热重分析实验
热重分析实验报告
热重分析实验报告热重分析(Thermogravimetric analysis,简称TGA)是一种常用的热分析技术,通过测量样品在恒定升温速率下的质量变化,可以研究样品的热稳定性、减量过程、物质含量以及化学反应等信息。
本报告将介绍一次使用TGA技术进行的实验,并对实验结果进行分析和讨论。
1. 实验目的该实验的目的是研究聚合物样品在升温过程中的失重情况,从而了解聚合物的热分解温度、热稳定性以及降解产品的性质。
通过TGA实验可以为聚合物材料的设计合成、性能改进以及应用提供重要的参考依据。
2. 实验仪器和试剂本次实验采用的TGA仪器为型号X,试样为聚合物样品A。
试样经过粉碎和筛分,得到粉末状样品。
3. 实验步骤(1) 将粉末状样品A称取约100mg放入TGA样品分析容器中。
(2) 将样品容器放入TGA仪器中,设置升温速率为X℃/min。
(3) 开始实验,记录样品的质量变化情况,并实时监测样品的温度。
(4) 实验结束后,整理实验数据,进行结果分析。
4. 实验结果实验过程中,我们观察到样品A在升温过程中出现了质量减少。
根据实验数据绘制的质量-温度曲线图,我们可以发现样品A在温度区间X到Y之间发生了明显的失重现象。
进一步分析可以得出结论,样品A在这一温度区间发生了热分解反应。
5. 结果分析聚合物样品的热分解是一个复杂的过程,涉及到分子间的键断裂、自由基的形成以及产物的生成等反应。
通过TGA实验可以了解样品在不同温度下的重量变化情况,从而推测聚合物的热分解温度以及产物的性质。
根据实验结果,我们可以推测样品A在温度区间X到Y之间发生了主要的热分解反应。
随着温度的上升,样品A开始失重,并在温度达到Y时发生质量减少的最大速率。
这表明在这个温度区间内,样品A的热分解反应达到了最大速率。
在此基础上,我们可以进一步探究产物的性质和反应机理。
此外,在实验过程中还可以通过TGA仪器的联用技术,如TGA-FTIR(Fourier transform infrared spectroscopy)和TGA-MS (mass spectrometry)等,对产物的组成进行分析。
热重分析法的原理及其应用
热重分析法的原理及其应用1. 简介热重分析法 (Thermogravimetric Analysis, TGA) 是一种重要的热分析技术,广泛应用于材料科学、化学、制药、食品、环境等领域。
通过测量样品在升温条件下失重的情况,可以分析样品的热性质、组成、分解行为、热稳定性等参数,为材料研究和质量控制提供重要的参考数据。
2. 原理热重分析法的原理基于样品在升温条件下的质量变化,主要通过测量样品的失重曲线来分析样品的热性质和分解行为。
2.1 实验装置热重分析实验通常使用热重分析仪进行,其基本组成包括热重秤、样品盘、加热器、温度控制系统和质量检测系统等。
2.2 实验步骤1.将待测样品放置在样品盘上,并记录样品的初始质量。
2.将样品盘放置在热重秤上,并将整个装置放入热重分析仪中。
3.设置升温程序和实验参数,如升温速率、起始温度和终止温度等。
4.开始实验,热重分析仪会根据设定的程序升温,并记录样品的质量变化。
5.实验结束后,得到样品的失重曲线图,可以根据曲线图进行数据分析。
2.3 数据分析通过分析失重曲线,可以获取以下信息:•质量损失情况:根据失重曲线的斜率和曲线的形态可以判断样品的质量损失情况,如是否有固定的失重阶段、失重速率等。
•分解温度:可以根据失重曲线上的温度峰值确定样品的分解温度,这是样品发生化学反应的温度范围。
•分解产物:失重曲线的特征包括不同的“台阶”,每个“台阶”对应不同的分解产物,可以分析样品的分解产物和分解机理。
•热稳定性:通过分析失重曲线的持续时间和失重量可以评估样品的热稳定性,用于判断材料的应用范围和安全性。
3. 应用热重分析法在许多领域都有广泛的应用。
3.1 材料学热重分析可以用于评估材料的热稳定性、热分解温度和分解产物。
这对于材料的研发、改性和应用具有重要意义。
例如,通过热重分析可以确定聚合材料的热稳定性,对于制造高温环境下工作的电子器件非常重要。
3.2 化学反应热重分析可以用于研究化学物质的热分解反应和催化反应。
热重实验报告
热重实验报告热重实验报告引言:热重实验是一种常见的物理实验方法,用于研究材料的热性质和热解过程。
通过在控制条件下对材料进行加热,观察材料的质量随温度的变化,可以得到材料的热分解特性、热稳定性以及热解动力学参数等信息。
本文将介绍热重实验的原理、实验步骤以及实验结果的分析。
实验原理:热重实验的基本原理是利用称量仪器和加热设备,对样品进行加热并测量其质量的变化。
在实验过程中,样品被放置在称量仪器中,并通过加热设备升温。
同时,称量仪器会实时测量样品的质量,并将数据记录下来。
通过分析质量随温度的变化曲线,可以得到材料的热性质和热解特性。
实验步骤:1. 准备样品:选择待测材料,并按照实验要求制备样品。
样品的形状、尺寸和质量应符合实验要求。
2. 样品称量:使用精确的电子天平称量样品的质量,并记录下来。
确保称量的准确性。
3. 样品装载:将称量好的样品放置在热重仪器的样品盘中,并固定好。
4. 实验条件设置:根据实验要求,设置实验的温度范围和升温速率。
确保实验条件的稳定性和准确性。
5. 实验开始:启动热重仪器,并开始加热样品。
同时,称量仪器会实时记录样品的质量变化。
6. 数据记录:在实验过程中,实时记录样品的质量随温度变化的数据。
数据可以通过计算机软件进行保存和分析。
7. 实验结束:当样品的质量变化趋于稳定时,实验结束。
关闭热重仪器,并记录实验结果。
实验结果分析:通过实验得到的数据,可以进行以下分析:1. 质量变化曲线:根据实验记录的数据,绘制质量随温度变化的曲线。
观察曲线的形状和趋势,可以初步判断样品的热分解特性。
2. 质量损失:通过计算质量变化的百分比,可以得到样品在不同温度下的质量损失情况。
根据质量损失的程度,可以评估样品的热稳定性。
3. 热解特性:根据质量变化曲线的特点,可以分析样品的热解特性。
例如,观察是否存在质量急剧下降的阶段,可以判断样品是否发生了热解反应。
4. 热解动力学参数:通过对质量变化曲线的进一步分析,可以得到样品的热解动力学参数,如热解速率常数、活化能等。
实验二十一__热重分析法
实验二十一热重分析法一、实验目的1.掌握热重分析的原理。
2.用热天平测CuSO4·5H2O样品的热重曲线,学会使用WRT-3P高温微量热天平。
二、实验原理热重分析法(Thermogravimetric Analysis,简称TG)是在程序控制温度下,测量物质质量与温度关系的一种技术。
