《步步高》2014高考物理一轮复习讲义第九章 单元小结练 感应电流方向的判断及大小的计算

合集下载

2014高考物理一轮复习课件9.3电磁感应规律的综合应用(精)

2014高考物理一轮复习课件9.3电磁感应规律的综合应用(精)

答案:AB
• 1.能量的转化:感应电流在磁场中受安培力, 电能 做功 外力克服安培力 ,将其他形式的能转化 为 其他形式的能 ,电流做功再将电能转化 为 . 电能 • 2. 实质:电磁感应现象的能量转化,实质是 其他形式的能和 之间的转化.
• 1.内电路和外电路 • (1)切割磁感线运动的导体或磁通量发生变化 电源 的线圈都相当于 . 内电路 • (2)该部分导体的电阻或线圈的电阻相当于电 外电路 源的 ,其余部分是 .
2.电源电动势和路端压
ΔΦ n (1)电动势:E= Blv 或 E= Δt .
(2)路端电压:U=IR= E-Ir .
1.安培力的大小
• 2.安培力的方向 右手定则 左手定则 • (1)先用 确定感应电流方向,再用 确定安培力方向. • (2)根据楞次定律,安培力方向一定和导体切 相反 割磁感线运动方向 .
• 1.安培力对导体棒运动的两种作用 • (1)导体棒由于通电而运动时,安培力是动 力. • (2)由于导体棒的运动而产生感应电流,则磁 场对导体棒的安培力为阻力. • 2.导体棒两种状态的处理方法 • (1)导体处于平衡态——静止或匀速直线运动状 态 • 处理方法:根据平衡条件列方程求解.
• 3.分类突破方法 • (1)对于有关图象的选择题常用排除法:先看 方向再看大小及特殊点. • (2)对于图象的描绘:先定性或定量分析所研 究问题的函数关系,注意横、纵坐标表示的 物理量及单位,再画出对应物理图象(常用分 段法、数学法). • (3)对图象的理解:看清横、纵坐标表示的量, 理解图象的物理意义,在确定物理量大小变 化的同时,还应确定其方向的变化情况.
• 1.如图所示,两个互连的金属圆环,小金属 环的电阻是大金属环电阻的二分之一,磁场 垂直穿过小金属环所在区域,当磁感应强度 随时间均匀变化时,在小环内产生的感应电 动势为E,则a、b两点间的电势差为( )

高考物理自由复习步步高系列09(原卷版).docx

高考物理自由复习步步高系列09(原卷版).docx

高中物理学习材料【课本内容再回顾——查缺补漏】回顾一:电表、电表的改装1.灵敏电流表G (1)三个主要参数①内阻Rg :电流表线圈的电阻,大约几十欧到几百欧。

②满偏电流Ig :指针批转到最大刻度时的电流,大约几十微安到几毫安。

③满偏电压Ug :电流表通过Ig 时两端的电压,大约零点几伏。

(2)三个参数间的关系:由欧姆定律可知Ug=IgRg 注意:电表就是电阻。

2.电压表(1)电压表的改装电流表G 的电压量程U g =I g R g ,当改装成量程为U 的电压表时,应串联一个电阻R 分去多余的电压U-Ug ,电阻R 叫分压电阻。

根据串联电路的特点得:RU U R U I ggg g -==,解得:()gggU RU U R -=(2)电压表的内阻:R V =R g +R 3.电流表的改装电流表G 的电压量程U g =I g R g ,当改装成量程为I 的电流表时,应并联一个电阻R 分去多余的电流I-I g ,电阻R 叫分流电阻。

根据并联电路的特点:()R I I R I U g g g g -==,解得:gg g I I R I R -=(2)电流表的内阻:R A =R g ×R/(R+R g )4.电流表改装成欧姆表①原理:闭合电路的欧姆定律②如图所示,当红、黑表笔短接时,调节R ,使电流表的指针达到满偏电流,此时指针所指表盘上满刻度处对应两表笔间电阻为零。

这时有:rR R EI g g ++=③当两表笔间接入电阻Rx 时,电流表的电流为:rR R R EI g x x +++=当Rx 改变时,Ix 随着改变,将电流表表盘上I x 处表上对应的Rx 值,就构成了欧姆表。

④中值电阻:欧姆表的内阻即为中值电阻R 中=R 内=R+Rg+r 因Ix 与Rx 不是线性关系,欧姆表表盘刻度不均匀。

回顾二:滑动变阻器的两种接法1.限流接法 如图所示。

用电器Rx 的电压调节范围:E U RR ER X X X≤≤+电路消耗的总功率为:EI 限流接法的选用原则:①测量时电路中的电流或电压没有要求从零开始连续调节, 只在小范围内变化,且待测电阻R x 与R 接近时。

(新课标)高三物理一轮总复习第9章电磁感应第1节电磁感应现象感应电流的方向考点集训(选修3-2)

(新课标)高三物理一轮总复习第9章电磁感应第1节电磁感应现象感应电流的方向考点集训(选修3-2)

第1节电磁感应现象感应电流的方向一、选择题:1~8题为单选,9~10题为多选.1.如图所示的各图中,闭合线框中能产生感应电流的是A.①②B.①③C.②④D.③④2.法拉第通过精心设计的一系列实验,发现了电磁感应现象,将历史上认为各自独立的学科“电学”与“磁学”联系起来.在下面几个典型的实验设计思想中,所作的推论后来被实验否定的是A.既然磁铁可使近旁的铁块带磁,静电荷可使近旁的导体表面感应出电荷,那么静止导线上的稳恒电流也可在近旁静止的线圈中感应出电流B.既然磁铁可在近旁运动的导体中感应出电动势,那么稳恒电流也可在近旁运动的线圈中感应出电流C.既然运动的磁铁可在近旁静止的线圈中感应出电流,那么静止的磁铁也可在近旁运动的导体中感应出电动势D.既然运动的磁铁可在近旁的导体中感应出电动势,那么运动导线上的稳恒电流也可在近旁的线圈中感应出电流3.如图所示,在匀强磁场中的矩形金属轨道上,有等长的两根金属棒ab和cd,它们以相同的速度匀速运动,则A.断开开关S,ab中有感应电流B.闭合开关S,ab中有感应电流C.无论断开还是闭合开关S,ab中都有感应电流D.无论断开还是闭合开关S,ab中都没有感应电流4.如图,一根长导线弯成“∩”形,通以直流电I,正中间用不计长度的一段绝缘线悬挂一金属环C,环与导线处于同一竖直平面内,在电流I增大的过程中,下列叙述正确的是A.金属环C中无感应电流产生B.金属环C仍能保持静止状态C.金属环C中有沿顺时针方向的感应电流D.悬挂金属环C的竖直线拉力变小5.无限长通电直导线在其周围某一点产生磁场的磁感应强度大小与电流成正比,与导线到这一点的距离成反比,即B =k I r(式中k 为常数).如图甲所示,光滑绝缘水平面上平行放置两根无限长直导线M 和N ,导线N 中通有方向如图的恒定电流I N ,导线M 中的电流I M 大小随时间变化的图象如图乙所示,方向与N 中电流方向相同.绝缘闭合导线框ABCD 放在同一水平面上,AB 边平行于两直导线,且位于两者正中间.则以下说法不正确的是A .0~t 0时间内,流过R 的电流方向由C→DB .t 0~2t 0时间内,流过R 的电流方向由D→CC .0~t 0时间内,不计CD 边电流影响,则AB 边所受安培力的方向向左D .t 0~2t 0时间内,不计CD 边电流影响,则AB 边所受安培力的方向向右6.如图所示,在图甲中是两根不平行的导轨,图乙中是两根平行的导轨,其它条件都相同,当金属棒MN 在导轨上向右匀速运动时,在棒的运动过程中,将观察到A .两个小电珠都发光,只是亮度不同B .两个小电珠都不发光C .L 1发光且越来越亮,L 2发光且亮度不变D .L 1发光且亮度不变,L 2始终不发光7.如图所示,A 线框接一灵敏电流计,B 线框放在匀强磁场中,B 线框的电阻不计,具有一定电阻的导体棒可沿线框无摩擦滑动,今用恒力F 向右拉CD 由静止开始运动,B 线框足够长,则通过电流计中的电流方向和大小变化是A .G 中电流向下,强度逐渐减弱,最后为零B .G 中电流向上,强度逐渐减弱,最后为零C .G 中电流向下,强度逐渐增强,最后为某一定值D .G 中电流向上,强度逐渐增强,最后为某一定值8.等腰三角形线框abc 与长直导线MN 绝缘,且线框被导线分成面积相等的两部分,如图所示,接通电源瞬间有由N 流向M 的电流A .线框中无感应电流B .线框中有沿abca 方向感应电流C.线框中有沿acba方向感应电流D.条件不足无法判断9.电阻R、电容C与一线圈连成闭合回路,条形磁铁静止于线圈的正上方,N极朝下,如图所示,现使磁铁由静止开始下落,在N极接近线圈上端的过程中,下列说法不正确的是A.流过R的电流方向是b到aB.电容器的下极板带负电C.磁铁下落过程中,加速度保持不变D.穿过线圈的磁通量不断增大10.如图所示,M为水平放置的橡胶圆盘,在其外侧面均匀地带有负电荷.在M正上方用丝线悬挂一个闭合铝环N,铝环也处于水平面中,且M盘和N环的中心在同一条竖直线O1O2上.现让橡胶圆盘由静止开始绕O1O2轴按图示方向逆时针加速转动,下列说法正确的是A.铝环N对橡胶圆盘M的作用力方向竖直向下B.铝环N对橡胶圆盘M的作用力方向竖直向上C.铝环N有扩大的趋势,丝线对它的拉力增大D.铝环N有缩小的趋势,丝线对它的拉力减小二、填空题11.在做研究电磁感应现象的实验中所给器材如下图所示.(1)请你用笔画线的形式把实物图连接起来.(2)某同学连好实物图,他在做实验时发现当开关闭合时,电流表的指针向向右偏,请你帮他判断当迅速移动滑动变阻器使电路中的电阻减小时,指针将__________(选填“向左偏”、“向右偏”或“不偏”),由此实验说明______________________________________.题号答第1节电磁感应现象感应电流的方向【考点集训】1.A 2.A 3.B 4.B 5.B 6.D7.A8.C9.BC10.AD11.(1)(2)向右偏不论用什么方法,只要使穿过闭合回路中的磁通量发生变化,回路中就会产生感应电流(意思对即可)。

