高二数学选修44平面直角坐标系中极坐标系 (高考必修

合集下载

高二数学,人教A版,选修4-4 , 第2课时,极坐标,和直角坐标的互化 , 课件

高二数学,人教A版,选修4-4 ,    第2课时,极坐标,和直角坐标的互化 ,    课件
7π 3,-1)化为极坐标为2, 6 .
[规律方法]
2
将点的直角坐标(x,y)化为极坐标(ρ,θ)时,
2
y 运用公式 ρ= x +y ,tan θ=x(x≠0)即可.在[0,2π)范围内,由 y tan θ=x(x≠0)求 θ 时, 要根据直角坐标符号特征判断出点所在的 象限.如果允许 θ∈R,再根据终边相同的角的意义,表示为 θ +2kπ(k∈Z)即可.
解析: (1)∵ρ=2,θ=0,
∴x=2cos θ=2,y=2sin θ=0, ∴将极坐标(2,0)化为直角坐标为(2,0). 0 (2)∵ρ= -2 +0 =2,tan θ= =0, -2
2 2
由于点(-2,0)在 x 轴的非正半轴上,所以 θ=π, ∴将直角坐标(-2,0)化为极坐标为(2,π).
(2)互化公式: 设 M 是平面内任意一点, 它的直角坐标是(x, y),极坐标是(ρ,θ)(ρ≥0), 于是极坐标与直角坐标的互化公式如表: 点M 互化 公式 直角坐标(x,y)
______ cos θ x=ρ sin θ ______ y=ρ
极坐标(ρ,θ)
x2+y2 ρ2=______

tan θ=-1,θ∈[0,2π), 3π 由于点(-1,1)在第二象限,所以 θ= 4 ,
∴直角坐标(-1,1)化为极坐标为
2 2
3π 2, 4 .
-1 3 (2)ρ= - 3 +-1 =2,tan θ= =3, - 3 7π 由于点(- 3,-1)在第三象限,所以 θ= 6 , ∴直角坐标(-
二 极坐标 第2课时 极坐标和直角坐标的互化
课标定位
1.了解极坐标系与直角坐标系的联系.
2.掌握极坐标和直角坐标的互化关系式.

高中数学第1章坐标系1.2.2点的极坐标与直角坐标的互化课件北师大版选修44

高中数学第1章坐标系1.2.2点的极坐标与直角坐标的互化课件北师大版选修44

【 自 主 解 答 】 (1) 由 于 直 角 坐 标 原 点 (0,0) 与 极 点 重 合 , 所 以 限 定
ρ≥0,0≤θ<2π 时,其极坐标为(0,θ).
(2)∵ρ= x2+y2= -12+-12= 2,tan θ=yx=1,θ∈[0,2π).
由于点(-1,-1)在第三象限,所以 θ=54π.
第二十九页,共40页。
1.本例综合考查了点的极坐标与直角坐标的互化公式以及等腰直角三角形 的意义和性质.结合几何图形可知,点 C 的坐标有两解,设出点的坐标寻求等量 关系建立方程组求解是关键.
2.坐标平面内两点间的距离公式: (1)如果已知点的直角坐标 A(x1,y1),B(x2,y2), 那么|AB|= x1-x22+y1-y22; (2) 如 果 已 知 点 的 极 坐 标 A(ρ1 , θ1) , B(ρ2 , θ2) , 那 么 |AB| = ρ12+ρ22-2ρ1ρ2cosθ1-θ2.
且|AC|=|BC|,∴A→C ·B→C =0,
即(x- 2,y- 2)·(x+ 2,y+ 2)=0,
第二十五页,共40页。
∴(x- 2)(x+ 2)+(y- 2)(y+ 2)=0,
∴x2+y2=4.

又|AC|2=|BC|2,于是
(x- 2)2+(y- 2)2=(x+ 2)2+(y+ 2)2,
即 y=-x,代入①得 x2=2, 解得 x=± 2,
[构建·体系]
第二十三页,共40页。
在极坐标系中,如果点 A,B 的极坐标分别为 A2,π4,B2,54π, 且△ABC 为等腰直角三角形,求直角顶点 C 的极坐标与该三角形的面积.
【精彩点拨】 解答本题既可以把极坐标转化为直角坐标来解,也可以利 用余弦定理来解决.

