高中数学第1章坐标系1.2极坐标系讲义新人教B版选修44

合集下载

2019_2020学年高中数学第1章坐标系1.2极坐标系讲义新人教B版选修4_4

2019_2020学年高中数学第1章坐标系1.2极坐标系讲义新人教B版选修4_4

1.2 极坐标系1.2.1 平面上点的极坐标 1.2.2 极坐标与直角坐标的关系学习目标:1.了解极坐标系的意义,能用极坐标系刻画点的位置.(难点)2.了解极坐标系与直角坐标系的联系,能进行极坐标与直角坐标的互化.(重点)1.平面上点的极坐标(1)极坐标系:在平面上取一个定点O ,由O 点出发的一条射线Ox ,一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系,O 点称为极点,Ox 称为极轴.(2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画.这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为极径,θ称为极角.2.点与极坐标的关系(ρ,θ)和(ρ,θ+2k π)代表同一个点,其中k 为整数.特别地,极点O 的坐标为(0,θ)(θ∈R ).如果限定ρ≥0,0≤θ<2π,则除极点外,平面上的点就与它的极坐标构成一一对应关系.3.极坐标与直角坐标的关系(1)互化背景:设在平面上取定了一个极坐标系,以极轴作为直角坐标系的x 轴的正半轴,以θ=π2的射线作为y 轴的正半轴,以极点为坐标原点,长度单位不变,建立一个直角坐标系(如图1­2­1所示).(2)互化公式:设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),于是极坐标与直角坐标的互化公式如表:[提示] 极坐标系以角这一平面图形为几何背景,而直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系,用来刻画平面内点的位置.思考2:极坐标系所在平面内的点与极坐标是否能建立一一对应关系?[提示] 建立极坐标系后,给定数对(ρ,θ),就可以在平面内惟一确定一点M ;反过来,给定平面内一点M ,它的极坐标却不是惟一的.所以极坐标系所在平面内的点与极坐标不能建立一一对应关系.思考3:联系点的极坐标与直角坐标的互化公式的纽带是什么?[提示] 任意角的三角函数的定义及其基本关系式是联系点的极坐标与直角坐标的互化公式的纽带.事实上,若ρ>0,则sin θ=y ρ,cos θ=xρ,所以x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=yx.1.极坐标系中,点M (1,0)关于极点的对称点为( ) A .(1,0) B .(-1,π) C .(1,π)D .(1,2π)[解析] ∵(ρ,θ)关于极点的对称点为(ρ,π+θ),∴M (1,0)关于极点的对称点为(1,π).[答案] C2.极坐标系中,到极点的距离等于到极轴的距离的点可以是( ) A .(1,0) B .(2,π4) C .(3,π2) D .(4,π)[答案] C3.点A 的极坐标是(2,7π6),则点A 的直角坐标为( )A .(-1,-3)B .(-3,1)C .(-3,-1)D .(3,-1)[解析] x =ρcos θ=2cos 76π=-3,y =ρsin θ=2sin 76π=-1.[答案] C4.点M 的直角坐标为(0,π2),则点M 的极坐标可以为( )A .(π2,0)B .(0,π2)C .(π2,π2)D .(π2,-π2)[解析] ∵ρ=x 2+y 2=π2,且θ=π2,∴M 的极坐标为(π2,π2).[答案] C【例1】 设点A (2,3),直线l 为过极点且垂直于极轴的直线,分别求点A 关于极轴,直线l ,极点的对称点的极坐标(限定ρ>0,-π<θ≤π).[思路探究] 欲写出点的极坐标,首先应确定ρ和θ的值. [解] 如图所示,关于极轴的对称点为B (2,-π3).关于直线l 的对称点为C (2,23π).关于极点O 的对称点为D (2,-23π).四个点A ,B ,C ,D 都在以极点为圆心,2为半径的圆上.1.点的极坐标不是惟一的,但若限制ρ>0,0≤θ<2π,则除极点外,点的极坐标是惟一确定的.2.写点的极坐标要注意顺序:极径ρ在前,极角θ在后.1.在极坐标系中,B (3,π4),D (3,74π),试判断点B ,D 的位置是否具有对称性,并求出B ,D 关于极点的对称点的极坐标(限定ρ>0,θ∈[0,2π)).[解] 由B (3,π4),D (3,7π4),知|OB |=|OD |=3,极角π4与7π4的终边关于极轴对称.所以点B ,D 关于极轴对称.设点B (3,π4),D (3,7π4)关于极点的对称点分别为E (ρ1,θ1),F (ρ2,θ2),且ρ1=ρ2=3.当θ∈[0,2π)时,θ1=5π4,θ2=3π4,∴E (3,5π4),F (3,3π4)为所求.(1)(2,4π3);(2)(2,-23π);(3)(2,-π3).[思路探究] 点的极坐标(ρ,θ)―→⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ―→点的直角坐标(x ,y )―→判定点所在象限.[解] (1)由题意知x =2cos 4π3=2×(-12)=-1,y =2sin 4π3=2×(-32)=- 3.∴点(2,4π3)的直角坐标为(-1,-3),是第三象限内的点.(2)x =2cos(-23π)=-1,y =2sin(-23π)=-3,∴点(2,-23π)的直角坐标为(-1,-3),是第三象限内的点.(3)x =2cos(-π3)=1,y =2sin(-π3)=-3,∴点(2,-π3)的直角坐标为(1,-3),是第四象限内的点.1.点的极坐标与直角坐标的互化公式的三个前提条件:①极点与直角坐标系的原点重合;②极轴与直角坐标系的x 轴的正半轴重合;③两种坐标系的长度单位相同.2.将点的极坐标(ρ,θ)化为点的直角坐标(x ,y )时,运用到求角θ的正弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是关键.2.分别把下列点的极坐标化为直角坐标: (1)(2,π6);(2)(3,π2);(3)(π,π).[解] (1)∵x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1.∴点的极坐标(2,π6)化为直角坐标为(3,1).(2)∵x =ρcos θ=3cos π2=0,y =ρsin θ=3sin π2=3.∴点的极坐标(3,π2)化为直角坐标为(0,3).(3)∵x =ρcos θ=πcos π=-π,y =ρsin θ=πsin π=0,∴点的极坐标(π,π)化为直角坐标为(-π,0).(1)(-2,23);(2)(6,-2).[思路探究] 利用公式ρ2=x 2+y 2,tan θ=y x(x ≠0),但求角θ时,要注意点所在的象限.[解](1)∵ρ=x 2+y 2=(-2)2+(23)2=4,tan θ=y x=-3,θ∈[0,2π), 由于点(-2,23)在第二象限. ∴θ=2π3.∴点的直角坐标(-2,23)化为极坐标(4,23π).(2)∵ρ=x 2+y 2=(6)2+(-2)2=22, tan θ=y x =-33,θ∈[0,2π), 由于点(6,-2)在第四象限,所以θ=11π6.∴点的直角坐标(6,-2)化为极坐标为(22,11π6).1.将直角坐标(x ,y )化为极坐标(ρ,θ),主要利用公式ρ2=x 2+y 2,tan θ=y x(x ≠0)求解.2.在[0,2π)范围内,由tan θ=y x(x ≠0)求θ时,要根据直角坐标的符号特征判断出点所在的象限.如果允许θ∈R ,再根据终边相同的角的意义,表示为θ+2k π(k ∈Z )即可.3.(1)“例3”中,如果限定ρ>0,θ∈R ,分别求各点的极坐标;(2)如果点的直角坐标(x ,y )满足xy <0,那么在限定ρ>0,θ∈R 的情况下转化为点的极坐标时,试探究θ的取值范围.[解] (1)根据与角α终边相同的角为α+2k π(k ∈Z )知,点的直角坐标化为极坐标(ρ>0,θ∈R )分别如下:(-2,23)的极坐标为(4,2π3+2k π)(k ∈Z ).(6,-2)的极坐标为(22,116π+2k π)(k ∈Z ).(2)由xy <0得x <0,y >0或x >0,y <0. 所以(x ,y )可能在第二象限或第四象限.把直角坐标(x ,y )化为极坐标(ρ,θ),ρ>0,θ∈R 时,θ的取值范围为(π2+2k π,π+2k π)∪(3π2+2k π,2π+2k π)(k ∈Z ).【例4】 在极坐标系中,如果A (2,4),B (2,4)为等边三角形ABC 的两个顶点,求顶点C 的极坐标(ρ>0,0≤θ<2π).[思路探究] 解答本题可以先利用极坐标化为直角坐标,再根据等边三角形的定义建立方程组求解点C 的直角坐标,进而求出点C 的极坐标.[解] 对于点A (2,π4)有ρ=2,θ=π4,∴x =2cos π4=2,y =2sin π4=2,则A (2,2).对于B (2,54π)有ρ=2,θ=54π,∴x =2cos 54π=-2,y =2sin 54π=- 2.∴B (-2,-2).设C 点的坐标为(x ,y ),由于△ABC 为等边三角形, 故|AB |=|BC |=|AC |=4.∴有⎩⎨⎧(x -2)2+(y -2)2=16,(x +2)2+(y +2)2=16.解之得⎩⎨⎧x =6,y =-6,或⎩⎨⎧x =-6,y = 6.∴C 点的坐标为(6,-6)或(-6,6). ∴ρ=6+6=23,tan θ=-66=-1,∴θ=74π或θ=34π.故点C 的极坐标为(23,74π)或(23,34π).1.本例综合考查了点的极坐标与直角坐标的互化公式以及等边三角形的意义和性质.结合几何图形可知,点C 的坐标有两解,设出点的坐标寻求等量关系建立方程组求解是关键.2.若设出C (ρ,θ),利用余弦定理亦可求解,请读者完成.4.本例中,如果点的极坐标仍为A (2,π4),B (2,5π4),且△ABC 为等腰直角三角形,如何求直角顶点C 的极坐标.[解] 对于点A (2,π4),直角坐标为(2,2),点B (2,5π4)的直角坐标为(-2,-2),设点C 的直角坐标为(x ,y ),由题意得AC ⊥BC ,且|AC |=|BC |,∴AC →·BC →=0, 即(x -2,y -2)·(x +2,y +2)=0, ∴x 2+y 2=4. ①又|A C →|2=|B C →|2,于是(x -2)2+(y -2)2=(x +2)2+(y +2)2,∴y =-x 代入①,得x 2=2,解得x =± 2.∴⎩⎨⎧x =2,y =-2,或⎩⎨⎧x =-2,y =2,∴点C 的直角坐标为(2,-2)或(-2,2), ∴ρ=2+2=2,tan θ=-1,θ=7π4或3π4,∴点C 的极坐标为(2,3π4)或(2,7π4).(教材P10习题1-2T3)把下列各点的直角坐标化为极坐标(限定ρ>0,0≤θ<2π):A (-1,1),B (0,-2),C (3,4),D (-3,-4).已知点P 在第三象限角的平分线上,且到横轴的距离为2,则当ρ>0,θ∈[0,2π)时,点P 的极坐标为________.[命题意图] 主要考查直角坐标与极坐标的互化.[解析] ∵点P (x ,y )在第三象限角的平分线上,且到横轴的距离为2. ∴x =-2,且y =-2. ∴ρ=x 2+y 2=2 2.又tan θ=y x=1,且θ∈[0,2π). ∴θ=54π.因此点P 的极坐标为(22,54π).[答案] (22,54π)。