2014年《步步高》高三物理一轮复习第九章 第3讲 专题 电磁感应规律的综合应用(人教版)

2014年《步步高》高三物理一轮复习第九章 第3讲 专题 电磁感应规律的综合应用(人教版)

答案
(1)0.15 J
(2)0.1 A
(3)0.75 T
借题发挥
1.电磁感应中电路知识的关系图
2.电磁感应中电路问题的解题思路
(1)明确电源的电动势 ΔΦ ΔB ΔS 1 E=n =nS =nB ,E=BLv,E= BL2ω 2 Δt Δt Δt (2)明确电源的正、负极:根据电源内部电流的方向是从负极流向 正极,即可确定电源的正、负极. (3)明确电源的内阻:即相当于电源的那部分电路的电阻. (4)明确电路关系:即构成回路的各部分电路的串、并联关系. (5)结合闭合电路欧姆定律和电功、电功率等能量关系列方程求 解.
(3)线框 abcd 进入磁场前时,做匀加速直线运动;进入磁场的过 程中,做匀速直线运动;线框完全进入磁场后至运动到 gh 线, 仍做匀加速直线运动. v 2 进入磁场前线框的运动时间为 t1= = s=0.4 s a 5 l2 0.6 进入磁场过程中匀速运动时间为 t2= = s=0.3 s v 2 线框完全进入磁场后线框受力情况与进入磁场前相同,所以该阶 段的加速度大小仍为 a=5 m/s2,该过程有 1 2 x-l2=vt3+ at3 解得 t3=1 s 2
V,远小于小灯泡的额定电压,因此无法正常工作.)
B增大,E增大,但有限度;r2增大,E增大,但有限度;ω增大,
E增大,但有限度;θ增大,E不变.
答案 (1)4.9×10-2 V 电流方向为b→a (2)(3)(4)见解析
【变式跟踪1】 如图9-3-5所示,在倾
角为θ=37°的斜面内,放置MN和
PQ两根不等间距的光滑金属导轨, 该装置放置在垂直斜面向下的匀强 磁场中.导轨M、P端间接入阻值R1 =30 Ω的电阻和理想电流表,N、Q 端间接阻值为R2=6 Ω的电阻. 图9-3-5

《步步高》2014高考物理大一轮复习讲义【配套word版文档】第九章_专题十_电磁感应中的动力学和能

《步步高》2014高考物理大一轮复习讲义【配套word版文档】第九章_专题十_电磁感应中的动力学和能

专题十 电磁感应中的动力学和能量问题考纲解读 1.会分析计算电磁感应中有安培力参与的导体的运动及平衡问题.2.会分析计算电磁感应中能量的转化与转移. 考点一 电磁感应中的动力学问题分析1. 安培力的大小由感应电动势E =Bl v ,感应电流I =ER 和安培力公式F =BIl 得F =B 2l 2v R .2. 导体两种状态及处理方法(1)导体的平衡态——静止状态或匀速直线运动状态. 处理方法:根据平衡条件(合外力等于零)列式分析. (2)导体的非平衡态——加速度不为零.处理方法:根据牛顿第二定律进行动态分析或结合功能关系分析.例1 (2012·广东理综·35)如图1所示,质量为M 的导体棒ab ,垂直放在相距为l 的平行光滑金属导轨上,导轨平面与水平面的夹角为θ,并处于磁感应强度大小为B 、方向垂直于导轨平面向上的匀强磁场中.左侧是水平放置、间距为d 的平行金属板,R 和R x 分别表示定值电阻和滑动变阻器的阻值,不计其他电阻.图1(1)调节R x =R ,释放导体棒,当导体棒沿导轨匀速下滑时,求通过导体棒的电流I 及导体棒的速率v .(2)改变R x ,待导体棒沿导轨再次匀速下滑后,将质量为m 、带电荷量为+q 的微粒水平射入金属板间,若它能匀速通过,求此时的R x . 答案 (1)Mg sin θBl 2MgR sin θB 2l 2(2)mBldMq sin θ解决电磁感应中的动力学问题的一般思路是 “先电后力”,即:先做“源”的分析——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ;再进行“路”的分析——分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便求解安培力;然后是“力”的分析——分析研究对象(常是金属杆、导体线圈等)的受力情况,尤其注意其所受的安培力;最后进行“运动”状态的分析——根据力和运动的关系,判断出正确的运动模型.突破训练1如图2所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2∶1.用一沿导轨方向的恒力F水平向右拉金属棒cd,经过足够图2长时间以后() A.金属棒ab、cd都做匀速运动B.金属棒ab上的电流方向是由b向aC.金属棒cd所受安培力的大小等于2F/3D.两金属棒间距离保持不变答案BC考点二电磁感应中的能量问题分析1.过程分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功,将其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.(3)当感应电流通过用电器时,电能又转化为其他形式的能.安培力做功的过程,或通过电阻发热的过程,是电能转化为其他形式能的过程.安培力做了多少功,就有多少电能转化为其他形式的能.2.求解思路(1)若回路中电流恒定,可以利用电路结构及W=UIt或Q=I2Rt直接进行计算.(2)若电流变化,则:①利用安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能.例2如图3所示,倾角为θ=30°、足够长的光滑平行金属导轨MN、PQ相距L1=0.4 m,B1=5 T的匀强磁场垂直导轨平面向上.一质量m=1.6 kg的金属棒ab垂直于MN、PQ 放置在导轨上,且始终与导轨接触良好,其电阻r=1 Ω.金属导轨上端连接右侧电路,R1=1 Ω,R2=1.5 Ω.R2两端通过细导线连接质量M=0.6 kg的正方形金属框cdef,正方形边长L2=0.2 m,每条边电阻r0为1 Ω,金属框处在一方向垂直纸面向里、B2=3 T的匀强磁场中.现将金属棒由静止释放,不计其他电阻及滑轮摩擦,g取10 m/s2.(1)若将电键S断开,求棒下滑过程中的最大速度.(2)若电键S闭合,每根细导线能承受的最大拉力为3.6 N,求细导线刚好被拉断时棒的速度.(3)若电键S闭合后,从棒释放到细导线被拉断的过程中,棒上产生的电热为2 J,求此过程中棒下滑的高度(结果保留一位有效数字).图3答案(1)7 m/s(2)3.75 m/s(3)1 m电磁感应中能量转化问题的分析技巧1.电磁感应过程往往涉及多种能量的转化(1)如图4中金属棒ab沿导轨由静止下滑时,重力势能减少,一部分用来克服安培力做功,转化为感应电流的电能,最终在R上转化为焦耳热,另一部分转化为金属棒的动能.(2)若导轨足够长,棒最终达到稳定状态做匀速运动,之后重力图4势能的减小则完全用来克服安培力做功,转化为感应电流的电能.2.安培力做功和电能变化的特定对应关系(1)“外力”克服安培力做多少功,就有多少其他形式的能转化为电能.(2)安培力做功的过程,是电能转化为其他形式的能的过程,安培力做多少功就有多少电能转化为其他形式的能.3.解决此类问题的步骤(1)用法拉第电磁感应定律和楞次定律(包括右手定则)确定感应电动势的大小和方向.(2)画出等效电路图,写出回路中电阻消耗的电功率的表达式.(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程,联立求解.突破训练2如图5所示电路,两根光滑金属导轨平行放置在倾角为θ的斜面上,导轨下端接有电阻R,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可忽略不计的金属棒ab质量为m,受到沿斜面向上且与金属棒垂直的恒力F的作用.金属棒沿导轨匀图5速下滑,则它在下滑高度h的过程中,以下说法正确的是() A.作用在金属棒上各力的合力做功为零B.重力做的功等于系统产生的电能C.金属棒克服安培力做的功等于电阻R上产生的焦耳热D.金属棒克服恒力F做的功等于电阻R上产生的焦耳热答案AC1.模型概述“导轨+杆”模型是电磁感应问题在高考命题中的“基本道具”,也是高考的热点,考查的知识点多,题目的综合性强,物理情景变化空间大,是我们复习中的难点.“导轨+杆”模型又分为“单杆”型和“双杆”型;导轨放置方式可分为水平、竖直和倾斜;杆的运动状态可分为匀速运动、匀变速运动、非匀变速运动或转动等;磁场的状态可分为恒定不变、均匀变化和非均匀变化等等,情景复杂,形式多变.2.常见模型类型“电—动—电”型“动—电—动”型示意图已知量棒ab长L,质量m,电阻R;导轨光滑水平,电阻不计棒ab长L,质量m,电阻R;导轨光滑,电阻不计过程分析S闭合,棒ab受安培力F=BLER,此时加速度a=BLEmR,棒ab速度v↑→感应电动势E′=BL v↑→电流I↓→安培力F=BIL↓→加速度a↓,当安培力F=0时,a=0,v最大,最后匀速运动棒ab释放后下滑,此时加速度a=g sin α,棒ab速度v↑→感应电动势E=BL v↑→电流I=ER↑→安培力F=BIL↑→加速度a↓,当安培力F=mg sin α时,a=0,v最大,最后匀速运动能量转化通过安培力做功,把电能转化为动能克服安培力做功,把重力势能转化为内能运动形式变加速运动变加速运动最终状态匀速运动,v m=E′BL匀速运动v m=mgR sin αB2L2解析(1)设甲在磁场区域abcd内运动时间为t1,乙从开始运动到ab位置的时间为t2,则由运动学公式得L =12·2g sin θ·t 21,L =12g sin θ·t 22 解得t 1=Lg sin θ,t 2= 2Lg sin θ(1分) 因为t 1<t 2,所以甲离开磁场时,乙还没有进入磁场.(1分)设乙进入磁场时的速度为v 1,乙中产生的感应电动势为E 1,回路中的电流为I 1,则12m v 21=mgL sin θ(1分) E 1=Bd v 1(1分) I 1=E 1/2R (1分) mg sin θ=BI 1d (1分) 解得R =B 2d 22m2Lg sin θ(1分) (2)从释放金属杆开始计时,设经过时间t ,甲的速度为v ,甲中产生的感应电动势为E ,回路中的电流为I ,外力为F ,则 v =at (1分) E =Bd v (1分) I =E /2R (1分)F +mg sin θ-BId =ma (1分) a =2g sin θ 联立以上各式解得 F =mg sin θ+mg sin θ2g sin θL·t (0≤t ≤ Lg sin θ)(1分) 方向垂直于杆平行于导轨向下.(1分)(3)甲在磁场运动过程中,乙没有进入磁场,设甲离开磁场时速度为v 0,甲、乙产生的热量相同,均设为Q 1,则 v 20=2aL (1分)W +mgL sin θ=2Q 1+12m v 20(2分)解得W =2Q 1+mgL sin θ乙在磁场运动过程中,甲、乙产生相同的热量,均设为Q 2,则2Q 2=mgL sin θ(2分) 根据题意有Q =Q 1+Q 2(1分) 解得W =2Q (1分) 答案 (1)B 2d 22m2Lg sin θ(2)F =mg sin θ+mg sin θ 2g sin θL·t (0≤t ≤ Lg sin θ),方向垂直于杆平行于导轨向下 (3)2Q突破训练3 如图7甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA 段为曲线,AB 段为直线,导轨电阻不计,g =10 m/s 2(忽略ab 棒运动过程中对原磁场的影响),求:甲 乙图7(1)磁感应强度B 的大小;(2)金属棒ab 在开始运动的1.5 s 内,通过电阻R 的电荷量; (3)金属棒ab 在开始运动的1.5 s 内,电阻R 上产生的热量. 答案 (1)0.1 T (2)0.67 C (3)0.26 J1. (2012·山东理综·20)如图8所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,图8导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是 ( )A .P =2mg v sin θB .P =3mg v sin θC .当导体棒速度达到v 2时加速度大小为g2sin θD .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功 答案 AC2. (2012·江苏单科·13)某兴趣小组设计了一种发电装置,如图9所示.在磁极和圆柱状铁芯之间形成的两磁场区域的圆心角α均为49π,磁场均沿半径方向.匝数为N 的矩形线圈abcd的边长ab =cd =l 、bc =ad =2l .线圈以角速度ω绕中心轴匀速转动,bc 边和ad 边同时进入磁场.在磁场中,两条边所经过处的磁感应强度大小均为B 、方向始终与两边的运动方向垂直.线圈的总电阻为r ,外接电阻为R .求:图9(1)线圈切割磁感线时,感应电动势的大小E m ; (2)线圈切割磁感线时,bc 边所受安培力的大小F ; (3)外接电阻上电流的有效值I . 答案(1)2NBl 2ω(2)4N 2B 2l 3ωr +R (3)4NBl 2ω3(r +R )6. 如图6所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直方向的磁场中,整个磁场由若干个宽度皆为d 的条形匀强磁场区域1、2、3、4……组成,磁感应强度B 1、B 2的方向相反,大小相等,即B 1=B 2=B .导轨左端MP 间接一电阻R ,质量为m 、电阻为r 的细导体棒ab 垂直放置在导轨上,与导轨接触良好,不计导轨的电阻.现对棒ab 施加水平向右的拉力,使其从区域1磁场左边界位置开始以速度v 0向右做匀速直线运动并穿越n 个磁场区域.图6(1)求棒ab 穿越区域1磁场的过程中电阻R 产生的焦耳热Q ; (2)求棒ab 穿越n 个磁场区域的过程中拉力对棒ab 所做的功W ;(3)规定棒中从a 到b 的电流方向为正,画出上述过程中通过棒ab 的电流I 随时间t 变化的图象;(4)求棒ab 穿越n 个磁场区域的过程中通过电阻R 的净电荷量q . 答案 (1)B 2L 2v 0Rd (R +r )2 (2)nB 2L 2v 0dR +r(3)见解析图(4)BLd R +r 或0。