人教版高中数学选修4-4课件:第一讲二极坐标

人教版高中数学选修4-4课件:第一讲二极坐标

4.写出下图中各点的极坐标:
A________,B________,C________. 答案:(4,0) 2,π4 3,π2
5.极坐标系中,与点3,-π3关于极轴所在直线对 称的点的极坐标是________.
答案:3,π3
类型 1 极坐标系与点的极坐标(自主研析) [典例 1] (1)写出下图中各点的极坐标(ρ>0,0≤ θ<2π,且各线之间间距相等).
法二 将点 A 化为直角坐标为( 3,1),点 B 化为直 角坐标为( 3,-1).所以 A、B 两点间的距离
d= ( 3- 3)2+[1-(-1)]2=2. (2)如下图所示:
关于极轴的对称点为 B2,-π3. 关于直线 l 的对称点为 C2,23π. 关于极点 O 的对称点为 D2,-23π.
归纳升华 1.点(ρ,θ)关于极轴的对称点是(ρ,-θ)或(ρ,2π- θ),关于极点的对称点是(ρ,π+θ),关于过极点且垂直 于极轴的直线的对称点是(ρ,π-θ).
2.求极坐标系中两点间的距离应通过由这两点和极 点 O 构成的三角形求解,也可以运用两点间距离公式|AB| = ρ21+ρ22-2ρ1ρ2cos(θ1-θ2)求解,其中 A(ρ1,θ1), B(ρ2,θ2).注意当 θ1+θ2=2kπ(k∈Z)时,|AB|=|ρ1-ρ2|; 当 θ1+θ2=2kπ+π(k∈Z)时,|AB|=|ρ1+ρ2|.
2.点的极坐标
一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一 个点.特别地,极点 O 的坐标为(0,θ)(θ∈R).和直角坐 标不同,平面内一个点的极坐标有无数种表示方法.
如果规定 ρ>0,0≤θ<2π,那么除极点外,平面内的 点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表 示的点也是唯一确定的.

高二数学 4-4第一章坐标系全部教案

高二数学  4-4第一章坐标系全部教案

表示方法?(3)、坐标不唯一是由谁引起的?(4)、不同的极坐标是否可以写出统一
表达式。约定:极点的极坐标是 =0, 可以取任意角。
变式训练 :在极坐标系里描出下列各点
A(3,0) B(6,2 )C(3, )D(5, 4 )E(3, 5 )F(4, )G(6, 5 )
2
3
6
3
例 2 在极坐标系中,
特别强调:由极径的意义可知 ≥0;当极角 的取值范围是[0,2 )时,平面上的 点(除去极点)就与极坐标(,)建立一一对应的关系 .们约定,极点的极坐标是极 径 =0,极角是任意角. 3、负极径的规定:在极坐标系中,极径 允许取负值,极角 也可以去任意的正角 或负角,当 <0 时,点 M (,)位于极角终边的反向延长线上,且 OM= 。
(1)如果图形有对称中心,可以选对称中心为坐标原点;
(2)如果图形有对称轴,可以选择对称轴为坐标轴;
(3)使图形上的特殊点尽可能多的在坐标轴上。
(二)、平面直角坐标轴中的伸缩变换
1、在平面直角坐标系中进行伸缩变换,即改变 x 轴或 y 轴的单位长度,将会对图形
产生影响。
2、探究:(1)在正弦曲线 y=sinx 上任取一点 P(x,y),保持纵坐标不变,将横坐标 x
π 3
<0,解得 k=-1,
= 3
-2 =- 5 , 点 A 的坐标为(5,- 5 ).
3
3
变式训练:1、若 ABC的的三个顶点为 A(5, 5 ), B(8, 5 ),C(3, 7 ),判断三角形的形状.
2
6
6
答案:正三角形。2、若 A、B 两点的极坐标为 (1,1), (2 ,2 ) 求 AB 的长以及 AOB 的 面积。(O 为极点)

高考数学一轮复习选修44坐标系与参数方程课件新人教A版理

高考数学一轮复习选修44坐标系与参数方程课件新人教A版理

3
cos +sin
(2)C3 是一条过原点且斜率为正值的直线,
C3 的极坐标方程为 θ=α,α∈ 0,
π
2
,
= 2cos,
联立 C1 与 C3 的极坐标方程
= ,
得 ρ=2cos α,即|OA|=2cos α.
3
= cos +sin ,
联立 C1 与 C2 的极坐标方程
= ,
-11知识梳理
1
双基自测
2
3
4
5
2.若原点与极点重合,x 轴正半轴与极轴重合,则点(-5,-5√3)的极
坐标是(
)
π
A. 10, 3

C. -10,- 3

B. 10, 3

D. 10, 3
关闭
设点(-5,-5√3)的极坐标为(ρ,θ),
-5 √3
则 tan θ=
-5
= √3.

因为 x<0,所以最小正角 θ= ,
由圆 C1 与圆 C2 的方程相减可得公共弦所在的直线方程为
4x-2y+1=0.
圆心(1,1)到直线 4x-2y+1=0 的距离 d=
故弦长|AB|=2 1-
3 2
√20
=
√55
5
.
|4-2+1|
42 +(-2)2
=
3
,
√20
-24考点1
考点2
考点3
考点4
考点5
(2)解 ①圆 O:ρ=cos θ+sin θ,即 ρ2=ρcos θ+ρsin θ,
3
3
得 ρ=cos +sin ,即|OB|=cos +sin ,

高考数学冲刺讲义选修4-4坐标系与参数方程(选考)

