解一元一次方程(1)

合集下载

解一元一次方程1)

解一元一次方程1)

小组内交 流,用语言 叙述出来。
(2)
合并同类项得: x 的系数化为 1,得
x
完 成 后 , 【我探究、我敢试、我成功】 小 组 交 流 [练习一] 解下列方程: 讨 论 结 (1)6x —x = 4 ; (2)-4x + 6x-0.5x =-0.3; 论;
(3) 3x 1.3x 5x 2.7 x 12 3 6 4 .
总 结 反 思
(4)
x 3x 7; 2 2
[思考]方程 3x 20 4 x 25 的两边都含有 x 的项( 3x与4 x )和常数项( 20与 25 ) , 怎样才能把它化成 x a ( a 为常数)的形式呢? 解:利用等式的性质 1,得 , ∴ ∴x 。 。
**像上面那样把等式一边的某项改变符号后移到另一边,叫做移项。 [问题]移项起到什么作用? [例 2] 解下列方程: (1) 5x 8 3x 2 ; (2) 3x 7 32 2x 。
学习过程
一、 【我预习、我会学、我快乐】 南村侨联中学三年来共购买计算机 210 台,去年购买数量是前年的 2 倍,今年购买数量是
自学课本
去年的 4 倍,前年学校购买了多少台计算机? 解:设前年购买计算机 x 台,则去年购买 今年购买 台,依题意得 台,
要解这个方程,可以先把方程左边合并同类项,再用等式的性质解出 x 的值,解法如下:
【我自测、我提高、我收获】解下列方程: (1) x 5 1 ;
(2)
3 2 x 2 3
(3)
7 x 3 2 x ; (4) 2x x 3 1.5 2x ;
(6) 5 x 5 3x ; (7) x 3x 1.2

4.2解一元一次方程(1)

4.2解一元一次方程(1)
4、由8x=16,得x=2
2、如果ma=mb,那么下列变形不一定 正确的是( ) A、ma+1=mb+1
B、ma-3=mb-3
C、-0.5ma=-0.5mb
D、a=b
3 3.由(a 1)y 3得y 2 , 依据是什么? a 1 应受到什么限制,为什么。
2
例1:下列各未知数的值,哪个是方程5x-1=7x-2 的解
x=0, x=-1, x=3,
1 x= 2
2、解方程:求方程解的过程叫做解方程
共同讨论:
• 观察下列方程发生了怎样的变化:
2x+1 = 5
(方程两边都减去1)
2x = 4
(方程两边都除以2)
x = 2
说一说:
• 下列方程是如何变化的: 4x=3+x
初中数学七年级上册 (苏科版)
4.2解一元一次方程(1)
复习:
• 下列方程中是一元一次方程的有:
3 x2 , 0.3 x 1, x 2( x 1) 2 2 x, x 0, x 2 y 0, x 5 x 1, 2 x 2 4 x 3, x 1
1、填表: x 1 2 3 4 5
求方程的解就是将方程变形为x=a的形式
如何检验呢?
课堂练习:
1.解下列方程:
(1)x 2 6
(2) 3x 3 4x
1 (3) x 3 2
(4) 6x 2
练习(1):
• 判断下列变形是否正确
1、由3x+1=5,得3x=4 2、由2y+a=b+2y,得a=b

1 1 3、由 x 1 ,得x= 2 2
2x+1
当x= 时,方程2x+1=9成立。

4.2 解一元一次方程(1)

4.2   解一元一次方程(1)

你能发现什么规律?
b a


a
=
b
你能发现什么规律?
b b a a

a=b 2a = 2b

你能发现什么规律?
b b b a a a

a=b 3a = 3b

你能发现什么规律?
C个
b bbbbb b
a a a aaa a
C个

a=b ac = bc

你能发现什么规律?
b a

a
=
b

a b a b 2 2 3 3
-1=x变形为x=-1吗?
预习指南
解一元一次方程 (二)
——移项
x=2
x=2是原方程的解吗?
你能用同样的方法把方程3x=3+2x变形 为x=a形式吗?
小组展示: 1.解方程 x+5=2
解: 两边都减去5,得 X+5-5=2-5. 合并同类项,得 x=-3.
检验:把x=-3代入原方程,
左边=-3+5=2
右边=2 左边=右边
∴x=-3是原方程的解 没特殊要求时可作心算检验
b
等式的 左边
等号
a
等式的 右边
你能发现什么规律?
a


你能发现什么规律?
a


你能发现什么规律?
a


你能发现什么规律?
b
a


你能发现什么规律?
b
a


你能发现什么规律?
b a


a
=
b
你能发现什么规律?

解一元一次方程 (一)

解一元一次方程 (一)
3.2.4 解一元一次方程(一) ――合并同类项和移项
大连市第三十中学 林丹凤
环节一:展示目标,明确要求
学习目标与达成目标
会通过移项﹑合并同类项解一元一次 方程,知道用一元一次方程解实际问题的 基本过程.并会判断解的合理性.
环节二:引入新课
两种方式计费如下表
方式1 方式2
月租费 本地通话费
30 0.30元/分
0 0.4元/分
(1)你能从表中获得那些信息,试试用自己的语言说 一说? (2)老师到底应该选择那种计费方式比较合算呢? (3)一个月内在本地通话200分钟和350分钟,按两种 计费方式各需要交多少元? (4)对于某个本地通话时间,会出现两种计费方式相 同的情况吗?为什么?
环节三:探索新知,归类总结
根据以上问题的解决过程,你从中发现了什么?
实际问题
列方程
数学问题 (一元一次方程)
解 方 程
实际问题的 答案
检验
数学问题的答案
(X=a)
环节四:巩固练习

春节期间,某相邻的两个商场展开促 销活动,商场甲给出的优惠方案是,先花 50元办一张优惠卡,然后所有凭卡购物的 都8折优惠,商场乙给出的优惠方案是凡是 在乙商场购物的均9折优惠,如果你去购物, 你会选择哪家商场呢?
方式1
200分钟 90元
方式2
80元
350分钟
t分钟
135元
30+0.3t元
140元
0.4t元
归纳:
可以把问题(4)归纳为以下数学问题: 有两种移动电话收费方式,用方式1 每月收月租30元,此外根据每月累计通话 时间按0.3元/分加收通话费;用方式2不收 月租费,根据累计通话时间按0.4元/分收 通话费。求每月累计通话多长时间时两种 收费方式所收通话费用相同?

解一元一次方程(一)初中数学人教版

解一元一次方程(一)初中数学人教版

第三章一元一次方程3.2解一元一次方程(一)——合并同类项与移项一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程3x–5=8–4x移项后,正确的是A.3x–4x=8+5 B.3x–4x=8–5C.3x+4x=8–5 D.3x+4x=8+52.解方程时,不需要合并同类项的是A.3x=2x+1 B.4x=3x+2C.2x=1 D.6x–5=13.下列各变形中,不正确的是A.从x+3=6,可得x=6–3B.从2x=x–2,可得2x–x=–2C.从x+1=2x,可得x–2x=1D.从2x–4=3x+8,可得2x–3x=8+4A.①B.②C.③D.④5.已知方程2x+1=8,那么4x+1的值等于A.17 B.16C.15 D.19二、填空题:请将答案填在题中横线上.6.由方程x–9=–15,可得x=–15+__________,这是根据__________,在等式两边都__________,所以x=__________.7.若5x–7的值与4x+9的值相等,则x的值为__________.8.2x–7与4互为相反数,则x=__________.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.判断下列方程的求解过程是否正确,说明原因:10.解下列方程.第三章一元一次方程3.2解一元一次方程(一)——合并同类项与移项一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程3x–5=8–4x移项后,正确的是A.3x–4x=8+5 B.3x–4x=8–5C.3x+4x=8–5 D.3x+4x=8+5【答案】D【解析】方程3x–5=8–4x,移项得:3x+4x=8+5.故选D.2.解方程时,不需要合并同类项的是A.3x=2x+1 B.4x=3x+2C.2x=1 D.6x–5=1【答案】C3.下列各变形中,不正确的是A.从x+3=6,可得x=6–3B.从2x=x–2,可得2x–x=–2C.从x+1=2x,可得x–2x=1D.从2x–4=3x+8,可得2x–3x=8+4【答案】C【解析】A、将3从等号左边移到右边,变为–3,正确;B、将x从右边移到左边,变为–x,正确;C、将2x从右边移到左边,变为–2x,正确,但将1从等号左边移到右边不变号,错误;D、将3x从右边移到左边,变为–3x,正确,将–4从等号左边移到右边变为4,正确.故选C.4.解方程4(y–1)–y=2(y+12)的步骤如下:解:①去括号,得4y–4–y=2y+1②移项,得4y+y–2y=1+4③合并同类项,得3y=5④系数化为1,得y=53.经检验y=53不是方程的解,则上述解题过程中是从第几步出错的A.①B.②C.③D.④【答案】B【解析】第②步中将y的符号弄错,而出现错误,应为4y–y–2y=1+4而不是4y+y–2y=1+4.故选B.5.已知方程2x+1=8,那么4x+1的值等于A.17 B.16 C.15 D.19【答案】C【解析】方程2x+1=8,解得:x=3.5,把x=3.5代入4x+1得:14+1=15,故选C.学#@科网二、填空题:请将答案填在题中横线上.6.由方程x–9=–15,可得x=–15+__________,这是根据__________,在等式两边都__________,所以x=__________.【答案】9;等式的性质1;加9;–67.若5x–7的值与4x+9的值相等,则x的值为__________.【答案】16【解析】根据题意得:5x–7=4x+9,解得:x=16.故答案为:16.8.2x–7与4互为相反数,则x=__________.【答案】3 2【解析】依题意得:2x–7=–4,即2x=3,系数化1得:x=32.三、解答题:解答应写出文字说明、证明过程或演算步骤.9.判断下列方程的求解过程是否正确,说明原因:(1)–6x+3x=–1–8.解:合并同类项,得–9x=–9.系数化为1,得x=1.(2)5x+4x=18.解:合并同类项,得9x=18.系数化为1,得x=12.【答案】(1)不正确,理由见解析;(2)不正确,理由见解析.10.解下列方程.(1)9x–7=10x+8;(2)2.3y–3.8=4.8y+1.2;(3)32x–2.8+x=0.7:(4)113x–112=105x+16;(5)|x|+2=3.【答案】(1)x=–15;(2)y=–2;(3)x=75;(4)x=132;(5)x=1或–1.【解析】(1)移项,得:9x–10x=8+7,合并同类项,得:–x=15,。

