高一数学必修二 第三章测试卷

合集下载

2020-2021学年高中数学人教A版 必修2第三章直线与方程测试卷(一)-教师用卷

2020-2021学年高中数学人教A版 必修2第三章直线与方程测试卷(一)-教师用卷

2020-2021学年必修2第三章测试卷直线与方程(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若直线1:320l x my +-=,2:280l x y ++=互相平行,则实数m 的值为( ) A .6- B .6C .32D .32-【答案】B【解析】因为直线1:320l x my +-=,2:280l x y ++=互相平行, 所以321m ⨯=⋅且82(2)m ⋅≠⨯-,解得6m =且12m ≠-,所以6m =, 故选B .2.已知两点()1,2A ,()3,6B ,动点M 在直线y x =上运动,则MA MB +的最小值为( ) A .25 B .26C .4D .5【答案】B【解析】根据题意画出图形,如图所示:设点A 关于直线y x =的对称点()2,1A ',连接A B ',则A B '即为MA MB +的最小值,且A B '故选B .3.下面说法正确的是( )A .经过定点()00,P x y 的直线都可以用方程()00y y k x x -=-表示B .不经过原点的直线都可以用方程1x ya b+=表示 C .经过定点(0,)A b 的直线都可以用方程y kx b =+表示D .经过任意两个不同的点()11,P x y ,()22,Q x y 的直线都可以用方程()()()()211211-⋅-=--x x y y y y x x 表示【答案】D【解析】经过定点()00,P x y 且斜率存在的直线才可用方程()00y y k x x -=-表示,所以A 错; 不经过原点且与两坐标轴都不垂直的直线才可以用方程1x ya b+=表示,所以B 错; 经过定点(0,)A b 且斜率存在的直线才可用方程y kx b =+表示,所以C 错; 当12x x ≠时,经过点()11,P x y ,()22,Q x y 的直线可以用方程()211121y y y y x x x x --=--,即()()()()211211-⋅-=--x x y y y y x x 表示;当12x x =时,经过点()11,P x y ,()22,Q x y 的直线可以用方程1x x =, 即()()()()211211-⋅-=--x x y y y y x x 表示,因此经过任意两个不同的点()11,P x y ,()22,Q x y 的直线都可以用方程()()()()211211-⋅-=--x x y y y y x x 表示,所以D 对,故选D .4.若两条平行直线()1:200l x y m m -+=>与2:260l x ny+-=,则m n +=( ) A .0 B .1C .2-D .1-【答案】C【解析】由12l l ,得122n-=,解得4n =-,即直线2:230l x y --=, 两直线之间的距离为d ==2m = (8m =-舍去),所以2m n +=-,故答案选C .5.过点(1,2)的直线l 与两坐标轴分别交于A 、B 两点,O 为坐标原点,当OAB △的面积最小时,直线l 的方程为( ) A .240x y +-= B .250x y +-= C .30x y +-=D .2380x y +-=【答案】A【解析】设l 的方程为1(0,0)x y a b a b +=>>,则有121a b+=, 因为0a >,0b >,所以12a b +≥,即1≥,所以8ab ≥, 当且仅当1212a b ==,即2a =,4b =时,取“=”. 即当2a =,4b =时,OAB △的面积最小, 此时l 的方程为124x y+=,即240x y +-=,故选A . 6.已知,m n ∈R ,则“直线10x my +-=与10nx y ++=平行”是“1mn =”的( )条件. A .充分不必要 B .必要不充分 C .充要D .既不充分又不必要【答案】A【解析】若直线10x my +-=与10nx y ++=平行, 则10mn -=,即1mn =,当1m =-,1n =-时,两直线方程为10x y --=,10x y -++=,此时两直线重合, 故“直线10x my +-=与10nx y ++=平行”是“1mn =”的充分不必要条件, 故选A .7.直线l 经过()2,1A ,()2(,)1B mm ∈R 两点,那么直线l 的倾斜角的取值范围为( )A.0,πB.π3 0,π,π44⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦C.0,π4⎡⎤⎢⎥⎣⎦D.ππ0,,π42⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭【答案】D【解析】直线l的斜率为2212121121y y mk mx x--===---,因为m∈R,所以(],1k∈-∞,所以直线的倾斜角的取值范围是ππ0,,π42⎡⎤⎛⎫⎪⎢⎥⎣⎦⎝⎭,故选D.8.已知直线20kx y-+=和以()3,2M-,()2,5N为端点的线段相交,则实数k的取值范围为()A.32k≤B.32k≥C.4332k-≤≤D.43k≤-或32k≥【答案】C【解析】因为直线20kx y-+=恒过定点(0,2)A,又因为43AMk=-,32ANk=,故直线的斜率k的范围为4332k-≤≤,故选C.9.已知点()2,3A-,()3,2B--,直线l的方程为10kx y k--+=,且与线段AB相交,则直线l 的斜率k 的取值范围为( )A .3(,4][,)4-∞-+∞B .13(,][,)44-∞-+∞C .3[4,]4-D .3[,4]4【答案】A【解析】直线:10l kx y k --+=整理为()()110k x y ---=, 即可知道直线l 过定点()1,1P , 作出直线和点对应的图象如图:(2,3)A -,(3,2)B --,(1,1)P ,31421PA k --∴==--,213314PB k --==--,要使直线l 与线段AB 相交,则直线l 的斜率k 满足PB k k ≤或PA k k ≤,4k ∴≤-或34k ≥, 即直线l 的斜率的取值范围是3(,4][,)4-∞-+∞,故选A .10.设m ∈R ,过定点A 的动直线10x my ++=和过定点B 的动直线230mx y m --+=交于点(),P x y ,则PA PB +的最大值( )A .25B .32C .6D .3【答案】C【解析】直线10x my ++=可整理为()1my x =-+,故恒过定点1,0,即为A 的坐标;直线230mx y m --+=整理为()32y m x -=-,故恒过定点()2,3,即为B 坐标,又两条直线垂直,故可得22218PA PB AB +==, 即()2218PA PBPA PB +-=,整理得()()2211924PA PB PA PB PA PB =+-≤+,解得 6PA PB +≤, 当且仅当PA PB =时取得最大值, 故选C .11.已知实数,a b 满足21a b +=,则直线30ax y b ++=必过定点,这个定点的坐标为( ) A .11(,)62B .11(,)26C .11(,)62D .11(,)26-【答案】D【解析】∵12=+b a ,∴b a 21-=,∵直线03=++b y ax ,∴03)21(=++-b y x b ,即0)3()21(=++-y x x b .12030x x y -=⎧⎨+=⎩,1216x y ⎧=⎪⎪∴⎨⎪=-⎪⎩,∴直线必过点11(,)26-, 本题选择D 选项.12.已知ABC △是等腰三角形,5AB AC ==,6BC =,点P 在线段AC 上运动,则PB PC +的取值范围是( ) A .[]3,4 B .12,65⎡⎤⎢⎥⎣⎦C .[]6,8D .24,85⎡⎤⎢⎥⎣⎦【答案】D【解析】以BC 的中点O 为坐标原点,BC 所在直线为x 轴,OA 所在直线为y 轴建立直角坐标系,如图:可得()3,0B -,()3,0C ,由5AC =,可得()0,4A , 直线AC 的方程为134x y+=,即4312x y +=, 可设()(),04P m n n ≤≤,,即有334n m =-, 则()()()3,3,2,2PB PC m n m n m n +=---+--=--====,当[]360,425n =∈, 可得PB PC +的最小值为122421655==⨯=, 当4n =时,可得PB PC +的最大值8,则PB PC +的取值范围是24,85⎡⎤⎢⎥⎣⎦,故选D .二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.已知点(1,3)A 与直线4:30x y l ++=,则点A 关于直线l 的对称点坐标为______. 【答案】(5,1)-【解析】设点(1,3)A 关于直线340x y ++=的对称点(,)A a b ',则由3(3)11133++4022b a a b -⎧⨯-=-⎪⎪-⎨++⎪⨯=⎪⎩,解得5a =-,1b =,故点(5,1)A '-,故答案为()5,1-.14.过直线1:230l x y -+=与直线2:2380l x y +-=的交点,且到点()0,4P 距离为2的直线方程为______.【答案】2y =或4320x y -+=【解析】由2302380x y x y -+=⎧⎨+-=⎩,得12x y =⎧⎨=⎩,所以,直线1l 与2l 的交点为()1,2.当所求直线的斜率不存在时,所求直线的方程为1x =,点P 到该直线的距离为1,不合乎题意; 当所求直线的斜率存在时,设所求直线的方程为()21y k x -=-,即20kx y k --+=, 由于点()0,4P 到所求直线的距离为2,可得2=,整理得2340k k -=,解得0k =或43k =, 综上所述,所求直线的方程为2y =或4320x y -+=, 故答案为2y =或4320x y -+=.15.在平面直角坐标系xOy 中,直线1:40l kx y -+=与直线2:30l x ky +-=相交于点P ,则当实数k 变化时,点P 到直线43100x y -+=的距离的最大值为______.【答案】92【解析】设直线1l 与y 轴交于()0,4A ,直线2l 与x 轴交于()3,0B ,5AB ==.当0k =时,直线1l 为4y =,直线2l 为3x =,所以两条直线的交点为()13,4P . 当0k ≠时,两条直线的斜率分别为k 、1k-,斜率乘积为1-,故12l l ⊥, 所以P 点的轨迹是以AB 为直径的圆(除,A B 两点外).设以AB 为直径的圆的圆心为3,22C ⎛⎫⎪⎝⎭,半径522AB r ==, 圆的方程为()22235222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,点()13,4P 满足圆的方程.综上所述,点P 点的轨迹是以AB 为直径的圆(除,A B 两点外).圆心C 到直线43100x y -+=的距离为2d ==. 所以点P 到直线43100x y -+=的距离的最大值为59222d r +=+=, 故答案为92.16.直线2360x y +-=分别交,x y 轴于,A B 两点,点P 在直线1y x =--上,则PA PB +的最小值是______.【解析】直线2360x y +-=分别交,x y 轴于,A B 两点, 则()3,0A ,()0,2B ,设A 关于直线1y x =--对称的点为()1,A x y ,则133122y x y x ⎧=⎪⎪-⎨+⎪=--⎪⎩, 解得14x y =-⎧⎨=-⎩,11PA PB PA PB A B +=+≥=1A ,P ,B 三点共线时等号成立,.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤) 17.(10分)已知ABC △的顶点()2,4A ,()0,2B -,()4,2C -. 求:(1)AB 边上的中线CM 所在直线的方程; (2)求A 点关于直线BC 对称点坐标. 【答案】(1)560x y +-=;(2)()6,4--. 【解析】(1)由题设有()1,1M ,故211415CM k -==---, 故直线CM 的方程为()1115y x =--+,即560x y +-=. (2)()22104CB k --==---,故直线BC 的方程为2y x =--,设A 点关于直线BC 对称点坐标为(),a b ,则42222412b a b a ++⎧=--⎪⎪⎨-⎪=⎪-⎩,解得64a b =-⎧⎨=-⎩,故A 点关于直线BC 对称点坐标为()6,4--.18.(12分)己知直线l 的方程为210x y -+=. (1)求过点()3,2A ,且与直线l 垂直的直线1l 方程;(2)求与直线l 平行,且到点()3,0P2l 的方程. 【答案】(1)270x y +-=;(2)210x y --=或2110x y --=. 【解析】(1)∵直线l 的斜率为2,∴所求直线斜率为12-, 又∵过点()3,2A ,∴所求直线方程为()1232y x -=--, 即270x y +-=.(2)依题意设所求直线方程为20x y c -+=, ∵点()3,0P=解得1c =-或11c =-,所以,所求直线方程为210x y --=或2110x y --=.19.(12分)已知直线l 经过直线3420x y +-=与直线220x y ++=的交点P ,且垂直于直线210x y --=.(1)求直线l 的方程;(2)求直线l 与两坐标轴围成的三角形的面积S . 【答案】(1)220x y ++=;(2)1.【解析】(1)3420220x y x y +-=⎧⎨++=⎩,解得22x y =-⎧⎨=⎩,则点P 的坐标为()2,2-.由于点P 的坐标是()2,2-,且所求直线l 与直线210x y --=垂直, 可设所求直线l 的方程为20x y c ++=.将点P 坐标代入得()2220c ⨯-++=,解得2c =, 故所求直线l 的方程为220x y ++=.(2)由直线l 的方程知它在x 轴,y 轴上的截距分别是1-,2-, 所以直线l 与两坐标轴围成的三角形的面积11212S =⨯⨯=.20.(12分)已知直线方程为()()221340m x m y m -++++=.(1)证明:直线恒过定点;(2)m 为何值时,点()3,4Q 到直线的距离最大,最大值为多少?(3)若直线分别与x 轴,y 轴的负半轴交于,A B 两点,求AOB △面积的最小值及此时直线的方程.【答案】(1)证明见解析;(2)47m =,点()3,4Q 到直线的距离最大,最大值为(3)面积的最小值为4,240x y ++=.【解析】(1)证明:直线方程为()()221340m x m y m -++++=,可化为()()24230x y m x y +++-++=,对任意m 都成立,所以230240x y x y -++=⎧⎨++=⎩,解得12x y =-⎧⎨=-⎩,所以直线恒过定点()1,2--.(2)解:点()3,4Q 到直线的距离最大,可知点Q 与定点()1,2P --的连线的距离就是所求最大值,= 423312PQ k +==+, ()()221340m x m y m -++++=的斜率为23-, 可得22321m m --=-+,解得47m =. (3)解:若直线分别与x 轴,y 轴的负半轴交于,A B 两点,直线方程为()21y k x +=+,0k <,则21,0A k ⎛⎫- ⎪⎝⎭,()0,2B k -,()12122121222222AOB k S k k k k k -⎛⎫⎛⎫=--=--=++≥+ ⎪ ⎪-⎝⎭⎝⎭△4=,当且仅当2k =-时取等号,面积的最小值为4,此时直线的方程240x y ++=.21.(12分)已知ABC △的三个顶点(),A m n 、()2,1B 、()2,3C -.(1)求BC 边所在直线的方程;(2)BC 边上中线AD 的方程为2360x y -+=,且7ABC S =△,求点A 的坐标.【答案】(1)240x y +-=;(2)()3,4A 或()3,0A -.【解析】(1)由()2,1B 、()2,3C -,得BC 边所在直线方程为123122y x --=---, 即240x y +-=.(2)BC ==,A 到BC 边所在直线240x y +-=的距离为d =由于A 在直线2360x y -+=上,故1722360ABC S BC d m n ⎧=⋅⋅=⎪⎨⎪-+=⎩△, 即2472360m n m n ⎧+-=⎨-+=⎩,解得()3,4A 或()3,0A -.22.(12分)设直线l 的方程为()()1520a x y a a ++--=∈R .(1)求证:不论a 为何值,直线l 必过一定点P ;(2)若直线l 分别与x 轴正半轴,y 轴正半轴交于点(),0A A x ,()0,B B y , 当AOB △面积最小时,求AOB △的周长及此时的直线方程;(3)当直线l 在两坐标轴上的截距均为正整数且a 也为正整数时,求直线l 的方程.【答案】(1)证明见解析;(2)10+32120x y +-=;(3)390x y +-=.【解析】(1)由()1520a x y a ++--=,得()250a x x y -++-=,则2050x x y -=⎧⎨+-=⎩,解得23x y =⎧⎨=⎩, 所以不论a 为何值,直线l 必过一定点()2,3P .(2)由()1520a x y a ++--=得,当0x =时,52B y a =+;当0y =时,521A a x a +=+, 又由5205201B A y a a x a =+>⎧⎪+⎨=>⎪+⎩,得1a >-, ()()5252111941+12221AOB S a a a a a ++⎡⎤∴=⋅++⎢⎥+=⎣⋅+⎦△112122⎡⎤≥=⎢⎥⎣⎦, 当且仅当()9411a a +=+,即12a =时,取等号. ()4,0A ∴,()0,6B ,AOB∴△的周长为4610OA OB AB ++=+=+ 直线方程为32120x y +-=.(3)直线l 在两坐标轴上的截距均为正整数,即52a +,521a a ++均为正整数,而a 也为正整数, 523211a a a +=+++,2a ∴=, 所以直线l 的方程为390x y +-=.。

最新高一数学必修2第三章测试题及答案解析

最新高一数学必修2第三章测试题及答案解析

第三章综合检测题时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.若直线过点(1,2),(4,2+3)则此直线的倾斜角是( ) A .30° B .45° C .60° D .90°2.若三点A (3,1),B (-2, b ),C (8,11)在同一直线上,则实数b 等于( )A .2B .3C .9D .-9 3.过点(1,2),且倾斜角为30°的直线方程是( )A .y +2=33(x +1) B .y -2=3(x -1) C.3x -3y +6-3=0 D.3x -y +2-3=04.直线3x -2y +5=0与直线x +3y +10=0的位置关系是( ) A .相交 B .平行 C .重合 D .异面 5.直线mx -y +2m +1=0经过一定点,则该定点的坐标为( ) A .(-2,1) B .(2,1) C .(1,-2) D .(1,2)6.已知ab <0,bc <0,则直线ax +by +c =0通过( ) A .第一、二、三象限 B .第一、二、四象限 C .第一、三、四象限 D .第二、三、四象限 7.点P (2,5)到直线y =-3x 的距离d 等于( )A .0 B.23+52 C.-23+52 D.-23-52 8.与直线y =-2x +3平行,且与直线y =3x +4交于x 轴上的同一点的直线方程是( )A .y =-2x +4B .y =12x +4C .y =-2x -83D .y =12x -839.两条直线y =ax -2与y =(a +2)x +1互相垂直,则a 等于( )A .2B .1C .0D .-110.已知等腰直角三角形ABC 的斜边所在的直线是3x -y +2=0,直角顶点是C (3,-2),则两条直角边AC ,BC 的方程是( )A .3x -y +5=0,x +2y -7=0B .2x +y -4=0,x -2y -7=0C .2x -y +4=0,2x +y -7=0D .3x -2y -2=0,2x -y +2=0 11.设点A (2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( )A .k ≥34或k ≤-4B .-4≤k ≤34C .-34≤k ≤4 D .以上都不对12.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( )A .1条B .2条C .3条D .4条二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.已知点A (-1,2),B (-4,6),则|AB |等于________. 14.平行直线l 1:x -y +1=0与l 2:3x -3y +1=0的距离等于________.15.若直线l 经过点P (2,3)且与两坐标轴围成一个等腰直角三角形,则直线l 的方程为________或________.16.(2009·高考全国卷Ⅰ)若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15° ②30° ③45° ④60° ⑤75°,其中正确答案的序号是________.(写出所有正确答案的序号)三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)求经过点A (-2,3),B (4,-1)的直线的两点式方程,并把它化成点斜式,斜截式和截距式.18.(12分)(1)当a为何值时,直线l1:y=-x+2a与直线l2:y =(a2-2)x+2平行?(2)当a为何值时,直线l1:y=(2a-1)x+3与直线l2:y=4x-3垂直?19.(本小题满分12分)在△ABC中,已知点A(5,-2),B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上,求:(1)顶点C的坐标;(2)直线MN的方程.20.(本小题满分12分)过点P(3,0)作一直线,使它夹在两直线l1:2x-y-2=0和l2:x+y+3=0之间的线段AB恰被P点平分,求此直线方程.21.(本小题满分12分)已知△ABC的三个顶点A(4,-6),B(-4,0),C(-1,4),求(1)AC边上的高BD所在直线方程;(2)BC边的垂直平分线EF所在直线方程;(3)AB边的中线的方程.22.(本小题满分12分)当m为何值时,直线(2m2+m-3)x+(m2-m)y=4m-1.(1)倾斜角为45°;(2)在x轴上的截距为1.第三章综合检测题详解答案1[答案] A[解析] 斜率k =(2+3)-24-1=33,∴倾斜角为30°.[解析] 由条件知k BC =k AC , ∴b -11-2-8=11-18-3,∴b =-9. 2[答案] D 3[答案] C[解析] 由直线方程的点斜式得y -2=tan30°(x -1), 整理得3x -3y +6-3=0. 4[答案] A[解析] ∵A 1B 2-A 2B 1=3×3-1×(-2)=11≠0, ∴这两条直线相交. 5[答案] A[解析] 直线变形为m (x +2)-(y -1)=0,故无论m 取何值,点(-2,1)都在此直线上,∴选A. 6[答案] A[解析] ∵ab <0,bc <0,∴a ,b ,c 均不为零,在直线方程ax +by+c =0中,令x =0得,y =-c b >0,令y =0得x =-ca ,∵ab <0,bc <0,∴ab 2c >0,∴ac >0,∴-c a <0,∴直线通过第一、二、三象限,故选A.7[答案] B[解析] 直线方程y =-3x 化为一般式3x +y =0, 则d =23+52. 8[答案] C[解析] 直线y =-2x +3的斜率为-2,则所求直线斜率k =-2,直线方程y =3x +4中,令y =0,则x =-43,即所求直线与x 轴交点坐标为(-43,0).故所求直线方程为y =-2(x +43),即y =-2x -83.9[答案] D[解析] ∵两直线互相垂直,∴a ·(a +2)=-1, ∴a 2+2a +1=0,∴a =-1. 10[答案] B[解析] ∵两条直角边互相垂直,∴其斜率k 1,k 2应满足k 1k 2=-1,排除A 、C 、D ,故选B. 11[答案] A[解析] k P A =-4,k PB =34,画图观察可知k ≥34或k ≤-4.12[答案] B[解析] 由平面几何知,与A 距离为1的点的轨迹是以A 为圆心,以1为半径的⊙A ,与B 距离为2的点的轨迹是半径为2的⊙B ,显然⊙A 和⊙B 相交,符合条件的直线为它们的公切线有2条. 13[答案] 5[解析] |AB |=(-1+4)2+(2-6)2=5.14[答案] 23[解析] 直线l 2的方程可化为x -y +13=0,则d =|1-13|12+(-1)2=23.15[答案] x +y -5=0 x -y +1=0 [解析]设直线l 的方程为x a +yb =1,则⎩⎪⎨⎪⎧|a |=|b |,2a +3b =1,解得a =5,b =5或a =-1,b =1,即直线l 的方程为x 5+y 5=1或x -1+y1=1,即x +y -5=0或x -y +1=0.16[答案] ①⑤[解析] 两平行线间的距离为 d =|3-1|1+1=2,由图知直线m 与l 1的夹角为30°,l 1的倾斜角为45°,所以直线m 的倾斜角等于30°+45°=75°或45°-30°=15°.[点评] 本题考查直线的斜率、直线的倾斜角、两条平行线间的距离,考查数形结合的思想.是高考在直线知识命题中不多见的较为复杂的题目,但是只要基础扎实、方法灵活、思想深刻,这一问题还是不难解决的.所以在学习中知识是基础、方法是骨架、思想是灵魂,只有以思想方法统领知识才能在考试中以不变应万变.17[解析] 过AB 两点的直线方程是y +13+1=x -4-2-4. 点斜式为:y +1=-23(x -4)斜截式为:y =-23x +53截距式为:x 52+y53=1.18[解析] (1)直线l 1的斜率k 1=-1,直线l 2的斜率k 2=a 2-2,因为l 1∥l 2,所以a 2-2=-1且2a ≠2,解得:a =-1.所以当a =-1时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2)x +2平行.(2)直线l 1的斜率k 1=2a -1,l 2的斜率k 2=4,因为l 1⊥l 2,所以k 1k 2=-1,即4(2a -1)=-1,解得a =38.所以当a =38时,直线l 1:y=(2a -1)x +3与直线l 2:y =4x -3垂直.19[解析] (1)设C (x ,y ),由AC 的中点M 在y 轴上得,x +52=0,解得x =-5.由BC 中点N 在x 轴上,得3+y2=0, ∴y =-3,∴C (-5,-3)(2)由A 、C 两点坐标得M (0,-52).由B 、C 两点坐标得N (1,0).∴直线MN 的方程为x +y-52=1.即5x -2y -5=0.20[解析] 设点A 的坐标为(x 1,y 1),因为点P 是AB 中点,则点B 坐标为(6-x 1,-y 1),因为点A 、B 分别在直线l 1和l 2上,有⎩⎨⎧2x 1-y 1-2=06-x 1-y 1+3=0解得⎩⎪⎨⎪⎧x 1=113y 1=163由两点式求得直线方程为8x -y -24=0.21[解析] (1)直线AC 的斜率k AC =-6-44-(-1)=-2即:7x +y +3=0(-1≤x ≤0).∴直线BD 的斜率k BD =12,∴直线BD 的方程为y =12(x +4),即x -2y +4=0(2)直线BC 的斜率k BC =4-0-1-(-4)=43∴EF 的斜率k EF =-34线段BC 的中点坐标为(-52,2)∴EF 的方程为y -2=-34(x +52)即6x +8y -1=0.(3)AB 的中点M (0,-3), ∴直线CM 的方程为:y +34+3=x-1,22[解析] (1)倾斜角为45°,则斜率为1.∴-2m 2+m -3m 2-m =1,解得m =-1,m =1(舍去) 直线方程为2x -2y -5=0符合题意,∴m =-1(2)当y =0时,x =4m -12m 2+m -3=1,解得m =-12,或m =2当m =-12,m =2时都符合题意,∴m =-12或2.。