高考数学冲刺讲义选修4-4坐标系与参数方程(选考)
解:把直线的参数方程代入圆的方程,得
(1 t ) (1 t ) 4,
2 2
因此t1 1, t2 1
t 1
2
x1 0 分别代入直线方程,得 y1 2 交点为A(0,2)和B(2,0)。
x2 2 y2 0
选修4-4
六.圆锥曲线的参数方程
x x0 lt ,t R y y0 mt
例10:直线过点A(1,3),且与向量(2,-4)共线: (1)求出直线的参数方程;(2)练习:求点P(-2,-1) 到此直线的距离。
x 1 2t y 3 4t
解:(1)
(2)解第二问的方法很多,最简单的方法就是把直线才 参数方程转换为直线的一般方程,然后利用点到直线 的距离公式求解。 答案: 2 2
又因为(t以s为单位),得参数方程
x 2 cos 60 t ,t 0 y 2 sin t 60

O
A 2 x
曲线的直角坐标方程常常可以转化为参数方程,转化的 关键是找到一个适当的参数。
曲线的普通方程和参数方程之间有些容易转化,有些则 较困难,有些无法转化。
由此可见,平面上的点与它的极坐标不是一一对应关系。这是极 坐标与直角坐标的 0 ,此时极坐标 ( , ) 对应的点M 的位置下面规则确定:点M在与极轴成 角的射线的反向 延长线上, 它到极点O的距离为 ,即规定当 0 时,点
M ( , ) 就是点M ( , ) 。
选修4-4
坐标系 与 参数方程
选修4-4
一.坐标系 在生产实践中,随着活动范围的扩大和对精度要 求的提高,为了更快,更准确的表述物体的位置, 我们通常要建立新的坐标系,叫做极坐标。

高二数学选修4-4极坐标系

高二数学选修4-4极坐标系

(2)在平面直角坐标系上,平面上所有点的集合与全体有序实数对 (x , y)的集合建立一一对应;
(3)在空间直角坐标系上,空间上所有点的集合与全体三元有序实数对 (x , y , z)的集合建立一一对应;
复习回顾
4.1.1 直角坐标系

平面直角

坐标系
空间直角 坐标系
R
(x , y)
(x , y , z)
五、极坐标系下点的极坐标
探索点M(3,/4)的所有极坐标
P
M [1]极径是正的时候:
3,2k

4
O
X
[2]极径是负的时候:
( 3,2k )
4
新课讲解
六、极坐标系下点与它的极坐标的对应情况
[1]给定(,),就可以在极坐标平面 内确定唯一的一点M。
[2]给定平面上一点M,但却有无数个 极坐标与之对应。
π 4

练一练
题组2:在极坐标系里描出下列各点
A(3, 0)
B(6, 2 )

C(3, )
2
D(5, 4 )
3
E(3, 5 )
6
F (4, )
5
G(6, ) 3
解析: 2
5
6
C
E

F
A O
B X
4
D
3
G 5
3
新课讲解
四、1、负极径的定义
说明:一般情况下,极径都是正值;在某些必要 情况下,极径也可以取负值。

)重合
的点是(C)
A.(3, C. (3,
6

)
5
6
)
6

人教B版高二数学选修4-4_4.(2)极坐标与直角坐标互化课件

人教B版高二数学选修4-4_4.(2)极坐标与直角坐标互化课件

y
cos sin
2、 ( , ) (x,y)2tanx2xyy2
人教B版高二数学选修4-4_4.(2)极 坐标与 直角坐 标互化 课件
人教B版高二数学选修4-4_4.(2)极 坐标与 直角坐 标互化 课件
课外作业
人教B版高二数学选修4-4_4.(2)极 坐标与 直角坐 标互化 课件
练一练
某地区原计划经过B地沿着东北方向修建一条高速公路.但在A 村北偏西300方向距A村500米处,发现一古代文物遗址W, 经过初步勘测,文物管理部门将遗址W周围200米划为禁区。 已知B地位于A村的正西方向1千米处,试问:修建高速公路 的计划需要改变吗?如图示:
C
W
B
A
人教B版高二数学选修4-4_4.(2)极 坐标与 直角坐 标互化 课件
人教B版高二数学选修4-4_4.(2)极 坐标与 直角坐 标互化 课件
人教B版高二数学选修4-4_4.(2)极 坐标与 直角坐 标互化 课件
练一练
练习:已知点的直角坐标, 求它们的极坐标.
A (3, 3) C (5,0) E (3,3)
B (1, 3) D (0,2)
F (3, 0)
人教B版高二数学选修4-4_4.(2)极 坐标与 直角坐 标互化 课件

化成直角坐标.
解:由5, 2
则有 x5co2s35 y5sin2 5 3
32
32
所以, 点M的直角坐标为( 5 , 5 3 )
22
人教B版高二数学选修4-4_4.(2)极 坐标与 直角坐 标互化 课件
特此声明
由于一个点达 可式 有, 多 对 0种 时于 表 ,上
公式仍适用!
例如:上述点也的可极写坐 -成 5, 标 5( )

人教版高二数学选修4《极坐标系的概念》课件(共27张PPT)

