七年级数学下册第七章平面直角坐标系7.1平面直角坐标系7.1.2平面直角坐标系教案新版新人教版
7.1.2平面直角坐标系教学设计
思考:原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点.
由学生讨论、交流后得到共识:
原点O的横,纵坐标都是0,x轴上的点的纵坐标为0,y轴上的点的横坐标为0。
投影书P48图6.1-5.
建立了平面直角坐系以后,坐标平面就被两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、 Ⅳ四个部分,分别叫第一象限、第二象成以下问题:
各象限上的点有何特点?
学生交流后得到共识:
第一象限上的点,横坐标为正数,纵坐标为正数;
第二象限上的点,横坐标为负数,纵坐标为正数;
第三象限上的点,横坐标为负数,纵坐标为负数;
第四象限上的点,横坐标为正数,纵坐标为负数。
三、巩固练习
P68练习1,P68习题7。1
四、小结
本课作业
课本第68—69页习题5.1第3、4、9、12题。
二、选择题:
1.已知地平面直角坐标系中A(-3,0)在()
A.x轴正半轴上B。x轴负半轴上; C.y轴正半轴上D。y轴负半轴上
2。点M(a,b)的坐标ab=0,那么M(a,b)位置在( )
A。y轴上B.x轴上;C.x轴或y轴上D.原点
板书设计
7。1。2 平面直角坐标系
1、平面直角坐标系的概念
2、平面直角坐标系中点与坐标的一一对应关系。
多媒体展示P47图6.1—4.
教师进一步指出:我们用平面内两条互相垂直、 原点重合的数轴组成平面直角坐标系。水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y 轴或纵轴,取向上方向为正方向,两坐标的交点为平面直角坐标系的原点。
有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了,例如: 图6.1-4中,由点A分别向x轴y轴作垂线,垂足M在x同上的坐标是3,垂足N到y 轴上的坐标是4,我们说A点的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A的坐标,记作A(3,4),类似地,请你根据书P47图6.1—4,写出点B、C、D的坐标.
人教版七年级数学下册第七章平面直角坐标系PPT课件全套
有序数对在生活中的应用
知 识 点 二
如图是某学校的平面示意图.如果用 (5,1)表示学校大门的位置,那么运动场表 宿舍楼 (6,8) ,(8,5)表示的场所是_____. 示为_____
有序数对在生活中的应用
知 识 点 二
如图3,甲处表示2街与5巷的十字路口,乙处表 示5街与2巷的十字路口,如果用(2,5)表示甲处的位 置,那么“(2,5)→(3,5) →(4,5) →(5,5) →(5,4) →(5,3) →(5,2)”表示从甲处到乙处的一种路线,请 你用 这种形式写出两种从甲处到乙处的最短路线.
这就是我们接下来要学习的相关概念的内容。
2、在平面内画两条互相____、原点____的数轴, 垂直 重合 横轴 组成平面直角坐标系.水平的数轴称为____或____, x轴 y轴 习惯上取向_____为正方向;竖直的数轴称为___ 右 _或____,取向____为正方向;两个坐标轴的_ 上 纵轴 ___为平面直角坐标系的原点 . 交点 y轴
D
-4 -3 -2 -1 -1 4 3 2 1
y A
O1
2 3
4
x
C
-2 -3
B
4、如图所示,在第三象限的点是(C ) A.点A B.点B C.点C D.点D
(1)
学习目标
1
会根据实际情况建立适当的坐 标系;
2
通过点的位置关系探索坐标之间 的关系及根据坐标之间的关系探 索点的位置关系.
讲授新课
认真阅读课本第67至68页的内容,
分别为:A( 0,0 ),B(6,0),C(6,6 ),D(0,6). y 2、若以线段DC所在的直线为x轴,纵轴(y 轴)位置不变,则四个顶点的坐标分别为: 6,0 ), A( 0,-6),B( 6,-6 ),C( D( 0,0 ).
教学设计4:7.1.2 平面直角坐标系
7.1.2 平面直角坐标系教学目标:(一)【知识目标】1、了解平面直角坐标系的产生过程;2、认识平面直角坐标系及其相关概念;3、探索象限内点的特征与坐标轴上点的特征。
(二)【技能目标】1、会正确画出平面直角坐标系;2、在给定的平面直角坐标系中,能够根据坐标指出点的位置,并且已知点的位置写出它对应的坐标;(三)【情感目标】1、能使学生感受到数学与现实世界的联系,增强学生“用数学”的意识,感受数学之用;2、培养学生严谨朴实的科学态度和勤奋自强的探索精神,以及独立思考与合作交流的学习习惯,感受数学之实。
3、让学生得到尝试、成功的情感体验,感受数学之美。
教学重点与难点:1、教学重点:能在给定的平面直角坐标系中,由点求出坐标,由坐标描出点。
教学过程:(一)创设问题情境引例:我们的教室共有56个座位,自前向后分为7排,自左向右分为8列,每位学生对应了一个座位,我们来玩个“点将”游戏,你们是“将”,由我来点,点到的同学说出自己的座位号几排几列)。
同时演示“点将”游戏,游戏规则:(1)老师报到学生姓名,学生起立并说出座位号;(2)老师说出座位号,对应的学生起立。
奖励:同学们的掌声。
再提问你如何来确定自己的座位?先让学生自己思考,也可以进行小范围的讨论,学生可以归纳出:要确定一个学生的座位必须有两个数,一个是排数,一个是列数。
那么再问2排3列与3排2列是否是同一个座位?由此你认为表示座位与两个数的顺序有关吗?结合课件演示,让学生进行讨论与思考,可以发现:一个“将”的座位应该由一对有序的数组构成的。
(二)构建数学模型由上面的例子中我们可以发现,我们学生的座位是由一对有序的数组构成的,那么就我们已有的数学知识而言,我们能否将其也用数学知识来解决呢?教师在这个时间可以先提问一个数是如何来确定它的位置的,学生马上可以想到有关数轴的知识。
再利用教室的座位安排情况,同时特别要注意排与列之间的位置关系,由此学生可以有如下的发现:1、排与列之间是互相垂直的位置关系。
人教版七年级数学下册第7章习题课件7.1.2 平面直角坐标系
解得 m=2.
∴m+2=4.
∴点 P 的坐标是(4,0).
*6. (2020·邵阳) 已知 a+b>0,ab>0,则在如图所示的平面直
角坐标系中,小手盖住的点的坐标可能是( )
A.(a,b)
B.(-a,b)
C.(-a,-b) D.(a,-b)
【点拨】∵a+b>0,ab>0, ∴a>0,b>0. A.(a,b)在第一象限,但小手盖住的点在第二象限,故此选项 不符合题意; B.(-a,b)在第二象限,故此选项符合题意; 【答案】B C.(-a,-b)在第三象限,故此选项不符合题意; D.(a,-b)在第四象限,故此选项不符合题意.
第七章 平面直角坐标系
7.1 平面直角坐标系 第2课时 平面直角坐标系
1.在平面内画两条互相垂直、__原__点__重__合____的数轴,组成 _平__面__直__角__坐__标__系___.水平的数轴称为_x_轴__或__横__轴____,习惯上 取向右为__正__方__向__;竖直的数轴称为_y_轴__或__纵__轴__,取向上为 __正__方__向__;两坐标轴的交点为__平__面__直__角__坐__标__系__的__原__点___.
15.如图,已知点 A(-2,3),B(4,3),C(-1,-3). (1)求 A,B 两点之间的距离; 解:AB=4+|-2|=4+2=6. (2)求点 C 到 x 轴的距离; 解:点 C 到 x 轴的距离是|-3|=3.
(3)求三角形 ABC 的面积; 解:易知点 C 到 AB 的距离为 6,且 AB=6, 所以 S 三角形 ABC=12×6×6=18.
4.(2020·扬州) 在平面直角坐标系中,点 P (x2+2,-3) 所在的
象限是( D )
人教版七年级数学下册课件 7.1.2 平面直角坐标系 (共22张PPT)
-3 -2 -1 0 1 2 3 4
A: -3; B: 2. 点C. 思考2 : 由(1)你发现数轴上的点与实数是什么关系?
一一对应. ①数轴上的每个点都对应一个实数(这个实数叫作这个
点在数轴上的坐标); ②反过来,知道一个数, 这个数在数轴上的位置就确定了.
新课导入
1596-1650
数学家笛卡儿潜心研究能否用代数中的 计算来代替几何中的证明. 有一天, 在梦中他 用金钥匙打开了数学宫殿的大门, 遍地的珠 子光彩夺目, 他看见窗框角上有一只蜘蛛正 忙着结网, 顺着吐出的丝在空中飘动, 一个念 头闪过脑际: 眼前这一条条的横线和竖线不 正是自己全力研究的直线和曲线吗?
5 N
A
平面内的点就可以用一个
4
x轴上的点的
(3, 4)
有序数对来表示了.