高中数学 第三章 直线与方程评估验收卷 新人教A版必修2-新人教A版高一必修2数学试题

高中数学 第三章 直线与方程评估验收卷 新人教A版必修2-新人教A版高一必修2数学试题

【金版学案】2016-2017学年高中数学 第三章 直线与方程评估验收卷 新人教A 版必修2(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.直线x -y =0的倾斜角为( )A .45°B .60°C .90°D .135°解析:因为直线的斜率为1,所以tan α=1,即倾斜角为45°.答案:A2.若三点A (0,8),B (-4,0),C (m ,-4)共线,则实数m 的值是( )A .6B .-2C .-6D .2解析:因为A 、B 、C 三点共线,所以k AB =k AC ,所以8-00-(-4)=8-(-4)-m,所以m =-6. 答案:C3.倾斜角为135°,在y 轴上的截距为-1的直线方程是( )A .x -y +1=0B .x -y -1=0C .x +y -1=0D .x +y +1=0解析:由斜截式可得直线方程为y =-x -1,化为一般式即为x +y +1=0.答案:D4.已知点A (0,4),B (4,0)在直线l 上,则直线l 的方程为( )A .x +y -4=0B .x -y -4=0C .x +y +4=0D .x -y +4=0解析:由截距式方程可得l 的方程为x 4+y 4=1,即x +y -4=0. 答案:A5.已知直线l 1:(a -1)x +(a +1)y -2=0和直线l 2:(a +1)x +2y +1=0互相垂直,则实数a 的值为( )A .-1B .0C .1D .2解析:因为l 1⊥l 2,所以(a -1)(a +1)+2a +2=0,所以a 2+2a +1=0,即a =-1.答案:A6.和直线5x -4y +1=0关于x 轴对称的直线方程为( )A .5x +4y +1=0B .5x +4y -1=0C .-5x +4y -1=0D .-5x +4y +1=0 解析:设所求直线上的任一点为(x ,y ),则此点关于x 轴对称的点的坐标为(x ,-y ),因为点(x ,-y )在直线5x -4y +1=0上,所以5x +4y +1=0,故所求直线方程为5x +4y +1=0.答案:A7.已知A (2,4)与B (3,3)关于直线l 对称,则直线l 的方程为( )A .x +y =0B .x -y =0C .x +y -6=0D .x -y +1=0解析:由已知得直线l 是线段AB 的垂直平分线,所以直线l 的斜率为1,且过线段AB中点⎝ ⎛⎭⎪⎫52,72,由点斜式得方程为y -72=x -52,化简得x -y +1=0. 答案:D8.直线l 过点A (3,4)且与点B (-3,2)的距离最远,那么l 的方程为( )A .3x -y -13=0B .3x -y +13=0C .3x +y -13=0D .3x +y +13=0解析:因为过点A 的直线l 与点B 的距离最远,所以直线AB 垂直于直线l ,直线l 的斜率为-3,由点斜式可得直线l 的方程为3x +y -13=0.答案:C9.过点(3,-6)且在两坐标轴上的截距相等的直线的方程是( )A .2x +y =0B .x +y +3=0C .x -y +3=0D .x +y +3=0或2x +y =0解析:当截距均为0时,设方程为y =kx ,将点(3,-6)代入得k =-2,此时直线方程为2x +y =0;当截距不为0时,设直线方程为x a +y a=1,将(3,-6)代入得a =-3,此时直线方程为x +y +3=0. 答案:D10.设点A (3,-5),B (-2,-2),直线l 过点P (1,1)且与线段AB 相交,则直线l 的斜率k 的取值X 围是( )A .k ≥1或k ≤-3B .-3≤k ≤1C .-1≤k ≤3D .以上都不对解析:如图所示,直线PB ,PA 的斜率分别为k PB =1,k PA =-3,结合图形可知k ≥1或k ≤-3.答案:A11.若a ,b 满足a +2b =1,则直线ax +3y +b =0必过定点( )A.⎝ ⎛⎭⎪⎫-12,-16B.⎝ ⎛⎭⎪⎫12,-16 C.⎝ ⎛⎭⎪⎫12,16 D.⎝ ⎛⎭⎪⎫-12,16 解析:采用赋值法,令a =-1,b =1或a =1,b =0,得直线方程分别为-x +3y +1=0,x +3y =0,其交点为⎝ ⎛⎭⎪⎫12,-16,此即为直线所过的定点. 答案:B12.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程是( )A .210B .6C .3 3D .2 5解析:易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A ′(-2,0),则光线所经过的路程即A 1(4,2)与A ′(-2,0)两点间的距离.于是|A 1A ′|=(4+2)2+(2-0)2=210.答案:A二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角为45°,则m 的值为________.解析:直线的斜率k =2m 2-5m +2m 2-4=1, 解得m =2或m =3.但当m =2时,m 2-4=0,直线的斜率不存在,此时倾斜角为90°舍去.所以m =3.答案:314.已知斜率为2的直线经过点A (3,5),B (a ,7),C (-1,b )三点,则a ,b 的值分别为________.解析:由题意得⎩⎪⎨⎪⎧k AC =2,k AB =2,即⎩⎪⎨⎪⎧b -5-1-3=2,7-5a -3=2, 解得a =4,b =-3.答案:4,-315.已知直线l 在y 轴上的截距是-3,它被两坐标轴截得的线段的长为5,则此直线的方程为______________________________.解析:设所求的直线方程为x a +y -3=1,则此直线与x 轴交于点(a ,0),与y 轴交于点(0,-3),由两点间的距离公式解得a =±4,故所求的直线方程为x ±4+y -3=1,即3x +4y +12=0或3x -4y -12=0.答案:3x +4y +12=0或3x -4y -12=016.已知直线l 1:mx +4y -2=0与l 2:2x -5y +n =0相互垂直,且垂足为(1,p ),则m -n +p 的值为________.解析:因为l 1⊥l 2,所以2m +4×(-5)=0,解得m =10;又因为点(1,p )在l 1上,所以10+4p -2=0,即p =-2;又因为点(1,p )也在l 2上,所以2-5×(-2)+n =0,即n =-12.所以m -n +p =20.答案:20三、解答题(本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知直线l 1:ax +by +1=0(a ,b 不同时为0),l 2:(a -2)x +y +a =0,(1)若b =0,且l 1⊥l 2,某某数a 的值;(2)当b =3,且l 1∥l 2时,求直线l 1与l 2之间的距离.解:(1)当b =0时,直线l 1的方程为ax +1=0,由l 1⊥l 2,知a -2=0,解得a =2.(2)当b =3时,直线l 1的方程为ax +3y +1=0,当l 1∥l 2时,有⎩⎪⎨⎪⎧a -3(a -2)=0,3a -1≠0,解得a =3,此时,直线l 1的方程为3x +3y +1=0,直线l 2的方程为x +y +3=0,即3x +3y +9=0.故所求距离为d =|1-9|9+9=423. 18.(本小题满分12分)在△ABC 中,BC 边上的高所在直线的方程为x -2y +1=0,∠A 的平分线所在的直线方程为y =0,若点B 的坐标为(1,2),求点A 和点C 的坐标.解:由方程组⎩⎪⎨⎪⎧x -2y +1=0,y =0解得点A 的坐标为(-1,0). 又直线AB 的斜率k AB =1,x 轴是∠A 的平分线,所以k AC =-1,则AC 边所在的直线方程为y =-(x +1).①又已知BC 边上的高所在直线的方程为x -2y +1=0,故直线BC 的斜率k BC =-2, 所以BC 边所在的直线方程为y -2=-2(x -1).②解①②组成的方程组得⎩⎪⎨⎪⎧x =5,y =-6,即顶点C 的坐标为(5,-6).19.(本小题满分12分)如图所示,已知点A (2,3),B (4,1),△ABC 是以AB 为底边的等腰三角形,点C 在直线l :x -2y +2=0上.(1)求AB 边上的高CE 所在直线的方程;(2)求△ABC 的面积.解:(1)由题意可知,E 为AB 的中点,所以E (3,2),且k CE =-1k AB =1,所以CE 所在直线方程为:y -2=x -3,即x -y -1=0.(2)由⎩⎪⎨⎪⎧x -2y +2=0,x -y -1=0得C (4,3),所以|AC |=|BC |=2, AC ⊥BC ,所以S △ABC =12|AC |·|BC |=2. 20.(本小题满分12分)已知点P (2,-1).(1)求过点P 且与原点的距离为2的直线方程.(2)求过点P 且与原点的距离最大的直线方程,并求出最大值.(3)是否存在过点P 且与原点的距离为3的直线?若存在,求出该直线的方程;若不存在,请说明理由.解:(1)当斜率不存在时,方程x =2符合题意;当直线的斜率存在时,设为k ,则直线方程应为y +1=k (x -2),即kx -y -2k -1=0. 由题意,得|2k +1|k 2+1=2.解得k =34. 所以直线方程为3x -4y -10=0.所以适合题意的直线方程为x -2=0或3x -4y -10=0.(2)过点P ,且与原点的距离最大的直线应为过点P 且与OP 垂直的直线,易求其方程为2x -y -5=0,且最大距离d = 5.(3)由于原点到过点P (2,-1)的直线的最大距离为5,而3>5,故不存在这样的直线.21.(本小题满分12分)设直线l 的方程为(a +1)x +y +2-a =0(a ∈R).(1)若l 不经过第二象限,某某数a 的取值X 围;(2)证明:不论a 为何值,直线恒过某定点,并求出这个定点的坐标;(3)证明:不论a 为何值,直线恒过第四象限.(1)解:将l 的方程化为y =-(a +1)x +a -2,欲使l 不经过第二象限,当且仅当⎩⎪⎨⎪⎧-(a +1)>0,a -2≤0或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0,成立. 所以a ≤-1,故所求a 的取值X 围为a ≤-1.(2)证明:方程可整理成a (x -1)+x +y +2=0,当x =1,y =-3时方程a (x -1)+x +y +2=0对a ∈R 恒成立,因此,直线恒过点(1,-3).(3)证明:由(2)知,直线恒过第四象限内的点(1,-3),因此,不论a 为何值,直线恒过第四象限.22.(本小题满分12分)在直线l :3x -y -1=0上求一点P ,使得:(1)P 到A (4,1)和B (0,4)的距离之差最大;(2)P 到A (4,1)和C (3,4)的距离之和最小.解:如图①所示,设点B 关于l 的对称点为B ′,AB ′与l 的交点P 满足(1);如图②所示,设点C 关于l 的对称点为C ′,AC ′与l 的交点P 满足(2).图① 图②对于(1),若P ′是l 上异于P 的点,则|P ′A |-|P ′B |=|P ′A |-|P ′B ′|<|AB ′|=|PA |-|PB ′|=|PA |-|PB |;对于(2),若P ′是l 上异于P 的点,则|P ′A |+|P ′C |=|P ′A |+|P ′C |>|AC ′|=|PA |+|PC ′|=|PA |+|PC |.(1)设点B 关于l 的对称点B ′的坐标为(a ,b ),则k BB ′·k l =-1,即3×b -4a=-1,所以a +3b -12=0①. 又由于线段BB ′的中点坐标为⎝ ⎛⎭⎪⎫a 2,b +42,且中点在直线上, 所以3×a 2-b +42-1=0,即3a -b -6=0②.联立①②得,a =3,b =3,所以B ′(3,3).于是直线AB ′的方程为y -13-1=x -43-4,即2x +y -9=0. 解⎩⎪⎨⎪⎧3x -y -1=0,2x +y -9=0,得⎩⎪⎨⎪⎧x =2,y =5, 即此时所求点P 的坐标为(2,5).(2)设点C 关于l 的对称点为C ′,同理可求出C ′的坐标为⎝ ⎛⎭⎪⎫35,245. 所以直线AC ′的方程为19x +17y -93=0,解⎩⎪⎨⎪⎧3x -y -1=019x +17y -93=0,得⎩⎪⎨⎪⎧x =117,y =267,故此时所求点P 的坐标为⎝ ⎛⎭⎪⎫117,267.。

人教A版高中数学必修二第三章直线与方程 测试题(含答案)

人教A版高中数学必修二第三章直线与方程 测试题(含答案)

高中数学 直线方程测试题一选择题(共55分,每题5分)1. 已知直线经过点A(0,4)和点B (1,2),则直线AB 的斜率为( )A.3B.-2C. 2D. 不存在2.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A .072=+-y xB .012=-+y xC .250x y --=D .052=-+y x3. 在同一直角坐标系中,表示直线y ax =与y x a =+正确的是( )A B C D4.若直线x +a y+2=0和2x +3y+1=0互相垂直,则a =( )A .32-B .32C .23-D .23 5.过(x 1,y 1)和(x 2,y 2)两点的直线的方程是( )112121112112211211211211...()()()()0.()()()()0y y x x A y y x x y y x x B y y x x C y y x x x x y y D x x x x y y y y --=----=-------=-----=6、若图中的直线L 1、L 2、L 3的斜率分别为K 1、K 2、K 3则( ) A 、K 1﹤K 2﹤K 3 B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 27、直线2x+3y-5=0关于直线y=x 对称的直线方程为( )A 、3x+2y-5=0B 、2x-3y-5=0C 、3x+2y+5=0D 、3x-2y-5=08、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0L 1 L 2 x o L 39、直线5x-2y-10=0在x 轴上的截距为a,在y 轴上的截距为b,则( )A.a=2,b=5;B.a=2,b=5-;C.a=2-,b=5;D.a=2-,b=5-.10、直线2x-y=7与直线3x+2y-7=0的交点是( )A (3,-1)B (-1,3)C (-3,-1)D (3,1)11、过点P(4,-1)且与直线3x-4y+6=0垂直的直线方程是( )A 4x+3y-13=0B 4x-3y-19=0C 3x-4y-16=0D 3x+4y-8=0二填空题(共20分,每题5分)12. 过点(1,2)且在两坐标轴上的截距相等的直线的方程 ___________;13两直线2x+3y -k=0和x -ky+12=0的交点在y 轴上,则k 的值是14、两平行直线0962043=-+=-+y x y x 与的距离是 。

