【精品】第9章边坡稳定性分析

合集下载

工程地质知识:边坡稳定性分析方法.doc

工程地质知识:边坡稳定性分析方法.doc

工程地质知识:边坡稳定性分析方法
定性分析方法主要是通过工程地质勘察,对影响边坡稳定性的主要因素、可能的变形破坏方式及失稳的力学机制的分析,给出边坡的稳定性状况及发展趋势的定性说明和解释。

1.自然(成因)历史分析法
该方法根据边坡发育地质环境、边坡发育历史中各种变形破坏迹象及其基本规律和稳定性影响因素的分析,追溯边坡演变的全过程,对边坡稳定性的总体状况、趋势和区域性特征做出评价和预测。

2.工程类比法
该方法实质上是把已有边坡的稳定性状况及其影响因素等方面的经验应用到类似边坡的稳定性分析和设计中去的一种方法。

通过分析,来类比分析和判断研究对象的稳定性状况、发展趋势、加固处理设计等。

3.图解法
图解法实际上是数理分析方法的一种简化方法,如Taylor图解、赤平极射投影图法、实体比例投影图法、MarklandJJ投影图法等。

边坡稳定性分析

边坡稳定性分析

边坡稳定性分析内容摘要目前,边坡失稳的防治仍然是一项很艰巨的任务,对边坡的稳定性分析及处治技术进行深入研究具有重要的意义。

论文首先简要阐述了边坡工程稳定性分析及处治技术研究的意义,介绍了边坡工程稳定性分析的一些常用方法,并结合笔者的实践经验,提出了边坡工程处治对策。

边坡稳定分析是岩土工程中的重要研究课题。

边坡稳定性分析的观点变化是随着人类理论方面的突破和实践经验的积累而变化的。

总的来说,边坡稳定性分析是一个逐步由定性分析向定量、半定量分析发展的过程,并且可视化程度越来越高。

文章从定性分析、定量分析、不确定分析等角度介绍了几种主要的边坡稳定性分析方法关键词:边坡;边坡稳定性;边坡失稳;稳定性分析;处治对策1边坡稳定性分析目录内容摘要 (1)1绪论 (4)1.1 边坡稳定性概念 (4)1.1.1 边坡体自身材料的物理力学性质 (4)1.1.2 边坡的形状和尺寸 (5)1.1.3 边坡的工作条件 (5)1.1.4 边坡的加固措施 (5)1.2 边坡的稳定性表示方法 (5)1.3 边坡破坏 (6)2 边坡的分类 (6)3 边坡稳定性的影响因素 (7)3.1 潜在影响因素 (7)3.1.1 地形因素 (7)3.1.2 地质材料因素 (7)3.1.3 地质构造因素 (8)3.2 诱发影响因素 (8)3.2.1 环境因素 (8)3.2.2 人为因素 (9)4 边坡稳定性的分析方法 (10)4.1 定性分析方法 (10)4.1.1 工程地质类比法 (10)4.1.2 地质分析法(历史成因分析法) (10)4.1.3 图解法 (10)4.1.4 边坡的分析数据库和专家系统 (11)4.2 定量分析方法 (11)4.2.1 极限平衡法 (11)2边坡稳定性分析4.2.2 数值分析方法 (11)4.3 不确定性分析方法 (13)4.3.1 系统可靠性分析法 (13)4.3.2 灰色系统法 (13)4.3.3 模糊分级评判法 (13)4.3.4 神经网络法 (13)7 结语 (15)参考文献 (16)3边坡稳定性分析41 绪 论1.1 边坡稳定性概念边坡一般是指具有倾斜坡面的土体或岩体,由于坡表面倾斜,在坡体本身重力及其他外力作用下,整个坡体有从高处向低处滑动的趋势,同时,由于坡体土(岩)自身具有一定的强度和人为的工程措施,它会产生阻止坡体下滑的抵抗力。

边坡稳定性分析

边坡稳定性分析

路基边坡稳定性验算的参数
容重γ(kN/m3) 内摩擦角 内摩擦角φ(°) 粘聚 粘聚c(kPa) 容重 路堑或天然边坡:原状土; 路堑或天然边坡 路堤边坡:与现场压实度一致的压实土的试验数据。 路堤边坡
多层土体: 多层土体: 1.加权平均法 2.通过合理的分段,直接取用不同土层的参数值。
为什么进行边坡稳定性分析? 为什么进行边坡稳定性分析?
路基边坡滑坍是公路上常见的破坏现象之一。 在岩质或土质山坡上开挖路堑,有可能因自然平衡 条件被破坏或者因边坡过陡,使坡体沿某一滑动面 产生滑坡。对河滩路堤、高路堤或软弱地基上的路 堤,因水流冲刷、边坡过陡或地基承载力过低而出 现填方土体(或连同原地面土体)沿某一剪切面产 生坍塌。因此,必须对可能出现失稳或已出现失稳 的路基进行稳定性分析,保证路基设计既满足稳定 性要求,又满足经济性要求。
适用条件:
滑动面为折线或其它形状的边坡稳定性验算。 滑动面为折线或其它形状的边坡稳定性验算。 原地面为折线形的陡坡上的路堤; 原地面为折线形的陡坡上的路堤; 层状构造岩土层路基边坡; 层状构造岩土层路基边坡; 滑动面已知 滑坡等。 滑坡等。
剩余下滑力: E = T − R 剩余下滑力
抗滑力
K
滑动力
稳定系数
验算方法: 验算方法:
①按地面变坡点将滑动面上土体 垂直划分为若干条块;
变坡点
验算方法: 验算方法:
②自上而下分别计算各土块的剩 余下滑力;
R1 1 E1 = T1 − = Q1 sin α 1 − (Q1 cos α 1 tan ϕ1 + c1l1 ) K K
R2 E2 = T2 − = [Q2 sin α 2 + E1 cos(α1 − α 2 )] K 1 − {[Q2 cos α 2 + E1 sin(α1 − α 2 )] tan ϕ 2 + c2l2 } K

