发电厂烟气余热利用热经济性分析与计算

合集下载

余热利用方案

余热利用方案

中低温余热利用方案2017年方案摘要根据厂区的中低温余热情况进行了分析,制订了余热利用的方式及达到的节能效益。

本方案主要包括三个方面:(1)烟气余热回收利用。

此部分余热利用有两种主要应用形式:一、采用烟气换热器直接预热锅炉补水,预计提升温度约30℃左右。

二、采用烟气换热器回收烟气热量产生90℃高温热水制冷,热水机组替换原热电厂办公楼电冷机。

采用方法一最简单、投资最省,但主要问题在于解决换热器堵塞和露点腐蚀问题。

(2)90℃蒸氨废液回收利用。

此部分余热可考虑采用非电热泵,以90℃的热水作为驱动热源,同时加热90℃的热水升温至120℃送往纯碱工艺的第一闪蒸罐内产生蒸汽。

2500m3/h的蒸氨废液每小时约可产生18吨蒸汽,年节省1800万元的蒸汽费用,投资回收期约14个月。

项目中采用特制的热泵机组解决腐蚀问题并考虑结垢的解决方案。

(3)45℃低温冷却水余热。

此部分余热可与锅炉补水预热相结合,采用非电热泵回收45℃低温冷却水热量,将35℃的锅炉补水加热至90℃补入除氧器水箱中。

以50MW的锅炉为例,每小时可节省3.4吨蒸汽,每节省340万元,投资回收期约1年。

公司简介远大科技集团是一家“以独创技术为理念、以保护生命为信条”的企业,远大所有产品都颠覆了行业传统,都从本质上优化着人类生存和地球环境。

远大空调有限公司是远大科技集团下属子公司,1988年以3万元创业,1996年以来无贷款,一直以滚雪球方式发展。

连续多年被评为中国“最具国际竞争力企业”、“最受尊敬企业”。

远大以非电中央空调主机产品享誉全球,销往80个国家,在中国及欧美市场占有率第一。

近年开发了具备静电除尘功能的中央空调末端产品、空气净化机及可持续建筑,并从事中央空调交钥匙工程、中央空调合同能源管理服务。

远大的所有产品均为自主创新,均获得了中国及欧美质量认证和安全认证。

远大的所有服务均以节能、减低用户投资为重心。

“我们保护生命”是远大的口号。

远大希望,用方便的空气健康技术让人多活30年,用实用的空调节能技术使用户节能一倍,以减轻地球暖化,让后代可以继续生存在地球上。

烟气余热换热器的热力学和经济性分析

烟气余热换热器的热力学和经济性分析

摘要:本文结合了大唐太原第二热电厂火力发电#10、#11机组增设烟气余热换热器(低压省煤器)工程改造方案,提出在引风机出口烟道位置安装余热换热器(低压省煤器),将烟气温度降低到102℃,将回收的热量输送到凝结水回热系统中(冬季的工况不同,加热热网供水),使用热力学进行分析,可以使发电标煤耗降低,使每台机组的脱硫吸收塔喷淋降温用水减少。

关键词:烟气余热换热器电站锅炉热力学经济性在传统的锅炉设计中,要对煤炭的价格、钢材的价格、烟气的低温腐蚀进行综合的考虑,通常将大型电站的燃煤锅炉空气预热器排烟温度设置在120℃~130℃左右,对硫分和水分较多的燃料要将排烟的温度设定到更高的数值。

这样的设计在不强制烟气脱硫和煤炭价格较低的情况是可以使用的。

火电厂烟气脱硫工艺中最常用的是以湿式石灰石———石膏烟气脱硫技术,烟气进入到脱硫塔中的温度(最佳反应温度)大约在80℃左右,锅炉空气预热器出口的烟气一般经过GGH 或者是喷淋减温后进入到脱硫塔中。

回转式GGH 方式因为有漏烟的现象,对脱硫的效率等会造成影响,所以使用的较少,喷水减温方式虽然简单可行,但是需要消耗大量的水资源。

本文结合了大唐太原第二热电厂火力发电#10、#11机组增设烟气余热换热器(低压省煤器)工程改造方案为例,脱硫塔不使用GGH 技术,对烟气进脱硫塔之前和部分凝结水换热进行探讨,目的降低脱硫烟气的温度,利用余热将机组效率的可行性和经济型进行提高。

1工程概况大唐太原第二热电厂#10、#11号锅炉为东方锅炉厂设计制造的亚临界、中间一次再热、全悬吊、自然循环、平衡通风、燃煤汽包炉。

锅炉型号为DG1065/17.4-Ⅱ12。

厂址区域地震动峰值加速度0.2g (对应震烈度为8度),地震动反应谱特征周期0.35s。

地下水位埋深一般2.6-2.8m,根据水质分析结果,场地内地下水对钢筋混凝土基础无任何腐蚀性。

2#10、#11机组增设烟气余热换热器(低压省煤器)设计条件锅炉原烟气的流经顺序为锅炉→锅炉尾部烟道→静电除尘器→余热换热器→脱硫吸收塔→烟囱,烟气被冷却后放出的热量用来加热热网水或汽机凝结水。

内燃机分布式能源站中烟气余热利用方案的研究

内燃机分布式能源站中烟气余热利用方案的研究

内燃机分布式能源站中烟气余热利用方案的研究一、内燃机烟气余热的可利用性分析分布式能源站中,内燃机利用燃气发电时,产生的烟气温度通常在300-500摄氏度之间,而这部分烟气余热的能量是很大的。