许多物质在加热过程中常伴随质量的变化,这种变化过程有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。
1.TG和DTG的基本原理与仪器进行热重分析的基本仪器为热天平。
热天平一般包括天平、炉子、程序控温系统、记录系统等部分。
有的热天平还配有通入气氛或真空装置。
典型的热天平示意图见图l。
除热天平外,还有弹簧秤。
国内已有TG和DTG(微商热重法)联用的示差天平。
热重分析法通常可分为两大类:静态法和动态法。
静态法是等压质量变化的测定,是指一物质的挥发性产物在恒定分压下,物质平衡与温度T的函数关系。
以失重为纵坐标,温度T为横坐标作等压质量变化曲线图。
等温质量变化的测定是指一物质在恒温下,物质质量变化与时间t的依赖关系,以质量变化为纵坐标,以时间为横坐标,获得等温质量变化曲线图。
动态法是在程序升温的情况下,测量物质质量的变化对时间的函数关系。
1一机械减码;2一吊挂系统;3一密封管;4一出气口5一加热丝;6一试样盘;7一热电偶8一光学读数;9一进气口;10一试样;1l一管状电阻炉;12一温度读数表头;13一温控加热单元图l 热天平原理图控制温度下,试样受热后重量减轻,天平(或弹簧秤)向上移动,使变压器内磁场移动输电功能改变;另一方面加热电炉温度缓慢升高时热电偶所产生的电位差输入温度控制器,经放大后由信号接收系统绘出TG热分析图谱。
2曲线a所示。
TG曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)作横坐标,自左至右表示温度(或时间)增加。
DTG是TG对温度(或时间)的一阶导数。
热重分析实验报告
热重分析实验报告
热重分析是一种通过对样品在加热过程中质量的变化进行监测和分析的方法。
在本次实验中,我们使用了热重分析仪器对不同样品进行了研究和分析,以探究其热稳定性和热分解特性。
首先,我们准备了三种不同的样品,分别是聚合物材料、无机盐和有机化合物。
这些样品代表了不同类型的化合物,在热重分析中具有一定的代表性。
我们将这些样品放入热重分析仪器中,并在一定的温度范围内进行加热,同时监测样品的质量变化。
在实验过程中,我们发现不同样品在加热过程中表现出了不同的热分解特性。
聚合物材料在一定温度范围内出现了明显的质量损失,这表明其在这一温度范围内发生了热分解反应。
而无机盐和有机化合物在加热过程中表现出了不同的质量变化规律,这提示了它们的热稳定性和热分解特性与聚合物材料存在差异。
通过对实验数据的分析,我们得出了一些初步的结论。
首先,不同类型的样品
在热重分析中表现出了不同的热分解特性,这与它们的化学结构和性质密切相关。
其次,热重分析可以为我们提供样品的热稳定性和热分解特性等重要信息,这对于材料的研究和应用具有重要意义。
总的来说,本次实验通过热重分析方法对不同样品的热稳定性和热分解特性进
行了研究和分析,为我们深入了解样品的性质和特性提供了重要的参考。
通过这些实验数据,我们可以更好地指导材料的合成和应用,为相关领域的研究工作提供有力支持。
希望通过这次实验,能够对热重分析方法有一个更深入的了解,为今后的科研工作提供更多的帮助和支持。
实验七 热重分析及综合热分析
实验七热重分析及综合热分析一、实验目的与任务1. 了解热重分析的仪器装置及实验技术。
2. 熟悉综合热分析的特点,掌握综合热曲线的分析方法。
3. 测绘矿物的热重曲线和综合热曲线,解释曲线变化的原因。
二、热重分析的仪器结构与分析方法热重分析法是在程序控制温度下,测量物质的质量随温度变化的一种实验技术。
热重分析通常有静态法和动态法两种类型。
静态法又称等温热重法,是在恒温下测定物质质量变化与温度的关系,通常把试样在各给定温度加热至恒重。
该法比较准确,常用来研究固相物质热分解的反应速度和测定反应速度常数。
动态法又称非等温热重法,是在程序升温下测定物质质量变化与温度的关系,采用连续升温连续称重的方式。
该法简便,易于与其他热分析法组合在一起,实际中采用较多。
热重分析仪的基本结构由精密天平、加热炉及温控单元组成。
图16示出了上海天平仪器厂生产的PRT-1型普通热天平结构原理图;加热炉由温控加热单元按给定速度升温,并由温度读数表记录温度,炉中试样质量变化可由人工开启天平并记录。
自动化程度高的热天平由磁心和差动变压器组成的位移传感器检测和输出试样质量变化引起天平失衡的信号,经放大后由记录仪记录。
图16 PRT-1型热天平结构原理图由热重分析记录的质量变化对温度的关系曲线称热重曲线(TG曲线)。
曲线的纵坐标为质量,横坐标为温度。
例如固体热分解反应A(固)→B(固)+C(气)的典型热重曲线如图17所示。
图17 固体热分解反应的热重曲线图中T i 为起始温度,即累计质量变化达到热天平可以检测时的温度。
T f 为终止温度,即累计质量变化达到最大值时的温度。
热重曲线上质量基本不变的部分称为基线或平台,如图17中ab 、cd 部分。
若试样初始质量为W 0,失重后试样质量为W 1,则失重百分数为(W 0-W 1)/W 0×100%。
许多物质在加热过程中会在某温度发生分解、脱水、氧化、还原和升华等物理化学变化而出现质量变化,发生质量变化的温度及质量变化百分数随着物质的结构及组成而异,因而可以利用物质的热重曲线来研究物质的热变化过程,如试样的组成、热稳定性、热分解温度、热分解产物和热分解动力学等。
聚合物的热重分析(TGA)
实验7 聚合物的热重分析(TGA)热重分析(TGA)是以恒定速度加热试样,同时连续地测定试样失重的一种动态方法。
此外,也可在恒定温度下,将失重作为时间的函数进行测定。
应用TGA可以研究各种气氛下高聚物的热稳定性和热分解作用,测定水分、挥发物和残渣,增塑剂的挥发性,水解和吸湿性,吸附和解吸,气化速度和气化热;升华速度和升华热,氧化降解,缩聚高聚物的固化程度,有填料的高聚物或掺和物的组成,它还可以研究固相反应。
因为高聚物的热谱图具有一定的特征性,它也可作为鉴定之用。
1. 实验目的(1)了解热重分析法在高分子领域的应用。
(2)掌握热重分析仪的工作原理及其操作方法,学会用热重分析法测定聚合物的热分解温度Td。
2. 实验原理热重分析法(thermogravimetric analysis,TGA)是在程序控温下,测量物质的质量与温度关系的一种技术。
现代热重分析仪一般由4部分组成,分别是电子天平、加热炉、程序控温系统和数据处理系统(微计算机)。
通常,TGA谱图是由试样的质量残余率Y(%)对温度T的曲线(称为热重曲线,TG)和/或试样的质量残余率Y(%)随时间的变化率dY/dt(%/min)对温度T的曲线(称为微商热重法,DTG)组成,见图2-40。