解一元一次方程40题(一)含答案

解一元一次方程40题(一)含答案

解一元一次方程40题(一)一.解答题(共40小题)1.已知3x =是方程(1)3[(1)]234x m x -++=的解,求m 的值.2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.3.解方程(1)2(4)3(1)x x x --=- (2)313142x x-+-=4.某同学在解方程21233x x a-+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.5.解方程:(1)37322x x +=-; (2)43(20)40x x --+=; (3)352123x x +-=; (4)5415323412y y y +--+=-;6.解方程2191136x x ++-=7.解方程: (1)0.10.2130.020.5x x -+-= (2)312143x x -+-=-8.解方程: (1)132x x --= (2)0.6310.20.4x x--=9.解下列方程:(1)5379x x +=-+ (2)43(20)40x x --+= (3)3157146y y ---= (4)1213323x x x --+=-10.已知12x =是方程21423x m x m ---=的解,求式子211(428)(1)42m m m -+-+-的值.11.(1)计算:225(210)4-⨯--÷ (2)计算:2313()(24)(3)12468-+⨯-+-÷12.解方程:(1)2557x x +=- (2)3(2)25(2)x x -=-+ (3)14223x x +-+= (4)12311463x x x -++-=+13.解下列方程或方程组(1)219x x -=+ (2)52(1)x x +=- (3)43135x x --=- (4)3717245x x -+-=-14.若代数式33x +比344x -的值大4,求x 的值.15.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程. (1)判断934x -=是否是和解方程,说明理由;(2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.16.解方程(1)412(3)x x +=- (2)3157146y y ---=17.解方程.(1)8(35)20x x -+= (2)1:225%:0.753x = (3)2940%316x ÷=18.解方程 (1)23132x x --+= (2)2321{[1(1)]9}1320.32x xx +----=-19.解方程(1)0.50.7 6.5 1.3x x -=- (2)758143x x -+-=20.解下列方程:(1)3520x x x --=(2)3(56)320x x -=-(3)23[2(1)4]8x x x +--+=(4)2123134x x ---=21.解方程:851217x =22.m 为何值时,0.2m 的值比280.3m -的值大1?23.解方程:(1)34(25)4x x x -+=+; (2)12226x x x -+-=-.24.311(54)1535x -+= 22531277714x +-=25.解方程:(1)2343x x -=- (2)13(1)2x x --=(3)85(1)2x x +-= (4)4320.20.5x x +--=26.解方程:11(26)(8)134x x -=++.27.一元一次方程解答题:已知关于x 的方程23x m mx -=-与12(2)x x l -=-的解互为倒数,求m 的值.28.解方程(1)321x x -=-+ (2)18(1)32(21)x x x -+=-- (3)31571104y y ---=29.解方程:(1)2(100.5)(1.52)x x -=-+; (2)5415523412y y y +--+=-30.(1)将方程123126x x +--=去分母,得到33236x x +--=,错在 A .最简公分母找错 B .去分母时,漏掉乘数项C .去分母时,分子部分没有加括号D .去分母时,各项所乘的数不同(2)解方程:123126x x +--=31.0.1210.30.15x x-=+32.已知方程(21)32a x ax +=-有正整数解,求整数a 的值.33.解方程: (1)2121163x x +--= (2)2(1)35x x -=-34.解方程(1)2(21)(34)2x x +--= (2)1213323x x x --+=-35.先阅读下列解题过程,然后解答后面两个问题. 解方程:|3|2x -=.解:当30x -时,原方程可化为32x -=,解得5x =; 当30x -<时,原方程可化为32x -=-,解得1x =. 所以原方程的解是5x =或1x =. (1)解方程:|32|40x --=. (2)解关于x 的方程:|2|1x b -=+36.(1)684(1)x x -=-+ (2)20.30.410.50.3x x -+-=37.解下列方程:(1)2(2)3(41)9(1)x x x ---=-; (2)2152122362x x x-+--=-38.解方程:(1)432(1)1x x +=-+; (2)23(37)272x x +=-;(3)32[(21)2]223x x ---=; (4)218269x xx --=+.39.解下列方程:(1)369x --= (2)5467x x -=-+ (3)2(1)246x x -+=- (4)223123x x---=.40.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x =-,试求a 的值.解一元一次方程40题(一)参考答案与试题解析一.解答题(共40小题)1.已知3x =是方程(1)3[(1)]234x m x -++=的解,求m 的值.【分析】把3x =代入方程,即可得出一个关于m 的方程,求出方程的解即可. 【解答】解:3x =是方程(1)3[(1)]234x m x -++=的解,∴代入得:3(31)3[(1)]234m -++=, 解得:83m =-.【点评】本题考查了解一元一次方程和一元一次方程的解,能得出关于m 的一元一次方程是解此题的关键. 2.已知关于x 的方程13(23)322x x +-=和3261x m x +=+的解相同,求:代数式202020193(2)()2m m ---的值.【分析】分别求出两个方程的解,然后根据解相同,列出关于m 的方程,求出m 的值,再将m 的值代入200920103(2)()2m m ---,计算即可求解.【解答】解:解方程13(23)322x x +-=,得:2363x x +-=, 0x ∴=,方程13(23)322x x +-=和3261x m x +=+的解相同,21m ∴=解得:12m =, 所以202020193(2)()2m m ---20202019113(2)()222=-⨯--1(1)=--2=.【点评】本题考查了同解方程的知识,解答本题的关键是能够求解关于x 的方程,要正确理解方程解的含义. 3.解方程(1)2(4)3(1)x x x --=- (2)313142x x-+-=【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解; (2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解. 【解答】解:(1)去括号得:2833x x x -+=-, 移项合并得:25x =-, 解得: 2.5x =-;(2)去分母得:43162x x -+=+, 移项合并得:51x -=, 解得:0.2x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键. 4.某同学在解方程21233x x a-+=-时,方程右边的2-没有乘以3,其它步骤正确,结果方程的解为1x =.求a 的值,并正确地解方程.【分析】由题意可知2x =是方程212x x a -=+-的解,然后可求得a 的值,然后将a 的值代入方程求解即可.【解答】解:将1x =代入212x x a -=+-得:112a =+-. 解得:2a =,将2a =代入216x x a -=+-得:2126x x -=+-. 解得:3x =-.【点评】本题主要考查的是一元一次方程的解,明确2x =是方程2(21)3()2x x a -=+-的解是解题的关键. 5.解方程:(1)37322x x +=-; (2)43(20)40x x --+=; (3)352123x x +-=; (4)5415323412y y y +--+=-;【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)37322x x+=-,32327x x+=-,525x=,5x=;(2)43(20)40x x--+=,460340x x-++=,43604x x+=-,756x=,8x=;(3)去分母得:3(35)2(21)x x+=-,91542x x+=-,94215x x-=--,517x=-,3.4x=-;(4)去分母得:4(54)3(1)24(53)y y y++-=--,2016332453y y y++-=-+,2035243163y y y++=+-+,2814y=,12y=.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.6.解方程21911 36x x++-=【分析】根据去分母、去括号、移项、合并同类项、系数化为1解答即可.【解答】解:21911 36x x++-=2(21)(91)6x x+-+=42916x x+--=49612x x-=+-55x-=1x=-【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.7.解方程:(1)0.10.213 0.020.5x x-+-=(2)3121 43x x-+-=-【分析】(1)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程整理得:510223x x---=,移项合并得:315x=,解得:5x=;(2)去分母得:934812x x---=-,移项合并得:51x=-,解得:15x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.8.解方程:(1)132xx--=(2)0.6310.20.4 x x--=【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:216x x-+=,解得:5x=;(2)方程整理得:315512xx--=,去分母得:102315x x-=-,移项合并得:255x=,解得:0.2x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.9.解下列方程:(1)5379x x+=-+(2)43(20)40x x--+=(3)3157146 y y---=(4)121 3323x xx--+=-【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:126x=,解得:0.5x=;(2)去括号得:460340x x-++=,移项合并得:756x=,解得:8x=;(3)去分母得:93121014y y--=-,移项合并得:1y-=,解得:1y=-;(4)去分母得:18331842x x x+-=-+,移项合并得:2523x=,解得:2325x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.10.已知12x=是方程21423x m x m---=的解,求式子211(428)(1)42m m m-+-+-的值.【分析】把12x =代入方程,求出m 的值,再把代数式进行化简,最后代入求出即可. 【解答】解:把12x =代入方程21423x m x m ---=得:1112423m m ---=, 解得:5m =,211(428)(1)42m m m -+-+- 21112222m m m =-+-+- 2122m =-- 21522=-- 1272=-. 【点评】本题考查了解一元一次方程,一元一次方程的解,整式的混合运算和求值等知识点,能求出m 的值是解此题的关键.11.(1)计算:225(210)4-⨯--÷(2)计算:2313()(24)(3)12468-+⨯-+-÷ 【分析】(1)根据有理数的混合计算解答即可;(2)根据有理数的混合计算解答即可;(3)根据去分母、去括号、移项、合并同类项、系数化为1解答.【解答】解:(1)225(210)4-⨯--÷45(8)4=-⨯--÷202=-+18=-;(2)2313()(24)(3)12468-+⨯-+-÷ 1849912=-+-+÷318494=-+-+ 1224=-; 【点评】此题考查解一元一次方程,关键是根据去分母、去括号、移项、合并同类项、系数化为1解答.12.解方程:(1)2557x x +=-(2)3(2)25(2)x x -=-+(3)14223x x +-+= (4)12311463x x x -++-=+ 【分析】(1)移项,合并同类项,系数化成1即可;(2)去括号,移项,合并同类项,系数化成1即可;(3)去分母,去括号,移项,合并同类项,系数化成1即可;(4)去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:(1)2557x x +=-,2575x x -=--,312x -=-,4x =;(2)3(2)25(2)x x -=-+,362510x x -=--,352106x x +=-+,82x =-,0.25x =-;(3)14223x x +-+=, 3(1)2(4)12x x ++-=,332812x x ++-=,321238x x +=-+,517x =,5.4x =;(4)去分母得:3(1)122(23)4(1)x x x --=+++,33124644x x x --=+++,34464312x x x--=+++,525x-=,5x=-.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.13.解下列方程或方程组(1)219x x-=+(2)52(1)x x+=-(3)431 35x x--=-(4)3717 245x x-+ -=-【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:10x=;(2)去括号得:522x x+=-,移项合并得:7x-=-,解得:7x=;(3)去分母得:2053915x x-=--,移项合并得:844x-=-,解得: 5.5x=;(4)去分母得:401535468x x-+=--,移项合并得:11143x-=-,解得:13x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.若代数式33x+比344x-的值大4,求x的值.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:3344 34x x+--=,去分母得:41291248x x+-+=,移项合并得:524x -=,解得: 4.8x =-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.15.定义:若关于x 的一元一次方程ax b =的解为b a +,则称该方程为“和解方程”,例如:24x =-的解为2x =-,且242-=-+,则该方程24x =-是和解方程.(1)判断934x -=是否是和解方程,说明理由; (2)若关于x 的一元一次方程52x m =-是和解方程,求m 的值.【分析】(1)求出方程的解,再根据和解方程的意义得出即可;(2)根据和解方程得出关于m 的方程,求出方程的解即可.【解答】解:(1)934x -=, 34x ∴=-, 93344-=-, 934x ∴-=是和解方程;(2)关于x 的一元一次方程52x m =-是和解方程,2255m m -∴-+=, 解得:174m =-. 故m 的值为174-. 【点评】本题考查了一元一次方程的解的应用,能理解和解方程的意义是解此题的关键.16.解方程(1)412(3)x x +=-(2)3157146y y ---= 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y 系数化为1,即可求出解.【解答】解:(1)去括号得:4162x x +=-,移项合并得:65x =,解得:56x=;(2)去分母得:93121014y y--=-,移项合并得:1y-=,解得:1y=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.17.解方程.(1)8(35)20x x-+=(2)1:225%:0.75 3x=(3)29 40%316x÷=【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)利用比例的性质化简,计算即可求出x的值;(3)方程整理后,把x系数化为1,即可求出解.【解答】解:(1)去括号得:83520x x--=,移项合并得:525x=,解得:5x=;(2)整理得:1132434x⨯=⨯,整理得:21x=,解得:12x=;(3)方程整理得:9240%163x=⨯,即340%8x=,解得:1516x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.18.