通过合理的烟气余热回收利用方案,可以充分利用这部分能量,提高能源的综合利用效率。

烟气余热的利用有许多途径,如制冷、供暖、热水生产等,因此烟气余热的可利用性是非常高的。

二、内燃机烟气余热利用方案1.烟气余热回收系统内燃机燃气发电时产生的高温烟气,可以通过烟气余热回收系统进行回收利用。

该系统采用烟气换热器将高温烟气中的余热传递给工作介质(如水),产生高温热水或蒸汽。

这部分热水或蒸汽可以用于供暖、工业生产等,充分利用烟气余热,提高能源利用效率。

2.烟气余热制冷系统利用烟气余热进行制冷是一种创新的能源利用方式。

通过烟气余热制冷系统,将烟气余热传递给制冷剂,使其发生相变,从而实现制冷效果。

这种方式不仅可以有效利用烟气余热,还可以减少对传统制冷设备的依赖,降低能源消耗和环境污染。

三、内燃机烟气余热利用的挑战与对策1.烟气余热回收系统的设计烟气余热回收系统的设计是烟气余热利用的关键。

合理的换热器设计、工作介质的选择、系统的布局等都会直接影响烟气余热利用效果。

需要针对具体的内燃机型号和工作条件进行系统设计,确保系统能够稳定、高效地利用烟气余热。

2.烟气余热利用技术的成熟度目前烟气余热利用技术还处于发展阶段,存在着技术成熟度不高的问题。

一些新型的烟气余热利用技术在工程应用时可能会遇到一些问题,需要在实际应用中不断改进和完善。

需要加大对烟气余热利用技术的研究和开发力度,提高其成熟度和可靠性。

3.烟气余热利用的经济性烟气余热利用系统的投资和运行成本是烟气余热利用的关键问题。

在进行烟气余热利用方案设计时,需要充分考虑系统的经济性,尽量降低投资成本,提高能源利用效率。

可以通过技术创新、设备优化等手段降低成本,提高烟气余热利用的经济效益。

电厂余热资源的有效利用

电厂余热资源的有效利用

电厂余热资源的有效利用摘要:燃气发电机组包括燃气轮机、余热锅炉、汽轮机等,用以产生高温高压蒸汽的热锅炉驱动汽轮机发电。

然而,在能量的级联利用方面,余热的进一步利用还有很大的空间。

如汽轮机排汽余热的综合利用和锅炉烟气余热的回收利用。

关键词:发电厂;燃气锅炉;热能利用率导言随着能源供应的日益紧张,节能降耗、提高能源利用率越来越受到人们的重视。

只有约30%~35%的燃气热能转化为电能,约30%与废气一起排放,35%~40%通过发动机本体消散,由冷却水循环带走。

由于发电机组产生的废气所产生的热量几乎等于发电机组的有用功,因此可以利用燃气燃烧后排出的废气所产生的热量,废热利用装置可转为废热利用。

1电站锅炉余热资源气利用情况1.1减少热损失火电厂锅炉热损失是指由于热转换引起的不可逆的能量形式问题。

烟囱热是降低热损失的有效途径。

电站锅炉的实施应根据实际需要提供质、量的能源供应,减少不可逆转换造成的能量损失,保证电站锅炉运行的质量要求。

产生热能转换的原因是:锅炉在有效出力状态下产生的热能损失。

排热损失占热损失的比例最大,占15%;化学完全燃烧损失,占热损失的5%;机械不完全燃烧损失,占热损失的3%;散热损失最小,约占1%。

烟气余热减少了热损失,实现了能量循环,提高了电站锅炉的经济效益。

1.2能源系统应用烟气总能量系统取决于烟气余热容量、能量比、科学比以及动能、热能和势能的转换。

从热、经济、环保综合考虑,提高锅炉设备的能源利用率,实现能源循环利用,最大限度地发挥能源价值,减少能源的过度浪费。

避免废气排放,缓解“烟雾”的生态问题。

烟气余热的开发利用,采用科学的能量回收预测方法。

选用具有废气净化处理功能的设备,提高资源化利用效率。

2电厂余热资源余热利用技术2.1锅炉烟气余热回收利用然气烃含量较高,燃烧时会产生大量的水蒸气。

水蒸气中含有大量的气化潜热。

这部分热量可达到天然气低热值的10%~11%,目前难以充分利用。

一方面,由于天然气中含有硫,燃烧后会产生微量的硫化物,为防止锅炉终冷系统等设备腐蚀产生的烟气中硫化物沉淀。

发电厂节能减排之烟气余热利用

发电厂节能减排之烟气余热利用
发电厂节能减排之烟气余热利用
众所周知,火力发电厂主要有两大热损失,分别是汽轮机系统的冷端排汽冷凝热损失以及锅炉系统尾部排烟热损失。影响火电厂锅炉排烟热损失的主要因素是排烟温度,目前,我国燃煤电站锅炉排烟温度大多在120——140℃,锅炉效率约90%——94%。在各种热损失中,排烟热损失占锅炉热损失的一半以上,如果能有效降低电站锅炉的排烟温度至70——90℃,锅炉效率将提高2%——5%,供电煤耗将下降2——5g/kWh,二氧化碳的排放量也相应有大幅度的减少。因此,随着近些年来能源价格的不断攀升以及节能减排要求的日益严格,电站锅炉尾部烟气余热的回收利用受到广泛重视。降低锅炉排烟温度可以有多种设计方案:一是通过燃烧优化调整来降低排烟温度;二是增加锅炉受热面来降低排烟温度;三是增加锅炉空气预热器受热面来降低排烟温度;四是在锅炉尾部烟道增加低温省煤器,利用凝结水或其它介质吸收排烟余热来降低排烟温度。但经过多次的试验研究以及现场论证,利用低温省煤器回收烟气的余热是最直接、最简便、也是最有效可行的余热回收的方法。
2、低温省煤器设置于引风机出口及脱硫塔入口前。
低温烟气冷却到合适的温度后直接进入脱硫塔,不存在对引风机等设备造成的低温腐蚀的危害,可以最大程度地利用烟气余热。低温省煤器设置于脱硫塔前,减少了烟气蒸发水耗量,起到了一定的节水效果。同时,换热管的磨损和堵灰的问题也比较轻。但由于进入低温省煤器的烟气没有经过除尘,含尘浓度较高,低温省煤器的工作环境较恶劣,磨损大,寿命短。另外,也会引起电除尘、引风机、烟道等的酸腐蚀,增加了设备的防腐成本。
4、如果排烟余热加热的是汽轮机热力系统中的凝结水,那么在凝结水在低温省煤器系统中吸收排烟热量,降低排烟温度,自身被加热、升高温度后再返回汽轮机低压加热器系统,代替部分低压加热器的作用。将节省部分汽轮机的回热抽汽,在汽轮机进汽量不变的情况下,节省的抽汽继续膨胀做功,因此,在发电量不变的情况下,可节约机组的能耗。

热电厂循环水余热利用和节能减排效益分析

热电厂循环水余热利用和节能减排效益分析

热电厂循环水余热利用和节能减排效益分析摘要:目前,我国的经济在快速发展,社会在不断进步,冷端损失是电厂热力系统的最大损失,在冬季额定供热工况下,汽轮机排汽损失可占燃料总发热量的30%以上。

余热回收利用是提高电厂能源利用率及节能环保的重要措施和手段。

公司应用电厂循环水余热利用技术,在冬季供暖季节,将汽机凝汽器大部分冷却水经由吸收式热泵吸收转换为供暖供热,大部分循环冷却水不再经过冷却塔冷却散热,通过回收其循环水的余热向公司供热,从而使电厂对外供热能力提高,采用闭式循环运行冷却,可避免原运行系统的蒸发和飘逸等水量损失。

循环水的余热利用不仅降低了能源消耗,而且还增加了效益,减少了CO2、SO2和NOX的排放。

关键词:余热;热泵;节能减排;效益引言传统的热电厂进行供热的时候,能源选用上通常是煤、石油、天然气这样的能源,供热效率较低,且会产生一些对人类有害的气体。

而如果使用循环冷却水余热回收技术,就能够改变这一点,通过该技术的使用使得整个供热过程变得清洁环保,且节约了大量的能源,供热的规模也大大增强了。

由此可见,将循环冷却水余热回收技术加以利用是非常重要的。

然而目前在该技术的应用上还存在着一些问题,因此文章中对该技术的具体探讨是非常有价值的。

1概述热电联供可实现一次能源的梯级利用和具有较高的整体能效,尽管如此,在热电生产过程中仍存在大量低品位余热未被有效利用的情况,尤其是锅炉的烟气余热和凝汽器循环冷却水(本文简称循环水)余热没有得到充分利用。