人教版高中数学必修二第三章单元测试(一)及参考答案

人教版高中数学必修二第三章单元测试(一)及参考答案

2018-2019学年必修二第三章训练卷直线与方程(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.如图,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3,则必有( )A.k 1<k 3<k 2B.k 3<k 1<k 2C.k 1<k 2<k 3D.k 3<k 2<k 12.直线x +2y -5=0与2x +4y +a =0之间的距离为5,则a 等于( ) A.0B.-20C.0或-20D.0或-103.若直线l 1:ax +3y +1=0与l 2:2x +(a +1)y +1=0互相平行,则a 的值是( ) A.-3B.2C.-3或2D.3或-24.下列说法正确的是( )A.经过定点P 0(x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B.经过定点A (0,b )的直线都可以用方程y =kx +b 表示C.不经过原点的直线都可以用方程x a +yb=1表示 D.经过任意两个不同的点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示5.点M (4,m )关于点N (n ,-3)的对称点为P (6,-9),则( ) A.m =-3,n =10 B.m =3,n =10 C.m =-3,n =5D.m =3,n =56.以A (1,3),B (-5,1)为端点的线段的垂直平分线方程是( ) A.3x -y -8=0 B.3x +y +4=0 C.3x -y +6=0D.3x +y +2=07.过点M (2,1)的直线与x 轴,y 轴分别交于P ,Q 两点,且|MP |=|MQ |,则l 的方程是( ) A.x -2y +3=0 B.2x -y -3=0 C.2x +y -5=0D.x +2y -4=08.直线mx -y +2m +1=0经过一定点,则该点的坐标是( ) A.(-2,1)B.(2,1)C.(1,-2)D.(1,2)9.如果AC <0且BC <0,那么直线Ax +By +C =0不通过( ) A.第一象限B.第二象限C.第三象限D.第四象限10.直线2x +3y -6=0关于点(1,-1)对称的直线方程是( ) A.3x -2y +2=0 B.2x +3y +7=0 C.3x -2y -12=0D.2x +3y +8=011.已知点P (a ,b )和Q (b -1,a +1)是关于直线l 对称的两点,则直线l 的方程是( ) A.x +y =0 B.x -y =0C.x +y -1=0D.x -y +1=012.设x +2y =1,x ≥0,y ≥0,则x 2+y 2的最小值和最大值分别为( ) A.15,1 B.0,1C.0,15D.15,2二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.不论a 为何实数,直线(a +3)x +(2a -1)y +7=0恒过第________象限. 14.原点O 在直线l 上的射影为点H (-2,1),则直线l 的方程为______________. 15.经过点(-5,2)且横、纵截距相等的直线方程是____________________. 16.与直线3x +4y +1=0平行且在两坐标轴上截距之和为73的直线l 的方程为______________. 三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)此卷只装订不密封班级 姓名 准考证号 考场号 座位号17.(10分)已知直线2x+(t-2)y+3-2t=0,分别根据下列条件,求t的值:(1)过点(1,1);(2)直线在y轴上的截距为-3.19.(12分)光线从A(-3,4)点出发,到x轴上的点B后,被x轴反射到y轴上的C点, 18.(12分)直线l过点(1,4),且在两坐标轴上的截距的积是18,求此直线的方程.又被y轴反射,这时反射光线恰好过D(-1,6)点,求直线BC的方程.20.(12分)如图所示,某县相邻两镇在一平面直角坐标系下的坐标为A(1,2),B(4,0),一条河所在的直线方程为l:x+2y-10=0,若在河边l上建一座供水站P,使之到A,B两镇的管道最省,那么供水站P应建在什么地方?21.(12分)已知△ABC的顶点A为(3,-1),AB边上的中线所在直线方程为6x+10y-59=0,∠B的平分线所在直线方程为x-4y+10=0,求BC边所在直线的方程.22.(12分)已知直线l过点P(3,1),且被两平行直线l1:x+y+1=0和l2:x+y+6=0截得的线段长度为5,求直线l的方程.2018-2019学年必修二第三章训练卷直线与方程(一)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.【答案】A【解析】由于直线1l 向左倾斜,故10k <,直线2l 与直线3l 均向右倾斜,且2l 更接近y 轴,所以:1320k k k <<<,故选A. 2.【答案】C 3.【答案】A 4.【答案】D【解析】斜率有可能不存在,截距也有可能不存在.故选D. 5.【答案】D【解析】由对称关系462n =+,239m -=-,可得m =3,n =5.故选D. 6.【答案】B【解析】所求直线过线段AB 的中点(-2,2),且斜率k =-3, 可得直线方程为3x +y +4=0.故选B. 7.【答案】D【解析】由题意可知M 为线段PQ 的中点,Q (0,2),P (4,0), 可求得直线l 的方程x +2y -4=0.故选D. 8.【答案】A【解析】将原直线化为点斜式方程为y -1=m (x +2), 可知不论m 取何值直线必过定点(-2,1).故选A. 9.【答案】C【解析】将原直线方程化为斜截式为A Cy x B B=--,由AC <0且BC <0,可知AB >0,直线斜率为负,截距为正,故不过第三象限.故选C. 10.【答案】D【解析】所求直线与已知直线平行,且和点(1,-1)等距,不难求得直线为2x +3y +8=0.故选D. 11.【答案】D 【解析】∵k PQ =11a bb a+---=-1,∴k l =1.显然x -y =0错误,故选D.12.【答案】A【解析】x 2+y 2为线段AB 上的点与原点的距离的平方,由数形结合知, O 到线段AB 的距离的平方为最小值,即d 2=15,|OB |2=1为最大值.故选A.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】二【解析】直线方程可变形为:(3x -y +7)+a (x +2y )=0.由⎩⎪⎨⎪⎧ 3x -y +7=0x +2y =0得,⎩⎪⎨⎪⎧x =-2y =1. ∴直线过定点(-2,1).因此直线必定过第二象限. 14.【答案】2x -y +5=0【解析】所求直线应过点(-2,1)且斜率为2,故可求直线为2x -y +5=0. 15.【答案】y =-25x 或x +y +3=0【解析】不能忽略直线过原点的情况. 16.【答案】3x +4y -4=0【解析】所求直线可设为3x +4y +m =0,再由-3m -4m =73,可得m =-4.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】(1)3;(2)95.【解析】(1)代入点(1,1), 得2+(t -2)+3-2t =0,则t =3.(2)令x =0,得y =232t t --=-3,解得t =95.18.【答案】2x +y -6=0或8x +y -12=0. 【解析】设直线l 的方程为x a +yb =1,则18141ab a b=⎧⎪⎨+=⎪⎩,解得36a b =⎧⎨=⎩或3212a b ⎧=⎪⎨⎪=⎩ 则直线l 的方程2x +y -6=0或8x +y -12=0. 19.【答案】5x -2y +7=0. 【解析】如图所示,由题设,点B 在原点O 的左侧,根据物理学知识,直线BC 一定过(-1,6)关于y 轴的对称点(1,6),直线AB 一定过(1,6)关于x 轴的对称点(1,-6)且k AB =k CD , ∴k AB =k CD =4631+--=-52.∴AB 方程为y -4=-52(x +3). 令y =0,得x =-75,∴B 7,05⎛⎫- ⎪⎝⎭.CD 方程为y -6=-52(x +1). 令x =0,得y =72,∴C 70,2⎛⎫ ⎪⎝⎭. ∴BC 的方程为75x -+72y=1,即5x -2y +7=0.20.【答案】见解析. 【解析】如图所示,过A 作直线l 的对称点A ′,连接A ′B 交l 于P , 若P ′(异于P )在直线上,则|AP ′|+|BP ′|=|A ′P ′|+|BP ′|>|A ′B |. 因此,供水站只有在P 点处,才能取得最小值,设A ′(a ,b ), 则AA ′的中点在l 上,且AA ′⊥l ,即1221002221112a b a a ++⎧+⨯-=⎪⎪⎨-⎛⎫⎪⋅-=- ⎪⎪-⎝⎭⎩解得36a b =⎧⎨=⎩即A ′(3,6).所以直线A ′B 的方程为6x +y -24=0,解方程组⎩⎪⎨⎪⎧6x +y -24=0,x +2y -10=0,得38113611x y ⎧=⎪⎪⎨⎪=⎪⎩所以P 点的坐标为⎝⎛⎭⎫3811,3611.故供水站应建在点P ⎝⎛⎭⎫3811,3611处. 21.【答案】2x +9y -65=0. 【解析】设B (4y 1-10,y 1),由AB 中点在6x +10y -59=0上,可得:114716+1059=22y y --⋅⋅-0,y 1=5, 所以B (10,5).设A 点关于x -4y +10=0的对称点为A ′(x ′,y ′), 则有3141002211134x y y x ''''⎧+--⋅+=⎪⎪⎨+⎪⋅=-⎪-⎩⇒A ′(1,7),∵点A ′(1,7),B (10,5)在直线BC 上,∴51075110y x --=--,故BC :2x +9y -65=0. 22.【答案】x =3或y =1.【解析】若直线l 的斜率不存在,则直线l 的方程为x =3,此时与直线l 1,l 2的交点分别为A (3,-4),B (3,-9).截得的线段AB 的长为|AB |=|-4+9|=5,符合题意. 若直线l 的斜率存在,则设直线l 的方程为y =k (x -3)+1.解方程组()311y k x x y ⎧=-+⎪⎨++=0⎪⎩得321411k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩所以点A 的坐标为3241,11k k k k --⎛⎫- ⎪++⎝⎭.解方程组()316y k x x y ⎧=-+⎪⎨++=0⎪⎩得371911k x k k y k -⎧=⎪⎪+⎨-⎪=-⎪+⎩,所以点B 的坐标为3791,11k k k k --⎛⎫- ⎪++⎝⎭.因为|AB |=5,所以2232374191=251111k k k k k k k k --⎡--⎤⎛⎫⎛⎫⎛⎫-+--- ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎣⎦. 解得k =0,即所求直线为y =1.综上所述,所求直线方程为x =3或y =1.。

高一数学必修2第三章单元测试题

高一数学必修2第三章单元测试题

第三章 直线与方程(时间:45分钟,满分:100分)一、选择题(本大题共10小题,每小题5分,共50分) 1、若A(-2,3),B(3,-2),C(21,m)三点共线,则m为( ) A、21 B、21- C、-2 D、22.如果直线0121=+-ay x l :与直线07642=-+y x l :平行,则a 的值为 ( ) A .3 B .-3 C . 5 D .0 3.过点(1,3)-且平行于直线032=+-y x 的直线方程为( )A .072=+-y xB .012=-+y xC .250x y --=D .052=-+y x 4、若点P(x 0,y 0)在直线Ax+By+C =0上,则直线方程可表示为( ) A 、A(x-x 0)+B(y-y 0)=0 B 、A(x-x 0)-B(y-y 0)=0 C 、B(x-x 0)+A(y-y 0)=0D 、B(x-x 0)-A(y-y 0)=05.与直线01:2=--y m mx l 垂直于点P (2,1)的直线方程是( ) A .012=-+y m mx B .03=++y x C .03=--y x D .03=-+y x 6、若ac >0且bc <0,直线0=++c by ax 不通过( )A 、第三象限B 、第一象限C 、第四象限D 、第二象限 7. 如图1,直线l 1、l 2、l 3的斜率分别为k 1、k 2、k 3, 则必有A. k 3<k 1<k 2B. k 1<k 3<k 2C. k 1<k 2<k 3D. k 3<k 2<k 1 8、若三条直线001,0832=+=--=++ky x y x y x 和相交于一点,则k 的值为( )21.-A 2.-B 2.C 21.D 9、若A 、B 是x 轴上两点,点P 的横坐标是2,且|PA|=|PB|,若直线PA 的方程为 x –y –1=0,则直线PB 的方程是( )A 、2x-y-1=0B 、x+y-3=0C 、2x+y-7=0D 、2x-y-4=010、设两条平行线分别经过点(30),和(04),,它们之间的距离为d ,则( ) A.03d <≤ B.04d << C.05d <≤D.35d ≤≤二、填空题(本大题共4小题,每小题5分,共20分)11、直线ax-6y-12a =0(a ≠0)在x 轴上的截距是在y 轴上的截距3倍,则a= ___12.过点P(1,2)且在X轴,Y轴上截距相等的直线方程是 . 13.直线5x+12y+3=0与直线10x+24y+5=0的距离是 .14、经过点P (0,-2)作直线m,若直线m 与A (-2,3),B (2,1)的线段总没有公共点,则直线m 斜率的取值范围是 . 三、解答题(本大题共3小题,每小题10分,共30分)15、求经过两条直线04:1=-+y x l 和02:2=+-y x l 的交点,且与直线012=--y x 平行的直线方程;16、已知直线L :y=2x-1,求点P (3 ,4)关于直线L 的对称点。

高一数学必修2测试题及答案全套

高一数学必修2测试题及答案全套

(数学2必修)第一章 空间几何体[基础训练A 组] 一、选择题1.有一个几何体的三视图如下图所示;这个几何体应是一个( )A .棱台B .棱锥C .棱柱D .都不对2.棱长都是1的三棱锥的表面积为( )AB. C. D. 3.长方体的一个顶点上三条棱长分别是3,4,5;且它的8个顶点都在 同一球面上;则这个球的表面积是( )A .25πB .50πC .125πD .都不对 4.正方体的内切球和外接球的半径之比为( )AB2 C.2:D35.在△ABC 中;02, 1.5,120AB BC ABC ==∠=;若使绕直线BC 旋转一周;则所形成的几何体的体积是( )A.92π B. 72π C. 52π D. 32π 6.底面是菱形的棱柱其侧棱垂直于底面;且侧棱长为5;它的对角线的长 分别是9和15;则这个棱柱的侧面积是( ) A .130 B .140 C .150 D .160二、填空题1.一个棱柱至少有 _____个面;面数最少的一个棱锥有 ________个顶点; 顶点最少的一个棱台有 ________条侧棱。

主视图 左视图 俯视图2.若三个球的表面积之比是1:2:3;则它们的体积之比是_____________。

3.正方体1111ABCD A B C D - 中;O 是上底面ABCD 中心;若正方体的棱长为a ; 则三棱锥11O AB D -的体积为_____________。

4.如图;,E F 分别为正方体的面11A ADD 、面11B BCC 的中心;则四边形E BFD 1在该正方体的面上的射影可能是____________。

5.已知一个长方体共一顶点的三个面的面积分别是2、3、6;这个长方体的对角线长是___________;若长方体的共顶点的三个侧面面积分别为3,5,15;则它的体积为___________.三、解答题1.养路处建造圆锥形仓库用于贮藏食盐(供融化高速公路上的积雪之用);已建的仓库的底面直径为12M ;高4M ;养路处拟建一个更大的圆锥形仓库;以存放更多食盐;现有两种方案:一是新建的仓库的底面直径比原来大4M (高不变);二是高度增加4M (底面直径不变)。

2021_2022学年新教材高中数学第三章函数的概念与性质综合测试含解析新人教A版必修第一册

2021_2022学年新教材高中数学第三章函数的概念与性质综合测试含解析新人教A版必修第一册

第三章综合测试考试时间120分钟,满分150分.一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.函数f (x )=1+x +1x 的定义域是( C )A .[-1,+∞)B .(-∞,0)∪(0,+∞)C .[-1,0)∪(0,+∞)D .R[解析]要使函数有定义,则⎩⎨⎧1+x ≥0x ≠0,解得x ≥-1且x ≠0,故选C .2.下列函数中,与函数y =x (x ≥0)有相同图象的一个是( B ) A .y =x 2 B .y =(x )2 C .y =3x 3D .y =x 2x[解析]A 、C 、D 选项中函数的定义域与题目中的定义域不同,故不是同一个函数. 3.(2021·某某某某高一期中测试)已知函数y =f (x )的部分x 与y 的对应关系如下表:则f [f (4)]A .-1 B .-2 C .-3D .3[解析]由图表可知,f (4)=-3,∴f [f (4)]=f (-3)=3.4.已知幂函数f (x )=x α的图象过点(2,12),则函数g (x )=(x -2)f (x )在区间[12,1]上的最小值是( C )A .-1B .-2C .-3D .-4[解析]由已知得2α=12,解得α=-1,∴g (x )=x -2x =1-2x 在区间[12,1]上单调递增,则g (x )min =g (12)=-3,故选C .5.已知函数f (x )为偶函数,且在区间(-∞,0]上单调递增,若f (-3)=-2,则不等式f (x )≥-2的解集为( B )A .[-3,0]B .[-3,3]C .[-3,+∞)D .(-∞,-3]∪[3,+∞)[解析]f (x )为偶函数,且在(-∞,0]上单调递增,则f (x )在(0,+∞)上单调递减,且f (3)=-2,所以f (x )≥-2的解集为[-3,3].6.(2021·全国高考甲卷文科)设f (x )是定义域为R 的奇函数,且f (1+x )=f (-x ).若f (-13)=13,则f (53)=( C ) A .-53B .-13C .13D .53[解析]由题意可得:f (53)=f (1+23)=f (-23)=-f (23),而f (23)=f (1-13)=f (13)=-f (-13),故f (53)=13.故选C .7.已知函数f (x )是定义域为R 的偶函数,且对任意x 1,x 2∈(-∞,0],当x 1≠x 2时总有f (x 1)-f (x 2)x 1-x 2>0,则满足f (1-2x )-f (-13)>0的x 的X 围是( A )A .(13,23)B .[13,23)C .(12,23)D .[12,23)[解析]由题意可知,f (x )在(-∞,0]上为增函数,又f (x )为偶函数,故f (x )在(0,+∞)上为减函数,由f (1-2x )>f (-13)可得-13<1-2x <13,解得13<x <23.故选A .8.函数f (x )的定义域为[-1,1],图象如图(1)所示,函数g (x )的定义域为[-2,2],图象如图(2)所示,方程f [g (x )]=0有m 个实数根,方程g [f (x )]=0有n 个实数根,则m +n =( C )A .6B .8C .10D .12[解析]f [g (x )]=0,令t =g (x ),则t 1=-1,t 2=0,t 3=1,令g (x )=-1,x 有2个根;令g (x )=0,x 有3个根,令g (x )=1,x 有2个根,∴f [g (x )]=0共有7个根.g [f (x )]=0,令f (x )=t ,g (t )=0,则t =0,即f (x )=0,x 有3个值,所以m +n =10.故选C .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.关于函数f (x )=-x 2+2x +3的结论正确的是( CD ) A .定义域、值域分别是[-1,3],[0,+∞) B .单调增区间是(-∞,1]C .定义域、值域分别是[-1,3],[0,2]D .单调增区间是[-1,1][解析]要使函数有定义,则-x 2+2x +3≥0,即(x -3)(x +1)≤0,-1≤x ≤3.所以函数的定义域为[-1,3],值域为[0,2],在[-1,1]上单调增,故选CD .10.函数f (x )是定义在R 上的奇函数,下列命题中是正确命题的是( ABD ) A .f (0)=0B .若f (x )在[0,+∞)上有最小值-1,则f (x )在(-∞,0]上有最大值1C .若f (x )在[1,+∞)上为增函数,则f (x )在(-∞,-1]上为减函数D .若x >0时,f (x )=x 2-2x ,则x <0时,f (x )=-x 2-2x[解析]奇函数在对称的区间上单调性相反,故C 错误,其余都正确.11.已知f (x )=3-2|x |,g (x )=x 2-2x ,F (x )=⎩⎪⎨⎪⎧g (x )(若f (x )≥g (x ))f (x )(若f (x )<g (x )),则F (x )( BC )A .最小值-1B .最大值为7-27C .无最小值D .无最大值[解析]作出F (x )的图象,如图实线部分,知有最大值而无最小值,且最大值不是3,故选BC .12.已知函数f (x )=(m 2-m -1)xm 2+m -3是幂函数,对任意x 1,x 2∈(0,+∞),且x 1≠x 2,满足f (x 1)-f (x 2)x 1-x 2>0.若a ,b ∈R ,且f (a )+f (b )的值为负值,则下列结论可能成立的有( BC )A .a +b >0,ab <0B .a +b <0,ab >0C .a +b <0,ab <0D .以上都可能[解析]由函数f (x )为幂函数可知m 2-m -1=1,解得m =-1或mm =-1时,f (x )=1x 3;当m =2时,f (x )=x 3.由题意知函数f (x )在(0,+∞)上为增函数,因此f (x )=x 3,在R 上单调递增,且满足f (-x )=-f (x ).结合f (-x )=-f (x )以及f (a )+f (b )<0可知f (a )<-f (b )=f (-b ),所以a <-b ,即b <-a ,所以a +ba =0时,b <0,ab =0;当a >0时,b <0,ab <0;当a <0时,ab >0(b <0)或ab <0(0<b <-a ),故BC 都有可能成立.故选BC .三、填空题(本大题共4小题,每小题5分,共20分.)13.(2021·某某黄陵中学高一期末测试)函数f (x )=4-2x +1x +1的定义域是{x |x ≤2且x ≠-1}.[解析]由题意得⎩⎪⎨⎪⎧4-2x ≥0x +1≠0,解得x ≤2且x ≠-1,∴函数f (x )的定义域为{x |x ≤2且x ≠-1}.14.已知f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,则f (-43)+f (43)等于4.[解析]∵f (x )=⎩⎪⎨⎪⎧2x ,x >0,f (x +1),x ≤0,∴f (-43)=f (-43+1)=f (-13)=f (-13+1)=f (23)=23×2=43,f (43)=2×43=83,∴f (-43)+f (43)=43+83=4.15.已知幂函数f (x )=x α的图象经过点(9,3),则f (12)2f (1x -1)的定义域为(0,1].[解析]幂函数f (x )的图象经过点(9,3),所以3=9α,所以α=12,所以幂函数f (x )=x ,故f (12)=22,故1x-1≥0,解得0<x ≤1. 16.符号[x ]表示不超过x 的最大整数,如[3.14]=3,[-1.6]=-2,定义函数:f (x )=x -[x ],则下列说法正确的是①②③.①f (-0.8)=0.2;②当1≤x <2时,f (x )=x -1;③函数f (x )的定义域为R ,值域为[0,1); ④函数f (x )是增函数,奇函数.[解析]①f (-0.8)=-0.8-[-0.8]=-0.8+1=0.2,正确. ②当1≤x <2时,f (x )=x -[x ]=x B 正确.③函数f (x )的定义域为R ,f (x )=x -[x ]表示x 的小数部分,所以值域为[0,1),正确. ④x =0.5时,f (0.5)=0.5,x =1.5时,f (1.5)=0.5,所以f (x )不是增函数;且f (-1.5)=f (1.5),所以f (x )也不是奇函数.故填①②③.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知函数f (x )=ax +b ,且f (1)=2,f (2)=-1. (1)求f (m +1)的值;(2)判断函数f (x )的单调性,并用定义证明.[解析](1)由f (1)=2,f (2)=-1,得a +b =2,2a +b =-1,即a =-3,b =5, 故f (x )=-3x +5,f (m +1)=-3(m +1)+5=-3m +2.(2)f (x )在R 上是减函数.证明:任取x 1<x 2(x 1,x 2∈R ),则f (x 2)-f (x 1)=(-3x 2+5)-(-3x 1+5)=3x 1-3x 2=3(x 1-x 2),因为x 1<x 2,所以f (x 2)-f (x 1)<0,即函数f (x )在R 上单调递减.18.(本小题满分12分)已知f (x )在R 上是单调递减的一次函数,且f [f (x )]=9x -2. (1)求f (x );(2)求函数y =f (x )+x 2-x 在x ∈[-1,a ]上的最大值.[解析](1)由题意可设f (x )=kx +b (k <0),由于f [f (x )]=9x -2,则k 2x +kb +b =9x -2,故⎩⎪⎨⎪⎧k 2=9,kb +b =-2,解得⎩⎪⎨⎪⎧k =-3,b =1,故f (x )=-3x +1. (2)由(1)知,函数y =-3x +1+x 2-x =x 2-4x +1=(x -2)2-3, 故函数y =x 2-4x +1的图象开口向上,对称轴为x =2, 当-1<a ≤5时,y 的最大值是f (-1)=6, 当a >5时,y 的最大值是f (a )=a 2-4a +1,综上,y max =⎩⎪⎨⎪⎧6(-1<a ≤5),a 2-4a +1(a >5).19.(本小题满分12分)某商品在近30天内每件的销售价格P (元)和时间t (天)的函数关系为P =⎩⎪⎨⎪⎧t +20,0<t <25,-t +100,25≤t ≤30(t ∈N *).设商品的日销售量Q (件)与时间t (天)的函数关系为Q =40-t (0<t ≤30,t ∈N *),求这种商品的日销售金额的最大值,并指出日销售金额最大时是第几天.[解析]设日销售金额为y 元,则y =PQ ,所以y =⎩⎪⎨⎪⎧-t 2+20t +800(0<t <25,t ∈N *),t 2-140t +4 000(25≤t ≤30,t ∈N *).当0<t <25且t ∈N *时,y =-(t -10)2+900, 所以当t =10时,y max =900.①当25≤t ≤30且t ∈N *时,y =(t -70)2-900, 所以当t =25时,y max =1 125.②结合①②得y max =1 125.因此这种商品日销售金额的最大值为1 125元,且在第25天日销售金额最大.20.(本小题满分12分)函数f (x )=x +a x 2+bx +1是定义在[-1,1]上的奇函数.(1)确定函数f (x )的解析式; (2)用定义证明f (x )的单调性; (3)解不等式f (t -1)+f (t )<0.[解析](1)因为f (x )是定义在[-1,1]上的奇函数,所以f (0)=0,f (x )=-f (-x ),即x +a x 2+bx +1=--x +ax 2-bx +1,所以a =0,b =0,所以f (x )=xx 2+1.(2)取-1≤x 1<x 2≤1,则x 1x 2<1,f (x 1)-f (x 2)=x 1x 21+1-x 2x 22+1=(x 1-x 2)(1-x 1x 2)(x 21+1)(x 22+1)<0,所以f (x )在[-1,1]上单调递增.(3)因为f (t -1)+f (t )<0,所以f (t -1)<f (-t ). 因为f (x )在[-1,1]上单调递增, 所以-1≤t -1<-t ≤1,解得0≤t <12.所以不等式的解集为{t |0≤t <12}.21.(本小题满分12分)如果函数y =f (x )(x ∈D )满足: ①f (x )在D 上是单调函数;②存在闭区间[a ,b ]⊆D ,使f (x )在区间[a ,b ]上的值域也是[a ,b ]. 那么就称函数y =f (x )为闭函数.试判断函数y =x 2+2x 在[-1,+∞)内是否为闭函数.如果是闭函数,那么求出符合条件的区间[a ,b ];如果不是闭函数,请说明理由.[解析]设x 1,x 2是[-1,+∞)内的任意两个不相等的实数,且-1≤x 1<x 2,则有f (x 2)-f (x 1)=(x 22+2x 2)-(x 21+2x 1)=(x 22-x 21)+2(x 2-x 1)=(x 2-x 1)(x 1+x 2+2). ∵-1≤x 1<x 2,∴x 2-x 1>0,x 1+x 2+2>0. ∴(x 2-x 1)(x 1+x 2+2)>0. ∴f (x 2)>f (x 1).∴函数y =x 2+2x 在[-1,+∞)内是增函数. 假设存在符合条件的区间[a ,b ],则有⎩⎪⎨⎪⎧f (a )=a f (b )=b ,即⎩⎪⎨⎪⎧a 2+2a =ab 2+2b =b.解得⎩⎪⎨⎪⎧a =0b =0或⎩⎪⎨⎪⎧a =0b =-1或⎩⎪⎨⎪⎧a =-1b =0或⎩⎪⎨⎪⎧a =-1b =-1.又∵-1≤a <b ,∴⎩⎪⎨⎪⎧a =-1b =0.∴函数y =x 2+2x 在[-1,+∞)内是闭函数,符合条件的区间是[-1,0].22.(本小题满分12分)已知函数y =x +tx 有如下性质:如果常数t >0,那么该函数在(0,t )上是减函数,在[t ,+∞)上是增函数.(1)已知f (x )=4x 2-12x -32x +1,x ∈[0,1],利用上述性质,求函数f (x )的单调区间和值域;(2)对于(1)中的函数f (x )和函数g (x )=-x -2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],使得g (x 2)=f (x 1)成立,某某数a 的值.[解析](1)y =f (x )=4x 2-12x -32x +1=2x +1+42x +1-8,设u =2x +1,x ∈[0,1],∴1≤u ≤3,则y =u +4u -8,u ∈[1,3].由已知性质得,当1≤u ≤2,即0≤x ≤12时,f (x )单调递减,所以单调减区间为[0,12];当2≤u ≤3,即12≤x ≤1时,f (x )单调递增,所以单调增区间为[12,1];由f (0)=-3,f (12)=-4,f (1)=-113,得f (x )的值域为[-4,-3].(2)g (x )=-x -2a 为减函数,故g (x )∈[-1-2a ,-2a ],x ∈[0,1].由题意知,f (x )的值域是g (x )的值域的子集,∴⎩⎪⎨⎪⎧-1-2a ≤-4,-2a ≥-3,∴a =32.。