高中数学新人教版B版精品教案《人教版B高中数学选修4-4:坐标系与参数方程 1.2.2 极坐标系与直角坐标的关系》

高中数学新人教版B版精品教案《人教版B高中数学选修4-4:坐标系与参数方程 1.2.2 极坐标系与直角坐标的关系》

第二课时 点的极坐标与直角坐标的互化一、教学目标一知识与技能目标掌握点的极坐标与直角坐标的互化公式,了解互化公式的三个前提及其使用方法.二过程与方法目标能熟练进行点的极坐标与直角坐标的互相转化,初步掌握何时用直角坐标系、何时用极坐标系解决问题.三情感态度与价值观目标极坐标系作为解析几何的一种独持工具有其独到的功能,从中可进行同一问题,可以用不同工具和不同方法去研究,其解决问题的效率和效果也会有不同的思想方法教育.二、教学重难点1.重点:点的极坐标与直角坐标的互化公式及其使用方法;2.难点:直角坐标化为极坐标时极角的取值范围。

三、教学过程一知识回顾、引入新课知识回顾:1什么是极坐标系(如图所示)及其四要素①极点;②极轴;③长度单位;④角度单位(弧度)及它的正方向(逆时针方向)。

2点的极坐标表示方法及点与其极坐标除极点外一一对应 的限制条件),(θρM ,πθρ20,0<≤>限制条件引入新课:思考:平面内一点既可以用直角坐标表示,也可以用极坐标表示,那么这 两种坐标之间有什么关系呢?(二)新课讲授1、探讨极坐标与直角坐标的关系互化的前提:①极点与直角坐标系的原点重合;②极轴与直角坐标系的轴的正半轴重合;③两种坐标系的单位长度相同。

思考1:平面内的一个点的直角坐标是A (1,1),则该点极坐标为______思考2:平面内的一个点的极坐标是)2,2(πB ,则该点直角坐标为______2 极坐标与直角坐标的互化如图1,设点M 是平面内任意一点,它的直角坐标是),(y x ,若把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设点M 的极角为θ,极径为ρ,则点M 的极坐标为),(θρ,图1问题一:点M 的两种坐标之间有什么关系?答:从图1可知θρθρsin ,cos ==y x ,①说明:已知平面内任意一点M 的极坐标),(θρ可化成直角坐标),(y x问题二:如何将点M 的直角坐标),(y x 化成极坐标呢?答:由①可知:22(0),tan (0)yx y x x ρρθ=+>=≠②②说明:已知平面内任意一点M 的直角坐标),(y x 可化成极坐标),(θρ综上可知: 1互化公式的三个前提条件:①极点与直角坐标系的原点重合;②极轴与直角坐标系的轴的正半轴重合;③两种坐标系的单位长度相同。