解方程(1)231 32x x--+=(2)2321{[1(1)]9}1 320.32x x x+----=-【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,去分母,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:42396x x-+-=,移项合并得:11x=;(2)去括号得:2010116132x xx+--+-=-,去分母得:66402063663x x x---+-=-,移项合并得:3162x-=,解得:2x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.解方程(1)0.50.7 6.5 1.3x x-=-(2)7581 43x x-+-=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项合并得:1.87.2x=,解得:4x=-;(2)去分母得:321203212x x---=,移项合并得:1765x-=,解得:6517x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.20.解下列方程:(1)3520x x x--=(2)3(56)320x x-=-(3)23[2(1)4]8x x x+--+=(4)21231 34x x---=【分析】解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1,据此求出每个方程的解即可.【解答】解:(1)3520x x x--=合并同类项,可得:40x-=,系数互为1,可得:0x=;(2)3(56)320x x -=-去括号,可得:1518320x x -=-,移项,可得:1520318x x +=+,合并同类项,可得:3521x =,系数互为1,可得:0.6x =;(3)23[2(1)4]8x x x +--+=,去括号,可得:2366128x x x +-++=移项,可得:2366128x x x +-=--+,合并同类项,可得:10x -=-,系数互为1,可得:10x =;(4)2123134x x ---=, 去分母,可得,4(21)3(23)12x x ---=,去括号,可得:846912x x --+=,移项,可得:864912x x -=-+,合并同类项,可得:27x =,系数互为1,可得:72x =. 【点评】此题主要考查了解一元一次方程的方法,要熟练掌握,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.21.解方程:851217x = 【分析】方程x 系数化为1,即可求出解.【解答】解:方程x 系数化为1得:122178x =⨯, 解得:92x =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.22.m 为何值时,0.2m 的值比280.3m -的值大1? 【分析】根据题意列出方程,求出方程的解即可得到m 的值.【解答】解:根据题意得:281 0.20.3m m--=,整理得:2080513mm--=,去分母得:1520803m m-+=,移项合并得:577m-=-,解得:775m=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.解方程:(1)34(25)4x x x-+=+;(2)12226x xx-+-=-.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:38204x x x--=+,移项合并得:624x-=,解得:4x=-;(2)去分母得:633122x x x-+=--,移项合并得:47x=,解得:74x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.24.311(54)1 535 x-+=22531277714x+-=【分析】方程移项合并,把x系数化为1,即可求出解;方程去分母,移项合并,把x系数化为1,即可求出解.【解答】解:移项得:3158 515x=,解得:1589x=;去分母得:418383x+-=,移项合并得:423x=,解得:234x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.25.解方程:(1)2343x x-=-(2)1 3(1)2xx--=(3)85(1)2x x+-=(4)432 0.20.5x x+--=【分析】(1)方程移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)原式去括号,移项合并,把x系数化为1,即可求出解;(4)方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)移项得:2343x x+=+,合并得:57x=,解得:75x=;(2)去分母得:6(1)1x x-=-,去括号得:661x x-=-,移项合并得:55x=,解得:1x=;(3)去括号得:8552x x+-=,移项合并得:33x=-,解得:1x=-;(4)方程整理得:520262x x+-+=,移项合并得:324x=-,解得:8x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.26.解方程:11(26)(8)1 34x x-=++.【分析】去分母,去括号,移项,合并同类项,系数化成1即可.【解答】解:去分母得:4(26)3(8)12x x-=++,82432412x x -=++,83241224x x -=++,560x =,12x =.【点评】本题考查了解一元一次方程,能正确根据等式的性质进行变形是解此题的关键.27.一元一次方程解答题:已知关于x 的方程23x m m x -=-与12(2)x x l -=-的解互为倒数,求m 的值.【分析】求出第二个方程的解,确定出第一个方程的解,代入计算即可求出m 的值.【解答】解:方程12(21)x x -=-,去括号得:142x x -=-, 解得:13x =, 将3x =代入方程23x m m x -=-得,3323m m -=-, 去分母得:93182m m -=-,解得:9m =-.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.28.解方程(1)321x x -=-+(2)18(1)32(21)x x x -+=--(3)31571104y y ---= 【分析】(1)方程移项合并,把x 系数化为1,即可求出解;(2)方程去括号,移项合并,把x 系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把y 系数化为1,即可求出解.【解答】解:(1)方程移项合并得:34x =, 解得:43x =; (2)去括号得:1818342x x x -+=-+,移项合并得:2520x =, 解得:45x =;(3)去分母得:62202535y y--=-,移项合并得:1913y-=-,解得:1319y=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.29.解方程:(1)2(100.5)(1.52)x x-=-+;(2)5415523412 y y y+--+=-【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把y系数化为1,即可求出解.【解答】解:(1)去括号得:20 1.52x x-=--,移项合并得:0.522x=-,解得:44x=-;(2)去分母得:2016332455y y y++-=-+,移项合并得:2816y=,解得:47y=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.30.(1)将方程123126x x+--=去分母,得到33236x x+--=,错在CA.最简公分母找错B.去分母时,漏掉乘数项C.去分母时,分子部分没有加括号D.去分母时,各项所乘的数不同(2)解方程:1231 26x x+--=【分析】(1)方程左右两边乘以6得到结果,即可作出判断;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)方程去分母得:3(1)(23)6x x+--=,去括号得:33236x x+-+=,故答案为:C;(2)去分母得:33(23)6x x+--=,去括号得:33236x x+-+=,解得:0x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.31.0.1210.30.15x x-=+【分析】方程整理后,去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:方程整理得:12020133x x-=+,去分母得:120320x x-=+,移项合并得:402x=-,解得:120x=-.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.32.已知方程(21)32a x ax+=-有正整数解,求整数a的值.【分析】将原方程整理移项,合并同类项,根据该方程有解,得到关于a得方程的解,结合方程的解为正整数,a为整数,得到两个关于a的一元一次方程,解之即可.【解答】解:(21)32a x ax+=-,移项,合并同类项得:(1)2a x-+=-,因为方程有解,所以(1)0a-+≠,即21xa=-,因为方程有正整数解,且a取整数,所以11a-=或12a-=,解得:2a=或3a=,答:整数a的值为2或3.【点评】本题考查了一元一次方程的解,正确掌握一元一次方程的解法是解题的关键.33.解方程:(1)21211 63x x+--=(2)2(1)35x x-=-【分析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去分母得:21426x x+-+=,移项合并得:23x-=,解得:32x =-; (2)去括号得:2235x x -=-,移项合并得:3x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.34.解方程(1)2(21)(34)2x x +--=(2)1213323x x x --+=- 【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)去括号得:42342x x +-+=,移项合并得:4x =-;(2)去分母得:18331842x x x +-=-+,移项合并得:2523x =, 解得:2325x =. 【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.35.先阅读下列解题过程,然后解答后面两个问题.解方程:|3|2x -=.解:当30x -时,原方程可化为32x -=,解得5x =;当30x -<时,原方程可化为32x -=-,解得1x =.所以原方程的解是5x =或1x =.(1)解方程:|32|40x --=.(2)解关于x 的方程:|2|1x b -=+【分析】(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.【解答】解:(1)当320x -时,原方程可化为3240x --=,解得2x =;当320x -<时,原方程可化为(32)40x ---=,解得23x =-. 所以原方程的解是2x =或23x =-.(2)①当10b +<,即1b <-时,原方程无解,②当10b +=,即1b =-时:原方程可化为:20x -=,解得2x =;③当10b +>,即1b >-时:当20x -时,原方程可化为21x b -=+,解得3x b =+;当20x -<时,原方程可化为2(1)x b -=-+,解得1x b =-+.【点评】本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.36.(1)684(1)x x -=-+(2)20.30.410.50.3x x -+-= 【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)原方程可整理得:203104153x x -+-=,依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:6844x x -=--,移项得:4846x x +=-+,合并同类项得:510x =,系数化为1得:2x =,(2)原方程可整理得:203104153x x -+-=, 方程两边同时乘以15得:3(203)5(104)15x x --+=,去括号得:609502015x x ---=,移项得:605015209x x -=++,合并同类项得:1044x =,系数化为1得: 4.4x =.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.37.解下列方程:(1)2(2)3(41)9(1)x x x ---=-;(2)2152122362x x x -+--=-.【分析】(1)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(2)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)去括号得:2412399x x x--+=-,移项得:2129943x x x-+=+-,合并同类项得:10x-=,系数化为1得:10x=-,(2)去分母得:2(21)(52)3(12)12x x x--+=--,去括号得:42523612x x x---=--,移项得:45631222x x x-+=-++,合并同类项得:55x=-,系数化为1得:1x=-.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.38.解方程:(1)432(1)1x x+=-+;(2)23 (37)272x x+=-;(3)32[(21)2]2 23x x---=;(4)218269x xx--=+.【分析】(1)先去括号,移项并合并同类项,再把系数化为1即可(2)可以先左右两边乘以14,去分母再去括号,移项并合并同类项,将系数化为1即可(3)先去括号,合并同类项,将系数化为1即可(4)可左右两边同时乘以18,去分母后,移项并合并同类项,将系数化为1即可【解答】解:(1)原式去括号得:4321x x+=-移项并合并同类项得,24x=-系数化为1得,2x=-(2)原式去分母得,4(37)2821x x+=-去括号得,12282821x x+=-移项合并同类项得,330x=系数化为1得,0x=(3)原式去括号得,42x-=移项得,6x=(4)原式去分母得,183(218)236x x x--=+去括号得,18654236x x x-+=+移项合并同类项得,7042x=系数化为1得,35 x=【点评】此题考查的是解一元一次方程,掌握解一元一次方程的步骤是解答此题的关键.解一元一次方程的步骤是:1.去分母:在方程两边都乘以各分母的最小公倍数;2.去括号:先去小括号,再去中括号,最后去大括号;3.移项:把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(注意移项要改变运算的符号);4.合并同类项:把方程化成(0)ax b a=≠的形式;5.系数化成1:在方程两边都除以未知数的系数a,得到方程的解.39.解下列方程:(1)369x--=(2)5467x x-=-+(3)2(1)246x x-+=-(4)2231 23x x---=.【分析】(1)依次移项,合并同类项,系数化为1,即可得到答案,(2)依次移项,合并同类项,系数化为1,即可得到答案,(3)依次去括号,移项,合并同类项,系数化为1,即可得到答案,(4)依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:(1)移项得:396x-=+,合并同类项得:315x-=,系数化为1得:5x=-,(2)移项得:4675x x-+=-,合并同类项得:22x=,系数化为1得:1x=,(3)去括号得:22246x x-+=-,移项得:24622x x-=--+,合并同类项得:26x-=-,系数化为1得:3x=,(4)去分母得:3(2)2(23)6x x---=,去括号得:36466x x--+=,移项得:36664x x+=++,合并同类项得:916x=,系数化为1得:169x=.【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.40.小明解方程21152x x a+-+=时,由于粗心大意,在去分母时,方程左边的1没有乘10,求的方程的解为2x=-,试求a的值.【分析】根据一元一次方程的解法即可求出答案.【解答】解:由题意可知:2x=-是方程2110110 52x x a+-⨯+=⨯,(41)215(2)a∴-+⨯+=--,61105a∴-+=--,5105a∴-=--,5105a∴=-+,55a∴=-,1a∴=-;【点评】本题考查一元一次方程的解法,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.。