人教版高中数学必修2第三章单元测试(二)- Word版含答案

人教版高中数学必修2第三章单元测试(二)- Word版含答案

高中数学高中数学2018-2019学年必修二第三章训练卷直线与方程(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知直线l 错误!未找到引用源。

经过两点()()1,2,2,1P Q -,那么直线l 错误!未找到引用源。

的斜率为( )A .3-B .13-C .13D .32.直线l 过点P (-1,2),倾斜角为45°,则直线l 的方程为( ) A .x -y +1=0 B .x -y -1=0 C .x -y -3=0D .x -y +3=03.如果直线ax +2y +2=0与直线3x -y -2=0平行,则a 的值为( ) A .-3 B .-6C .32D .234.直线2x a -2y b =1在y 轴上的截距为( ) A .|b |B .-b 2C .b 2D .±b5.已知点A (3,2),B (-2,a ),C (8,12)在同一条直线上,则a 的值是( ) A .0B .-4C .-8D .46.如果AB <0,BC <0,那么直线Ax +By +C =0不经过( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限7.已知点A (1,-2),B (m,2),且线段AB 的垂直平分线的方程是x +2y -2=0, 则实数m 的值是( ) A .-2B .-7C .3D .18.经过直线l 1:x -3y +4=0和l 2:2x +y =5=0的交点,并且经过原点的直线方程是( ) A .19x -9y =0 B .9x +19y =0 C .3x +19y =0D .19x -3y =09.已知直线(3k -1)x +(k +2)y -k =0,则当k 变化时,所有直线都通过定点( ) A .(0,0)B .(17,27) C .(27,17) D .(17,114) 10.直线x -2y +1=0关于直线x =1对称的直线方程是( ) A .x +2y -1=0 B .2x +y -1=0 C .2x +y -3=0D .x +2y -3=011.已知直线l 的倾斜角为135°,直线l 1经过点A (3,2),B (a ,-1),且l 1与l 垂直,直线l 2:2x +by +1=0与直线l 1平行,则a +b 等于( ) A .-4B .-2C .0D .212.等腰直角三角形ABC 中,∠C =90°,若点A ,C 的坐标分别为(0,4),(3,3), 则点B 的坐标可能是( ) A .(2,0)或(4,6)B .(2,0)或(6,4)C .(4,6)D .(0,2)二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.直线l 与直线y =1,x -y -7=0分别交于A ,B 两点,线段AB 的中点为 M (1,-1),则直线l 的斜率为_________.14.点A (3,-4)与点B (5,8)关于直线l 对称,则直线l 的方程为_________.15.若动点A ,B 分别在直线l 1:x +y -7=0和l 2:x +y -5=0上移动,则AB 的中点M 到原点的距离的最小值为_________.16.若直线m 被两平行线l 1:x -y +1=0与l 2:x -y +3=0所截得的线段的长为22,则m 的倾斜角可以是①15°;②30°;③45°;④60°;⑤75°,其中正确答案的序号是_________.(写出所有正确答案的序号)此卷只装订不密封 班级 姓名 准考证号 考场号 座位号三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)已知直线l 经过点P (-2,5)且斜率为-34,(1)求直线l 的方程;(2)若直线m 平行于直线l ,且点P 到直线m 的距离为3,求直线m 的方程.18.(12分)求经过两直线3x -2y +1=0和x +3y +4=0的交点,且垂直于直线 x +3y +4=0的直线方程.高中数学高中数学19.(12分)已知A (4,-3),B (2,-1)和直线l :4x +3y -2=0,求一点P , 使|P A |=|PB |,且点P 到直线l 的距离等于2.20.(12分)△ABC 中,A (0,1),AB 边上的高CD 所在直线的方程为x +2y -4=0,AC 边上的中线BE 所在直线的方程为2x +y -3=0. (1)求直线AB 的方程; (2)求直线BC 的方程; (3)求△BDE 的面积.21.(12分)直线过点P (43,2)且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线同时满足下列条件: (1)△AOB 的周长为12; (2)△AOB 的面积为6.若存在,求直线的方程;若不存在,请说明理由.22.(12分)在平面直角坐标系中,已知矩形ABCD 的长为2,宽为1,AB ,AD 边分别在x 轴、y 轴的正半轴上,A 点与坐标原点重合,如图,将矩形折叠,使A 点落在线段DC 上.(1)若折痕所在直线的斜率为k ,试求折痕所在直线的方程; (2)当-2+3≤k ≤0时,求折痕长的最大值.高中数学2018-2019学年必修二第三章训练卷直线与方程(二)答案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【答案】C【解析】根据斜率公式可得,直线l错误!未找到引用源。

2021_2022学年新教材高中数学第三章函数测评含解析新人教B版必修第一册

2021_2022学年新教材高中数学第三章函数测评含解析新人教B版必修第一册

第三章测评(时间:120分钟 满分:150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021山西运城高一期中)函数f (x )=√x -1+2x 2-4的定义域为( )A.[1,2)B.(2,+∞)C.(-∞,2)∪(2,+∞)D.[1,2)∪(2,+∞),则{x -1≥0,x 2-4≠0,解得{x ≥1,x ≠2.故函数f (x )的定义域是[1,2)∪(2,+∞),故选D .2.(2021北京朝阳高一期末)已知函数y=f (x )可表示为如表所示,则下列结论正确的是( ) A.f (f (4))=3B.f (x )的值域是{1,2,3,4}C.f (x )的值域是[1,4]D.f (x )在区间[4,8]上单调递增f (4)=3,得f (f (4))=f (3)=2,故A 错误;函数的值域为{1,2,3,4},故B 正确,C 错误;由表可知,f (x )在定义域上不单调,故D 错误.故选B .3.(2021山东烟台高一期中)某高三学生去高铁站乘高铁.早上他乘坐出租车从家里出发,离开家不久,发现身份证忘带,于是回到家取上身份证,然后乘坐出租车以更快的速度赶往高铁站,令x (单位:分钟)表示离开家的时间,y (单位:千米)表示离开家的距离,其中等待红绿灯及在家取身份证的时间忽略不计,下列图像中与上述事件吻合最好的是( ),该高三学生离开家的过程中,y 是x 的一次函数,且斜率为正;小明返回家的过程中,y 仍然是x 的一次函数,斜率为负;小明最后由家到高铁站,y 仍然是x 的一次函数,斜率为正值,且斜率比第一段的斜率大,结合图像可知,与上述事件吻合最好的图像为C .故选C .4.(2021山东潍坊高一期中)已知函数f (x )=ax 2+bx+c 满足f (2)<0且f (3)>0,则f (x )在(2,3)上的零点( )A.至多有一个B.有1个或2个C.有且仅有一个D.一个也没有,函数f (x )=ax 2+bx+c 是连续函数,又f (2)<0,f (3)>0,由函数零点存在定理,可知f (x )在(2,3)上的零点个数有且只有一个,故选C .5.(2021浙江杭州中学高一期中)若函数f (x )满足关系式f (x )+2f (1-x )=-3x ,则f (2)的值为( ) A.-3B.32C.-52D.52f (x )+2f (1-x )=-3x,令x=2,则有f (2)+2f (-1)=-32;令x=-1,则有f (-1)+2f (2)=3.由上式可得f (2)=52,故选D .6.(2021河北邯郸高一期中)已知函数f (x )=ax 2+b x是定义在(-∞,b-3]∪[b-1,+∞)上的奇函数.若f (2)=3,则a+b 的值为( ) A.1 B.2 C.3 D.0函数f (x )是定义在(-∞,b-3]∪[b-1,+∞)上的奇函数,∴b-3+b-1=0,即2b=4,解得b=2,则f (x )=ax 2+2x.∵f (2)=3,∴f (2)=4a+22=3,解得2a+1=3,即a=1.因此a+b=1+2=3,故选C .7.已知函数f (x )={x 2+1(x ≤0),2x (x >0),若f (a )=10,则a 的值是( )A.-3或5B.3或-3C.-3D.3或-3或5a ≤0,则f (a )=a 2+1=10,∴a=-3(a=3舍去),若a>0,则f (a )=2a=10,∴a=5,综上可得,a=5或a=-3,故选A .8.(2021广西北海高一期末)已知定义在[-2,2]上的奇函数f (x )满足:对任意的x 1,x 2∈[-2,2]都有f (x 1)-f (x 2)x 1-x 2<0成立,则不等式f (x+1)+f (1-4x )>0的解集为( )A.-14,34B.23,34C.-14,1 D.-14,23解析由f (x 1)-f (x 2)x 1-x 2<0可知函数f (x )在[-2,2]上单调递减,f (x )是奇函数,所以f (x+1)>-f (1-4x )=f (4x-1).所以{-2≤x +1≤2,-2≤1-4x ≤2,x +1<4x -1,解得{-3≤x ≤1,-14≤x ≤34,x >23,所以23<x ≤34,即不等式的解集为23,34.故选B .二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.下列对应关系f ,能构成从集合M 到集合N 的函数的是 ( )A.M=12,1,32,N={-6,-3,1},f 12=-6,f (1)=-3,f32=1B.M=N={x|x ≥-1},f (x )=2x+1C.M=N={1,2,3},f (x )=2x+1D.M=Z ,N={-1,1},f (x )={-1,x 为奇数,1,x 为偶数解析∵M=12,1,32,N={-6,-3,1},f 12=-6,f (1)=-3,f32=1,由定义知M 中的任一个元素,N 中都有唯一的元素和它相对应,∴构成从集合M 到集合N 的函数,故A 正确;由M=N={x|x ≥-1},f (x )=2x+1,能构成从集合M 到集合N 的函数,故B 正确;由M=N={1,2,3},f (x )=2x+1,∵f (2)=5,f (3)=7,5∉{1,2,3},7∉{1,2,3},因此不能构成从集合M 到集合N 的函数,故C 错误;由M=Z ,N={-1,1},f (x )={-1,x 为奇数,1,x 为偶数,因此能构成从集合M 到集合N 的函数,故D 正确.故选ABD .10.(2021重庆八中高一期中)已知函数f (x )是定义在R 上的奇函数,则下列函数中为奇函数的是( ) A.y=f (-x ) B.y=f (x )+x 3 C.y=f (x )xD.y=√x 3f (x )F (x )=f (-x ),其定义域为R ,则有F (-x )=f [-(-x )]=f (x )=-f (-x )=-F (x ),函数y=f (-x )为奇函数,故A 正确;设F (x )=f (x )+x 3,其定义域为R ,则有F (-x )=f (-x )+(-x )3=-[f (x )+x 3]=-F (x ),函数y=f (x )+x 3为奇函数,故B 正确;设F (x )=f (x )x,其定义域为{x|x ≠0},则有F (-x )=f (-x )-x=f (x )x=F (x ),是偶函数,故C 错误;由于函数y=√x 3f (x ),其定义域为[0,+∞),其定义域不关于原点对称,不是奇函数,故D 错误. 故选AB.11.(2020山东日照高二期末)如图是二次函数y=ax 2+bx+c 图像的一部分,图像过点A (-3,0),且对称轴为x=-1,则以下选项中正确的为( )A.b 2>4acB.2a-b=1C.a-b+c=0D.5a<ba<0,与y 轴的交点在y 轴的正半轴上得c>0.因为二次函数的图像与x 轴有2个不同交点,所以Δ=b 2-4ac>0,故A 正确; 因为对称轴方程为x=-1,所以-b2a =-1,即2a-b=0,故B 不正确;又因为图像过点A (-3,0),且对称轴方程为x=-1,所以图像与x 轴的另一个交点是(1,0),把点(1,0)代入解析式得a+b+c=0,故C 不正确;把x=-3代入解析式得9a-3b+c=0,与a+b+c=0联立,两式相加并整理得10a-2b=-2c<0,即5a<b ,故D 正确.故选AD.12.(2021山东临沂高一期中)某校学习兴趣小组通过研究发现形如y=ax+bcx+d (ac ≠0,b ,d 不同时为0)的函数图像可以通过反比例函数的图像平移变换而得到,则对于函数y=x+2x -1的图像及性质的下列表述正确的是( )A.图像上点的纵坐标不可能为1B.图像关于点(1,1)成中心对称C.图像与x 轴无交点D.函数在区间(1,+∞)上单调递减y=x+2x -1=x -1+3x -1=1+3x -1,因此函数y=x+2x -1的图像可以看作是由y=3x的图像先向右平移一个单位,再向上平移一个单位而得到,因此函数图像上点的纵坐标不可能为1,函数图像关于点(1,1)成中心对称,函数图像与x 轴交点为(-2,0),函数y 在区间(1,+∞)上单调递减,故选ABD . 三、填空题:本题共4小题,每小题5分,共20分.13.若函数y=f (x )在定义域R 上的值域为[0,1],则函数y=f (x-1)+1的值域为 .,而只有上下平移才改变函数的值域,因此函数y=f (x-1)+1的值域为[1,2].14.某单位为鼓励职工节约用水,作出如下规定:每位职工每月用水不超过10立方米的,按每立方米3元收费;用水超过10立方米的,超过的部分按每立方米5元收费.某职工某月缴水费55元,则该职工这个月实际用水为 立方米.x 立方米,所缴水费为y 元,由题意得y={3x ,0≤x ≤10,30+5(x -10),x >10,即y={3x ,0≤x ≤10,5x -20,x >10.由于该职工这个月的实际用水量超过10立方米,所以5x-20=55,解得x=15. 15.已知函数f (x )=3+x 1+x,记f (1)+f (2)+f (4)+…+f (1 024)=m ,f12+f14+…+f11024=n ,则m+n= .解析由题意得f (x )+f1x=x+3x+1+1x +31x+1=x+3x+1+1+3x x+1=4(x+1)x+1=4,f (1)=3+11+1=2,∴m+n=f (1)+f12+f (2)+f 14+f (4)+…+f11024+f (1024)=2+4×512=2050.16.(2021江苏海门中学高一期中)设函数f (x )={-(x -a )2+a 2,x ≤0,-x 2+2x +1-a ,x >0,若f (0)是f (x )的最大值,则a 的取值范围为 .+∞)a>0,则满足题意的函数f (x )的图像如图所示:由数形结合可得Δ=4+4(1-a )≤0,解得a ≥2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2021山东德州高一期中)已知函数f (x )=x+1x .(1)用定义法证明f (x )在[1,+∞)上为增函数;(2)若对∀x ∈[2,4],恒有f (x )≤2m-1,求实数m 的取值范围. (1)证明设1≤x 1<x 2,则f (x 2)-f (x 1)=x 2+1x 2-x 1-1x 1=(x 2-x 1)+x 1-x2x 1x 2=(x 2-x 1)1-1x 1x 2=(x 2-x 1)(x 1x 2-1)x 1x 2,因为x 2>x 1≥1,所以x 2-x 1>0且x 1x 2>1. 所以(x 2-x 1)(x 1x 2-1)x 1x 2>0,即f (x 2)-f (x 1)>0,f (x 1)<f (x 2), 所以f (x )在[1,+∞)上是增函数.(1)知f (x )在[2,4]上单调递增,所以f (x )max =f (4)=174.所以2m-1≥174,即m ≥218. 所以m 的取值范围是218,+∞.18.(12分)(2020辽宁朝阳一中高一期中)设函数f (x )=ax 2+ax-1(a ∈R ). (1)当a=12时,求函数f (x )的零点; (2)讨论函数f (x )零点的个数.当a=12时,函数f (x )=12x 2+12x-1,令12x 2+12x-1=0,解得x=1或x=-2.函数f (x )的零点为1,-2.(2)当a=0时,f (x )=ax 2+ax-1=-1,函数没有零点; 当a ≠0时,Δ=a 2+4a.若Δ=a 2+4a=0,解得a=-4,此时函数f (x )有1个零点. 若Δ=a 2+4a>0,解得a<-4或a>0,此时函数有2个零点. 若Δ=a 2+4a<0,解得-4<a<0,此时函数没有零点. 综上所述,当a=-4时,函数f (x )有1个零点. 当a<-4或a>0时,函数有2个零点, 当-4<a ≤0时,函数没有零点.19.(12分)(2021云南玉溪一中高一期中)已知二次函数f (x )=ax 2+bx+c (a ≠0),满足f (x+1)-f (x )=2x ,且f (0)=1.(1)求函数f (x )的解析式;(2)函数f (x )在区间[n ,1)上的值域是34,1,求n 的取值范围.因为二次函数f (x )=ax 2+bx+c (a ≠0),满足f (x+1)-f (x )=2x ,且f (0)=1,所以a (x+1)2+b (x+1)+c-ax 2-bx-c=2x ,c=1, 即2ax+a+b=2x ,故a=1,b=-1,c=1. 所以函数f (x )的解析式为f (x )=x 2-x+1.(2)因为f (x )=x 2-x+1的开口向上,对称轴x=12,且f12=34,f (0)=f (1)=1,由f (x )在区间[n ,1)上的值域是34,1可得0<n ≤12.故n 的取值范围为0,12. 20.(12分)(2020江苏启东高一期中)已知函数f (x )=1x-1+12(x>0).(1)若m>n>0时,f (m )=f (n ),求1m +1n 的值;(2)若m>n>0时,函数f (x )的定义域与值域均为[n ,m ],求所有m ,n 的值.∵f (m )=f (n ),∴1m -1+12=1n-1+12.∴1m-1=1n-1,∴1m -1=1n -1或1m -1=1-1n . ∵m>n>0,∴1m +1n =2.(2)由题意f (x )={1x -12,0<x ≤1,32-1x,x >1,∴f (x )在(0,1]上单调递减,在[1,+∞)上单调递增. ①0<n<m ≤1,则f (n )=m ,f (m )=n ,∴{1n -12=m ,1m -12=n ,解得m=n=√17-14(舍去).②n<1<m ,则f (x )min =f (1)=12=n ,f (x )max =m=max{f (n ),f (m )}=max 32,f (m ),∴m=32. ③1≤n<m ,则f (n )=n ,f (m )=m ,无解. 综上,m=32,n=12.21.(12分)(2021山东聊城高一期中)为了节能减排,某农场决定安装一个可使用10年的太阳能供电设备.使用这种供电设备后,该农场每年消耗的电费C (单位:万元)与太阳能电池面积x (单位:平方米)之间的函数关系为C (x )={m -4x5,0≤x ≤10,m x ,x >10(m 为常数).已知太阳能电池面积为5平方米时,每年消耗的电费为8万元.安装这种供电设备的工本费为0.6x (单位:万元).记F (x )为该农场安装这种太阳能供电设备的工本费与该农场10年消耗的电费之和. (1)写出F (x )的解析式;(2)当x 为多少平方米时,F (x )取得最小值?最小值是多少万元?(精确到小数点后一位)(已知√3≈1.7,√10≈3.2)当0≤x ≤10时,C (x )=m -4x 5,由题意8=m -4×55,即m=60.∴C (x )={60-4x5,0≤x ≤10,60x,x >10,则F (x )={10×60-4x5+0.6x ,0≤x ≤10,10×60x +0.6x ,x >10,化简可得F (x )={120-7.4x ,0≤x ≤10,600x+0.6x ,x >10.(2)当0≤x ≤10时,F (x )=120-7.4x ,可得F (x )min =F (10)=46(万元), 当x>10时,F (x )=600x+610x ≥2√600x·610x =6√10≈19.2(万元),当且仅当600x=610x ,即x=10√10≈32平方米时,等号成立,故当x 为32平方米时,F (x )取得最小值,最小值是19.2万元.22.(12分)(2021重庆外国语学校高一期中)已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+2x.函数f (x )在y 轴左侧的图像如图所示,并根据图像:(1)画出f (x )在y 轴右侧的图像并写出函数f (x )(x ∈R )的单调递增区间; (2)写出函数f (x )(x ∈R )的解析式;(3)若函数g (x )=f (x )+(4-2a )x+2(x ∈[1,2]),求函数g (x )的最小值.函数f (x )是定义在R 上的偶函数,即函数f (x )的图像关于y 轴对称,则函数f (x )图像如图所示.故函数f (x )的单调递增区间为(-1,0),(1,+∞). (2)根据题意,令x>0,则-x<0,则f (-x )=x 2-2x ,又由函数f (x )是定义在R 上的偶函数,则f (x )=f (-x )=x 2-2x ,则f (x )={x 2+2x ,x ≤0,x 2-2x ,x >0.(3)根据题意,x ∈[1,2],则f (x )=x 2-2x ,则g (x )=x 2-2x+(4-2a )x+2=x 2+(2-2a )x+2, 其对称轴为x=a-1,当a-1<1时,即a<2时,g (x )在区间[1,2]上单调递增,g (x )min =g (1)=5-2a ; 当1≤a-1≤2时,即2≤a ≤3时,g (x )min =g (a-1)=1+2a-a 2;当a-1>2时,即a>3时,g (x )在区间[1,2]上单调递减,g (x )min =g (2)=10-4a , 故g (x )min ={5-2a ,a <2,1+2a -a 2,2≤a ≤3,10-4a ,a >3.。