边坡稳定性分析范文

边坡稳定性分析范文

边坡稳定性分析范文首先,确定边坡的几何形状、岩土物理力学参数和边坡下方地层情况非常重要。

边坡的几何形状和大小直接影响到边坡的稳定性,岩土物理力学参数是进行力学分析的基础,而边坡下方地层情况则对边坡的稳定性有重要影响。

其次,建立边坡的力学模型是进行边坡稳定性分析的关键步骤。

力学模型可以是二维平面模型,也可以是三维空间模型,其选择应根据实际情况和分析目的来确定。

一般来说,二维平面模型适用于较简单的边坡,而三维空间模型适用于较复杂的边坡。

然后,确定荷载条件和边界条件是进行稳定性分析的基础。

荷载条件包括自重、附加荷载(如雨水、地下水等)和地震作用等,边界条件包括边坡上部和下部的约束情况。

荷载条件和边界条件的合理确定对于分析结果的准确性和可靠性非常重要。

稳定性分析是边坡稳定性分析的核心内容,也是最关键的步骤之一、常用的稳定性分析方法包括平衡法、极限平衡法、有限元法等。

平衡法是最简单也是最基本的稳定性分析方法,它假设边坡在稳定状态下满足力学平衡条件,通过比较剪切抗力和剪切力矩之间的关系来评估边坡的稳定性。

极限平衡法是在平衡法的基础上引入潜在滑移面,通过比较潜在滑移面上的剪切抗力和剪切力矩之间的关系来评估边坡的稳定性。

有限元法是一种数值分析方法,通过离散化边坡为有限个单元,并在每个单元内求解力学平衡方程来分析边坡的稳定性。

最后,根据分析结果确定相应的加固措施是边坡稳定性分析的最终目的。

根据边坡的具体情况和不同的加固要求,可以采取不同的加固措施,如加宽边坡、设置挡土墙、增加护坡等。

加固措施的选择应综合考虑边坡的稳定性和经济性。

总之,边坡稳定性分析是对地表或岩石边坡进行稳定性评估和分析的一项重要工作。

通过准确地评估和分析边坡的稳定性,我们能够确定边坡的安全系数,并采取相应的加固措施,以确保边坡的安全运行和保护环境的稳定。

如何进行边坡稳定性分析

如何进行边坡稳定性分析

如何进行边坡稳定性分析边坡稳定性分析是土木工程中非常关键的一项工作,它的目的是评估边坡的稳定性,并为工程设计和施工提供有效的依据。

边坡稳定性分析通常包括地质勘察、边坡剖面设计、荷载计算和稳定性评估等多个步骤。

本文将从这些方面逐一探讨如何进行边坡稳定性分析。

地质勘察是边坡稳定性分析的首要步骤。

通过地质勘察,工程师可以了解边坡的地质构造、岩土性质、地下水位等信息,进而对边坡的稳定性进行初步评估。

常用的地质勘察方法包括地质剖面观测、地质钻探和岩土力学试验等。

在地质勘察过程中,要注意采集足够的样品,并进行准确的化验和测试,以获得可靠的地质数据。

在地质勘察的基础上,进行边坡剖面设计是下一个重要步骤。

边坡剖面设计的目的是确定边坡的几何形状和坡度,以及合理的边坡高度和宽度。

在边坡剖面设计中,需要考虑到土壤的侧向稳定性,避免出现边坡滑动、倾覆和土体塌方等问题。

同时,要注意选择合适的边坡保护措施,如设置排水系统、安装护坡材料等,以增强边坡的稳定性。

完成边坡剖面设计后,进行荷载计算是必不可少的一步。

荷载计算是为了确定边坡所承受的各种荷载大小,并进行相应的力学分析。

常见的荷载包括活动荷载、静态荷载和地震荷载等。

在进行荷载计算时,要充分考虑不同载荷的组合和作用方式,并结合边坡的地质条件和剖面设计参数进行分析,确保荷载计算的准确性和合理性。

最后,进行稳定性评估是边坡稳定性分析的核心部分。

稳定性评估的目标是评估边坡在各种荷载作用下是否能够保持稳定。

常用的稳定性评估方法包括平衡法、极限平衡法和弹性和塑性有限元法等。

在进行稳定性评估时,需要综合考虑边坡的土质性质、地下水位、荷载大小等因素,并进行详细的力学分析和计算。

如果发现边坡的稳定性存在问题,需要及时采取相应的安全措施,如增加护坡厚度、排除地下水等,以维护工程的安全性。

综上所述,边坡稳定性分析是一个综合性的工程任务,包括地质勘察、边坡剖面设计、荷载计算和稳定性评估等多个方面。

教学课件边坡工程边坡稳定性评价分析概述PPT学习教案

教学课件边坡工程边坡稳定性评价分析概述PPT学习教案
边坡稳定性系数和安全系数
稳定性系数:反映滑动面上抗滑力与滑动力的比例关系,用以 说明边坡岩体的稳定程度;
安全系数:简单地说就是允许的稳定性系数值,安全系数的大 小是根据各种影响因素人为规定的;
安全系数的选取是否合理,直接影响到工程的安全和造价。它 必须大于1才能保证边坡安全,但比1大多少却是很有讲究 的。
第6页/共66页
2.1 边坡稳定性分析评价方法概述(5/19)
块体极限平衡法的基本思路:
首先,确定滑动面的位置和形状。实际的滑动面将取决于 结构面的分布、组合关系及其所具有的剪切强度。实践证 明,均质土坡的破坏面都接近于圆弧形,岩体中存在软弱 结构面时,边坡岩体常沿某个软弱结构面或某几个软弱结 构面的组合面滑动,因此,根据具体情况假定的滑动面与 实际情况是很接近的。
第11页/共66页
2.1 边坡稳定性分析评价方法概述(10/19)
各种方法的原理不同,作出的分析结果表示方式不一, 各有其优缺点;
不同的边坡稳定性分析方法又各具特点,有一定的适用 条件;
不同的边坡工程常常赋存于不同的工程地质环境中,有 极其复杂多变的特性,同时又有较强的隐蔽性。因而, 在实际工程中,应根据边坡工程的具体特点及使用目的, 最好能同时利用多种分析方法进行综合分析验证,力求 得出一个更加客观、可靠、合理的评价结果。
2. 4 条分法(1/7)
条分法以极限平衡理论为基础,由瑞典人彼得森 (K.E.Petterson)在1916年提出;
优点:能综合考虑影响边坡稳定性的多种因素,快速地对边坡的稳 定状况及其发展趋势作出评价。
常用的方法主要有下面几种。 (1)自然(成因)历史分析法 (2)工程类比法 (3)边坡稳定性分析数据库和专家系统 (4)图解法

边坡稳定性分析原理及防治措施

边坡稳定性分析原理及防治措施

第一部分边坡稳定性分析原理及防治措施1.边坡稳定性基本原理1.1边坡稳定性精确分析原理要对边坡稳定性问题进行精确分析,首先要对材料性能进行透彻的的研究实验,查清它的各种应力--应变关系以及它的屈服、破坏条件。

假定这些问题都已查清,那么从理论上讲,边坡在指定荷载下的稳定性问题是可以精确解决的。

七步骤大致如下:(1)进行边坡在指定荷载下的应力、变形的精确分析。

分析过程中,要采用合理的数学模型来反映材料的特性,务使这种数学模型能够如实表达出材料的主要性能,例如应力—应变间的非线性、卸载增荷性质、屈服破坏性质等等。

分析工作要通过计算机和非线性有限单元法进行。

(2)这种精确计算的数学分析将给出各点应力、应变值。

例如,就抗剪问题讲,通过分析得到了每一点上的抗剪强度τ= c +fσ,从而可以算出每一部分点上的局部安全系数。

如果每一点上的K均大于1,整个计算体系在抗剪上当然是安全的。

如果有个别点已达屈服,则由于在计算程序中已反映力材料性质,这,表明这些部位已进入屈服状态。

只要这些屈服区是些部位的τ将自动等于τf孤立的、小范围的,而没有形成连贯的破坏面,那么,在指定荷载下该体系仍是稳定的。

进入屈服状态的部位大小,野可以给出一个安全度的概念。

反之,如果屈服的部位已经连成一个连贯的破坏面,甚至已求不出一个满足平衡要求的解答,就说明该体系在指定荷载下已不能维持稳定。

(3)如果要推算“安全系数”,首先要给出安全系数的定义。

第一种方法,是将荷载乘以K,并将K逐渐增大。

每取一个K值就进行如上一次分析,直到K达到某临界值,出现了连贯性断裂面或已无法求得解答为止。

这个临界值就是安全系数。

显然,这样求出的K具有“超载系数”性质。

第二种方法,是将材料的强度除以K,并用于计算中,逐渐增加K,使其强度逐渐降低,直至失稳。

相应的K值就是安全系数。

显然,这样求得的K具有“材料强度储备系数”的意义。

上述方法虽很理想,但是近期内还不能实现。

首先,要进行这种合理分析,必须对材料的特性有透彻、明确的了解。

《岩体力学》第九章边坡岩体稳定性

《岩体力学》第九章边坡岩体稳定性

第九章边坡岩体稳定性斜坡:倾斜的地面,是天然斜坡和人工边坡的总称。

边坡的分类:自然边坡:天然的山坡和谷坡(地壳隆起或下降引起)按成因分丿人工边坡:人工开挖、改造形成如采矿边坡、铁路公路路堑与路堤边土质边坡坡等岩质边坡按岩性分丿本章主要讨论人工开挖的岩质边坡的稳定性。

岩质边坡稳定性分析方法:1)数学力学分析法(包括块体极限平衡法、弹性力学法和弹塑性力学分析法及有限元法等)2)模型模拟试验法(相似材料模型试验、光弹试验法和离心模型试验)3)原位观测法此外,还有破坏概率法、信息论方法及风险决策法等。

「、稳定性系数稳定性计算*核心内容:安全性系数(安全系数)第一节边坡岩体中的应力分布特征一、应力分布特征假定岩体为连续、均质、各向同性的介质,且不考虑时间效应的情况下(1 )边坡面附近的主应力迹线明显偏转,与坡面趋于平行,二3与坡面趋于正交,而向坡体内逐渐恢复初始应力状态;(2 )坡面附近出现应力集中现象;(3)坡面处的径向应力为零,故坡面岩体仅处于双向应力状态,向坡内逐渐转为三向应力状态;(4)因主应力偏转,坡体内的最大剪应力迹线由直线变为凹向坡面的弧线。