人教版高二数学选修4《极坐标系的概念》课件(共27张PPT)
新课标人教版课件系列选修4-4
极坐标系的概念
余集高中数学组
唐汝照
Page 1
教学目标
1、理解极坐标的概念,弄清极坐标系的 结构( 建立极坐标系的四要素); 2、理解广义极坐标系下点的极坐标(ρ, θ)与点之间的多对一的对应关系; 3、已知一点的极坐标会在极坐标系中描 点,以及已知点能写出它的极坐标。
极点;极轴;长度单位;计算角度的正方向.
[2]极坐标系内一点的极坐标有多少种表达式?
无数,极角有无数个. [3]一点的极坐标有否统一的表达式? 有。(ρ ,2kπ +θ )
Page 24
课后作业 思考: 极坐标系中, 点M的坐标为 (-10, 3 ), 则下列各 坐标中, 不是M点 的坐标的是( ) 4 ) (A) (10, 3 ) (B) (-10, - 5 3 2 2 (C) (10, - 3 ) (D)(10, 3 )
点M:在角终边的反向延长线上, 且|OM|=|| 5 ° M(-2, ) O 5
6 ° O 6 • •M(-x 2, 5) M (, ) 6
5、关于负极径
x
Page 20
小结: 从比较来看, 负极径比正极径 多了一个操作, 将射线OP“反向延
练习:写出下列各点的负极径的极坐标
Page 25
Page 2
β=α+2kπ,k∈Z 与角α终边相同的角:
平面直角坐标系中的点P与坐标 y 一一 对应的. (a ,b)是 _____ P(a,b)
平面直角坐标系是最 a O x 简单最常用的一种坐标 系,但不是唯一的一种 坐标系. 有时用别的坐 标系比较方便. 还有什么坐标系呢?
Page 3
(, 2k+)

高中数学 第一讲 坐标系 二 第一课时 极坐标系的概念课件 a选修44a高二选修44数学课件

高中数学 第一讲 坐标系 二 第一课时 极坐标系的概念课件 a选修44a高二选修44数学课件

12/8/2021
第十四页,共二十八页。
跟踪(gēnzōng)训练2 在极坐标系中,点A的极坐标是
的对π2称点的极坐标(规定ρ>0,θ∈[0,2π)).
3,π6 ,求点A关于直线θ=
解 作出图形,可知 A3,π6关于直线 θ=π2的对称点是3,56π.
12/8/2021
第十五页,共二十八页。
解答
类型(lèixíng)三 极坐标系中两点间的距离
12/8/2021
第一(dìyī)讲 二 极坐标系
第1课时(kèshí) 极坐标系的概

第一页,共二十八页。
学习目标
1.了解极坐标系的实际背景. 2.理解(lǐjiě)极坐标系的概念.
3.理解极坐标的多值性.
12/8/2021
第二页,共二十八页。
内容索引
12/8/2021
问题(wèntí)导 学
③定单位:选定一个长度单位,一个角度单位(通常(tōngcháng)取弧度)及其正方向(通常取
逆时针方向).
(2)点的极坐标
①定义:有序数对(ρ,θ)叫做点M的极坐标,记为
②意义:ρ=
,即极点O与点M的距离(ρ≥0).
|OM|
θ= ,即以极轴Ox为始边,射线OM为终边的角.
∠xOM
12/8/2021
2.若将极角θ改为(ɡǎi wéi)θ∈R,求例2中的点的极坐标.
解 B2,53π+2kπ,C2,23π+2kπ,D2,43π+2kπ(k∈Z).
12/8/2021
第十三页,共二十八页。
解答
反思与感悟 (1)设点M的极坐标是(ρ,θ),则M点关于(guānyú)极点的对称点的极坐 标是(-ρ,θ)或(ρ,θ+π);M点关于极轴的对称点的极坐标是(ρ,-θ);M点关 于过极点且垂直于极轴的直线的对称点的极坐标是(ρ,π-θ)或(-ρ,-θ). (2)点的极坐标不是惟一的,但若限制ρ>0,0≤θ<2π,则除极点外,点的极坐标是 惟一确定的. (3)写点的极坐标要注意顺序,极径ρ在前,极角θ在后,不能颠倒顺序.