高中数学人教版必修二第三章《直线与方程》达标训练(含答案解析)

高中数学人教版必修二第三章《直线与方程》达标训练(含答案解析)

高中数学人教版必修二第三章《直线与方程》达标训练(含答案解析)一、选择题1.(2020·淄博高一检测)下列说法正确的是()A.经过定点P0(x0,y0)的直线都可以用方程y-y0=k(x-x0)表示B.经过任意两个不同点P(x1,y1)、P2(x2,y2)的直线都可以用方程(y-y1)(x2-x1)=(x-x1)(y2-y1)表示C.不经过原点的直线都可以用方程xa+yb=1表示D.经过定点A(0,b)的直线都可以用方程y=kx+b表示2.以A(1,3),B(-5,1)为端点的线段的垂直平分线方程是() A.3x-y-8=0 B.3x+y+4=0C.3x-y+6=0 D.3x+y+2=03.若直线ax+by+c=0经过第一、二、三象限,则() A.ab>0,bc>0 B.ab>0,bc>0C.ab<0,bc>0 D.ab<0,bc<04.已知直线l 1:(k -3)x +(3-k )y +1=0与直线l 2:2(k -3)x -2y +3=0垂直,则k 的值是( )A .2B .3C .2或3D .2或-35.两条直线l 1:x a -y b =1和l 2:x b -ya=1在同一直角坐标系中的图象可以是( )二、填空题6.过点P (1,2)且在两坐标轴上截距和为0的直线方程为________.7.垂直于直线3x-4y-7=0,且与两坐标轴围成的三角形的面积为6的直线在x 轴上的截距是________.三、解答题8.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直线.(1)求实数m的范围;(2)若该直线的斜率k=1,求实数m的值.9.已知三角形的三个顶点A(0,4),B(-2,6),C(-8,0).(1)求三角形三边所在直线的方程;(2)求AC边上的垂直平分线的方程.10.(2020·潍坊高一检测)已知两直线的方程分别为l 1:x +ay +b =0,l 2:x +cy +d =0,它们在坐标系中的位置如图3-2-3所示,则( )图3-2-3A .b >0,d <0,a <cB .b >0,d <0,a >cC .b <0,d >0,a >cD .b <0,d >0,a <c11.直线过点P ⎝ ⎛⎭⎪⎫43,2且与x 轴、y 轴的正半轴分别交于A ,B 两点,O 为坐标原点,是否存在这样的直线同时满足下列条件:(1)△AOB 的周长为12; (2)△AOB 的面积为6.若存在,求出直线的方程;若不存在,请说明理由.∴所求直线的方程为x4+y3=1或x2+y6=1,即3x+4y-12=0或3x+y-6=0.综上所述:存在同时满足(1)(2)两个条件的直线方程,为3x+4y-12=0.。

人教版数学高一第三章直线与方程单元测试精选(含答案)3

人教版数学高一第三章直线与方程单元测试精选(含答案)3

d
Ax0 By0 C A2 B2
.已知点 P1, P2
到直线 l
的有向距离分别是 d1, d2 ,给出以下命题:
试卷第 6页,总 10页
①若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ②若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ③若 d1 d2 0 ,则直线 P1P2 与直线 l 垂直;④若 d1d2 0 ,则直线 P1P2 与直线 l 相交;
25.直线 l1:x+my+6=0 与 l2:(m-2)x+3y+2m=0,若 l1//l2 则 m =__________;
【来源】[中学联盟]山东省栖霞市第一中学 2017-2018 学年高一上学期期末测试数学试 题
【答案】 1 1
26.直线 y= x 关于直线 x=1 对称的直线方程是________;
则 m 的倾斜角可以是:①15°;② 30°;③ 45°;④ 60°;⑤ 75°. 其中正确答案的序号是______.(写出所有正确答案的序号) 【来源】2011 届陕西省师大附中、西工大附中高三第七次联考文数
【答案】①或⑤
30.定义点 P(x0 , y0 ) 到直线 l : Ax By C 0( A2 B 2 0) 的有向距离为
评卷人 得分
二、填空题
22.在四边形 ABCD 中,AB = DC = (1,1),且 BA + BC =
|BA| |BC|
|B3BDD| ,则四边形 ABCD 的面积


【来源】2015 高考数学(理)一轮配套特训:4-3 平面向量的数量积及应用(带解析)
【答案】 3
23.直线 ax+2y-4=0 与直线 x+y-2=0 互相垂直,那么 a=______________ ;

高一数学必修1,2,3,4,5试题及答案

高一数学必修1,2,3,4,5试题及答案

高二数学必修部分测试题一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.0sin 390=()A .21B .21-C .23 D .23- 2.已知2tan()5αβ+=,1tan()44πβ-=,则tan()4πα+的值为() A 1223133A 4.,b 满足:|3a =,|2b =,||a b +=||a b -=()A 3D .105.下面结论正确的是()C.6A C 789、函数⎪⎩⎪⎨⎧+∞∈--∞∈-=--),2(,22]2,(,2211x x y x x 的值域为______________。

A 、),23(+∞- B 、]0,(-∞ C 、23,(--∞ D 、]0,2(- 10.当x>1时,不等式x+11-x ≥a 恒成立,则实数a 的取值范围是 A .(-∞,2] B .[2,+∞) C .[3,+∞) D .(-∞,3]11.已知a,b,c 成等比数列,且x,y 分别为a 与b 、b 与c 的等差中项,则y c x a +的值为() (A )21(B )-2(C )2(D )不确定 12.已知数列{a n }的通项公式为a n =n n ++11且S n =1101-,则n 的值为()(A )98(B )99(C )100(D )101二、填空题(本大题共4小题,每题4分,共16分,把答案填在题中横线上)13141516。

17得到y 1819(本小题满分12分)已知向量a ,b 的夹角为60,且||2a =,||1b =,(1)求a b ;(2)求||a b +.20.已知数列{a n },前n 项和S n =2n-n 2,a n =log 5bn ,其中bn>0,求数列{bn}的前n 项和。

21(本小题满分14分)已知(3sin ,cos )a x m x =+,(cos ,cos )b x m x =-+,且()f x a b =(1)求函数()f x 的解析式;(2)当,63x ππ⎡⎤∈-⎢⎥⎣⎦时,()f x 的最小值是-4,求此时函数()f x 的最大值,并求出相应的x 的值. 22如图如图,在底面是直角梯形的四棱锥S-ABCD ,∠ABC=90°,SA ⊥面ABCD ,SA=AB=BC=1,AD=1/2.ACAD 13.3π171)2-+x ,∴18.19.解:(1)1||||cos602112a b a b ==⨯⨯= (2)22||()a b a b +=+所以||3a b +=20.当n=1时,a 1=S 1=1当n ≥2时,a 1=S n -S n-1=3-2n ∴a n =3-2nb n =53-2n∵25155123)1(23==+-+-n n bn bn b 1=5∴{b n }是以5为首项,251为公比的等比数列。

完整版)高一数学必修2第三章测试题及答案解析

完整版)高一数学必修2第三章测试题及答案解析

完整版)高一数学必修2第三章测试题及答案解析数学必修二第三章综合检测题一、选择题1.若直线过点 (1,2),(4,2+3),则此直线的倾斜角是()A。

30° B。

45° C。

60° D。

90°2.若三点 A(3,1),B(-2,b),C(8,11)在同一直线上,则实数b 等于()A。

2 B。

3 C。

9 D。

-93.过点 (1,2),且倾斜角为 30°的直线方程是()A。

y+2=(3/2)(x+1) B。

y-2=3(x-1)C。

3x-3y+6-3=0 D。

3x-y+2-3=04.直线 3x-2y+5=0 与直线 x+3y+10=0 的位置关系是()A。

相交 B。

平行 C。

重合 D。

异面5.直线 mx-y+2m+1=0 经过一定点,则该定点的坐标为()A。

(-2,1) B。

(2,1) C。

(1,-2) D。

(1,2)6.已知 ab<0,bc<0,则直线 ax+by+c=0 通过()A。

第一、二、三象限 B。

第一、二、四象限C。

第一、三、四象限 D。

第二、三、四象限7.点 P(2,5) 到直线 y=-3x 的距离 d 等于()A。

(23+5)/2 B。

(-23+5)/2 C。

(-23-5)/2 D。

(22)/38.与直线 y=-2x+3 平行,且与直线 y=3x+4 交于 x 轴上的同一点的直线方程是()A。

y=-2x+4 B。

y=(1/2)x+4C。

y=-2x-(3/2) D。

y=(2/3)x-(3/2)9.两条直线 y=ax-2 与 y=(a+2)x+1 互相垂直,则 a 等于()A。

2 B。

1 C。

-1 D。

-210.已知等腰直角三角形 ABC 的斜边所在的直线是 3x-y+2=0,直角顶点是 C(3,-2),则两条直角边 AC,BC 的方程是()A。

3x-y+5=0.x+2y-7=0 B。

2x+y-4=0.x-2y-7=0C。

2x-y+4=0.2x+y-7=0 D。

人教A版高一数学必修第二册全册复习测试题卷含答案解析(21)

人教A版高一数学必修第二册全册复习测试题卷含答案解析(21)