4.2_解一元一次方程(1)

4.2_解一元一次方程(1)

2.解下列方程: (1) -2x = -3x+8 (2) -5 y = 2 0
(3) -3x=3-4x 3 2 (4) x = 2 3
(5) 0.4 x = -6
3.下列各式的变形正确的是( D)
x A.由 0,得到 x = 2 2 x B.由 3 ,得到 x = 1 3
2 C.由-2 a = -3,得到 a = 3
粗心的小虎在解关于x的方程2a-3x=12时, 误将-3x看做3x,得方程的解为x=3。你 能帮助小虎求出原方程的解吗?
归纳总结:
1.等式的两条性质;
① 如果 a = b,那么 a ± c = b c
a b 如果 a = b,那么 (c≠ 0) c c 2.解一元一次方程的实质就是利用等式的性质求 出未知数的值.
X 2x +1 2x – 1 3x – 2 4x - 3
1 3 1 1 1
2 5 3 4 5
3 7 5 7 9
4 9 7 10
5 11 9 13
13
17
记一记:
方程的解:能使 方程左右两边相等 的未知数的 值叫做方程的解。 解方程:求 方程的解的过程 叫做解方程。
x=2是下列哪个方程的解? (1) 3x-1=2x+1 (2) 3x+1=2x-1 (3) 3x+2x-2=0 (4) x-2=0
(1)如果x=y,那么
(2)如果x=y,那么 x +5a y +5a ( √ ) x y (3)如果x=y,那么 5 a ( ) × 5 a
2 + 2 x y 3 3
(×)
(4)如果x=y,那么
(5)如果x=y,那么
5x 5 y

解一元一次方程(一)

解一元一次方程(一)

