) B .(6,23,4) C .(-6,-23,4)D .(-6,23,-4)解析:选A 由x =8sin π3cos 5π6=-6,y =8sin π3sin 5π6=23,z =8cos π3=4,得点M 的直角坐标为(-6,23,4).4.若点M 的直角坐标为(3,1,-2),则它的球坐标为( ) A.⎝⎛⎭⎫22,3π4,π6 B.⎝⎛⎭⎫22,π4,π6C.⎝⎛⎭⎫22,π4,π3D.⎝⎛⎭⎫22,3π4,π3 解析:选A 设M 的球坐标为(r ,φ,θ),r ≥0,0≤φ≤π,0≤θ<2π,则r =(3)2+12+(-2)2=22, 由22cos φ=-2得φ=3π4, 又tan θ=13=33,x >0,y >0,得θ=π6,∴点M 的球坐标为⎝⎛⎭⎫22,3π4,π6.故选A. 二、填空题5.点P 的柱坐标为⎝⎛⎭⎫4,π6,3,则点P 到原点的距离为________. 解析:x =ρcos θ=4cos π6=23,y =ρsin θ=4sin π6=2.即点P 的直角坐标为(23,2,3),其到原点的距离为(23-0)2+(2-0)2+(3-0)2=25=5.答案:56.点M (-3,-3,3)的柱坐标为________. 解析:ρ=x 2+y 2=(-3)2+(-3)2=32,∵tan θ=-3-3=1,x <0,y <0,∴θ=5π4,∴点M 的柱坐标为⎝⎛⎭⎫32,5π4,3. 答案:⎝⎛⎭⎫32,5π4,3 7.已知点M 的直角坐标为(1,2,3),球坐标为(r ,φ,θ),则tan φ=________,tan θ=________.解析:如图所示,tan φ=x 2+y 2z =53,tan θ=y x =2.答案:532 三、解答题8.设点M 的直角坐标为(1,1,2),求点M 的柱坐标与球坐标. 解:由坐标变换公式,可得ρ=x 2+y 2=2, ∵tan θ=y x =1,x >0,y >0,∴θ=π4.r =x 2+y 2+z 2=12+12+(2)2=2. 由r cos φ=z =2(0≤φ≤π),得cos φ=2r =22,φ=π4. 所以点M 的柱坐标为⎝⎛⎭⎫2,π4,2,球坐标为⎝⎛⎭⎫2,π4,π4. 9.已知点M 的柱坐标为⎝⎛⎭⎫2,π4,3,点N 的球坐标为⎝⎛⎭⎫2,π4,π2,求线段MN 的长度. 解:设点M 的直角坐标为(x ,y ,z ),由变换公式得,x =ρcos θ=2cos π4=1,y =ρsin θ=2sin π4=1,z =3,∴点M 的直角坐标为(1,1,3),设点N 的直角坐标为(a ,b ,c ), 则a =ρsin φ·cos θ=2×22×0=0,b =ρsin φ·sin θ=2×22×1=2,c =ρcos φ=2×22=2,∴点N 的直角坐标为(0,2,2).∴|MN |=12+(1-2)2+(3-2)2=15-8 2.10.已知正方体ABCD -A 1B 1C 1D 1的棱长为1,如图所示建立空间直角坐标系A -xyz ,以Ax 为极轴.求点C 1的直角坐标,柱坐标以及球坐标.解:点C 1的直角坐标为(1,1,1),设点C 1的柱坐标为(ρ,θ,z ),球坐标为(r ,φ,θ),其中ρ≥0,r ≥0,0≤φ≤π,0≤θ<2π,由坐标变换公式⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ,z =z ,且⎩⎪⎨⎪⎧x =r sin φcos θ,y =r sin φsin θ,z =r cos φ,得⎩⎪⎨⎪⎧ ρ=x 2+y 2,tan θ=y x (x ≠0),且⎩⎪⎨⎪⎧r =x 2+y 2+z 2,cos φ=z r ,得⎩⎨⎧ρ=2,tan θ=1,且⎩⎪⎨⎪⎧r =3,cos φ=33.结合图形,得θ=π4,由cos φ=33得tan φ= 2.所以点C 1的直角坐标为(1,1,1),柱坐标为⎝⎛⎭⎫2,π4,1,球坐标为⎝⎛⎭⎫3,φ,π4,其中tan φ=2,0≤φ≤π.。
人教版高中数学选修4-4--第一讲-坐标系-1.4--柱坐标系与球坐标系简介ppt课件
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
空间点 P 的直角坐标(x,y,z)与球坐标(r,φ 之间的变换关系为:____x_2_+__y2_+__z_2=__r_2,___.
x=rsin φcos θ , y=rsin φsin θ , z=rcos φ
预习 思考
(1,1,1)
1.设
P
点
柱
坐
标
为
2,π4,1 . 则 它 的 直 角 坐 标 为
____________.
2.设点 M 的球坐标为2,34π,34π,它的直角坐标为 ____ቤተ መጻሕፍቲ ባይዱ_______.
(-1,1,- 2)
题型1 柱坐标、球坐标的确定
例1 如图所示,已知长方体 ABCD-A1B1C1D1 的边长 AB 6 3,AD=6,AA1=12,以这个长方体的顶点 A 为坐标原点 以射线 AB、AD、AA1 分别为 x 轴、y 轴、z 轴的正半轴, 立空间直角坐标系,求长方体顶点 C1 的空间直角坐标、柱 标、球坐标.
变式 训练
1.建立如下图所示的柱坐标系,写出棱长为 1 的正方
各顶点的柱坐标.