步步高高考物理一轮复习配套课件第九章 第1课时 电磁感应现象 楞次定律

步步高高考物理一轮复习配套课件第九章 第1课时 电磁感应现象 楞次定律

图3
转动过程中磁通量的变化量的大小为 2 ΔΦ=|Φ2-Φ1|= BS④ 2 ΔΦ 由法拉第电磁感应定律得 E = ⑤ Δt
根据闭合电路的欧姆定律有 I = E ⑥ R
该过程中通过线框截面的电荷量 q= I ·Δt⑦
联立④⑤⑥⑦式得 q=
2BS 2R
课堂探究
磁通量是一个有方向的标量,当磁场不变,线圈转动时,一定要注 意磁感线是从线圈的正面还是反面穿过.
【突破训练 1】磁感应强度为 B 的匀强磁场,方向水平向右,一面积 为 S 的矩形线圈 abcd 如图 4 所示放置. 平面 abcd 与竖直方向成 θ 角,将 abcd 绕 ab 轴旋转 180° 角,则穿过线圈平面的磁通量的变 化量为 A.0 B.2BS C.2BScos θ D.2BSsin θ
2 分别是 ab 边和 cd 边的中点.现将 Φ1=BSsin 45° = BS 2
线框右半边 ObcO′绕 OO′逆时针 旋转 90° 到图乙所示位置.在这一 过程中,回路中的电荷量是( 2BS 2BS A. B. R 2R BS C. R D.0 )
转过 90° 时穿过 aOO′d 左边一半线框 2 S 的磁通量为 Φ2′=B sin 45° = BS① 2 4 穿过 bOO′c 右边一半线框的磁通量为 2 S Φ2″=-B sin 45° =- BS② 2 4 因此, 转过 90° 时穿过整个线框的磁通量为 Φ2=Φ2′+Φ2″=0③
A
)
图6
课堂探究 考点二
谁阻碍谁 阻碍什么 如何阻碍
利用楞次定律判断感应电流的方向
感应电流的磁场阻碍引起感应电流的磁场原磁场的磁通量的变化 阻碍的是磁通量的变化,而不是阻碍磁通量本身 当磁通量增加时,感应电流的磁场方向与原磁场的方向相反;当磁 通量减少时,感应电流的磁场方向与原磁场的方向相同,即“增反 减同” 阻碍并不是阻止,只是延缓了磁通量的变化,这种变化将继续进行