高中数学 第1章 坐标系 1.2 极坐标系 1.2.1 极坐标系的概念学案 北师大版选修44

高中数学 第1章 坐标系 1.2 极坐标系 1.2.1 极坐标系的概念学案 北师大版选修44

1.2.1 极坐标系的概念1.了解极坐标系,理解极坐标的概念.(重点)2.能在极坐标系中用极坐标判定点的位置.(难点)3.能进行点坐标和极坐标的互化.(易错易混点)教材整理极坐标系与极坐标1.极坐标系的概念如图1­2­1所示,在平面内取一个定点O,叫作极点,从O点引一条射线Ox,叫作极轴,选定一个单位长度和角的正方向(通常取逆时针方向).这样就确定了一个平面极坐标系,简称极坐标系.图1­2­12.极坐标的概念对于平面内任意一点M,用ρ表示线段OM的长,θ表示以Ox为始边、OM为终边的角度,ρ叫作点M的极径,θ叫作点M的极角,有序实数对(ρ,θ)叫作点M的极坐标,记作M(ρ,θ).特别地,当点M在极点时,它的极径ρ=0,极角θ可以取任意值.3.点与极坐标的关系一般地,极坐标(ρ,θ)与(ρ,θ+2kπ)(k∈Z)表示同一个点,特别地,极点O的坐标为(0,θ)(θ∈R).和点的直角坐标的唯一性不同,平面内一个点的极坐标有无数种表示.如果规定ρ>0,0≤θ<2π,那么除极点外,平面内的点可用唯一的极坐标(ρ,θ)表示;同时,极坐标(ρ,θ)表示的点也是唯一确定的.判断(正确的打“√”,错误的打“×”)(1)极轴是以极点为端点的一条射线.( )(2)极角θ的大小是唯一的.( )(3)点⎝ ⎛⎭⎪⎫3,π6与点⎝⎛⎭⎪⎫3,5π6是同一个点.( )【解析】 (1)√ 极轴是以极点为端点的一条射线.(2)× 因为极角是以极轴为始边,终边是过极点与目标点的射线,可正、可负,相差2k π.(3)× 因为极角不相差2π的整数倍,故不表示同一个点. 【答案】 (1)√ (2)× (3)×预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1: 解惑: 疑问2: 解惑: 疑问3: 解惑:设点A ⎝⎛⎭⎪⎫2,3,直线l 为过极点且垂直于极轴的直线,分别求点A 关于极轴、直线l 、极点的对称点的极坐标(限定ρ>0,0<θ≤2π).【精彩点拨】 欲写出点的极坐标,首先应确定ρ和θ的值.【自主解答】 如图所示,关于极轴的对称点为B ⎝ ⎛⎭⎪⎫2,53π.关于直线l 的对称点为C ⎝ ⎛⎭⎪⎫2,23π. 关于极点O 的对称点为D ⎝⎛⎭⎪⎫2,4π3.四个点A ,B ,C ,D 都在以极点为圆心,2为半径的圆上.1.点的极坐标不是唯一的,但若限制ρ>0,0≤θ<2π,则除极点外,点的极坐标是唯一确定的.2.写点的极坐标要注意顺序:极径ρ在前,极角θ在后,不能颠倒顺序.1.若使正六边形的一个顶点为极点且边长为a ,极轴通过它的一边,试求正六边形各顶点的极坐标.【导学号:12990004】【解】 建立如图所示的极坐标系,则正六边形各顶点的极坐标为:A (0,0),B (a,0),C ⎝ ⎛⎭⎪⎫3a ,π6,D ⎝ ⎛⎭⎪⎫2a ,π3,E ⎝ ⎛⎭⎪⎫3a ,π2,F ⎝ ⎛⎭⎪⎫a ,23π.已知点A 的极坐标是⎝⎛⎭⎪⎫6,3,分别在下列给定条件下,画出点A 关于极点O的对称点A ′的位置,并写出A ′的极坐标:(1)ρ>0,-π<θ≤π; (2)ρ<0,0≤θ<2π; (3)ρ<0,-2π<θ≤0.【精彩点拨】 本题以极坐标系中点的对称为载体,主要考查极坐标系中点的极坐标的确定,同时考查应用极坐标系解决问题的能力.【自主解答】 如图所示, |OA |=|OA ′|=6, ∠xOA ′=2π3,∠xOA =5π3,即A 与A ′关于极点O 对称,由极坐标的定义知:(1)当ρ>0,-π<θ≤π时,A ′点的坐标为⎝⎛⎭⎪⎫6,2π3;(2)当ρ<0,0≤θ<2π时,A ′点的坐标为⎝ ⎛⎭⎪⎫-6,5π3; (3)当ρ<0,-2π<θ≤0时,A ′点的坐标为⎝⎛⎭⎪⎫-6,-π3.由极坐标确定点的位置的步骤: (1)取定极点O ;(2)作方向为水平向右的射线Ox 为极轴;(3)以极点O 为顶点,以极轴Ox 为始边,通常按逆时针方向旋转极轴Ox 确定出极角的终边;(4)以极点O 为圆心,以极径为半径画弧,弧与极角终边的交点即是所求点的位置.2.在同一个极坐标系中,画出以下各点:A ⎝⎛⎭⎪⎫1,π4,B ⎝⎛⎭⎪⎫2,32π,C ⎝⎛⎭⎪⎫3,-π4,D ⎝⎛⎭⎪⎫4,94π.【解】 如图所示.探究1【提示】 建立极坐标系的要素是:(1)极点;(2)极轴;(3)长度单位;(4)角度单位和它的正方向,四者缺一不可.极轴是以极点为端点的一条射线,它与极轴所在的直线是有区别的;极角θ的始边是极轴,它的终边随着θ的大小和正负而取得各个位置;θ的正方向通常取逆时针方向,θ的值一般是以弧度为单位的量数;点M 的极径ρ表示点M 与极点O 的距离|OM |,因此ρ≥0.但必要时,允许ρ<0.探究2 为什么点的极坐标不唯一?能用三角函数的概念解释吗?【提示】 根据我们学过的任意角的概念:一是终边相同的角有无数个,它们相差2π的整数倍,所以点(ρ,θ)还可以写成(ρ,θ+2k π)(k ∈Z );二是终边在一条直线上且互为反向延长线的两角的关系,所以点(ρ,θ)的坐标还可以写成(-ρ,θ+2k π+π)(k ∈Z ).某大学校园的部分平面示意图如图1­2­2所示.图1­2­2用点O ,A ,B ,C ,D ,E ,F 分别表示校门、器材室、公寓、教学楼、图书馆、车库、花园,建立适当的极坐标系,写出各点的极坐标.(限定ρ≥0,0≤θ<2π且极点为(0,0)).【精彩点拨】 解答本题先选定极点作极轴,建立极坐标系,再求出各点的极径和极角,即可得出各点的极坐标.【自主解答】 以点O 为极点,OA 所在的射线为极轴Ox (单位长度为1 m),建立极坐标系,如图所示.由|OB |=600 m ,∠AOB =30°,∠OAB =90°,得 |AB |=300 m ,|OA |=300 3 m , 同样求得|OD |=2|OF |=3002m , 所以各点的极坐标分别为O (0,0),A (3003,0),B ⎝⎛⎭⎪⎫600,π6,C ⎝⎛⎭⎪⎫300,π2,D ⎝⎛⎭⎪⎫3002,3π4,E (300,π),F ⎝⎛⎭⎪⎫1502,3π4.在极坐标系中,由点的位置求极坐标时,随着极角的范围的不同,点的极坐标的表示也会不同,只有在ρ>0,θ∈3.在极坐标系中,已知△ABC 的三个顶点的极坐标分别为A ⎝⎛⎭⎪⎫2 ,π3,B (2,π),C ⎝⎛⎭⎪⎫2,5π3. (1)判断△ABC 的形状; (2)求△ABC 的面积.【解】 (1)如图所示,由A ⎝ ⎛⎭⎪⎫2,π3,B (2,π),C ⎝⎛⎭⎪⎫2,5π3得|OA |=|OB |=|OC |=2,∠AOB =∠BOC =∠AOC =2π3.∴△AOB ≌△BOC ≌△AOC , ∴AB =BC =CA , 故△ABC 为等边三角形.(2)由上述可知,AC =2OA sin π3=2×2×32=23,∴S △ABC =34×(23)2=3 3.1.在极坐标系中与点P ⎝⎛⎭⎪⎫2,π3表示同一点的是( )A.⎝⎛⎭⎪⎫-2,π3B.⎝⎛⎭⎪⎫2,-π3C.⎝⎛⎭⎪⎫-2, 4π3 D.⎝⎛⎭⎪⎫-2,-π3 【解析】 在极坐标系中将点P 确定,再逐个验证知C 正确. 【答案】 C2.已知极坐标平面内的点P ⎝⎛⎭⎪⎫2,-5π3,则P 关于极点的对称点的极坐标为( )A.⎝ ⎛⎭⎪⎫2,π3B.⎝⎛⎭⎪⎫2,-π3C.⎝⎛⎭⎪⎫2,2π3 D.⎝⎛⎭⎪⎫2,-2π3 【解析】 点P ⎝ ⎛⎭⎪⎫2,-5π3关于极点的对称点的极坐标为⎝ ⎛⎭⎪⎫2,-2π3.【答案】 D3.若A ⎝⎛⎭⎪⎫3,4π3,B ⎝ ⎛⎭⎪⎫5,π6,O 为极点,则△AOB 的面积为________.【解析】 S △AOB =12×⎪⎪⎪⎪⎪⎪3×5×sin ⎝ ⎛⎭⎪⎫43π-π6=154.【答案】1544.关于极坐标系的下列叙述: ①极轴是一条射线; ②极点的极坐标是(0,0); ③点(0,0)表示极点;④点M ⎝ ⎛⎭⎪⎫4,π4与点N ⎝⎛⎭⎪⎫4,5π4表示同一个点.其中,叙述正确的序号是________.【导学号:12990005】【解析】 设极点为O ,极轴就是射线Ox ,①正确;极点O 的极径ρ=0,极角θ是任意实数,极点的极坐标应为(0,θ),②错误;给定极坐标(0,0),可以在极坐标平面内确定唯一的一点,即极点,③正确;点M 与点N 的极角分别是θ1=π4,θ2=5π4,二者的终边互为反向延长线,④错误.【答案】 ①③5.已知边长为2的正方形ABCD 的中心在极点,且一组对边与极轴Ox 平行,求正方形的顶点的极坐标(限定ρ≥0,0≤θ<2π).【解】 如图所示,由题意知|OA |=|OB |=|OC |=|OD |=2,∠xOA =π4,∠xOB =3π4,∠xOC =5π4,∠xOD =7π4.∴正方形的顶点坐标分别为A ⎝ ⎛⎭⎪⎫2,π4,B ⎝⎛⎭⎪⎫2,3π4,C ⎝ ⎛⎭⎪⎫2,5π4,D ⎝ ⎛⎭⎪⎫2,7π4.我还有这些不足:(1) (2) 我的课下提升方案:(1) (2)。

高中数学第一章坐标系1.2极坐标系课件新人教B版选修4_

高中数学第一章坐标系1.2极坐标系课件新人教B版选修4_

题型三
( 3)2 + 32 = 2 3, tan =
π
3
3
3
= 3.
因为点( 3, 3)在第一象限,所以 θ= .
所以点( 3, 3)的极坐标为 2 3,
②ρ=
π
3
.
(-1)2 + (-1)2 = 2, tan θ=1.

因为点(-1,-1)在第三象限,所以 θ= 4 .