变式 训练
变式 训练
题型2 柱、球坐标与直角坐标的互化
例2
已知点
M
的
柱
坐
标
为
最新人教版高中数学选修4-4《极坐标系》教材梳理
最新⼈教版⾼中数学选修4-4《极坐标系》教材梳理庖丁巧解⽜知识·巧学⼀、极坐标系的概念1.在⽣活中,如台风预报、地震预报、测量、航空、航海等,经常⽤距离和⽅向来表⽰⼀点的位置.⽤距离和⽅向表⽰平⾯上⼀点的位置,就是极坐标.极坐标系的建⽴:在平⾯内取⼀个定点O ,叫做极点.引⼀条射线Ox ,叫做极轴.再选定⼀个长度单位和⾓度正⽅向(通常取逆时针⽅向).这样就建⽴了⼀个极坐标系.2.如图1-2-3,极坐标系内⼀点的极坐标的规定:对于平⾯上任意⼀点M ,⽤ρ表⽰线段OM 的长度,⽤θ表⽰从Ox 到OM 的⾓度,ρ叫做M 的极径,θ叫做点M 的极⾓,有序数对(ρ,θ)就叫做M 的极坐标.图1-2-3深化升华极点、极轴、长度单位、⾓度单位和它的正⽅向,构成了极坐标系的四要素,缺⼀不可.1.特别规定:当M 在极点时,它的极坐标ρ=0,θ可以取任意值.2.平⾯上⼀点的极坐标是不唯⼀的,有⽆数种表⽰⽅法.坐标不唯⼀是由极⾓引起的.不同的极坐标可以写出统⼀表达式.⼆、极坐标和直⾓坐标的互化1.互化的前提条件:①极坐标系中的极点与直⾓坐标系中的原点重合;②极轴与x 轴的正半轴重合;③两种坐标系中取相同的长度单位.2.互化公式??≠=+===.0,t an ,,sin ,co s 222x x y y x y x θρθρθρ在进⾏两种坐标间的互化时,应注意以下⼏点:①两套公式是在三条规定下得到的;②由直⾓坐标求极坐标时,理论上不是唯⼀的,但这⾥约定只在主值范围内求值;③由直⾓坐标⽅程化为极坐标⽅程,最后要化简;④由极坐标⽅程化为直⾓坐标⽅程时要注意变形的等价性,通常总要⽤ρ去乘⽅程的两端,应该检查极点是否在曲线上,若在是等价变形,否则,不是等价变形.问题·探究问题1 平⾯内建⽴直⾓坐标系是⼈们公认的最容易接受并且被经常采⽤的⽅法,但为什么它并不是确定点的位置的唯⼀⽅法,为什么要使⽤极坐标?探究:确定平⾯内⼀个点的位置时,有时是依靠⽔平距离与垂直距离这两个量,有时却是依靠距离与⽅位⾓(即“长度”与“⾓度”,这就是极坐标系的基本思想)这两个量.在⽣活中,如台风预报、地震预报、测量、航空、航海中等,甚⾄更贴近⽣活的如⼈听声⾳,不但有⾼低之分,还有⽅向之分.描述⼀个⼈所⾛的⽅向和路程,经常会这样说:从A 点出发向北偏东60°⽅向⾛了⼀段距离到B 点,再从B 点向南偏西15°⽅向⾏⾛……描述某飞机的位置:飞⾏⾼度1 200⽶,从飞机上看地平⾯控制点B 的俯⾓α=16°31′……这种位置的刻画能够给⼈⼀个很直观的形象.⽣活中除了应⽤这两种坐标系外,还应⽤地理坐标系,它实际上能称为真实世界的坐标系了.它能确定物体在地球上的位置.最常⽤的地理坐标系是经纬度坐标系,这个坐标系可以确定地球上任何⼀点的位置.另外,从⼏何上来说,有些复杂的曲线,⽐如说环绕⼀点做旋转运动的点的轨迹,⽤直⾓坐标表⽰,形式极其复杂,但⽤极坐标表⽰,就变得⼗分简单且便于处理.在应⽤上有重要价值的等速螺线,它的直⾓坐标x 与y 之间的关系很难确定,可是它的极坐标ρ与θ却有⼀个简单的⼀次函数关系ρ=ρ0+aθ(a≠0),从⽽可以看出ρ的值是随着θ的增加(或减少)⽽增加(或减少)的.总之,使⽤极坐标是⼈们⽣产⽣活的需要.平⾯内建⽴直⾓坐标系是⼈们公认的最容易接受并且被经常采⽤的⽅法,但它并不是确定点的位置的唯⼀⽅法.问题2 ⽤极坐标与直⾓坐标来表⽰点时,⼆者究竟有哪些相同和不同呢?探究:极坐标系是⽤距离和⾓来表⽰平⾯上的点的位置的坐标系,它由极点O 与极轴Ox 组成.对于平⾯内任⼀点P ,若设|OP|=ρ(≥0),以Ox 为始边,OP 为终边的⾓为θ,则点P 可⽤有序数对(ρ,θ)表⽰.直⾓坐标是⽤两个长度来度量的,直⾓坐标系是在数轴的基础上发展起来的,⾸先定义原点,接着⽤两条互相垂直的直线分别构成x 轴和y 轴.点的位置⽤有序数对(x,y)来表⽰.在平⾯直⾓坐标系内,点与有序实数对,即坐标(x ,y )是⼀⼀对应的,可是在极坐标系内,虽然⼀个有序实数对(ρ,θ)只能与⼀个点P 对应,但⼀个点P 却可以与⽆数多个有序实数对(ρ,θ)对应.也就是说平⾯上⼀点的极坐标是不唯⼀的.极坐标系中的点与有序实数对极坐标(ρ,θ)不是⼀⼀对应的.典题·热题例1设有⼀颗彗星,围绕地球沿⼀抛物线轨道运⾏,地球恰好位于该抛物线轨道的焦点处,当此彗星离地球为30(万千⽶)时,经过地球和彗星的直线与抛物线的轴的夹⾓为30°,试建⽴适当的极坐标系,写出彗星此时的极坐标.思路分析:如图1-2-4所⽰,建⽴极坐标系,使极点O 位于抛物线的焦点处,极轴Ox 过抛物线的对称轴,由题设可得下列四种情形:图1-2-4(1)当θ=30°时,ρ=30(万千⽶);(2)当θ=150°时,ρ=30(万千⽶);(3)当θ=210°时,ρ=30(万千⽶);(4)当θ=330°时,ρ=30(万千⽶).解:彗星此时的极坐标有四种情形:(30,30°),(30,150°),(30,210°),(30,330°).误区警⽰彗星此时的极坐标是四个,不能忽略了夹⾓的概念.如果只找到了⼀个极坐标,这是三⾓概念不清.例2极坐标与直⾓坐标的互化:(1)化点M 的直⾓坐标(-3,4)为极坐标;(2)化点M 的极坐标(-2,6π-)为直⾓坐标.思路分析:本题利⽤直⾓坐标与极坐标之间的互化公式,化极坐标时,需要找到点所对应的极径,极⾓;将极坐标化为直⾓坐标,直接根据公式可得到横,纵坐标.解:(1)∵ρ=22224)3(+-=+y x =5,tanθ=34-=x y , ⼜∵x<0,y>0,∴θ是第⼆象限⾓.∴θ=π-arctan 34. ∴点M 的极坐标为(5,π-arctan34). (2)x=2cos(6π-)=3-,y=-2sin(65π-)=1,∴点M 的直⾓坐标为(3-,1).深化升华(1)化点的直⾓坐标为极坐标时,⼀般取ρ≥0,0≤θ<2π,即θ取最⼩正⾓,由tanθ=xy 求θ时,还需结合点(x,y)所在的象限来确定θ的值. (2)化点的极坐标为直⾓坐标时,直接⽤互化公式?==,sin ,cos θρθρy x 例3在极坐标系中,A(4,9π),B(1,185π),则△OAB 的⾯积是__________. 思路解析:如图1-2-5所⽰,∠AOB=185π-9π=6π,图1-2-5S △AOB =21·|AO|·|BO|·sin ∠AOB=21·4·1·sin 6π=1. 答案:1⽅法归纳既然是求⾯积,那么就要明确所⽤到的⾯积公式不是⼀般的底乘⾼的⾯积公式,⽽是正弦定理的⾯积公式.例4已知两点的极坐标A(3,2π)、B(3,6π),则|AB|=______,AB 与极轴正⽅向所夹的⾓为____.图1-2-6思路解析:如图1-2-6所⽰,根据极坐标的定义可得|AO|=|BO|=3,∠AOB=60°,即△AOB 为正三⾓形.答案:3,65π⽅法归纳在坐标系中找到点的位置后,利⽤数形结合的⽅法可求出距离来.例5在极坐标中,若等边△ABC 的两个顶点是A(2,4π)、B(2,45π),那么顶点C 的坐标可能是( )A.(4,43π)B.(32,43π) C.(32,π) D.(3,π)思路解析:如图1-2-7,由题设可知A 、B 两点关于极点O 对称,即O 是AB 的中点.图1-2-7⼜|AB|=4,△ABC 为正三⾓形,|OC|=32,∠AOC=2π,C 对应的极⾓θ=4π+2π=43π或θ=4π-2π=4π-,即C 点极坐标为(32,43π)或(32,4π-). 答案:B深化升华在找点的极坐标时,把图形画出来,通过画图解决问题.例6(1)θ=43π的直⾓坐标⽅程是______; (2)极坐标⽅程ρ=sinθ+2cosθ所表⽰的曲线是______. 思路解析:(1)根据极坐标的定义,∵t anθ=xy ,∴tan 43π=x y ,即y=-x. (2)将极坐标⽅程化为直⾓坐标⽅程即可判断曲线的形状,因为给定的ρ不恒等于零,⽤ρ同乘⽅程的两边得ρ2=ρsinθ+2ρcosθ.化成直⾓坐标⽅程为x 2+y 2=y+2x,即(x-1)2+(y-21)2=45,这是以点(1,21)为圆⼼,半径为25的圆. 答案:(1)y=-x (2)以点(1,21)为圆⼼,半径为25的圆+++++++++++ ⽅法归纳当极坐标⽅程中含有sinθ、cosθ时,可将⽅程两边同乘以ρ,凑成含有ρsinθ、ρcosθ的项,然后再代⼊互化公式便可化为直⾓坐标⽅程,此法称为拼凑法.。
人教版高中数学选修4-4 第一讲 坐标系 二 极坐标系 (共34张PPT)教育课件
A. y 1
sin t
1
x t2
C.