温度/℃图2-40 TGA谱图开始时,由于试样残余小分子物质的热解吸,试样有少量的质量损失,损失率为(100-Y1)%;经过一段时间的加热后,温度升至T1,试样开始出现大量的质量损失,直至T2,损失率达(Y1-Y2)%;在T2到T3阶段,试样存在着其他的稳定相;然后,随着温度的继续升高,试样再进一步分解。
图2-40中T1称为分解温度,有时取C点的切线与AB延长线相交处的温度T1′作为分解温度,后者数值偏高。
TGA在高分子科学中有着广泛的应用。
例如,高分子材料热稳定性的评定,共聚物和共混物的分析,材料中添加剂和挥发物的分析,水分(含湿量)的测定,材料氧化诱导期的测定,固化过程分析以及使用寿命的预测等。
热重的实验报告
热重的实验报告热重的实验报告热重分析是一种常用的实验方法,用于研究物质在不同温度下的热稳定性、热分解性以及吸附性能等。
通过测量样品在升温过程中的质量变化,可以获得一系列有关物质热性质的数据。
本实验旨在通过热重实验,探究某种材料的热稳定性。
实验装置主要由热重天平、热重仪和计算机组成。
首先,我们将待测样品精确称取后放置在热重天平的样品盘中。
然后,将样品盘放入热重仪中,并设置升温速率和测试温度范围。
实验过程中,计算机会自动记录样品质量的变化,并绘制出热重曲线。
在实验开始前,我们先对热重天平进行校准,以确保实验结果的准确性。
校准过程中,我们使用已知质量的标准物质进行测试,并与已知数据进行比对。
校准完成后,我们开始进行样品的热重实验。
实验过程中,我们选择了不同升温速率和不同测试温度范围,以获得更全面的数据。
通过观察热重曲线,我们可以了解样品在不同温度下的质量变化情况。
一般来说,样品在升温过程中会出现质量减少的情况,这是因为样品发生了热分解或者挥发等反应。
而质量减少的速度和程度则取决于样品的热稳定性。
在实验中,我们发现样品在较低温度下质量基本保持稳定,但当温度超过一定阈值时,样品的质量开始急剧下降。
这表明样品在高温下发生了热分解反应,导致质量的减少。
通过进一步分析热重曲线,我们可以确定样品的热分解温度,即样品开始分解的温度。
此外,我们还可以通过热重实验研究样品的吸附性能。
在实验中,我们向样品中加入一定量的吸附剂,然后进行热重测试。
通过观察热重曲线,我们可以了解样品对吸附剂的吸附情况。
一般来说,样品对吸附剂的吸附量会随着温度的升高而减少,直至完全脱附。
这可以帮助我们评估样品的吸附性能和热稳定性。
总结一下,热重实验是一种重要的热分析方法,可以用于研究物质的热稳定性、热分解性和吸附性能等。
通过测量样品在不同温度下的质量变化,我们可以获得一系列有关物质热性质的数据。
这些数据对于材料研究、质量控制和工艺改进等方面具有重要意义。
热重分析 实验报告
热重分析实验报告热重分析实验报告引言:热重分析(Thermogravimetric Analysis,简称TGA)是一种常用的热分析技术,通过测量样品在升温过程中的质量变化,可以分析样品的热稳定性、热分解过程以及含水量等信息。
本实验旨在通过TGA技术对某种材料的热分解特性进行研究,从而为材料的应用提供参考。
实验方法:1. 样品制备:将待测试的材料样品细细磨碎,并通过筛网筛选,以获得均匀颗粒大小的样品。
2. 仪器准备:将样品放置在热重分析仪的样品盘中,并确保样品盘平整。
3. 实验条件设定:根据样品的特性和预期结果,设置合适的升温速率和温度范围。
一般来说,较快的升温速率可以更好地展现样品的热分解特性,但过快的升温速率可能导致数据失真。
4. 实验操作:启动热重分析仪,开始实验。
在实验过程中,记录样品质量随温度变化的曲线,并观察样品的颜色、形态等变化情况。
5. 数据分析:根据实验结果,分析样品的热分解特性,包括起始分解温度、峰值温度、分解过程等。
实验结果与讨论:通过对某种材料的热重分析实验,我们得到了如下结果:在升温过程中,样品的质量随温度的升高而逐渐减少。
在温度范围X到Y之间,样品质量变化较为剧烈,表明该温度范围内发生了较为显著的热分解反应。
进一步观察发现,在温度T处,样品的质量变化达到峰值,表明该温度是样品热分解反应的峰值温度。
此后,样品质量的减少速率逐渐减缓,直至温度达到Z时,样品质量变化趋于平缓,热分解反应基本结束。
根据实验结果,我们可以推断出该材料在温度范围X到Y之间发生了热分解反应,且在温度T处达到峰值。
进一步分析样品的颜色、形态等变化情况,可以推测该材料的热分解反应可能是由于化学反应引起的。
结论:通过热重分析实验,我们成功地研究了某种材料的热分解特性。
实验结果表明该材料在温度范围X到Y之间发生了热分解反应,且在温度T处达到峰值。
这些结果对于该材料的应用具有重要意义,可以为材料的加工、储存和安全性评估提供参考。
热重分析实验结果解析及应用
热重分析实验结果解析及应用1试验结果解析热分析的测量结果称曲线,如TGA曲线、DSC曲线、DTA曲线等,不能认为是热分析试验的测量结果就叫热谱。
横坐标为温度(℃)或时光(min),从左至右表示温度或时光增强;纵坐标为质量损失(△m)或失重率(单位为%),从上到下表示质量或百分数削减。
对测试结果举行解析,除了采纳TGA曲线本身,还可能用到其他曲线,如一阶导数DTG曲线,纵坐标为质量变幻的速率,对TGA曲线举行微商所得,可将转折变换为峰,这种办法更简单辨认,也有利于检测少量组分的微弱信号。
TGA曲线与同步的DSC曲线或同步的DTA曲线对比,可看出是放热还是吸热效应。
与质谱(MS)联用可在线分析逸出的气体。
TGA曲线有以下几种形式(图27-11)。
图27-11 不同化学反应的TGA曲线图27-11(a)和(c)都是单步反应,有一个失重台阶,但失重的速率不同;图27-11(d)是多个分解过程,所以有多个台阶,但第一步分解速率要快于其次步;图27-11(b)所示为氧化反应,有时能导致质量增强,如金属生锈,可能是与通入的反应性气体有关;图27-11(e)是一种含能材料,爆炸性物质有时分解极快而反冲产生干扰TGA的信号,所以测含能材料的样品时,样品量要尽量少或用惰性物质稀释试样,即可解决反冲现象。
还有一种状况是在温度全量程内是一条较直的曲线,几乎没有失重过程,这解释被测物比较耐高温,热稳定性好,没有任何分解。
2.应用热重法已在多学科得到广泛应用:在化学上,可用于结晶水的鉴定、络合物的热稳定性讨论、反应动力学讨论、混合物组分含量的鉴定等。
如测定混合物组分中有两种或三种离子时,常规法必需先经过分别才干测定,费时费劲,而TGA则不需预分别就能快速将其分别,时光只需15~20min,由于每种物质都有它的固有特征曲线。
TGA还可帮助DSC做定性分析,如一种物质在DSC曲线上某温度段有一个吸热峰,但不确定是吸热分解还是熔点,用TGA测试即可得到结论,若是吸热分解,在TG曲线上相应的温度段应有失重过程,即有失重台阶浮现;若没有失重台阶就可以确定是熔点,由于熔点没有第1页共2页。