纵坐标为0; y 3
轴上的点的 2 C 例如, 由点 A 分别向 x 轴、横坐标为0. 1
原点O的坐标 为(0, 0)
y轴作垂线, 垂足M 在 x 轴 上的坐标3, 垂足 N 在 y 轴 -4 -3
-2
-1 O
M 1 2 3456
y
D (0, 6)
6
C(6, 6)
5
4
3
2
1
A(O) (0,10)2 3 4 5 B (6, 0)
x
新知探究
请另建立一个平面直角坐标系, 这时正方形的顶点A, B, C, D 的坐标又分别是什么?与同学们交流一下.
y
D (-3,3)
C (3,3)
A (-3,-3)
B (3,-3)
x
新知探究
由上得知, 建立的平面直角坐标系不同, 则各点的坐标也 不同. 你认为怎样建立直角坐标系才比较适当?
人教版初中数学七年级下册精品教学课件 第7章 平面直角坐标系 7.1.2 平面直角坐标系
解析:结合图象,根据点的坐标的意义先确定横、纵坐标的绝对
值,再由所在象限确定横、纵坐标的正、负.
答案:C
快乐预习感知
1
2
2.求坐标系中有关图形的面积 【例2】 已知三角形ABC三个顶点的坐标分别为A(-7,0),B(1,0), C(-5,4),试求此三角形的面积. 分析:在平面直角坐标系内画出三角形ABC的大致图象,则三角形 ABC的面积易求解. 解:在平面直角坐标系内描出三角形ABC的位置,如图.
2.如图,点A的坐标是( B )
A.(3,2) C.(3,-3)
B.(3,3) D.(-3,-3)
学前温故
新课早知
快乐预习感知
3.建立了平面直角坐标系后,坐标平面就被两条坐标轴分成Ⅰ、 Ⅱ、Ⅲ、Ⅳ四个部分,每个部分称为象限,分别叫 做 第一象限 、 第二象限 、 第三象限和 第四象限.坐标轴 上的点 不属于任何象限.
原点5个单位长度,则此点的坐标为
;点C在y轴左侧,在x
轴下方,距离每个坐标轴都是5个单位长度,则此点的坐标
为
.
(5,0) (0,-5) (-5,-5)
关闭
答案
快乐预习感知
1
2
3
4
5
6
7
8
6.已知点P(0,m)在y轴的负半轴上,则点M(-m,-m+1)在第
象
限.
∵点P(0,m)在y轴的负半轴上,∴m<0, ∴-m>0,-m+1>0,∴点M在第一象限.
4.平面直角坐标系中,点P(-1,3)在( B ) A.第一象限 B.第二象限 C.第三象限 D.第四象限
1
2
快乐预习感知
1.在平面直角坐标系中,坐标符号的特点
人教版七年级下数学7.1.2 平面直角坐标系教案
一、情境导入文字密码游戏:如图“家”字的位置记作(1,9),请你破解密码:(3,3),(5,5),(2,7),(2,2),(1,8) (8,7),(8,8).9家个和怎他是的去常8聪到饿日一有啊!哦7的我是发搞可了明在6确小大北京你才批不5年没定妈,爸事达方4营业女天员各合乎经3由于嘿毫力量靠孩济2仍真击歼安机麻生世1然往亲赌东门密棒暗0123456789二、讲授新知探究点1:平面直角坐标系问题1:建立了平面直角坐标系以后,平面内的点可以用来表示,由点P 向轴作垂线,垂足M在x轴上的坐标是;由点P向轴作垂线,垂足N在y轴上的坐标是 .于是,点P的横坐标是-2,纵坐标是3,且把横坐标写在纵坐标的前面,记作(-2,3).(-2,3)叫做点P在平面直角坐标系中的坐标,简称点P的坐标.典例精析例1.写出下图中的多边形ABCDEF各个顶点的坐标.针对训练在直角坐标系中描下列各点:A(4,3),B(-2,3),C(-4,-1),D(2,-2).方法总结:由坐标找点的方法:(1)先在坐标轴上找到表示横坐标与纵坐标的点;(2)然后过这两点分别作x轴与y轴的垂线;(3)垂线的交点就是该坐标对应的点.探究点2:直角坐标系中点的坐标的特征问题1:建立平面直角坐标系后,两条坐标轴把坐标平面分成个部分,从右上的象限开始,按逆时针方向依次为、、、,坐标轴上的点任何象限(填“属于”或“不属于”)问题2:各象限内点的坐标有什么特点?坐标轴上点的坐标有什么特点?问题3:坐标平面内的点与有序数对(坐标)是什么关系?典例精析例2.在平面直角坐标系中,描出下列各点,并指出它们分别在哪个象限. A(5,4),B(-3,4),C (-4 ,-1),D(2,-4).方法总结:两坐标轴上的点不属于任何一个象限,象限是按逆时针方向排列的.例3..设点M(a,b)为平面直角坐标系内的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意有理数,且b<0时,点M位于第几象限?解析:(1)横坐标为正,纵坐标为负的点在第四象限;(2)由ab>0知a,b同号,则点M在第一或第三象限;(3)由a为任意有理数,b<0,则点M在x轴下方.解:(1)点M在第四象限;(2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0);(3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上.方法总结:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.例4.点A(m+3,m+1)在x轴上,则A点的坐标为( )A.(0,-2) B.(2,0) C.(4,0) D.(0,-4)方法总结:坐标轴上的点的坐标特点:x轴上的点的纵坐标为0,y轴上的点的横坐标为0.根据点所在坐标轴确定字母取值,进而求出点的坐标.针对训练1.已在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是______.方法总结:求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围.2.已知点P到x轴的距离为2,到y轴的距离为1.如果过点P作两坐标轴的垂线,垂足分别在x轴的正半轴上和y轴的负半轴上,那么点P的坐标是( )A.(2,-1)B.(1,-2)C.(-2,-1)D.(1,2)方法总结:本题的易错点有三处:①混淆距离与坐标之间的区别;②不知道“点P到x轴的距离”对应的是纵坐标,“点P到y轴的距离”对应的是横坐标;③忽略坐标的符号出现错解.若本例题只已知距离而无附加条件,则点P的坐标有四个.探究点3:建立坐标系求图形中点的坐标问题1:正方形ABCD的边长为4,请建立一个平面直角坐标系,并写出正方形的四个顶点A,B,C,D在这个平面直角坐标系中的坐标.问题2:建立的平面直角坐标系不同,则各点的坐标也不同.你认为怎样建立直角坐标系才比较适当?总结归纳:建立平面直角坐标系,一般要使图形上的点的坐标容易确定,例如以正方形的两条边所在的直线为坐标轴,建立平面直角坐标系,又如以正方形的中心为原点建立平面直角坐标系.需要说明的是,虽然建立不同的平面直角坐标系,同一个点会有不同的坐标,但正方形的形状和性质不会改变.典例精析例5.长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(-2,-3).请你写出另外三个顶点的坐标.针对训练右图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋❷的坐标是________.三、课堂练习1.如图,点A的坐标为( )A.( -2,3)B.( 2,-3)C.( -2,-3)D.( 2,3)第1题图第2题图2.如图,点A的坐标为,点B的坐标为 .3.在 y轴上的点的横坐标是,在 x轴上的点的纵坐标是 .4.点 M(- 8,12)到 x轴的距离是,到 y轴的距离是 .。
7.1.2 平面直角坐标系 七年级数学下册(人教版)
D(____,____)
0
-3
例如,由点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是3,垂足N在y
轴上的坐标是4,我们说点A的横坐标是3,纵坐标是4,有序数对(3,4)就叫
做点A的坐标,记作A(3,4).
自学导航
原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?
原点O的坐标为(0,0);x轴上的点的纵
所以三角形ABC的边AB=9,边AB上的高为4,
1
所以三角形ABC的面积为 ×9×4=18.
2
迁移应用
1三角形OAB的面积为
( C )
A.1
B.2
C.3
D.4
2. 若三角形ABC的三个顶点的坐标分别为A (-3,-1),B (2,-1),C(1,3),则三角
所以点C与点B的纵坐标相同,点C与点D的横坐标
相同,所以点C( 3,-5).
迁移应用
1.已知点A (m+1,-2)和点B(3,m-1),若直线AB// x轴,则m的值为( C )
A.2
B.-4
C.-1
D.3
2.平面直角坐标系中,直线a经过点A(-2,3),B (4,3),则直线a还经过点( C )
A.(-5,4)
B.(3,-8)
C.(0,3)
D.(3,-3)
3.在平面直角坐标系中,AB//y轴,AB=5,点A的坐标为(-5,3),则点B的坐标
为( C )
A.(-5,8)
B.(0,3)
C.(-5,8)或(-5,-2)
D.(0,3)或(-10,3)
迁移应用
4.在平面直角坐标系中,已知点A(-3,2),B(1,4),经过点A 的直线l//x轴,C
7.1.2平面直角坐标系(1) (教学课件)- 人教版数学七年级下册
答案图
5.(补图题)(人教7下P68、北师8上P66)如图,正方形ABCD的边长为6.(1)如果以点A为原点,AB所在直线为x轴,建立平面直角坐标系,在图中画出y轴,并写出正方形的顶点A,B,C,D的坐标;(2)请另建立一个平面直角坐标系,这时正方形的顶点A,B,C,D的坐标又分别是什么?
四
三
二
一
(1)点A( , ),在第 象限; (2)点B( , ),在第 象限; (3)点C( , ),在第 象限; (4)点D( , ),在第 象限.