3.2 解一元一次方程(一)——合并同类项与移项第1课时 利用合并同类项解一元一次方程01 教学目标经历把方程等号两边分别合并同类项的过程,能用合并同类项解一元一次方程. 02 预习反馈阅读教材P86~87“问题1及例1”,完成下列内容.1.形如“ax +bx =c ”的方程,先合并同类项,再把未知数系数化为1.2.补全下列解方程的过程:(1)6x -x =4;解:合并同类项,得 5x =4.系数化为1,得x =45.(2)-4x +6x -0.5x =-0.3.解:合并同类项,得1.5x =-0.3.系数化为1,得x =-15.03 例题讲解例 (教材P87例1变式)解下列方程:(1)x 2+x +2x =140;(2)3x -1.3x +5x -2.7x =-12×3-6×4.解:(1)x =40. (2)x =-15.【点拨】 用合并同类项解一元一次方程的步骤:(1)合并同类项,把原方程化为ax =b(a ≠0)的形式;(2)系数化为1,若合并后未知数的系数是1,则没有这个步骤.系数化为1的技巧:①若未知数的系数是不等于0和1的整数,则方程两边除以这个整数;②若未知数的系数是分数m n ,则方程两边乘它的倒数,即乘n m ;③若未知数的系数是带分数(小数),则先化为假分数(分数),再按情形②处理.总之,不要一律地除以未知数的系数,要视具体情况灵活处理.【跟踪训练】 解下列方程:(1)6x -5x =3;解:合并同类项,得x =3.(2)-x +3x =7-1;解:合并同类项,得2x =6.系数化为1,得x =3.(3)x 2+5x 2=9;解:合并同类项,得3x =9.系数化为1,得x =3.(4)6y +12y -9y =10+2+6.解:合并同类项,得9y =18.系数化为1,得y =2.04 巩固训练1.对于方程8x +6x -10x =6进行合并正确的是(C)A .3x =6B .2x =6C .4x =6D .8x =62.方程18x -3x +5x =11的解是(C)A .x =2611B .x =-2011C .x =1120D .x =11103.方程10x -2x =6+1两边合并后的结果为8x =7,其解为x =78.4.解下列方程:(1)-10x -6x =-7+15; (2)23x -56x =-67;(3)14x -12x =-7-6; (4)-32y -3y =52-2.解:(1)x =-12. (2)x =367. (3)x =52. (4)y =-19.05 课堂小结1.你今天学习的解方程有哪些步骤?合并同类项,系数化为1(等式的性质2).2.合并同类项即是将方程中含未知数的项和常数项分别合并,系数化为1的依据是等式的性质2.第2课时利用合并同类项解一元一次方程的实际问题01教学目标经历用“总量=各部分量的和”这一基本关系列一元一次方程解决实际问题的过程,掌握一元一次方程的简单应用.02预习反馈阅读教材P86“例1”,完成下列内容.学校机房今年和去年共购置了100台计算机,已知今年购置计算机数量是去年购置计算机数量的3倍,求今年购置计算机的数量.解:设今年购置计算机x台,则去年购置计算机13x台.根据题意,得x+13x__=100,解得x=75.答:今年购置计算机75台.03例题讲解例(教材P86例1变式)中国某明星与麦当劳公司签约,该明星作为麦当劳的形象代言人,三年获酬金1 400万美元,若前一年的酬金是后一年的一半,且不考虑税金,则他第一年应得酬金多少万美元?解:设该明星第一年的酬金为x万美元,则第二年的酬金为2x万美元,第三年的酬金为4x万美元,由题意,得x+2x+4x=1 400,即7x=1 400.等式两边都除以7,得x=200.答:该明星第一年应得酬金200万美元.【点拨】【跟踪训练】麻商集团三个季度共销售冰箱2 800台,第一个季度销售量是第二个季度的2倍,第三个季度销售量是第一个季度的2倍,试问麻商集团第二个季度销售冰箱多少台?解:设麻商集团第二个季度销售冰箱x台,则第一个季度销售量为2x台,第三个季度销售量为4x台.根据总量等于各分量的和,得x+2x+4x=2 800.解得x=400.答:麻商集团第二个季度销售冰箱400台.04巩固训练1.已知某数的3倍与这个数的2倍的和是30,求这个数.解:设这个数是x.根据题意,得3x+2x=30.解得x=6.答:这个数是6.2.据某统计数据显示,在我国的700座城市中,按水资源情况可分为三类:暂不缺水城市、一般缺水城市和严重缺水城市,其中,暂不缺水城市数是严重缺水城市数的4倍,一般缺水城市数是严重缺水城市数的2倍,求严重缺水的城市有多少座?解:设严重缺水的城市有x座.根据题意,得4x+2x+x=700.解得x=100.答:严重缺水的城市有100座.3.蜘蛛有8条腿,蜻蜓有6条腿,现有蜘蛛、蜻蜓若干只,它们共有120条腿,且蜻蜓的只数是蜘蛛的2倍,蜘蛛、蜻蜓各有多少只?解:设蜘蛛有x只,则蜻蜓有2x只,根据题意,得8x+6×2x=120.解得x=6.所以蜻蜓有:6×2=12(只).答:蜘蛛有6只,蜻蜓有12只.05课堂小结如何列方程?分哪些步骤?(1)设未知数;(2)分析题意找出等量关系;(3)根据等量关系列方程.第3课时 利用移项解一元一次方程01 教学目标1.经历利用等式的性质解一元一次方程的过程,通过观察、比较、归纳出移项的法则.2.能用移项解一元一次方程.02 预习反馈阅读教材P88~89“问题2及例3”,完成下列内容.1.把等式一边的某项变号后移到另一边,叫做移项.2.补全下列解方程的过程:(1)5x -8=-3x -2;解:移项,得5x +3x =-2+8.合并同类项,得8x =6.系数化为1,得x =34.(2)3x +7=32-2x.解:移项,得3x +2x =32-7. 合并同类项,得5x =25.系数化为1,得x =5.03 例题讲解例1 (教材P89例3变式)解下列方程:(1)x -2=3-x ;(2)-x =1-2x ;(3)x -2x =1-23x ;(4)x -3x -1.2=4.8-5x. 解:(1)x =52. (2)x =1. (3)x =-3. (4)x =2.【点拨】 移项时要改变项的符号,通常把含未知数的项移到方程的左边,而常数项移到方程的右边.【跟踪训练】 解下列方程:(1)4x =9+x ;解:移项,得4x -x =9.合并同类项,得3x =9.系数化为1,得x =3.(2)4-35m =7;解:移项,得-35m =7-4.合并同类项,得-35m =3.系数化为1,得m =-5.(3)4x +5=3x +3-2x ;解:移项,得4x -3x +2x =-5+3.合并同类项,得3x =-2.系数化为1,得x =-23.(4)8y -3=5y +3.解:移项,得8y -5y =3+3.合并同类项,得3y =6.系数化为1,得y =2.04 巩固训练1.下列变形过程中,属于移项的是(C)A .由3x =-1,得x =-13B .由x 4=1,得x =4C .由3x +5=0,得3x =-5D.由-3x+3=0,得3-3x=02.对方程2x-3+x=6进行移项,下列正确的是(C)A.2x-x=6+3 B.2x-x=6-3C.2x+x=6+3 D.2x+x=6-33.方程3x+1=2x的解是(A)A.x=-1 B.x=1 C.x=-2 D.x=2 4.解下列方程:(1)5x=3x-12;(2)8x-5=7x+2;(3)12x-7=8x-3;(4)7y+8=2y-5-3y.解:(1)x=-6.(2)x=7.(3)x=1.(4)y=-13 8.05课堂小结1.今天你又学会了解方程的哪些方法?有哪些步骤?每一步的依据是什么?2.移项的“两注意”:(1)“两变”,即一变位置(从方程的一边移到另一边),二变符号,不要只变位置而不变符号;(2)要与交换律加以区别,在方程的同一边交换项的位置时,符号不变.第4课时利用移项解一元一次方程的实际问题01教学目标经历用“表示同一个量的两个不同的式子相等”这一基本关系列一元一次方程解决实际问题的过程,掌握一元一次方程的简单应用.02预习反馈阅读教材P90“例4”,完成下列内容.某果园12的面积种植了苹果树,14的面积种植了葡萄树,其余40 000 m 2的面积种植了桃树.求这个果园的面积.解:设这个果园的面积是x m 2,根据题意,得12x +14x +40 000=x .解得x =160__000.答:这个果园的面积是160__000__m 2.03 例题讲解例 (教材P90例4变式)将一堆糖果分给幼儿园某班的小朋友,如果每人2颗,那么就多8颗;如果每人3颗,那么就少12颗,这个班共有多少名小朋友? 解:设这个班共有x 名小朋友.根据题意,得2x +8=3x -12,解得x =20.答:这个班共有20名小朋友.【点拨】 用“表示同一个量的两个不同的式子相等”列一元一次方程解决实际问题的步骤:(1)设两个未知量中的一个为未知数x ;(2)用含x 的两个不同式子表示另一个未知量;(3)建立一元一次方程;(4)解方程;(5)检验,作答.【跟踪训练】 清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈,若每小组7人,则余下3人;若每小组8人,则少5人.该班共有多少名同学?解:设一共分为x 个小组.由题意,得7x +3=8x -5.解得x =8.则7x +3=7×8+3=59.答:该班共有59名同学.04巩固训练1.用大小两台拖拉机耕地,每小时共耕地30亩.已知大拖拉机的效率是小拖拉机的1.5倍,问小拖拉机每小时耕地多少亩?解:设小拖拉机每小时耕地x亩.根据题意,得30-x=1.5x.解得x=12.答:小拖拉机每小时耕地12亩.2.学校举办秋季田径运动会,八年级(1)班班委会为班上参加比赛的运动员购买了8箱饮料,如果每人发2瓶,那么剩余16瓶;如果每人发3瓶,那么少24瓶.问该班有多少人参加比赛?解:设该班有x人参加比赛.依题意,得2x+16=3x-24.解得x=40.答:该班有40人参加比赛.3.根据图中的信息,求梅花鹿和长颈鹿现在的高度.解:设梅花鹿现在高x m.根据题意,得3x+1=x+4.解得x=1.5.所以x+4=5.5.答:梅花鹿现在高1.5 m,长颈鹿现在高5.5 m.05课堂小结1.学生试述本节课学了哪些内容?2.本节课讨论的问题中的相等关系又有何共同特点?。