人教课标版高中数学选修4-4:《极坐标系》教案-新版

人教课标版高中数学选修4-4:《极坐标系》教案-新版

1.2 极坐标系一、教学目标(一)核心素养通过这节课学习,认识极坐标系、能在极坐标系下用极坐标表示点的位置,会进行极坐标和直角坐标的互化,在直观想象、数学抽象中感受极坐标的特点.(二)学习目标1.通过实例,认识极坐标系,体会用极坐标表示点的特点.2.了解用极坐标系表示点的不唯一性.3.能进行极坐标系与平面直角坐标系的互化,体会在极坐标系和平面直角坐标系中刻画点的位置的区别.(三)学习重点1.认识极坐标系的重要性.2.用极坐标刻画点的位置.3.会进行极坐标与直角坐标的互化.(四)学习难点1.理解用极坐标刻画点的位置的基本思想.2.认识点与极坐标之间的对应关系.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第8页至第11页,填空:极坐标系的建立:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.极坐标系内一点的极坐标的规定:设M是平面内一点,极点O与点M的距离OM叫做点M的极径,记为ρ;以极轴Ox为始边,射线OM为终边的角xOM叫做点M的极角,记ρ叫做点M为θ.有序数对),(θρ,θ可取任意实数.为0≥(2)想一想:点与极坐标有什么关系?一般地,极坐标),(θρ与)2,(πθρk +)(Z k ∈表示同一个点.特别地,极点O 的坐标为))(,0(R ∈θθ.如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的. (3)写一写:极坐标系与直角坐标系如何转化?把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的单位长度.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,则:=x θρcos , =y θρsin=2ρ22y x +, =θtan )0(≠x xy2.预习自测(1)在极坐标系中,下列各点中与)3,2(π表示的不是同一个点的是( )A .)35,2(π-B .)37,2(πC .)35,2(πD .)313,2(π 【知识点】极坐标系【解题过程】由于极坐标),(θρ与)2,(πθρk +)(Z k ∈表示同一个点,检验得,选项C 不是同一个点【思路点拨】根据点的极坐标定义代入验证可得 【答案】C(2)已知点A 的直角坐标为)2,0(,则点A 的极坐标为( )A .)2,2(πB .)0,2(C .)2,2(πD .)2,2(π-【知识点】极坐标与直角坐标互化【解题思路】根据极坐标与直角坐标互化公式可得:22022=+=ρ,显然2πθ=【思路点拨】由极坐标与直角坐标互化可得 【答案】A(3)已知点M 的极坐标为)4,3(π,则点M 的直角坐标为( )A .)3,3(B .)223,223(C .)233,23( D .)33,3( 【知识点】极坐标与直角坐标互化【解题思路】根据极坐标与直角坐标互化公式可得:223sin ,223cos ====θρθρy x 【思路点拨】由极坐标与直角坐标互化可得 【答案】B(4)已知A 、B 两点极坐标为)32,6(),3,4(ππ-B A ,则线段AB 中点的极坐标为________.【知识点】极坐标与直角坐标互化、中点坐标公式【解题过程】 将A,B 两点化为直角坐标得 )33,3(),32,2(--B A ,所以中点的直角坐标为)23,21(--,化为极坐标得)34,1(π【思路点拨】先化为直角坐标,利用在直角坐标系下的中点坐标公式求出中点,再化为极坐标 【答案】)34,1(π(二)课堂设计 1.知识回顾(1)平面直角坐标系中的点P 与坐标(a ,b)是一一对应的. 2.问题探究探究一 结合实例,认识极坐标系★ ●活动① 提出问题,创设情境如右图1是某校园教学平面示意图,假设某同学在教学楼处,请回答下列问题: (1)他向东偏北 60方向走m 120后到达什么位置?该位置唯一确定吗?(2)如果有人打听体育馆和办公楼的位置,他应如何描述? (学生回答)(1) 他向东偏北 60方向走m 120后到达是点C 图书馆的位置,该位置唯一确定.(2)如果去体育馆向正东方向走m 60,去办公楼向北偏西图145走m 50.上面刻画位置是以A 作为基点,并以射线AB 为参照方向,然后利用与A 距离和与AB 所成角度来描述位置,例如“东偏北 60,距离m 120”,即利用“距离”和“角度”来刻画平面上点的位置.在上一节中,我们用“在信息中心的西偏北 45方向,距离m 10680处”描述了巨响的位置.即以信息中心为基点,以正西方向为参照,用与信息中心的距离与正西方向所成的角来刻画巨响的位置.有时候它比直角坐标更方便,在现实生活中,有很多的应用,例如台风预报,地震预报,测量、航空、航海中主要采用这种方法.【设计意图】从生活实例到数学问题,引入学习极坐标系概念的必要性,形成用角和距离刻画点的位置的直觉.●活动② 互动交流,类比提炼概念我们类比建立平面直角坐标系的过程,怎样建立用距离与角度确定平面上点的位置的坐标系?(学生讨论交流)平面直角坐标系的建立是在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称直角坐标系.通常,两条数轴分别置于水平位置与垂直位置,取向右与向上的方向分别为两条数轴的正方向.水平的数轴叫做x 轴或横轴,垂直的数轴叫做y 轴或纵轴,它们的公共原点O 称为直角坐标系的原点,以点O 为原点的平面直角坐标系记作平面直角坐标系xOy .