二
2
-2
三
-2
y轴
向右
x轴
知识点二:点的坐标(1)有了平面直角坐标系,平面内的点就可以用一个有序数对来表示,这个有序数对就是点的坐标.(2)我们用有序数对表示平面上的点,这对数叫做 ,表示方法为(a,b),a是点对应 上的数值,b是点对应 上的数值. (3)注意:坐标平面内的点与有序数对是一一对应的关系.
点的位置
横坐标符号
纵坐标符号
第一象限
第二象限
第三象限
第四象限
轴
轴
+
+
-
+
-
-
+
-
纵坐标为 0
横坐标为 0
归纳:轴、轴不属于任何象限
新知探究
知识点1:象限点的特征
练习巩固
1.点 <m></m> 在第____象限;2.下列各点中,在第三象限的点是( )A. <m></m> B. <m></m> C. <m></m> D. <m>3.在平面直角坐标系中,点 <m></m> 在( )A.第二象限 B. <m></m> 轴上 C.第四象限 D. <m></m> 轴上4.点 <m></m> 在直角坐标系的 <m></m> 轴上,则 <m></m> ____ ,点 <m></m> 的坐标为______;5.点 <m></m> 在直角坐标系的 <m></m> 轴上,则点 <m></m> 的坐标为________;</m>
平面直角坐标系
D.凡是两条互相垂直的直线都能组成平面直角坐标系
针对练习
1.下面四个图形中,是平面直角坐标系的是( D)
y
3y
2
1
-3 -2 -1 O 1 2 3 x
(A)
3y
2 1
-3 -2 -1-1 O1 2 3 x
-2
-3(C)
3 2 1O -1 -2 -3 x
正方形ABCD的边长为4,请建立一个平面直角 坐标系,并写出正方形的四个顶点A,B,C,D在这个 平面直角坐标系中的坐标.
D
C
A
B
y 4D
(A) O
C
B 4x
解:如图,以顶点A为原点,AB所 在直线为x轴,AD所在直线为y轴建 立平面直角坐标系. 此时,正方形四个顶点A,B,C,D的坐 标分别为: A(0,0), B(4,0), C(4,4), D(0,4).
4.如果点M(3,x)在第一象限,则x的取值范围是 ____x_>__0____.
5.若第二象限内的点P(x,y)满足|x|=3,y2=25,则
点P的坐标是_(__-_3__,__5_)__.
6.如图所示,在平面直角坐标系中,描出以下各点:A (4,3),B(-2,3),C(-3,-1),D(2,-2),E(0, -1),F(-1,0),G(0,0).并指出各点所在的象限 或坐标轴.
注意:坐标轴上的点不属于任何一个象限.
活动1: 观察坐标系,填写各象限内的点的坐标的特征:
y
点的位置
横坐标的 符号
纵坐标的 符号
5
4
B3
A
第一象限 +
+
2 1
7.1.2 平面直角坐标系
x
后由P点向y轴画垂线,垂足N在y轴
上的坐标是3. 称为P点的纵坐标.
这样P点的横坐标是-2,纵坐标是3,规定把横坐标
写在前,纵坐标在后,记作:P(-2,3) P(-2,3)就叫做点P在平面直角坐标系中的坐标,简 称点P的坐标.
试一试
1. 找出点A的坐标. y 4 3 2 1
A ( 4, 3)
x -5 -4 -3 -2 -1 o 1 2 3 4 5 -1 -2 (1)过点A作x轴的垂线,垂足在 x轴上对应的数是4; -3 (2)过点A作y轴的垂线,垂足在 y轴上对应的数是3; 点A的坐标为(4,3) -4
7.1 平面直角坐标系
7.1.2 平面直角坐标系
学习目标
1.理解平面直角坐标系以及横轴、纵轴、原点、坐 标等概念; 2. 认识并能画出平面直角坐标系,给出指定的坐标 系,根据坐标描述点的位置及由点的位置确定坐标 (重点)(难点)
特工游戏
文字密码游戏:如图“家”字的位置记作(1,9), 请你破解密码:(3,3),(5,5),(2,7),(2,2),(1,8) (8,7),(8,8).
1 -3 -1 O -1
-2 -3 5
x
x轴与y轴的交点叫平 面直角坐标系的原点.
水平的叫x轴或横轴; x轴取向右为正方向
-4
y
P 4 N 3 2 1
思考:如图点P如何表示呢?
先由P点向x轴画垂线,垂足M在x轴
上的坐标是-2;称为P点的横坐标.
-4 -3M -2 -1 0 1 2 3 -1 -2 -3 -4
9家 个 和 怎 他 是 的 去 常
8聪 到 饿 日 一 有 啊 ! 哦
7的 我 是 发 搞 可 了 明 在 6确 小 大 北 京 你 才 批 不
7.1.2平面直角坐标系
原点
-4 -3 -2 -1 O 1 2 3 4 5 -1 -2 -3 (0, -3) (-3, -4) 4
例1.写出图中点A、B、C、D、E、F、G、H 的坐标.
坐标平面被两条坐标 轴分成Ⅰ、Ⅱ、Ⅲ、 Ⅳ四个部分,分别叫 做第一象限、第二象 限、第三象限、第四 象限.坐标轴上的点 不属于任何象限.
【问题5】如图,如何确定平面内点A、B、C、 y D的坐标? y轴
原点 5 4 3 2 1 (3, 4) x轴 1 2 3 4 5 x
-4 -3 -2 -1 O -1 -2 -3 -4
【问题6】你能说出B、C、D及原点O的坐标吗?
y轴 y 5 (3, 4) 4 3 (0, 2) x轴 2 1(0, 0) x
【问题7】四个象限内点的坐标的符号有什么规 律?
(-, +) (+, +)
(-, -)
(+, -)
例2.在平面直角坐标系中描出下列各点: M(1,0)、N(-3,0)、P(0,3)、Q(0, -4)、R(0,0).
【问题8】坐标轴上点的坐标有什么规律?
(1)x轴上点的纵坐标为0, x轴正半轴上点的横坐标为“+”, x轴负半轴上点的横坐标为“-”. (2)y轴上点的横坐标为0, y轴正半轴上点的纵坐标为“+”, y轴负半轴上点的纵坐标为“-”. (3)坐标轴上的点不属于 任何象限. (4)原点既在x轴上,又在 y轴上,是x轴和y轴的交点.
练习3.填空:
(1)点A在y轴上,距离原点2个单位长度,点A的 坐标是(0,2)或(0,-2); (2)点B在x轴上,距离原点6个单位长度,点B的 坐标是(6,0)或(-6,0); (3)点C在y轴上,位于原点下方,距离原点1个单 位长度,点C的坐标是 (0,-1) ; (4)点D在x轴上方,y轴右侧,距离每条坐标轴都 是3个单位长度,点D的坐标是 (3,3) ; (5)到x轴距离为5,到y轴距离为4的点的坐标 为(4,5)或(4,-5)或(-4,5)或(-4,-5) .