、影响边坡应力分布的因素(1 )天然应力:h f,坡体内拉应力范围加大。

(2)坡形、坡高、坡角及坡底宽度等,对边坡应力分布有一定的影响;坡高f,「、二彳也大;坡角f,拉应力范围f,坡脚剪应力f。

(3)岩体性质及结构特征变形模量E对边坡影响不大,□对边坡应力影响明显。

第二节边坡岩体的变形与破坏一、边坡岩体变形破坏的基本类型1•边坡变形的基本类型根据其形成机理分为两种类型:卸荷回弹和蠕变变形。

2•边坡破坏的基本模型四类,见教材P771平面滑动:单平面滑动,双平面滑动,多平面滑动L2楔形状滑动剪切破坏以滑坡形式「3)圆弧形滑动1(4 )倾倒破坏(以崩塌形成)拉断破坏(以崩塌形式)实际上,就是两种:滑坡和崩塌。

二、影响岩体边坡变形破坏的因素1•岩性:岩体越坚硬,边坡不易破坏,反之,容易破坏(一般情况)。

《边坡稳定性分析》课件

《边坡稳定性分析》课件

优缺点比较
不同的分析方法具有各自的 优缺点,需综合考虑使用。
结语
掌握边坡稳定性分析是科学 与实践的结合,帮助工程师 做出科学决策。
通过摩尔-库伦准则和偏应力分析法来评估边坡的 稳定性。
利用线弹性分析法和有限元分析法来研究边坡的 变形和稳定性。
参数及应用
边坡形状参数
考虑边坡的坡面形状 对稳定性的影响。
坡度参数
考虑边坡的坡度对稳 定性的影响。
岩石参数
考虑边坡所处的岩石 类型及岩石的力学性 质。
地基参数
考虑边坡所处的地基 条件对稳定性的影响。
边坡的稳定性对于山地开发、土木工程和环境保护具有重要影响。稳定的边 坡可以确保工程和人员的安全。
边坡稳定性分析的重要性
1 工程安全
合理的边坡分析可以减少工程事故的发生。
2 经济效益
有效的边坡稳定性分析可以节省工程施工和维护的成本。
3 环境保护
稳定的边坡有助于地质环境的保护和生态平衡的维护。
边坡稳定性判断方法
1
应力分析法
2
通过摩尔-库伦准则和偏应力分析法来评
估边坡的稳定性。
3
静力平衡法
通过滑动体、倾覆体判断和倾斜准则来 分析边坡的稳定性。
变形分析法
利用线弹性分析法和有限元分析法来研 究边坡的变形和稳定性。
边坡稳定性判断方法
静力平衡法 应力分析法 变形分析法
通过滑动体、倾覆体判断和倾斜准则来分析边坡 的稳定性。
实例分析
案例1:静力平衡法分析
通过静力平衡法分析边坡的稳定 性,并提供解决方案。
案例2:应力分析法分析
通过应力分析法分析边坡的稳定 性,并评估不同应力条件下的安 全性。
案例3:变形分析法分析

边坡稳定性分析报告

边坡稳定性分析报告

1、边坡稳定性分析:
K s =(γv cosθtgφ+ Ac)/γv sinθ式中γ为岩土体的重度; c为结构面凝聚力; φ为结构面内摩擦角; A为结构面面积; v为岩土体积; θ为结构面倾角。

由于本工程边坡为折线边坡,故对边坡分为两段边坡(1:1.5边坡为边坡一,1:2边坡为边坡二)进行分析,详见图1-1;
边坡一:K s =(γv cosθtgφ+ Ac)/γv sinθ
=(1.21*19*0.83*0.364+1.21*15)/(19*1.21*0.555) =1.97>1
边坡二:K s =(γv cosθtgφ+ Ac)/γv sinθ
=(1.21*19*0.894*0.364+23.2*15)/(19*23.2*0.447) =2.49>1
两个边坡稳定系数都大于1,但未考虑开挖过程中机械扰动、降雨及边坡透水对边坡稳定性的影响因此对理论计算得到的安全系数应进
行修正, 如表1。

表1稳定性安全系数修正表
2、主动土压力计算
Ea=φc*r*h²Ka/2
=357.22KN
Φc=1.2,由于挖方高度大于8m,Φc=1.2。

r=19KN/m³,h=8m,Ka=tg²(45-φ/2)
3、备注
本验算未考虑上部行车荷载,尽管验算边坡稳定性符合要求但在施工过程中应该在边坡埋设位移观测桩,每天按一定频率进行观测。