热重分析实验报告
热重分析实验报告热重分析法研究材料组成一、实验目的1、了解热重分析仪的原理2、通过实验,学会热重曲线的分析二、实验原理热重分析法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。
热重分析仪主要由炉子、程序控温系统、记录系统等几个部分构成。
通过分析热重曲线,我们可以知道样品及其可能产生的中间产物的组成、热稳定性、热分解情况及生成的产物等与质量相联系的信息。
从热重法可以派生出微商热重法,也称导数热重法,它是记录TG 曲线对温度或时间的一阶导数的一种技术。
实验得到的结果是微商热重曲线,即DTG曲线,以质量变化率为纵坐标,自上而下表示减少;横坐标为温度或时间,从左往右表示增加。
DTG曲线的特点是,它能精确反映出每个失重阶段的起始反应温度,最大反应速率温度和反应终止温度;DTG曲线上各峰的面积与TG曲线上对应的样品失重量成正比;当TG曲线对某些受热过程出现的台阶不明显时,利用DTG曲线能明显的区分开来。
热重法的主要特点,是定量性强,能准确地测量物质的质量变化及变化的速率。
根据这一特点,可以说,只要物质受热时发生质量的变化,都可以用热重法来研究。
三、仪器和试剂热失重分析仪TG209F1 德国NETZSCH公司试样(含有氯化反式1,4-聚异戊二烯(CTPI))四、实验步骤1、打开热重分析仪及电脑;2、取下空坩埚,取2~5mg试样置空坩埚内,轻轻振动,使之均匀平铺于坩埚内。
3、打开电脑中的程序,设置实验温度从30℃升到800℃,升温速度为20K/min,实验气氛为氮气,开始实验。
4、实验完毕,打印TG曲线图,降温,关闭电脑及热重分析仪。
五、数据处理实验所得热重曲线如下图所示整个实验都处于氮气气氛中,在此无氧环境下炭黑组分重量不变,失重原因是小分子的挥发和橡胶的裂解。
从DTG曲线看到,在263℃附近出现第一个失重峰,TG曲线得到失重量为14.06%,由于样品中小分子的熔点较低,所以分析该温度下的失重是由于小分子(比如增塑剂、防老剂等)的挥发造成的;在394℃附近出现第二个失重峰,失重量为77.5%,由于胶料一般在400℃左右裂解,所以判断Project:Identity:Date/Time:Laboratory:Operator:Sample:42012-4-12 12:09:50QUST LIU CTPI-4Material:Correction File:Temp. calib. file:Range:Sample Car./TC:Sample Mass:empty 007.bt3温度校正.tt330/20.0(K/min)/800TG 209F1 standard/P 5.966 mgMode/Type of Meas.:Segments:Crucible:Atmosphere:Corr/M.Range:Pre Mment Cycles:TG/Sample + Correction 1/1Al2O3-- / N2 / N2820/2000 mg 0xVacInstrument:NETZSCH TG 209 F1File:E:\ngbwin\data5\刘晨光\120411\CTPI-4.dt3liujiwen 2012-04-12 15:32 Main100200300400500600700Temperature /°C102030405060708090100TG /%-20-15-10-5DTG /(%/min)Mass Change: -14.06 %Mass Change: -77.50 %Residual Mass: 6.43 % (797.0 °C )Peak: 263.3 °CPeak: 394.2 °C该失重量就是样品中胶的含量。
热重分析实验报告
热重分析实验报告热重分析实验报告热重分析(Thermogravimetric Analysis,TGA)是一种广泛应用于材料科学、化学工程和环境科学等领域的实验技术。
它通过测量样品随温度变化时的质量变化,来研究样品的热稳定性、热分解性质以及含水量等信息。
本文将介绍一次针对某种材料的热重分析实验,并对实验结果进行分析和解读。
实验目的本次实验的目的是探究某种材料的热分解行为,并分析其热稳定性。
通过热重分析实验,我们可以了解材料在不同温度下的失重情况,从而推测其热分解反应的特征和机理。
实验步骤1. 样品制备:将待测材料粉碎并均匀混合,取适量样品放入热重分析仪的样品盖中。
2. 仪器设置:根据实验要求,设置热重分析仪的加热速率、气氛气体和流量等参数。
3. 实验操作:将样品盖放入热重分析仪中,启动仪器并开始实验。
在整个实验过程中,记录样品质量随温度变化的曲线。
实验结果根据热重分析仪的输出数据,我们得到了样品质量随温度变化的曲线。
图中的曲线显示出了样品在不同温度下的失重情况。
通过观察曲线的形态和峰值位置,我们可以初步判断材料的热分解特征。
实验分析根据实验结果,我们可以看到样品在一定温度范围内发生了明显的失重现象。
这说明样品在这个温度范围内发生了热分解反应。
失重的程度和速率可以反映出样品的热稳定性。
如果样品失重较快且幅度较大,说明样品的热稳定性较差,容易发生热分解反应。
此外,通过观察曲线的峰值位置,我们可以初步判断样品的热分解峰温。
热分解峰温是指样品热分解反应速率最大的温度点。
该温度点可以反映出样品的热分解反应活化能。
峰温越高,表明样品的热分解反应活化能越大,反应难度越大。
进一步分析,我们可以将实验结果与已有文献或其他样品进行对比。
通过比较不同样品的热分解特征,我们可以了解样品的热稳定性和热分解机理的差异。
这对于材料的选取和应用具有重要的指导意义。
结论通过本次热重分析实验,我们初步了解了某种材料的热分解特征和热稳定性。
热重分析TGA完整版
热重分析TGA完整版热重分析(Thermogravimetric Analysis,TGA)是一种热分析技术,通过对样品在不同温度条件下质量的变化进行检测和分析,可以获得样品热稳定性、反应性以及成分等信息。
本文将介绍热重分析的原理、仪器设备、实验步骤以及应用等内容。
热重分析的原理是利用热电偶作为探头,将样品加热至一定温度范围内,并监测样品质量的变化。
当样品受热时,会发生热分解、脱水、脱插等反应,此时会产生质量的变化,通过记录样品质量与温度之间的关系,可以获得样品的热重曲线。
通过分析热重曲线,可以得到样品的热分解温度、失重量、反应动力学等信息。
热重分析的仪器设备主要由加热器、电子天平和温度控制系统组成。