《步步高》2014高考物理一轮复习讲义第九章-第3课时-电磁感应中的电路和图象问题

《步步高》2014高考物理一轮复习讲义第九章-第3课时-电磁感应中的电路和图象问题

专题九 电磁感应中的电路和图象问题考纲解读 1.能认识电磁感应现象中的电路结构,并能计算电动势、电压、电流、电功等.2.能由给定的电磁感应过程判断或画出正确的图象或由给定的有关图象分析电磁感应过程,求解相应的物理量.1. [对电磁感应中等效电源的理解]粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是( )答案 B解析 线框各边电阻相等,切割磁感线的那个边为电源,电动势相同均为Bl v .在A 、C 、D 中,U ab =14Bl v ,B 中,U ab =34Bl v ,选项B 正确.2. [电磁感应中的电路问题]如图1所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感应强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、有效阻值为R2的金属导线ab 垂直导轨放置,并在水平外力F 的作用下以速图1度v 向右匀速运动,则(不计导轨电阻)( )A .通过电阻R 的电流方向为P →R →MB .a 、b 两点间的电压为BL vC .a 端电势比b 端电势高D .外力F 做的功等于电阻R 上产生的焦耳热 答案 C解析 由右手定则可知通过金属导线的电流由b 到a ,即通过电阻R 的电流方向为M →R →P ,A 错误;金属导线产生的感应电动势为BL v ,而a 、b 两点间的电压为等效电路路端电压,由闭合电路欧姆定律可知,a 、b 两点间电压为23BL v ,B 错误;金属导线可等效为电源,在电源内部,电流从低电势流向高电势,所以a 端电势高于b 端电势,C 正确;根据能量守恒定律可知,外力F 做的功等于电阻R 和金属导线产生的焦耳热之和,D 错误.3.[对B-t图象物理意义的理解]一矩形线圈abcd位于一随时间变化的匀强磁场内,磁场方向垂直线圈所在的平面向里(如图2甲所示),磁感应强度B随时间t变化的规律如图乙所示.以I表示线圈中的感应电流(图甲中线圈上箭头方向为电流的正方向),则下列选项中能正确表示线圈中电流I随时间t变化规律的是()图2答案 C解析0~1 s内磁感应强度均匀增大,根据楞次定律和法拉第电磁感应定律可判定,感应电流为逆时针(为负值)、大小为定值,A、B错误;4 s~5 s内磁感应强度恒定,穿过线圈abcd的磁通量不变化,无感应电流,C正确,D错误.4.[对电磁感应现象中i-x图象物理意义的理解]如图3所示,两个相邻的有界匀强磁场区域,方向相反,且垂直纸面,磁感应强度的大小均为B,以磁场区左边界为y轴建立坐标系,磁场区域在y轴方向足够长,在x轴方向宽度均为a.矩形导线框ABCD的CD边与y轴重合,AD边长为a.线框从图示位置水平向右匀速穿过两磁场区域,且线框平面始终保持与磁场垂直,图3线框中感应电流i与线框移动距离x的关系图象正确的是(以逆时针方向为电流的正方向)() 答案 C解析由楞次定律可知,刚进入磁场时电流沿逆时针方向,线框在磁场中时电流沿顺时针方向,出磁场时沿逆时针方向,进入磁场和穿出磁场等效为一条边切割磁感线,在磁场中时,AB边和CD边均切割磁感线,相当于两等效电源串联,故电流为进入磁场和穿出时的两倍,所以C正确.考点梳理一、电磁感应中的电路问题1.内电路和外电路(1)切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源.(2)该部分导体的电阻或线圈的电阻相当于电源的内阻,其余部分是外电路.2.电源电动势和路端电压(1)电动势:E=Bl v或E=n ΔΦΔt.(2)路端电压:U=IR=E-Ir.二、电磁感应中的图象问题1.图象类型(1)随时间变化的图象如B-t图象、Φ-t图象、E-t图象和i-t图象.(2)随位移x变化的图象如E-x图象和i-x图象.2.问题类型(1)由给定的电磁感应过程判断或画出正确的图象.(2)由给定的有关图象分析电磁感应过程,求解相应的物理量. (3)利用给出的图象判断或画出新的图象. 考点一 电磁感应中的电路问题 1. 对电磁感应中电源的理解(1)电源的正负极、感应电流的方向、电势的高低、电容器极板带电问题,可用右手定则或楞次定律判定. (2)电源的电动势的大小可由E =Bl v 或E =n ΔΦΔt 求解.2. 对电磁感应电路的理解(1)在电磁感应电路中,相当于电源的部分把其他形式的能通过电流做功转化为电能. (2)“电源”两端的电压为路端电压,而不是感应电动势.例1 如图4(a)所示,水平放置的两根平行金属导轨,间距L =0.3 m ,导轨左端连接R =0.6 Ω的电阻,区域abcd内存在垂直于导轨平面B =0.6 T 的匀强磁场,磁场区域宽D =0.2 m .细金属棒A 1和A 2用长为2D =0.4 m 的轻质绝缘杆连接,放置在导轨平面上,并与导轨垂直,每根金属棒在导轨间的电阻均为r =0.3 Ω.导轨电阻不计.使金属棒以恒定速度v =1.0 m/s 沿导轨向右穿越磁场.计算从金属棒A 1进入磁场(t =0)到A 2离开磁场的时间内,不同时间段通过电阻R 的电流强度,并在图(b)中画出.图4解析 t 1=Dv =0.2 s在0~t 1时间内,A 1产生的感应电动势E 1=BL v =0.18 V. 其等效电路如图甲所示. 由图甲知,电路的总电阻甲R 总=r +rRr +R =0.5 Ω总电流为I =E 1R 总=0.36 A通过R 的电流为I R =I3=0.12 AA 1离开磁场(t 1=0.2 s)至A 2刚好进入磁场(t 2=2Dv =0.4 s)的时间内,回路无电流,I R =0,乙从A 2进入磁场(t 2=0.4 s)至离开磁场t 3=2D +Dv =0.6 s 的时间内,A 2上的感应电动势为E 2=0.18 V ,其等效电路如图乙所示.由图乙知,电路总电阻R 总′=0.5 Ω,总电流I ′=0.36 A ,流过R 的电流I R =0.12 A ,综合以上计算结果,绘制通过R 的电流与时间关系如图所示. 答案 见解析解决电磁感应中的电路问题三步曲1.确定电源.切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,利用E =n ΔΦΔt 或E =Bl v sin θ求感应电动势的大小,利用右手定则或楞次定律判断电流方向.2.分析电路结构(内、外电路及外电路的串、并联关系),画出等效电路图.3.利用电路规律求解.主要应用欧姆定律及串、并联电路的基本性质等列方程求解.突破训练1 如图5所示,两根足够长的光滑金属导轨水平平行放置,间距为l =1 m ,cd 间、de 间、cf 间分别接阻值为R =10 Ω的电阻.一阻值为R =10 Ω的导体棒ab 以速度v =4 m/s 匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小为B =0.5 T 、方向竖直向下的匀强磁场.下列说法中正确的是( )图5A .导体棒ab 中电流的流向为由b 到aB .cd 两端的电压为1 VC .de 两端的电压为1 VD .fe 两端的电压为1 V 答案 BD解析 由右手定则可判知A 选项错;由法拉第电磁感应定律E =Bl v =0.5×1×4 V =2 V ,U cd =RR +R E =1 V ,B 正确;由于de 、cf 间电阻没有电流流过,故U cf =U de =0,所以U fe =U cd =1 V ,C 错误,D 正确. 考点二 电磁感应中的图象问题 1. 题型特点一般可把图象问题分为三类:(1)由给定的电磁感应过程选出或画出正确的图象;(2)由给定的有关图象分析电磁感应过程,求解相应的物理量; (3)根据图象定量计算. 2. 解题关键弄清初始条件,正负方向的对应,变化范围,所研究物理量的函数表达式,进、出磁场的转折点是解决问题的关键.3. 解决图象问题的一般步骤(1)明确图象的种类,即是B -t 图象还是Φ-t 图象,或者是E -t 图象、I -t 图象等;(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式; (5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等.(6)画出图象或判断图象.例2 (2012·福建理综·18)如图6所示,一圆形闭合铜环由高处从静止开始下落,穿过一根竖直悬挂的条形磁铁,铜环的中心轴线与条形磁铁的中轴线始终保持重合.若取磁铁中心O 为坐标原点,建立竖直向下为正方向的x 轴,则下图中最能正确反映环中感应电流i 随环心位置坐标x 变化的关系图象是( )图6解析 条形磁铁的磁感线分布示意图如图所示.铜环由静止开始下落过程中磁通量的变化率是非均匀变化的,故环中产生的感应电动势、环中的感应电流也是非均匀变化的,A 错误.在关于O 点对称的位置磁场分布对称,但环的速率是增大的,则环在O 点下方的电流最大值大于在O 点上方电流的最大值,故C 错误.由于磁通量在O 点上方是向上增大而在O 点下方是向上减小的,故环中电流方向在经过O 点时发生改变,D 错误.可知B 选项正确. 答案 B1.对图象的认识,应注意以下几方面(1)明确图象所描述的物理意义; (2)必须明确各种“+”、“-”的含义; (3)必须明确斜率的含义;(4)必须建立图象和电磁感应过程之间的对应关系; (5)注意三个相似关系及其各自的物理意义: v ~Δv ~Δv Δt ,B ~ΔB ~ΔB Δt ,Φ~ΔΦ~ΔΦΔtΔv Δt 、ΔB Δt 、ΔΦΔt分别反映了v 、B 、Φ变化的快慢. 