类比上述过程,我们在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.极坐标建立后,如何来定义平面中的点的极坐标呢? 如右图2,设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.一般地,不作特殊说明时,我们认为0≥ρ,θ可取任意实数.【设计意图】从特殊到特殊,类比得到极坐标系,让学生不会觉得极坐标系来得太突然,顺其图2B 自然得到点在极坐标系中的定义. ●活动③ 巩固基础,检查反馈 例1 在极坐标系里描出下列各点.)0,3(A ,)2,3(πB ,)34,5(πC ,)65,3(πD ,)35,6(πE【知识点】极坐标系的定义、点在极坐标系中的表示【数学思想】数形结合【解题过程】根据点在极坐标的表示,ρ表示的是点到极点的距离,θ表示射线与极轴所成的角,所以个点在极坐标的位置如图. 【思路点拨】欲确定点的位置,需先确定ρ和θ的值. 【答案】如右图.同类训练 在右图3的极坐标系中描出下列点的位置:)4,3(πF ,),4(πG【知识点】极坐标系的定义、点在极坐标系中的表示【数学思想】数形结合【解题过程】根据点在极坐标的表示,ρ表示的是点到极点的距离,θ表示射线与极轴所成的角,所以个点在极坐标的位置如图3.【思路点拨】欲确定点的位置,需先确定ρ和θ的值. 【答案】如右图3.探究二 探究点与极坐标的对应关系 ●活动① 认识差异、辨析极坐标系在图1中,用点E D C B A ,,,,分别表示教学楼,体育馆,图书馆,实验楼,办公楼的位置.建立适当的极坐标系,写出各点的极坐标.我们以点A 为极点,AB 所在的射线为极轴(单位长度为m 1),GFAD CE4πOx2π 65π π34π 35π图34πOx2π 65π π34π 35π x图4建立极坐标系,则E D C B A ,,,,的极坐标分别为)43,50(),2,360(),3,120(),0,60(),0,0(πππ建立极坐标系后,给定ρ和θ,就可以在平面内惟一确定点M ,反过来,给点平面内任意一点,也可以找到她的极坐标),(θρ.但是否和平面直角坐标系中的点和直角坐标一样,极坐标和点事一一对应的关系呢?【设计意图】通过对点的极坐标的认识,为后面点的极坐标不惟一做好铺垫. ●活动② 合作探究,解决问题我们来观察下列极坐标表示的点之间有何关系呢?)26,4(),46,4(),26,4(),6,4(πππππππ-++由终边相同的角的定义可知,上述极坐标表示的是同一个点,于是:一般地,极坐标),(θρ和))(2,(Z k k ∈+πθρ表示同一个点,所以,极坐标和直角坐标不同,平面内一个点的极坐标有无数种表示.特别地,极点O 的极坐标为))(,0(R ∈θθ如果我们规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的.同类训练 在极坐标系中,写出下图中各点的极坐标(πθρ20,0<≤>)A (4,0)B ( )C ( )D ( ) F ( ) G ( ) 【知识点】极坐标系的定义、点在极坐标系中的表示 【数学思想】数形结合【解题过程】根据点A 的极坐标,可以得到其它点的极坐标)4,2(πB ,)2,3(πC ,)65,1(πD ,)34,6(πF ,)35,5(πG .【思路点拨】(1)写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能把顺序颠倒了. (2)点的极坐标是不惟一的,但若限制ρ>0,0≤θ<2π,则除极点外,点的极坐标是惟一确定的.【答案】)4,2(πB ,)2,3(πC ,)65,1(πD ,)34,6(πF ,)35,5(πG .【设计意图】通过辨析认识点的极坐标是不唯一的,加深对极坐标系的认识. 探究三 实现极坐标与直角坐标的互化★▲ ●活动① 归纳梳理、理解实质平面内的一个点既可以用直角坐标表示,也可以用极坐标来表示,那么这两种坐标之间有何联系呢?把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图5所示.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,于是极坐标与直角坐标的互化公式如下:⎩⎨⎧==θρθρsin cos y x ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x y y x θρ 这就是极坐标和直角坐标的互化公式. 【设计意图】得到直角坐标与极坐标之间的关系. 活动② 巩固基础,检查反馈例2 分别把下列点的极坐标化为直角坐标(1))6,2(π (2))2,3(π【知识点】极坐标与直角坐标互化. 【解题过程】(1)由cos 2cos36sin 2sin16x y πρθπρθ======所以点的极坐标)6,2(π化为直角坐标为)1,3(.图5(2)由cos 3cos02sin 3sin32x y πρθπρθ======所以点的极坐标)2,3(π化为直角坐标为)3,0(.【思路点拨】将点的极坐标),(θρ化为点的直角坐标),(y x 时,运用到求角θ的正弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是关键. 【答案】(1) )1,3( (2) )3,0(. 同类训练 分别把下列点的极坐标化为直角坐标(1))32,4(π(2)),(ππ 【知识点】极坐标与直角坐标互化. 【数学思想】【解题过程】(1)3232sin 4sin 232cos 4cos ===-===πθρπθρy x 所以点的极坐标)32,4(π化为直角坐标为)32,2(-.