仪器分析作业第三章

合集下载

仪器分析课后习题答案

仪器分析课后习题答案

第三章 紫外-可见吸收光谱法1、已知丙酮的正己烷溶液的两个吸收峰 138nm 和279nm 分别属于л→л*跃迁和n →л*跃迁,试计算л、n 、л*轨道间的能量差,并分别以电子伏特(ev ),焦耳(J )表示。

解:对于л→л*跃迁,λ1=138nm =1.38×10-7m则ν=νC =C/λ1=3×108/1.38×10-7=2.17×1015s -1则E=hv=6.62×10-34×2.17×1015=1.44×10-18JE=hv=4.136×10-15×2.17×1015=8.98ev对于n →л*跃迁,λ2=279nm =2.79×10-7m则ν=νC =C/λ1=3×108/2.79×10-7=1.08×1015s -1则E=hv=6.62×10-34×1.08×1015=7.12×10-19JE=hv=4.136×10-15×1.08×1015=4.47ev答:л→л*跃迁的能量差为1.44×10-18J ,合8.98ev ;n →л*跃迁的能量差为7.12×10-19J ,合4.47ev 。

3、作为苯环的取代基,-NH 3+不具有助色作用,-NH 2却具有助色作用;-DH 的助色作用明显小于-O -。

试说明原因。

答:助色团中至少要有一对非键电子n ,这样才能与苯环上的л电子相互作用产生助色作用,由于-NH 2中还有一对非键n 电子,因此有助色作用,而形成-NH 3+基团时,非键n 电子消失了,则助色作用也就随之消失了。

由于氧负离子O -中的非键n 电子比羟基中的氧原子多了一对,因此其助色作用更为显著。

4、铬黑T 在PH<6时为红色(m ax λ=515nm ),在PH =7时为蓝色(m ax λ=615nm ), PH =9.5时与Mg 2+形成的螯合物为紫红色(m ax λ=542nm ),试从吸收光谱产生机理上给予解释。

仪器分析作业第三章

仪器分析作业第三章

1、从分离原理、仪器构造及应用范围上简要比较气相色谱及液相色谱的异同点。

答:二者都是根据样品组分与流动相和固定相相互作用力的差别进行分离的。

从仪器构造上看,液相色谱需要增加高压泵以提高流动相的流动速度,克服阻力。

同时液相色谱所采用的固定相种类要比气相色谱丰富的多,分离方式也比较多样。

气相色谱的检测器主要采用热导检测器、氢焰检测器和火焰光度检测器等。

而液相色谱则多使用紫外检测器、荧光检测器及电化学检测器等。

但是二者均可与MS等联用。

二者均具分离能力高、灵敏度高、分析速度快,操作方便等优点,但沸点太高的物质或热稳定性差的物质难以用气相色谱进行分析。

而只要试样能够制成溶液,既可用于HPLC分析,而不受沸点高、热稳定性差、相对分子量大的限制。

2、液相色谱中影响色谱峰展宽的因素有哪些? 与气相色谱相比较, 有哪些主要不同之处?答:液相色谱中引起色谱峰扩展的主要因素为涡流扩散、流动的流动相传质、滞留的流动相传质以及柱外效应。

在气相色谱中径向扩散往往比较显着,而液相色谱中径向扩散的影响较弱,往往可以忽略。

另外,在液相色谱中还存在比较显着的滞留流动相传质及柱外效应。

3、在液相色谱中, 提高柱效的途径有哪些?其中最有效的途径是什么?答:液相色谱中提高柱效的途径主要有:(1).提高柱内填料装填的均匀性; 减小粒度;选择薄壳形担体;(2).改进固定相(3).选用低粘度的流动相(4).适当提高柱温其中,减小粒度是最有效的途径。

4、液相色谱有几种类型?它们的保留机理是什么? 在这些类型的应用中,最适宜分离的物质是什么?答::液相色谱有以下几种类型:液-液分配色谱; 液-固吸附色谱;;离子交换色谱; 离子对色谱; 空间排阻色谱等其中;液-液分配色谱的保留机理是通过组分在固定相和流动相间的多次分配进行分离的。