高一数学必修第二册全册复习测试题卷4(共22题)一、选择题(共10题)1. 在 △ABC 中,sin 2A ≤sin 2B +sin 2C −sinBsinC ,则 A 的取值范围是 ( ) A . (0,π6]B . [π6,π)C . (0,π3]D . [π3,π)2. 在 △ABC 中,∠BAC =60∘,∠BAC 的平分线 AD 交 BC 边于点 D ,已知 AD =2√3,且λAB ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −13AC ⃗⃗⃗⃗⃗ (λ∈R ),则 AB ⃗⃗⃗⃗⃗ 在 AD ⃗⃗⃗⃗⃗ 方向上的投影数量为 ( )A . 1B . 32C . 3D .3√323. 已知向量 a ,b ⃗ 满足 ∣a ∣=√3,∣∣b ⃗ ∣∣=2√3,a ⋅b ⃗ =−3,则 a 与 b ⃗ 的夹角是 ( ) A . 150∘ B . 120∘ C . 60∘ D . 30∘4. 甲、乙两个袋子中装有若干个均匀的白球和红球,且甲、乙两个袋子中的球数比为 1:3.已知从甲袋中摸到红球的概率为 13,而将甲、乙两个袋子中的球装在一起后,从中摸到红球的概率为23.则从乙袋中摸到红球的概率为 ( ) A . 79B . 1945C . 1330D . 22455. 下列各组向量组成的集合 {e 1⃗⃗⃗ ,e 2⃗⃗⃗ } 中,能作为表示它们所在平面内所有向量的基底的是 ( ) A . e 1⃗⃗⃗ =(0,0),e 2⃗⃗⃗ =(1,−2)B . e 1⃗⃗⃗ =(−1,2),e 2⃗⃗⃗ =(5,7)C . e 1⃗⃗⃗ =(3,5),e 2⃗⃗⃗ =(6,10)D . e 1⃗⃗⃗ =(2,−3),e 2⃗⃗⃗ =(12,−34)6. 甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,则下列说法正确的是( ) A .甲获胜的概率是16 B .甲不输的概率是12C .乙输了的概率是23D .乙不输的概率是127. 在 △ABC 中,∣AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ∣=∣AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ∣,AB =2,AC =1,E ,F 为 BC 的三等分点,则 AE ⃗⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ = ( ) A . 89B .109C .259D .2698. 设复数 2−i 和 3−i 的辐角的主值分别为 α 和 β,则 α+β 等于 ( ) A . 135∘B . 315∘C . 675∘D . 585∘9. 一组数据从小到大排列依次为 3,5,6,7,8,9,x ,12,13,13,且该组数据 70% 分位数不超过 11,则 x 的取值范围是 ( ) A . [9,12]B . (9,11]C . (9,10)D . [9,10]10. 如图,在四边形 ABCD 中,∣∣AB ⃗⃗⃗⃗⃗ ∣∣+∣∣BD ⃗⃗⃗⃗⃗⃗ ∣∣+∣∣DC ⃗⃗⃗⃗⃗ ∣∣=4,AB ⃗⃗⃗⃗⃗ ⋅BD ⃗⃗⃗⃗⃗⃗ =BD ⃗⃗⃗⃗⃗⃗ ⋅DC ⃗⃗⃗⃗⃗ =0,∣∣AB ⃗⃗⃗⃗⃗ ∣∣⋅∣∣BD ⃗⃗⃗⃗⃗⃗ ∣∣+∣∣BD ⃗⃗⃗⃗⃗⃗ ∣∣⋅∣∣DC ⃗⃗⃗⃗⃗ ∣∣=4,则 (AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ )⋅AC ⃗⃗⃗⃗⃗ 的值为A .2B .2√2C .4D .4√2二、填空题(共6题)11. 已知某次考试有 4 道选择题,每道选择题有 4 个选项.若某人做对每道题的概率都是 14,且完成每道题相互独立,则该人至少做对 1 题的概率是 .12. 设 I 为 △ABC 的内心,三边长 AB =7,BC =6,AC =5,点 P 在边 AB 上,且 AP =2,若直线 IP 交直线 BC 于点 Q ,则线段 QC 的长为 .13. 在 △ABC 中,内角 A ,B ,C 的对边分别为 a ,b ,c ,且 A:B:C =1:2:3,a =1,则a−2b+c sinA−2sinB+sinC= .14. 若a1−i =1−bi ,其中a ,b 都是实数,i 是虚数单位,则∣a +bi ∣= .15. 下图是根据部分城市某年6月份的平均气温(单位:∘C )数据得到的样本频率分布直方图,其中平均气温的范围是 [20.5,26.5],样本数据的分组为 [20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5).已知样本中平均气温低于 22.5∘C 的城市个数为 11,则样本中平均气温不低于 25.5∘C 的城市个数为 .16. 已知 e 1⃗⃗⃗ ,e 2⃗⃗⃗ 是夹角为2π3的两个单位向量,a =e 1⃗⃗⃗ −2e 2⃗⃗⃗ ,b ⃗ =ke 1⃗⃗⃗ +e 2⃗⃗⃗ ,若 a⋅b ⃗ =0,则实数 k 的值为 .三、解答题(共6题)17. △ABC 的内角 A ,B ,C 的对边分别为 a ,b ,c .已知 asinA+C 2=bsinA .(1) 求 B ;(2) 若 △ABC 为锐角三角形,且 c =1,求 △ABC 面积的取值范围.18. 有人告诉你,放学后送你回家的概率如下:① 50%;② 2%;③ 90%.试将以上数据分别与下面的文字描述相匹配: (1) 很可能送你回家,但不一定送. (2) 送与不送的可能性一样大. (3) 送你回家的可能性极小.19. 已知定点 F (2,0),直线 l:x =−2,点 P 为坐标平面上的动点,过点 P 作直线 l 的垂线,垂足为点 Q ,且 FQ ⃗⃗⃗⃗⃗ ⊥(PF ⃗⃗⃗⃗⃗ +PQ ⃗⃗⃗⃗⃗ ).设动点 P 的轨迹为曲线 C . (1) 求曲线 C 的方程;(2) 过点 F 的直线 l 1 与曲线 C 有两个不同的交点 A ,B ,求证:1∣AF∣+1∣BF∣=12;(3) 记 OA ⃗⃗⃗⃗⃗ 与 OB ⃗⃗⃗⃗⃗ 的夹角为 θ(O 为坐标原点,A ,B 为(2)中的两点),求 cosθ 的取值范围.20. 如图,在四棱锥 P −ABCD 中,底面 ABCD 是边长为 2 的菱形,∠DAB =60∘,∠ADP =90∘,平面ADP ⊥平面ABCD ,点 F 为棱 PD 的中点.(1) 在棱 AB 上是否存在一点 E ,使得 AF ∥平面PCE ,并说明理由; (2) 当二面角 D −FC −B 的余弦值为 √24时,求直线 PB 与平面 ABCD 所成的角.21. 设椭圆x 2a2+y 2b 2=1 (a >b >0) 的左、右焦点分别为 F 1 、 F 2,离心率 e =√22,右准线为 l ,M 、 N 是 l 上的两个动点,F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅F 2N ⃗⃗⃗⃗⃗⃗⃗ =0.(1) 若 ∣∣F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ∣∣=∣∣F 2N ⃗⃗⃗⃗⃗⃗⃗ ∣∣=2√5,求 a 、 b 的值;(2) 证明:当 ∣∣MN ⃗⃗⃗⃗⃗⃗⃗ ∣∣ 取最小值时,F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ +F 2N ⃗⃗⃗⃗⃗⃗⃗ 与 F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ 共线.22. 在 △ABC 中,角 A ,B ,C 的对边分别是 a ,b ,c ,若 bcosC +(2a +c )cosB =0.(1) 求内角 B 的大小;(2) 若 b =2,求 △ABC 面积的最大值.答案一、选择题(共10题) 1. 【答案】C【知识点】余弦定理、正弦定理2. 【答案】D【解析】在 AC 上取点 E ,使 AE⃗⃗⃗⃗⃗ =13AC ⃗⃗⃗⃗⃗ , 连接 DE ,过 D 作 DF ∥AC ,交 AB 于 F , 因为 λAB ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ −13AC ⃗⃗⃗⃗⃗ =ED ⃗⃗⃗⃗⃗ (λ∈R ),所以 ED ∥AB ,所以四边形 AFDE 为平行四边形, 又 AD 平分 ∠BAC , 所以四边形 AFDE 为菱形. 因为 AD =2√3,∠BAC =60∘,所以 AE =2,则 AC =6. 设 FB =x , 因为 DF ∥AC , 所以DF AC=FB AB,即 26=x2+x,解得 x =1, 即 FB =1, 所以 AB =3.所以 AB ⃗⃗⃗⃗⃗ 在 AD ⃗⃗⃗⃗⃗ 方向上的投影数量为 ∣∣AB ⃗⃗⃗⃗⃗ ∣∣⋅cos30∘=3√32.【知识点】平面向量的数量积与垂直3. 【答案】B【知识点】平面向量的数量积与垂直4. 【答案】A【解析】设甲袋中的总球数为 x ,则甲袋中有 x 3 个红球,2x3 个白球,乙袋中的总球数为 3x ,因为甲、乙两袋中共有 4x ×23=8x3个红球,所以乙袋中有 7x 3个红球,因此从乙袋中摸到红球的概率为7x 33x=79.【知识点】古典概型5. 【答案】B【解析】由基底的概念可知,作为基底的两个向量不能共线.A 中向量 e 1⃗⃗⃗ 为零向量,零向量与任意向量都共线,故 e 1⃗⃗⃗ ∥e 2⃗⃗⃗ ;B 中 e 1⃗⃗⃗ 与 e 2⃗⃗⃗ 不共线,故可以作为基底;C 中 e 1⃗⃗⃗ =12e 2⃗⃗⃗ ,所以 e 1⃗⃗⃗ ∥e 2⃗⃗⃗ ;D 中 e 1⃗⃗⃗ =4e 2⃗⃗⃗ ,所以 e 1⃗⃗⃗ ∥e 2⃗⃗⃗ . 【知识点】平面向量数乘的坐标运算6. 【答案】A【解析】【分析】由已知条件分别求出甲获胜、甲不输、乙输和乙不输的概率,由此能得到正确选项同.【解析】解:∵甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13, ∴甲获胜的概率是:1−12−13=16,故A 正确; 甲不输的概率是:1−13=23,故B 不正确; 乙输了的概率是:1−13−12=16,故C 不正确; 乙不输的概率是:12+13=56.故D 不正确.故选:A .【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意互斥事件概率计算公式的合理运用.7. 【答案】B【解析】解法一:因为 ∣AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ∣=∣AB⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ∣,所以 AB ⃗⃗⃗⃗⃗ ⊥AC ⃗⃗⃗⃗⃗ ,以点 A 为坐标原点,AB ⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ 分别为 x ,y 轴正方向建立直角坐标系,设 AB⃗⃗⃗⃗⃗ =(2,0),AC ⃗⃗⃗⃗⃗ =(0,1),所以 BC ⃗⃗⃗⃗⃗ =(−2,1),由 E ,F 为 BC 的三等分点,可假设 BE ⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ ,所以 AE ⃗⃗⃗⃗⃗ =(43,13),AF ⃗⃗⃗⃗⃗ =(23,23),所以 AE⃗⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ =(43,13)⋅(23,23)=109,故选B .解法二:若 ∣AB⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ ∣=∣AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ ∣,则 AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗⃗ 2+2AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ 2+AC ⃗⃗⃗⃗⃗ 2−2AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ ,即有 AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =0,由 E ,F 为 BC 的三等分点,可假设 BF ⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ ,则 AE⃗⃗⃗⃗⃗ ⋅AF ⃗⃗⃗⃗⃗ =(AC⃗⃗⃗⃗⃗ +CE ⃗⃗⃗⃗⃗ )⋅(AB ⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ )=(AC ⃗⃗⃗⃗⃗ +13CB ⃗⃗⃗⃗⃗ )⋅(AB ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ )=(23AC ⃗⃗⃗⃗⃗ +13AB ⃗⃗⃗⃗⃗ )⋅(13AC ⃗⃗⃗⃗⃗ +23AB ⃗⃗⃗⃗⃗ )=29AC ⃗⃗⃗⃗⃗ 2+29AB ⃗⃗⃗⃗⃗ 2+59AB ⃗⃗⃗⃗⃗ ⋅AC ⃗⃗⃗⃗⃗ =29×(1+4)+0=109.故选B .【知识点】平面向量的数量积与垂直8. 【答案】C【解析】根据题意有 2−i =√5(cosα+isinα),3−i =√10(cosβ+isinβ),则 √5(cosα+isinα)⋅√10(cosβ+isinβ)=5√2[cos (α+β)+isin (α+β)]. 又 (2−i )(3−i )=5−5i , 所以 cos (α+β)=√22, sin (α+β)=−√22, 而 270∘<α<360∘, 270∘<β<360∘, 所以 α+β=675∘. 【知识点】复数的三角形式9. 【答案】D【解析】因为 10×70%=7, 所以 70% 分位数为 x+122,所以 {x+122≤11,9≤x ≤12,解得 9≤x ≤10. 【知识点】样本数据的数字特征10. 【答案】C【解析】由 {(∣∣AB ⃗⃗⃗⃗⃗ ∣∣+∣∣DC ⃗⃗⃗⃗⃗ ∣∣)+∣∣BD ⃗⃗⃗⃗⃗⃗ ∣∣=4,(∣∣AB ⃗⃗⃗⃗⃗ ∣∣+∣∣DC ⃗⃗⃗⃗⃗ ∣∣)⋅∣∣BD ⃗⃗⃗⃗⃗⃗ ∣∣=4. 解得 {∣∣AB ⃗⃗⃗⃗⃗ ∣∣+∣∣DC ⃗⃗⃗⃗⃗ ∣∣=2,∣∣BD ⃗⃗⃗⃗⃗⃗ ∣∣=2.因为 AB ⃗⃗⃗⃗⃗ 与 DC ⃗⃗⃗⃗⃗ 方向相同,所以 ∣∣AB ⃗⃗⃗⃗⃗ ∣∣+∣∣DC ⃗⃗⃗⃗⃗ ∣∣=∣∣AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ ∣∣, 所以(AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ )⋅AC ⃗⃗⃗⃗⃗ =∣∣AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ ∣∣∣∣AC ⃗⃗⃗⃗⃗ ∣∣cos∠CAB =∣∣AB ⃗⃗⃗⃗⃗ +DC ⃗⃗⃗⃗⃗ ∣∣2=4. 【知识点】平面向量的数量积与垂直二、填空题(共6题) 11. 【答案】 175256【解析】设事件 A i ={做对第i 题}(i =1,2,3,4),则 P (A i )=14,P(A i )=1−P (A i )=34,由于 A 1,A 2,A 3,A 4 相互独立,所以 P(A 1⋅A 2⋅A 3⋅A 4)=P(A 1)P(A 2)P(A 3)P(A 4)=(34)4=81256, 故至少做对一题的概率为 P (A 1∪A 2∪A 3∪A 4)=1−P(A 1A 2A 3A 4)=1−81256=175256.【知识点】事件的关系与运算12. 【答案】138【解析】如图, 由题意易得 AP ⃗⃗⃗⃗⃗ =25PB ⃗⃗⃗⃗⃗ , 所以 IP ⃗⃗⃗⃗ −IA ⃗⃗⃗⃗ =25(IB ⃗⃗⃗⃗ −IP ⃗⃗⃗⃗ ), 所以 IP ⃗⃗⃗⃗ =57IA ⃗⃗⃗⃗ +27IB ⃗⃗⃗⃗ . 设 CQ =x ,BQ =y ,则 x +y =6, 所以 CQ ⃗⃗⃗⃗⃗ =−x yBQ ⃗⃗⃗⃗⃗ , 所以 IQ ⃗⃗⃗⃗ −IC ⃗⃗⃗⃗ =x y (IB ⃗⃗⃗⃗ −IQ⃗⃗⃗⃗ ), 所以 IQ ⃗⃗⃗⃗ =x 6IB ⃗⃗⃗⃗ +y 6IC ⃗⃗⃗⃗ . 因为 7IC⃗⃗⃗⃗ +5IB ⃗⃗⃗⃗ +6IA ⃗⃗⃗⃗ =0, 点 I 是 △ABC 的内心,根据三角形内心的向量表示得向量等式. 所以 IC ⃗⃗⃗⃗ =−57IB ⃗⃗⃗⃗ −67IA ⃗⃗⃗⃗ ,所以 IQ ⃗⃗⃗⃗ =x 6IB ⃗⃗⃗⃗ +y 6IC ⃗⃗⃗⃗ =x 6IB ⃗⃗⃗⃗ +y 6(−57IB ⃗⃗⃗⃗ −67IA ⃗⃗⃗⃗ )=−y 7IA⃗⃗⃗⃗ +(x 6−5y 42)IB ⃗⃗⃗⃗ . 因为 IQ ⃗⃗⃗⃗ ∥IP⃗⃗⃗⃗ , 所以 (−y7):(x6−5y42)=52, 结合 x +y =6,解得 x =138.所以线段 QC 的长为138.【知识点】平面向量数乘的坐标运算13. 【答案】 2【解析】因为 A:B:C =1:2:3,A +B +C =180∘, 所以 A =30∘,B =60∘,C =90∘, 因为a sinA=b sinB=c sinC=1sin30∘=2,所以 a =2sinA ,b =2sinB ,c =2sinC , 所以 a−2b+csinA−2sinB+sinC =2. 【知识点】正弦定理14. 【答案】√5【解析】【分析】首先进行复数的乘法运算,根据多项式乘以单项式的法则进行运算,然后两个复数进行比较,根据两个复数相等的充要条件,得到要求的b 的值. 【解析】解:a1−i =a(1+i)(1−i)(1+i)=a2+a2i =1−bi ∴a =2,b =−1∴∣a +bi ∣=√a 2+b 2=√5故答案为:√5.【点评】本题是一个考查复数概念的题目,在考查概念时,题目要先进行乘法运算,复数的加减乘除运算是比较简单的问题,在高考时有时会出现,若出现则是要我们一定要得分的题目.【知识点】复数的几何意义15. 【答案】9【解析】设样本容量为n,则(0.1+0.12)n=11,解得n=50,故气温不低于25.5∘C的城市个数为50×0.18=9.【知识点】频率分布直方图16. 【答案】54【解析】因为e1⃗⃗⃗ 与e2⃗⃗⃗ 为两个夹角为2π3的单位向量,a=e1⃗⃗⃗ −2e2⃗⃗⃗ ,b⃗=ke1⃗⃗⃗ +e2⃗⃗⃗所以a⋅b⃗=0即为(e1⃗⃗⃗ −2e2⃗⃗⃗ )⋅(ke1⃗⃗⃗ +e2⃗⃗⃗ )=ke1⃗⃗⃗ 2+e2⃗⃗⃗ 2+(1−2k)e1⃗⃗⃗ ⋅e2⃗⃗⃗ =2k−52=0,所以k=54.【知识点】平面向量的数量积与垂直三、解答题(共6题)17. 【答案】(1) 解法一:由题设及正弦定理得sinAsin A+C2=sinBsinA.因为sinA≠0,所以sin A+C2=sinB.由A+B+C=180∘,可得sin A+C2=cos B2,故cos B2=2sin B2cos B2.因为cos B2≠0,所以sin B2=12,所以B=60∘.解法二:由asin A+C2=bsinA得sinAcos B2=sinBsinA,则cos B2=2sin B2cos B2.所以sin B2=12.所以B=π3.(2) 解法一:由题设及(1)知△ABC的面积S△ABC=√34a.由正弦定理得 a =csinA sinC=csin (120∘−C )sinC=√32tanC +12.由于 △ABC 为锐角三角形,故 0∘<A <90∘,0∘<C <90∘. 由(1)知 A +C =120∘,所以 30∘<C <90∘, 故 12<a <2,从而√38<S △ABC <√32. 因此,△ABC 面积的取值范围是 (√38,√32). 解法二: 作出图形,如图.由题意知,点 C 在射线 BD 上,且 △ABC 为锐角三角形. 观察得 ∠A =90∘ 时,S △ABC 最大; ∠ACB =90∘ 时,S △ABC 最小. 故 S △ABC 的取值范围是 (√38,√32). 【知识点】正弦定理18. 【答案】(1) 90%.(2) 50%. (3) 2%.【知识点】频率与概率19. 【答案】(1) 设点 P 的坐标为 (x,y ).由题意,可得 Q (−2,y ),FQ⃗⃗⃗⃗⃗ =(−4,y ),PF ⃗⃗⃗⃗⃗ =(2−x,−y ),PQ ⃗⃗⃗⃗⃗ =(−2−x,0). 由 FQ ⃗⃗⃗⃗⃗ ⊥(PF ⃗⃗⃗⃗⃗ +PQ ⃗⃗⃗⃗⃗ ),得 FQ ⃗⃗⃗⃗⃗ ⋅(PF ⃗⃗⃗⃗⃗ +PQ ⃗⃗⃗⃗⃗ )=0, 即 (−4,y )⋅(−2x,−y )=0,所以 y 2=8x (x ≥0). 所以所求曲线 C 的方程为 y 2=8x (x ≥0).(2) 因为过点 F 的直线 l 1 与曲线 C 有两个不同的交点 A ,B , 所以直线 l 1 的斜率不为 0,故设直线 l 1 的方程为 x =my +2. 于是 A ,B 的坐标为 (x 1,y 1),(x 2,y 2) 为方程组 {y 2=8x,x =my +2 的实数解.消去 x 并整理得 y 2−8my −16=0. 于是 y 1+y 2=8m ,y 1y 2=−16, 所以 x 1+x 2=8m 2+4,x 1x 2=4.又因为曲线 y 2=8x (x ≥0) 的准线为 x =−2,所以1∣AF∣+1∣BF∣=1x 1+2+1x 2+2=4+x 1+x 2x 1x 2+2(x 1+x 2)+4=12.(3) 由(2)可知 OA ⃗⃗⃗⃗⃗ =(x 1,y 1),OB ⃗⃗⃗⃗⃗ =(x 2,y 2).所以cosθ=OA⃗⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗⃗ ∣∣OA ⃗⃗⃗⃗⃗⃗ ∣∣⋅∣∣OB ⃗⃗⃗⃗⃗⃗ ∣∣=1212√x 1+y 1⋅√x 2+y 2=√x x √(x +8)(x +8)=√64m 2+100当 m =0 时,cosθ 有最小值 −35. 所以 cosθ 的取值范围为 [−35,0).【知识点】抛物线中的动态参数问题、抛物线中的动态性质证明、平面向量数量积的坐标运算20. 【答案】(1) 在棱 AB 上存在点 E ,使得 AF ∥平面PCE ,点 E 为棱 AB 的中点. 理由如下:取 PC 的中点 Q ,连接 EQ ,FQ ,EC , 因为 F ,Q 分别是 PD ,PC 的中点, 所以 FQ ∥DC 且 FQ =12CD ,又因为 AE ∥CD 且 AE =12CD ,所以 AE ∥FQ 且 AE =FQ , 所以四边形 AEQF 为平行四边形,所以 AF ∥EQ ,又 EQ ⊂平面PEC ,AF ⊄平面PEC , 所以 AF ∥平面PEC .(2) 由题意知 △ABD 为正三角形, 所以 ED ⊥AB ,亦即 ED ⊥CD , 又 ∠ADP =90∘,所以 PD ⊥AD ,且 平面ADP ⊥平面ABCD ,平面ADP ∩平面ABCD =AD , 所以 PD ⊥平面ABCD ,故以 D 为坐标原点建立如图所示的空间直角坐标系, 设 FD =a ,则由题意知 D (0,0,0),F (0,0,a ),C (0,2,0),B(√3,1,0),所以 FC⃗⃗⃗⃗⃗ =(0,2,−a ),CB ⃗⃗⃗⃗⃗ =(√3,−1,0), 设平面 FBC 的法向量为 m ⃗⃗ =(x,y,z ), 则由 {m ⃗⃗ ⋅FC ⃗⃗⃗⃗⃗ =0,m ⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =0,得 {2y −ax =0,√3x −y =0,令 x =1,则 y =√3,z =2√3a, 所以得 m ⃗⃗ =(1,√3,2√3a), 显然可取平面 DFC 的法向量 n ⃗ =(1,0,0), 由题意:√24=∣cos ⟨m,n ⟩∣=√1+3+12a2,所以 a =√3,由于 PD ⊥平面ABCD ,所以 PB 在平面 ABCD 内的射影为 BD , 所以 ∠PBD 为直线 PB 与平面 ABCD 所成的角,易知在 Rt △PBD 中,tan∠PBD =PDBD =a =√3,从而 ∠PBD =60∘, 所以直线 PB 与平面 ABCD 所成的角为 60∘.【知识点】利用向量的坐标运算解决立体几何问题、直线与平面平行关系的判定、二面角21. 【答案】(1) 由已知,F 1(−c,0),F 2(c,0). 由 e =√22,得a 2=2c 2.结合 a 2=b 2+c 2,解得b 2=c 2,a 2=2b 2.所以右准线方程为x =2c,因此可设 M (2c,y 1),N (2c,y 2).延长 NF 2 交 MF 1 于 P ,记右准线 l 交 x 轴于 Q .因为 F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅F 2N ⃗⃗⃗⃗⃗⃗⃗ =0,所以F 1M ⊥F 2N,结合 ∣F 1M ∣=∣F 2N ∣ 及平面几何的知识得Rt △MQF 1≌Rt △F 2QN,从而∣QN∣∣=∣F 1Q∣∣=3c,∣QM∣∣=∣F 2Q∣∣=c,即∣y 1∣=c,∣y 2∣=3c.由 ∣∣F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ∣∣=∣∣F 2N ⃗⃗⃗⃗⃗⃗⃗ ∣∣=2√5, 得9c 2+c 2=20,解得c 2=2,故a =2,b =√2.(2) 因为F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅F 2N ⃗⃗⃗⃗⃗⃗⃗ =(3c,y 1)⋅(c,y 2)=0,所以y 1y 2=−3c 2<0,从而∣∣MN ⃗⃗⃗⃗⃗⃗⃗ ∣∣2=∣y 1−y 2∣2=y 12+y 22−2y 1y 2≥−2y 1y 2−2y 1y 2=−4y 1y 2=12c 2.当且仅当 y 1=−y 2=√3c 或 y 2=−y 1=√3c 时,∣∣MN ⃗⃗⃗⃗⃗⃗⃗ ∣∣ 取最小值 2√3c ,此时F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ +F 2N ⃗⃗⃗⃗⃗⃗⃗ =(3c,±√3c)+(c,∓√3c)=(4c,0)=2F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ .所以 F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ +F 2N ⃗⃗⃗⃗⃗⃗⃗ 与 F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ 共线.另解:因为 F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ ⋅F 2N ⃗⃗⃗⃗⃗⃗⃗ =0,所以y 1y 2=−3c 2.设 MF 1 、 NF 2 的斜率分别为 k 、−1k .由 {y =k (x +c ),x =2c, 解得y 1=3kc,由 {y =−1k (x −c ),x =2c, 解得y 2=−c k ,于是∣∣MN ⃗⃗⃗⃗⃗⃗⃗ ∣∣=∣y 1−y 2∣=c ⋅∣∣3k +1k ∣∣≥2√3c.当且仅当 3k =1k ,即 k =±√33 时,∣∣MN ⃗⃗⃗⃗⃗⃗⃗ ∣∣ 最小.此时F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ +F 2N⃗⃗⃗⃗⃗⃗⃗ =(3c,3kc )+(c,−ck )=(3c,±√3c)+(c,∓√3c)=(4c,0)=2F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ .因此 F 1M ⃗⃗⃗⃗⃗⃗⃗⃗ +F 2N ⃗⃗⃗⃗⃗⃗⃗ 与 F 1F 2⃗⃗⃗⃗⃗⃗⃗⃗ 共线. 【知识点】平面向量的数量积与垂直、椭圆和双曲线的第二定义、平面向量的坐标运算、椭圆的基本量与方程22. 【答案】(1) bcosC +(2a +c )cosB =0,根据正弦定理 sinBcosC +(2sinA +sinC )cosB =0, 化简得 sin (B +C )=−2sinAcosB , 所以 cosB =−12⇒B =23π.(2) 根据余弦定理 b 2=a 2+c 2−2accosB 得到 4=a 2+c 2+ac ≥2ac +ac =3ac , 所以 ac ≤43, 所以 S =12acsinB ≤√33,当且仅当 a =c =2√33时取到等号.【知识点】三角形的面积公式、余弦定理、正弦定理。

高中数学必修2第三章测试(含答案)

高中数学必修2第三章测试(含答案)