2.电磁感应中图象类选择题的两个常见解法(1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是物理量的正负,排除错误的选项.(2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象作出分析和判断,这未必是最简捷的方法,但却是最有效的方法.突破训练2 如图7甲所示,圆形导线框固定在匀强磁场中,磁感线的方向与导线框所在平面垂直.规定磁场的正方向垂直纸面向里,磁感应强度B 随时间变化的规律如图乙所示.若规定顺时针方向为感应电流i 的正方向,下列各图中正确的是( )甲 乙图7答案 C解析 根据法拉第电磁感应定律:E =n ΔΦΔt =nS ·ΔBΔt ,由B -t 图象知,1 s ~3 s ,B 的变化率相同,0~1 s 、3s ~4 s ,B 的变化率相同,再结合楞次定律知,0~1 s 、3 s ~4 s 内感应电流的方向为顺时针方向,1 s ~3 s 内感应电流的方向为逆时针方向,可知C 正确.突破训练3 如图8所示,在坐标系xOy 中,有边长为L 的正方形金属线框abcd ,其一条对角线ac 和y 轴重合、顶点a 位于坐标原点O 处.在y 轴右侧的Ⅰ、Ⅳ象限内有一垂直纸面向里的匀强磁场,磁场的上边界与线框的ab 边刚好完全重合,左边界与y 轴重合,右边界与y 轴平行.t =0时刻,线框以恒定的速度v 沿垂直于磁场上边界的方向穿过磁场区域.取沿a →b →c →d →a 方向的感应电流图8为正方向,则在线框穿过磁场区域的过程中,感应电流i 、ab 间的电势差U ab 随时间t 变化的图线是下图中的( )答案 AD解析 在ab 边通过磁场的过程中,利用楞次定律或右手定则可判断出电流方向为逆时针方向,即沿正方向,电流在减小,U ab =-I (R bc +R cd +R da )在减小.在cd 边通过磁场的过程中,可判断出电流为顺时针方向,即沿负方向,电流逐渐减小,U ab =-IR ab 逐渐减小,A 、D 正确. 45.电磁感应中图象与电路综合问题的分析解析 (1)线框进入磁场前,线框仅受到拉力F 、斜面的支持力和线框重力,由牛顿第二定律得:F -mg sin α=ma线框进入磁场前的加速度a =F -mg sin αm=5 m/s 2(4分)(2)因为线框进入磁场的最初一段时间做匀速运动,ab 边进入磁场切割磁感线,产生的电动势E =Bl 1v (1分) 形成的感应电流I =E R =Bl 1vR (1分)受到沿斜面向下的安培力F 安=BIl 1(1分) 线框受力平衡,有F =mg sin α+B 2l 21vR(1分)代入数据解得v =2 m/s(1分)(3)线框abcd 进入磁场前时,做匀加速直线运动;进入磁场的过程中,做匀速直线运动;线框完全进入磁场后至运动到gh 线,仍做匀加速直线运动.进入磁场前线框的运动时间为t 1=v a =25 s =0.4 s(1分)进入磁场过程中匀速运动时间为t 2=l 2v =0.62s =0.3 s(1分)线框完全进入磁场后线框受力情况与进入磁场前相同,所以该阶段的加速度大小仍为a =5 m/s 2,该过程有 x -l 2=v t 3+12at 23解得t 3=1 s(2分)因此线框整体进入磁场后,ab 边运动到gh 线的过程中,线框中有感应电流的时间t 4=t 1+t 2+t 3-0.9 s =0.8 s(2分)E =ΔB ·S Δt =0.5×0.62.1-0.9V =0.25 V(2分)此过程产生的焦耳热Q =E 2t 4R =0.252×0.80.1J =0.5 J(2分)答案 (1)5 m /s 2 (2)2 m/s (3)0.5 J突破训练4 如图10甲所示,水平面上的两光滑金属导轨平行固定放置,间距d =0.5 m ,电阻不计,左端通过导线与阻值R =2 Ω的电阻连接,右端通过导线与阻值R L =4 Ω的小灯泡L 连接.在CDFE 矩形区域内有竖直向上的匀强磁场,CE 长l =2 m ,有一阻值r =2 Ω的金属棒PQ 放置在靠近磁场边界CD 处.CDFE 区域内磁场的磁感应强度B 随时间变化规律如图乙所示.在t =0至t =4 s 内,金属棒PQ 保持静止,在t =4 s 时使金属棒PQ 以某一速度进入磁场区域并保持匀速运动.已知从t =0开始到金属棒运动到磁场边界EF 处的整个过程中,小灯泡的亮度没有发生变化.求:图10(1)通过小灯泡的电流;(2)金属棒PQ 在磁场区域中运动的速度大小. 答案 (1)0.1 A (2)1 m/s解析 (1)0~4 s 内,电路中的感应电动势 E =ΔΦΔt =ΔB Δt ·S =24×0.5×2 V =0.5 V此时灯泡中的电流I L =E R 总=E Rr R +r +R L =0.52×22+2+4 A =0.1 A(2)由于灯泡亮度没有变化,故I L 没变化. 根据E ′=Bd vI ′=E ′R 总′=E ′r +RR L R +R L ,U L =I ′·RR L R +R L,I L =U LR L解得v =1 m/s 高考题组1.(2012·课标全国·20)如图11,一载流长直导线和一矩形线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t =0到t =t 1的时间间隔内,长直导线中电流i 发生某种变化,而线框中的感应电流总是沿顺时针方向,线框受到的安培力的合力先水平向左,后水平向右.设电流i 正方 图11向与图中箭头所示方向相同,则i 随时间t 变化的图线可能是( )答案 A解析 因通电导线周围的磁场离导线越近磁场越强,而线框中左右两边的电流大小相等,方向相反,所以其受到的安培力方向相反,线框的左边受到的安培力大于线框的右边受到的安培力,所以合力与线框的左边受力的方向相同.因为线框受到的安培力的合力先水平向左,后水平向右,根据左手定则,线框处的磁场方向先垂直纸面向里,后垂直纸面向外,根据右手螺旋定则,导线中的电流先为正,后为负,所以选项A 正确,选项B 、C 、D 错误.2. (2012·重庆理综·21)如图12所示,正方形区域MNPQ 内有垂直纸面向里的匀强磁场.在外力作用下,一正方形闭合刚性导线框沿QN 方向匀速运动,t =0时刻,其四个顶点M ′、N ′、P ′、Q ′恰好在磁场边界中点.下列图象中能反映线框所受安培力F 的大小随时间t 变化规律的是( )图12答案 B解析 如图所示,当M ′N ′从初始位置运动到M 1′N 1′位置的过程中,切割磁感线的有效长度随时间变化关系为:L 1=L -(L -2v t )=2v t ,L 为导线框的边长.产生的电流I 1=BL 1v R ,导线框所受安培力F 1=BI 1L 1=B 2(2v t )2v R =4B 2v 3t 2R,所以F 1为t 的二次函数图象,是开口向上的抛物线.当Q ′P ′由CD 位置运动到M ′N ′位置的过程中,切割磁感线的有效长度不变,电流恒定.当Q ′P ′由M ′N ′位置运动到M 1′N 1′位置的过程中,切割磁感线的有效长度L 2=L -2v t ,产生的电流I 2=BL 2vR ,导线框所受的安培力F 2=B 2(L -2v t )2v R,也是一条开口向上的抛物线,所以应选B.3. (2011·海南单科·6)如图13,EOF 和E ′O ′F ′为空间一匀强磁场的边界,其中EO ∥E ′O ′,FO ∥F ′O ′,且EO ⊥OF ;OO ′为∠EOF 的角平分线,OO ′间的距离为l ;磁场方向垂直于纸面向里.一边长为l 的正方形导线框沿O ′O 方向匀速通过磁场,t =0时刻恰好位于图示位置.规定导线框中感应电流沿逆时针方向时为正,则感应电流i 与时间t 的关系图线可能正确的是( )图13答案 B解析 本题中四个选项都是i -t 关系图线,故可用排除法.因在第一个阶段内通过导线框的磁通量向里增大,由楞次定律可判定此过程中电流沿逆时针方向,故C 、D 错误.由于穿过整个磁场区域的磁通量变化量ΔΦ=0,由q =ΔΦR 可知整个过程中通过导线框的总电荷量也应为零,而在i -t 图象中图线与时间轴所围总面积表示通过的总电荷量,为零,即时间轴的上下图形面积的绝对值应相等.故A 错误,B 正确.4. (2011·重庆理综·23)有人设计了一种可测速的跑步机,测速原理如图14所示.该机底面固定有间距为L 、长度为d 的平行金属电极.电极间充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,且接有电压表和电阻R .绝缘橡胶带上镀有间距为d 的平行细金属条,磁场中始终仅有一根金属条,且与电极接触良好,不计金属电阻.若橡胶带匀速运动时,电压表读数为U ,求: (1)橡胶带匀速运动的速率; (2)电阻R 消耗的电功率;(3)一根金属条每次经过磁场区域克服安培力做的功.图14答案 (1)U BL (2)U 2R (3)BLUdR解析 (1)设该过程产生的感应电动势为E ,橡胶带运动速率为v . 由:E =BL v ,E =U ,得:v =UBL .(2)设电阻R 消耗的电功率为P ,则P =U 2R.(3)设感应电流大小为I ,安培力为F ,克服安培力做的功为W . 由:I =U R ,F =BIL ,W =Fd ,得:W =BLUdR .模拟题组5. 