解一元一次方程(1)

解一元一次方程(1)

4.2解一元一次方程(1)班级姓名学号学习目标:1.利用天平,通过观察,分析得出等式的两条性质;会利用等式的两条性质解方程;2.通过具体事例,结合等式的性质,能够归纳出解方程的一种常用形式;学习难点:了解等式的两条性质,并能运用着两条性质解方程。

教学过程:一、创设情境,引入新课问题一:(1)如何得到蓝色小球的质量呢?你会列出方程吗?列出的方程是一元一次方程吗?二、合作质疑,探索新知问题二:(1)通过填表,得到方程的解得定义。

问题三:(1)可以用天平图形来示意2x+1=5这个方程吗?(2)观察2 x+1=5的天平示意图,你可以用天平表示2x=4这个方程吗?怎么做呢?仔细观察你有什么新发现?(3)通过天平平衡的演示,方程3x=2+2x是怎么变形的?天平与等式有什么共同的地方呢?(4)由天平的平衡性质,你能类别出等式的性质吗?三、自主归纳,形成方法1什么叫方程的解?什么叫解方程?2天平两边同时添加或减少相同的砝码,从天平平衡出发,你能得到等式的性质吗?巩固练习:1.用适当的数或整式填空,使所得结果仍为等式,并说明依据是什么?(1)如果2=5+x , 那么x=————(2)如果6x=5x-3 ,那么6x-=-3(3)如果y = 4 , 那么y =————2.判断下列变形是否正确?(1)由x+5 = y+5 ,得x = y ()(2)由2x-1 = 4 ,得 2x = 5 ()(3)由2x = 1 ,得x = 2 ()(4)由3x =2x,得 3= 2 ()3. 利用等式性质,解下列方程(写出检验过程):(1)x+2=-6(2)-3x= 3-4x(3) -5-x = 3(4)-6x = 2四、课堂小结,感悟收获通过以上的巩固,你觉得方程的解得最终形式是什么呢?【课后作业】班级 姓名 学号一、选择题1 下列方程中,解为 x=2的是( )A . 3x-2=3 B. 4-2(x-1)=1C. -x+6=2xD. x-1=02 下列变形是根据等式的性质的是( )A .由2x ﹣1=3得2x=4 B.由3x-5=7得 3x=7-5C .由-3x=9得 x=3 D.由2x ﹣1=3x 得5x=﹣13 解方程41x=31,正确的是( )34; D .41x=31, x= 43D .-2)__________.4 当m= __________时,方程2x+m=x+1的解为x=-4.当a= ____________时,方程3x 2a-2=4是一元一次方程.5 求作一个方程,使它的解为-5,且未知数的系数为2,这个方程为__________.三、解下列方程(1)6x=3x -12 (2)2y ―21=21y ―3(3)-2x=-3x+8 (4)56=3x+32-2x四 综合练习1、2a —3x=12是关于x 的方程.在解这个方程时,粗心的小虎误将-3x 看做3x ,得方程的解为x=3.请你帮助小虎求出原方程的解.)| 的括号中分别填入一个数,使。

解一元一次方程(1)

解一元一次方程(1)

3 , 两个 有理 数 , “ . y是 则 与 y的和 的 等 1 于 4 , 式子 表示 为 ( ”用 ) .
A ++ 4 . y}=
B. + 1 y=4
8 如 果 方 程 +口= 一1的解 是 =一 . . 4 求
3 口一2的值是 .
c ( . +y = ) 4
C 由 +2 Y . . +2 得 =Y D 由 一 x=一 y 得 =一 . 3 3。 y
22 (x+1 一— )
去 括号 . 得
维普资讯

维普资讯




次 方 程 的 应 用 例 析 (题 在 第 4 页 )
D. Ⅱ a = 3 , 口=3 女果 2 a男 么
D 22 . (x一1 一( +3 ) - ) 1 x =- 4
2 若 方 程 3 一4=5 ( . 口为 已知 数 , 为未 知 数) 是一元 一 次方程 , a等 于 ( 则
A. 意有理 数 任
C.1 B. 0
6 在 下 列式 子 中 , 方程 的有 . 是 写序号 即 可 ) .
) .
B. 一1
B = 变 += . } 成 12 竺
C - y=一 .3 7变 成 1y=3 5 5
C. 1
D. 3 一
1 解 方 程 .
上 一
=_ 4时

去分 母
5 运用等式性质进行 的变形 , . 正确的是(
A. 如果 口 。 么 n =b 那 +c =b—c

C. ≠ 一1
D. ≠ 1
; 时再 根 据 这
_





6 =一 。 2是 下 列 某 一 方 程 的解 .这 个 方 程

【13】第13讲 解一元一次方程01

【13】第13讲 解一元一次方程01

【知识衔接】【新课导学】知识点一 等式的基本性质【知识梳理】 等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等. 如果a =b ,那么a ±c =b ±c . 等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等. 如果a =b ,那么ac =bc ;如果a =b (c ≠0),那么c a =cb. 【例题精讲】典例1 利用等式的性质解下列方程:(1) x +7=26; (2) -5x =20; (3) -31x -5=4.典例2 根据等式性质,下列结论正确的是( ) A .如果﹣2a =2b ,那么a =﹣b B .如果a ﹣2=2﹣b ,那么a =﹣bC .如果2a =b ﹣2,那么a =bD .如果2a =12b ,那么a =b变式1.在对方程2x−13+1=2的下列变形中,应用了等式的性质2变形的是( )A .13(2x −1)+1=2 B .(2x ﹣1)+3=6 C .2x−13=1 D .2x−13−1=0变式2.下列变形符合等式性质的是( ) A .如果2x ﹣3=7,那么2x =7﹣3 B .如果−13x =1,那么x =﹣3C .如果﹣2x =5,那么x =5+2D .如果3x ﹣2=x +1,那么3x ﹣x =1﹣2解一元一次方程01第十三讲专题13ZHUAN TI SHISAN小学阶段:利用等式的性质1解方程:x-8=9 解,方程两边同时加8得 x-8+8=9+8x=17初中阶段:利用等式的性质1还可以在方程的两边同时加上(或减去)同一个式子。