电厂燃煤锅炉的省煤器、空气预热器仅能回收烟气中部分显热,烟气中的大量潜热未被有效利用。

同时,循环水余热一般直接通过冷却塔(集中设置在空冷岛)散失在环境中,未得到有效利用。

近年来,采用汽轮机低真空运行技术提高凝汽器循环水的出水温度直接用于供热的方式在热电厂得到了部分应用,但该类技术的供热效果受到机组运行参数的制约,而且凝汽器内真空度的改变会对机组本身造成安全隐患。

本文对热电厂烟气余热回收在烟气脱白工艺中的应用和循环水余热回收的研究进展和技术手段进行综述。

燃气冷热电三联供系统节能性与经济性分析

燃气冷热电三联供系统节能性与经济性分析

燃气冷热电三联供系统节能性与经济性分析燃气冷热电联供系统是分布式能源系统的主要形式,是一种建立在能量梯级利用基础上的综合产能、用能分布式系统。

系统安装于最终用户端附近,首先利用一次能源驱动发电机发电,再通过各种余热利用设备对余热进行回收利用,从而向用户同时提供电力、制冷、采暖、生活热水等。

燃气冷热电联供系统以其节能、削峰填谷、环保、电力可靠性高等优点而受到广泛重视。

标签:冷热电三联供制冷系统发电效率节能1 燃气冷热电三联供技术产生背景中国经济建设高速发展的今天,能源短缺及环境污染问题日益突出,开发新能源,调整能源结构,以建设资源节约型和环境友好型社会一直是政府的发展目标。

新能源的开发利用需要全面的考虑其经济性、社会性以及生态性,在这种大的形势下,节能减排的分布式能源系统成为我国在能源方面发展的主要对象。

国际上应对气候变化和治理空气污染一直呼声不断,近年美国页岩气的开发利用极大的增加了国际市场天然气的供应,我国自俄罗斯进口来的天然气及自身天然气的发展,使整个能源机构发生了变化,中国计划到2030年非石化资源占一次能源的比重提高到20%左右,燃气热电冷联供技术恰逢其时。

天然气分布式能源,又称燃气热电冷联供系统,是一种建立在能源梯级利用概念基础上,将供热(采暖和供热水)、制冷及发电过程一体化的能源综合利用系统,其综合能源利用效率在70%以上,受到许多发达国家的重视并被称为“第二代能源系统”。

2 冷热电三联供的特点2.1 提高能源综合利用效率:运用能量梯级利用原理,先发电,再利用余热,体现了由能量的高品位到低品位的科学用能,且使一次能源综合利用效率和效益大幅度提高2.2 冷热电三联供CCHP可以大大提高能源利用效率:大型发电厂的发电效率一般为30%~40%;而CCHP的能源利用率可达到80%~90%,且沒有输电损耗;2.3 降低碳和污染物排放方面具有很大的潜力:据专家估算,如果将现有建筑实施CCHP的比例从4%提高到8%,到2020年CO2的排放量将减少30%,有利于环境保护;2.4 缓解电力短缺,平衡电力峰谷差:三联产系统采用自发电,可以避开电网用电高峰,并且大大提高了建筑供电可靠性和安全性;2.5 布置在用户侧,燃气三联供系统解决了热电厂冬夏季负荷不均造成的热经济性低的问题,降低了发电煤耗率,提高了经济效益;2.6 该系统布置在建筑物内或就近布置,减少了大型热电项目大电网、大热网在输送环节的能量损失;2.7 该系统能够实现建筑用能自发自用,能源使用随用随转化、调节方便,避免了大型热电项目水利失调、冷热不均带来的能量损失;2.8 以溴化锂吸收式制冷机取代压缩式制冷机,避免了CFC类氟利昂制冷剂的大量使用和排泄,起到了环保的作用;3 热电冷三联供系统常见的几种配置模式按燃气原动机的类型不同来分,常用的冷热电联供系统有两类,即燃气轮机式联供系统和内燃机式联供系统,系统的具体组成包括:燃气机组、发电机组及供电系统、余热回收及供热系统、制冷机组及供冷系统,此外还有燃气机组的空气加压、预热、冷却水、烟气排放的辅助系统。

火力发电厂烟气余热梯级利用系统节能量计算方法

火力发电厂烟气余热梯级利用系统节能量计算方法

火力发电厂烟气余热梯级利用系统节能量计算方法火力发电厂烟气余热梯级利用系统是指通过多级的烟气余热回收设备,将烟气中的余热逐级回收,并利用回收的余热进行发电厂内部的供热和供电,以实现能源的有效利用和节能减排的目的。

烟气余热梯级利用系统的节能量计算是评估该系统的节能效果的重要指标,下面将详细介绍火力发电厂烟气余热梯级利用系统节能量计算方法。

火力发电厂的烟气余热梯级利用系统主要包括烟气余热锅炉、蒸汽轮机和余热回收装置等。

在计算火力发电厂烟气余热梯级利用系统的节能量时,需要考虑以下几个方面的内容:1.烟气中的热量回收率:烟气中的热量回收率是指烟气经过余热回收装置后,回收的热量占烟气总热量的比例。

计算方法可以通过监测烟气进出口温度和流量,计算出烟气中的热量回收率。

2.余热利用的发电量:余热回收装置通常通过锅炉加热水蒸气,再利用蒸汽驱动蒸汽轮机发电。

余热利用的发电量可以通过蒸汽轮机的额定功率和运行时间计算得出。

额定功率通过发电厂设计参数得到,运行时间可以通过实际运行记录得到。

3.热力站的热量供应量:热力站通过余热锅炉产生蒸汽,用于供热给其他厂区或城镇居民。

热力站的热量供应量可以通过热量计量表或供热区域的热负荷计算得出。

综合考虑以上几个方面的内容,可以得到火力发电厂烟气余热梯级利用系统的节能量。

下面以一个示例来说明具体的计算方法:假设火力发电厂的烟气中的热量回收率为80%,蒸汽轮机的额定功率为10MW,运行时间为6000小时。

热力站的热量供应量为5000GJ。

首先,计算烟气的热量回收量。

假设烟气中的总热量为10000GJ,则烟气中的回收热量为80%×10000GJ=8000GJ。

其次,计算余热利用的发电量。

蒸汽轮机的额定功率为10MW,运行时间为6000小时,因此发电量为10MW×6000小时=60000MWh。

最后,计算热力站的热量供应量。

热力站的热量供应量为5000GJ。

综合以上计算结果,火力发电厂烟气余热梯级利用系统的节能量为8000GJ+60000MWh+5000GJ=68000MWh+13000GJ。

火力发电厂锅炉烟气余热利用技术

火力发电厂锅炉烟气余热利用技术

火力发电厂锅炉烟气余热利用技术摘要:提高火力发电厂锅炉烟气余热利用,会大大降低锅炉的能耗,提高锅炉运行效率,延长袋式除尘器及其他移动电除尘设备的使用寿命。

在当前社会倡导可持续发展的时代背景下,如何对燃煤电厂的烟尘进行有效地回收利用,从而达到节约能源、环境友好的目的,是目前我国燃煤电厂面临的一个重大课题。

本文就此课题进行了论述,重点阐述了燃煤电厂锅炉尾烟与余热的综合利用问题,重点介绍了目前国内外的一些研究方法,以期对行业有所借鉴和帮助。

关键词:火力发电;锅炉烟气;余热;利用技术引言:火力发电是人们日常生活、社会生产所需要的能源。

同时,由于燃煤电厂的大量热能未被充分地利用,这与目前重视环境保护、提倡节能减排的发展理念相矛盾,使得电力企业的建设不能适应现代化发展的要求。

因此,如何有效地利用燃煤电厂的余热,是目前我国燃煤发电行业面临的一个重大课题。

目前,锅炉的废热回收主要有:锅炉持续的污水热能供热、炉底炉渣的热能供热。

锅炉尾烟余热利用技术能够有效地达到节能减排、提高发电效率等目的,从而达到经济效益和环保效益的目的。

1.火力发电厂锅炉尾部烟气余热利用的重要意义在以往的火力发电厂中,因为没有梯级使用,所以这些珍贵的热能并没有得到有效的回收,根据相关部门的计算,锅炉的烟尘损失占了整个火力发电系统的十分之一,而且烟尘的温度与实际的能耗成正比关系。