可以分离各种无机、有机化合物。

液-固吸附色谱是通过组分在两相间的多次吸附与解吸平衡实现分离的.最适宜分离的物质为中等相对分子质量的油溶性试样,凡是能够用薄层色谱分离的物质均可用此法分离。

仪器分析(第2版)魏培海 ,曹国庆,第三章 习题答案

仪器分析(第2版)魏培海 ,曹国庆,第三章 习题答案

第三章 习题答案1. (4)2. (1)3. (4)4. (1)5. (1)6. (3)7. (3)8. (1)9. (2) 10. (4) 11. (3)12. 自然宽度 多普勒变宽 压力变宽13. 锐线 原子 背景 连续 原子14. 干燥 灰化 原子化 净化15. 答:当有一能量等于e E ∆的特定波长的光通过含有基态原子的蒸汽时,基态原子就吸收该辐射的能量而跃迁到激发态,引起入射光强度的变化产生原子吸收光谱。

16. 答:在使用锐线光源时,光源发射线半宽度很小,并且发射线与吸收线的中心频率一致。

这时发射线的轮廓可看作一个很窄的矩形,即峰值吸收系数Kn 在此轮廓内不随频率而改变,吸收只限于发射线轮廓内。

这样,求出一定的峰值吸收系数即可测出一定的原子浓度。

17. 答:(1)加入消电离剂(即比Ca 电离电位低的金属盐类例如KCl)(2)加入释放剂 Sr 或La 等;加入保护剂如EDTA 、8-羟基喹啉等。

18. 答:因为火焰原子化器有下列缺点:(1)火焰原子化器雾化效率低(10%左右);(2)雾化的气溶胶被大量载气稀释;(3)基态原子蒸气在光程中滞留时间短。

石墨炉原子化器有下列优点:(1)不存在雾化与稀释问题;(2)基态原子蒸气在石墨炉中的滞留时间长,相对浓度大(原子化时停气)。

19. 答:锐线光源是发射线半宽度远小于吸收线半宽度的光源,如空心阴极灯。

在使用锐线光源时,光源发射线半宽度很小,并且发射线与吸收线的中心频率一致。

这时发射线的轮廓可看作一个很窄的矩形,即峰值吸收系数Kn 在此轮廓内不随频率而改变,吸收只限于发射线轮廓内。

这样,求出一定的峰值吸收系数即可测出一定的原子浓度。

20. 答:在一定的浓度范围和一定的火焰宽度条件下,当采用锐线光源时,溶液的吸光度与待测元素浓度成正比关系,这就是原子吸收光谱定量分析的依据。

常用两种方法进行定量分析:(1)标准曲线法:该方法简便、快速,但仅适用于组成简单的试样。

仪器分析 第三章 紫外可见吸收光谱法

仪器分析 第三章 紫外可见吸收光谱法

第三章紫外可见吸收光谱法1.定义2.紫外吸收光谱的产生3.物质对光的选择性吸收4.电子跃迁与分子吸收光谱第一节概述11. 定义根据溶液中物质的分子或离子对紫外、可见光谱区辐射能的吸收来研究物质的组成和结构的方法,包括比色分析法与分光光度法。

◆比色分析法:比较有色溶液颜色深浅来确定物质含量的方法。

◆分光光度法:使用分光光度计进行吸收光谱分析测量的方法。

2/紫外-可见波长范围:(真空紫外区)◆远紫外光区:10-200 nm;◆近紫外光区:200-400 nm;◆可见光区:400-780 nm。

◆O2、N2、CO2、H2O等可吸收远紫外区(60-200 nm)电磁辐射。

◆测定远紫外区光谱时,须将光学系统抽真空,并充入惰性气体。

◆准确:近紫外-可见分光光度法(200-780 nm)。

3/方法特点:◆仪器较简单,价格较便宜;◆分析操作简单;◆分析速度较快。

4/紫外可见吸收光谱:分子中价电子能级跃迁(伴随着振动能级和转动能级跃迁)。

2. 紫外可见吸收光谱的产生价电子的定义?AB 电磁辐射5/◆分子内部三种运动形式:电子相对于原子核的运动;原子核在其平衡位置附近的相对振动;分子本身绕其重心的转动。