第三章测试(时间:120分钟 总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出以下命题:①任意一条直线有唯一的倾斜角;②一条直线的倾斜角可以为-30°;③倾斜角为0°的直线只有一条,即x 轴;④按照直线的倾斜角的概念,直线集合与集合{α|0°≤α<180°}建立了一一对应的关系.正确的命题的个数是( )A .1B .2C .3D .4解析:仅有①正确,其它均错. 答案:A2.过点A (4,y ),B (2,-3)的直线的倾斜角为135°,则y 等于( ) A .1 B .-1 C .5D .-5 解析:由题意可知,y +34-2=tan135°=-1,∴y =-5.答案:D3.已知点P (x ,-4)在点A (0,8)和B (-4,0)的连线上,则x 的值为( ) A .2 B .-2 C .-6D .-8解析:由A (0,8)和B (-4,0)得直线AB 的方程为x -4+y8=1,又点(x ,-4)在该直线上,∴x-4+-48=1,∴x =-6. 答案:C4.如果点(5,a )在两条平行直线6x -8y +1=0和3x -4y +5=0之间,则整数a 的值为( )A .5B .4C .-5D .-4解析:由题意可知(5,a )到两平行线间距离之和等于两平行线间的距离,∴|30-8a +1|62+82+|30-8a +10|62+82=|10-1|62+82|31-8a |+|40-8a |=9,把选项代入知,a =4,(a =5舍去).答案:B5.过点(5,2)且在x 轴上的截距是在y 轴上的截距的2倍的直线方程是( ) A .2x +y -12=0B .2x +y -12=0或2x -5y =0C .x -2y -1=0D .x +2y -9=0或2x -5y =0 解析:解法1:验证知,D 为所求.解法2:当直线过原点时,设y =kx ,代入点(5,2)求得k =25,∴y =25x ,即2x -5y =0;当直线不过原点时,可设方程为x 2a +y a =1,代入点(5,2)求得a =92∴方程为x +2y -9=0.故所求方程为x +2y -9=0或2x -5y =0. 答案:D6.直线2x -y +k =0与4x -2y +1=0的位置关系是( ) A .平行 B .不平行C .平行或重合D .既不平行又不重合解析:因为2x -y +k =0与4x -2y +1=0可变形为y =2x +k 和y =2x +12,所以当k =12时,两直线重合;当k ≠12时,两直线平行.故应选C.答案:C7.已知直线y =ax -2和y =(a +2)x +1垂直,则a 等于( ) A .2 B .1 C .0 D .-1 解析:由题意知a (a +2)=-1. 解得a =-1. 答案:D8.已知点A (x 1,y 1),B (x 2,y 2)在斜率为k 的直线上,若|AB |=a ,则|y 2-y 1|等于( ) A .|ak | B .a 1+k 2 C.a 1+k2D.a |k |1+k2解析:设AB 的方程为y =kx +b ,则a =|AB |=(x 2-x 1)2+(y 2-y 1)2=⎝⎛⎭⎫1+1k 2|y 2-y 1|, ∴|y 2-y 1|=a |k |1+k2.答案:D9.如下图,在同一直角坐标系中表示直线y =ax 与y =x +a ,正确的是( )解析:当a >0时,由y =ax 可知,C 、D 错误;又由y =x +a 又知A 、B 也不正确.当a <0时,由y =ax 可知A 、B 错误,又由y =x +a 可知D 也不正确.答案:C10.已知直线l :x sin θ+y cos θ=1,点(1,cos θ)到l 的距离为14,且0≤θ≤π2,则θ等于( )A.π12B.π6 C.π4D.π3解析:由点到直线的距离公式可得|sin θ+cos 2θ-1|sin 2θ+cos 2θ=14,即|sin θ-sin 2θ|=14,经验证知,θ=π6满足题意. 答案:B11.一条线段的长是5,它的一个端点A (2,1),另一个端点B 的横坐标是-1,则B 的纵坐标是( )A .-3B .5C .-3或5D .-5或3解析:设B 的坐标为(-1,y ), 由题意得(-1-2)2+(y -1)2=52, ∴(y -1)2=16,∴y =5或y =-3. 答案:C12.若A (-4,2),B (6,-4),C (12,6),D (2,12),下面四个结论正确的个数是( ) ①AB ∥CD ②AB ⊥AD ③|AC |=|BD | ④AC ⊥BD A .1个 B .2个 C .3个D .4个解析:①k AB =-4-26+4=-35,k CD =12-62-12=-35,∴AB ∥CD .②k AB =-35,k AD =12-22+4=53,∵k AB ·k AD =-1,∴AB ⊥AD .③|AC |=(12+4)2+(6-2)2=272,|BD |=(2-6)2+(12+4)2=272. ∴|AC |=|BD |.④k AC =6-212+4=14,k BD =12+42-6=-4,∵k AC ·k BD =-1,∴AC ⊥BD .综上知,①、②、③、④均正确.故选D. 答案:D二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上) 13.已知A (a,3),B (3,3a +3)两点间的距离是5,则a 的值为________. 解析:(3-a )2+(3a +3-3)2=5, 即(3-a )2+9a 2=25,解得a =-1或85.答案:-1或8514.两条平行直线分别过点A (6,2)和B (-3,-1),各自绕A ,B 旋转.若这两条平行线距离取最大时,两直线方程是________.解析:根据题意,当这两条直线平行旋转到与直线AB 垂直时,距离取得最大值. ∵k AB =13,∴两直线分别为y -2=-3(x -6)和y +1=-3(x +3), 即3x +y -20=0和3x +y +10=0. 答案:3x +y -20=0,3x +y +10=015.已知直线l 1与直线l 2:x -3y +6=0平行,与两坐标轴围成的三角形面积为8,则直线l 1的方程为________.解析:∵l 1与l 2平行,故可设l 1的方程为x -3y +m =0.与两坐标轴的交点(0,m3,(-m,0).由题意可得:12|-m ×m3|=8.∴m =43或m =-4 3. 答案:x -3y ±43=016.设点P 在直线x +3y =0上,且P 到原点的距离与P 到直线x +3y -2=0的距离相等,则点P 坐标是________.解析:∵点P 在直线x +3y =0上,可设P 的坐标为(-3a ,a ). 依题意可得(-3a )2+a 2=|-3a +3a -2|12+32,化简得:10a 2=410∴a =±15. 故P 的坐标为⎝⎛⎭⎫-35,15或⎝⎛⎭⎫35,-15.答案:⎝⎛⎭⎫35,-15或⎝⎛⎭⎫-35,15三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知点A (1,4),B (4,0),在x 轴上的点M 与B 的距离等于点A ,B 之间的距离,求点M 的坐标.解:因为点M 在x 轴上,所以设M (x,0),则 |x -4|=(4-1)2+(0-4)2=5, ∴x =9或x =-1. 所以M (9,0)或(-1,0).18.(12分)直线l 在两坐标轴上的截距相等,且点P (4,3)到直线l 的距离为32,求直线l 的方程.解:(1)当所求直线经过坐标原点时,设其方程为y =kx ,由点到直线的距离公式可得 32=|4k -3|1+k2,解k =-6±3214.故所求直线的方程为y =(-6±3214)x . (2)当直线不经过坐标原点时,设所求直线为x a +ya =1,即x +y -a =0.由题意可得|4+3-a |2=3 2.解a =1或a =13.故所求直线的方程为x +y -1=0或x +y -13=0.综上可知,所求直线的方程为y =⎝⎛⎭⎫-6±3214x 或x +y -1=0或x +y -13=0. 19.(12分)当m 为何值时,直线(2m 2+m -3)x +(m 2-m )y =4m -1. (1)倾斜角为π4;(2)在x 轴上的截距为1. 解:(1)倾斜角为π4,则斜率为1.∴-2m 2+m -3m 2-m =1,解得m =1或m =-1.当m =1时,m 2-m =0,不符合题意.当m =-1时,直线方程为2x -2y -5=0符合题意, ∴m =-1.(2)当y =0时,x =4m -12m 2+m -3=1,解得m =-12或m =2.当m =-12或m =2时都符合题意,∴m =-12或m =2.20.(12分)求经过直线l 1:3x +4y +5=0与l 2:2x -3y -8=0的交点M ,且满足下列条件的直线方程.(1)经过原点;(2)与直线2x +y +5=0平行; (3)与直线2x +y +5=0垂直. 解:由⎩⎪⎨⎪⎧3x +4y +5=02x -3y -8=0得交点M 的坐标为(1,-2).(1)直线过原点,可得直线方程为2x +y =0.(2)直线与2x +y +5=0平行,可设为2x +y +m =0,代入M (1,-2),得m =0, ∴直线方程为2x +y =0. (3)直线与2x +y +5=0垂直, ∴斜率为k =12,又过点M (1,-2),故所求方程为y +2=12(x -1),即x -2y -5=0.21.(12分)已知两条直线l 1:ax -by +4=0,l 2:(a -1)x +y +b =0.求分别满足下列条件的a 和b 的值.(1)求直线l 1过点(-3,-1),并且直线l 1与直线l 2垂直; (2)直线l 1与l 2平行,并且坐标原点到l 1、l 2的距离相等. 解:(1)∵l 1⊥l 2, ∴(a -1)a +(-b )×1=0 即a 2-a -b =0① 又点(-3,-1)在l 1上 ∴-3a +b +4=0②由①②解得a =2,b =2.(2)∵l 1∥l 2,且l 2的斜率为1-a ,∴l 1的斜率也存在,即b ≠0. ∴a b =1-a .∴b =a 1-a (a ≠1), 故l 1、l 2的方程分别可以表示为 l 1:(a -1)x +y +4(a -1)a =0,l 2:(a -1)x +y +a1-a =0.∵原点到l 1和l 2的距离相等. ∴4|a -1a |=|a1-a|, 解得a =2或a =23因此⎩⎪⎨⎪⎧a =2,b =-2,或⎩⎪⎨⎪⎧a =23,b =2.22.(12分)等腰直角三角形斜边所在直线的方程是3x -y =0,一条直角边所在的直线l 的斜率为12,且经过点(4,-2),且此三角形的面积为10,求此直角三角形的直角顶点的坐标.解:设直角顶点为C ,C 到直线y =3x 的距离为d . 则12·d ·2d =10,∴d =10. 又l 的斜率为12,∴l 的方程为y +2=12(x -4),即x -2y -8=0.设l ′是与直线y =3x 平行且距离为10的直线, 则l ′与l 的交点就是C 点, 设l ′的方程是3x -y +m =0, 则|m |10=10,∴m =±10,∴l ′的方程是3x -y ±10=0, 由方程组⎩⎪⎨⎪⎧x -2y -8=0,3x -y -10=0,及⎩⎪⎨⎪⎧x -2y -8=0,3x -y +10=0,得C 点坐标是⎝⎛⎭⎫125,-145或⎝⎛-285,-345.。

人教A版高一数学必修第二册全册复习测试题卷含答案解析(1)

人教A版高一数学必修第二册全册复习测试题卷含答案解析(1)

高一数学必修第二册全册复习测试题卷11(共22题)一、选择题(共10题)1. △ABC 中,若 a =1,c =2,B =60∘,则 △ABC 的面积为 ( ) A . 12B . 1C .√32D . √32. 若书架中放有中文书 5 本,英文书 3 本,日文书 2 本,则抽出一本书为外文书的概率为 ( ) A . 15B . 310C . 25D . 123. 若 θ 为两个非零向量的夹角,则 θ 的取值范围为 ( ) A .(0,π) B .(0,π] C .[0,π) D .[0,π]4. 从一箱产品中随机地抽取一件,设事件 A = { 抽到一等品 },事件 B = { 抽到二等品 },事件 C = { 抽到三等品 } ,且已知 P (A )=0.65,P (B )=0.2,P (C )=0.1.则事件“抽到的是二等品或三等品”的概率为 ( ) A .0.7 B .0.65 C .0.35 D .0.35. 下列关于古典概型的说法中正确的是 ( ) ①试验中所有可能出现的样本点只有有限个; ②每个事件出现的可能性相等; ③每个样本点出现的可能性相等;④若样本点总数为 n ,随机事件 A 包含其中的 k 个样本点,则 P (A )=kn . A .②④ B .③④ C .①④ D .①③④6. 给定一组数据:102,100,103,104,101,这组数据的第 60 百分位数是 ( ) A . 102 B . 102.5 C . 103 D . 103.57. 为比较甲、乙两地某月 14 时的气温情况,随机选取该月中的 5 天,这 5 天中 14 时的气温数据(单位:∘C )如下:甲:2628293131乙:2829303132以下结论:①甲地该月 14 时的平均气温低于乙地该月 14 时的平均气温; ②甲地该月 14 时的平均气温高于乙地该月 14 时的平均气温;③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差;④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差.其中根据数据能得到的统计结论的编号为( )A.①③B.①④C.②③D.②④8.下列说法正确的是( )A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,事件发生的频率一般会稳定于概率D.概率是随机的,在试验前不能确定9.用符号表示“点A在直线l上,l在平面α内”,正确的是( )A.A∈l,l∉αB.A⊂l,l⊄αC.A⊂l,l∈αD.A∈l,l⊂α10.半径为2的球的表面积为( )A.4πB.8πC.12πD.16π二、填空题(共6题)11.一家保险公司想了解汽车的挡风玻璃在一年时间里破碎的概率,公司收集了20000部汽车,时间从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年时间里挡风玻璃破碎的概率约为.12.思考辨析 判断正误.( )做100次拋硬币的试验,结果51次出现正面朝上,因此,出现正面朝上的概率是5110013.若空间两个角的两条边分别平行,则这两个角的大小关系是.14.如图所示,在复平面内,网格中的每个小正方形的边长都为1,点A,B对应的复数分别是z1,=.z2,则z2z115.平均数:如果n个数x1,x2,⋯,x n,那么x=叫做这n个数的平均数.16.思考辨析判断正误为了更清楚地反映学生在这学期多次考试中数学成绩情况,可以选用折线统计图.( )三、解答题(共6题)17.如图所示,梯形ABCD中,AD∥BC,且AD<BC,当梯形ABCD绕AD所在直线旋转一周时,其他各边旋转围成了一个几何体,试描述该几何体的结构特征.18.小明是班里的优秀学生,他的历次数学成绩是96,98,95,93,45分,最近一次考试成绩只有45分的原因是他带病参加了考试.期末评价时,怎样给小明评价(90分及90分以上为优秀,75∼90分为良好)?19.类比绝对值∣x−x0∣的几何意义,∣z−z0∣(z,z0∈C)的几何意义是什么?20.如图,在三棱锥P−ABC中,平面PAC⊥平面ABC,∠ACB=90∘,PA=AC=2BC.(1) 若PA⊥PB,求证:平面PAB⊥平面PBC;(2) 若PA与平面ABC所成角的大小为60∘,求二面角C−PB−A的余弦值.21.应用面面平行判断定理应具备哪些条件?22.如图,在四棱锥P−ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD=8,BC=10,PD=9,E为PA的中点.(1) 求证:DE∥平面BPC.(2) 在线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出此时三棱锥B−PCF的体积;若不存在,请说明理由.答案一、选择题(共10题) 1. 【答案】C【解析】由题得 △ABC 的面积 S =12AB ⋅BC ⋅sin60∘=12×2×1×√32=√32. 【知识点】三角形的面积公式2. 【答案】D【解析】在 10 本书中,中文书 5 本,外文书为 3+2=5 本,由古典概型,在其中抽出一本书为外文书的概率为 510,即 12. 【知识点】古典概型3. 【答案】D【知识点】平面向量的数量积与垂直4. 【答案】D【解析】由题意知事件 A 、 B 、 C 互为互斥事件,记事件 D =“抽到的是二等品或三等品”,则 P (D )=P (B ∪C )=P (B )+P (C )=0.2+0.1=0.3. 【知识点】事件的关系与运算5. 【答案】D【解析】②中所说的事件不一定是样本点,所以②不正确;根据古典概型的特征及计算公式可知①③④正确. 【知识点】古典概型6. 【答案】D【解析】 5×0.6=3,第 60 百分位数是第三与第四个数的平均数, 即103+1042=103.5.【知识点】样本数据的数字特征7. 【答案】B【解析】因为 x 甲=26+28+29+31+315=29,x 乙=28+29+30+31+325=30,所以 x 甲<x 乙.又 s 甲2=9+1+0+4+45=185,s 乙2=4+1+0+1+45=2,所以 s 甲>s 乙,故由样本估计总体可知结论①④正确. 【知识点】样本数据的数字特征8. 【答案】C【解析】不可能事件的概率为 0,必然事件的概率为 1,故A 错误;频率是由试验的次数决定的,故B 错误;概率是频率的稳定值,故C 正确,D 错误. 【知识点】频率与概率9. 【答案】D【解析】点 A 在直线 l 上,表示为 A ∈l ,l 在平面 α 内,表示为 l ⊂α. 【知识点】平面的概念与基本性质10. 【答案】D【解析】因为球的半径为 r =2, 所以该球的表面积为 S =4πr 2=16π. 【知识点】球的表面积与体积二、填空题(共6题) 11. 【答案】 0.03【解析】 P =60020000=0.03.【知识点】频率与概率12. 【答案】 ×【知识点】频率与概率13. 【答案】相等或互补【知识点】直线与直线的位置关系14. 【答案】 −1−2i【解析】由题意,根据复数的表示可知z1=i,z2=2−i,所以z2z1=2−ii=(2−i)⋅(−i)i⋅(−i)=−1−2i.【知识点】复数的乘除运算、复数的几何意义15. 【答案】1n(x1+x2+⋯+x n)【知识点】样本数据的数字特征16. 【答案】√【知识点】频率分布直方图三、解答题(共6题)17. 【答案】如图所示,旋转所得的几何体是一个圆柱挖去两个圆锥后剩余部分构成的组合体.【知识点】组合体18. 【答案】小明5次考试成绩从小到大排列为45,93,95,96,98,中位数是95,应评定为“优秀”.【知识点】样本数据的数字特征19. 【答案】∣z−z0∣(z,z0∈C)的几何意义是复平面内点Z到点Z0的距离.【知识点】复数的加减运算20. 【答案】(1) 因为平面PAC⊥平面ABC,平面PAC∩平面ABC=AC,BC⊂平面ABC,BC⊥AC,所以BC⊥平面PAC,因为PA⊂平面PAC,所以PA⊥BC.又PA⊥PB,PB∩BC=B,所以PA⊥平面PBC,因为PA⊂平面PAB,所以平面PAB⊥平面PBC.(2) 如图,过P作PH⊥AC于点H,因为平面PAC⊥平面ABC,所以PH⊥平面ABC,所以∠PAH=60∘,不妨设PA=2,所以PH=√3,以 C 为原点,分别以 CA ,CB 所在直线为 x 轴,y 轴,以过 C 点且平行于 PH 的直线为 z 轴,建立如图所示的空间直角坐标系,则 C (0,0,0),A (2,0,0),B (0,1,0),P(1,0,√3),因此 AB⃗⃗⃗⃗⃗ =(−2,1,0),AP ⃗⃗⃗⃗⃗ =(−1,0,√3),CB ⃗⃗⃗⃗⃗ =(0,1,0),CP ⃗⃗⃗⃗⃗ =(1,0,√3). 设 n ⃗ =(x 1,y 1,z 1) 为平面 PAB 的一个法向量, 则 {n ⃗ ⋅AB⃗⃗⃗⃗⃗ =0,n ⃗ ⋅AP⃗⃗⃗⃗⃗ =0, 即 {−2x 1+y 1=0,−x 1+√3z 1=0,令 z 1=√3,可得 n ⃗ =(3,6,√3), 设 m ⃗⃗ =(x 2,y 2,z 2) 为平面 PBC 的一个法向量, 则 {m ⃗⃗ ⋅CB⃗⃗⃗⃗⃗ =0,m ⃗⃗ ⋅CP ⃗⃗⃗⃗⃗ =0, 即 {y 2=0,x 2+√3z 2=0,令 z 2=√3,可得 m ⃗⃗ =(−3,0,√3), 所以 cos⟨m ⃗⃗ ,n ⃗ ⟩=4√3×2√3=−14, 易知二面角 C −PB −A 为锐角, 所以二面角 C −PB −A 的余弦值为 14.【知识点】平面与平面垂直关系的判定、利用向量的坐标运算解决立体几何问题、二面角21. 【答案】①平面 α 内两条相交直线 a ,b ,即 a ⊂α,b ⊂α,a ∩b =P .②两条相交直线 a ,b 都与 β 平行,即 a ∥β,b ∥β. 【知识点】平面与平面平行关系的判定22. 【答案】(1) 取 PB 的中点 M ,连接 EM ,CM ,过点 C 作 CN ⊥AB ,垂足为 N ,如图所示. 因为 CN ⊥AB ,DA ⊥AB , 所以 CN ∥DA , 又 AB ∥CD ,所以四边形 CDAN 为矩形, 所以 CN =AD =8,DC =AN =6.在 Rt △BNC 中,BN =√BC 2−CN 2=√102−82=6, 所以 AB =12.因为 E ,M 分别为 PA ,PB 的中点, 所以 EM ∥AB 且 EM =6, 又 DC ∥AB ,且 CD =6, 所以 EM ∥CD 且 EM =CD , 则四边形 CDEM 为平行四边形, 所以 DE ∥CM .因为 CM ⊂平面BPC ,DE ⊄平面BPC ,所以 DE ∥平面BPC .(2) 存在.理由如下:由题意可得 DA ,DC ,DP 两两互相垂直,故以 D 为原点,DA ,DC ,DP所在直线分别为 x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系 Dxyz . 则 D (0,0,0),B (8,12,0),C (0,6,0),所以 DB⃗⃗⃗⃗⃗⃗ =(8,12,0). 假设 AB 上存在一点 F 使 CF ⊥BD ,设点 F 坐标为 (8,t,0)(0≤t ≤12), 则 CF⃗⃗⃗⃗⃗ =(8,t −6,0), 由 CF ⃗⃗⃗⃗⃗ ⋅DB ⃗⃗⃗⃗⃗⃗ =0,得 64+12(t −6)=12t −8=0, 所以 t =23,即 AF =23,故 BF =12−23=343.又 PD =9,所以 V 三棱锥B−PCF =V 三棱锥P−BCF =13×12×343×8×9=136.【知识点】直线与平面平行关系的判定、利用向量的坐标运算解决立体几何问题。