所以点(-1,-1)的极坐标为 2, 4 .
1.2
极坐标系
-1-
M 目标导航 Z 知识梳理 Z 重难聚焦
UBIAODAOHANG
HISHI SHULI
HONGNAN JVJIAO
D典例透析 S随堂演练
IANLI TOUXI
UITANGYANLIAN
1.理解极坐标系的概念.
2.能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平
面直角坐标系中刻画点的位置的区别.
4
3
(2)将下列各点的直角坐标化为极坐标(ρ>0,0≤θ<2π):
①( 3, 3); ②(−1, −1); ③(−3,0).
π
π
解:(1)①x= 2 × cos 4 = 1, = 2 × sin 4 = 1,
故点
π
2, 4 的直角坐标为(1,1).
π
π
②x=6×cos - 3 = 3, = 6 × sin - 3 = −3 3.
.
π
π
射线 θ= 2 , 就是极角为 2 的那些点的集合. 故
π
π
关于射线 = 2 所在的直线的对称点为M′ 2, 6 ,
π
但是选项中没有这样的坐标.又因为 M′ 2, 6

高中数学 第1章 坐标系 1_2 极坐标系 1_2_3-1_2_5 学案 北师大版选修4-4

高中数学 第1章 坐标系 1_2 极坐标系 1_2_3-1_2_5 学案 北师大版选修4-4

1.2 极坐标系1.2.3 直线和圆的极坐标方程1.2.4 曲线的极坐标方程与直角坐标方程的互化1.2.5 圆锥曲线统一的极坐标方程1.能在极坐标系中给出简单图形表示的极坐标方程.(重点)2.掌握简单图形的极坐标方程与直角坐标方程的互化.(易错易混点))3.用方程表示平面图形时,会选择适当的坐标系来表示.(难点教材整理1 曲线的极坐标方程1.曲线的极坐标方程在极坐标系中,如果曲线C上的点与一个二元方程φ(ρ,θ)=0建立了如下的关系:上的每个点的极坐标中至少有一组(ρ,)正确的打“√”,错误的打“×”)(1) )(2)直线ρcos θ=2与直线ρ.( ) (3)ρ=cos θ表示一个圆.( 过极点且垂直于极轴的直线上的点的极角都可表示为π2,故正确.θ=2表示直线y =2,这两直线互相垂直. .xOy 的x 的正半轴重合,且两种坐标利用⎩⎪⎨=ρcos θ,y =ρsin θ和⎩⎪⎨tan θ=y x x把曲线的两种方程进行相互转化.填空:(1)曲线ρ=1的直角坐标方程为_______________________________. (2)方程y =2x 的极坐标方程为_________________________________.(3)圆ρ=2cos θ的直角坐标方程为_______________________________.【解析】(1)ρ=1,即ρ2=1,∴x2+y2=1.(2)把y=ρsin θ,x=ρcos θ代入y=2x,得ρsin θ=2ρcos θ,即tan θ=2.(3)ρ=2cos θ即ρ2=2ρcos θ,所以x2+y2=2x,即(x-1)2+y2=1.【答案】(1)x2+y2=1 (2)tan θ=2 (3)(x-1)2+y2=1教材整理3 圆锥曲线统一的极坐标方程设定点为F,定直线为l,过定点F作定直线l的垂线,垂足为K,以F为极点,FK的反向延长线Fx为极轴,建立极坐标系.如图1­2­4,设定点F到直线l的距离|FK|=p,M(ρ,θ)为曲线上任意一点,曲线的极坐标方程为ρ=ep1-e cos θ.图1­2­4①当0<e<1时,方程表示椭圆.②当e=1时,方程表示开口向右的抛物线.③当e>1时,方程只表示双曲线的右支,定点是它的右焦点. 预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:解惑:疑问2:解惑:疑问3:解惑:(1)求过点A (1,0)且倾斜角为π4的直线的极坐标方程;(2)求圆心在A ⎝ ⎛⎭⎪⎫2,3π2处并且过极点的圆的极坐标方程,并判断点⎝ ⎛⎭⎪⎫-2,sin 5π6是否在这个圆上.【导学号:12990011】【精彩点拨】 解答本题先根据题意画出草图,设点M (ρ,θ)后建立关于ρ与θ的方程化简即可.【自主解答】 (1)如图,设M (ρ,θ)(ρ≥0)为直线上除点A 以外的任意一点,则∠xAM =π4,∠OAM =3π4,∠OMA =π4-θ.在△OAM 中,由正弦定理得OMsin∠OAM =OAsin∠OMA,即ρ=1,⎭⎪⎫=22, ,ρ(cos θ-sin θ)=1. 为其一条直径,设M (ρ,θ)为圆上除点O ,A 以外的任意一点,则|OA |=2r ,连结AM ,则OM ⊥MA .在Rt△OAM 中,|OM |=|OA |cos ∠AOM , 即ρ=2r cos ⎝⎛⎭⎪⎫3π2-θ,∴ρ=-4sin θ.经验证,点O (0,0),A ⎝⎛⎭⎪⎫4,3π2的坐标满足上式.所以满足条件的圆的极坐标方程为ρ=-4sin θ.∵sin 5π6=12,∴ρ=-4sin θ=-4sin 5π6=-2,∴点⎝⎛⎭⎪⎫-2,sin 5π6在此圆上.求曲线的极坐标方程通常有以下五个步骤: (1)建立适当的极坐标系; (2)在曲线上任取一点M (ρ,θ);(3)根据曲线上的点所满足的条件写出等式(因涉及的是长度与角度,所以列等式的实质是解三角形);(4)用极坐标ρ,θ表示上述等式,并化简得曲线的极坐标方程; (5)证明所得的方程是曲线的极坐标方程.通常第(5)步不必写出,只要对特殊点的坐标加以检验即可.1.(1)求过A ⎝⎛⎭⎪⎫2,π4且平行于极轴的直线方程. (2)在圆心的极坐标为A (4,0),半径为4的圆中,求过极点O 的弦的中点的轨迹.【解】 (1)如图所示,在直线l 上任意取点M (ρ,θ).∵A ⎝⎛⎭⎪⎫2,π4,∴|MH |=2·sin π4=2,在Rt△OMH 中,|MH |=|OM |sin θ,即ρsin θ=2,所以过A ⎝⎛⎭⎪⎫2,π4且平行于极轴的直线方程为ρsin θ=2,其中0<θ<π.(2)设M (ρ,θ)是轨迹上任意一点.连结OM 并延长交圆A 于点P (ρ0,θ0),则有θ0=θ,ρ0=2ρ.由圆心为(4,0),半径为4的圆的极坐标方程为ρ=8cos θ, 得ρ0=8cos θ0,所以2ρ=8cos θ, 即ρ=4cos θ.故所求轨迹方程是ρ=4cos θ.它表示以(2,0)为圆心,2为半径的圆.(1)射线y =3x (x ≤0); (2)圆x 2+y 2+2ax =0(a ≠0).【精彩点拨】 将x =ρcos θ,y =ρsin θ代入―→极坐标方程 【自主解答】 (1)将x =ρcos θ,y =ρsin θ, 代入y =3x ,得ρsin θ=3ρcos θ, ∴tan θ=3,∴θ=π3或θ=4π3.又x ≤0,∴ρcos θ≤0,∴θ=4π3,∴射线y =3x (x ≤0)的极坐标方程为θ=4π3(ρ≥0).(2)将x =ρcos θ,y =ρsin θ代入x 2+y 2+2ax =0,得 ρ2cos 2θ+ρ2sin 2θ+2a ρcos θ=0, 即ρ(ρ+2a cos θ)=0, ∴ρ=-2a cos θ,∴圆x 2+y 2+2ax =0(a ≠0)的极坐标方程为 ρ=-2a cos θ,圆心为(-a,0), 半径为r =|a |.1.化曲线的直角坐标方程f (x ,y )=0为极坐标方程f (ρ,θ)=0,只要将x =ρcos θ,y =ρsin θ代入到方程f (x ,y )=0中即可.化为极坐标方程时,如果不加特殊说明,就认为ρ≥0.例如x 2+y 2=25化为极坐标方程时,有ρ=5或ρ=-5两种情况,由于ρ≥0,所以只取ρ=5.