如图15所示有理想边界的两个匀强磁场,磁感应强度均为B =0.5 T ,两边界间距s =0.1 m ,一边长L =0.2 m 的正方形线框abcd 由粗细均匀的电阻丝围成,总电阻为R =0.4 Ω,现使线框以v =2 m/s 的速度从位置Ⅰ匀速运动到位置Ⅱ,则下列能正确反映整个过图15程中线框a 、b 两点间的电势差U ab 随时间t 变化的图线是( )答案 A解析 ab 边切割磁感线产生的感应电动势为E =BL v =0.2 V ,线框中感应电流为I =ER =0.5 A ,所以在0~5×10-2 s 时间内,a 、b 两点间电势差为U 1=I ×34R =0.15 V ;在5×10-2 s ~10×10-2 s 时间内,ab 两端电势差U 2=E =0.2 V ;在10×10-2 s ~15×10-2 s 时间内,a 、b 两点间电势差为U 1=I ×14R =0.05 V.6. 如图16所示,垂直纸面的正方形匀强磁场区域内,有一位于纸面且电阻均匀的正方形导体框abcd ,现将导体框分别朝两个方向以v 、3v 速度匀速拉出磁场,则导体框从两个方向移出磁场的两过程中( )A .导体框中产生的感应电流方向相同图16B .导体框中产生的焦耳热相同C .导体框ad 边两端电势差相同D .通过导体框截面的电荷量相同 答案 AD解析 由右手定则可得两种情况导体框中产生的感应电流方向相同,A 项正确;热量Q =I 2Rt =(Bl v R )2R ·l v =B 2l 3v R ,可知导体框产生的焦耳热与运动速度有关,B 项错误;电荷量q =It =Bl v R ·l v =Bl 2R ,故通过截面的电荷量与速度无关,电荷量相同,D 项正确;以速度v 拉出时,U ad =14Bl v ,以速度3v 拉出时,U ad =34Bl ·3v ,C项错误.(限时:45分钟)►题组1 对电磁感应中电路问题的考查1.如图1所示,竖直平面内有一金属环,半径为a ,总电阻为R (指拉直时两端的电阻),磁感应强度为B 的匀强磁场垂直穿过环平面,与环的最高点A 铰链连接的长度为2a 、电阻为R2的导体棒AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则这时AB 两 图1 端的电压大小为( )A.Ba v 3B.Ba v 6C.2Ba v 3D .Ba v答案 A解析 摆到竖直位置时,AB 切割磁感线的瞬时感应电动势E =B ·2a ·(12v )=Ba v .由闭合电路欧姆定律得,U AB=ER 2+R 4·R 4=13Ba v ,故选A.2. 如图2所示,两光滑平行金属导轨间距为L ,直导线MN 垂直跨在导轨上,且与导轨接触良好,整个装置处在垂直于纸面向里的匀强磁场中,磁感应强度为B .电容器的电容为C ,除电阻R 外,导轨和导线的电阻均不计.现给导线MN 一初速度,使导线MN 向右运动,图2当电路稳定后,MN 以速度v 向右做匀速运动时( )A .电容器两端的电压为零B .电阻两端的电压为BL vC .电容器所带电荷量为CBL vD .为保持MN 匀速运动,需对其施加的拉力大小为B 2L 2v R答案 C解析 当导线MN 匀速向右运动时,导线MN 产生的感应电动势恒定,稳定后,电容器既不充电也不放电,无电流产生,故电阻两端没有电压,电容器两极板间的电压为U =E =BL v ,所带电荷量Q =CU =CBL v ,故A 、B 错,C 对;MN 匀速运动时,因无电流而不受安培力,故拉力为零,D 错. 3. 两根平行的长直金属导轨,其电阻不计,导线ab 、cd 跨在导轨上且与导轨接触良好,如图3所示,ab 的电阻大于cd 的电阻,当cd 在外力F 1(大小)的作用下,匀速向右运动时,ab 在外力F 2(大小)的作用下保持静止,那么在不计摩擦力的情况下(U ab 、U cd 是导线与导轨接触间的电势差)( )图3A .F 1>F 2,U ab >U cdB .F 1<F 2,U ab =U cdC .F 1=F 2,U ab >U cdD .F 1=F 2,U ab =U cd答案 D解析 通过两导线电流强度一样,两导线都处于平衡状态,则F 1=BIl ,F 2=BIl ,所以F 1=F 2,A 、B 错误;U ab =IR ab ,这里cd 导线相当于电源,所以U cd 是路端电压,U cd =IR ab ,即U ab =U cd ,故D 正确.4. 把总电阻为2R 的均匀电阻丝焊接成一半径为a 的圆环,水平固定在竖直向下的磁感应强度为B 的匀强磁场中,如图4所示,一长度为2a 、电阻等于R 、粗细均匀的金属棒MN 放在圆环上,它与圆环始终保持良好的接触.当金属棒以恒定速度v 向右移动经过环心O 时,求:图4(1)棒上电流的大小和方向及棒两端的电压U MN ; (2)圆环和金属棒上消耗的总热功率. 答案 (1)4Ba v 3R ,从N 流向M 2Ba v3(2)8B 2a 2v 23R解析 (1)把切割磁感线的金属棒看成一个内阻为R 、电动势为E 的电源,两个半圆环看成两个并联的相同电阻,画出等效电路图如图所示. 等效电源电动势为E =Bl v =2Ba v 外电路的总电阻为 R 外=R 1R 2R 1+R 2=12R棒上电流大小为I =ER 外+R =2Ba v 12R +R =4Ba v 3R电流方向从N 流向M .根据分压原理,棒两端的电压为 U MN =R 外R 外+R·E =23Ba v .(2)圆环和金属棒上消耗的总热功率为P =IE =8B 2a 2v 23R .►题组2 对电磁感应图象的考查5. 如图5所示,两平行光滑的金属导轨MN 、PQ 固定在水平面上,相距为L ,处于竖直向下的磁场中,整个磁场由n 个宽度皆为x 0的条形匀强磁场区域1、2、3、…、n 组图5成,从左向右依次排列,磁感应强度大小分别为B 、2B 、3B 、…、nB ,两导轨左端MP 间接入电阻R ,金属棒ab 垂直放在水平导轨上,且与导轨接触良好,不计导轨和金属棒的电阻.若在不同的磁场区对金属棒施加不同的拉力,使棒ab 以恒定速度v 向右匀速运动.取金属棒图示位置(即磁场1区左侧)为x =0,则通过棒ab 的电流i 、对棒施加的拉力F 随位移x 变化的图象是( ) 答案 AD解析 金属棒切割磁感线产生的感应电动势E =BL v ,电路中感应电流I =E R =BL vR ,所以通过棒的电流i 与n成正比,选项A 正确;棒所受的安培力F 安=BIL =B 2L 2vR ,因为棒匀速运动,对棒施加的外力F 与F 安等大反向,即F 与n 2成正比,选项D 正确.6. 如图6所示,空间存在两个磁场,磁感应强度大小均为B ,方向相反且垂直纸面,MN 、PQ 为其边界,OO ′为其对称轴,一导线折成边长为L 的正方形闭合线框abcd ,线框在外力作用下由纸面内图示位置从静止开始向右做匀加速运动,若电流以逆时针方向为正方向,则从线框开始运动到ab 边刚进入到PQ 右侧磁场的过程中,能反映线框中感应电流随时间变图6化规律的图象是( )答案 B解析 由法拉第电磁感应定律知在ab 边运动到MN 边界的过程中感应电动势E =2BL v =2BLat ,感应电流为i =E R =2BLat R ∝t ,C 、D 错;在ab 边从MN 边界运动到PQ 边界的过程中,产生的感应电动势为E =BL v =BLat ,感应电流为i ′=E R =BLat R ∝t ,即刚过MN 边界时感应电动势、感应电流均减小一半,所以A 错,B对.7. 如图7所示,导体棒沿两平行金属导轨从图中位置以速度v 向右匀速通过一正方形abcd 磁场区域,ac 垂直于导轨且平行于导体棒,ac 右侧的磁感应强度是左侧的2倍且方向相反,导轨和导体棒的电阻均不计,下列关于导体棒中感应电流和所受安培图7力随时间变化的图象正确的是(规定电流从M 经R 到N 为正方向,安培力向左为正方向)( )答案 A解析 导体棒运动时间t 时切割磁感线产生的感应电动势大小E =Bl v =2B v 2t ,感应电流大小I =E R =2B v 2tR,导体棒所受的安培力大小F =BIl =4B 2v 3t 2R ,由此可见,感应电流的大小I 与时间t 成正比,而安培力的大小F 则与时间t 是二次函数关系.由楞次定律可知,导体棒在第一、二区域的磁场中运动时,产生的感应电流分别为从M 经R 到N 和从N 经R 到M ;由左手定则判断得出,导体棒在第一、二区域的磁场中运动时受到的安培力均为水平向左,只有A 正确.8. 如图8甲所示,正六边形导线框abcdef 放在匀强磁场中静止不动,磁场方向与线框平面垂直,磁感应强度B随时间t 的变化关系如图乙所示.t =0时刻,磁感应强度B 的方向垂直纸面向里,设产生的感应电流以顺时针方向为正、竖直边cd 所受安培力的方向以水平向左为正.则下面关于感应电流i 和cd 边所受安培力F 随时间t 变化的图象正确的是( )图8答案 AC解析 0~2 s 时间内,负方向的磁场在减弱,产生正方向的恒定电流,cd 边受安培力向右且减小.2 s ~3 s 时间内,电流仍是正方向,且大小不变,此过程cd 边受安培力向左且增大.3 s ~6 s 时间内,电流沿负方向,大小不变,cd 边受安培力先向右后变为向左,故选A 、C. ►题组3 对电磁感应中电路与图象综合问题的考查9. 如图9甲是半径为a 的圆形导线框,电阻为R ,虚线是圆的一条弦,虚线左右两侧导线框内磁场的磁感应强度随时间变化如图乙所示,设垂直线框向里的磁场方向为正,求: (1)线框中0~t 0时间内的感应电流大小和方向; (2)线框中0~t 0时间内产生的热量.。