在烟气余热利用中,既可以达到较好的能量回收效果,又能使烟道利用线延长,换热面积增大,使烟尘损失降低。

2.余热技术利用原理电厂的尾水处理方法是利用螺旋形的推进器将高温的管子送到废热锅炉的接口处,然后通过不同的设备排放到空气中。

这种方法可以增强废热的利用,并且可以增加发电厂的热能利用率。

其中的具体应用包括:首先,预热凝结水。

冷凝水的供热是通过烟囱的余热来达到的,通过增加冷凝水的温度,可以使冷凝水达到初始的温度,是对冷凝水进行加热,通过烟气循环加热器将烟气的热量与冷凝水的热度进行直接的交换。

热电联产技术的经济性分析与应用

热电联产技术的经济性分析与应用

热电联产技术的经济性分析与应用热电联产技术,简称CHP,是一种利用燃料同时生成电力和热能的技术。

这种技术非常实用,在燃料效率、减少能源消耗和节约成本等方面具有显著优势。

因此,它已经在许多国家和地区得到了广泛的应用。

1. 经济性分析热电联产技术通过一次性燃烧,同时生产出电能和热能,既能减少二氧化碳的排放,也能提高燃料利用效率。

这种技术在制造、化工、热力、医疗等行业的应用越来越广泛,其主要经济特点有以下几个方面:1.1 省去单独购买电力和热力的成本热电联产技术在发电过程中产生热能,可以通过管道将热能输送到需要的场所供热使用,省去了单独购买热能的成本。

此外,产生的电能可以供应企业自用或者出售给电网,可以省去单独购买电力的成本。

1.2 提高燃料利用效率,降低能源消耗传统的发电方式和取暖方式会浪费很多燃料资源,而热电联产技术可以在同一周期内充分利用燃料资源,提高燃料利用效率。

此外,由于一次燃烧产生的热能可以充分利用,这也可以降低能源消耗。

1.3 减少能源的浪费和对环境的污染热电联产技术可以减少电网输送过程中的能源浪费,同时也可以减少燃料的消耗,从而减少对环境的污染。

与传统的火力发电相比,热电联产技术可以降低二氧化碳和其他有害物质的排放量。

1.4 降低企业能耗成本热电联产技术在生产过程中不只可以自用电和热,还可以将多余的交给电网和物业,这样就可以获得一定的收入。

此外,生产出来的热能可以在企业内部流通,而不用再单独购买热能,从而降低企业能耗成本。

2. 应用场景热电联产技术的应用范围非常广泛,可以适用于许多行业和场景。

下面分别从制造、化工、酒店、医疗、商业等角度来介绍一下各个场景的应用情况。

2.1 制造领域在制造行业,热电联产技术可以通过利用燃气、燃油的余热,采用热风炉、空气加热器、烟气蒸汽锅炉等设备,为工厂提供暖气、蒸汽、热水等能源,同时也可以自主发电。

热电联产技术的应用可以为厂家节约大量的能源成本,提高生产效率。

1000mw超超临界二次再热机组烟气余热深度利用经济性分析

1000mw超超临界二次再热机组烟气余热深度利用经济性分析
关键词:1 000 MW;超超临界;烟气余热;经济性分析
0 引言
当 前 ,火 力 发 电 在 我 国 仍 占 据 主 导 地 位 ,大 容 量 、高 参 数 机组不断增多。同时,我国对大型火力发电机组节能降耗的要 求不断提升,逐步提高电厂燃料利用效率成为我国今后发展 火 力 发 电 的 重 点 工 作 [1-2]。在 电 站 锅 炉 的 各 种 热 损 失 中 ,锅 炉 排烟损失占50%以上,随着机组容量的提升,锅炉排烟损失总 量也 逐 渐 升高[3-4],虽 然 烟气 余 热 这部 分 能量属 于 低 能 级 热 量,但数量十分巨大,随着能源价格的不断攀升以及节能减排 政策性要求的提出,火力发电厂锅炉烟气余热利用的研究和 应用受到了广泛重视,目前已开展了大量研究[5-6]。
图1 烟气余热回收利用示意图 目 前 ,利 用 烟 气 余 热 加 热 凝 结 水 的 低 温 省 煤 器 技 术 成 为 火电机组锅炉烟气余热利用的主要有效途径。但低温省煤器 属于对低能级烟气段的余热回收利用技术,余热利用排挤的
也是汽轮机低参数抽汽。为此,国内外对于将余热回收利用向 高能 级 方 向 上 发 展 进 行 了 大 量 研 究 ,在 利 用 低 能 级 烟 气 余 热 排 挤 低 能 级 汽 机 抽 汽 的 基 础 上 ,研 究利 用 低 能 级 烟 气 余 热 排 挤高能级烟气热量,以利用高能级烟气热量排挤高能级汽机 抽汽,实现低能级烟气余热的充分回收利用。

75
MW
19.3
如表1所示,经计算,在THA工况下,Ⅰ级低温省煤器的换 热量约26.6 MW,Ⅱ级低温省煤器的换热量约19.3 MW。
42
Shebei Guanli yu Gaizao◆设备管理与改造
2.2 烟气余热深度回收方案 设置两级低温省煤器+暖风器+空预器烟气旁路,将可利