人教版七年级数学下册 7-1-2平面直角坐标系(同步练习)
第7章平面直角坐标系7.1平面直角坐标系-7.1.2平面直角坐标系班级:姓名:知识点1平面直角坐标系1.在直角坐标系中描出下列各点:A(-2,0),B(2,5),C(-52,-3).2.如图,写出平面直角坐标系中点A,B,C,D,E,F 的坐标.3.如图,在平面直角坐标系中:(1)描出下列各点:A(4,5),B(-2,3),C(-4,-1),D(5,-2);(2)写出平面直角坐标系中E,F,G,H,M,N点的坐标.知识点2平面直角坐标系中各象限内点的坐标特征4.在平面直角坐标系中,点M(-2,3)在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,下面的点在第一象限的是()A.(1,2)B.(-2,3)C.(0,0)D.(-3,-2)6.如图,小手盖住的点的坐标可能为()A.(5,2)B.(-6,3)C.(-4,-6)D.(3,-4)7.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)8.如果x y<0,那么Q(x,y)在()A.第四象限B.第二象限C.第一或三象限D.第二或四象限9.若点P(m,n)在第三象限,则点Q(-m,-n)在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,正方形ABCD 中点A和点C 的坐标分别为(-2,3)和(3,-2),则点B 和点D 的坐标分别为()A.(2,2)和(3,-3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3)D.(2,2)和(-3,-3)11.点P(-3,4)在第象限,到x 轴的距离是,到y 轴的距离是.知识点3坐标轴上点的坐标特征12.点B(-3,0)在()A.x 轴的正半轴上B.x 轴的负半轴上C.y 轴的正半轴上D.y轴的负半轴上13.若点P(x,y)的坐标满足xy=0,则点P的位置是()A.在x轴上B.在y轴上C.是坐标原点D.在x轴上或在y轴上14.若点P(a-2,2a+3)在y轴上,则a=,此时点P的坐标是;如果点P在x轴上,那么a=.综合点1非负数与点的坐标15.已知(a-2)2+|b+3|=0,则P(-a,-b)的坐标为()A.(2,3)B.(2,-3)C.(-2,3)D.(-2,-3)综合点2分类讨论16.到x轴距离为2,到y轴距离为3的点有几个?拓展点1坐标与面积计算17.在直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(0,0),B(2,5),C(9,8),D(12,0),要确定这个四边形的面积,你是怎样做的?‘拓展点2规律性问题18.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A.(4,0)B.(5,0)C.(0,5)D.(5,5)19.如图,在平面直角坐标系中,从点P1(-1,0),P2(-1,-1),P3(1,-1),P4(1,1),P5(-2,1),P6(-2,-2),…依次扩展下去,则P2017的坐标为()A.(504,-504)B.(-504,504)C.(-504,503)D.(-505,504)第7章平面直角坐标系7.1平面直角坐标系-7.1.2平面直角坐标系答案与点拨1.如图所示.2.A(5,2),B(0,4),C(-3,3),D(-5,0),E(-3,-4),F(4,-3).3.(1)如图所示,先在x 轴上找出表示4的点,再在y 轴上找出表示5的点,过这两个点分别作x 轴和y 轴的垂线,两垂线的交点就是点A.用同样的方法可描出其他各点.(2)过象限内的点M 分别向x 轴,y 轴作垂线,垂足在x 轴的坐标是4,在y 轴的坐标是1,故M 点的坐标为(4,1),同样,可得E(2,0),F(0,-4),G(-2,2),H(1,-2),N(-3,-2).4.B(点拨:∵-2<0,3>0,∴(-2,3)在第二象限,故选B.)5.A(点拨:因为第一象限点的特征是:横坐标是正数,纵坐标也是正数,而各选项中符合横坐标为正,纵坐标也为正的只有A 中(1,2).故选A.)6.D(点拨:小手盖住的点在第四象限.)7.C(点拨:先依据题意可以判断该点在第二象限.)8.D(点拨:由xy<0可得,x,y 异号,故选D.)9.A(点拨:点P 在第三象限,故m,n 均小于0,而-m,-n 则都大于0,故选A.)10.B(点拨:B 点与A 点的横坐标相同,B 点与C 点的纵坐标相同,故B 点坐标为(-2,-2),同理可得D 点坐标为(3,3).)11.二43(点拨:点P(-3,4)在第二象限内,点P 到x 轴的距离是|4|=4,到y 轴的距离是|-3|=3.)12.B(点拨:x 轴上的所有点的纵坐标为0.)13.D(点拨:由xy=0可以得到,x=0或y=0,即该点横坐标或纵坐标为0,故选D.)14.2(0,7)-32(点拨:由点P(a-2,2a+3)在y 轴上得a-2=0,解得a=2,∴2a+3=7,此时点P 的坐标是(0,7);由点P(a-2,2a+3)在x 轴上得2a+3=0,解得a=-32.)15.C(点拨:由非负数的性质,可知a-2=0,b+3=0,故a=2,b=-3,则-a=-2,-b=3.)16.4个,它们分别是(3,2),(3,-2),(-3,2),(-3,-2).(点拨:在各象限内均有可能.)17.S四边形ABCD =12×8-2×3-12×2×5-12×3×7-12×3×8=62.5.四边形的面积等于长方形的面积减去一个小长方形和三个三角形的面积.18.B(点拨:跳蚤运动的速度是每秒运动一个单位长度,(0,0)→(0,1)→(1,1)→(1,0)用的秒数分别是1秒、2秒、3秒,到(2,0)用4秒,到(2,2)用6秒,到(0,2)用8秒,到(0,3)用9秒,到(3,3)用12秒,到(4,0)用16秒,依次类推,到(5,0)用35秒.故第35秒时跳蚤所在位置的坐标是(5,0).故选B.)19.D(点拨:由规律可得,2017÷4=504…1,∴点P2017在第二象限,∵点P5(-2,1),点P9(-3,2),点P13(-4,3),∴点P2017(-505,504).)。
7_1_2平面直角坐标系(分层作业)解析版【人教版七下数学精品备课】
7.1.2 平面直角坐标系参考答案与试题解析夯基训练知识点1 平面直角坐标系1.如图所示,点A、点B所在的位置是( )A.第二象限,y轴上B.第四象限,y轴上C.第二象限,x轴上D.第四象限,x轴上1.解析:根据坐标平面的四个象限来判定.点A在第四象限,点B在x轴正半轴上.故选D.方法总结:两坐标轴上的点不属于任何一个象限,象限是按逆时针方向排列的.知识点2 各象限内、坐标轴上点的坐标特征2.平面直角坐标系中有点M(a,b).(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意有理数,且b<0时,点M位于第几象限?2.解析:(1)横坐标为正,纵坐标为负的点在第四象限;(2)由ab>0知a,b同号,则点M 在第一或第三象限;(3)由a为任意有理数,b<0,则点M在x轴下方.解:(1)点M在第四象限;(2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0);(3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上.方法总结:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.3.如图,在平面直角坐标系中,每个最小方格的边长均为1个单位长,P1,P2,P3,…均在格点上,其顺序按图中“→”方向排列.如:P1(0,0),P2(0,1),P3(1,1),P4(1,-1),P5(-1,-1),P6(-1,2)……根据这个规律,点P2 016的坐标为.3.【答案】(504,-504)解:根据各个点的位置关系,可得:下标为4的倍数的点在第四象限的角平分线上;下标为被4除余1的数的点在第三象限的角平分线上;下标为被4除余3的数的点在第一象限的角平分线上.点P2 016在第四象限的角平分线上,且横、纵坐标的绝对值为2 016÷4=504,再根据第四象限内点的坐标符号可得出答案为(504,-504).知识点3 特殊点的坐标的特征4.已知M(1,-2),N(-3,-2),则直线MN与x轴,y轴的位置关系分别为( )A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直4.【答案】D解:由点M(1,-2)和点N(-3,-2)的纵坐标相等可知,直线MN平行于x轴,与y轴垂直.或者在平面直角坐标系中描出点M和点N,结合图判断出直线MN平行于x轴,与y轴垂直.题型总结题型1 利用平面直角坐标系象限的符号特征判断点的位置5.点M(a,b)为平面直角坐标系中的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意非零实数,且b<0时,点M位于第几象限?5.解:(1)第四象限.(2)因为ab>0,所以a>0且b>0或a<0且b<0.所以点M位于第一象限或第三象限.(3)第三象限或第四象限.题型2 利用平面直角坐标系内图形位置写点的坐标6已知点A(0,3),B(-1,1),C(-3,2),D(-2,0),E(-3,-2),F(-1,-1),G(0,-3),H(1,-1),I(3,-2),J(2,0),K(3,2),L(1,1).(1)请在图①的平面直角坐标系中,分别描出上述各点,并顺次连接A,B,C,D,E,F,G,H,I,J,K,L,A;(2)试求(1)中连线围成的图形的面积.6.解析:(1)依据点的横、纵坐标的定义,分别描出各点并依次连接;(2)连线围成的图形被坐标轴平均分成四部分,故只要求出一个象限中图形的面积,就可求得答案.解:(1)如图②所示;(2)因为连线围成的图形在第一象限中的面积为4,并且图形被坐标轴平均分成四部分,所以图形的总面积为4×4=16.方法总结:所求图形在四个象限的面积相等,所以只需求其中一部分面积即可.7.如图,给出格点三角形ABC.(1)写出三角形ABC各顶点的坐标;(2)求出此三角形的面积.7.解:(1)A(2,2),B(-2,-1),C(3,-2).