例如:2x+3=x-5解:等式两边同时减(x+3),得 2x+3-(x+3)=x-5-(x+3)x=8知识点二 利用合并同类型解方程【知识梳理】合并含有未知数的同类项时,运用乘法分配律把未知数的系数相加,未知数及其指数不变,合并同类项在解一元一次方程中起到化简的作用合并同类项是一种恒等变形,它使方程变得简单,更接近x=a (a 为常数)的形式 【例题精讲】 典例3 解下列方程: (1) 2x -25x =6-8 (2) 7x -2.5x +3x -1.5x =-15×4-6×3典例4有一列数,按一定的规律排列成1,-3,9,-27,81,-243,…. 其中某三个相邻数的和是-1701,这三个数各是多少?变式3. 解下列方程: (1) 5x -2x =9; (2)7232=+xx ; (3) -3x +0.5x =10; (4) 7x -4.5x =2.5×3-5.知识点三 用移项解方程【知识梳理】像上面那样把等式一边的某项变号后移到另一边,叫做移项. 45145202543254203=→-=-→-=-→-=+x x x x x x 系数化为合并同类项移项【例题精讲】 典例5 解下列方程:(1) 3x +7=32-2x (2) x -3=23x +1 (3) 6x -7=4x -5; (4) 21x -6=43x .【课后练习】一.精心选一选(共9小题,每小题3分,共27分)1.方程﹣3x﹣4=0解是()A.x=−43B.x=34C.x=43D.x=−342.已知x=2是关于x的方程7x﹣a=5的解,则a的值等于()A.﹣19 B.﹣9 C.9 D.19 3.方程18=5﹣x的解为()A.﹣13 B.13 C.23 D.﹣23 4.关于x的方程kx﹣3=2x的解是整数,则整数k的可能值有()A.1个B.2个C.3个D.4个5.由2x﹣7=3x+2,得2x﹣3x=2+7,在此变形中方程的两边同时加上()A.3x+7 B.﹣3x+7 C.3x﹣7 D.﹣3x﹣7 6.若x=﹣3是一元一次方程2(x+k)=5(k为实数)的解,则k的值是()A.−12B.12C.−112D.1127.若﹣5x2y m﹣3与x n﹣1y是同类项,则方程nx﹣m=5的解是()A.x=4 B.x=3 C.x=2 D.x=18.某同学解方程4x﹣3=□x+1时,把“□”处的系数看错了,解得x=4,他把“□”处的系数看成了()A.3 B.﹣3 C.4 D.﹣49.下列运用等式性质进行的变形中,正确的是()A.若a=b,则a+5=b﹣5 B.若a=b,则2a=3bC.若a+b=2b,则a=b D.若a=b+2,则2a=2b+2二.细心填一填(共6小题,每销题4分,共24分)10.解方程中有一步变形叫“移项”,移项的依据是.11.已知x=﹣3是方程(k+2)x﹣k﹣x=5的解,则k的值是.12.假设“▲、●、■”分别表示三种不同的物体.如图,前两架天平保持平衡,如果要使第三架天平也保持平衡,那么“?”处应放个■.13.若方程3x+a=b的解是x=1,则关于未知数y的方程6y﹣2b+18+2a=0的解是y=.14.已知5a+2b=3b+10,利用等式性质可求得10a﹣2b的值是.15.若m是方程3x﹣2=2x+1的解.则30m+10的值为.三.解答题(共49分)16.(30分)解方程(1)7x﹣4=2(x+3)(2)2+24﹣x=3x (3)y﹣320﹣2y=10;(4)10x+9=12x﹣1;(5)2﹣3x=5﹣2x (6)5x﹣4=7x+6;17.(6分)代数式﹣x+4比5x多2,求x.18.(6分)已知:关于x的方程m﹣mx-3=2x的解与方程3y+7=﹣2y+2的解相等,求m的值.19.(7分)【我阅读】解方程:|x+5|=2.解:当x+5≥0时,原方程可化为:x+5=2,解得x=﹣3;当x+5<0时,原方程可化为:x+5=﹣2,解得x=﹣7.所以原方程的解是x=﹣3或x=﹣7.【我会解】解方程:|3x﹣2|﹣5=0.。

解一元一次方程(1)

解一元一次方程(1)
若已知x=2是关于x的方程2x+3k=4的解,则k的值为多少?
能使方程两边相等的未知数的值叫做方程的解.求方程的解的过程叫做解方程.
练一练:
(1)在1、3、-2、0中,方程2x-1=-5的解为

(2)在1、3、-2、0中,方程=1的解为
根据等式性质解一元一次方程
例1解下列方程:
(1)x+5=2;(2)-2x=4.
求方程的解就是将方程变形为x=a的形式.
议一议:
2、运用等式的基本性质解简单的一元一次方程.
教具
与课件




4.2解一元一次方程(1)
教学
环节
学生自学共研的内容方法
(按环节设计自学、讨论、训练、探索、创新等内容)
教师施教提要
(启发、精讲、活动等)
再次
优化






情境引入
怎样求一元一次方程2x+1=5,2x+(12-x)=20,
x-4=x-1,8+6(n-1)=140,5+x=(32+x)中未知数的值呢?
尊重主体面向全体先学后教当堂训练科研兴教力求高效
教材第课(章)第节(单元)第课时,总课时年月日
课题
4.2解一元一次方程(1)
教学模式
讨论交流
教学
目标(认知技能
情感)
1.了解方程的解,解方程的概念;
2.掌握运用等式的基本性质解简单的一元一次方程;
3.经历体会解方程中的转化思想.
教学重难点
1、运用等式的基本性质解简单的一元一次方程.
方程的解和解方程
做一做:
填表:
x
1
2
3
4
5

解一元一次方程(1和2)

解一元一次方程(1和2)

4.2 解一元一次方程(1)班级 姓名 学号主备人:吴江 审核人:初一数学备课组 日期【学习目标】(1)了解方程的解和解方程的概念。

(2)了解方程的基本变形在解方程中的应用,并会解简单的一元一次方程。

【教学重点】运用等式的基本性质解一元一次方程。

【教学难点】理解方程的解及解方程的区别以及方程的基本变形。

【预习内容】预习教科书P99-100页的内容,并回答下列问题1、下列方程中,是一元一次方程的是 ( )A 、2x -1=3x 2B 、x x=+63 C 、3x +2y =5 D 、6+x =1 2、做一做:填表由上表知:当x = = 是方程=5的解3、概念方程的解: 叫做方程的解.解方程: 叫做解方程等式的性质1:等式两边都加上或减去 ,所得结果仍为等式 等式的性质2:等式两边都乘以或除以 ,所得结果仍为等式. 议一议:上面两个等式的划线部分有什么不同?为什么?4、用适当的数或整式填空,使所得结果仍是等式,并说明依据是什么.(1)如果6+x =2,那么x =___________ ,根据是____________ ;(2) 如果1523=x ,那么x =___________,根据是________ __ . 【例题选析】例1、检验下列各数是不是方程4x -3=2x +3的解.(1)x =3 (2)x =8 (3)x =5分别把1、2、3代入下列方程,哪一个值能使方程两边相等?(1)2x -1=5 (2)3x -2=4x -3例2、解下列方程:(1)x +5=2 (2)3x -2=4x -3练习:下列变形错误的是( )A .由x + 7= 5得x +7-7 = 5-7 ;B .由3x -2 =2x + 1得x = 3C .由4-3x = 4x -3得4+3 = 4x +3xD .由-2x = 3得x =-239、想一想:(1)每一步的变形依据是什么?(2)怎样检验求得的值为方程的解?(3)解方程目标是什么?10、课堂练习:教科书100页练一练11、师生小结:通过本节课的学习,你有哪些收获?【课堂反馈】1、方程312-x =x -2的解是( ) A .5 B .-5 C .2 D .-22、某数的4倍减去3比这个数的一半大4,则这个数为 __________.3、当m = __________时,方程2x +m =x +1的解为x =-4.4、求作一个方程,使它的解为-5,这个方程为5、解下列方程(1)531=x (2)6x =3x -12(3)35=-x (4)54-=+t(5) -2x =-3x +8 (6) x x 564-=-(7) 2y ―21=21y ―3 (8) -2x +56=3x +32【拓展与提高】若关于x 的方程2ax +27=0与2x +3=0有相同的解,求a 的值和这个相同的解。

小学数学解一元一次方程

小学数学解一元一次方程

小学数学解一元一次方程解一元一次方程是小学数学中的重要内容。

在解题过程中,我们需要理解一元一次方程的概念,并掌握解题方法。

本文将详细介绍解一元一次方程的步骤,并通过实例演示解题过程。

一、一元一次方程的概念一元一次方程是指仅含有一个未知数,并且未知数的最高次数为1的方程。

一元一次方程的一般形式为ax + b = 0,其中a和b为已知数,x为未知数。

二、解一元一次方程的步骤解一元一次方程的步骤一般包括去分母、去括号、整理方程、移项和求解。

下面我们将通过一个具体的例子来解释这些步骤。

例题:解方程3x + 4 = 13(1)去括号:由于方程中没有括号,所以这一步可以省略。

(2)整理方程:将方程3x + 4 = 13中的4移到等号右侧,得到3x = 13 - 4,即3x = 9。

(3)移项:将3x = 9中的4移到等号左侧,得到x = 9 / 3,即x = 3。

(4)求解:由x = 3得出方程的解为x = 3。

三、解一元一次方程的实例演示为了更好地理解解一元一次方程的步骤,我们来通过一个实例演示解题过程。

例题:解方程2x - 5 = 3x + 1(1)去括号:由于方程中没有括号,所以这一步可以省略。

(2)整理方程:将方程2x - 5 = 3x + 1中的3x移到等号左侧,得到2x - 3x = 1 + 5,即-x = 6。

(3)移项:将-x = 6中的负号移动到等号右侧,得到x = -6。

(4)求解:由x = -6得出方程的解为x = -6。

在解题过程中,我们使用了去括号、整理方程、移项和求解的步骤,依次按照这些步骤进行,可以有效地解决一元一次方程。

需要注意的是,在进行移项时,要根据方程中的符号进行合理的操作。

四、小结解一元一次方程是小学数学中的重要内容。

在解题过程中,我们需要掌握解一元一次方程的步骤,包括去括号、整理方程、移项和求解。

通过实例演示,可以更好地理解和掌握解题的方法。

在实际应用中,我们可以通过解一元一次方程来解决一些实际问题,如求未知数的值等。

§6.2.2 解一元一次方程(1)

§6.2.2  解一元一次方程(1)

§6.2.2 解一元一次方程(1)科目:七年级数学备课人:王淑轶导学目标:1、了解一元一次方程的意义,掌握含有括号的一元一次方程的解法;2、进一步渗透化归的数学思想,结合方程变形过程体会灵活、合理应用的必要性,培养严谨的学风。