1
yt 2
x cos t
B. y 1
cos t
x tan t
D. y 1
tan t
7.极坐标方程
2
arcsin化(为 直0)角坐标方程的形
式是 ( )
A. x2 y2 x 0
B.y x(1 x)
C. 2x 1 4y2 1 D..y (x 1)
2.极坐标(,)与(ρ,2kπ+θ)( k )表z 示 同一个点.即一点的极坐标的统一的表达式 为(ρ,2kπ+θ)
3.如果规定ρ>0,0≤θ<2π,那么除 极 点外,平面内的点和极坐标就可以一一对 应了。
我们学了直角坐标,也学了极坐 标,那么这两种坐标有什么关系呢? 已知点的直角坐标为,如何用极坐标 表示这个点呢?
M (, )
0
x
2
4
5
6
C
1.如图,在极坐标系中,写出点 AF(,6B, ,4C3 ,)D的, G极(坐5, 标53,所) 并在标的出位E置( 72 , ) ,
E D BA
O
X
4 F
3
G 5
3
解:如图可得A,B,C,D的坐标分别为
(4,0)
(2, )
(3, )
(1, 5 )
4
2
6
点E,F,G的位置如图所示
1
4.极坐标方程ρ=cosθ与ρcosθ= 的2 图形是( ) B
A
B
C
D
解x=:12把,ρc故os排θ=除A,、12 化D;为又直圆角ρ坐=c程os,θ显得然: 过点 (0,1),又排除C,故选B。
5、若A、B的两点极坐标为A(4,
高中数学 选修4-4 1.坐标系
1.坐标系
教学目标班级______姓名_________
1.了解常见的坐标系.
2.了解坐标法,并能运用解决相关问题.
教学过程
一、知识要点.
1.坐标系:坐标系是联系几何与代数的桥梁;是数形结合的有力工具;利用坐标系可以使数与形相互转化.
2.常用坐标系:①数轴、平面直角坐标系、空间直角坐标系;②极坐标系(重点)、柱坐标系、球坐标系.
3.坐标法:根据几何对象的特征,选择适当的坐标系,建立它的方程,通过方程研究它的性质及与其他几何图形的关系,这就是研究几何问题的坐标法.
二、例题分析.
1.运用坐标法解决实际问题.
例1:某信息中心O接到位于正西、正北、正东方向三个观测点A、B、C的报告:A、B 两个观测点同时听到一声巨响,C观测点听到巨响声的时间比它们晚4s. 已知各观测点到信息中心的距离都是1020m. 试确定巨响发生的位置.(假设声音传播速度为340m/s,各观测点均在同一平面上)
练1:已知ABC ∆的三边a ,b ,c 满足2225a c b =+,BE ,CF 分别是边AC ,AB 上的中线,建立适当的平面直角坐标系探究BE 与CF 的位置关系.
作业:1.两个定点的距离为6,点M 到这两个定点的距离的平方和为26,求点M 的轨迹.
2.已知点A 为定点,线段BC 在定直线l 上滑动,已知4||=BC ,点A 到直线l 的距离为3,求ABC ∆外心的轨迹方程.。
(必考题)高中数学高中数学选修4-4第一章《坐标系》检测题(答案解析)
一、选择题1.(理)在极坐标系中,圆2cos ρθ=的垂直于极轴的两条切线方程分别为( ) A .0()R θρ=∈ 和cos 2ρθ= B .()2R πθρ=∈和cos 2ρθ=C .()2R πθρ=∈和cos 1ρθ= D .0()R θρ=∈和cos 1ρθ=2.已知曲线C 的极坐标方程为222123cos 4sin ρθθ=+,以极点为原点,极轴为x 轴非负半轴建立平面直角坐标系,则曲线C经过伸缩变换123x x y y ⎧=⎪⎪⎨=''⎪⎪⎩后,得到的曲线是( )A .直线B .椭圆C .圆D .双曲线3.已知圆C 与直线l 的极坐标方程分别为6cos ρθ=,sin 4πρθ⎛⎫+= ⎪⎝⎭C 到直线l 的距离是( ) A .1B .2CD.24.在极坐标系中,点(),ρθ与(),ρπθ--的位置关系为( ) A .关于极轴所在直线对称 B .关于极点对称 C .重合D .关于直线()2R πθρ=∈对称5.在极坐标系中,由三条直线0θ=,3πθ=,cos sin 1ρθρθ+=围成的图形的面积为( ) A .14BCD .136.在极坐标系中,曲线1C 的极坐标方程为2sin ρθ=,曲线2C的极坐标方程为ρθ=,若曲线1C 与2C 交于A 、B 两点,则AB 等于( )A .1BC .2D.7.221x y +=经过伸缩变换23x xy y ''=⎧⎨=⎩后所得图形的焦距( )A.B.C .4D .68.将2216x y +=的横坐标压缩为原来的12,纵坐标伸长为原来的2倍,则曲线的方程变为( )A .22134x y +=B .22213x y +=C .222112x y +=D .222134x y +=9.已知曲线C 与曲线5ρ=3cos?5sin?θθ-关于极轴对称,则曲线C 的方程为( )A .10cos ρ=-π-6θ⎛⎫ ⎪⎝⎭ B .10cos ρ=π-6θ⎛⎫ ⎪⎝⎭ C .10cos ρ=-π6θ⎛⎫+⎪⎝⎭D .10cos ρ=π6θ⎛⎫+⎪⎝⎭10.在直角坐标系xOy 中,曲线C 的方程为22162x y+=,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos()36πρθ+=,射线M 的极坐标方程为(0)θαρ=≥.设射线m 与曲线C 、直线l 分别交于A 、B 两点,则2211OAOB+的最大值为( ) A .34B .25C .23D .1311.极坐标方程cos ρθ=与1cos 2ρθ=的图形是( ) A . B . C . D .12.在同一平面直角坐标系中,将曲线1cos 23y x =按伸缩变换23x x y y ''=⎧⎨=⎩后为( )A .cos y x ''=B .13cos 2y x ''= C .12cos3y x ''= D .1cos32y x ''=二、填空题13.在极坐标系中,曲线C 的方程为28cos 10sin 320ρρθρθ--+=,直线l 的方程为0()R θθρ=∈,0tan 2θ=,若l 与C 交于A ,B 两点,O 为极点,则||||OA OB +=________.14.在极坐标系中,直线sin 24πρθ⎛⎫-= ⎪⎝⎭4ρ=截得的弦长为______.15.(理)在极坐标系中,曲线sin 2ρθ=+与sin 2ρθ=的公共点到极点的距离为_________.16.已知在平面直角坐标系xOy 中,圆C 的参数方程为:2cos 22sin x y ϕϕ=⎧⎨=+⎩(ϕ为参数),以Ox 为极轴建立极坐标系,直线l 30cos sin θθ-=,则圆C截直线l 所得弦长为___________. 17.两条直线sin 20164πρθ⎛⎫+= ⎪⎝⎭,sin 20174πρθ⎛⎫-= ⎪⎝⎭的位置关系是_______ 18.点C 的极坐标是(2,)4π,则点C 的直角坐标为______________ 19.在极坐标系中0,02,ρθπ>≤<,曲线cos 1ρθ=-与曲线=2sin ρθ的交点的极坐标为_______________。
人教A版高中数学选修4-4课件 极坐标系的概念(人教A 版)
[3]一点的极坐标有否统一的表达式?