(2)由cos cos sin sin 0x y ρθπππρθππ===-===所以点的极坐标),(ππ化为直角坐标为)0,(π-.【思路点拨】将点的极坐标),(θρ化为点的直角坐标),(y x 时,运用到求角θ的正弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是关键. 【答案】(1) )32,2(- (2) )0,(π-.例3 已知点B 、C 的直角坐标为)2,2(-,)15,0(-,求它的极坐标(ρ>0,0≤θ<2π). 【知识点】极坐标与直角坐标互化.【解题过程】∵ρ=,22)2(22222=-+=y x +122tan -=-=θ,且点位于第四象限∴θ=47π,点B 的极坐标为(22,47π).又∵x =0,y <0,ρ=15,∴点C 的极坐标为(15,23π).【思路点拨】化点的直角坐标为极坐标时,一般取πθρ20,0<≤≥,即θ取最小正角,由tanθ=xy求θ时,还需结合在直角坐标系下点),(y x 所在的象限来确定θ的值. 【答案】B(22,47π) C(15,23π).同类训练 分别把下列点的直角坐标化为极坐标(限定ρ≥0,0≤θ<2π)(1) )3,3(; (2) )1,1(-- ;(3) )0,3(-. 【知识点】极坐标与直角坐标互化. 【数学思想】【解题过程】(1)333tan ,323)3(22===+=θρ 又因为点在第一象限,所以3πθ=.所以点)3,3(的极坐标为)3,32(π. (2)111tan ,2)1()1(22=--==-+-=θρ又因为点在第三象限,所以45πθ=.所以点)1,1(--的极坐标为)45,2(π.(3)30)3(22=+-=ρ,极角为π,所以点)0,3(-的极坐标为),3(π.【思路点拨】化点的直角坐标为极坐标时,一般取πθρ20,0<≤≥,即θ取最小正角,由tanθ=xy求θ时,还需结合在直角坐标系下点),(y x 所在的象限来确定θ的值. 【答案】(1))3,32(π (2))45,2(π(3)),3(π.【设计意图】巩固检查极坐标与直角坐标互化公式. 3.课堂总结 知识梳理(1)极坐标系的建立:在平面内取一个定点O ,叫做极点;自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.(2)极坐标系内一点的极坐标的规定:设M 是平面内一点,极点O 与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM 叫做点M 的极角,记为θ.有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ.一般地,不作特殊说明时,我们认为0≥ρ,θ可取任意实数.(3)如果规定πθρ20,0<≤>,那么除极点外,平面内的点可用惟一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是惟一确定的.(4)把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示.设M 是平面内任意一点,它的直角坐标是),(y x ,极坐标是),(θρ,于是极坐标与直角坐标的互化公式如下:⎩⎨⎧==θρθρsin cos y x ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x y y x θρ 重难点归纳(1)极坐标系就是用长度和角度来确定平面内点的位置.极坐标系的建立有四个要素:①极点;②极轴;③长度单位;④角度单位和它的正方向.四者缺一不可.(2)写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能颠倒顺序(3)若两个坐标系符合三个前提条件:(1)极点与直角坐标系的原点重合; (2) 极轴与直角坐标系的x 轴的正半轴重合; (3) 两种坐标系的单位长度相同.则其相互转化:(三)课后作业 基础型 自主突破1.极坐标系中,点)1,2(πP 到极点的距离是( ) A .0 B .1 C .2 D .π2 【知识点】极坐标的定义.【解题过程】由极坐标定义)1,2(πP 已知πρ2=,故P 到极点的距离为2π. 【思路点拨】根据极坐标的定义进行判断. 【答案】D .2.下列各点中与极坐标)7,5(π表示同一个点的是( ).)0(tan ,222≠=+=x xyy x θρ 直角坐标),(y x M极坐标),(θρMθρθρsin ,cos ==y xA .(5,67π)B .(5,157π)C .(5,67π-)D .(5,7π-) 【知识点】点在极坐标系中的表示.【数学思想】 【解题过程】根据极坐标)7,5(π和))(27,5(Z k k ∈+ππ表示同一个点,取1=k ,得选项B . 【思路点拨】极坐标),(θρ和))(2,(Z k k ∈+πθρ表示同一个点.【答案】B .3.在直角坐标系中点()3,1-P ,则它的极坐标是A .⎪⎭⎫ ⎝⎛3,2πB .⎪⎭⎫ ⎝⎛34,2πC .⎪⎭⎫ ⎝⎛-3,2πD .⎪⎭⎫ ⎝⎛-34,2π 【知识点】极坐标与直角坐标互化. 【解题过程】因为313tan ,21)3(22-=-==+-=θρ,且点在第四象限,所以选C 【思路点拨】根据极坐标与直角坐标互化来求解.【答案】C .4.已知O 为极点,π23A ⎛⎫ ⎪⎝⎭, ,7π56B ⎛⎫- ⎪⎝⎭,,则AOB S ∆= ( ) A.2 B.3 C.4 D.5错误!未找到引用源。