其中,加热器提供恒定的温度场,电子天平能够检测样品质量的变化,并将数据传输到计算机上,温度控制系统能够精确控制样品的加热温度。
进行热重分析的实验步骤如下:1.准备样品:将需要进行热重分析的样品制备成适当的形式,如粉末状或块状。
2.称取样品:使用精确的天平称取适量的样品,通常是数毫克至数十毫克。
为了减小试样质量的不确定性,可以进行多次称重取平均值。
3.装样:将样品放置在热重秤上,并确保样品均匀分布在秤盘上,以减小实验误差。
4.实施实验:将热重秤放入热重仪器中,并设置合适的实验参数,如加热速率、温度范围等。
开始实验后,仪器将按照参数进行加热,并记录样品质量的变化。
5.数据处理:根据实验得到的质量变化数据,绘制热重曲线。
可以通过计算失重率、热分解温度、半失重温度等参数来进一步分析样品的性质。
热重分析广泛应用于材料科学、化学、生物科学、制药工业等多个领域。
在材料科学中,可以通过热重分析来研究材料的热稳定性、热分解机理等。
在化学领域,可以通过热重分析来研究催化剂的活性以及催化反应的动力学。
在生物科学中,可以使用热重分析来研究生物大分子的热稳定性和降解动力学。
在制药工业中,可以通过热重分析来研究药物的热稳定性,以指导药物的储存和使用。
热重的实验报告
热重的实验报告热重的实验报告热重分析是一种常见的实验技术,用于测量物质在升温过程中的质量变化。
通过监测样品质量的变化,可以了解物质的热稳定性、热分解行为以及含水量等信息。
本实验旨在通过热重分析仪对不同样品的热稳定性进行研究,并分析其热分解特性。
实验过程中,我们选取了三种不同的样品进行热重分析:聚合物材料A、金属合金B和有机化合物C。
首先,我们将每个样品分别放置在热重分析仪的样品舱中,并设置升温速率为10℃/min。
随着温度的升高,我们观察到样品的质量发生了变化。
对于聚合物材料A,我们发现在200℃左右,其质量开始迅速下降。
这表明聚合物材料A在这个温度范围内发生了热分解反应。
随着温度的继续升高,聚合物材料A的质量逐渐减少,直到最终完全分解。
通过分析聚合物材料A的热分解曲线,我们可以确定其热分解温度和分解产物。
金属合金B的热重曲线与聚合物材料A有所不同。
在升温过程中,金属合金B 的质量基本保持不变,直到温度达到其熔点。
在熔点附近,金属合金B的质量开始迅速下降,表明金属合金B在这个温度范围内开始熔化。
通过测量熔点和熔化过程中的质量变化,我们可以确定金属合金B的热稳定性和熔化特性。
有机化合物C的热重曲线则显示出不同的特点。
在升温过程中,有机化合物C 的质量迅速减少,表明其发生了挥发或热分解反应。
通过分析热分解曲线,我们可以确定有机化合物C的挥发温度和热分解温度。
此外,我们还可以通过测量热分解过程中的质量损失速率来评估有机化合物C的热稳定性。
通过对这三种不同样品的热重分析,我们可以得到它们的热稳定性和热分解特性。
这些信息对于材料科学和工程领域的研究具有重要意义。
例如,在聚合物材料的研究中,热重分析可以帮助确定材料的热稳定性,从而选择适当的加工温度和条件。
在金属合金的研究中,热重分析可以用于评估材料的熔点和热稳定性,从而指导合金的设计和制备。
在有机化学领域,热重分析可以用于研究有机化合物的热分解行为,从而优化合成过程和提高产物的纯度。
热重分析实验报告
热重分析实验报告实验目的:本实验旨在通过热重分析技术,对样品在不同温度下的质量变化进行研究,从而探究样品的热稳定性和热分解特性。
实验原理:热重分析是一种通过加热样品并测量其质量变化来研究样品热性质的分析技术。
在实验中,样品被置于称量瓶中,然后加热至一定温度范围内,通过记录样品质量随温度的变化,可以得到样品的热重曲线。
根据热重曲线的变化特征,可以分析出样品的热分解温度、热分解速率等信息。
实验步骤:1. 准备样品,将待测样品粉碎并干燥,以保证实验结果的准确性。
2. 装样,将干燥后的样品粉末放入称量瓶中,并记录样品质量。
3. 实验参数设置,设置热重分析仪的加热速率、加热范围等参数。
4. 开始实验,启动热重分析仪,开始对样品进行加热,记录样品质量随温度的变化。
5. 数据分析,根据实验得到的热重曲线,分析样品的热分解温度、热分解速率等参数。
实验结果与分析:通过实验得到的热重曲线,可以清晰地观察到样品在不同温度下的质量变化情况。
根据曲线的变化特征,可以确定样品的热分解温度为XXX摄氏度,热分解速率为XXX。
这些参数可以为进一步研究样品的热性质提供重要参考。
结论:本实验通过热重分析技术,成功研究了样品在不同温度下的质量变化情况,得到了样品的热分解温度和热分解速率等重要参数。
这些参数对于进一步了解样品的热性质具有重要意义。
实验中还发现了一些问题,需要进一步深入研究和分析。
同时,实验过程中也存在一些不足之处,需要进一步改进和完善。
综合来看,本实验取得了一定的成果,对于后续的研究工作具有一定的参考价值。
总结:热重分析技术是一种重要的研究样品热性质的分析方法,通过本实验的开展,对于深入了解样品的热稳定性和热分解特性具有重要意义。
希望通过今后的努力,可以进一步完善实验方法,提高实验数据的准确性和可靠性,为相关领域的研究工作提供更多有益的信息。
热重分析实验报告
热重分析实验报告1. 实验目的热重分析是一种常用的分析技术,用于确定样品的热稳定性及其组成。
本实验旨在通过热重分析仪器,分析不同样品的热分解过程,并对实验结果进行解读。
2. 实验原理热重分析是通过加热样品并连续记录其质量的变化来研究样品的热稳定性。
当样品加热时,样品中的挥发分子、溶剂或其他组分会发生热解、蒸发或燃烧等反应,导致样品质量的变化。
通过分析质量变化曲线,可以确定样品热分解的温度范围、质量损失和反应速率等信息。
3. 实验步骤3.1 样品准备•选择待测试的样品,并记录其名称和重量。
•将样品放置在热重分析仪器的样品盘中。
3.2 实验参数设置•根据样品特性和实验需要,设置合适的实验参数,如温度范围、升温速率等。
3.3 开始实验•确保热重分析仪器处于正常工作状态。
•启动实验,并记录开始时间。
3.4 实验数据记录•实时记录样品的质量变化情况,注意记录的时间和质量值。
•在实验过程中,观察和记录可能出现的颜色变化、气体释放等现象。
3.5 实验结束•当样品质量趋于稳定或实验时间到达设定值时,结束实验。
•关闭热重分析仪器,并记录实验结束时间。
4. 实验结果与分析4.1 质量变化曲线根据实验数据记录的质量变化情况,绘制质量变化曲线。
曲线的横轴为时间,纵轴为质量变化。
通过观察曲线的形状和趋势,可以初步了解样品的热分解过程。
4.2 质量损失和温度范围根据质量变化曲线,计算样品的质量损失和热分解的温度范围。
质量损失可通过计算起始质量和终止质量之差得到。
温度范围可以通过观察质量损失较大的区间得出。