有。(ρ,2kπ+θ)
1、极坐标系的建立:
在平面内取一个定点O,叫做极点. 引一条射线OX,叫做极轴。 再选定一个长度单位和计算角度的正方向。 (通常取逆时针方向).
O X
这样就建立了一个极坐标系.
2、极坐标系内一点的极坐标的规定
人民教育出版社 高中/选修4-4
对于平面上任意一点M,用表示线段OM的长度, 用表示以射线OX为始边,射线OM为终边所成的 角,叫做点M的极径, 叫做点M的极角,有序数对 (,)就叫做M的极坐标。
点M:在角终边的反向延长线上,且|OM|=||
5 M(-2, 5)
6
6
O°
x
° O
x•
•M(-2, 5) M (, )
6
小结: 从比较来看, 负极径比正极径多了一个操作,
将射线OP“反向延长”.
2
3•
F
5
6 B•
A•
2
D
•
。 O1
- 人民教育出版社 高中/选修4-4
A( 4,0)
4
B(3, 56)
(1)已知两点P(5、 ),Q(1, ),求线段PQ的长度。
4
4
(2)已知两点P(5、5 ),Q(1, ),求线段PQ的长度。
4
,4
(3)说明满足条件 , 0的点M(,)所组成的图形
3
思考:在本节开头关于修建高速公路的问题中能否
在极坐标系中解题。
人民教育出版社 高中/选修4-4
数学运用
例3. 已知点Q(, ),分别按下列条件求出点P的坐标:
高中数学选修4-4(人教A版)第一讲坐标系1.3知识点总结含同步练习及答案
第一讲 坐标系 三 简单曲线的极坐标方程
一、知识清单
极坐标与极坐标方程
二、知识讲解
1.极坐标与极坐标方程 描述: 极坐标系 在平面上取一个定点O ,由O 点出发的一条射线Ox,一个长度单位及计算角度的正方向(通常取 逆时针方向),合称为一个极坐标系.O 点称为极点,Ox称为极轴.平面任一点M 的位置可以由 线段OM 的长度ρ 和从Ox到OM 的角度θ 来刻画.这两个数组成的有序对(ρ, θ)称为点M 的极坐 标.ρ 称为极径,θ 称为极角. 在极坐标系(ρ, θ)中,一般限定ρ ≥ 0.当ρ = 0时,就与极点重合,此时θ 不确定.给定点的极坐 标(ρ, θ),就唯一地确定了平面上的一个点.但是,平面上的一个点的极坐标并不是唯一的,它有 无穷多种表示形式.事实上,(ρ, θ)和(ρ, θ + 2kπ)代表同一个点,其中k 为整数.可见,平面上的 点与它的极坐标不是一一对应关系.这是极坐标与直角坐标的不同之处,如果限定ρ ≥ 0, 0 ≤ θ ≤ 2π,则除极点外,平面上的点就与它的极坐标系构成一一对应关系. ρ < 0,此时极坐标(ρ, θ)对应的点M 的位置按下面规则确定:点M 在与极轴成θ 角的射线的反向 延长线上,它到极点O 的距离为|ρ|,即规定当ρ < 0时,点M (ρ, θ)就是点M (−ρ, θ + π). 极坐标与直角坐标系的关系 设M 为平面上的一点,它的直角坐标系为(x, y),极坐标为(ρ, θ).则有{ x = ρ cos θ 或
⎧ ρ2 = x 2 + y 2 ⎨ ⎩ tan θ = y (x ≠ 0) ,ρ < 0也成立. x
y = ρ sin θ
曲线的极坐标方程 在给定的平面上极坐标系下,有一个二元方程F (ρ, θ) = 0.如果曲线C 是由极坐标(ρ, θ)满足方程 的所有点组成的,则称此二元方程F (ρ, θ) = 0为曲线C 的极坐标方程. 圆心(a, 0)在极轴上且过极点的圆,其极坐标方程是ρ = 2a cos θ ;圆心在点(a, 圆,其极坐标方程是ρ = 2a sin θ,0 ≤ θ ≤ π.
高中数学选修4-4坐标系
1 3 1 2
得
x
1 3
x
y
1 2
y
2.在同一直角坐标系下经过伸缩变换
x y3x yFra bibliotek后,曲线C变为 x2 9y2 9,求曲线C的方程并画出
图形。
2.解:将xy3yx代入x2 9y2 9
得9x29y2 9即x2 y2 1
课堂小结:
(1)体会坐标法的思想,应用坐标 法解决几何问题;
(2)掌握平面直角坐标系中的伸缩 变换。
(4)定义法:若动点满足已知曲线的定义,可先设方程 再确定其中的基本量.
3.在掌握求曲线轨迹方程的一般步骤的基础上还要注 意:
(1)选择适当的坐标系,坐标系如果选择恰当,可使解 题过程简化,减少计算量.
(2)要注意给出曲线图形的范围,要在限定范围的 基础上求曲线方程.如果只求出曲线的方程,而 没有根据题目要求确定出x、y的取值范围,最后 的结论是不完备的.