基于低温烟气余热发电的Kalina循环热经济性能分析

基于低温烟气余热发电的Kalina循环热经济性能分析

基于低温烟气余热发电的Kalina循环热经济性能分析吴双应;汪菲;肖兰【摘要】以低温烟气余热发电Kalina循环为研究对象,基于热经济学原理,在不同的蒸发器换热端差ΔTe、蒸发压力pe和基本氨水质量分数x下,研究了烟气出口温度Tgo的变化对系统的净输出功Wnet与平准化电能成本LEC的影响.考虑到低温烟气的腐蚀性,分析了固定烟气出口温度为最低允许排烟温度的必要性和合理性.研究结果表明,存在最佳烟气出口温度Tgo,opt和蒸发压力pe,opt使系统的LEC最小;且Tgo,opt与ΔTe、pe和x有关.对于Wnet,只存在pe,opt使系统Wnet最大;Wnet随Tgo的增加近似线性减少.经济因素会直接影响到系统的最佳运行参数;在选择循环的运行参数时,应针对不同的热源条件,综合考虑系统的经济性与低温烟气腐蚀性问题.%Taking the Kalina cycle driven by the low temperature flue gas waste heat as the research object, net work (Wnet) and levelized energy cost (LEC)versus outlet temperature of flue gas (Tgo) were analyzed from the perspective of thermo-economics under variations of the pinch point temperature difference of evaporator (ΔTe), evaporation pressure (pe) and basic ammonia mass fraction (x). Considering the corrosion of low temperature flue gas, the necessity and reasonability of limitingTgo at its minimum allowed discharge temperature were studied. Results showed that the system existed an optimal outlet temperature of flue gas (Tgo,opt) and evaporation pressure (pe,opt) for LEC, whileTgo,opt was associated with the pinch point temperature difference of evaporator (ΔTe),pe and x. ForWnet, it only existedpe,opt andWnet decreased approximately linearly with the increase ofTgo. The economic factors affected directly the optimaloperation parameters of the system. The economic factors and low temperature flue gas corrosion problem should be considered comprehensively to choose the appropriate operation parameters in view of different heat source conditions.【期刊名称】《化工学报》【年(卷),期】2017(068)003【总页数】8页(P1170-1177)【关键词】Kalina循环;余热发电;低温烟气;回收;热力学;经济【作者】吴双应;汪菲;肖兰【作者单位】重庆大学低品位能源利用技术及系统教育部重点实验室,重庆400044;重庆大学动力工程学院,重庆 400044;重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400044;重庆大学动力工程学院,重庆 400044;重庆大学低品位能源利用技术及系统教育部重点实验室,重庆 400044;重庆大学动力工程学院,重庆 400044【正文语种】中文【中图分类】TK123面对全球性能源紧缺和日趋恶化的气候环境,推动中低温余热回收技术的发展成为提高我国能源利用率的有效途径之一[1-2]。

关于火电机组余热综合利用分析

关于火电机组余热综合利用分析

关于火电机组余热综合利用分析火电机组余热综合利用是指利用火电机组发电过程中产生的余热,通过合理的技术手段进行回收与利用,以实现能源资源的高效利用、节能减排和环境保护的目的。

火电机组作为我国主要的电力来源之一,其余热资源的综合利用具有重要的意义和巨大的发展潜力。

一、火电机组余热资源的来源及性质火电机组在燃烧煤、燃油或者天然气等能源进行发电的过程中,会产生大量的余热,这些余热主要来源于以下几个方面:1. 烟气余热:燃烧燃料产生的热量在锅炉中转化为水蒸汽,然后进入汽轮机进行膨胀驱动发电机发电,而燃料的热量并不全部被转化为电能,部分热能则以烟气的形式排放至大气中。

2. 排烟余热:火电机组在工作时需要进行冷却排烟,这一过程中也会产生大量的余热。

3. 冷却余热:在发电机运行时,需要对部分部件进行冷却,冷却产生的余热也是不容小觑的。

火电机组余热资源的性质主要表现在以下几个方面:1. 温度高:火电机组发电过程中产生的余热温度一般在300℃以上,甚至有的可达500℃以上,属于高温余热。

2. 量大:根据统计数据,火电机组发电过程中产生的余热能占到燃料热值的30%~50%。

3. 稳定性强:火电机组的发电过程一直在运行状态,所产生的余热是稳定且持续产生的。

二、火电机组余热综合利用的方式1. 热电联产:热电联产是指将火电机组产生的余热利用于供暖或制冷,实现热能与电能的联合生产。

余热供暖可满足城市居民供暖需求,而余热制冷则可用于制冷空调。

2. 余热发电:通过余热发电技术,将火电机组产生的余热转化为电能,进一步提高发电效率。

3. 废热利用:将火电机组产生的余热利用于工业生产过程中的废热利用,以满足工业生产过程中的热能需求。

4. 废气利用:通过余热锅炉、余热吸收式制冷和余热蒸汽驱动制冷等技术手段,将火电机组产生的排放气体中的余热进行回收与利用,以提高能源利用效率。

1. 节能减排:通过综合利用余热,可以有效提高火电机组的能源利用效率,减少燃料消耗,进而降低二氧化碳等温室气体的排放量,达到节能减排的目的。

火力发电厂烟气余热利用的分析及运用

火力发电厂烟气余热利用的分析及运用

火力发电厂烟气余热利用的分析及运用由于现目前水资源、能源紧缺、环境日益恶化等等状况,合理有效地利用电厂的烟气余热,提高火电机组的效率,减少煤耗是节能的主要且重要的措施之一。

在火力发电厂中,锅炉的排烟余热问题一直是困扰人们的一个问题。

本文对发电厂烟气余热利用的途径进行了分析,重点研究了利用烟气余热来加热凝结水的系统。

研究表明,设置烟气余热利用系统,可大大提高火力发电厂热效率,降低煤耗,增加发电量,具有一定的经济效益和社会效益。

因此在电厂优化设计中,合理有效地利用火电厂的烟气余热,提高机组运行效率,节约用水,减少煤耗,是节能的关键。

标签:烟气余热;优化设计;提高效率;节能一、引言由数据统计可知,在火力发电厂中,锅炉的排烟热损失大约占锅炉热损失的70%,随着锅炉运行时间的增加,受热面污染程度也随之增加,排烟温度要比设计温度高大约25℃。

在我们国家,存在着很多锅炉投运时间较长、排烟温度较高甚至达到200℃的火电机组。

如果能够合理的利用工艺和新技术来降低锅炉排烟温度,回收利用排出的烟气余热,将较大程度上降低火力发电厂的煤耗,达到节约能源的目的。

二、烟气余热利用的状况现目前,国外已经把火电机组的排烟温度设计为大约100℃,比之前的排烟温度值大大降低,在近几年来国外建立火电厂的共同特点有:(1)烟气的最终排放并不是通过常见的专用烟囱,而是通过自然风冷却塔排入大气之中(2)增添了烟气热量回收的环节,即在烟气脱硫装置和除尘器之间的烟道上安装了烟气冷却器,回收的热量用于凝结水的加热。

早在20世纪90年代,在300MW~500MW机组改造的时候就大力推广在锅炉尾部增加旁路省煤器加热凝结水的“烟气加热器”技术,以降低锅炉排烟温度,进一步的提高锅炉和电除尘器的工作效率。

在我们国家,火力发电厂的很多锅炉排烟温度都大大的超过了设计值。

结合火电厂的设计,烟气余热利用的方向大体可以分为加热凝结水、加热热网水、预热助燃空气、预热并干燥燃料、采暖制冷等等。

大型燃煤电站锅炉烟气余热利用系统节能分析与优化研究

大型燃煤电站锅炉烟气余热利用系统节能分析与优化研究

大型燃煤电站锅炉烟气余热利用系统节能分析与优化研究一、本文概述随着全球能源需求的不断增长,以及环保要求的日益严格,大型燃煤电站锅炉烟气余热利用系统的节能分析与优化研究成为了当前能源与环保领域的热点问题。