(2)S 三角形ABC =4×5-12×3×4-12×1×4-12×1×5=9.5.题型3 由点到坐标轴的距离确定点的坐标8.已知点P 到x 轴的距离为2,到y 轴的距离为1.如果过点P 作两坐标轴的垂线,垂足分别在x 轴的正半轴上和y 轴的负半轴上,那么点P 的坐标是( )A .(2,-1)B .(1,-2)C .(-2,-1)D .(1,2)8.解析:由点P 到x 轴的距离为2,可知点P 的纵坐标的绝对值为2.又因为垂足在y 轴的负半轴上,则纵坐标为-2.由点P 到y 轴的距离为1,可知点P 的横坐标的绝对值为1.又因为垂足在x 轴的正半轴上,则横坐标为1.故点P 的坐标是(1,-2).故选B.易错点拨:本题的易错点有三处:①混淆距离与坐标之间的区别;②不知道与“点P 到x 轴的距离”对应的是纵坐标的绝对值,与“点P 到y 轴的距离”对应的是横坐标的绝对值;③忽略坐标的符号出现错解.若本例题只已知距离而无附加条件,则点P 的坐标有四个.拓展培优拓展角度1 利用点的坐标的特征探究横或纵坐标相等的图形的性质9.如图所示.(1)请写出A,B,C,D,E 五点的坐标.(2)通过观察B,C 两点的坐标,你发现了什么?线段BC 的位置有什么特点?由此你又得出什么结论?通过进一步观察D,E 两点的坐标你发现了什么?线段DE 的位置有什么特点?由此你又能得出什么结论?9.解:(1)A(2,4),B(-1,2),C(-1,-1),D(1,-4),E(4,-4).(2)通过观察B,C 两点的坐标,发现B,C 两点的横坐标相同,纵坐标不同.线段BC 与y 轴平行,与x 轴垂直.由此可得出若一条直线上的所有点的横坐标均相同,纵坐标不同,则此直线与y 轴平行(或就是y 轴),也可以说是与x 轴垂直.通过观察D,E 两点的坐标,发现D,E 两点的纵坐标相同,横坐标不同.线段DE 与x 轴平行,与y 轴垂直.由此可得出若一条直线上的所有点的纵坐标均相同,横坐标不同,则此直线与x 轴平行(或就是x 轴),也可以说是与y 轴垂直. 拓展角度2 利用点的坐标画图求解相关问题10.在如图所示的平面直角坐标系中描出下面各点:A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,7),G(5,0).(1)将点C 向x 轴的负方向平移6个单位,它与点 重合.(2)连接CE,则直线CE 与y 轴是什么关系?(3)顺次连接D,E,G,C,D 得到四边形DEGC,求四边形DEGC 的面积.10.解:描点如图.(1)D(2)如图,直线CE 与y 轴平行.(3)S 四边形DEGC =S △CDE +S △CEG =12×6×10+12×10×2=30+10=40.拓展角度3 在坐标系中求图形的面积11.如图所示的直角坐标系中,四边形ABCD 各顶点的坐标分别是A (0,0),B (9,0),C (7,5),D (2,7).试确定这个四边形的面积.11.解析:由于四边形不是规则的四边形,所以可以考虑把它分成三角形或规则的四边形来解决.解:分别过点D 、C 向x 轴作垂线,垂足分别为点E 、F ,则四边形ABCD 被分割为△AED 、△BCF 及梯形CDEF .由各点的坐标可得AE =2,DE =7,EF =5,FB =2,CF =5.∴S 四边形ABCD =S△AED +S 梯形CDEF +S △BCF =12×2×7+12×(7+5)×5+12×5×2=7+30+5=42. 方法总结:在直角坐标系中求不规则多边形的面积,一般采用割补法,将其割补为规则图形,从而求出面积.。
《7.1.2平面直角坐标系》说课稿
人教版七年级数学下册第7章《7.1.2平面直角坐标系》说课稿各位评委老师:大家好!今天我说课的内容是人教版数学七年级下册第七章第一节《平面直角坐标系》第二课时.下面我就从以下六个方面对本节课进行阐述.一、教材分析(一)教材的内容、地位与作用本节课是《平面直角坐标系》的第二课,主要内容是:让学生认识平面直角坐标系,了解点与坐标的对应关系,掌握坐标轴及各象限点的坐标的符号特征.平面直角坐标系是在学生学习了数轴和有序数对后的一次概念性教学,它的建立架起了数与形之间的桥梁,是数形结合的具体体现.它不仅强化了平面直角坐标系的意义,还将其应用于现实生活中,并为今后函数和解析几何的学习打下基础,它在整个初中数学教材体系中有着举足轻重的作用.(二)教学目标《数学课程标准》中明确指出,要从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生在获得对数学知识的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。
遵循这一理念,结合学生实际,确立本节课的目标为:1.知识与能力目标:理解平面直角坐标系的有关概念,能正确的画出平面直角坐标系,并会由点确定坐标、由坐标描点,准确知道各象限的点的符号特征,初步感受数形结合的思想.2.过程与方法目标:通过实例、活动与实践,让学生经历从实际生活中的具体问题抽象出数学模型-----平面直角坐标系的过程;体验数学来源于生活,并服务于生活.3.情感态度价值观目标:养学生合作意识,感受学习的快乐,让不同层次的学生得到不同的收获,感受成功,建立自信.二、学情分析(一)1.学生年龄特征与认知规律七年级的学生活泼好动,好奇心强,他们正处于独立思维发展的重要阶段,对数学的求知欲较强,具有初步的自主、合作探究的学习能力,对数轴有一定的认识,因此,对于平面直角坐标系的构成和建立较为容易理解.2.学生已有知识经验学习本节内容之前,学生已经具有使用数轴的经验,了解了直线上的点与有理数之间的对应关系.3.学生的认知困惑与教学预设平面内点的坐标概念以及由坐标描点和由点写出坐标.由于“对应”的概念比较抽象,所以认识点与坐标的对应是本节课教学的难点,在教学设计中利用具体的例子对该问题进行说明,加深学生的理解.(二)教学重难点教学重点:理解平面直角坐标系的有关概念,由点的位置写出坐标,由坐标描出点的位置,并掌握坐标轴及象限内点的坐标符号特征.教学难点:理解建立平面直角坐标系的必要性,体会平面直角坐标系中点与坐标的一一对应关系.三、教学方法《数学课程标准》指出:“学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者,学生的数学学习内容应当是现实的,有趣的和富有挑战性的”。
人教版七年级数学下册教案 7-1-2 平面直角坐标系
7.1.2 平面直角坐标系一、教学目标【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念,认识并能画出平面直角坐标系.2.理解各象限内及坐标轴上点的坐标特征.3.用象限或坐标轴说明直角坐标系内点的位置,能根据横、纵坐标的符号确定点的位置.【过程与方法】1.经历建立直角坐标系的过程,进而理解平面直角坐标系的意义.2.通过分析具体特例得到特殊位置点的坐标特征以及有特殊位置关系的点的坐标的特征.3.通过小组学习等活动经历建立坐标系的过程,进一步提高学生应用已有知识与技能的基础上形成新的知识,获得新的技能,以提高解决数学问题的能力.【情感态度与价值观】1.让学生体会到x轴、y轴的关系,进而明白事物之间是相互联系的这一辩证思想,培养耐心细致的良好学习作风.2通过师生的共同活动,促使学生在学习活动中培养良好的情感、合作交流、主动参与的意识,在独立思考的同时能够认同他人.二、课型新授课三、课时1课时四、教学重难点【教学重点】平面直角坐标系的意义,由坐标找点,由点找坐标.【教学难点】平面直角坐标系内的点与有序数对一一对应的关系.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、铅笔、练习本.六、教学过程(一)导入新课(出示课件2)神舟九号、七号、六号和五号等卫星发射成功,圆了几代中国人的梦想,让全中国人为之骄傲和自豪!但是你们知道我们的科学家是怎样迅速地找到返回舱着陆的位置的吗?这就要依赖于GPS——卫星全球定位系统”.大家一定觉得很神奇吧!学习了今天的内容,你就会明白其中的奥妙.(二)探索新知1.出示课件4-9,探究平面直角坐标系的有关概念教师问:如何确定直线上点的位置?学生答:在直线上规定了原点、正方向、单位长度就构成了数轴.数轴上的点可以用一个数来表示,这个数叫做这个点在数轴上的坐标.例如点A在数轴上的坐标为-3,点B在数轴上的坐标为2.教师问:知道数轴上一点的坐标,能确定这个点的位置吗?学生答:知道数轴上一个点的坐标,这个点在数轴上的位置也就确定了.例如在数轴上,坐标为2的点是B.教师问:如何确定平面上点的位置?如下图:小强、小红、小明家的位置?师生一起解答:利用两个数轴,使这两条数轴互相垂直,可以确定位置,如下图所示:教师问:周末小明和小丽约好一起去图书馆学习.小明告诉小丽,图书馆在中山北路西边50米,人民西路北边30米的位置.小丽能根据小明的提示从左图中找出图书馆的位置吗?学生答:小丽能根据小明的提示从左图中找出图书馆的位置.教师问:小明是怎样描述图书馆的位置的?学生答:利用方向和距离具体确定图书馆的位置.教师问:小明可以省去“西边”和“北边”这几个字吗?学生答:不能,省去“西边”和“北边”这几个字就不能准确找到图书馆了.教师问:如果小明说图书馆在“中山北路西边、人民西路北边”,你能找到吗?学生答:不能找到.教师问:如果小明只说在“中山北路西边50米”,或只说在“人民西路北边30米”,你能找到吗?学生答:不能.学生问:若将中山路与人民路看成两条互相垂直的数轴,十字路口为它们的公共原点,能得到什么呢?教师答:若将中山路与人民路看成两条互相垂直的数轴,十字路口为它们的公共原点,这样就形成了一个平面直角坐标系.总结点拨:(出示课件10)教师问:在平面直角坐标系中,能用有序数对来表示图中点A的位置吗?学生答:由点A分别向 x轴,y轴作垂线,垂足M在 x轴上的坐标是3,垂足N在 y 轴上的坐标是4,有序数对(3,4)就叫做点A的坐标,其中3是横坐标,4是纵坐标.学生问:写有序数对要注意什么呢?在平面内画两条互相垂直的数轴,构成平面直角坐标系.竖直的叫y轴或纵轴;y轴取向上为正方向教师答:注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔开.教师问:如图所示,在平面直角坐标系中,点B,C,D的坐标分别是什么?教师依次展示学生答案:学生1答:B(-2,3).学生2答:C(4,-3).