2014年《步步高》高三物理一轮复习第九章 第1讲 电磁感应现象 楞次定律(人教版)

2014年《步步高》高三物理一轮复习第九章 第1讲 电磁感应现象 楞次定律(人教版)

大小不再相等,则L2中产生感应电流,电磁铁也就能把开关K吸
起,即D正确. 答案 ABD
高考全程解密 随堂基础演练
【预测1】 (单选)现将电池组、滑动变阻器、带铁芯的线圈A、
线圈B、电流计及开关,如图9-1-11连接.在开关闭合、
线圈A放在线圈B中的情况下,某同学发现当他将滑动变阻 器的滑动端P向左加速滑动时,电流计指针向右偏转.由此 可以推断 ( ).
铁A的圆形金属环B中
A.有感应电流,且B被A吸引 B.无感应电流
(
).
图9-1-9
C.可能有,也可能没有感应电流
D.有感应电流,且B被A排斥
高考全程解密
随堂基础演练
解析
MN向右加速滑动,根据右手定则,MN中的电流
方向从N→M,且大小在逐渐变大,根据安培定则知,电 磁铁A的左端为N极,且磁场强度逐渐增强,根据楞次定 律知,B环中的感应电流产生的内部磁场方向向右,B被A 排斥.故D正确.
高考全程解密
随堂基础演练
【知识存盘】
发生变化 1.电磁感应现象:当穿过闭合电路的磁通量_________时,
感应电流 电路中有__________产生的现象.
2.产生感应电流的条件 (1)条件:穿过闭合电路的磁通量__________. 发生变化 切割磁感线 (2)特例:闭合电路的一部分导体在磁场内做___________ 运动.
【典例2】 (单选)某实验小组用如图9-1-6所 示的实验装置来验证楞次定律.当条形磁铁
自上而下穿过固定的线圈时,通过电流计的
感应电流方向是 A.a→G→b C.b→G→a ( ). 图9-1-6
B.先a→G→b,后b→G→a D.先b→G→a,后a→G→b
高考全程解密

高考物理一轮复习 第9章 第1讲电磁感应现象 楞次定律

高考物理一轮复习 第9章 第1讲电磁感应现象 楞次定律

归纳领悟 感应电动势产生的条件是:穿过电路的磁通量发生变化。 这里不要求闭合。无论电路闭合与否,只要磁通量变化了, 就一定有感应电动势产生。这好比一个电源:不论外电路是否 闭合,电动势总是存在的。但只有当外电路闭合时,电路中才 会有电流。 电磁感应现象的实质是产生感应电动势。如果回路闭合, 则有感应电流;回路不闭合,则只有感应电动势而无感应电流。
A.在图甲位置时线圈中的磁通量是 BS B.在图乙位置时线圈中的磁通量是 22BS C.由图甲位置到图乙位置线圈中的磁通量变化 22BS D.由图甲位置到图乙位置线圈中的磁通量变化 BS
• [答案] C
[解析] 由题意可知 Φ 甲=BSsin45°= 22BS,Φ 乙=0,所 以 ΔΦ= 22BS,C 选项正确。
[解析] 在选项 B、C 中,线圈中的磁通量始终为零,不 产生感应电流;选项 D 中磁通量始终最大,保持不变,不发生 变化,也没有感应电流;选项 A 中,在线圈转动过程中,磁通 量做周期性变化,产ቤተ መጻሕፍቲ ባይዱ感应电流,故 A 正确。
考点梳理 1.电磁感应现象:当穿过闭合电路的磁通量_发__生__变__化__时, 电路中有_电__流__产生,这种利用磁场产生电流的现象叫做电磁 感应。 2.产生感应电流的条件 表述 1:闭合电路的一部分导体在磁场内做_切__割__磁感线运 动。 表述 2:穿过闭合电路的磁通量发生变化。只要使穿过闭 合电路的__磁__通__量__发生变化,即 ΔΦ≠0,闭合电路中就有感应 电流产生。
2.磁通量的变化 ΔΦ=Φ2-Φ1,其数值等于初、末态穿过 某个平面磁通量的差值。分析磁通量变化的方法有:
方法一:据磁通量的定义 Φ=B·S(S 为回路在垂直于磁场 的平面内的投影面积)。
一般存在以下几种情形: (1)投影面积不变,磁感应强度变化,即 ΔΦ=ΔB·S。

步步高第九章 第1课时

步步高第九章  第1课时

即 L1 中的电流在增大 故相 器 R 的阻值时 故选 8 做
A、C 两
[三定则一定律的综合应用]如图 11 列哪种 动时
制线圈 c 中将有感 电流产生且被螺线管吸引(
图 11 A 向 做匀速 动 B C 向 做 速 动D 答案 BC 向左做 速 动 向 做加速 动
(1)电磁感 产生
种利用磁场产生电流的 象 做电磁感
(2)产生感 电流的条件 穿过闭合回路的磁通量发生 产生感 电动势的条件 无论回路是否闭合 就有感 电动势产生 (3)电磁感 象中的能量转 发生电磁感 象时 机械能或 他形式的能转 为电能 要穿过线圈平面的磁通量发生 线圈中
该过程遵循能量 恒定律 例1 移到 别 如图 1 示 通有恒定电流的导线 MN 闭合金属框共面 第一次将金属框 平
C 开关闭合后 滑动 阻器的滑片 P 匀速滑动 会使电流计指针静 在中央零刻度 D 开关闭合后 只有滑动 答案 A 解析 电流计要实 偏转 在电路必 备两个条件 (1)电路闭合 (2)磁通量发生 A 产生的磁场 P 阻器的滑片 P 加速滑动 电流计指针才能偏转
匀速或 速滑动 A 线圈中的电流大小都发生 磁通量的 3 [电磁感应现象的判断]如图 4
减小 Φ 可能
电磁感
象能否发生的判断流程
(1)确定研究的闭合回路 (2)弄清楚回路内的磁场 布 Φ (3) Φ →无感 电流 并确定该回路的磁通量 Φ.
回路闭合 有感 电流 → 闭合 无感 电流 但有感 电动势
考点二 楞次定律的应用
1
楞次定律
(1)内容 感 电流的磁场总要阻碍引起感 电流的磁通量的 (2)适用情况 2 有的电磁感 象
的磁场方向 该向 答案 C 变式题 4

2014年《步步高》高三物理一轮复习第九章 第2讲 法拉第电磁场感应定律 互感 自感(人教版)