4.3 重要特征温度根据质量变化曲线,确定样品可能存在的重要特征温度,如峰值温度、峰值面积等。
这些特征温度可以反映样品的热稳定性和组成。
5. 实验结论根据实验结果和分析,得出对样品热分解过程的结论。
可以对样品进行分类、比较或评估热稳定性等。
同时,也可以提出可能的反应机理和进一步研究的方向。
6. 实验注意事项•在操作热重分析仪器时,注意安全操作,避免烫伤或其他意外事故。
热重法分析实验报告
现代分析测试技术实验报告实验名称:热重法分析一水草酸钙的差热姓名: 学号: 专业:有机化学实验日期:2017.10.10 指导老师: 成绩:一、实验目的:1、掌握热重分析法的一般原理;2、了解热重分析使用方法;3、掌握热分析谱图的解析方法。
二、工作原理:1、根据热电偶的测量原理,将一个热电偶制成传感器,将微量的样品置于传感器上,放入特殊的炉子内按一定的规律加热,当样品在一定的温度下发生吸放热的物理变化时,通过传感器就可以探测出样品温度的变化,进而通过专业的热分析软件,处理得出温度变化的数据或图形,根据图形再判断材料有可能发生的各种相变。
2、将传感器和样品构成的支架系统同时放在天平上, 当样品在一定的温度下发生重量的变化时,天平就可以立刻反应出来,通过专业的热分析软件,处理得出重量变化的数据或图形,同样根据图形再判断材料有可能发生的各种内在成分的变化。
3、将两张图放在一块,可以同时测试物质的重量和差热随温度的变化,进而在材料的物化分析方面得到更多的信息。
三、实验仪器和药品:1、仪器:热重分析仪TG209F1(德国耐驰仪器制造有限公司)、直径为6mm 的氧化铝坩埚2、主要试剂:CaC 2O 4·H 2O四、实验操作步骤:1、提前2小时检查恒温水浴的水位(保持液面低于顶面2cm );打开电源开关,在面板上启动运行,设定的温度值应比环境温度高约10---15℃,同时注意有无漏水现象;2、依次打开电源开关:显示器、电脑主机、仪器测量单元、控制器,以及测量单元上的天平电源开关;3、实验使用氮气,调节低压输出压力为0.03-0.05Mpa ;4、在电脑上打开对应的TG209测量软件,待自检通过后,检查仪器设置;打开炉盖,将支架升起,放入空坩埚;待程序正常结束后冷却后,打开炉子取出坩埚,将样品平整放入后(以不超过1/3容积约10mg 为好)称重,然后打开基线文件,选择基线加样品的测量模式,编程运行,结束温度值为910℃;5、待样品温度降至100℃以下时,先将支架升起方可打开炉盖,拿出坩埚;6、不使用仪器时正常关机顺序依次为:关闭软件、退出操作系统、关电脑主机、显示器、仪器控制器、天平电源、测量单元。
热重分析法原理
热重分析法原理
热重分析法是一种常用的物理化学实验方法,用于研究材料在升温过程中的质量变化。
其原理基于材料的热分解和失重过程,通过测量样品在不同温度下的质量变化来研究材料的热稳定性、热解特性和组分变化等。
热重分析实验通常使用热重仪器进行,在实验中,样品将被放置在敏感热重天平上,并在恒定的升温速率下进行加热。
升温过程中,敏感天平将持续测量样品的质量,并将其质量变化与温度变化相关联。
在样品加热过程中,可能会发生各种化学物质的热分解、蒸发、固相反应等失重过程。
这些过程会导致样品质量发生变化,通过记录样品质量的变化曲线,可以得到样品在不同温度下的失重速率,从而推测样品的热解、蒸发或其他热分解反应的发生温度和性质。
热重分析法在许多领域中得到广泛应用,如材料科学、药物研究、食品工业等。
通过研究样品的热解过程,可以评估材料的热稳定性和热分解特性,为材料的设计和性能改进提供有效的依据。
此外,热重分析还可以用于研究材料的组分变化、腐蚀性质和热氧化降解等方面。
总之,热重分析法是一种重要的实验手段,通过测量样品在升温过程中的质量变化,可以获得有关材料热解反应、失重速率以及热稳定性等信息,为材料研究和应用提供重要参考依据。
热重分析仪实验报告
3.热重分析仪(TG)一、实验目的及要求1.了解热重分析法的基本原理和热重分析仪的基本构造;2.掌握热重分析仪的使用方法二、实验原理样品在热环境中发生化学变化、分解、成分改变时可能伴随着质量的变化。
热重分析就是在不同的热条件(以恒定速度升温或等温条件下延长时间)下对样品的质量变化加以测量的动态技术。
热重法是在程序控温下,测量物质的质量与温度或时间的关系的方法,通常是测量试样的质量变化与温度的关系。
热重分析的结果用热重曲线或微分热重曲线表示。
TG曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)为横坐标,自左至右表示温度(或时间)增加。
热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。
最常用的测量的原理有两种,即变位法和零位法。
所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。
零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。
由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。
三、实验仪器热重分析仪(SDT)Q600 能够同时提供DSC和TGA信号。
在加热或冷却的过程中,随着物质的结构、相态和化学性质的变化都会伴有相应的物理性质的变化,SDT是测量物质质量变化的仪器。
这些变化过程有助于研究晶体性质的变化,如熔化、蒸发、升华和吸附等物质的物理现象;也有助于研究物质的脱水、解离、氧化、还原等物质的化学现象。
美国TA仪器公司生产。
技术参数: 温度范围:室温~1500℃;温度准确度:±0.1℃;量热精度:±2%;重量灵敏度:0.1μg;重量漂移:<1μg/h;加热速度:0.1~100℃/min主要附件:Q系列Advantage操作软件及分析软件功能应用:无机物、有机物和高分子材料的热分解温度、无机物、有机物和高分子材料的热重变化及变化速率。
实验报告一-热重分析
南昌大学实验报告学生姓名:学号:专业班级:实验类型:■演示□验证□综合□设计□创新实验日期:实验成绩:实验一热重分析一、实验目的1. 了解热重分析的仪器装置及实验技术。
2. 测绘矿物的热重曲线,解释曲线变化的原因。
二、实验基本原理物质受热时,发生化学反应,质量也就随之改变,测定物质质量的变化就可研究其变化过程。
热重法(TG)是在程序控制温度下,测量物质质量与温度关系的一种技术。
热重法实验得到的曲线称为热重曲线(即TG曲线)。
TG曲线以质量作纵坐标,从上向下表示质量减少;以温度(或时间)为横坐标,自左至右表示温度(或时间)增加。
热重法的主要特点是定量性强,能准确地测量物质的变化及变化的速率。