学生3答:D(-1,-4).教师总结如下:B(-2,3),C(4,-3),D(-1,-4).教师问:如图,在平面直角坐标系中,你能分别写出点A,B,C,D的坐标吗?教师依次展示学生答案:学生1答:A(4,0).学生2答:B(-2,0).学生3答:C(0,5).学生4答:D(0,-3).教师总结如下:A(4,0),B(-2,0),C(0,5),D(0,-3).教师问:观察上面点的坐标,你发现x轴和y轴上的点的坐标有什么特点?一般如何记录呢?教师依次展示学生答案:学生1答:x轴上的点的纵坐标为0,一般记为(x,0).学生2答:y轴上的点的横坐标为0,一般记为(0,y).教师总结如下:① x轴上的点的纵坐标为0,一般记为(x,0);② y轴上的点的横坐标为0,一般记为(0,y);教师问:观察上面点的平面直角坐标系,你发现原点的坐标有什么特点?一般如何记录呢?学生答:原点O的坐标是(0,0).一般记为(0,0).考点1:确定平面直角坐标系内点的坐标写出下图中的多边形ABCDEF各个顶点的坐标.(出示课件15)师生共同讨论后学生解答:教师依次展示学生答案:学生1答:A(-2,0).学生2答:B(0,-3).学生3答:C(3,-3).学生4答:D(4,0).学生5答:E(3,3).学生6答:F(0,3).教师总结如下:解:A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3)出示课件16,学生自主练习后口答,教师订正.3.出示课件17-20,探究平面直角坐标系内点的坐标性质教师问:平面直角坐标系把平面分为了四部分,我们该如何正确识记每一部分呢?学生思考后,师生一同作答:在平面直角坐标系中,两条坐标轴(即横轴和纵轴)把平面分成如图所示的Ⅰ,Ⅱ,Ⅲ,Ⅳ四个区域.分别称为第一,二,三,四象限.如下图所示.(出示课件17)学生问:那么x轴和y轴上的点属于哪个象限呢?教师答:坐标轴上的点不属于任何一个象限.教师问:观察坐标系,填写各象限内的点的坐标的特征:教师依次展示学生答案:学生1答:如下图所示:学生2答:如下图所示:学生3答:如下图所示:学生4答:如下图所示:教师总结如下:如下图所示:教师问:不看平面直角坐标系,你能迅速说出A(4,5),B(-2,3),C(-4,-1)D(2.5,-2),E(0,-4)所在的象限吗?教师依次展示学生答案:学生1答:A(4,5)所在的象限是第一象限.学生2答:B(-2,3)所在的象限是第二象限.学生3答:C(-4,-1)所在的象限是第三象限.学生4答:D(2.5,-2)所在的象限是第四象限.学生5答:E(0,-4)在y轴上.教师总结如下:A(4,5)所在的象限是第一象限;B(-2,3)所在的象限是第二象限;C(-4,-1)所在的象限是第三象限; D(2.5,-2)所在的象限是第四象限;E(0,-4)在y轴上.教师问:你的方法又是什么?学生答:根据点的坐标的符号确定点所在的象限.教师问:观察坐标系,填写坐标轴上的点的坐标的特征:学生答:如下表所示:教师问:不看平面直角坐标系,你能迅速说出A(4,0),B(0,3), C(-4,0),E(0,-4),O(0,0)所在的位置吗?教师依次展示学生答案:学生1答:A(4,0)在x轴的正半轴.学生2答:B(0,3)在y轴的正半轴.学生3答:C(-4,0)在x轴的负半轴.学生4答:E(0,-4)在y轴的负半轴.学生5答:O(0,0)在原点.教师总结如下:A(4,0)在x轴的正半轴; B(0,3)在y轴的正半轴;C(-4,0)在x轴的负半轴;E(0,-4)在y轴的负半轴;O(0,0)在原点.教师问:你的确定点的方法又是什么?学生答:根据点的坐标值和符号,在x轴上y的值为0,在y轴上x的值为0,在原点x、y的值都为0.教师问:想一想:坐标平面内的点与有序数对(坐标)是什么关系?教师依次展示学生答案:学生1答:对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应.学生2答:对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.教师总结如下:类似数轴上的点与实数是一一对应的.我们可以得出:①对于坐标平面内任意一点M,都有唯一的一对有序实数(x,y) (即点M的坐标)和它对应;②反过来,对于任意一对有序实数(x,y),在坐标平面内都有唯一的一点M(即坐标为(x,y)的点)和它对应.也就是说,坐标平面内的点与有序实数对是一一对应的.考点2:在平面直角坐标系内确定已知点在平面直角坐标系中,描出下列各点,并指出它们分别在哪个象限. A(5,4),B(-3,4),C (-4 ,-1),D(2,-4).(出示课件21)学生独立思考后,师生共同解答.解:如图,先在x 轴上找到表示5的点,再在y 轴上找出表示4 的点,过这两个点分别作x 轴,y 轴的垂线,垂线的交点就是点A. 类似地,其他各点的位置如图所示.点A 在第一象限,点B 在第二象限,点C在第三象限,点D在第四象限.总结点拨:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点;(-,+)表示第二象限内的点;(-,-)表示第三象限内的点;(+,-)表示第四象限内的点.出示课件22,学生自主练习后口答,教师订正.考点3:利用平面直角坐标系内点的坐标确定字母的值已知在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.(出示课件23)师生共同分析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐标为正,可得关于m的一元一次不等式组{m>0,m−2>0.解得m>2.答案:m>2.师生共同归纳:求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围.出示课件24,学生自主练习,教师给出答案。
七年级数学下 平面直角坐标系
第七章平面直角坐标系7.1 平面直角坐标系1.有序数对(1)定义:有顺序的两个数a与b组成的数对叫做__________.记作:(a,b).注意:(1)两数中间有“,”两边有括号;(2)数对(a,b)与(b,a)不同.(2)有序数对的作用:利用有序数对可以在平面内准确表示一个位置.2.平面直角坐标系(1)定义:满足一下条件的两条数轴叫做平面直角坐标系:①原点重合;②互相垂直;③习惯上取向__________、向__________为正方向,单位长度一般取相同.(2)由点找坐标的方法过点作x轴的垂线,垂足在x轴上对应的数a就是点的横坐标;过点作y轴的垂线,垂足在y轴上对应的数b就是点的纵坐标.有序数对(a,b)就是点的坐标.(3)由坐标找点的方法先找到表示横坐标与纵坐标的点,然后过这两点分别作x轴与y轴的垂线,垂线的交点就是该坐标对应的点.3.点的坐标特征4.特殊位置点的坐标(1)平行于坐标轴的点的坐标平行于横轴的直线上的点的纵坐标相同;平行于纵轴的直线上的点的横坐标相同.(2)象限角平分线上的点的坐标K知识参考答案:1.(1)有序数对(2)右,上K—重点理解有序数对的意义和作用,平面直角坐标系和点的坐标K—难点用有序数对表示点的位置,根据点的位置写出点的坐标,根据点的坐标描出点的位置K—易错确定点的坐标时误判横、纵坐标,确定所在象限时漏解一、有序数对1.理解有序数对的概念有两个要点:一是“有序”,二是“数对”,“数对”是指有两个数.2.有序数对一般用来表示位置,如用“排”“列”表示教师内座位的位置,用经纬度表示地球上的地点等.【例1】王东坐在教室的第3列第2行,用(3,2)表示,李军坐在王东正后方的第一个位置上,李军的位置是A.(4,3)B.(3,4)C.(1,3)D.(3,3)【答案】D【解析】王东坐在教室的第3列第2行,用(3,2)表示,王军坐在王东正后方的第一个位置上,则说明王军与王东在同一列,王军是在第2+1=3(行),所以王军的位置是(3,3),故选D.【例2】下列有污迹的电影票中能让小华准确找到座位的是A.B.C.D.【答案】D【解析】根据确定物体位置要2个数据可得:能让小华准确找到座位的是必须是排数,座位均清新的.分析可知只有D符合两项条件,故选D.【例3】课间操时,小聪、小慧、小敏的位置如图所示,小聪对小慧说,如果我的位置用(1,1)表示,小敏的位置用(7,7)表示,那么你的位置可以表示成A.(5,4)B.(4,4)C.(3,4)D.(4,3)【答案】B【解析】如图,小慧的位置可表示为(4,4).故选B.【例4】下列关于有序数对的说法正确的是A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,–2)与(–2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置【答案】C【解析】(3,2)与(2,3)表示的位置不相同,A选项错误;当a=b时,(a,b)与(b,a)表示的位置相同,B选项错误;(3,–2)与(–2,3)是表示不同位置的两个有序数对,C选项正确;(4,4)与(4,4)表示两个相同的位置,D选项错误.故选C.【例5】下列关于有序数对的说法正确的是A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2)与(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置【例6】如果将一张“13排10号”的电影票记为(13,10),那么“3排8号”的电影票应记为__________,(10,13)表示的电影票是__________.【答案】(3,8);10排13号【解析】∵“13排10号”的电影票记为(13,10),∴“3排8号”的电影票应记为(3,8),(10,13)的电影票表示为10排13号,故答案为:(3,8);10排13号.二、平面直角坐标系1.在建立平面直角坐标系时要适当,一般建立时能使表示的点的坐标越简单、越容易表示就越适当.2.在建立平面直角坐标系时要首先规定谁是x轴、谁是y轴,谁是原点、正方向,并规定了适当的单位长度,然后再用坐标确定点的位置.3.在写点的坐标时,必须先写横坐标,再写纵坐标,中间用逗号隔开.平面上的任意一点都有唯一的一对有序数对(即这个点的坐标)与之对应,反过来,对于任意一对有序数对,平面上都有唯一的一个点与之对应.