◆分子具有三种不同能级:电子能级、振动能级和转动能级(量子化,具有确定能量值)。

◆分子内能:包括电子能量E e、振动能量E v、转动能量Er 。

2.1 电子跃迁与分子吸收光谱6/分子的各能级:◆转动能级能量差:0.005~0.05 eV,跃迁产生吸收光谱位于远红外区(远红外光谱或分子转动光谱)。

◆振动能级能量差:0.05~1 eV,跃迁产生吸收光谱位于红外区(红外光谱或分子振动光谱)。

◆电子能级能量差:1~20 eV。

电子跃迁产生的吸收光谱在紫外-可见光区(紫外-可见光谱或分子的电子光谱)。

7/8/◆电子能级间跃迁的同时,总伴随有振动和转动能级间的跃迁。

◆电子光谱中总包含有振动/转动能级间跃迁产生的若干谱线而呈现宽谱带(带状光谱)。

仪器分析第三章练习题.doc

仪器分析第三章练习题.doc

仪器分析第三章练习题.docA.改变固定液的种类B.改变栽气和固定液的种类C.改变色谱柱温D.改变固定液的种类和色谱柱温 D.电化学检测器 (B) A. 检测 B. 记录 C.色谱柱 D.进样器 A. 组分与流动 B. 组分与固定C.组分与流动相和固定相D.组分与组分 A.荧光检测器 B.示差折光检测器 C.电导检测器 D.紫外吸收检测器17、在液相色谱中, 不会显著影响分离效果的是()改变固定相种B. 改变流动相流第三章高效液相色谱复习题一、选择题1、在液相色谱法中,提高柱效最有效的途径是()A 提高柱温B 、降低板高C 、降低流动相流速D 、减小填料粒度2、在液相色谱中,为了改变柱子的选择性,可以进下列那种操作()5、对聚苯乙烯相对分子质量进行分级分析,应采用下述哪一种色谱方法?()A.离子交换色谱法B.液.固色谱法C. 空间排阻色谱法D.液?液色谱法 6、在液相色谱中,通用型检测器是A. 示差折光检测器B.极谱检测器C.荧光检测器 7、用离子交换色谱分析阴离子时,保留时间的顺序为AF >cr>NO3->so 42- B .SO 42->NO 「>cr>F c.cr>F>so 42 >No 3- D . NO 3 >F > cr>so 42- 8、用液相色谱法分离长链饱和烷炷的混合物,应采用下述哪一?种检测器?()A. 紫外吸收检测器B.示差折光检测器C.荧光检测器D.电化学检测器10、在液相色谱法中,按分离原理分类,液固色谱法属于()A.分配色谱法B.排阻色谱法C.离子交换色谱法D.吸附色谱法 11、在高效液和色谱流程中,试样混合物在()中被分离。

14、在液相色谱中,某组分的保留值大小实际反映了哪些部分的分子间作用力()16、在环保分析中,常常要监测水中多环芳炷,如用高效液和色谱分析,应选用下述哪种检波器(C. 改变流动相配比D.改变流动相种类18、高效液相色谱仪中高压输液系统不包括()A.贮液器B.高压输液泵C.过滤器D.梯度洗脱装置E.进样器20、H PLC与GC的比较,可以忽略纵向扩散项,这主要是因为()A.柱前压力高B.流速比GC快C.流动相的黏度较大D.柱温低21、在高效液相色谱中,色谱柱的长度一般在()范围内A. 10?30cmB.20 ?50cmC.1 ?2mD.2 ?5m22、液相色谱适宜的分析对象是()A.低沸点小分子有机化合物B.高沸点大分子有机化合物C.所有有机化合物D.所有化合物24、液相色谱定量分析时,不要求混合物中每一个组分都出峰的是()A.外标标准曲线法B.内标法C.面积归一化法D.外标法25、在正相色谱中,若适当增大流动相极性则()A.样品的k降低,tR降低B.样品的k增加,tR增加C.相邻组分的a增加D对%基本无影响26、液相色谱的曲线()A.与气相色谱的一样,存在着RmB.H随流动相的流速增加而下降C.H随流动相的流速增加而上升D.H受u影响很小27、在液相色谱中,为了改善分离的选择性,下列措施()是有效的A.改变流动相种类B.改变固定相类型C.增加流速D.改变填料的粒度29、吸附作用在下面哪种色谱方法中起主要作用()A.液一液色谱法B.液一固色谱法C.键合相色谱法D.离子交换法30、在液相色谱中,提高色谱柱柱效的最有效途径是()A.减小填料粒度B.适当升高柱温C.降低流动相的流速D.增大流动相的流速31、如果样品比较复杂,相邻两峰间距离太近或操作条件不易控制稳定,要准确测量保留值有一定困难时,可选择以下方法()定性A.利用相对保留值定性B.加人已知物增加峰高的办法定性A.毛细管气相色谱法B. 高效液相色谱C.气相色谱法D.超临界色谱法1、高效液相色谱中技术类似于气相色谱中的程序升温,不过前者续改变的是流动相的 ,而不是温度。