高中数学 第三章 直线与方程单元质量测评(含解析)新人教A版必修2-新人教A版高一必修2数学试题

高中数学 第三章 直线与方程单元质量测评(含解析)新人教A版必修2-新人教A版高一必修2数学试题

第三章 单元质量测评对应学生用书P77 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.斜率为2的直线的倾斜角α所在的X 围是( ) A .0°<α<45° B.45°<α<90° C .90°<α<135° D.135°<α<180° 答案 B解析 ∵k=2>1,即tanα>1,∴45°<α<90°. 2.在x 轴上的截距为2且倾斜角为135°的直线方程为( ) A .y =-x +2 B .y =-x -2 C .y =x +2 D .y =x -2 答案 A解析 由题可知直线方程为y =tan135°·(x-2),即y =-x +2. 3.若三点A(4,3),B(5,a),C(6,b)共线,则下列结论正确的是( ) A .2a -b =3 B .b -a =1 C .a =3,b =5 D .a -2b =3 答案 A解析 由k AB =k AC 可得2a -b =3,故选A .4.若实数m ,n 满足2m -n =1,则直线mx -3y +n =0必过定点( ) A .⎝ ⎛⎭⎪⎫2,13 B .⎝ ⎛⎭⎪⎫-2,13C .⎝ ⎛⎭⎪⎫2,-13D .⎝ ⎛⎭⎪⎫-2,-13答案 D解析 由已知得n =2m -1,代入直线mx -3y +n =0得mx -3y +2m -1=0,即(x +2)m+(-3y -1)=0,由⎩⎪⎨⎪⎧x +2=0,-3y -1=0,解得⎩⎪⎨⎪⎧x =-2,y =-13,所以此直线必过定点⎝⎛⎭⎪⎫-2,-13,故选D .5.设点A(-2,3),B(3,2),若直线ax +y +2=0与线段AB 没有交点,则a 的取值X 围是( )A .⎝ ⎛⎦⎥⎤-∞,52∪⎣⎢⎡⎭⎪⎫43,+∞ B .⎝ ⎛⎭⎪⎫-43,52C .⎣⎢⎡⎦⎥⎤-52,43 D .⎝ ⎛⎦⎥⎤-∞,-43∪⎣⎢⎡⎭⎪⎫52,+∞ 答案 B解析 直线ax +y +2=0过定点C(0,-2),k AC =-52,k BC =43.由图可知直线与线段没有交点时,斜率-a 的取值X 围为-52<-a <43,解得a∈⎝ ⎛⎭⎪⎫-43,52.6.和直线5x -4y +1=0关于x 轴对称的直线方程为( ) A .5x +4y +1=0 B .5x +4y -1=0 C .-5x +4y -1=0 D .-5x +4y +1=0 答案 A解析 设所求直线上的任一点为(x′,y′),则此点关于x 轴对称的点的坐标为(x′,-y′).因为点(x′,-y′)在直线5x -4y +1=0上,所以5x′+4y′+1=0,即所求直线方程为5x +4y +1=0.7.已知直线x =2及x =4与函数y =log 2x 图象的交点分别为A ,B ,与函数y =lg x 图象的交点分别为C ,D ,则直线AB 与CD( )A .平行B .垂直C .不确定D .相交 答案 D解析 易知A(2,1),B(4,2),原点O(0,0),∴k OA =k OB =12,∴直线AB 过原点,同理,C(2,lg 2),D(4,2lg 2),k OC =k OD =lg 22≠12,∴直线CD 过原点,且与AB 相交.8.过点M(1,-2)的直线与x 轴、y 轴分别交于P ,Q 两点,若M 恰为线段PQ 的中点,则直线PQ 的方程为 ( )A .2x +y =0B .2x -y -4=0C .x +2y +3=0D .x -2y -5=0 答案 B解析 设P(x 0,0),Q(0,y 0).∵M(1,-2)为线段PQ 的中点,∴x 0=2,y 0=-4,∴直线PQ 的方程为x 2+y-4=1,即2x -y -4=0.故选B .9.若三条直线y =2x ,x +y =3,mx +ny +5=0相交于同一点,则点(m ,n)到原点的距离的最小值为( )A . 5B . 6C .2 3D .2 5 答案 A解析 由⎩⎪⎨⎪⎧y =2x ,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2.把(1,2)代入mx +ny +5=0可得m +2n +5=0, ∴m=-5-2n ,∴点(m ,n)到原点的距离d = m 2+n 2=5+2n 2+n 2=5n +22+5≥5,当n =-2时等号成立,此时m =-1.∴点(m ,n)到原点的距离的最小值为5.故选A .10.点F(3m +3,0)到直线3x -3my =0的距离为( ) A . 3 B .3m C .3 D .3m 答案 A解析 由点到直线的距离公式得点F(3m +3,0)到直线3x -3my =0的距离为3·3m +33m +3=3.11.若直线l 经过点A(1,2),且在x 轴上的截距的取值X 围是(-3,3),则其斜率的取值X 围是( )A .⎝⎛⎭⎪⎫-1,15 B .⎝⎛⎭⎪⎫-∞,12∪(1,+∞) C .(-∞,-1)∪⎝ ⎛⎭⎪⎫15,+∞D .(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞ 答案 D解析 在平面直角坐标系中作出点A(1,2),B(-3,0),C(3,0),过点A ,B 作直线AB ,过点A ,C 作直线AC ,如图所示,则直线AB 在x 轴上的截距为-3,直线AC 在x 轴上的截距为3.因为k AB =2-01--3=12,k AC =2-01-3=-1,所以直线l 的斜率的取值X 围为(-∞,-1)∪⎝ ⎛⎭⎪⎫12,+∞.12.已知△ABC 的边AB 所在的直线方程是x +y -3=0,边AC 所在的直线方程是x -2y +3=0,边BC 所在的直线方程是2x -y -3=0.若△ABC 夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( )A .355B . 2C .322D . 5答案 B解析 联立直线方程,易得A(1,2),B(2,1).如图所示,当两条平行直线间的距离最小时,两平行直线分别过点A ,B ,又两平行直线的斜率为1,直线AB 的斜率为-1,所以线段AB 的长度就是过A ,B 两点的平行直线间的距离,易得|AB|=2,即两条平行直线间的距离的最小值是2.第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知直线l 的倾斜角是直线y =x +1的倾斜角的2倍,且过定点P(3,3),则直线l 的方程为________.答案 x =3解析 直线y =x +1的斜率为1,倾斜角为45°.直线l 的倾斜角是已知直线y =x +1的倾斜角的2倍,所以直线l 的倾斜角为90°,直线l 的斜率不存在,所以直线l 的方程为x =3.14.直线x 3+y4=t 被两坐标轴截得的线段长度为1,则t =________.答案 ±15解析 直线与x ,y 轴的交点分别为(3t ,0)和(0,4t),所以线段长为3t2+4t2=1,解得t =±15.15.已知点A(2,4),B(6,-4),点P 在直线3x -4y +3=0上,若满足|PA|2+|PB|2=λ的点P 有且仅有1个,则实数λ的值为________.答案 58解析 设点P 的坐标为(a ,b).∵A(2,4),B(6,-4),∴|PA|2+|PB|2=[(a -2)2+(b -4)2]+[(a -6)2+(b +4)2]=λ,即2a 2+2b 2-16a +72=λ.又∵点P 在直线3x -4y +3=0上,∴3a-4b +3=0,∴509b 2-803b +90=λ.又∵满足|PA|2+|PB|2=λ的点P 有且仅有1个,∴Δ=⎝ ⎛⎭⎪⎫-8032-4×509×(90-λ)=0,解得λ=58.16.在平面直角坐标系xOy 中,若直线y =2a 与函数y =|x -a|-1的图象只有一个交点,则a 的值为________.答案 -12解析 因为y =|x -a|-1=⎩⎪⎨⎪⎧x -a -1,x≥a,-x +a -1,x<a ,所以该函数的大致图象如图所示.又直线y =2a 与函数y =|x -a|-1的图象只有一个交点,则2a =-1,即a =-12.三、解答题(本大题共6小题,共70分)17.(本小题满分10分)已知Rt△ABC 的顶点坐标A(-3,0),直角顶点B(-1,-22),顶点C 在x 轴上.(1)求点C 的坐标; (2)求斜边所在直线的方程.解 (1)解法一:依题意,Rt△ABC 的直角顶点坐标为B(-1,-22), ∴AB⊥BC,∴k AB ·k BC =-1.又∵A(-3,0),∴k AB =0+22-3--1=-2,∴k BC =-1k AB =22,∴边BC 所在的直线的方程为y +22=22(x +1),即x -2y -3=0. ∵直线BC 的方程为x -2y -3=0,点C 在x 轴上,由y =0,得x =3,即C(3,0). 解法二:设点C(c ,0),由已知可得k AB ·k BC =-1,即0+22-3--1·0+22c +1=-1,解得c =3,所以点C 的坐标为(3,0). (2)由B 为直角顶点,知AC 为直角三角形ABC 的斜边. ∵A(-3,0),C(3,0),∴斜边所在直线的方程为y =0.18.(本小题满分12分)点M(x 1,y 1)在函数y =-2x +8的图象上,当x 1∈[2,5]时,求y 1+1x 1+1的取值X 围. 解y 1+1x 1+1=y 1--1x 1--1的几何意义是过M(x 1,y 1),N(-1,-1)两点的直线的斜率.点M 在直线y =-2x +8的线段AB 上运动,其中A(2,4),B(5,-2).∵k NA =53,k NB =-16,∴-16≤y 1+1x 1+1≤53,∴y 1+1x 1+1的取值X 围为⎣⎢⎡⎦⎥⎤-16,53. 19.(本小题满分12分)已知直线l 经过直线3x +4y -2=0与直线2x +y +2=0的交点P ,且垂直于直线x -2y -1=0.(1)求直线l 的方程;(2)求直线l 与两坐标轴围成的三角形的面积S .解 (1)联立两直线方程⎩⎪⎨⎪⎧3x +4y -2=0,2x +y +2=0,解得⎩⎪⎨⎪⎧x =-2,y =2,则两直线的交点为P(-2,2).∵直线x -2y -1=0的斜率为k 1=12,所求直线垂直于直线x -2y -1=0,那么所求直线的斜率k =-112=-2,∴所求直线方程为y -2=-2(x +2),即2x +y +2=0.(2)对于方程2x +y +2=0,令y =0则x =-1,则直线与x 轴交点坐标A(-1,0), 令x =0则y =-2,则直线与y 轴交点坐标B(0,-2), 直线l 与坐标轴围成的三角形为直角三角形AOB , ∴S=12|OA||OB|=12×1×2=1.20.(本小题满分12分)一条光线经过点P(2,3)射在直线l :x +y +1=0上,反射后经过点Q(1,1),求:(1)入射光线所在直线的方程; (2)这条光线从P 到Q 所经路线的长度.解 (1)设点Q′(x′,y′)为点Q 关于直线l 的对称点,QQ′交l 于点M .∵k l =-1,∴k QQ′=1, ∴QQ′所在直线的方程为y -1=1·(x-1), 即x -y =0.由⎩⎪⎨⎪⎧x +y +1=0,x -y =0,解得⎩⎪⎨⎪⎧x =-12,y =-12,∴交点M ⎝ ⎛⎭⎪⎫-12,-12,∴⎩⎪⎨⎪⎧1+x′2=-12,1+y′2=-12.解得⎩⎪⎨⎪⎧x′=-2,y′=-2,∴Q′(-2,-2).设入射光线与l 交于点N ,则P ,N ,Q′三点共线, 又∵P(2,3),Q′(-2,-2),∴入射光线所在直线的方程为y --23--2=x --22--2,即5x -4y +2=0.(2)|PN|+|NQ|=|PN|+|NQ′|=|PQ′| =[2--2]2+[3--2]2=41,即这条光线从P 到Q 所经路线的长度为41.21.(本小题满分12分)设直线l 经过点(-1,1),此直线被两平行直线l 1:x +2y -1=0和l 2:x +2y -3=0所截得线段的中点在直线x -y -1=0上,求直线l 的方程.解 设直线x -y -1=0与l 1,l 2的交点分别为C(x C ,y C ),D(x D ,y D ),则⎩⎪⎨⎪⎧x C +2y C -1=0,x C -y C -1=0,解得⎩⎪⎨⎪⎧x C =1,y C =0,∴C(1,0)⎩⎪⎨⎪⎧x D +2y D -3=0,x D -y D -1=0,解得⎩⎪⎨⎪⎧x D =53,y D=23,∴D ⎝ ⎛⎭⎪⎫53,23. 则C ,D 的中点坐标为⎝ ⎛⎭⎪⎫43,13, 即直线l 经过点⎝ ⎛⎭⎪⎫43,13. 又直线l 经过点(-1,1),由两点式得直线l 的方程为 y -131-13=x -43-1-43,即2x +7y -5=0. 22.(本小题满分12分)已知三条直线l 1:2x -y +a =0(a >0);l 2:-4x +2y +1=0;l 3:x +y -1=0,且l 1与l 2间的距离是7510.(1)求a 的值;(2)能否找到一点P ,使P 同时满足下列三个条件: ①点P 在第一象限;②点P 到l 1的距离是点P 到l 2的距离的12;③点P 到l 1的距离与点P 到l 3的距离之比是2∶5.若能,求点P 的坐标;若不能,说明理由.解 (1)直线l 2的方程等价于2x -y -12=0,所以两条平行线l 1与l 2间的距离d =⎪⎪⎪⎪⎪⎪a -⎝ ⎛⎭⎪⎫-1222+-12=7510,即⎪⎪⎪⎪⎪⎪a +12=72.又因为a >0,解得a =3.(2)假设存在点P ,设点P(x 0,y 0),若点P 满足条件②,则点P 在与l 1,l 2平行的直线l′:2x -y +c =0上,且|c -3|5=12·⎪⎪⎪⎪⎪⎪c +125,解得c =132或116,所以2x 0-y 0+132=0或2x 0-y 0+116=0.若P 点满足条件③,由点到直线的距离公式, 得|2x 0-y 0+3|5=25·|x 0+y 0-1|2, 即|2x 0-y 0+3|=|x 0+y 0-1|, 所以x 0-2y 0+4=0或3x 0+2=0. 若点P 满足条件①,则3x 0+2=0不合适. 解方程组⎩⎪⎨⎪⎧ 2x 0-y 0+132=0,x 0-2y 0+4=0,得⎩⎪⎨⎪⎧x 0=-3,y 0=12.不符合点P 在第一象限,舍去.解方程组⎩⎪⎨⎪⎧2x 0-y 0+116=0,x 0-2y 0+4=0,得⎩⎪⎨⎪⎧x 0=19,y 0=3718.符合条件①.所以存在点P ⎝ ⎛⎭⎪⎫19,3718同时满足三个条件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章综合检测题
时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)
1.若直线过点(1,2),(4,2+3)则此直线的倾斜角是( )
A .30°
B .45°
C .60°
D .90°
2.若三点A (3,1),B (-2, b ),C (8,11)在同一直线上,则实数b 等于( )
A .2
B .3
C .9
D .-9
3.过点(1,2),且倾斜角为30°的直线方程是( )
A .y +2=33
(x +1) C.3x -3y +6-3=0 4.直线3x -2y +5=0与直线x +3y +10=0A .相交 C .重合 5.直线mx -y +2m +1=0A .(-2,1) C .(1,-2) 6.已知ab <0,bc <0,则直线ax +by +c A .第一、二、三象限 C .第一、三、四象限 7.点P (2,5)到直线y =-3x 的距离d 等于 B.23+5
2
D.-23-52
3x +4交于x 轴上的同一点的直线方程是( )
B .y =12
x +4 D .y =12x -83
互相垂直,则a 等于( )
1
3x -y +2=0,直角顶点是C (3,-
2)C .2x -y +4=0,2x +y -7=0
D .3x -2y -2=0,2x -y +2=0
11.设点A (2,-3),B (-3,-2),直线l 过点P (1,1)且与线段AB 相交,则l 的斜率k 的取值范围是( )
A .k ≥34或k ≤-4
B .-4≤k ≤34
C .-34
≤k ≤4 D .以上都不对 12.在坐标平面内,与点A (1,2)距离为1,且与点B (3,1)距离为2的直线共有( )
A .1条
B .2条
C .3条
D .4条
二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)
13.已知点A(-1,2),B(-4,6),则|AB|等于________.
14.平行直线l1:x-y+1=0与l2:3x-3y+1=0的距离等于________.
15.若直线l经过点P(2,3)且与两坐标轴围成一个等腰直角三角形,则直线l的方程为________或________.
16.(2009·高考全国卷Ⅰ)若直线m被两平行线l1:x-y+1=0与l2:x-y+3=0所截得的线段的长为22,则m的倾斜角可以是①15°②30°③45°④60°⑤75°,其中正确答案的序号是________.(写出所有正确答案的序号)
三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)
17.(本小题满分10分)求经过点A(-2,3),B(4,-1)的直线的两点式方程,并把它化成点斜式,斜截式和截距式.
18.(12分)(1)当a为何值时,直线l1:y=-x+2a与直线l2:y=(a2-2)x+2平行?
(2)当a为何值时,直线l1:y=(2a-1)x+3与直线l2:y=4x-3垂直?
19.(本小题满分12分)在△ABC中,已知点A(5,-2),B(7,3),且边AC的中点M在y轴上,边BC的中点N在x轴上,求:
(1)顶点C的坐标;
(2)直线MN的方程.
20.(本小题满分12分)过点P(3,0)作一直线,使它夹在两直线l1:2x-y-2=0和l2:
x+y+3=0之间的线段AB恰被P点平分,求此直线方程.
21.(本小题满分12分)已知△ABC的三个顶点A(4,-6),B(-4,0),C(-1,4),求
(1)AC边上的高BD所在直线方程;
(2)BC边的垂直平分线EF所在直线方程;
(3)AB边的中线的方程.
22.(本小题满分12分)当m为何值时,直线(2m2+m-3)x+(m2-m)y=4m-1.
(1)倾斜角为45°;
(2)在x轴上的截距为1.
详解答案
1[答案] A
[解析] 斜率k =(2+3)-24-1
=33,∴倾斜角为30°. [解析] 由条件知k BC =k AC ,
∴b -11-2-8=11-18-3
,∴b =-9. 2[答案] D
3[答案] C
[解析] 由直线方程的点斜式得y -2=tan30°(x -1),
整理得3x -3y +6-3=0.
4[答案] A
[解析] ∵A 1B 2-A 2B 1=3×3-1×(-2)=∴这两条直线相交.
5[答案] A
[解析] 直线变形为m (x +2)-(y -1)=0∴选A.
6[答案] A
[解析] ∵ab <0,bc <0,∴a ,b ,c =0
得,y =-c b >0,令y =0得x =-c a ,∵ab <0,通过第一、二、三象限,故选A.
7[答案] B
[解析] 直线方程y =-3x 化为一般式3x 则d =23+5. ,则所求直线斜率k =-2,直线方程y =3x +4
(-43
,0).故所求直线方程为y =-2(x =-1,
A 、C 、D ,故选B.
[解析] k P A =-4,k PB =34,画图观察可知k ≥34
或k ≤-4.
12[答案] B
[解析] 由平面几何知,与A 距离为1的点的轨迹是以A 为圆心,以1为半径的⊙A ,与B 距离为2的点的轨迹是半径为2的⊙B ,显然⊙A 和⊙B 相交,符合条件的直线为它们的公切线有2条.
13[答案] 5
[解析] |AB |=(-1+4)2+(2-6)2=5.
14[答案] 23
[解析] 直线l 2的方程可化为x -y +13=0, 则d =|1-13|12+(-1)2=23. 15[答案] x +y -5=0 x -y +1=0
[解析] 设直线l 的方程为x a +y b =1,则⎩⎪⎨⎪⎧|a |2a +1,即直线l 的方程为x 5+y 5=1或x -1+y 1
=1,即x 16[答案] ①⑤
[解析] 两平行线间的距离为
d =|3-1|1+1
=2, 由图知直线m 与l 1的夹角为30°,l 1所以直线m 的倾斜角等于30°+45°=75°两点的直线方程是y +11=x -4-2-4
. l 2的斜率k 2=a 2-2,因为l 1∥l 2,所以a 2-21时,直线l 1:y =-x +2a 与直线l 2:y =(a 2-2=4,因为l 1⊥l 2,所以k 1k 2=-1,即4(2a -1)
y 2
19[解析] (1)设C (x ,y ),由AC 的中点M 在y 轴上得,x +52
=0,解得x =-5. 由BC 中点N 在x 轴上,得3+y 2
=0, ∴y =-3,∴C (-5,-3)
(2)由A 、C 两点坐标得M (0,-52
). 由B 、C 两点坐标得N (1,0).
∴直线MN 的方程为x +y -52=1.即5x -2y -5=0.
20[解析] 设点A 的坐标为(x 1,y 1),因为点P 是AB 中点,则点B 坐标为(6-x 1,-y 1),因为点A 、B 分别在直线l 1和l 2上,有
⎩⎪⎨⎪⎧ 2x 1-y 1-2=06-x 1-y 1+3=0解得⎩⎨⎧
x 1=113y 1=163 由两点式求得直线方程为8x -y -24=0.
21[解析] (1)直线AC 的斜率k AC =-6-44-(-1)
=-2 即:7x +y +3=0(-1≤x ≤0).
∴直线BD 的斜率k BD =12
, ∴直线BD 的方程为y =12
(x +4),即x -2y +4=0 (2)直线BC 的斜率k BC =4-0-1-(-4)=43
∴EF 的斜率k EF =-34
线段BC 的中点坐标为(-52
,2) ∴EF 的方程为y -2=-34(x +52
) 即6x +8y -1=0.
(3)AB 的中点M (0,-3),
∴直线CM 的方程为:y +34+3=x -1

1(舍去) m =-1。

相关文档
最新文档