事实上,这两个方程都是以极点为圆心,以5为半径的圆.2.由直角坐标方程化为极坐标方程最后要化简.2.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________.【解析】 直角坐标方程x 2+y 2-2x =0可化为x 2+y 2=2x ,将ρ2=x 2+y 2,x =ρcos θ代入整理得ρ=2cos θ.【答案】 ρ=2cos θ(1)ρcos θ=2;(2)ρ=2cos θ; (3)ρ2cos 2θ=2;(4)ρ=11-cos θ.【精彩点拨】 极坐标方程――――→ρcos θ=xρsin θ=y 直角坐标方程―→曲线的形状【自主解答】 根据点的极坐标化为直角坐标的公式: ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y .(1)∵ρcos θ=2,∴x =2,是过点(2,0),垂直于x 轴的直线. (2)∵ρ=2cos θ,∴ρ2=2ρcos θ, ∴x 2+y 2-2x =0,即 (x -1)2+y 2=1. 故曲线是圆心在(1,0),半径为1的圆.(3)∵ρ2cos 2θ=2,∴ρ2(cos 2θ-sin 2θ)=2, 即ρ2cos 2θ-ρ2sin 2θ=2,∴x 2-y 2=2.故曲线是中心在原点,焦点在x 轴上的等轴双曲线. (4)∵ρ=11-cos θ,∴ρ=1+ρcos θ,∴x 2+y 2=1+x ,两边平方并整理,得y 2=2⎝ ⎛⎭⎪⎫x +12.故曲线是顶点为⎝ ⎛⎭⎪⎫-12,0,焦点为F (0,0),准线方程为x =-1的抛物线.1.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入曲线的极坐标方程,整理即得曲线的直角坐标方程.2.解决此类问题常常通过方程变形,构造出形如ρcos θ,ρsin θ,ρ2的式子,进行整体代换.方程的两边同乘以(或同除以)ρ或方程两边平方是常用的变形方法.3.在极坐标系中,点⎝⎛⎭⎪⎫2,π6到直线ρsin θ=2的距离等于________.【导学号:12990012】【解析】 极坐标系中点⎝⎛⎭⎪⎫2,π6对应的直角坐标为(3,1).极坐标系中直线ρsin θ=2对应直角坐标系中直线y =2.故所求距离为1.【答案】 1探究 1 呢?【提示】 在圆上设M (ρ,θ)为任意一点,连结OM ,构造出含OM 的三角形,再利用解直角三角形或解斜三角形的正弦、余弦定理求OM ,即把OM 用θ表示,从而得到圆的极坐标方程.求直线的极坐标方程时,首先在直线上设任意一点M (ρ,θ),构造直角三角形,利用勾股定理建立方程.探究2 在极坐标系内,如何确定某一个点P 是否在某曲线C 上?【提示】 在直角坐标系内,曲线上每一点的坐标一定适合它的方程,可是在极坐标系内,曲线上一点的所有坐标不一定都适合方程,所以在极坐标系内,确定某一个点P 是否在某一曲线C 上,只需判断点P 的极坐标中是否有一对坐标适合曲线C 的方程即可.探究3 我们由曲线的直角坐标方程很容易知道它是哪种曲线,那如何由曲线的极坐标方程确定其是哪一种曲线呢?【提示】 如果对简单的直线和圆的极坐标方程及圆锥曲线统一的极坐标方程熟练的话,可由其判断,否则一般是将其化成直角坐标方程再判断其是哪种曲线.在极坐标系中,从极点O 作直线与另一直线l :ρcos θ=4相交于点M ,在OM 上取一点P ,使|OM |·|OP |=12.(1)求点P 的轨迹方程;(2)设R 为l 上任意一点,试求RP 的最小值.【精彩点拨】 解答本题可以设出动点P ,M 的极坐标,然后代入条件等式求解即可,也可以转化为直角坐标方程解决.【自主解答】 法一:(1)设动点P 的极坐标为(ρ,θ),点M 为(ρ0,θ). ∵|OM |·|OP |=12,∴ρ0ρ=12,得ρ0=12ρ.∵M 在直线ρcos θ=4上, ∴ρ0cos θ=4,即12ρcos θ=4,于是ρ=3cos θ(ρ>0)为所求的点P 的轨迹方程.(2)由于点P 的轨迹方程为ρ=3cos θ=2·32cos θ,所以点P 的轨迹是圆心为⎝ ⎛⎭⎪⎫32,0,半径为32的圆(去掉极点). 又直线l :ρcos θ=4过点(4,0)且垂直于极轴,点R 在直线l 上,由此可知RP 的最小值为1.法二:(1)直线l :ρcos θ=4的直角坐标方程为x =4,设点P (x ,y )为轨迹上任意一点,点M (4,y 0),由OP →∥OM →得y 0=4yx(x >0).又|OM |·|OP |=12, 则|OM |2·|OP |2=144, ∴(x 2+y 2)⎝⎛⎭⎪⎫16+16y 2x 2=144, 整理得x 2+y 2=3x (x >0), 这就是点P 的轨迹的直角坐标方程.(2)由上述可知,点P 的轨迹是圆心为⎝ ⎛⎭⎪⎫32,0,半径为32的圆(去掉原点).又点R 在直线l :x =4上,由此可知RP 的最小值为1.建立适当的极坐标系,有时会使某些曲线的极坐标方程具有比直角坐标方程更为简洁的形式.可是,由于同一种类型的曲线的极坐标方程的形式多样性,且不同位置的同一曲线的极坐标方程存在较大差异,这给由极坐标方程确定曲线的形状、位置与性质带来不便,为此,往往把极坐标方程化为直角坐标方程,再根据平面直角坐标系中曲线的相关知识将问题求解.4.过极点O 作圆C :ρ=8cos θ的弦ON ,求ON 的中点M 的轨迹方程. 【解】 法一:如图,圆心C (4,0),半径r =|OC |=4,连结CM .∵M 为弦ON 的中点,∴CM ⊥ON ,故M 在以OC 为直径的圆上. 所以,动点M 的轨迹方程是ρ=4cos θ. 法二:设M 点的坐标是(ρ,θ),N (ρ1,θ1).N 点在圆ρ=8cos θ上,∴ρ1=8cos θ1. ①∵M 是ON 的中点,∴⎩⎪⎨⎪⎧ρ1=2ρ,θ1=θ,代入①式得2ρ=8cos θ, 故M 的轨迹方程是ρ=4cos θ.1.极坐标方程ρ=cos ⎝ ⎛⎭⎪⎫π4-θ表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆cos θ+22ρsin θ, ( ) B.ρsin θ=2 D.ρsin θ=1【解析】 如图所示,设M (ρ,θ)为直线上除点A (2,0)外的任意一点,连结OM ,则有△AOM 为直角三角形,并且∠AOM =θ,|OA |=2,|OM |=ρ,所以有|OM |cos θ=|OA |,即ρcos θ=2,显然当ρ=2,θ=0时,也满足方程ρcos θ=2,所以所求直线的极坐标方程为ρcos θ=2.11 【答案】 A3.在极坐标系中,极点到直线ρcos θ=2的距离是________.【解析】 ρcos θ=2,即x =2.所以极点到直线的距离为2.【答案】 24.两直线ρsin ⎝ ⎛⎭⎪⎫θ+π4=2 016,ρsin ⎝⎛⎭⎪⎫θ-π4=2 015的位置关系是________.(判断垂直或平行或斜交)【解析】 两直线方程可化为x +y =2 0162,y -x =2 0152,故两直线垂直.【答案】 垂直5.求以C (4,0)为圆心,半径等于4的圆的极坐标方程.【解】 设P (ρ,θ)为圆C 上任意一点(不与O ,A 点重合),圆C 交极轴于另一点A ,则|OA |=8.在Rt△AOP 中,|OP |=|OA |cos θ,即ρ=8cos θ,经验证点O ,点A 也满足该等式,所以ρ=8cos θ.这就是圆C 的极坐标方程.我还有这些不足:(1)(2) 我的课下提升方案:(1)(2)。