仪器分析作业03参考答案(第三、五章紫外可见分光光度法+分子发光分析法)华南理工大学仪器分析

仪器分析作业03参考答案(第三、五章紫外可见分光光度法+分子发光分析法)华南理工大学仪器分析

01. 溶液有颜色是因为它吸收了可见光中特定波长范围的光。

若某溶液呈蓝色,它吸收的是什么颜色的光?若溶液无色透明,是否表示它不吸收光?答:溶液呈蓝色,表明其吸收了蓝光的互补光,即黄光(若答是吸收了黄光外的所有可见光,不能说错,但是这样的情况过于巧合,少见!)。

若溶液无色透明,仅能说明其不吸收可见波段的光。

2. 分别在己烷和水中测定某化合物UV-Vis 光谱,发现该化合物的某个吸收峰由285 nm (己烷)蓝移至275 nm (水),(1)判断产生该吸收峰的跃迁类型;(2)试估算该化合物与水生成氢键的强度。

答:(1)溶剂极性增大,λmax 蓝移,表明该吸收峰是由n →π*跃迁产生的。

(2)()()⎪⎪⎭⎫⎝⎛λ-λ⋅⋅=己烷氢键max O H max A 11hc N E 2 ⎪⎭⎫ ⎝⎛⨯⨯⨯⨯⨯⨯⨯⨯=--99834-23102851-102751100.31063.61002.61mol J 28.15-⋅=3. 按从小到大顺序对下列化合物的λmax 排序,并简单说明理由(不要想得太复杂)A. NO 2B. NO 2t-C 4H 9t-C 4H 9 C.NO 2CH 3 D. NO 2C 2H 5答:B<D<C<A (空间位阻依次减小,共轭程度依次增加,λmax 红移)4. 某化合物分子式为C 10H 16,用其他仪器方法已经证明有双键和异丙基存在,其紫外光谱λmax =230 nm (ε=9000),1mol 该化合物只能吸收2 mol H 2,加氢后得到1-甲基-4异丙基环己烷,试确定该化合物的可能结构。

答: 1mol 该化合物只能吸收2 mol H 2,且其紫外光谱λmax =230 nm (ε=9000)可知该化合物含两个共轭但非同环双键(同环共轭双键基值为253 nm );该化合物含异丙基(双键不会出现在异丙基上),根据加氢后产物结构可推出该化合物可能结构如下:根据Woodward 规则可计算出该化合物的λmax =214+5(环外双键)+5⨯2(烷基取代)=229 nm ,与所测值相符。

仪器分析作业第三章

仪器分析作业第三章

仪器分析作业第三章 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-1、从分离原理、仪器构造及应用范围上简要比较气相色谱及液相色谱的异同点。

答:二者都是根据样品组分与流动相和固定相相互作用力的差别进行分离的。

从仪器构造上看,液相色谱需要增加高压泵以提高流动相的流动速度,克服阻力。

同时液相色谱所采用的固定相种类要比气相色谱丰富的多,分离方式也比较多样。

气相色谱的检测器主要采用热导检测器、氢焰检测器和火焰光度检测器等。

而液相色谱则多使用紫外检测器、荧光检测器及电化学检测器等。

但是二者均可与MS等联用。

二者均具分离能力高、灵敏度高、分析速度快,操作方便等优点,但沸点太高的物质或热稳定性差的物质难以用气相色谱进行分析。

而只要试样能够制成溶液,既可用于HPLC分析,而不受沸点高、热稳定性差、相对分子量大的限制。

2、液相色谱中影响色谱峰展宽的因素有哪些与气相色谱相比较, 有哪些主要不同之处3、答:液相色谱中引起色谱峰扩展的主要因素为涡流扩散、流动的流动相传质、滞留的流动相传质以及柱外效应。