在正弦曲线上任取一点P(x,y),保持横坐标x不变, 将纵坐标伸长为原来的3倍,就得到曲线y=3sinx。
设点P(x,y)经变换得到点为 p x, y
x x
y
3
y
2
通常把 2 叫做平面直角坐标系中的一个坐标伸 长变换。
(3)怎样由正弦曲线y=sinx得到曲线 y=3sin2x? 写出其坐标变换。
一、平面直角坐标系 1、平面直角坐标系
思考:
思考:
思考:
探究
根据几何特点选择适当的直角坐标系的一些规则: (1)如果图形有对称中心,可以选择对称中心为坐标原点; (2)如果图形有对称轴,可以选择对称轴为坐标轴; (3)使图形上的特殊点尽可能地在坐标轴上。
二.平面直角坐标系中的伸缩变换
高二数学 4-4第一章坐标系全部教案
表示方法?(3)、坐标不唯一是由谁引起的?(4)、不同的极坐标是否可以写出统一
表达式。约定:极点的极坐标是 =0, 可以取任意角。
变式训练 :在极坐标系里描出下列各点
A(3,0) B(6,2 )C(3, )D(5, 4 )E(3, 5 )F(4, )G(6, 5 )
2
3
6
3
例 2 在极坐标系中,
特别强调:由极径的意义可知 ≥0;当极角 的取值范围是[0,2 )时,平面上的 点(除去极点)就与极坐标(,)建立一一对应的关系 .们约定,极点的极坐标是极 径 =0,极角是任意角. 3、负极径的规定:在极坐标系中,极径 允许取负值,极角 也可以去任意的正角 或负角,当 <0 时,点 M (,)位于极角终边的反向延长线上,且 OM= 。
(1)如果图形有对称中心,可以选对称中心为坐标原点;
(2)如果图形有对称轴,可以选择对称轴为坐标轴;
(3)使图形上的特殊点尽可能多的在坐标轴上。
(二)、平面直角坐标轴中的伸缩变换
1、在平面直角坐标系中进行伸缩变换,即改变 x 轴或 y 轴的单位长度,将会对图形
产生影响。
2、探究:(1)在正弦曲线 y=sinx 上任取一点 P(x,y),保持纵坐标不变,将横坐标 x
π 3
<0,解得 k=-1,
= 3
-2 =- 5 , 点 A 的坐标为(5,- 5 ).
3
3
变式训练:1、若 ABC的的三个顶点为 A(5, 5 ), B(8, 5 ),C(3, 7 ),判断三角形的形状.
2
6
6
答案:正三角形。2、若 A、B 两点的极坐标为 (1,1), (2 ,2 ) 求 AB 的长以及 AOB 的 面积。(O 为极点)
高中数学选修4-4第一讲坐标系1.1平面直角坐标系
得9x -9y =9 即x -y =1
2
2
课堂小结:
(1)体会坐标法的思想,应用坐标 法解决几何问题; (2)掌握平面直角坐标系中的伸缩 变换。
xxz
根据几何特点选择适当的直角坐标系的一些规则: (1)如果图形有对称中心,可以选择对称中心为坐标原点;
(2)如果图形有对称轴,可以选择对称轴为坐标轴;
(3)使图形上的特殊点尽可能地在坐标轴上。
二.平面直角坐标系中的伸缩变换
思考:
(1)怎样由正弦曲线y=sinx得到曲线y=sin2x?
1 x x 2 y y
1
通常把 1 叫做平面直角坐标系中的一个压缩变换。
(2)怎样由正弦曲线y=sinx得到曲 线y=3sinx?写出其坐标变换。 y y=3sinx
y=sinx 2
x
(2)怎样由正弦曲线y=sinx得到曲线y=3sinx?写出 其坐标变换。 在正弦曲线上任取一点P(x,y),保持横坐标x不变, 将纵坐标伸长为原来的3倍,就得到曲线y=3sinx。 设点P(x,y)经变换得到点为 p x, y
为平面直角坐标系中的伸缩变换。
注 (1) 0, 0 (2)把图形看成点的运动轨迹,平面图 形的伸缩变换可以用坐标伸缩变换得到; (3)在伸缩变换下,平面直角坐标系不 变,在同一直角坐标系下进行伸缩变换。
例2:在直角坐标系中,求下列方程所对应的图形经过 伸缩变换 x 2 x
1 x x 2 y 3 y
3
通常把 3 叫做平面直角坐标系中 的一个坐标伸缩变换。
定义:设P(x,y)是平面直角坐标系中任意一点, 在变换 ( 0) x' x : 4 ( 0) y' y 的作用下,点P(x,y)对应 p x, y 称
(完整版)高中数学选修4—4(坐标系与参数方程)知识点总结
坐标系与参数方程 知识点1.平面直角坐标系中的坐标伸缩变换设点P(x,y)是平面直角坐标系中的任意一点,在变换(0):(0)x xy yλλϕμμ'=>⎧⎨'=>⎩g g 的作用下,点P(x,y)对应到点(,)P x y ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换.2.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数. 特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y极坐标(,)ρθ互化公式cos sin x y ρθρθ=⎧⎨=⎩222tan (0)x y yx xρθ=+=≠ 在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 4.常见曲线的极坐标方程曲线 图形 极坐标方程圆心在极点,半径为r 的圆(02)r ρθπ=≤<圆心为(,0)r ,半径为r 的圆2cos ()22r ππρθθ=-≤<圆心为(,)2r π,半径为r 的圆2sin (0)r ρθθπ≤<过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或 (2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴垂直的直线cos ()22a ππρθθ=-<<过点(,)2a π,与极轴平行的直线sin (0)a ρθθπ=<<注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=.二、参数方程 1.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数()()x f t y g t =⎧⎨=⎩①,并且对于t 的每一个允许值,由方程组①所确定的点(,)M x y 都在这条曲线上,那么方程①就叫做这条曲线的参数方程,联系变数,x y 的变数t 叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程.2.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地可以通过消去参数而从参数方程得到普通方程.(2)如果知道变数,x y 中的一个与参数t 的关系,例如()x f t =,把它代入普通方程,求出另一个变数与参数的关系()y g t =,那么()()x f t y g t =⎧⎨=⎩就是曲线的参数方程,在参数方程与普通方程的互化中,必须使,x y 的取值范围保持一致.注:普通方程化为参数方程,参数方程的形式不一定唯一。
人教A版高中数学选修4—4《坐标系与参数方程》简析
烧 全鱼” ,是 解 析 几 何 教 学 中 必须 予 以 充 分 重 视 的 问 题。 教科 书在 这 方 面 作 出 了 努 力 , 如 , 出 问题 背 景 例 给
球 坐 标 系 简 介 , 中 以极 坐 标 系 为 重 点 ; 二讲 《 数 其 第 参
方程 》 内容 包 括 : , 曲线 的 参 数 方程 、 圆锥 曲线 的参 数 方 程 、 线 的参 数 方程 和 渐 开 线 与摆 线 , 中 以参 数 方程 直 其
_ — ■一 ■■ — ● 锹 千
—隧卿——●■●
人教A 高中数学选修4 4 版 —
《 坐标系与参数方程》 简析
人 民教 育 出版社 中学数 学室 章建跃 郭慧清
一பைடு நூலகம்
、
内容安排与说明
二、 编写时 考虑的几个主要问题
1突 出 坐 标 法 的 核 心 概 念 地 位 , 调 数 形 结 合 。 . 强
坐 标 法 是 解 析 几 何 的 核 心 , 本 专 题 的 主 要 目 的 是
通 过 认 识 不 同 的坐 标 系的 特 点和 在 刻 画 几何 图形 或 描 述 自然 现 象 中 的 作 用 , 促 使 学 生 学 习 如 何 根 据 问 题 的
需要 建 立 适 当 的坐 标 系、 引 入适 当的 参 变量 来 表 示 曲 线 上点 的坐 标 及 其 方程 , 从而 更 深 入地 体 会 坐 标 法 。 因
为 重 点 。 专 题 中 , 形 结合 、 动 变化 、 对 与 绝 对 、 本 数 运 相
程 的 对 应 关 系 , 一 步 体 会 数 形 结 合 的 思 想 。 3) 为 解 进 ( 做
析 几 何 初 步 、 面 向量 、 角 函 数 等 内 容 的 综 合 与 深 化 , 平 三