2014年《步步高》高三物理一轮复习第九章 第2讲 法拉第电磁场感应定律 互感 自感(人教版)
高考高分技巧 随堂基础演练
联系
考点一
ΔΦ 法拉第电磁感应定律 E=n 的应用 Δt
【典例1】 (单选)(2012· 课标全国卷,19) 如图9-2-2所示,均匀磁场中有一
由半圆弧及其直径构成的导线框,
半圆直径与磁场边缘重合;磁场方 向垂直于半圆面(纸面)向里, 图9-2-2
高考高分技巧
随堂基础演练
解.
高考高分技巧
随堂基础演练
考点二
导体切割磁感线产生感应电动势的计算
【典例2】 (多选)(2012· 四川卷,20)半径为 a右端开小口的导体圆环和长为2a的导 体直杆,单位长度电阻均为R0.圆环水平 固定放置,整个内部区域分布着竖直向
下的匀强磁场,磁感应强度为B.杆在圆
环上以速度v平行于直径CD向右做匀速 直线运动,杆始终有两点与圆环良好接 触,从圆环中心O开始,杆的位置由θ确 定,如图9-2-3所示.则 ( ). 图9-2-3
余电阻不计.下列说法正确的是
(
).
高考高分技巧
随堂基础演练
A.此时 AC 两端电压为 UAC=2BLv 2BLvR0 B.此时 AC 两端电压为 UAC= R0+r 1 2 C.此过程中电路产生的电热为 Q=Fd- mv 2 2BLd D.此过程中通过电阻 R0 的电荷量为 q= R0+r ER0 解析 AC 的感应电动势为 E=2BLv,两端电压为 UAC= R0+r 2BLvR0 1 2 = ,A 错、B 对;由功能关系得 Fd= mv +Q+Qμ,C 2 R0+r - 2BLd 错;此过程中平均感应电流为I = ,通过电阻 R0 (R0+r)Δt - 2BLd 的电荷量为 q=I Δt= ,D 对. R0+r
也在运动,应注意速度间的相对关系.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元小结练感应电流方向的判断及大小的计算(限时:45分钟)一、单项选择题1.如图1所示,某人在自行车道上从东往西沿直线以速度v骑行,该处地磁场的水平分量大小为B1,方向由南向北,竖直分量大小为B,方向竖直向下;自行车车把为直把、金属材质,两把手间距为2L,只考虑自行车在地磁场中的电磁感应,下列结论正确的是()A.图示位置中辐条A点电势比B点电势低B.图示位置中辐条A点电势比B点电势高图1C.自行车左车把的电势比右车把的电势高B2L vD.自行车在十字路口左拐改为南北骑向,则自行车车把两端电动势要降低答案AC解析自行车车把切割磁感线,由右手定则知,自行车左车把的电势比右车把的电势高B2L v;辐条旋转切割磁感线,由右手定则知,图示位置中辐条A点电势比B点电势低;自行车在十字路口左拐改为南北骑向,地磁场竖直分量始终垂直于自行车车把,则其两端电动势不变.正确答案为A、C.2.两个大小不同的绝缘金属圆环a、b如图2所示叠放在一起,小圆环b有一半面积在大圆环a中,当大圆环a通上顺时针方向电流的瞬间,小圆环中感应电流的方向是()A.顺时针方向图2 B.逆时针方向C.左半圆顺时针,右半圆逆时针D.无感应电流答案 B解析当大圆环a中电流为顺时针方向时,圆环a内部的磁场方向垂直纸面向里,而环外的磁场方向垂直纸面向外,但环里磁场比环外磁场要强,圆环b的净磁通量是垂直纸面向里且增强的;由楞次定律可知圆环b中产生的感应电流的磁场方向应垂直纸面向外;再由安培定则得出圆环b中感应电流的方向为逆时针方向,B正确.3.如图3所示,一磁铁用细线悬挂,一个很长的铜管固定在磁铁的正下方,开始时磁铁上端与铜管上端相平,烧断细线,磁铁落入铜管的过程中,下列说法正确的是()①磁铁下落的加速度先增大,后减小②磁铁下落的加速度恒定③磁铁下落的加速度一直减小最后为零图3④磁铁下落的速度先增大后减小⑤磁铁下落的速度逐渐增大,最后匀速运动A .只有②正确B .只有①④正确C .只有①⑤正确D .只有③⑤正确答案 D解析 刚烧断细线时,磁铁只受重力,向下加速运动,铜管中产生感应电流,对磁铁的下落产生阻力,故磁铁速度增大,加速度减小,当阻力和重力相等时,磁铁加速度为零,速度达到最大,做匀速运动,可见D 正确.4.下列各图中,相同的条形磁铁垂直穿过相同的线圈时,线圈中产生的感应电动势最大的是( )答案 D解析 感应电动势的大小为E =n ΔΦΔt =nS ΔB Δt,A 、B 两图磁通量的变化量相同,C 图变化量最小,D 图变化量最大.磁铁穿过线圈所用的时间A 、C 、D 图相同且小于B 图所用的时间,综合比较,D 图中产生的感应电动势最大.5.如图4所示,一导线弯成闭合线圈,以速度v 向左匀速进入磁感应强度为B 的匀强磁场,磁场方向垂直平面向外.线圈总电阻为R ,从线圈进入磁场开始到完全进入磁场为止,下列结论正确的是 ( )图4A .感应电流一直沿顺时针方向B .线圈受到的安培力先增大,后减小C .感应电动势的最大值E =Br vD .穿过线圈某个横截面的电荷量为B (r 2+πr 2)R答案 AB解析 在闭合线圈进入磁场的过程中,通过闭合线圈的磁通量逐渐增大,根据楞次定律可知感应电流的方向一直为顺时针方向,A 正确.线圈切割磁感线的有效长度先变大后变小,感应电流先变大后变小,安培力也先变大后变小,B 正确.线圈切割磁感线的有效长度最大值为2r ,感应电动势最大值为E =2Br v ,C 错误.穿过线圈某个横截面的电荷量为q =ΔΦR =B (r 2+π2r 2)R,D 错误. 6.如图5所示,一导线弯成半径为a 的半圆形闭合回路.虚线MN 右侧有磁感应强度为B的匀强磁场,方向垂直于回路所在的平面.回路以速度v 向右匀速进入磁场,直径CD 始终与MN 垂直.从D 点到达边界开始到C 点进入磁场为止,下列结论正确的是 ( )图5A .感应电流方向不变B .CD 段直导线始终不受安培力C .感应电动势最大值E m =Ba vD .感应电动势平均值E =14πBa v 答案 ACD解析 在闭合回路进入磁场的过程中,通过闭合回路的磁通量逐渐增大,根据楞次定律可知感应电流的方向为逆时针方向不变,A 正确.根据左手定则可判断,CD 段受安培力向下,B 不正确.当半圆形闭合回路进入磁场一半时,这时有效切割长度最大为a ,所以感应电动势最大值E m =Ba v ,C 正确.感应电动势平均值E =ΔΦΔt =B ·πa 222a v=14πBa v .D 正确.7.如图6所示,一半圆形铝框处在水平向外的非匀强磁场中,场中各点的磁感应强度为B y =B 0y +c,y 为该点到地面的距离,c 为常数,B 0为 一定值.铝框平面与磁场垂直,直径ab 水平,空气阻力不计,铝框 图6由静止释放下落的过程中 ( )A .铝框回路磁通量不变,感应电动势为0B .回路中感应电流沿顺时针方向,直径ab 两点间电势差为0C .铝框下落的加速度大小一定小于重力加速度gD .直径ab 受安培力向上,半圆弧ab 受安培力向下,铝框下落加速度大小可能等于g 答案 C解析由题意知,y越小,B y越大,下落过程中,磁通量逐渐增加,感应电动势不为0,A 错误;由楞次定律判断,铝框中电流沿顺时针方向,但U ab≠0,B错误;直径ab受安培力向上,半圆弧ab受安培力向下,但直径ab处在磁场较强的位置,所受安培力较大,半圆弧ab的等效水平长度与直径相等,但处在磁场较弱的位置,所受安培力较小,这样整个铝框受安培力的合力向上,铝框下落的加速度大小小于g,故C正确,D错误.8.如图7所示的电路中,L是一个自感系数很大、直流电阻不计的线圈,D1、D2和D3是三个完全相同的灯泡,E是内阻不计的电源.在t=0时刻,闭合开关S,电路稳定后在t1时刻断开开关S.规定电路稳定时流过D1、D2的电流方向为正方向,分别用I1、I2表示流过D1和D2的电流,则下图中能定性描述电流I随时间t变化关系的是() 图7答案BC解析在t1时刻断开开关S后,由于自感现象通过D1的电流逐渐减小,方向不变,A错误,B正确;而通过D2和D3的电流方向立即改变,且逐渐减小,C正确,D错误.三、非选择题9.(2011·浙江理综·23)如图8甲所示,在水平面上固定有长为L=2 m、宽为d=1 m的金属“U”型导轨,在“U”型导轨右侧l=0.5 m范围内存在垂直纸面向里的匀强磁场,且磁感应强度随时间变化规律如图乙所示.在t=0时刻,质量为m=0.1 kg的导体棒以v0=1 m/s的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数为μ=0.1,导轨与导体棒单位长度的电阻均为λ=0.1 Ω/m,不计导体棒与导轨之间的接触电阻及地球磁场的影响(取g=10 m/s2 ).甲乙图8(1)通过计算分析4 s内导体棒的运动情况;(2)计算4 s 内回路中电流的大小,并判断电流方向;(3)计算4 s 内回路产生的焦耳热.答案 (1)前1 s 导体棒做匀减速直线运动,1 s ~4 s 内一直保持静止 (2)0.2 A ,顺时针方向 (3)0.04 J解析 (1)导体棒先在无磁场区域做匀减速直线运动,有-μmg =ma ,v t =v 0+at ,s =v 0t +12at 2 导体棒速度减为零时,v t =0.代入数据解得:t =1 s ,s =0.5 m<L -l =1.5 m ,导体棒没有进入磁场区域.导体棒在1 s 末已停止运动,以后一直保持静止,离左端位置仍为s =0.5 m.(2)前2 s 磁通量不变,回路电动势和电流分别为E =0,I =0后2 s 回路产生的感应电动势为E =ΔΦΔt =ld ΔB Δt=0.1 V 回路的总长度为5 m ,因此回路的总电阻为R =5λ=0.5 Ω电流为I =E R=0.2 A 根据楞次定律,在回路中的电流方向是顺时针方向.(3)前2 s 电流为零,后2 s 有恒定电流,焦耳热为Q =I 2Rt =0.04 J.10.如图9所示,宽度为L 的金属框架竖直固定在绝缘地面上,框架的上端接有一个电子元件,其阻值与其两端所加的电压成正比,即R =kU ,式中k 为已知常数.框架上有一质量为m ,离地高为h 的金属棒,金属棒与框架始终接触良好无摩擦,且保持水平.磁感应强度为B 的匀强磁场方向垂直于框架平面向里.将金属棒由静止释放,棒沿框架向下运动,不计金属棒及导轨的电阻.重力加速度为g .求:(1)金属棒运动过程中,流过棒的电流的大小和方向; 图9(2)金属棒落到地面时的速度大小;(3)金属棒从释放到落地过程中通过电子元件的电荷量.答案 (1)1k水平向右(或从a →b ) (2) 2h ⎝⎛⎭⎫g -BL mk (3)1k 2hkm mgk -BL解析 (1)流过电子元件的电流大小为I =U R =1k,由串联电路特点知流过棒的电流大小也为1k,由右手定则判定流过棒的电流方向为水平向右(或从a →b ) (2)在运动过程中金属棒受到的安培力为F 安=BIL =BL k对金属棒运用牛顿第二定律有mg -F 安=ma得a =g -BL mk恒定,故金属棒做匀加速直线运动根据v 2=2ax ,得v = 2h ⎝⎛⎭⎫g -BL mk (3)设金属棒经过时间t 落地,有h =12at 2 解得t = 2h a = 2hkm mgk -BL故有q =I ·t =1k 2hkm mgk -BL。

相关文档
最新文档