在气相色谱中径向扩散往往比较显着,而液相色谱中径向扩散的影响较弱,往往可以忽略。

另外,在液相色谱中还存在比较显着的滞留流动相传质及柱外效应。

3、在液相色谱中, 提高柱效的途径有哪些?其中最有效的途径是什么答:液相色谱中提高柱效的途径主要有:(1).提高柱内填料装填的均匀性; 减小粒度;选择薄壳形担体;(2).改进固定相(3).选用低粘度的流动相(4).适当提高柱温其中,减小粒度是最有效的途径。

4、液相色谱有几种类型它们的保留机理是什么在这些类型的应用中,最适宜分离的物质是什么答::液相色谱有以下几种类型:液-液分配色谱; 液-固吸附色谱;;离子交换色谱; 离子对色谱; 空间排阻色谱等其中;液-液分配色谱的保留机理是通过组分在固定相和流动相间的多次分配进行分离的。

可以分离各种无机、有机化合物。

仪器分析-第三章电位分析法

仪器分析-第三章电位分析法

5 lg A 9 []2 g k ' 0 .05 lg S 9 2 ] [2 2
既可以为Ag+离子选择电极,也可以作为S2-离子选择电极。
该电极在一定情况下可以测定CN-离子。测定时向试液 中(本身不含Ag+)加入少量的Ag(CN)2- 使其浓度为10-5~ 10-6 mol•L-1 ,试液中存在下面的平衡:
种类繁多
例如,葡萄糖电极、尿素电极、尿酸电极、胆固醇 电极、乳酸电极、丙酮酸电极等等。就是葡萄糖电 极也并非只有一种,有用pH电极或碘离子电极作 为转换器的电位型葡萄糖电极等。
氨基酸的测定用氨基酸脱羧酶和氨基酸氧化酶 催化,例如:
HO6H C4CH 2CHN 2CHOO氨 H 基 酸 脱 羧酶 HO6H C4CH 2CH 2NH 2+CO 2
非晶体膜电 极
均相晶体膜电极
非均相晶体膜电 极 刚性基质电极
流动载体电极
敏化离子选择 电极是以原电 极为基础装配 成的离子选择 电极。
敏化电极
气敏化电极 酶(底物)电极
(1)玻璃电极
玻璃电极的膜电位的建立是一个典型的例子。 玻璃电极:pH、pNa、pK玻璃电极等。
pH 玻璃电极是最早出现 的 ISE , 底 部 敏 感 膜 很 薄 0.1mm , 两 边 厚 。 内 充 0.1mol·L-1HCl 溶 液 作 为 内 参 比溶液,内参比电极是 Ag|AgCl。
由于电极的内参比溶液和试液中离子的活度不 同,感应膜的内外均形成双电层,在膜的内外壁之 间产生电位差(膜电位),此电位差与待测离子的活 度有定量关系。
(a)离子接触型;(b)全固态型 全固态型电极制作简单,可以在任意方向倒置使 用,而且消除了压力和温度对内部溶液的限制。

分析化学(仪器分析)第三章-仪器分析(UV)

分析化学(仪器分析)第三章-仪器分析(UV)

1
第一节
概述
一、紫外-可见吸收光谱法
根据溶液中物质的分子或离子对紫外和可见光谱
区辐射能的吸收来研究物质的组成和结构的方法。
包括比色分析法和紫外-可见分光光度法。 紫外-可见吸收光谱的产生:分子价电子能级跃迁。 波长范围:10-800 nm.
(1) 远紫外光区: 10-200nm
(2) 近紫外光区: 200-400nm (3) 可见光区:400-800nm
结束结束结束25一基本部件二分光光度计的构造原理26紫外可见分光光27光源单色器样品室检测器显示光源在整个紫外光区或可见光谱区可以发射连续光谱具有足够的辐射强度较好的稳定性较长的使用寿命
第三章 紫外-可见吸收光谱法
第一节 概述
第二节 紫外-可见吸收光谱
第三节 紫外-可见分光光度计
第四节 紫外-可见吸收光谱法的应用
金属离子的影响,将引起配位体 吸收波长和强度的变化。变化与成键 性质有关,若共价键和配位键结合, 则变化非常明显。
23
3.电荷转移吸收光谱
电荷转移跃迁:辐射下,分子中原定域在金属
M轨道上的电荷转移到配位体L的轨道,或按相反
方向转移,所产生的吸收光谱称为荷移光谱。
Mn+—Lbh M(n-1) +—L(b-1) h [Fe2+SCN]2+ [Fe3+SCN-]2+ 电子接受体
34
2. 定量分析
依据:朗伯-比耳定律—分子吸收光谱定量分析 的基本定律,它指出:当一束单色光穿过透明介质 时,光强度的降低同入射光的强度、吸收介质的厚 度以及光路中吸光微粒的数目成正比。
吸光度: A= e b c 透光度:-lgT = e b c
35