位移观测埋设如下:距离开挖断面外6-10m埋设,每个断面埋设3根。

在施工过程中如发现位移量超出规定范围应立即停止施工对边坡进行防护作业,边坡防护可采用钢花管深层注浆处理。

边坡稳定分析

边坡稳定分析

hi
2、底面反力:Ni和Ti:
瑞典条分法
一、基本假定和基本公式
i
底面法向静力平衡: Ni Wi cosi
底面切向静力平衡: Ti Wi sini
能提供的最大抗滑力: Tfi cili Nitg
安全系数的定义:
Ti
fi
Fs
li
cili
Nitgiቤተ መጻሕፍቲ ባይዱ
Fs
Fs
T
fi
Ti
所有作用力对滑弧圆心取力矩平衡:
hi
i
9-2 土坡稳定简化分析
三、整体圆弧滑动稳定分析
稳定安全系数:滑动面上平均抗剪强度与平均剪应力
之比。即
Fs f
对均质粘性土土坡,稳定安全系数也可定义为:滑动
面上最大抗滑力矩与滑动力矩之比。即
Fs
f
LR LR
9-2 土坡稳定简化分析
一、整体圆弧滑动稳定分析
对o点力矩平衡: f L R Wd
假设Xi=0,同毕肖普法计算Fs
计 算 Ti
Ti F 1scibiW iXitgim 1i
Fs Fs
No
计算Ei ,Ei 计算Xi , Xi
E i W i X isini T ise ci
Xi
Eitgti
hti
Ei bi
计算 F s
Fs FsFs
YES
END
Fs
cibi Wi Xitgicos1imi Wi Xitgi
小浪底土石坝
9-1 概述
¤ 填方:堤、坝、路基、堆料
9-1 概述
天生桥一级面板堆石坝
9-1 概述
▪ 什么是滑坡?
边坡丧失其原有稳定性,一部分土体相对 与另一部分土体滑动的现象称滑坡。

《边坡稳定性分析 》课件

《边坡稳定性分析 》课件

挡土墙设计
通过边坡稳定性分析,设计合理 的挡土墙,确保边坡的稳定。定性
有些地区的地质条件复杂, 边坡稳定性分析变得更加 困难。
边坡稳定性预测存在不确 定性,需要合理评估和处 理。
3 人为因素
人为因素如不合理的工程 施工、未及时维护等,对 边坡稳定性产生影响。
综合性地质与土力学建模和分析软件。
2 FLAC
用于分析土体和岩石的弹性和不排水条件下的变形和稳定性的数值模拟软件。
3 Slope/W
专业的边坡稳定性分析软件,可进行各种稳定性分析和设计。
边坡稳定性分析实例
滑坡灾害
通过边坡稳定性分析,了解滑坡 的成因、演化过程和预防措施。
崩塌事故
利用边坡稳定性分析,分析崩塌 事故的原因和影响。
分析方法
物理模型
利用实验室试验和物理建模来模拟边坡的行为, 分析稳定性。
经验公式
根据经验和观测数据推导出的公式,用于估计边 坡的稳定性。
数值模拟
使用计算机软件进行数值模拟,预测边坡的稳定 性。
监测与分析
通过实时监测边坡的变形和应力等参数,分析边 坡的稳定性。
常见的边坡稳定性分析软件
1 GeoStudio
结论和总结
边坡稳定性分析是保障工程安全和防止地质灾害的重要手段。通过合理的分 析和措施,可以减少边坡灾害的发生,保护人民生命财产。
《边坡稳定性分析 》PPT 课件
边坡稳定性分析是指对边坡的稳定性进行评估和分析的过程。本课件将介绍 边坡稳定性分析的定义、重要性、方法、软件、实例、挑战、结论和总结。
定义
边坡稳定性分析是指评估和分析边坡的稳定性,以确定边坡是否会发生滑坡或崩塌等灾害。
重要性
边坡稳定性分析对于工程建设和地质灾害防治非常重要。它可以帮助工程师 和地质学家评估边坡的安全性,采取相应的措施保护人民生命财产。

边坡稳定性分析精选全文完整版

边坡稳定性分析精选全文完整版

可编辑修改精选全文完整版广东惠州惠东至东莞常平高速公路桩号K16+720处,原地面趋近水平,路堤高8.78m ,路基宽为34.5m ,路基填土为亚砂性土,粘接力c=0.98Kpa ,内摩擦角φ=34°,单位体积的重力γ=18.0KN/m3,设计荷载为公路-I 级,现拟定路堤边坡采用折线形,上部8m 高,坡率为1:1.5,下部为0.78m 高,采用1:1.75坡率。

由于该路基填土为亚砂性土,砂性土路基边坡渗水性强、粘性差,边坡稳定主要靠其内摩擦力支承,失稳土体的滑动面近似直线形态。

因此采用试算法求边坡稳定系数K 。

按静力平衡可得:ωϕωsin tan cos Q cLQ T cL Nf T R K +=+==为方便计算滑动体的重力Q 按单位长度计算。

现将路基从距最左端等分成六段如图1,再将等分的各点分别与左边坡脚相连接,可得分别对应最危险滑动面的倾角ω、滑动面长度L 、滑动体的重力Q ,从而得出相对应的边坡稳定系数K 如下表。

A610.39 48.66 2712.15 0.98 34 3.776图1根据上述表格中数据可知,由于K i>K=1.25可得出该段路基从A1处开始越靠右越稳定。

同理将A0-A1段进行等分三段如图2,再将等分的点A7、A8分别与左边坡脚相连接,得到对应最危险滑动面的倾角ω=29.88°、7ω=27.04°,即边坡稳定系数K,即K7=1.426、K8=1.465。

由于K7>1.25、8K8>1.25因此A1A8段边坡稳定。

图2再分别取A0A7、A7A8段的中点A9、A10,然后将两点与左边坡脚相连接,得到相对应最危险滑动面的倾角ω=31.51°、10ω=28.40°,即9K9=1.479、K10=1.426。