高中数学 第一章 坐标系 1.2 极坐标系导学案(无答案)新人教B版选修4-4(2021年整理)

高中数学 第一章 坐标系 1.2 极坐标系导学案(无答案)新人教B版选修4-4(2021年整理)

辽宁省北票市高中数学第一章坐标系1.2 极坐标系导学案(无答案)新人教B版选修4-4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(辽宁省北票市高中数学第一章坐标系1.2 极坐标系导学案(无答案)新人教B版选修4-4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为辽宁省北票市高中数学第一章坐标系1.2 极坐标系导学案(无答案)新人教B版选修4-4的全部内容。

1。

2极坐标系一、 学习目标及学法指导1.学习目标:了解极坐标的基本概念,会在极坐标系中用极坐标刻画点的位置,能进行极坐标和直角坐标的互化2.重、难、考点:点的极坐标,极坐标和直角坐标的互化 二、预习案预习教材6-9页并完成下列问题:1. 极坐标系的概念:(1) 在平面上取一定点O,由O 点出发的一条射线Ox ,一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个____________。

O 点称为________,Ox 称为________.平面上任一点M 的位置可以由_____________和________________来刻画。

这两个数组成的有序数对_______称为点M 的__________。

ρ称为_________,θ称为__________。

(2) 在极坐标),(θρ中,一般限定_________.当0=ρ时,就与________重合,此时θ________。

给定点的极坐标_________,就________地确定了平面上的一个点。

但是,平面上一个点的极坐标并不是_________,它有_____________表示形式。

事实上,),(θρ和____________代表同一个点,其中k 为整数.由此可见,平面上的点与它的极坐标不是_________对应关系。

新人教B版高中数学选修4-4第1章坐标系1.2极坐标系讲义

新人教B版高中数学选修4-4第1章坐标系1.2极坐标系讲义

学习目标:1.了解极坐标系的意义,能用极坐标系刻画点的位置.(难点)2.了解极坐标系与直角坐标系的联系,能进行极坐标与直角坐标的互化.(重点)1.平面上点的极坐标(1)极坐标系:在平面上取一个定点O ,由O 点出发的一条射线Ox ,一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系,O 点称为极点,Ox 称为极轴.(2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画.这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为极径,θ称为极角.2.点与极坐标的关系(ρ,θ)和(ρ,θ+2k π)代表同一个点,其中k 为整数.特别地,极点O 的坐标为(0,θ)(θ∈R ).如果限定ρ≥0,0≤θ<2π,则除极点外,平面上的点就与它的极坐标构成一一对应关系.3.极坐标与直角坐标的关系(1)互化背景:设在平面上取定了一个极坐标系,以极轴作为直角坐标系的x 轴的正半轴,以θ=π2的射线作为y 轴的正半轴,以极点为坐标原点,长度单位不变,建立一个直角坐标系(如图1­2­1所示).(2)互化公式:设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),于是极坐标与直角坐标的互化公式如表:[提示] 极坐标系以角这一平面图形为几何背景,而直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系,用来刻画平面内点的位置.思考2:极坐标系所在平面内的点与极坐标是否能建立一一对应关系?[提示] 建立极坐标系后,给定数对(ρ,θ),就可以在平面内惟一确定一点M ;反过来,给定平面内一点M ,它的极坐标却不是惟一的.所以极坐标系所在平面内的点与极坐标不能建立一一对应关系.思考3:联系点的极坐标与直角坐标的互化公式的纽带是什么?[提示] 任意角的三角函数的定义及其基本关系式是联系点的极坐标与直角坐标的互化公式的纽带. 事实上,若ρ>0,则sin θ=y ρ,cos θ=xρ,所以x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=yx.1.极坐标系中,点M (1,0)关于极点的对称点为( ) A .(1,0) B .(-1,π) C .(1,π)D .(1,2π)[解析] ∵(ρ,θ)关于极点的对称点为(ρ,π+θ),∴M (1,0)关于极点的对称点为(1,π). [答案] C2.极坐标系中,到极点的距离等于到极轴的距离的点可以是( ) A .(1,0) B .(2,π4) C .(3,π2) D .(4,π)[答案] C3.点A 的极坐标是(2,7π6),则点A 的直角坐标为( )A .(-1,-3)B .(-3,1)C .(-3,-1)D .(3,-1)[解析] x =ρcos θ=2cos 76π=-3,y =ρsin θ=2sin 76π=-1.[答案] C4.点M 的直角坐标为(0,π2),则点M 的极坐标可以为( )A .(π2,0)B .(0,π2)C .(π2,π2)D .(π2,-π2)[解析] ∵ρ=x 2+y 2=π2,且θ=π2,∴M 的极坐标为(π2,π2).[答案] C【例1】 设点A (2,3),直线l 为过极点且垂直于极轴的直线,分别求点A 关于极轴,直线l ,极点的对称点的极坐标(限定ρ>0,-π<θ≤π).[思路探究] 欲写出点的极坐标,首先应确定ρ和θ的值. [解] 如图所示,关于极轴的对称点为B (2,-π3).关于直线l 的对称点为C (2,23π).关于极点O 的对称点为D (2,-23π).四个点A ,B ,C ,D 都在以极点为圆心,2为半径的圆上.1.点的极坐标不是惟一的,但若限制ρ>0,0≤θ<2π,则除极点外,点的极坐标是惟一确定的. 2.写点的极坐标要注意顺序:极径ρ在前,极角θ在后.1.在极坐标系中,B (3,π4),D (3,74π),试判断点B ,D 的位置是否具有对称性,并求出B ,D 关于极点的对称点的极坐标(限定ρ>0,θ∈[0,2π)).[解] 由B (3,π4),D (3,7π4),知|OB |=|OD |=3,极角π4与7π4的终边关于极轴对称.所以点B ,D 关于极轴对称.设点B (3,π4),D (3,7π4)关于极点的对称点分别为E (ρ1,θ1),F (ρ2,θ2),且ρ1=ρ2=3.当θ∈[0,2π)时,θ1=5π4,θ2=3π4,∴E (3,5π4),F (3,3π4)为所求.(1)(2,4π3);(2)(2,-23π);(3)(2,-π3).[思路探究] 点的极坐标(ρ,θ)―→⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ―→点的直角坐标(x ,y )―→判定点所在象限.[解] (1)由题意知x =2cos4π3=2×(-12)=-1,y =2sin 4π3=2×(-32)=- 3. ∴点(2,4π3)的直角坐标为(-1,-3),是第三象限内的点.(2)x =2cos(-23π)=-1,y =2sin(-23π)=-3,∴点(2,-23π)的直角坐标为(-1,-3),是第三象限内的点.(3)x =2cos(-π3)=1,y =2sin(-π3)=-3,∴点(2,-π3)的直角坐标为(1,-3),是第四象限内的点.1.点的极坐标与直角坐标的互化公式的三个前提条件:①极点与直角坐标系的原点重合;②极轴与直角坐标系的x 轴的正半轴重合;③两种坐标系的长度单位相同.2.将点的极坐标(ρ,θ)化为点的直角坐标(x ,y )时,运用到求角θ的正弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是关键.2.分别把下列点的极坐标化为直角坐标: (1)(2,π6);(2)(3,π2);(3)(π,π).[解] (1)∵x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1.∴点的极坐标(2,π6)化为直角坐标为(3,1).(2)∵x =ρcos θ=3cos π2=0,y =ρsin θ=3sin π2=3.∴点的极坐标(3,π2)化为直角坐标为(0,3).(3)∵x =ρcos θ=πcos π=-π,y =ρsin θ=πsin π=0,∴点的极坐标(π,π)化为直角坐标为(-π,0).(1)(-2,23);(2)(6,-2).[思路探究] 利用公式ρ2=x 2+y 2,tan θ=y x(x ≠0),但求角θ时,要注意点所在的象限. [解](1)∵ρ=x 2+y 2=(-2)2+(23)2=4, tan θ=y x=-3,θ∈[0,2π), 由于点(-2,23)在第二象限. ∴θ=2π3.∴点的直角坐标(-2,23)化为极坐标(4,23π).(2)∵ρ=x 2+y 2=(6)2+(-2)2=22, tan θ=y x =-33,θ∈[0,2π), 由于点(6,-2)在第四象限,所以θ=11π6.∴点的直角坐标(6,-2)化为极坐标为(22,11π6).1.将直角坐标(x ,y )化为极坐标(ρ,θ),主要利用公式ρ2=x 2+y 2,tan θ=yx(x ≠0)求解. 2.在[0,2π)范围内,由tan θ=y x(x ≠0)求θ时,要根据直角坐标的符号特征判断出点所在的象限.如果允许θ∈R ,再根据终边相同的角的意义,表示为θ+2k π(k ∈Z )即可.3.(1)“例3”中,如果限定ρ>0,θ∈R ,分别求各点的极坐标;(2)如果点的直角坐标(x ,y )满足xy <0,那么在限定ρ>0,θ∈R 的情况下转化为点的极坐标时,试探究θ的取值范围.[解] (1)根据与角α终边相同的角为α+2k π(k ∈Z )知,点的直角坐标化为极坐标(ρ>0,θ∈R )分别如下:(-2,23)的极坐标为(4,2π3+2k π)(k ∈Z ).(6,-2)的极坐标为(22,116π+2k π)(k ∈Z ).(2)由xy <0得x <0,y >0或x >0,y <0. 所以(x ,y )可能在第二象限或第四象限.把直角坐标(x ,y )化为极坐标(ρ,θ),ρ>0,θ∈R 时,θ的取值范围为(π2+2k π,π+2k π)∪(3π2+2k π,2π+2k π)(k ∈Z ).【例4】 在极坐标系中,如果A (2,4),B (2,4)为等边三角形ABC 的两个顶点,求顶点C 的极坐标(ρ>0,0≤θ<2π).[思路探究] 解答本题可以先利用极坐标化为直角坐标,再根据等边三角形的定义建立方程组求解点C 的直角坐标,进而求出点C 的极坐标.[解] 对于点A (2,π4)有ρ=2,θ=π4,∴x =2cos π4=2,y =2sin π4=2,则A (2,2).对于B (2,54π)有ρ=2,θ=54π,∴x =2cos 54π=-2,y =2sin 54π=- 2.∴B (-2,-2).设C 点的坐标为(x ,y ),由于△ABC 为等边三角形, 故|AB |=|BC |=|AC |=4.∴有⎩⎨⎧(x -2)2+(y -2)2=16,(x +2)2+(y +2)2=16.解之得⎩⎨⎧x =6,y =-6,或⎩⎨⎧x =-6,y = 6.∴C 点的坐标为(6,-6)或(-6,6). ∴ρ=6+6=23,tan θ=-66=-1,∴θ=74π或θ=34π.故点C 的极坐标为(23,74π)或(23,34π).1.本例综合考查了点的极坐标与直角坐标的互化公式以及等边三角形的意义和性质.结合几何图形可知,点C 的坐标有两解,设出点的坐标寻求等量关系建立方程组求解是关键.2.若设出C (ρ,θ),利用余弦定理亦可求解,请读者完成.4.本例中,如果点的极坐标仍为A (2,π4),B (2,5π4),且△ABC 为等腰直角三角形,如何求直角顶点C 的极坐标.[解] 对于点A (2,π4),直角坐标为(2,2),点B (2,5π4)的直角坐标为(-2,-2),设点C 的直角坐标为(x ,y ),由题意得AC ⊥BC ,且|AC |=|BC |,∴AC →·BC →=0, 即(x -2,y -2)·(x +2,y +2)=0, ∴x 2+y 2=4. ①又|A C →|2=|B C →|2,于是(x -2)2+(y -2)2=(x +2)2+(y +2)2,∴y =-x 代入①,得x 2=2,解得x =± 2.∴⎩⎨⎧x =2,y =-2,或⎩⎨⎧x =-2,y =2,∴点C 的直角坐标为(2,-2)或(-2,2), ∴ρ=2+2=2,tan θ=-1,θ=7π4或3π4,∴点C 的极坐标为(2,3π4)或(2,7π4).(教材P10习题1-2T3)把下列各点的直角坐标化为极坐标(限定ρ>0,0≤θ<2π):A (-1,1),B (0,-2),C (3,4),D (-3,-4).已知点P 在第三象限角的平分线上,且到横轴的距离为2,则当ρ>0,θ∈[0,2π)时,点P的极坐标为________.[命题意图] 主要考查直角坐标与极坐标的互化.[解析] ∵点P (x ,y )在第三象限角的平分线上,且到横轴的距离为2. ∴x =-2,且y =-2. ∴ρ=x 2+y 2=2 2.又tan θ=y x=1,且θ∈[0,2π). ∴θ=54π.因此点P 的极坐标为(22,54π).[答案] (22,54π)。