【例7】在平面直角坐标系中,点A(2,-3)在A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】因为点A(2,-3)的横坐标是正数,纵坐标是负数,所以点A在平面直角坐标系的第四象限故选D.【例8】在平面直角坐标系中,点P在x轴的下方,y轴右侧,且到x轴的距离为5,到y轴距离为1,则点P的坐标为A.(1,–5) B.(5,1)C.(–1,5) D.(5,–1)【答案】A【解析】∵点P在x轴下方,y轴的右侧,∴点P在第四象限.∵点P到x轴的距离为5,到y轴的距离为1,∴点P的横坐标为1,纵坐标为–5,∴点P的坐标为(1,–5).故选A.【例9】如图,小手盖住的点的坐标可能为A.(5,2) B.(–6,3)C.(–4,–6) D.(3,–4)【答案】C【解析】根据图示,小手盖住的点在第三象限,第三象限的点坐标特点是:横负纵负;分析选项可得只有C符合.故选C.【例10】已知点P(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是A.(3,3)B.(6,-6)C.(3,-3)D.(3,3)或(6,-6)【答案】D【解析】因为点P(2-a,3a+6)到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以2-a=3a+6或2-a=-(3a+6),解得a=-1或a=-4.当a=-1时,2-a=2-(-1)=2+1=3;当a=-4时,2-a=2-(-4)=2+4=6,所以点P的坐标为(3,3)或(6,-6),故选D.【例11】象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“马”和“车”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为A.(3,2)B.(1,3)C.(0,3)D.(-3,3)【答案】B【解析】表示棋子“马”的点的坐标分别为(4,3),向左平移3个单位长度,得表示棋子“炮”的点的坐标为(1,3),故选B.【例12】在如图所示的直角坐标系中描出下列各点:A(-2,0),B(2,5),C(-52,-3).【解析】如图所示:【名师点睛】本题考查了点的坐标,熟练掌握平面直角坐标系中点的表示方法是解题的关键.【例13】如图,建立适当的直角坐标系,并写出这个四角星的八个顶点的坐标.【解析】建立如图所示的平面直角坐标系:八个顶点的坐标分别是:(6,0),(2,2),(0,6),(-2,2),(-6,0)(-2,-2),(0,-6),(2,-2).1.确定平面直角坐标系内点的位置是A.一个实数B.一个整数C.一对实数D.有序实数对2.下列描述,能够确定一个点的位置的是A.国家大剧院第三排B.北偏东30C.东经115,北纬35.5D.北京市西南3.在坐标平面内,下列各点中到x轴的距离最近的点是A.(2,5) B.(–4,1)C.(3,–4) D.(6,2)4.下列有污迹的电影票中能让小华准确找到座位的是A.B.C.D.5.若点P(m,1–2m)的横坐标与纵坐标互为相反数,则点P一定在A.第一象限B.第二象限C.第三象限D.第四象限6.若点A(–2,n)在x轴上,则点B(n–2,n+1)在A.第一象限B.第二象限C.第三象限D.第四象限7.已知M(1,–2),N(–3,–2),则直线MN与x轴,y轴的位置关系分别为A.相交,相交B.平行,平行C.垂直,平行D.平行,垂直8.电影院里的座位按“×排×号”编排,小明的座位简记为(12,6),小菲的位置简记为(12,12),则小明与小菲坐的位置为A.同一排B.前后同一条直线上C.中间隔六个人D.前后隔六排9.在平面直角坐标系xOy中,若A点坐标为(–3,3),B点坐标为(2,0),则三角形ABO的面积为A.15 B.7.5C.6 D.310.在平面直角坐标系中,点(-4,4)在第__________象限.11.若点A的坐标是(-3,5),则它到x轴的距离是__________,到y轴的距离是__________.12.已知点A(-3,2),点B(1,4).(1)若CA平行于x轴,BC平行于y轴,则点C的坐标是__________;(2)若CA平行于y轴,BC平行于x轴,则点C的坐标是__________.13.如下图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格14.如图中标明了小英家附近的一些地方,以小英家为坐标原点建立如图所示的坐标系.(1)写出汽车站和消防站的坐标;(2)某星期日早晨,小英同学从家里出发,沿(3,2)→(3,-1)→(0,-1)→(-1,-2)→(-3,-1)的路线转了一下,又回到家里,写出路上她经过的地方.15.如图,正方形ABCD的点A和点C的坐标分别为(-2,3)和(3,-2),则点B和点D的坐标分别为A.(2,2)和(3,3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3)D.(2,2)和(-3,-3)16.若点M(x,y)满足(x+y)2=x2+y2-2,则点M所在象限是A.第一象限或第三象限B.第二象限或第四象限C.第一象限或第二象限D.不能确定17.已知点A(2a-6,-4)在二、四象限的角平分线上,则a=__________.18.(2018•大连)在平面直角坐标系中,点(–3,2)所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限19.(2018•扬州)在平面直角坐标系的第二象限内有一点M,点M到x轴的距离为3,到y轴的距离为4,则点M的坐标是A.(3,–4)B.(4,–3)C.(–4,3)D.(–3,4)20.(2018•临安区)P(3,–4)到x轴的距离是__________.21.(2018•柳州)如图,在平面直角坐标系中,点A的坐标是__________.22.(2018•鄂尔多斯)在平面直角坐标系中,对于点P(a,b),我们把Q(–b+1,a+1)叫做点P的伴随点,已知A1的伴随点为A2,A2的伴随点为A3,…,这样依次下去得到A1,A2,A3,…,A n,若A1的坐标为(3,1),则A2018的坐标为__________.1.【答案】D【解析】两个实数组成的有序数对,故选D.2.【答案】C【解析】A、国家大剧院第三排,不能够确定一个点的位置,故本选项错误;B、北偏东30,不能够确定一个点的位置,故本选项错误;C、东经115,北纬35.5,能够确定一个点的位置,故本选项正确;D、北京市西南,不能够确定一个点的位置,故本选项错误.故选C.3.【答案】B【解析】A选项中的点到x轴的距离是|5|=5,B选项中的点到x轴的距离是|1|=1,C选项中的点到x轴的距离为|–4|=4,D选项中的点到x轴的距离是|2|=2.故选B.4.【答案】D【解析】根据确定物体位置要2个数据可得:能让小华准确找到座位的必须是排数,座位均清晰的.分析可知只有D符合两项条件,故选D.8.【答案】A【解析】∵(12,6)表示12排6号,(12,12)表示12排12号,∴小明(12,6)与小菲(12,12)应坐的位置在同一排,中间隔5人.故选A.9.【答案】D【解析】易知点A到x轴的距离为3,OB=2,∴1332ABOS OB=⨯⨯=△,故选D.10.【答案】二【解析】在平面直角坐标系中,点(-4,4)在第二象限,故答案为:二.11.【答案】5;3【解析】根据平面直角坐标系的特点,点到x轴的距离是|y|=5,点到y轴的距离为|x|=3,故答案为:5;3.12.【答案】(1,2);(-3,4)【解析】(1)若CA平行于x轴,BC平行于y轴,则点C的横坐标等于点B的横坐标,点C的纵坐标等于点A的纵坐标,点C的坐标为:(1,2);(2)若CA平行于y轴,BC平行于x轴,则点C 的横坐标等于点A的横坐标,点C的纵坐标等于点B的纵坐标,点C的坐标为:(-3,4),故答案为:(1,2);(-3,4).13.【解析】如下图所示,可知小明与小刚相距3个格.14.【解析】(1)汽车站(1,1),消防站(2,-2).(2)小英经过的地方:游乐场,公园,姥姥家,宠物店,邮局.17.【答案】5【解析】由题意得2a-6=4,解得a=5,故答案为:5.18.【答案】B【解析】点(–3,2)所在的象限在第二象限.故选B.19.【答案】C【解析】由题意,得x=–4,y=3,即M点的坐标是(–4,3),故选C.20.【答案】4【解析】根据点在坐标系中坐标的几何意义可知,P(3,–4)到x轴的距离是|–4|=4.故答案为:4.21.【答案】(–2,3)【解析】由坐标系可得:点A的坐标是(–2,3).故答案为:(–2,3).。
7.1.2 平面直角坐标系
3.如果 点 N(3-b,7+b)在 y 轴上,
则b= , N=
.
4.在平面角坐标系中有一点(a,b),并且ab=0,则点M的位 置是在
布置作业
课本68页 习题7.1 必做题: (1)第1,2,3题.
2)已知点P(2m+4,m-1)在x轴上,
则m=_
选做题: 第4,5题.
练习二 在平面直角坐标系中描出下列各点:
A(4,5) , B(-2,3), C(-4,-1), D(2.5,-2), E(0,-4).
解:如图,先在x轴上找出 表示4的点,再在y轴上找出 表示5的点,过这两个点分
y
5
A
4 3
2
1
别作x轴和y轴的垂线,垂线 的交点就是点A.
-4
-3
-2
-1 O -1
-2
(+,+)
B (5,3)
F(-7,2)
2
A(3,2)
1
- 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1-1 o 1 2 3 4 5 6 7 8 9 x
(-,-)
-2 -3
(+,-)
G(-5,-4) -4
E(5,-4)
D(-7,-5)
-5
H(3,-5)
请你根据下列各点的坐标判定它们分 别在第几象限或在什么坐标轴上? A(-5、2)、 B(3、-2)、 C(0、4),
复习引入
数轴上的点与实数是一一对应关系
A
B
C
-3 -2 -1 0 1 2 3 4
A点的坐标是-3 B点的坐标是( 坐标是4的点是(
) )
人教版 初中数学 七年级下册 第七章
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.1.2 平面直角坐标系
【教学目标】
知识技能目标
1.理解平面直角坐标系的相关概念.