燃煤电站作为目前我国电力供应的主要方式,其运行效率和环保性能直接影响到我国的能源安全和生态环境。

因此,本文旨在通过对大型燃煤电站锅炉烟气余热利用系统的深入研究,分析其在节能方面的潜力和存在的问题,提出相应的优化策略,以期为我国燃煤电站的高效运行和节能减排提供理论支持和实践指导。

本文首先介绍了大型燃煤电站锅炉烟气余热利用系统的基本原理和组成部分,阐述了其在能源利用和环境保护方面的重要性。

然后,从系统设计、运行控制、余热回收等多个方面,分析了影响该系统节能效果的关键因素,以及目前在实际运行中存在的问题。

在此基础上,本文提出了一系列针对性的优化措施,包括改进系统设计、优化运行控制策略、提高余热回收效率等,旨在提高系统的整体性能,实现更高效的能源利用和更低的污染物排放。

本文的研究不仅有助于提升大型燃煤电站锅炉烟气余热利用系统的技术水平,对于推动我国能源结构的优化升级和生态文明建设的进程也具有积极的意义。

未来,随着技术的进步和环保要求的不断提高,相信该系统将在燃煤电站的运行中发挥更加重要的作用,为实现我国能源和环境的可持续发展做出更大的贡献。

二、燃煤电站锅炉烟气余热利用系统概述燃煤电站作为我国电力系统的主力军,其运行效率和节能减排效果直接影响到国家能源战略和环境保护政策。

其中,锅炉烟气余热利用系统作为燃煤电站的重要组成部分,其对于提高能源利用效率、降低污染物排放具有重要意义。

燃煤电站锅炉烟气余热利用系统,主要指的是通过一系列技术手段,将锅炉排放的高温烟气中的热能进行回收和再利用的系统。

这些技术手段包括但不限于热交换器、热管、热泵等设备,它们能够将烟气中的热能转换为电站可以利用的热水、蒸汽或其他形式的能量。

在实际应用中,燃煤电站锅炉烟气余热利用系统通常与电站的其他系统相结合,形成一个综合能源利用系统。

火力发电厂锅炉尾部烟气余热利用技术

火力发电厂锅炉尾部烟气余热利用技术

火力发电厂锅炉尾部烟气余热利用技术【摘要】如果火电厂的排气温度太高,一方面可能会导致需要更多的脱硫冷却水,增加对自来水资源的消耗;另一方面它还将大幅度增加锅炉的煤耗,降低锅炉的工作效率,同时缩短袋式除尘器和其他可移动式电除尘装置的使用寿命。

而在当今社会提倡可持续发展这一议题下,如何有效回收和利用火电厂在烟气中产生的余热,走一条节能环保之路,成为火电厂的一项重要任务。

本文围绕这一研究主题,探讨火力发电厂锅炉尾部的烟气和余热综合利用的关系,尤其是在技术难点及解决措施处,列举国内外的研究措施,希望能够为行业带来一定的参考和帮助。

【关键词】火力发电厂;锅炉尾部烟气;余热利用技术引言:日常生活和社会生产所需的电力资源主要由燃煤电厂提供。

而火力发电厂燃煤产生的大量热能没有得到充分有效利用,与当前注重环保,倡导节能减排的发展观念产生冲突,致使电力企业建设无法满足现代发展的实际需要。

而如何提高火电厂锅炉余热利用率,已成为电力企业发展中亟待解决的重要问题。

目前,锅炉余热再利用可以通过锅炉连续排污热能供热供水、炉底炉渣热能供热等实现循环。

锅炉尾部烟气余热利用技术,可以很好地达到节能减排、提高发电效率等目标,最终实现经济效益与环境效益的协调统一。

1技术原理火电厂锅炉尾部的烟气燃烧余热综合利用处理技术,实际上就是将锅炉燃煤所产生的高温烟气通过尾部烟道输送到旁路烟道,再分别经过燃气加热器、蒸发器和燃气省煤器来吸收烟气的余热,最后由锅炉烟囱向发电锅炉尾部排放到大气中,从而提高火电厂的热循环效率。

主要体现在以下几个方面的应用:1.1冷凝水预热该冷却水技术的一个核心理念就是通过利用废气中的余热来实现对凝结水的加热,提高凝结后的水温,实现锅炉供水初始温度。

加热的两种方式主要方法包括:一是直接加热方式,利用烟气回热加热器,实现烟气与凝结水的直接热交换。

二是间接加热方式,通过安装烟气回热加热器及水水换热器,实现烟气在闭式水和烟气回热加热器内的热量交换。

火电厂烟气余热利用及深度治理综合技术应用

火电厂烟气余热利用及深度治理综合技术应用

火电厂烟气余热利用及深度治理综合技术应用摘要:应对能源日益降低、社会经济发展变缓、自然环境严重恶化的世界环境,火电厂的未来发展受到严重牵制。

因此,如何利用相对有限的能源来实现它的经济价值,降低能源损失尤为重要。

对火电厂烟气余热综合利用技术实现了解析和讨论,关键讲解了汽水系统和锅炉排烟系统余热综合性利用技术性,最后,结合国内某火力发电厂350 MW烟气余热梯级利用的实例,对该项目的实际应用进行了论证。

关键词:火电厂申厂;烟气;余热;综合技术引言通过对电厂锅炉废气、锅炉持续排放污水、炉底排渣产生的热量进行综合利用,将其转化为有效的社会效益和生态效益。

目前,余热利用有多种形式,例如利用锅炉烟气余热加热水锅炉节能器、利用烟气余热作空气预热器热源、利用锅炉持续废水处理余热加热锅炉给排水、利用炉底渣余热加热锅炉燃烧气体和给排水等。

除了常规的废热利用方式外,还有一种直接利用锅炉进行废水排放的电厂装置,以及深层利用锅炉尾部烟气的余热的综合技术。

重点详述汽水系统软体废热与锅炉排风系统的综合利用技术,并结合应用实例进行了应用分析。

一、选题背景火力发电厂通称火电厂,它是将煤等燃料经加热加热后产生的水蒸气转换为电力。

在火力发电厂中,一般选择燃气和蒸汽,而小型的火力发电厂则选择使用内燃机。

火力发电厂在我国电力供应中占有重要地位,其发电量占全国总发电量的百分之七十。

但是,中国作为世界上最大的发电国家,其发展速度也最快,给电网带来了巨大的影响。

由于目前我国的原煤市场化,每年对燃煤等能源的消耗都在不断增加,而精煤的发展也十分明显。

此外,随着可持续发展的生态理念,燃煤电厂对环境造成的破坏已成为全球关注的焦点。

在国家发展的大环境下,怎样充足利用火电厂烟气余热是近些年环保节能的要点之一[1]。

二、烟气余热综合利用技术在火电厂的正式运转中,发电量造成的烟气余热的综合利用是一项比较复杂的工程。

其关键问题在于,当超低温工况下,锅炉排出的烟气余热通过基础冷却塔排出时,将会对锅炉尾部的热传导面积造成不利影响。

火力发电厂锅炉尾部烟气余热利用技术

火力发电厂锅炉尾部烟气余热利用技术

火力发电厂锅炉尾部烟气余热利用技术摘要:高效和节能是未来社会发展的重要潮流,而对于发电厂而言,怎样减少能源消耗和提高发电效率就成了其在发展过程中所关注的焦点,在此基础上烟气余热利用技术也逐步被人们提了出来。