2017-2018学年高中数学 第一章 坐标系 1.2 极坐标系 1.2.1 极坐标系的概念课件 北师大版选修4-4

2017-2018学年高中数学 第一章 坐标系 1.2 极坐标系 1.2.1 极坐标系的概念课件 北师大版选修4-4
答案:B
题型一 题型二
题型一 极坐标系中点的表示
【例 1】 已知点 M 的极坐标为 5,π3 , 下列给出的四个坐
标中与点������的坐标重合的是( ).
A.
5,-
π 3
B.
5,
4π 3
C.
5,-
2π 3
D.
5,-
5π 3
极径解 相析等:,极与角点相M差重2合π的的极整坐数标倍可.根以据表选示项为,当5k,=2���-���1π时+,π32kπ(+������∈π3 =Z),即
再在射线������������的反向延长线上取点������, 使
|������������| = 2
C.作射线
OP,使∠xOP=
7π 6
,
再在射线������������的反向延长线上取点������,
使
|������������| = 2
D.作射线
OP,使∠xOP=−
π 6
,
再在射线������������上取点������,
题型一 题型二
【变式训练 1】 在极坐标系中,画出点
������
1,π4
, ������
2,32π
, ������
3,-
π 4
, ������
4,94π
.
解:在极坐标系中先作出角π4的终边,再在其上截取|OA|=1,这样
可得到点 A
1,
π 4
.同样可作出点 B
2,
3π 2
,C
3,-
π 4
,D
4,
9π 4
分析:欲确定点的位置,需先确定ρ和θ的值. 解:由点A在极坐标系中的位置知,它的极径为4,极角为0,所以它的 极坐标为A(4,0).同理, 得������ 2,π4 , ������ 3,π2 , ������ 1,56π , ������ 4, π , ������ 6,43π , ������ 5,53π , 而极点O的极坐标为(0,θ),θ∈[0,2π).

高中数学第1章坐标系1.2极坐标系教案北师大版选修4-4(2021学年)

高中数学第1章坐标系1.2极坐标系教案北师大版选修4-4(2021学年)

海南省陵水县高中数学第1章坐标系 1.2极坐标系教案北师大版选修4-4编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(海南省陵水县高中数学第1章坐标系 1.2极坐标系教案北师大版选修4-4)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为海南省陵水县高中数学第1章坐标系 1.2极坐标系教案北师大版选修4-4的全部内容。

1。

2 极坐标系教学目的知识目标理解极坐标的概念能力目标能在极坐标系中用极坐标刻画点的位置,体会在极坐标系和平面直角坐标系中刻画点的位置的区别。

教学重点理解极坐标的意义教学难点能够在极坐标系中用极坐标确定点位置授课类型新授课教学模式启发、诱导发现教学.教具多媒体、实物投影仪教学过程一、复习引入情境1:军舰巡逻在海面上,发现前方有一群水雷,如何确定它们的位置以便将它们引爆?情境2:如图为某校园的平面示意图,假设某同学在教学楼处。

(1)他向东偏60°方向走120M后到达什么位置?该位置惟一确定吗?(2)如果有人打听体育馆和办公楼的位置,他应如何描述?问题1:为了简便地表示上述问题中点的位置,应创建怎样的坐标系呢?问题2:如何刻画这些点的位置?这一思考,能让学生结合自己熟悉的背景,体会在某些情况下用距离与角度来刻画点的位置的方便性,为引入极坐标提供思维基础.二、讲解新课从情镜2中探索出:在生活中人们经常用方向和距离来表示一点的位置。

这种用方向和距离表示平面上一点的位置的思想,就是极坐标的基本思想。

1、极坐标系的建立在平面上取一个定点O ,自点O引一条射线OX,同时确定一个单位长度和计算角度的正方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系。