人教课标版高中数学选修4-4:《极坐标系》教案-新版
1.2 极坐标系一、教学目标(一)核心素养通过这节课学习,认识极坐标系、能在极坐标系下用极坐标表示点的位置,会进行极坐标和直角坐标的互化,在直观想象、数学抽象中感受极坐标的特点.(二)学习目标1.通过实例,认识极坐标系,体会用极坐标表示点的特点.2.了解用极坐标系表示点的不唯一性.3.能进行极坐标系与平面直角坐标系的互化,体会在极坐标系和平面直角坐标系中刻画点的位置的区别.(三)学习重点1.认识极坐标系的重要性.2.用极坐标刻画点的位置.3.会进行极坐标与直角坐标的互化.(四)学习难点1.理解用极坐标刻画点的位置的基本思想.2.认识点与极坐标之间的对应关系.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第8页至第11页,填空:极坐标系的建立:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.极坐标系内一点的极坐标的规定:设M是平面内一点,极点O与点M的距离OM叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记ρ叫做点M为θ.有序数对),(θρ,θ可取任意实数.为0≥(2)想一想:点与极坐标有什么关系?一般地,极坐标),(θρ与)2,(πθρk +)(Z k ∈表示同一个点.特别地,极点O 的坐标为))(,0(R ∈θθ.如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的. (3)写一写:极坐标系与直角坐标系如何转化?把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的单位长度.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,则:=x θρcos , =y θρsin=2ρ22y x +, =θtan )0(≠x xy2.预习自测(1)在极坐标系中,下列各点中与)3,2(π表示的不是同一个点的是( )A .)35,2(π-B .)37,2(πC .)35,2(πD .)313,2(π 【知识点】极坐标系【解题过程】由于极坐标),(θρ与)2,(πθρk +)(Z k ∈表示同一个点,检验得,选项C 不是同一个点【思路点拨】根据点的极坐标定义代入验证可得 【答案】C(2)已知点A 的直角坐标为)2,0(,则点A 的极坐标为( )A .)2,2(πB .)0,2(C .)2,2(πD .)2,2(π-【知识点】极坐标与直角坐标互化【解题思路】根据极坐标与直角坐标互化公式可得:22022=+=ρ,显然2πθ=【思路点拨】由极坐标与直角坐标互化可得 【答案】A(3)已知点M 的极坐标为)4,3(π,则点M 的直角坐标为( )A .)3,3(B .)223,223(C .)233,23( D .)33,3( 【知识点】极坐标与直角坐标互化【解题思路】根据极坐标与直角坐标互化公式可得:223sin ,223cos ====θρθρy x 【思路点拨】由极坐标与直角坐标互化可得 【答案】B(4)已知A 、B 两点极坐标为)32,6(),3,4(ππ-B A ,则线段AB 中点的极坐标为________.【知识点】极坐标与直角坐标互化、中点坐标公式【解题过程】 将A,B 两点化为直角坐标得 )33,3(),32,2(--B A ,所以中点的直角坐标为)23,21(--,化为极坐标得)34,1(π【思路点拨】先化为直角坐标,利用在直角坐标系下的中点坐标公式求出中点,再化为极坐标 【答案】)34,1(π(二)课堂设计 1.知识回顾(1)平面直角坐标系中的点P 与坐标(a ,b)是一一对应的. 2.问题探究探究一 结合实例,认识极坐标系★ ●活动① 提出问题,创设情境如右图1是某校园教学平面示意图,假设某同学在教学楼处,请回答下列问题: (1)他向东偏北 60方向走m 120后到达什么位置?该位置唯一确定吗?(2)如果有人打听体育馆和办公楼的位置,他应如何描述? (学生回答)(1) 他向东偏北 60方向走m 120后到达是点C 图书馆的位置,该位置唯一确定.(2)如果去体育馆向正东方向走m 60,去办公楼向北偏西图145走m 50.上面刻画位置是以A 作为基点,并以射线AB 为参照方向,然后利用与A 距离和与AB 所成角度来描述位置,例如“东偏北 60,距离m 120”,即利用“距离”和“角度”来刻画平面上点的位置.在上一节中,我们用“在信息中心的西偏北 45方向,距离m 10680处”描述了巨响的位置.即以信息中心为基点,以正西方向为参照,用与信息中心的距离与正西方向所成的角来刻画巨响的位置.有时候它比直角坐标更方便,在现实生活中,有很多的应用,例如台风预报,地震预报,测量、航空、航海中主要采用这种方法.【设计意图】从生活实例到数学问题,引入学习极坐标系概念的必要性,形成用角和距离刻画点的位置的直觉.●活动② 互动交流,类比提炼概念我们类比建立平面直角坐标系的过程,怎样建立用距离与角度确定平面上点的位置的坐标系?(学生讨论交流)平面直角坐标系的建立是在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系.通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x 轴或横轴,垂直的数轴叫做y 轴或纵轴,它们的公共原点O 称为直角坐标系的原点,以点O 为原点的平面直角坐标系记作平面直角坐标系xOy .类比上述过程,我们在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.极坐标建立后,如何来定义平面中的点的极坐标呢? 如右图2,设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.一般地,不作特殊说明时,我们认为0≥ρ,θ可取任意实数.【设计意图】从特殊到特殊,类比得到极坐标系,让学生不会觉得极坐标系来得太突然,顺其图2B 自然得到点在极坐标系中的定义. ●活动③ 巩固基础,检查反馈 例1 在极坐标系里描出下列各点.)0,3(A ,)2,3(πB ,)34,5(πC ,)65,3(πD ,)35,6(πE【知识点】极坐标系的定义、点在极坐标系中的表示【数学思想】数形结合【解题过程】根据点在极坐标的表示,ρ表示的是点到极点的距离,θ表示射线与极轴所成的角,所以个点在极坐标的位置如图. 【思路点拨】欲确定点的位置,需先确定ρ和θ的值. 【答案】如右图.同类训练 在右图3的极坐标系中描出下列点的位置:)4,3(πF ,),4(πG【知识点】极坐标系的定义、点在极坐标系中的表示【数学思想】数形结合【解题过程】根据点在极坐标的表示,ρ表示的是点到极点的距离,θ表示射线与极轴所成的角,所以个点在极坐标的位置如图3.【思路点拨】欲确定点的位置,需先确定ρ和θ的值. 【答案】如右图3.探究二 探究点与极坐标的对应关系 ●活动① 认识差异、辨析极坐标系在图1中,用点E D C B A ,,,,分别表示教学楼,体育馆,图书馆,实验楼,办公楼的位置.建立适当的极坐标系,写出各点的极坐标.我们以点A 为极点,AB 所在的射线为极轴(单位长度为m 1),GFAD CE4πOx2π 65π π34π 35π图34πOx2π 65π π34π 35π x图4建立极坐标系,则E D C B A ,,,,的极坐标分别为)43,50(),2,360(),3,120(),0,60(),0,0(πππ建立极坐标系后,给定ρ和θ,就可以在平面内惟一确定点M ,反过来,给点平面内任意一点,也可以找到她的极坐标),(θρ.但是否和平面直角坐标系中的点和直角坐标一样,极坐标和点事一一对应的关系呢?【设计意图】通过对点的极坐标的认识,为后面点的极坐标不惟一做好铺垫. ●活动② 合作探究,解决问题我们来观察下列极坐标表示的点之间有何关系呢?)26,4(),46,4(),26,4(),6,4(πππππππ-++由终边相同的角的定义可知,上述极坐标表示的是同一个点,于是:一般地,极坐标),(θρ和))(2,(Z k k ∈+πθρ表示同一个点,所以,极坐标和直角坐标不同,平面内一个点的极坐标有无数种表示.特别地,极点O 的极坐标为))(,0(R ∈θθ如果我们规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的.同类训练 在极坐标系中,写出下图中各点的极坐标(πθρ20,0<≤>)A (4,0)B ( )C ( )D ( ) F ( ) G ( ) 【知识点】极坐标系的定义、点在极坐标系中的表示 【数学思想】数形结合【解题过程】根据点A 的极坐标,可以得到其它点的极坐标)4,2(πB ,)2,3(πC ,)65,1(πD ,)34,6(πF ,)35,5(πG .