热重法的实验结果与实验条件有关。
但在相同的实验条件下,同种样品的热重数据是重现的。
温控热电偶图1 热重分析原理图图2 TG曲线三、主要仪器设备及耗材主要设备:综合热分析仪1套。
试剂与耗材:CaC2O4·H2O(A.R.)、CuSO4·5H2O(A.R.)等四、实验步骤(1) 调整天平的空称零位;(2) 将坩埚在天平上称量,记下质量数值P 1,然后将待测试样放入已称坩埚中称量,并记下试样的初始质量;(3) 将称好的样品坩埚放入加热炉中吊盘内;(4) 调整炉温,选择好升温速率(若为自动记录,应同时选择好走纸速度,开启记录仪);(5) 开启冷却水,通入惰性气体;(6) 启动电炉电源,使电源按给定速度升温;(7) 观察测温表,每隔一定时间开启天平一次,读取并记录质量数值(若为自动记录,则定时观察TG 曲线,并标记质量和温度值);(8) 测试完毕,切断电源,待炉温降至100℃时切断冷却水。
五、实验数据及处理结果1. 根据得到的TG 曲线,读出试样质量发生变化前后的值及其所对应的温度,计算出其变化值。
2. 根据公式%样品原来的质量样品质量的变化值失重100(%)⨯= 可以计算出,样品的失重。
3. 分析曲线上质量变化的原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于受热产生气体的样品,样品量越大,气体越不易扩散。 对于受热产生气体的样品,样品量越大,气体越不易扩散。 再则,样品量大时,样品内温度梯度也大,将影响TG曲线位置。 再则,样品量大时,样品内温度梯度也大,将影响TG曲线位置。 TG曲线位置 因此实验时应根据天平的灵敏度,尽量减小样品量。 因此实验时应根据天平的灵敏度,尽量减小样品量。样品的 粒度不能太大,否则将影响热量的传递;粒度也不能太小, 粒度不能太大,否则将影响热量的传递;粒度也不能太小,否 则开始分解的温度和分解完毕的温度都会降低。 则开始分解的温度和分解完毕的温度都会降低。 热重法的实验结果与实验条件有关。 热重法的实验结果与实验条件有关。但在相同实验条件 下,同种样品的热重实验数据应该是能重现的。 同种样品的热重实验数据应该是能重现的。 为了得到最佳的热分析曲线, 为了得到最佳的热分析曲线,首先在室温至分解温度的 较宽范围内,以较高的加热速率(10 20℃/min)做预试验 (10做预试验, 较宽范围内,以较高的加热速率(10-20℃/min)做预试验,然 后在较窄范围内,以较低的加热速度(每分钟约2℃) 2℃)进行重 后在较窄范围内,以较低的加热速度(每分钟约2℃)进行重 复试验。每条热分析曲线应附上测定条件,包括仪器型号、 复试验。每条热分析曲线应附上测定条件,包括仪器型号、 最后校正的记录、样品规格和鉴定(包括以前的热力学性质 最后校正的记录、样品规格和鉴定( 记录) 容器、气体纯度、流速和压力、 记录)、容器、气体纯度、流速和压力、温度变化的方向和 速率,以及仪器和记录仪的灵敏度等。 速率,以及仪器和记录仪的灵敏度等。 热重曲线上质量基本不变的部分称为基线或平台。 热重曲线上质量基本不变的部分称为基线或平台。
SDT Q600 综合热分析仪 600
-结构与原理
SDT Q600 综合热分析仪 600
-结构与原理
加 热 炉 的 设 计 优 点
加热炉是高可靠性的双丝缠绕加热炉, 加热炉是高可靠性的双丝缠绕加热炉, 炉体采用坚硬耐腐蚀耐高温的特种陶瓷材 料,而且炉子体积极小,因此升温速度快, 而且炉子体积极小,因此升温速度快, 炉内的温度梯度小,而且控温精度高, 炉内的温度梯度小,而且控温精度高,全自 稳定的水平开闭加热炉,稳定性极好, 动,稳定的水平开闭加热炉,稳定性极好, 而且方便装样,采用空气冷却方式, 而且方便装样,采用空气冷却方式,冷却速 度快,提高实验效率. 度快,提高实验效率.
SDT Q600 综合热分析仪 600
-结构与原理
Q600 样品盘
SDT Q600 综合热分析仪 600
-结构与原理
载气和冷却气接口
SDT Q600 综合热分析仪 600
-结构与原理
吹 扫 气 体 系 统
配有二路载气进口, 配有二路载气进口,同时配有专用的独立 反应性气体通道, 式Inconel 600反应性气体通道,可导入各种不 反应性气体通道 同的反应性气体或腐蚀性气体而不会对天平造 成污染.由于水平稳定的载气吹扫样品, 成污染.由于水平稳定的载气吹扫样品,使得载 气对称重的影响小, 气对称重的影响小,热重的基线和称重结果更 精确,基线的稳定性更好, 精确,基线的稳定性更好,同时由于受气流的影 响很小,也确保了DSC热传导的稳定性, DSC热传导的稳定性 响很小,也确保了DSC热传导的稳定性,提高了 量热的精度.由于水平水平吹扫气体的合理性, 量热的精度.由于水平水平吹扫气体的合理性, 可防止裂解气体回流, 可防止裂解气体回流,将分解物质有效快速的 带出样品区.水平吹扫气体对天平无浮力效应, 带出样品区.水平吹扫气体对天平无浮力效应, 无需进行浮力校准
-结构与原理
天平室构造图2 天平室构造图2
SDT Q600 综合热分析仪 600
-结构与原理
水平双杆式双天平设计构作图
SDT Q600 综合热分析仪 600
-结构与原理 Q600 采用高可靠性的水平双臂式天平结构,分别支撑样 采用高可靠性的水平双臂式天平结构, 品和参比样品,样品端天平检测样品重量及变化, 品和参比样品,样品端天平检测样品重量及变化,参比端天平 用于修正TGA测量仪器的臂的移动,水平式称重系统只称样品 测量仪器的臂的移动, 用于修正 测量仪器的臂的移动 和坩埚的重量,无需称重样品杆的重量, 和坩埚的重量,无需称重样品杆的重量,独特的设计确保了极 微小的重量变化(0.1µg),可以被准确的检测出而且双臂天平比 微小的重量变化( ) 可以被准确的检测出而且双臂天平比 单臂式减少了漂移,提高了精度和准确度, 单臂式减少了漂移,提高了精度和准确度,因此称重精度可达 一千万分之一,在样品失重过程中由于采用双杆设计, 一千万分之一,在样品失重过程中由于采用双杆设计,所以无 垂直单杆设计出现的中心偏移现象. 垂直单杆设计出现的中心偏移现象. 主机配有自动的内置式气体切换装置和内置式数字质量流 量计,可以精确控制各种吹扫气体以稳定的流速( 量计,可以精确控制各种吹扫气体以稳定的流速(精确控制流 速范围0.1-1000ml/min,精度 精度0.1ml/min) 流经样品和参比的坩 速范围 精度 ) 比传统方法有更好的数据重现性, 埚,比传统方法有更好的数据重现性,自动切换采用高速低体 积阀门,瞬间切换吹扫气体,气体流量也储存在数据文件中. 积阀门,瞬间切换吹扫气体,气体流量也储存在数据文件中.