文章简要介绍余热利用技术,并简要阐述该技术在火力发电厂锅炉尾部烟气处理方面的运用情况,以期能为下文开展相关工作提供借鉴。

关键词:火力发电厂;锅炉尾部烟气;余热利用技术火力发电厂中的锅炉主要给人们的日常生活,生产等方面提供源源不断的动力,而在注重节能减排工作的今天,火力发电厂中锅炉的生产还没有完成这一目标,这也就阻碍了它的发展过程。

有鉴于此,火力发电厂锅炉尾部烟气如何利用烟气余热技术就成了人们着重解决与研究的内容,并结合实际,选择适当的技术方案,从而有效地促进企业节能减排工作的开展,促进火力发电厂锅炉生产效益的提高,更重要的是为后期发展,奠定坚实基础。

1.余热利用系统分析了解并掌握余热利用系统有关内容,才能在火力发电厂锅炉尾部烟气处理中较好地运用该技术,达到节能降耗目的。

1.1基本概况(1)就锅炉设备角度而言,余热利用系统多以锅炉的实际运行状态为基础进行研究,而锅炉系统中经常使用到的仪器对余热利用系统有着至关重要的影响。

在此基础上,余热利用系统主要组成部分就在锅炉系统中,直接决定了该技术的使用效果。

(2)余热利用系统是指锅炉系统根据具体情况布置余热设备并通过深度再循环应用系统达到节能降耗。

此外,脱硫塔初期和除尘器结束后烟道处理时,需有效地控制温度,一般应保持40°C左右。

与此同时,结合实际情况,可在其内部设置余热回笼装置,从而能够较好的完成锅炉供水和加热目的,且温度能够得到一定范围内的收缩,从而有利于锅炉热效率的提高。

1.2技术应用优点火力发电厂存在的目的是为了确保供电稳定,然而对能源的消耗量也很大,特别是锅炉在生产过程中产生的烟气,其热能巨大。

但是通过采用余热利用技术能够有效地解决这一难题,强化烟气热量回收以及使用,能够有效地减少能量消耗,还避免了发生腐蚀现象,降低了成本,因此余热利用技术应用于火力发电厂锅炉烟气循环使用,有着明显优势,具体内容如下。

热电厂烟道气余热回收利用分析与措施研究

热电厂烟道气余热回收利用分析与措施研究

热电厂烟道气余热回收利用分析与措施研究热电厂烟道气余热回收利用是当前能源领域中热能回收利用的重要方向之一、烟道气是指燃烧过程中的烟尘和烟气,对环境造成污染,同时也含有大量的热能。

合理利用烟道气余热,可以提高能源利用效率,减少环境污染,具有重要的经济和环境效益。

烟道气余热回收利用主要包括以下几方面内容:1.烟气换热器的应用:通过在烟道中设置烟气换热器,将烟气中的热量传递给工艺用水或者空调用水,实现能源的重复利用。

同时通过调整换热器的结构和材料,提高换热器的热效率和寿命,降低能源消耗。

2.燃气脱硫过程中的余热回收:燃气脱硫是热电厂烟气处理的一项重要工艺。

在燃气脱硫过程中,大量的热能被消耗。

可以通过在脱硫系统中设置余热回收装置,将脱硫过程中释放的热能用于燃烧系统或者其他工艺的供热。

3.烟尘处理中的余热回收:烟尘处理是热电厂烟气处理的关键环节之一、在烟尘处理过程中,可以通过采用余热回收技术将烟道气中的热能回收,用于加热水、蒸汽或者其他工艺的供热。

这不仅可以提高能源利用效率,还可以减少烟尘对环境的影响。

4.余热利用系统的建设:热电厂烟道气余热回收利用需要建立完善的余热利用系统。

这包括烟气换热器、余热回收装置、余热供应系统等设备的选型、设计和安装。

同时还需要制定合理的操作管理措施,确保余热利用系统的正常运行。

在研究烟道气余热回收利用的措施时,需要综合考虑烟道气的温度、流量、成分、含尘量等因素。

同时还需要考虑烟道气回收利用系统与燃烧系统之间的协调性和一体化设计,以最大限度地提高能源利用效率和经济效益。

值得注意的是,烟道气余热回收利用不仅可以提高能源利用效率,还可以减少环境污染。

通过减少烟气中的污染物排放,可以改善空气质量,保护环境和人民健康。

总之,热电厂烟道气余热回收利用是一项技术含量较高的工作,需要从燃烧炉选型、燃烧工艺优化、余热回收系统设计等多个方面进行研究和改进。

通过合理利用烟道气的余热,既可以提高能源利用效率,又可以减少环境污染,有着重要的经济和环境效益。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

发电厂烟气余热利用热经济性分析与计算摘要面对我国能源和水资源紧缺等状况,在电厂设计中,优化系统设计,合理地利用电厂的烟气余热,提高机组效率,节约用水,减少煤耗,是节能的重要措施之一。

本文针对我院某投标工程,对烟气余热利用的可行性及收益情况进行了分析。

关键词优化设计;烟气余热利用;投资;收益the analysis and calculation of heat recovery from exhaust gas of power planthua xiu-feng ,li xiao-ming(states nuclear electric power planning design & research institute, beijing 100094, china)abstract: according to the shortage of the energy sources and water in our country, when we design the power plant, optimum design is adopted, the heat from the exhaust gas is used. the efficiency of the power plant is increased, water and coal is saved. this is a good method to save the resource. in this article, based on a power plant our company bid for, the feasibility and income of the heat recovery from exhaust gas of power plant is analyzed.key words: optimum design; heat recovery from exhaust gas; investment; income在火力发电厂中,锅炉的排烟余热问题即锅炉的排烟温度高一直是困扰人们的一个难题。

因为仅仅锅炉的排烟温度高这一项损失所造成的能源消耗就相当可观。

据统计,在火力发电厂中,锅炉的排烟热损失占锅炉热损失的70%~80%。

受热面污染程度随着锅炉运行时间而加剧,排烟温度要比设计温度高20℃~30℃[1]。

锅炉的排烟温度过高,造成了火力发电厂煤的消耗量的增加。

计算表明,一台400t/h的超高压锅炉排烟温度每上升15℃~20℃,锅炉效率就下降1%,标准煤耗上升3~4g/kwh,每年浪费标准煤3000多吨[2]。

由此可见,降低锅炉的排烟温度,可以大幅度的节约煤耗,节省能源。

在我国,存在大批锅炉排烟温度较高,投运时间较长的火电机组,锅炉排烟温度最高可达200℃左右[3],新投机组的锅炉排烟温度也在120℃~140℃左右。

如果能利用新的技术和工艺降低锅炉排烟温度,回收利用烟气余热,将有效降低火力发电厂的煤耗,节约能源,减少排放。

一、国内外烟气余热利用的状况1.1国外火力发电行业烟气余热利用[4] [5]近来,国外已经把火电机组的排烟温度设计值大大降低,排烟温度为100℃左右。

德国近几年来新建火电厂的共同特点:一、增加了烟气热量回收环节,即在电除尘器和烟气脱硫装置之间的烟道上安装了烟气冷却器,回收的热量用于加热凝结水。

二、烟气的最后排放不是通过常见的专用烟囱,而是通过自然通风冷却塔排入大气。

俄罗斯自上个世纪90年代以来,在300mw~500mw改造时,大力推行在锅炉尾部增加旁路省煤器加热给水(或凝结水)的“烟气加热器”技术,以降低锅炉的排烟温度和提高锅炉及电除尘器效率。