【思路点拨】(1)写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能把顺序颠倒了. (2)点的极坐标是不惟一的,但若限制ρ>0,0≤θ<2π,则除极点外,点的极坐标是惟一确定的.【答案】)4,2(πB ,)2,3(πC ,)65,1(πD ,)34,6(πF ,)35,5(πG .【设计意图】通过辨析认识点的极坐标是不唯一的,加深对极坐标系的认识. 探究三 实现极坐标与直角坐标的互化★▲ ●活动① 归纳梳理、理解实质平面内的一个点既可以用直角坐标表示,也可以用极坐标来表示,那么这两种坐标之间有何联系呢?把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图5所示.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,于是极坐标与直角坐标的互化公式如下:⎩⎨⎧==θρθρsin cos y x ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x y y x θρ 这就是极坐标和直角坐标的互化公式. 【设计意图】得到直角坐标与极坐标之间的关系. 活动② 巩固基础,检查反馈例2 分别把下列点的极坐标化为直角坐标(1))6,2(π (2))2,3(π【知识点】极坐标与直角坐标互化. 【解题过程】(1)由cos 2cos36sin 2sin16x y πρθπρθ======所以点的极坐标)6,2(π化为直角坐标为)1,3(.图5(2)由cos 3cos02sin 3sin32x y πρθπρθ======所以点的极坐标)2,3(π化为直角坐标为)3,0(.【思路点拨】将点的极坐标),(θρ化为点的直角坐标),(y x 时,运用到求角θ的正弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是关键. 【答案】(1) )1,3( (2) )3,0(. 同类训练 分别把下列点的极坐标化为直角坐标(1))32,4(π(2)),(ππ 【知识点】极坐标与直角坐标互化. 【数学思想】【解题过程】(1)3232sin 4sin 232cos 4cos ===-===πθρπθρy x 所以点的极坐标)32,4(π化为直角坐标为)32,2(-.(2)由cos cos sin sin 0x y ρθπππρθππ===-===所以点的极坐标),(ππ化为直角坐标为)0,(π-.【思路点拨】将点的极坐标),(θρ化为点的直角坐标),(y x 时,运用到求角θ的正弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是关键. 【答案】(1) )32,2(- (2) )0,(π-.例3 已知点B 、C 的直角坐标为)2,2(-,)15,0(-,求它的极坐标(ρ>0,0≤θ<2π). 【知识点】极坐标与直角坐标互化.【解题过程】∵ρ=,22)2(22222=-+=y x +122tan -=-=θ,且点位于第四象限∴θ=47π,点B 的极坐标为(22,47π).又∵x =0,y <0,ρ=15,∴点C 的极坐标为(15,23π).【思路点拨】化点的直角坐标为极坐标时,一般取πθρ20,0<≤≥,即θ取最小正角,由tanθ=xy求θ时,还需结合在直角坐标系下点),(y x 所在的象限来确定θ的值. 【答案】B(22,47π) C(15,23π).同类训练 分别把下列点的直角坐标化为极坐标(限定ρ≥0,0≤θ<2π)(1) )3,3(; (2) )1,1(-- ;(3) )0,3(-. 【知识点】极坐标与直角坐标互化. 【数学思想】【解题过程】(1)333tan ,323)3(22===+=θρ 又因为点在第一象限,所以3πθ=.所以点)3,3(的极坐标为)3,32(π. (2)111tan ,2)1()1(22=--==-+-=θρ又因为点在第三象限,所以45πθ=.所以点)1,1(--的极坐标为)45,2(π.(3)30)3(22=+-=ρ,极角为π,所以点)0,3(-的极坐标为),3(π.【思路点拨】化点的直角坐标为极坐标时,一般取πθρ20,0<≤≥,即θ取最小正角,由tanθ=xy求θ时,还需结合在直角坐标系下点),(y x 所在的象限来确定θ的值. 【答案】(1))3,32(π (2))45,2(π(3)),3(π.【设计意图】巩固检查极坐标与直角坐标互化公式. 3.课堂总结 知识梳理(1)极坐标系的建立:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系内一点的极坐标的规定:设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.一般地,不作特殊说明时,我们认为0≥ρ,θ可取任意实数.(3)如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的.(4)把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,于是极坐标与直角坐标的互化公式如下:⎩⎨⎧==θρθρsin cos y x ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x y y x θρ 重难点归纳(1)极坐标系就是用长度和角度来确定平面内点的位置.极坐标系的建立有四个要素:①极点;②极轴;③长度单位;④角度单位和它的正方向.四者缺一不可.(2)写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能颠倒顺序(3)若两个坐标系符合三个前提条件:(1)极点与直角坐标系的原点重合; (2) 极轴与直角坐标系的x 轴的正半轴重合; (3) 两种坐标系的单位长度相同.则其相互转化:(三)课后作业 基础型 自主突破1.极坐标系中,点)1,2(πP 到极点的距离是( ) A .0 B .1 C .2 D .π2 【知识点】极坐标的定义.【解题过程】由极坐标定义)1,2(πP 已知πρ2=,故P 到极点的距离为2π. 【思路点拨】根据极坐标的定义进行判断. 【答案】D .2.下列各点中与极坐标)7,5(π表示同一个点的是( ).)0(tan ,222≠=+=x xyy x θρ 直角坐标),(y x M极坐标),(θρMθρθρsin ,cos ==y xA .(5,67π)B .(5,157π)C .(5,67π-)D .(5,7π-) 【知识点】点在极坐标系中的表示.【数学思想】 【解题过程】根据极坐标)7,5(π和))(27,5(Z k k ∈+ππ表示同一个点,取1=k ,得选项B . 【思路点拨】极坐标),(θρ和))(2,(Z k k ∈+πθρ表示同一个点.【答案】B .3.在直角坐标系中点()3,1-P ,则它的极坐标是A .⎪⎭⎫ ⎝⎛3,2πB .⎪⎭⎫ ⎝⎛34,2πC .⎪⎭⎫ ⎝⎛-3,2πD .⎪⎭⎫ ⎝⎛-34,2π 【知识点】极坐标与直角坐标互化. 【解题过程】因为313tan ,21)3(22-=-==+-=θρ,且点在第四象限,所以选C 【思路点拨】根据极坐标与直角坐标互化来求解.【答案】C .4.已知O 为极点,π23A ⎛⎫ ⎪⎝⎭, ,7π56B ⎛⎫- ⎪⎝⎭,,则AOB S ∆= ( ) A.2 B.3 C.4 D.5错误!未找到引用源。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
坐标对应关系为:
2
x
1xLeabharlann 21y y
通常把 1 叫做平面直角坐标系中的一个压缩变换。
a
11
(2)怎样由正弦曲线y=sinx得到曲 线y=3sinx?写出其坐标变换。
y
y=3sinx
y=sinx
O
2 x
a
12
(2)怎样由正弦曲线y=sinx得到曲线y=3sinx?写出 其坐标变换。
在正弦曲线上任取一点P(x,y),保持横坐标x不变, 将纵坐标伸长为原来的3倍,就得到曲线y=3sinx。
代入x2+y2=1得2x22y2 1
又4x29y236 则
1 3 1 2
得
x
1 3
x
y
1 2
y
a
18
2.在同一直角坐标系下经过伸缩变换
x y
3x y
后,
曲线C变为 x2 9y2 9,求曲线C的方程并画出
图形。
2.解:将xy3yx代入 x2-9y2=9
得9x2-9y2=9 即x2-y2=1
y=sin2x
2
O
x
a
y=sinx 10
在正弦曲线y=sinx上任取一点P(x,y),保持纵坐标不变, 将横坐标x缩为原来的 ,就1 得到正弦曲线y=sin2x.