由于K9>1.25、K10>1.25因此A0A7段边坡稳定。

再对A7A10段进行试算,取A7A10的中点A11,将点A11与左边坡脚相连接,得到最危险滑动面的倾角ω=29.12°,边坡稳定系数K11=1.418。

【精品】第9章边坡稳定性分析

【精品】第9章边坡稳定性分析

第9章边坡稳定性分析学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。

重点:1边坡的变形与破坏类型;2影响边坡稳定性的因素;3边坡稳定性分析与评价.9。

1边坡的变形与破坏类型9。

1.1概述随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。

近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。

在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报等进行了广泛研究。

然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。

在我国,目前的露天采矿的人工边坡已高达300—500m,而水电工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。

因此,广大工程地质和岩石力学工作者对此问题进行了长期不懈的探索研究,取得了很大的进展;从初期的工程地质类比法、历史成因分析法等定性研究发展到极限平衡法、数值分析法等定量分析法,进而发展到系统分析法、可靠度方法灰色系统方法等不确定性方法,同时辅以物理模拟方法,并且诞生了工程地质力学理论、岩(土)体结构控制论等,这些无疑为边坡工程及滑坡预报研究奠定了坚实的基础,为人类工程建设做出了重大贡献。

9边坡稳定

9边坡稳定
采取防治的措施,避免边坡事故的发生。
边坡监控
无接触监测系统
– 无接触监测系统由激光全站仪、中转站、微机等组成,如下图所示。 激光全站仪一直监测着边坡上的特征点,并把其观测的数据通过无 线电波发往中转站,放大后再传输到办公室的微机内,经微机处理 后,将各个时段监测的数据进行分析对比,如偏差超过限定值时立 即报警,提醒人们应注意边坡已有较大的变化。此系统最重要的是, 不需在危险边坡上布监测点,且不必担心所布监测点的滑落,因此, 使监测工作变得更安全和可靠
安装锚杆、喷射混凝土等。
人工加固应用实例
– 在这方面,我国许多矿山取得了一些经验。 石录铜矿80年代采用半掩埋式抗滑桩加固了一长为120m,垂
高高度16m的滑体; 90年代会东铅锌矿采用6座高强抗滑桩和196根34~36m的预
应力长锚索组成的抗滑桩、长锚索、锚杆联合加固方式,成功地加 固了山坡露天矿高边坡上的35万立方不稳定岩体。
恶化
结构面 构造面
风化
产生

裂隙
降低
强度
管理方面的影响: 如超挖坡脚,
在边坡上部堆置 废石和设备, 建筑房屋等, 都会降低边坡 的稳定性。
9.1.2 露天矿的滑坡类型
9.1.2 露天矿的滑坡类型
边坡崩塌
边坡倾倒
边坡滑坡
平面滑坡
楔形滑坡
圆弧滑动
9.4.2 边坡整治方法
1.做好疏干排水工作,提高边坡的稳定性。排除边坡范围内积水和地 下水,是防治滑坡重要而有效的措施之一。其方法一般有两种:一是 用排水沟截排地表水。二是用钻孔疏干降低边坡中地下水的水位等。 这些方法,可避免对边坡岩体的有害作用,提高边坡的稳定性。
9 边坡稳定
9.1 影响边坡稳定性的因素 9.2 边坡工程地质调查研究工作 9.3 边坡稳定性分析 9.4 边坡的治理
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章边坡稳定性分析学习指导:本章介绍了边坡的破坏类型,即:岩崩和岩滑;着重介绍了边坡稳定性分析与评价基本方法,包括圆弧法岩坡稳定分析、平面滑动法岩坡稳定分析、双平面滑动岩坡稳定分析、力多边形法岩坡稳定分析及近代理论计算法;介绍了岩坡处理的措施。

重点:1边坡的变形与破坏类型;2影响边坡稳定性的因素;3边坡稳定性分析与评价.9。

1边坡的变形与破坏类型9。

1.1概述随着社会进步及经济发展,越来越多地在工程活动中涉及边坡工程问题,通过长期的工程实践,工程地质工作者已对边坡工程形成了比较完善的理论体系,并通过理论对人类工程活动,进行有效地指导。

近年来,随着环境保护意识的增加及国际减轻自然灾害十年来的开展,人类已认识到:边坡诞生不仅仅是其本身的历史发展,而是与人类活动密切相关;人类在进行生产建设的同时,必须顾及到边坡的环境效应,并且把人类的发展置于环境之中,因而相继开展了工程活动与地质环境相互作用研究领域,在这些领域中,边坡作为地质工程的分支之一,一直是人们研究的重点课题之一。

在水电、交通、采矿等诸多的领域,边坡工程都是整体工程不可分割的部分,为保证工程运行安全及节约经费,广大学者对边坡的演化规律、边坡稳定性及滑坡预测预报等进行了广泛研究。

然而,随着人类工程活动的规模扩大及经济建设的急剧发展,边坡工程中普遍出现了高陡边坡稳定性及大型灾害性滑坡预测问题。

在我国,目前的露天采矿的人工边坡已高达300—500m,而水电工程中遇到的天然边坡高度已达500—1000米,其中涉及的工程地质问题极为复杂,特别是在西南山区,边坡的变形、破坏极为普遍,滑坡灾害已成为一种常见的危害人民生命财产安全及工程正常运营的地质灾害。

