高中数学第1章坐标系1.2极坐标系讲义新人教B版选修44
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学第1章坐标系1.2极坐标系讲义新人教B 版选修44
1.2 极坐标系
1.2.1 平面上点的极坐标 1.2.2 极坐标与直角坐标的关系
学习目标:1.了解极坐标系的意义,能用极坐标系刻画点的位置.(难点)2.了解极坐标系与直角坐标系的联系,能进行极坐标与直角坐标的互化.(重点)
1.平面上点的极坐标
(1)极坐标系:在平面上取一个定点O ,由O 点出发的一条射线Ox ,一个长度单位及计算角度的正方向(通常取逆时针方向),合称为一个极坐标系,O 点称为极点,Ox 称为极轴.
(2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画.这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为极径,θ称为极角.
2.点与极坐标的关系
(ρ,θ)和(ρ,θ+2k π)代表同一个点,其中k 为整数.特别地,极点O 的坐标为(0,
θ)(θ∈R ).如果限定ρ≥0,0≤θ<2π,则除极点外,平面上的点就与它的极坐标构成一
一对应关系.
3.极坐标与直角坐标的关系
(1)互化背景:设在平面上取定了一个极坐标系,以极轴作为直角坐标系的x 轴的正半轴,以θ=π
2的射线作为y 轴的正半轴,以极点为坐标原点,长度单位不变,建立一个直角坐标
系(如图121所示).
(2)互化公式:设M 是平面内任意一点,它的直角坐标是(x ,y ),极坐标是(ρ,θ),于是极坐标与直角坐标的互化公式如表:
点M 直角坐标(x ,y )
极坐标(ρ,θ)
互化公式
⎩
⎪⎨
⎪⎧
x =ρcos θy =ρsin θ
ρ2=x 2+y 2
tan θ=y
x
(x ≠0)
[提示] 极坐标系以角这一平面图形为几何背景,而直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系,用来刻画平面内点的位置.
思考2:极坐标系所在平面内的点与极坐标是否能建立一一对应关系?
[提示] 建立极坐标系后,给定数对(ρ,θ),就可以在平面内惟一确定一点M ;反过来,给定平面内一点M ,它的极坐标却不是惟一的.所以极坐标系所在平面内的点与极坐标不能建立一一对应关系.
思考3:联系点的极坐标与直角坐标的互化公式的纽带是什么?
[提示] 任意角的三角函数的定义及其基本关系式是联系点的极坐标与直角坐标的互化公式的纽带.
事实上,若ρ>0,则sin θ=y ρ,cos θ=x ρ
,
所以x =ρcos θ,y =ρsin θ,ρ2
=x 2
+y 2
,tan θ=y x
.
1.极坐标系中,点M (1,0)关于极点的对称点为( ) A .(1,0) B .(-1,π) C .(1,π)
D .(1,2π)
[解析] ∵(ρ,θ)关于极点的对称点为(ρ,π+θ),∴M (1,0)关于极点的对称点为(1,π).
[答案] C
2.极坐标系中,到极点的距离等于到极轴的距离的点可以是( ) A .(1,0) B .(2,π4) C .(3,π
2) D .(4,π)
[答案] C
3.点A 的极坐标是(2,7π
6),则点A 的直角坐标为( )
A .(-1,-3)
B .(-3,1)
C .(-3,-1)
D .(3,-1)
[解析] x =ρcos θ=2cos 7
6
π=-3,
y =ρsin θ=2sin 76
π=-1.
[答案] C
4.点M 的直角坐标为(0,π
2),则点M 的极坐标可以为( )
A .(π2,0)
B .(0,π2)
C .(π2,π2)
D .(π2,-π2)
[解析] ∵ρ=x 2+y 2
=π2,且θ=π2,
∴M 的极坐标为(π2,π
2).
[答案] C
确定极坐标系中点的坐标
【例1】 设点A (2,π
3),直线l 为过极点且垂直于极轴的直线,分别求点A 关于极轴,
直线l ,极点的对称点的极坐标(限定ρ>0,-π<θ≤π).
[思路探究] 欲写出点的极坐标,首先应确定ρ和θ的值. [解] 如图所示,关于极轴的对称点为B (2,-π
3
).
关于直线l 的对称点为C (2,2
3π).
关于极点O 的对称点为D (2,-2
3
π).
四个点A ,B ,C ,D 都在以极点为圆心,2为半径的圆上.
1.点的极坐标不是惟一的,但若限制ρ>0,0≤θ<2π,则除极点外,点的极坐标是惟一确定的.
2.写点的极坐标要注意顺序:极径ρ在前,极角θ在后.
1.在极坐标系中,B (3,π4),D (3,7
4π),试判断点B ,D 的位置是否具有对称性,并求
出B ,D 关于极点的对称点的极坐标(限定ρ>0,θ∈[0,2π)).
[解] 由B (3,π4),D (3,7π
4
),
知|OB |=|OD |=3,极角π4与7π
4的终边关于极轴对称.
所以点B ,D 关于极轴对称.
设点B (3,π4),D (3,7π
4)关于极点的对称点分别为E (ρ1,θ1),F (ρ2,θ2),
且ρ1=ρ2=3.
当θ∈[0,2π)时,θ1=5π4,θ2=3π
4,
∴E (3,5π4),F (3,3π
4)为所求.
将点的极坐标化为直角坐标
(1)(2,4π3);(2)(2,-23π);(3)(2,-π
3
).
[思路探究] 点的极坐标(ρ,θ)―→⎩
⎪⎨
⎪⎧
x =ρcos θ
y =ρsin θ―→点的直角坐标(x ,y )―→判定
点所在象限.
[解] (1)由题意知x =2cos 4π3=2×(-12)=-1,y =2sin 4π3=2×(-3
2)=- 3.
∴点(2,4π
3)的直角坐标为(-1,-3),是第三象限内的点.
(2)x =2cos(-2
3
π)=-1,
y =2sin(-23
π)=-3,
∴点(2,-2
3π)的直角坐标为(-1,-3),是第三象限内的点.
(3)x =2cos(-π
3
)=1,