2
上述的变换实质上就是一个坐标的压缩变换,即:
设P(x,y)是平面直角坐标系中任意一点,保持纵坐标
不变,将横坐标x缩为原来 1 ,得到点 px, y
解: 1由伸缩变换xy23xy 得
代入2x+3y=0 得x+y=0
x
y
1 x 2 1 y 3
2由伸缩变换xy 23xy得xy 1213 xy
x2
代入x2+y2=1得4a
+
y 2 9
=1
17
1.在同一直角坐标系下,求满足下列图形的伸缩变换:
曲线4x2+9y2=36变为曲线 x2 y2 1
1解 : 设 伸 缩 变 换 x y xy, 0
a
xxz1
a
2
a
3
a
4
a
5
a
6
a
7
a
8
根据几何特点选择适当的直角坐标系的一些规则: (1)如果图形有对称中心,可以选择对称中心为坐标原点; (2)如果图形有对称轴,可以选择对称轴为坐标轴; (3)使图形上的特殊点尽可能地在坐标轴上。
a
9
二.平面直角坐标系中的伸缩变换
思考: (1)怎样由正弦曲线y=sinx得到曲线y=sin2x?
再选定一个长度单位和角度单位(通
常取弧度)及它的正方向(通常取逆
时针方向),
O
X
这样就建立了一个极坐标系。
a
26
想一想?
如图:极坐标系OX,对比直角坐标 系想一想平面上任意一点M的极 坐标该如何表示?
M.
记:M(,)
O
X
a
27
表示线段OM的长度,叫做点M的极径;
表示以OX为始边,射线OM为终边的 角,叫做点M的极角;
y=3sin2x.
设点P(x,y)经变换得到点为
x 1 x
2 y 3 y
3
通常把 3 叫做平面直角坐标系中
的一个坐标伸缩变换。
a
15
定义:设P(x,y)是平面直角坐标系中任意一点,
在变换:xy''xy
(0) (0)
4
的作用下,点P(x,y)对应 px, y 称
为平面直角坐标系中的伸缩变换。
标,并标出点D(2,),E(4,5),F(3.5, 5 )
所在的位置.
4
6
3
a
30
例2:下图是某校园的平面示意图,点 A,B,C,D,E分别表示教学楼,体育馆,图 书馆,实验楼,办公楼的位置,建立适当的 极坐标系,写出各点的极坐标。
D
C
E
120m
50m45o 60o A O 60m B
A(0,0) B(60,0)
有序数对(,)就M叫. 做点M的极坐标.
O
X
强调:不做特殊说明时,≥0,∈R
当=0时,表示极a 点。
28
思考?
1.在极坐标平面上点与坐标的对应 关系是怎样的?
2.极坐标平面上一个定点M(,)的 极坐标是否可以写出统一的表达 式?
3.若使极坐标平面上点与坐标也为 一一对应关系需增加什么条件?
a
29
例1:说出图中点A、B、C的极 坐
C(120, )
D(60 3, )
3
2
3
E(50, )
4
X
a
31
思考?
平面内一点P的直角坐标是( 3 ,1), 其极坐标如何表示?点Q的极坐标 为( 5 , 2 ),其直角坐标如何表示?
3
答案:P ( 2, ) Q( 5 , 5 3 ),
6
22
a
32
三、极坐标与直角坐标的互化 公式
直化 2x 极 2y2,t: a ny(x0 )
a
19
课堂小结:
(1)体会坐标法的思想,应用坐标 法解决几何问题;
(2)掌握平面直角坐标系中的伸缩 变换。
a
20
a
21
a
22
从这里向东北走 500米就到了
请问:去车 站怎么走?
好心人
问路人
a
23
请认真分析好心人的回答:“从这里 向东北走500米就到了”,他是从哪 些方面确定车站位置的?
出发点、方向、距离
注 (1) 0,0
(2)把图形看成点的运动轨迹,平面图形 的伸缩变换可以用坐标伸缩变换得到;
(3)在伸缩变换下,平面直角坐标系不变, 在同一直角坐标系下进行伸缩变换。
a
16
例2:在直角坐标系中,求下列方程所对应的图形经过
伸缩变换 x 2 x
y
3y
后的图形。(1)2x+3y=0; (2)x2+y2=1
在我们日常生活中人们经常用方
向和距离来确定一点的位置,这种用 方向和距离确定平面上一点位置的思 想,就是极坐标的基本思想。
a
24
试一试?
请大家回忆直角坐标系的建立过 程,试着建立一个用距离与角度 确定平面上一点位置的坐标系.
a
25
一、极坐标系的建立:
在平面内取一个定点 O,叫做极点;
引一条射线 OX ,叫做极轴;
设点P(x,y)经变换得到点为 p x, y
x x
y
3y
2
通常把 2 叫做平面直角坐标系中的一个坐标伸 长变换。
a
13
(3)怎样由正弦曲线y=sinx得到曲 线y=3sin2x? 写出其坐标变换。
y
y=3sin2x
y=sinx
2
O
x
a
14
(3)怎样由正弦曲线y=sinx得到曲线 在y正=3弦sin曲2线x?y=写si出nx其上坐任标取变一换点。P(x,y),保持纵坐 标将不纵变坐,标将变横为坐原标来x的缩3为倍原,来就的得到12 正,弦在曲此线基础上,
x
极化 x直 co ,: y ssin
a
33
例3:互化下列直角坐标与极坐标
(2 3,2)
(4, )
6
(0,1)
(1, ) 2
(3,0)
(3,)
(3, 3) ( 3,1) (5,0)
5
(2 3, )
(2, 7 )
6
6
(5,0)
a
34
探索?
1、极坐标系中点的对称关系?