2017-2018学年高中数学 第一章 坐标系 1.2 极坐标系 1.2.2 点的极坐标与直角坐标的互化课件 北师大版选修4-

2017-2018学年高中数学 第一章 坐标系 1.2 极坐标系 1.2.2 点的极坐标与直角坐标的互化课件 北师大版选修4-

【做一做 1】 已知点 M 的极坐标为
5,
2π 3
, 则它的直角
坐标是
.
解析:因为
x=5cos
2π 3
=

5 2
,
������
=
5sin
2π 3
=
5 3.
2
所以点 M 的直角坐标为
-
5 2
,
53 2
.
答案:
-
5 2
,
5
3 2
【做一做 2】
已知点 A 的极坐标为
-2,-
π 3
, 则它的直角
坐标是
.
解析:因为点 A 的极坐标可以写成
������ =
2
=- 2 ,
∴线段 AB 中点的直角坐标为
-
1 2
,-
3 2
. 故选D.
答案:D
12345
1 若点 P 的直角坐标为( 2, − 2), 则它的极坐标(������≥0,0≤θ<2π)可
表示为( ).
A.
2,
π 4
B.
2,
3π 4
C.
2,
5π 4
D.
2,
7π 4
解析:∵ρ=
(-
2)2
(2)互化公式. 如上图所示,设M是平面内的任意一点,它的直角坐标是(x,y),极坐 标是(ρ,θ).如果限定ρ取正值,θ∈[0,2π),那么除原点外,平面内点的直 角坐标与极坐标之间就是一一对应的.
①点M的极坐标(ρ,θ)化为直角坐标(x,y)的关系式是
������ = ������cos������,
故点(-2,-2
3)的极坐标为
4,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学第1章坐标系1.2极坐标系讲义新人教B 版选修441.2 极坐标系1.2.1 平面上点的极坐标 1.2.2 极坐标与直角坐标的关系学习目标:1.了解极坐标系的意义,能用极坐标系刻画点的位置.(难点)2.了解极坐标系与直角坐标系的联系,能进行极坐标与直角坐标的互化.(重点)1.平面上点的极坐标(1)极坐标系:在平面上取一个定点O ,由O 点出发的一条射线Ox ,一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系,O 点称为极点,Ox 称为极轴.(2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画.这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为极径,θ称为极角.2.点与极坐标的关系(ρ,θ)和(ρ,θ+2k π)代表同一个点,其中k 为整数.特别地,极点O 的坐标为(0,θ)(θ∈R ).如果限定ρ≥0,0≤θ<2π,则除极点外,平面上的点就与它的极坐标构成一一对应关系.3.极坐标与直角坐标的关系(1)互化背景:设在平面上取定了一个极坐标系,以极轴作为直角坐标系的x 轴的正半轴,以θ=π2的射线作为y 轴的正半轴,以极点为坐标原点,长度单位不变,建立一个直角坐标系(如图1­2­1所示).(2)互化公式:设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),于是极坐标与直角坐标的互化公式如表:点M 直角坐标(x ,y )极坐标(ρ,θ)互化公式⎩⎪⎨⎪⎧x =ρcos θy =ρsin θρ2=x 2+y 2tan θ=yx(x ≠0)[提示] 极坐标系以角这一平面图形为几何背景,而直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系,用来刻画平面内点的位置.思考2:极坐标系所在平面内的点与极坐标是否能建立一一对应关系?[提示] 建立极坐标系后,给定数对(ρ,θ),就可以在平面内惟一确定一点M ;反过来,给定平面内一点M ,它的极坐标却不是惟一的.所以极坐标系所在平面内的点与极坐标不能建立一一对应关系.思考3:联系点的极坐标与直角坐标的互化公式的纽带是什么?[提示] 任意角的三角函数的定义及其基本关系式是联系点的极坐标与直角坐标的互化公式的纽带.事实上,若ρ>0,则sin θ=y ρ,cos θ=x ρ,所以x =ρcos θ,y =ρsin θ,ρ2=x 2+y 2,tan θ=y x.1.极坐标系中,点M (1,0)关于极点的对称点为( ) A .(1,0) B .(-1,π) C .(1,π)D .(1,2π)[解析] ∵(ρ,θ)关于极点的对称点为(ρ,π+θ),∴M (1,0)关于极点的对称点为(1,π).[答案] C2.极坐标系中,到极点的距离等于到极轴的距离的点可以是( ) A .(1,0) B .(2,π4) C .(3,π2) D .(4,π)[答案] C3.点A 的极坐标是(2,7π6),则点A 的直角坐标为( )A .(-1,-3)B .(-3,1)C .(-3,-1)D .(3,-1)[解析] x =ρcos θ=2cos 76π=-3,y =ρsin θ=2sin 76π=-1.[答案] C4.点M 的直角坐标为(0,π2),则点M 的极坐标可以为( )A .(π2,0)B .(0,π2)C .(π2,π2)D .(π2,-π2)[解析] ∵ρ=x 2+y 2=π2,且θ=π2,∴M 的极坐标为(π2,π2).[答案] C确定极坐标系中点的坐标【例1】 设点A (2,π3),直线l 为过极点且垂直于极轴的直线,分别求点A 关于极轴,直线l ,极点的对称点的极坐标(限定ρ>0,-π<θ≤π).[思路探究] 欲写出点的极坐标,首先应确定ρ和θ的值. [解] 如图所示,关于极轴的对称点为B (2,-π3).关于直线l 的对称点为C (2,23π).关于极点O 的对称点为D (2,-23π).四个点A ,B ,C ,D 都在以极点为圆心,2为半径的圆上.1.点的极坐标不是惟一的,但若限制ρ>0,0≤θ<2π,则除极点外,点的极坐标是惟一确定的.2.写点的极坐标要注意顺序:极径ρ在前,极角θ在后.1.在极坐标系中,B (3,π4),D (3,74π),试判断点B ,D 的位置是否具有对称性,并求出B ,D 关于极点的对称点的极坐标(限定ρ>0,θ∈[0,2π)).[解] 由B (3,π4),D (3,7π4),知|OB |=|OD |=3,极角π4与7π4的终边关于极轴对称.所以点B ,D 关于极轴对称.设点B (3,π4),D (3,7π4)关于极点的对称点分别为E (ρ1,θ1),F (ρ2,θ2),且ρ1=ρ2=3.当θ∈[0,2π)时,θ1=5π4,θ2=3π4,∴E (3,5π4),F (3,3π4)为所求.将点的极坐标化为直角坐标(1)(2,4π3);(2)(2,-23π);(3)(2,-π3).[思路探究] 点的极坐标(ρ,θ)―→⎩⎪⎨⎪⎧x =ρcos θy =ρsin θ―→点的直角坐标(x ,y )―→判定点所在象限.[解] (1)由题意知x =2cos 4π3=2×(-12)=-1,y =2sin 4π3=2×(-32)=- 3.∴点(2,4π3)的直角坐标为(-1,-3),是第三象限内的点.(2)x =2cos(-23π)=-1,y =2sin(-23π)=-3,∴点(2,-23π)的直角坐标为(-1,-3),是第三象限内的点.(3)x =2cos(-π3)=1,y =2sin(-π3)=-3,∴点(2,-π3)的直角坐标为(1,-3),是第四象限内的点.1.点的极坐标与直角坐标的互化公式的三个前提条件:①极点与直角坐标系的原点重合;②极轴与直角坐标系的x 轴的正半轴重合;③两种坐标系的长度单位相同.2.将点的极坐标(ρ,θ)化为点的直角坐标(x ,y )时,运用到求角θ的正弦值和余弦值,熟练掌握特殊角的三角函数值,灵活运用三角恒等变换公式是关键.2.分别把下列点的极坐标化为直角坐标: (1)(2,π6);(2)(3,π2);(3)(π,π).[解] (1)∵x =ρcos θ=2cos π6=3,y =ρsin θ=2sin π6=1.∴点的极坐标(2,π6)化为直角坐标为(3,1).(2)∵x =ρcos θ=3cos π2=0,y =ρsin θ=3sin π2=3.∴点的极坐标(3,π2)化为直角坐标为(0,3).(3)∵x =ρcos θ=πcos π=-π,y =ρsin θ=πsin π=0,∴点的极坐标(π,π)化为直角坐标为(-π,0).将点的直角坐标化为极坐标(1)(-2,23);(2)(6,-2).[思路探究] 利用公式ρ2=x 2+y 2,tan θ=y x(x ≠0),但求角θ时,要注意点所在的象限.[解](1)∵ρ=x 2+y 2=(-2)2+(23)2=4, tan θ=y x=-3,θ∈[0,2π), 由于点(-2,23)在第二象限. ∴θ=2π3.∴点的直角坐标(-2,23)化为极坐标(4,23π).(2)∵ρ=x 2+y 2=(6)2+(-2)2=22, tan θ=y x =-33,θ∈[0,2π), 由于点(6,-2)在第四象限,所以θ=11π6.∴点的直角坐标(6,-2)化为极坐标为(22,11π6).1.将直角坐标(x ,y )化为极坐标(ρ,θ),主要利用公式ρ2=x 2+y 2,tan θ=y x(x ≠0)求解.2.在[0,2π)范围内,由tan θ=y x(x ≠0)求θ时,要根据直角坐标的符号特征判断出点所在的象限.如果允许θ∈R ,再根据终边相同的角的意义,表示为θ+2k π(k ∈Z )即可.3.(1)“例3”中,如果限定ρ>0,θ∈R ,分别求各点的极坐标;(2)如果点的直角坐标(x ,y )满足xy <0,那么在限定ρ>0,θ∈R 的情况下转化为点的极坐标时,试探究θ的取值范围.[解] (1)根据与角α终边相同的角为α+2k π(k ∈Z )知,点的直角坐标化为极坐标(ρ>0,θ∈R )分别如下:(-2,23)的极坐标为(4,2π3+2k π)(k ∈Z ).(6,-2)的极坐标为(22,116π+2k π)(k ∈Z ).(2)由xy <0得x <0,y >0或x >0,y <0. 所以(x ,y )可能在第二象限或第四象限.把直角坐标(x ,y )化为极坐标(ρ,θ),ρ>0,θ∈R 时,θ的取值范围为(π2+2k π,π+2k π)∪(3π2+2k π,2π+2k π)(k ∈Z ).极坐标与直角坐标的综合应用【例4】 在极坐标系中,如果A (2,4),B (2,4)为等边三角形ABC 的两个顶点,求顶点C 的极坐标(ρ>0,0≤θ<2π).[思路探究] 解答本题可以先利用极坐标化为直角坐标,再根据等边三角形的定义建立方程组求解点C 的直角坐标,进而求出点C 的极坐标.[解] 对于点A (2,π4)有ρ=2,θ=π4,∴x =2cos π4=2,y =2sin π4=2,则A (2,2).对于B (2,54π)有ρ=2,θ=54π,∴x =2cos 54π=-2,y =2sin 54π=- 2.∴B (-2,-2).设C 点的坐标为(x ,y ),由于△ABC 为等边三角形, 故|AB |=|BC |=|AC |=4.∴有⎩⎨⎧(x -2)2+(y -2)2=16,(x +2)2+(y +2)2=16.解之得⎩⎨⎧x =6,y =-6,或⎩⎨⎧x =-6,y = 6.∴C 点的坐标为(6,-6)或(-6,6). ∴ρ=6+6=23,tan θ=-66=-1,∴θ=74π或θ=34π.。

相关文档
最新文档