1.2国内火力发电行业烟气余热利用我国火力发电厂的很多锅炉排烟温度都超过设计值较多。

结合电厂设计,烟气余热利用的方向大体可分为预热助燃空气、预热并干燥燃料、加热凝结水、加热热网水、采暖制冷等。

二、利用烟气余热加热凝结水的设置方式及优缺点利用烟气余热加热凝结水的方式有两个[6-8]:1)是设置烟气回热加热器,让烟气和凝结水直接进行热交换,这种方式优点是一级换热,换热效率较高,缺点是若换热管一旦泄漏,会导致部分凝结水流失;2)是设置烟气回热加热器和水水换热器,让烟气和凝结水间接进行热交换,这种方式缺点是二级换热,系统较复杂,换热效率较一级换热低,优点是凝结水不会泄露,系统安全。

烟气回热加热器视其设置位置不同,又可分为以下两种情况:1)烟气回热加热器设置于空气预热器出口、静电除尘器入口前的烟道上。

在显著降低锅炉排烟温度的同时,可以使烟气体积流量减小,引风机的电流降低,保证了引风机的负荷。

同时还可以提高除尘器的效率。

2)烟气回热加热器设置于引风机出口即脱硫塔入口前,烟气回热加热器设于脱硫塔前,不仅使凝结水吸收了烟气中的热量得到升温,还降低进入脱硫塔的烟气温度,既减少烟气蒸发水耗量,又保护塔的防腐内衬。

三、依托工程介绍工程简介:本期工程拟建设2×660mw国产超临界凝汽发电机组。

锅炉特点:锅炉采用超临界参数变压直流炉,一次再热,平衡通风,固态排渣,紧身封闭布置,全钢构架,全悬吊结构直流锅炉。

按同步建设脱硝装置考虑。

主要参数:最大连续蒸发量(b-mcr):2141 t/h;过热蒸汽出口压力:25.4 mpa.g;过热蒸汽出口温度:571℃;再热蒸汽出口蒸汽温度(b-mcr):569℃;给水温度(b-mcr):293℃;锅炉效率:≥93%。

煤质:本期工程燃用准东煤田大井矿区烟煤,根据最新业主提供的煤质分析资料,煤质特性分析表1所示:表 1 煤质特性四、具体的系统优化及热经济性计算4.1优化后的系统简介本工程推荐采用烟气和凝结水直接换热的方式,让烟气和凝结水直接进行热交换,一级换热,换热效率较高。

烟气回热加热器设于电除尘器前。

系统流程如图1所示:图 1烟气余热利用系统流程图4.2优化后的收益计算本工程电除尘器前烟气温度125℃,经过低压省煤器后温度可降到100℃,保证出口烟气温度在露点以上。

烟气比热1.62kj/(nm3·k),烟气通过低压省煤器后的放热量:=(125-100)℃×1.62kj/(nm3·k) ×2298600 nm3/h=25.86mw 7号低压加热器进口凝结水温度50.6℃,焓值214.2kj/kg。

出口凝结水温度99.5℃,焓值419.1kj/kg。

假设低压省煤器的换热效率为98%,则根据热平衡计算得到通过低压省煤器的凝结水量为445249kg/h。

占凝结水总水量1433285kg/h的31%。

由于烟气的热量加热了部分凝结水,排挤了7号低压加热器的抽汽量,这样就有更多的蒸汽在汽轮机低压缸做功,发电量增加。

在蒸汽量相同的情况下,发电量增加,机组发电耗煤量降低。

每台机组节煤收益如表3所示:表 3节煤收益采用烟气余热利用装置,降低进入脱硫塔的烟气温度,既减少烟气蒸发水耗量。

每台机组节水收益见表4:表 4节水收益4.3优化后的投资计算设置烟气余热利用换热器后,设备的初始投资和运行维护费用增加。

每台机组的设备初始投资主要包括以下几个方面:1)每台机组换热器本体造价在720万元左右;2)凝结水系统改造,增加了凝结水加压泵、200m左右的管道和相关阀门,费用合计60万元左右;3)烟道中安装余热利用换热器,阻力增加10kpa左右,引风机造价增加30万元左右。

年运行维护费用主要包括以下几个方面:1)考虑余热利用换热器低温侧的设备腐蚀,约10年更换一半的受热面,折合到每年的费用为36万元;2)每年的安装运行维护费用按设备投资的1.5%计算,每年需要约11万元;3)引风机、循环水泵、凝结水升压泵每年的耗电费用约为81万元。

4.4 年费用计算年费用计算公式如下:a=p·i (1+i)n/((1+i)n-1)+r;a——年费用;p——初投资;r——年运行费;i——基准收益率,取7%;n——经济生产年,按20年。

经初步计算,安装烟气换热器后每台机组,年费用为204万元,每年净利润为39万元。

五、结论本工程采用烟气换热器后,节能、节水效果显著,具体指标如下:全厂发电效率提高0.27%;发电标准煤耗降低1.74g/kwh;每台机组年节约标煤量6333t;每台机组年节约水量15.8万t;每台机组年净利润39万元。

本文论述的依托项目,其标煤价320元/t,而国内很多非坑口电厂的标煤价到达了600~800元/t,由上文可知,如果采用烟气余热利用技术,收益可达200~300万元/年。

在煤炭和水资源日益宝贵的今天,如何实现资源的有效利用是国家和企业面临的重要难题。

烟气余热利用技术同时节约了宝贵的煤炭和水资源,并且其工程实施的可行性好,节能、节水效果显著,具有巨大的社会效益和经济效益。

回收锅炉烟道余热有一定的限制,排烟温度不能降得过低,当排烟温度低于烟气露点时会使换热设备产生低温酸腐蚀。

这一点应引起注意。

参考文献[1] 白玉.降低电站锅炉排烟温度的途径[j].华东电力,1996,24(7):43-45.[2] 段江.锅炉排烟温度高的原因分析[j].西北电力技术,2004,32(1):44.[3] 曾小中.热电站锅炉排烟温度过高原因分析及对策[j].华北电力技术,2004,(3):44-46.[4] 孙海天,马晓琴,史洪起.电站锅炉余热资源利用的研究[j].吉林电力,2001,(4):9-12.[5] 周振起.火电厂锅炉排烟余热利用的一种有效方法[j].节能,1996,24(7):43-45.[6] 李振强.降低锅炉排烟温度的措施及方法[j].热力发电,2003,32(7):41-42.作者简介:花秀峰,男,1977年4月生,江苏省邳州市,热能工程专业,工程师,主要从事ap1000压水堆核电站常规岛、超超临界等大型火电机组机务专业的设计工作。

注:文章内所有公式及图表请以pdf形式查看。

相关文档
最新文档