因此,广大工程地质和岩石力学工作者对此问题进行了长期不懈的探索研究,取得了很大的进展;从初期的工程地质类比法、历史成因分析法等定性研究发展到极限平衡法、数值分析法等定量分析法,进而发展到系统分析法、可靠度方法灰色系统方法等不确定性方法,同时辅以物理模拟方法,并且诞生了工程地质力学理论、岩(土)体结构控制论等,这些无疑为边坡工程及滑坡预报研究奠定了坚实的基础,为人类工程建设做出了重大贡献。

在工程中常要遇到岩坡稳定的问题,例如在大坝施工过程中,坝肩开挖破坏了自然坡脚,使得岩体内部应力重新分布,常常发生岩坡的不稳定现象。

又如在引水隧洞的进出口部位的边坡、溢洪道开挖的边坡、渠道的边坡以及公路、铁路、采矿工程等等都会遇到岩坡稳定的问题。

如果岩坡由于力过大和强度过低,则它可以处于不稳定的状态,一部分岩体向下或向外坍滑,这一种现象叫做滑坡。

滑坡造成危害很大,为此在施工前,必须做好稳定分析工作.岩坡不同于一般土质边坡,其特点是岩体结构复杂、断层、节理、裂隙互相切割,块体极不规则,因此岩坡稳定有其独特的性质.它同岩体的结构、块体密度和强度、边坡坡度、高度、岩坡表面和顶部所受荷载,边坡的渗水性能,地下水位的高低等有关。

岩体内的结构面,尤其是软弱结构面的的存在,常常是岩坡不稳定的主要因素。

大部分岩坡在丧失稳定性时的滑动面可能有三种.一种是沿着岩体软弱岩层滑动;另一种是沿着岩体中的结构面滑动;此外,当这两种软弱面不存在时,也可能在岩体中滑动,但主要的是前面两种情况较多.在进行岩坡分析时,应当特别注意结构面和软弱层的影响.软弱岩层主要是粘土页岩、凝灰岩、泥灰岩、云母片岩、滑石片岩以及含有岩盐或石膏成分的岩层。

这类岩层遇水浸泡后易软化,强度大大地降低,形成软弱层。

在坚硬的岩层中(如石英岩、砂岩等等)应当查明有无这类软弱夹层存在。

结构面包括沉积作用的层面、假整合面、不整合面;火成岩侵入结构面以及冷缩结构面;变质作用的片理,构造作用的断裂结构面等等。

岩质边坡稳定分析时,应当研究岩体中应力场和各种结构面的组合关系.岩坡的滑动就是在应力作用下岩体破坏了平衡而沿着某种面(很可能是结构面)产生的。

岩体的应力是由岩体重量、渗透压力、地质构造应力以及外界因素,如地震惯性力、风力、温度应力等所形成的边坡剪应力,这种剪应力超过结构面的抗剪强度就促使岩体沿着结构面滑动。

有时沿某一结构面滑动,有时沿着多种结构面所组合的滑动面滑动。

通常以后者为多数.结构面中如夹有粘土或其它泥质充填物,则就成为软弱结构面.地质构造作用形成的断裂和节理在地壳表层是最多的,这种结构面往往都夹有粘土或泥质充填物,遇水浸泡后,结构面中的软弱充填物就容易软化,强度大大地降低,促使岩坡沿着它发生滑动。

因此,岩坡分析中,对结构面,特别是软弱结构面的类型、性质、组合形式、分布特征以有及由各种软弱面切割后的块体形等进行仔细分析是十分重要的。

9.1.2岩坡的破坏类型岩坡的破坏类型从形态上来看可分为岩崩和岩滑两种.岩崩一般发生在边坡过陡的岩坡中,这时大块的岩体与岩坡分离而向前倾倒,如图9—1(a)所示,或者坡顶岩体因某种原因脱落而在坡脚下堆积,见图9—1(b)、(c),它经常产生于坡顶裂隙发育的地方。

其起因或由于风化等原因减弱了节理面的凝聚力,或由于雨水进入裂隙产生水压力所致;或者也可能由于气温变化、冻融松动岩石的结果;其它如植物根造成膨胀压力、地震、雷击等都可造成岩崩现象。