2.在给定的平面直角坐标系中,会由点的位置写出点的坐标,由点的坐标确定点的位置.
3.理解每个象限及坐标轴上的点的特征.
过程性目标
1.经历坐标概念的形成,培养学生的观察归纳能力.
2.领会数形结合的思想.
情感态度目标
经历平面直角坐标系建立的过程,初步认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索和创造.
【重点难点】
重点:平面直角坐标系及相关概念.
难点:根据点的位置写出点的坐标.
【教学过程】
一、创设情境
1.问题:什么是数轴?
教学方法:学生回忆并回答:在直线上规定了原点、正方向、单位长度就构成了数轴.
教师强调:数轴上的点可以用一个数来表示,这个数叫做这个点的坐标.例如点A在数轴上的坐标为-4,点B在数轴上的坐标为2.反过来,知道数轴上一个点的坐标.这个点在数轴上的位置也就确定了.
2.思考:类似于利用数轴确定直线上点的位置,能不能找到一种办法来确定平面内的点的位置呢?
3.数学故事:一天,数学家笛卡尔躺在病塌上,仰望着天花板出神,只见蜘蛛正忙着在墙角落结网,它一会儿在雪白的天花板上爬来爬去,一会儿又顺着蛛丝爬上爬下,这精彩的“杂技”牢牢地把笛卡尔吸引住了,这一有趣的现象使笛卡尔受到启发,他马上联想到了那个他朝思暮想至今仍悬而未决的难题.他想:这只悬在半空中的蜘蛛不正是一个移动的点吗?能不能用两面墙的交线及墙与天花板的交线来确定它的空间位置呢?他在纸上画了三条两两垂直的直线,分别表示两墙的交线和墙与天花板的交线,并在空间点出一个P点代表蜘蛛,P到两墙的距离分别用x和y表示,到天花板的距离用z表示.这样x、y、z就有了准确的数值,P点的位置就完全确定了.于是直角坐标系诞生了,尽管笛卡尔由对墙面、天花板和玩杂技般
的蜘蛛的观赏转到了对点、线、面的抽象思索,但他仍饶有兴趣,思维异常活跃,因为在数学家眼里,枯燥的点、线比活蹦乱跳的小鸟还逗人喜爱.他的这一伟大发现开辟了用代数方法研究几何图形的先河.
二、新知探究
探究点1:平面直角坐标系的概念
问题1阅读课本P66-67后回答下列问题:
(1)说一说组成平面直角坐标系的两条数轴具备什么特征?说出平面直角坐标系中两条数轴特征.
(2)什么是横轴?什么是纵轴?什么是坐标原点?
(3)坐标平面被两条坐标轴分成了哪几个部分,分别对应什么象限?
问题2:建立坐标系后,如何找到某一个点的坐标?如图,由点A分别向x轴和y轴作垂线,垂足M在x 轴上的坐标是3,垂足N在y轴上的坐标是4,我们说A点的横坐标是3,纵坐标是4,有序数对(3,4)就叫做点A的坐标,记作A(3,4).
类似地,请你根据课本P66图7.1-4,写出点B,C,D的坐标.
注意:表示点的坐标时,必须横坐标在前,纵坐标在后,中间用逗号隔开.
要点归纳:1.平面内画出两条互相垂直、原点重合的数轴组成平面直角坐标系.
如图,水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点.
2.建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫第一象限、第二象限、第三象限、第四象限.坐标轴上的点不属于任何象限.
3.有了平面直角坐标系,平面内的点就可以用一个有序数对来表示了:平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,则有序数对(a,b)叫做点P的坐标.记为P(a,b).
探究点2:平面直角坐标系内点的坐标特点
问题1:在下图的平面直角坐标系中,你能分别说出点A,B,C,D的坐标是什么吗?
问题2:从上面的问题中你有什么发现?原点O的坐标是什么?x轴和y轴上的点的坐标有什么特点?
问题3:各象限内的点的坐标有什么特点?
问题4:对于任意的一对有序实数,你都能在坐标系内找到它的位置吗?反之,坐标系内的任意一点是否对应着唯一一对有序实数?
要点归纳:1.原点O的坐标是(0,0),x轴上的点的纵坐标为0,y轴上的点的横坐标为0.
2.第一象限上的点,横坐标为正数,纵坐标为正数;第二象限上的点,横坐标为负数,纵坐标为正数;第三象限上的点,横坐标为负数,纵坐标为负数;第四象限上的点,横坐标为正数,纵坐标为负数.
3.坐标平面内的点与有序实数对之间是一一对应关系.
探究点3:平面直角坐标系的应用
问题:如图,正方形ABCD的边长为6.
(1)如果以点A为原点,AB所在的直线为x轴建立平面直角坐标系,那么y轴在什么位置?写出正方形的顶点A,B,C,D的坐标.点C到x轴、y轴的距离是多少?
(2)另建立一个平面直角坐标系,此时正方形的顶点A,B,C,D的坐标分别是什么?
(3)观察:点B和点C坐标之间有什么联系?点B和点D坐标之间呢?
要点归纳:设P点坐标为(a,b),则点P到x轴的距离是________;点P到y轴的距离是________平行于横轴的直线上的点的纵坐标相同;
平行于纵轴的直线上的点的横坐标相同.
例题讲解
例1 建立一个平面直角坐标系,描出下列各组点:
1.(1,1);(2,2);(-3,-3);(-4,-4)
2.(1,-1);(-2,2);(3,-3);(-4,4);
思考:这些点有什么特征?经过这两组点得到的直线有什么特征?
例2 分别写出图中点A,B,C的坐标.观察图形,回答下列问题:
(1)点A与点B关于哪一条直线对称?它们的坐标之间有什么联系?
(2)点A与点C关于哪一条直线对称?它们的坐标之间有什么联系?
(3)点B与点C呢?
例3 已知四边形ABCD各顶点的坐标分别是A(0,0),B(3,6),C(14,8),D(16,0),求四边形ABCD的面积.
三、检测反馈
1.点A(-2,1)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2.如图,小手盖住的点的坐标可能为( )
A.(-4,-6)
B.(-6,3)
C.(5,2)
D.(3,-4)
3.若点P(x,y)的坐标满足xy=0,则点P在( )
A.原点上
B.x轴上
C.y轴上
D.坐标轴上
4.若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为( )
A.(3,3)
B.(-3,3)
C.(-3,-3)
D.(3,-3)
5.设P(x,y)是坐标平面上的任一点,根据下列条件填空:
(1)若xy>0,则点P在_______象限;
(2)若xy<0,则点P在_______象限;
(3)若y>0,则点P在_______象限或在_______上;
(4)若x<0,则点P在_______象限或在_______上;
(5)若y=0,则点P在_______上;
(6)若x=0,则点P在_______上.
6.点(-3,7)到x轴上的距离是_______,到y轴上的距离是_______.
7.P(m-4,1-m)在x轴上,则P点坐标为_______.
8.若点P(a,b)在第四象限,则点M(b-a,a-b)在第_______象限.
9.在如图所示的平面直角坐标系中,用有序数对表示出A,B,C,D各点的位置.
10.如图,已知A,B两个村庄的坐标分别为(2,3),(6,4),一辆汽车从原点O出发在x轴上行驶.
(1)汽车行驶到什么位置时离A村最近?写出此点的坐标.
(2)汽车行驶到什么位置时离B村最近?写出此点的坐标.
四、本课小结
1.什么是平面直角坐标系?
2.平面直角坐标系中一个有序数对可以确定一个点的位置,它与数轴上一个实数确定一个点的位置有什么区别?
3.平面直角坐标系内点与坐标之间有什么关系?
五、布置作业
课堂作业:课本第69页习题7.1第2,3题
课后作业:课本第69页习题7.1第4,5,8,10题
六、板书设计
七、教学反思
1.本教学设计立足于问题情境的创设,将原本枯燥的平面直角坐标系赋予一定的现实意义,在实际问题中学习知识,力求避免空洞的说教;立足于知识的发现和发展,让学生能在一种自然而然的情境中理解建立
平面直角坐标系的必要性,应用平面直角坐标系去分析和解决问题;立足于知识和情感的教育,在知识教学的同时,结合数学家的故事及时地对学生进行理想教育,又在本课结束前对学生进行人生观的教育.同时在本设计中还力求体现学生探究能力的培养,通过一个个问题的设计,一步一步地引导学生进行探究及自主地进行学习,并及时地加以总结和反馈,尝试从多角度去体现课程的教学理念.
2.以探索活动贯穿整个课堂教学是本教学设计的一个特点.从探索各个象限内点的坐标的符号到探索同一个图形在不同的平面直角坐标系中坐标的变化,以及选择平面直角坐标系,都体现了学生的主体探究意识.在此基础上又进一步探究特殊点和它们的坐标之间的关系,这样安排的另一个目的也是为了开阔学生的思路和视野.在教学设计中也注意了教师的讲解与学生的自主学习之间的关系,使教师的讲解恰当、到位、有效.并且紧紧抓住了教材的重点,即在教学设计上始终突出点的位置与点的坐标之间的一一对应的关系.。