SDT Q600 综合热分析仪 600 -结构与原理
SDT Q600 同步热分析仪外观
SDT
SDT Q600 综合热分析仪 600 -结构与原理
SDT Q600 同步热分析仪外观
SDT Q600 综合热分析仪 600
-结构与原理
天平室构造图1 天平室构造图1
SDT Q600 综合热分析仪 600
差热-热重分析实验 差热-热重分析实验
一.实验目的与内容 1.了解热重分析的基本原理及热重分析仪的装置 了解热重分析的基本原理及热重分析仪的装置; 1.了解热重分析的基本原理及热重分析仪的装置; 2.学习使用热重分析方法并能准确地测量物质的变化及 2.学习使用热重分析方法并能准确地测量物质的变化及 变化的速率。 变化的速率。 二.实验基本原理 热重法(TG)是在程序控制温度下, (TG)是在程序控制温度下 热重法(TG)是在程序控制温度下,测量物质质量与温度 关系的一种技术。许多物质在加热过程中会在某温度发生分 关系的一种技术。 脱水、氧化、 解、脱水、氧化、还原、熔化和升华等物理化学变化而出现 质量变化 变化, 质量变化,发生质量变化的温度及质量变化百分数随着物质 的结构及组成而异, 的结构及组成而异,因而可利用物质的热重曲线来研究物质 的热变化过程,如试样的组成、热稳定性、热分解温度、 的热变化过程,如试样的组成、热稳定性、热分解温度、热 分解产物和热分解动力学等。 分解产物和热分解动力学等。 热重分析通常可分为两类:动态(升温)和静态(恒温) 热重分析通常可分为两类:动态(升温)和静态(恒温)。 热重法试验得到的曲线称为热重曲线(TG曲线) TG曲线 (TG曲线 热重法试验得到的曲线称为热重曲线(TG曲线)。TG曲线 以质量作纵坐标,从上向下表示质量减少;以温度(或时间) 以质量作纵坐标,从上向下表示质量减少;以温度(或时间)作 横坐标,自左至右表示温度(或时间)增加。 横坐标,自左至右表示温度(或时间)增加。
目前,热重法已在下述诸方面得到应用: 目前,热重法已在下述诸方面得到应用: (1)无机物 有机物及聚合物的热分解; 无机物、 (1)无机物、有机物及聚合物的热分解; (2)金属在高温下受各种气体的腐蚀过程 金属在高温下受各种气体的腐蚀过程; (2)金属在高温下受各种气体的腐蚀过程; (3)固态反应;(4)矿物的煅烧和冶炼 固态反应;(4)矿物的煅烧和冶炼; (3)固态反应;(4)矿物的煅烧和冶炼; (5)液体的蒸馏和汽化;(6)煤、石油和木材的热解过程; (5)液体的蒸馏和汽化;(6)煤 石油和木材的热解过程; 液体的蒸馏和汽化;(6) (7)含湿量 挥发物及灰分含量的测定;(8)升华过程; 含湿量、 ;(8)升华过程 (7)含湿量、挥发物及灰分含量的测定;(8)升华过程; (9)脱水和吸湿;(10)爆炸材料的研究 脱水和吸湿;(10)爆炸材料的研究; (9)脱水和吸湿;(10)爆炸材料的研究; (11)反应动力学的研究;(12)发现新化合物 反应动力学的研究;(12)发现新化合物; (11)反应动力学的研究;(12)发现新化合物; (13)吸附和解吸;(14)催化活度的测定 吸附和解吸;(14)催化活度的测定; (13)吸附和解吸;(14)催化活度的测定; (15)表面积的测定; (15)表面积的测定; 表面积的测定 (16)氧化稳定性和还原稳定性的研究 氧化稳定性和还原稳定性的研究; (16)氧化稳定性和还原稳定性的研究; (17)反应机制的研究 反应机制的研究。 (17)反应机制的研究。 三.主要仪器设备及耗材 仪器: 差热/ 美国(TA) (TA)公司 仪器:Q600 差热/热重同步热分析仪 美国(TA)公司
进行热重分析的基本仪器为热天平,它包括天平、炉子、 进行热重分析的基本仪器为热天平,它包括天平、炉子、 程序控温系统、记录系统等几个部分。 程序控温系统、记录系统等几个部分。 热重法的重要特点是定量性强, 热重法的重要特点是定量性强,能准确地测量物质的质量 变化及变化的速率。可以说,只要物质受热时发生重量的变化, 变化及变化的速率。可以说,只要物质受热时发生重量的变化, 就可以用热重法来研究其变化过程。 就可以用热重法来研究其变化过程。 热重分析的实验结果受到许多因素的影响,基本可分二类: 热重分析的实验结果受到许多因素的影响,基本可分二类: 一是仪器因素,包括升温速率、炉内气氛、炉子的几何形状、 一是仪器因素,包括升温速率、炉内气氛、炉子的几何形状、 坩埚的材料等。二是样品因素,包括样品的质量、粒度、 坩埚的材料等。二是样品因素,包括样品的质量、粒度、装样 的紧密程度、样品的导热性等。 的紧密程度、样品的导热性等。 TG的测定中 升温速率高会使样品分解温度明显升高。 的测定中, 在TG的测定中,升温速率高会使样品分解温度明显升高。 如升温太快,试样来不及达到平衡,会使反应各阶段分不开。 如升温太快,试样来不及达到平衡,会使反应各阶段分不开。 合适的升温速率为5 10℃/min。 合适的升温速率为5-10℃/min。 样品在升温过程中, 样品在升温过程中,通常伴有吸热或放热现象而使温度偏 离线性程序升温,并改变了TG曲线位置。样品量越大, TG曲线位置 离线性程序升温,并改变了TG曲线位置。样品量越大,这种影 响越大。 响越大。