岩滑是指一部分岩体沿着岩体较深处某种面的滑动。

岩滑可分为平面滑动、楔形滑动以及旋转滑动。

平面滑动是一部分岩体在重力作用下沿着某一软面(层面、断层、裂隙)的滑动,见图9—2(a),滑动面的倾角必大于该平面的内摩擦角。

平面滑动不仅滑体克服了底部的阻力,而且也克服了两侧的阻力。

在软岩中(例如页岩),如底部倾角远陡于内摩擦角,则岩石本身的破坏即可解除侧边约束,从而产生平面滑动。

而在硬岩中,如果不连续面横切坡顶,边坡上岩石两侧分离,则也能发生平面滑动。

楔形滑动是岩体沿两组(或两组以上)的软弱面滑动的现象,见图9-2(b)。

在挖方工程中,如果两个不连续面的交线出露,则楔形岩体失去下部支撑作用而滑动。

法国马尔帕塞坝的崩溃(1959年)就是岩基楔形滑动的结果。

旋转滑动的滑动面通常呈弧形状,见图9-2(c),这种滑动一般产生于非成层的均质岩体中。

岩坡的滑动过程一般可分为三个阶段。

初期是蠕动变形阶段,这一阶段中坡面和坡顶出现拉张裂缝并逐渐加长和加宽,滑坡前缘有时出现挤出现象,地下水位发生变化,有时会发出响声。

第二阶段是滑动破坏阶段,此时滑坡后缘迅速下陷,岩体以极大的速度向下滑动,此一阶段往往造成极大的危害。

最后是逐渐稳定阶段,这一阶段中,疏松的滑体逐渐压密,滑体上的草木逐渐生长,地下水渗出由浑变清等。

在进行岩坡稳定性分析时,首先应当查明岩坡可能的滑动类型,然后对不同类型采用相应的分析方法。

严格而言,岩坡滑动大多属空间滑动类型,然后对只有一个平面构成的滑裂面或者滑裂面由多个平面组成而这些面的走向又大致平行者,且沿着走向长度大于坡高时,则也可按平面滑动进行分析,其结果偏于安全方面,在平面分析中,常常把滑动面进行稳定验算.本章从第四节起将分别阐述各种分析方法.经验证明,许多滑坡的发生都与岩体内的渗水作用有关,这是由于岩体内渗水后岩石强度恶化和应力增加的缘故.因此,做好岩坡的排水工作是防止滑坡的手段之一.意大利瓦依昂(Vajont)水库岩坡滑动而造成的事故是闻名于全世界的。

水库的岸坡由分层的石灰岩组成,水库蓄水后在1960年10月就发现上坡附近有主要裂隙,同时直接在沿河的陡坡上曾经发生过一次较小的滑坡,从该时起,这整个区域都处于运动中,这运动的速度为每天若干个十分之一毫米到十毫米以上.在1963年10月9日夜晚,岸坡发生骤然的崩坍,在一分多钟时间内大约有2.5亿立方米的岩石崩入水库,顿时造成高达150米到250米的水浪,洪水漫过270米高的拱坝,致使下游的郎加朗市镇遭到了毁灭性的破坏,2400多人死亡。

在图9—3上示有瓦依昂山坡崩坍的二个断面图。

由此看来,岩坡崩坍所造成的事故是危害极大的,必须严加防止。

因此设计之前应当加强工程地质的勘测工作,以及在设计时做好岩坡稳定分析工作。

图9-4表示康德斯特格(Kandersteg)隧洞由于渗水作用岩坡山崩而失事的例子。

隧洞原来设计为无压隧洞,但后来却成为有压隧洞.中等程度的水压力使衬砌造成裂缝。

隧洞中的水从裂缝中渗出,流图9-4康德斯特格隧洞过透水层最后聚集在不透水岩层的顶部(图9—4)。

在山坡底部流出一股泉水,渗水使岩石性质恶化,山坡变为不稳定而造成山体崩滑,使附近居民的生命财产受到很大的损失。

这次失事,主要是衬砌部分受力过高而地质条件又不好而引起的。

岩石中的渗水是这次事故中的外因,岩石强度不够是内因,外因通过内因而起作用,渗水使岩石强度降低,造成了这次事故。

这是一个典型的例子,可以说明许多类似失事的原因.9。

2影响边坡稳定性的因素影响边坡稳定性的因素主要有内在因素和外部因素两方面,内在因素包括组成边坡的地貌特征、岩土体的性质、地质构造、岩土体结构、岩体初始应力等。

外部因素包括水的作用、地震、岩体风化程度、工程荷载条件及人为因素。

内在因素对边坡的稳定性起控制作用,外部因素起诱发破坏作用.1)岩土性质和类型岩性对边坡的稳定及其边坡的坡高和坡角起重要的控制作用。

坚硬完整的块状或厚层状岩石如花岗岩、石灰岩、砾岩等可以形成数百米的陡坡,如长江三峡峡谷。

而在淤泥或淤泥质软土地段,由于淤泥的塑性流动,几乎难以开挖渠道,边坡随挖随塌,难以成形。

黄土边坡在干旱时,可以直立陡峻,但一经水浸土的强度大减,变形急剧,滑动速度快,规模和动能巨大,破坏力强且有崩塌性。

松散地层边坡的坡度较缓。

不同的岩层组成的边坡,其变形破坏也有所不同,在黄土地区,边坡的变形破坏形式以滑坡为主;在花岗岩、厚层石灰岩、沙岩地区则以崩塌为主;在片岩、板岩、千枚岩地区则往往产生表层挠曲和倾倒等蠕动变形。

在碎屑岩及松散土层地区,则产生碎屑流或泥石流等.2)地质构造和岩体结构的影响在区域构造比较复杂,褶皱比较强烈,新构造运动比较活动的地区,边坡稳定性差。

断层带岩石破碎,风化严重,又是地下水最丰富和活动的地区极易发生滑坡.岩层或结构的产状对边坡稳定也有很大影响,水平岩层的边坡稳定性较好,但存在陡倾的节理裂隙,则易形成崩塌和剥落。

同向缓倾的岩质边坡(结构面倾向和边坡坡面倾向一致,倾角小于坡角)的稳定性比反向倾斜的差,这种情况最易产生顺层滑坡。

结构面或岩层倾角愈陡,稳定性愈差。

如岩层倾角小于10°~15°的边坡,除沿软弱夹层可能产生塑性流动外,一般是稳定的;大于25°的边坡,通常是不稳定的;倾角在15°~25°的边坡,则根据层面的抗剪强度等因素而定。

同向陡倾层状结构的边坡,一般稳定性较好,但由薄层或软硬岩互层的岩石组成,则可能因蠕变而产生挠曲弯折或倾倒。

反向倾斜层状结构的边坡通常较稳定,但垂直层面或片理面的走向节理发育且顺山坡倾斜,则亦易产生切层滑坡。

相关文档
最新文档