平面直角坐标系转换极坐标的公式

平面直角坐标系转换极坐标的公式

平面直角坐标系转换极坐标的公式在咱们的数学世界里,平面直角坐标系和极坐标这俩家伙,就像是两个性格迥异但又紧密相连的“小伙伴”。

今天咱就来好好唠唠它们之间转换的那些神奇公式。

先来说说平面直角坐标系,这就好比是我们在一个平地上画了两条互相垂直的线,一条叫 x 轴,另一条叫 y 轴,然后通过这两条线来确定一个点的位置。

而极坐标呢,则像是给这个点来了个“独特视角”的定位。

它不是用x 和 y 这样的横纵坐标,而是用距离和角度来描述点的位置。

那从平面直角坐标系转换到极坐标的公式到底是啥呢?其实很简单。

设平面直角坐标系中的点的坐标是 (x, y) ,那么极坐标中的极径 r 就等于根号下 (x² + y²) ,极角θ 呢,就是 arctan(y / x) 。

可能有的同学听到这就开始犯迷糊了,“哎呀,这也太抽象了!”别急,我给您举个实实在在的例子。

有一次我去逛街,路过一个广场。

广场上有一个大的喷水池,我就站在旁边观察。

我把自己所在的位置当成原点,建立了一个平面直角坐标系。

喷水池中心有一个特别漂亮的雕塑,假设它在平面直角坐标系中的坐标是 (3, 4) 。

那按照咱们的公式,极径 r 就等于根号下 (3² +4²) ,也就是 5 。

极角θ 就是 arctan(4 / 3) ,算出来大约是 53.13 度。

这就相当于用极坐标把这个雕塑的位置给更独特地描述出来啦!再深入想想,平面直角坐标系和极坐标的转换,其实在生活中也有不少用处呢。

比如说,在航海中,确定船只的位置;在物理学中,描述物体的运动轨迹。

回到学习中,大家一定要把这两个坐标系的转换公式牢记在心。

做题的时候多练练,把抽象的公式用具体的例子去理解,这样才能真正掌握。

总之,平面直角坐标系转换极坐标的公式虽然看起来有点复杂,但只要咱们用心去琢磨,多联系实际,就一定能把它拿下!相信大家都能在数学的海洋里畅游,轻松搞定这些知识!。

(最新整理)(完整版)高中数学选修44坐标系

(最新整理)(完整版)高中数学选修44坐标系
(4)定义法:若动点满足已知曲线的定义,可先设方程 再确定其中的基本量.
3.在掌握求曲线轨迹方程的一般步骤的基础上还要注 意:
(1)选择适当的坐标系,坐标系如果选择恰当,可使解 题过程简化,减少计算量.
2021/7/26
27
(2)要注意给出曲线图形的范围,要在限定范围的 基础上求曲线方程.如果只求出曲线的方程,而 没有根据题目要求确定出x、y的取值范围,最后 的结论是不完备的.
2021/7/26
24
点评:
1.求曲线方程一般有下列五个步骤:
(1)建立适当的直角坐标系,并用(x,y)表示曲线上任 意一点M的坐标,在建立坐标系时,应充分考虑平行、 垂直、对称等几何因素,使得解题更加简化;
(2)写出适当条件P下的点M的集合:{M|P(M)};
(3)用坐标表示条件P(M),写出方程f(x,y)=0;
2021/7/26 故点 P 的轨迹方程为 x2+y2=4.
23
解法二 建立直角坐标系,同解法一. 设P(x,y),A(x1,0),B(0,y2), 则x+y=16.① 又P为AB的中点,所以x1=2x,y2=2y. 代入①,得4x2+4y2=16. 故点P的轨迹方程为x2+y2=4. 答案:x2+y2=4
图形。
2.解:将xy3yx代入x2 9y2 9
得9x29y2 9即x2 y2 1
2021/7/26
20
课堂小结:
(1)体会坐标法的思想,应用坐标 法解决几何问题;
(2)掌握平面直角坐标系中的伸缩 变换。
2021/7/26
21
2021/7/26
22
题型一 轨迹探求
例1 线段AB的两个端点分别在两条互相垂直的直线上滑 动,且|AB|=4,求AB中点P的轨迹方程.

高中数学人教A版选修44坐标系二极坐标系PPT课件

高中数学人教A版选修44坐标系二极坐标系PPT课件
3
3 3
围成的图形的面积是___4___
(4,
4
3
)
2. ( 3 ,0) (0,4) 3.C 4.D 5.A
2
6.D 7.B
8.B 9. a sin
→→
方法与技巧
在做直角坐标与极坐标的互化习题时:
→ (1)点(x,y) 点(ρ,θ)(x、y、θ∈R,ρ≥0); → (2)方程f(x,y)=0 方程φ(ρ,θ)=0
[(x,y)适合f(x,y)=0,(ρ,θ)适合φ(ρ,θ)=0]。 在互化中,要重视互化的前提条件(三同前提) 及互化等价性;互化关系式有: x
难点
1.极坐标的不唯一性; 2.应用极坐标解决几何问题; 3.极坐标和直角坐标的互化。
高中数学 人教A版 选修44 坐标系 二极坐 标系PP T课件
高中数学 人教A版 选修44 坐标系 二极坐 标系PP T课件
建立一个极坐标系需要哪些要素? 极点,极轴,角度单位,正方向 在平面内取一个定点O,叫做极点;引
1.1.1极坐标的概念 1.2.2极坐标和直角坐标的互化
新课导入
请问,去河北师 大附小怎么走呀?
从这里向东北 偏60°方向走100
米就到了
我们一起来分析这句话: 从这里向东北偏60°方向走100米就到了
生活中人们常用方向和距离来表示一点 的位置。这种用方向和距离表示平面上一点 的位置的思想,就是极坐标 的基本思想。
解:设M(ρ,θ)为圆上任一点, 则 |OM|=|OA|cos(θ-1), ∴ ρ=2cos(θ-1),故选C
3.已知某曲线的
参数方程是 x sec (φ为参数) y tan
若以原点为极点,x轴的正半轴为极轴,长度
单位不变,建立极坐标系,则该曲线的极坐标方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档