内容分析:学习重点:含有括号的一元一次方程的解法。

导学过程:一、复习回顾,导入新课:1、去掉整式中的括号和括号前面的正号时,原括号中的各项;去掉整式中的括号和括号前面的负号时,原括号中的各项。

2、解下列方程:(1)2x-1=5x+7; (2)12y-3=5y+14.二、自主探索,预习展示:自学课本8页内容,完成下列问题:1、只含有个未知数,并且含有未知数的式子是,未知数的次数是,这样的方程叫做一元一次方程。

2、下面方程中,是一元一次方程的有 (填正确选项的序号)。

(1)34x=12;(2)3x-2;(3)2-n4=n-15;(4) 5(2m-1)=1-5m2;(5)5x2-3x+1=0;(6)2x+y=1-3y;(7)2x-1=5;(8)17x-15=2x3-1.三、合作探究:1、解方程:3(x-2)+1=x-(2x-1).思考:方程中含有括号时,可以先运用法则把括号去掉,再进行变形求出方程的解。

解:去括号,得:移项,得:合并同类项,得:将系数化为1,得:注意:解完方程后,要注意将得到的解代入原方程进行检验。

2、解方程:3x-[3(x+1)-(x+4)]=1.思考:方程中含有多重括号时,该怎么办呢?试一试。

四、巩固练习:1、解下列方程:(1)5(x+2)=2(5x-1); (2)4(2y+3)=8(1-y)-5(y-2);(3)x-2[x - 12 (x-1)]= 23 (x+1); (4) 32 [ 23 (x 4-1)-2]=x+2.2、当x 取何值时,代数式3(x-7)的值比代数式(4-x)的值的2倍大5?五、拓展延伸:已知x=12 是方程5m+12x=2(14+x)-x 的解,求关于x 的方程mx+2=m(1-2x)的解。

6.2解一元一次方程(1)

6.2解一元一次方程(1)
华师版七年级下
6.2解一元一次方程
1.方程的简单变形
代 数 式



什么叫代数式、什么叫等式? 你能区分代数式与等式吗?下列式中哪些是代数式? 哪些是等式?
1 abc ; 3a- 2b; 1 3; xy + y 2 - 5 3 2 - a; 2+3=5; 3×4=12; 9x+10 =19; a+b=b+a; S= r 2. 答:用运算符号连接数字与字母的式子叫代数式; 含有等号的式子叫等式; ~是代数式; ~是等式。
用等式的性质解方程 例4 解下列方程:
(1) 8x = 2x-7 ;
(2) 6 = 8+2x;
1 1 (3) 2y- = y-3 ; 2 2
(4) 10m+5= 17m-5-2m.
方程知识的应用
例5 方程 2x+1=3和方程2x-a=0 的解相同,求a的值. 变式:关于x的方程 2x-k+5=0的根
为-1,求代数式k2-3k-4的值.
P7 习 题 6.2.1的第1~3题.
由天平性质看等式性质
添上 天平两边同时 相同质量的砝码, 天平仍然平衡。 取下
加上 等式 两边同时 减去
等式仍然 成立。 相同数值 的 代数式,
换言之, 【等式性质 1】
等式两边同时加上(或减去)同一个代数式 , 所得结果仍是等式.
等 式 的 性 质
【等式性质 1】 等式两边同时加上(或减去)同一个代数式 代数式 , 所得结果仍是等式.
用等式的性质解方程 例2 解下列方程: (1) -5x = 2 ; (2)
3 1 x . 2 3
例3 小明编了这样一道题:我是4月 出生的,我的年龄的2倍加上8,正好是 我出生那一月的总天数。你猜我有几岁?

3.1一元一次方程及其解法(1)

3.1一元一次方程及其解法(1)

3.1一元一次方程及其解法(1)
教材分析
本节课是小学与初中知识的衔接点,学生在小学已经初步接触过方程,了解了什么是方程,什么是方程的解,并学会了用等式性质解一些简单的方程。

本节课在描述一元一次方程的概念后,继续学习用等式基本性质解一元一次方程,从而引出用移项法则解一元一次方程,为学生进一步学习一元一次方程的解法和应用起到铺垫作用。

教学目标
(一)知识教学点
1.由实际问题得到的方程抽象出一元一次方程的概念。

2. 理解等式基本性质,并利用等式基本性质解一元一次方程,并学会检验。

3. 理解移项法则,会用移项法则解一元一次方程。

(二)能力训练点
1.通过对多种实际问题的分析,感受方程作为刻画现实世界的有效模型的意义.
2.由移项变形方法的教学,培养学生由算术解法过渡到代数解法的解方程的基本能力.(三)德育渗透点
增强学生用数学的意识,激发学生学数学的热情。

(四)美育渗透点
用移项法解方程明显比用等式性质方法解方程方便,体现了数学的方法美.
教学重点:利用移项法则解一元一次方程
教学难点:移项法则的理解和运用
教学方法:采用引导发现法发现法则,课堂训练体现学生的主体地位,引进竞争机制,调动课堂气氛。

教学准备:多媒体辅助
教学流程:
1.用猜谜引出学生身边的问题,从而引出一元一次方程的概念。

2.复习等式的基本性质。

3.利用等式基本性质解一元一次方程,同时给出检验的过程。

4.通过学生的观察、交流、归纳得到移项法则。

5.用移项法则解一元一次方程。

教学过程:
教学反思:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解一元一次方程(1)
课题解一元一次方程(1)课型新授课教学目标1.了解与一元一次方程有关的概念,掌握等式的基本性质,能运用等式的基本性质解简单的一元一次方程.2. 经历数值代入计算的过程,领会方程的解和解方程的意义.知道求方程的解就是将方程变形为x=a的形式.3. 强调检验的重要性,养成检验反思的好习惯.教学重点归纳等式的性质;利用性质解方程.教学难点比较方程的解和解方程的异同;教具准备天平,砝码,物体教学过程教学内容教师活动内容、方式学生活动方式设计意图一. 创设情境,引入新课:1.做一做:填表:x12345 2x+1 2.根据表格回答问题:(1)当x= 时,方程2 x+1=5两边相等。

(2)你知道能使方程2 x+1=5两边相等的x是多少吗?我们把能使方程左右两边相等的未知数的值叫做方程的解,如x=5是方程2 x+1=5的解,求方程的解的过程叫做解方程。

求方程2 x+1=5中x=5的过程就是解方程3.试一试:分别把0、1、2、3、4代入方程,哪个值能使方程两边相等。

(1)2 x-1=5 (2)3x-2=4x-3你知道方程2 x-1=5和3x-2=4x-3吗?4.那么我们怎样求方程的解呢?引入课题。

二. 1
————来源网络整理,仅供供参考
自主探究,合作讨论:.1.用天平做演示实验,让学生探索得出:如果我们在两边盘内同时添上(或取下)相同质量的物体,可以看到天平依然平衡;如果我们将两边盘内物体的质量同时扩大到原来相同的倍数(或同时缩小到原来的几分之一),也会看到天平依然平衡,2.由实验联想到等式的几种变形.学生填表学生练习巩固方程的解的概念采用枚举这一合情推理的方法找出满足方程的未知数的值,得出方程的解和解方程的概念. 通过实验提高学生的感性认识教师活动内容、方式学生活动方式
设计意图⑴2x+1=5→2x=5-1,3x=3+2x→3x-2x=3;⑵2x=4→x=4÷2.,=2→x=2×33.学生归纳等式的性质:性质1:等式两边都加上或减去同一个数或同一个整式,所得结果仍是等式;性质2:等式两边都乘以(或除以)同一个数(除数不为零),所得结果仍是等式.三.数学运用:1..出示例 1 在括号内填上适当的数或整式,使所得结果仍是等式。

⑴如果3x=-x+4,那么3x+()=4⑵如果x-1= x,那么()(x-1)=x2.思考:比较方程的解和解方程的异同?(方程的解是使方程成立的未知数的值;解方程是求方程解的过程,是一个等价变形过程,而求方程的解就是将方程变形为x=a的形式)出示例2.解下列方程:(1)x+5=2;(2)-2x=4.引导学生自己尝试运用等式的基本性质
————来源网络整理,仅供供参考 2
解方程,说清楚每一步的依据,交流解题方法.教师提供正确的解题格式.强调检验方法及检验的必要性.3.思维拓展:课本p96练一练2.
四.巩固与练习:课本p96练一练1。

五.回顾反思:(1)小学阶段利用加减法、乘除法互为逆运算的方法解方程,学生印象深刻,教学时鼓励学生运用等式的性质来求,但不强求.共2页,当前第1页12(2)解方程后,虽不要书面检验,但要求学生培养检验反思的好习惯.(3)注意等式的性质中的“都”和“同”:“都”表示两边均要变形,“同”表示两边要作一样的变形.五.作业(见作业纸)逐步引导启发学生归纳等式的性质学生说出变形的依据交流解题方法.师生共同小结等式的性质比较抽象,教学时不必在理论上作过多的展开,共2页,当前第2页12
3
————来源网络整理,仅供供参考。

相关文档
最新文档