现代仪器分析 第三章 紫外-可见吸收光谱法

现代仪器分析 第三章 紫外-可见吸收光谱法

(校准曲线)
cx
2.0 3.0
0 1.0 c(mg/mL)
4.0
第一节 概 述
应用举例
某有色物质溶液的浓度为4.5×10-3g· L-1,在530nm波长下2.0cm 的吸收池所测得的吸光度为0.300,试计算 (a)吸光系数; (b) 使用5cm的吸收池时溶液的百分透光度。
(a)K=A/Lc=0.300/2.0×4.5×10-3=33.3L· g-1· cm-1 (b)T=10-A T%=10-A’×100%=17.81%
第一节 概 述
(二) 紫外-可见分光光度法(紫外-可见吸收光 谱法)及其特点
(1)灵敏度高。适于微量组分测定。可测定10-6 g 级的物质。 (2)准确度高。 相对误差一般在1~5%之内。 (3)方法简便。操作容易、仪器设备简单、分 析速度快。 (4)应用广泛。主要用于无机化合物、有机化 合物的定量分析及配合物的组 成和稳定常数的测定;也能用
分光光度计只能获得近似于单色的狭窄光带。复合光 可导致对朗伯-比尔定律的正或负偏离。 非单色光、杂散光、非平行入射光都会引起对朗白-比 尔定律的偏离,最主要的是非单色光作为入射光引起 的偏离。
第一节 概 述
假设由波长为λ1和λ2的两单色光 组成的入射光通过浓度为c的溶液,则: A 1 = lg(Io1 /It1 )=K1Lc A 2 = lg(Io2 /It2 )=K2Lc
式中A:吸光度;描述溶液对光的吸收程度;(A无单位)
L:液层厚度(光程长度),通常以cm为单位; c:溶液的摩尔浓度,单位 mol· L-1; K():摩尔吸光系数,单位 L· mol-1· cm-1;在数值上等于浓 度为1mol/L、液层厚度为1cm时该溶液在某一波长下的吸光度;

仪器分析_紫外-可见分光光度和红外光谱法习题及参考答案

仪器分析_紫外-可见分光光度和红外光谱法习题及参考答案

第三章紫外可见吸收光谱法一、选择题1、人眼能感觉到的可见光的波长范围是()。

A、400nm~760nmB、200nm~400nmC、200nm~600nmD、360nm~800nm2、在分光光度法中,透射光强度(I)与入射光强度(I0)之比I/I0称为( )。

A、吸光度B、吸光系数C、透光度D、百分透光度3、符合朗伯-比尔定律的有色溶液在被适当稀释时,其最大吸收峰的波长位置( )。

A、向长波方向移动B、向短波方向移动C、不移动D、移动方向不确定4、对于符合朗伯-比尔定律的有色溶液,其浓度为c0时的透光度为T0;如果其浓度增大1倍,则此溶液透光度的对数为( )。

A、T0/2B、2T0C、2lgT0D、0.5lgT05、在光度分析中,某有色物质在某浓度下测得其透光度为T;若浓度增大1倍,则透光度为( )。

A、T2B、T/2C、2TD、T1/26、某物质的摩尔吸光系数很大,则表明( )。

A、该物质溶液的浓度很大B、光通过该物质溶液的光程长C、该物质对某波长的光的吸收能力很强D、用紫外-可见光分光光度法测定该物质时其检出下限很低7、在用分光光度法测定某有色物质的浓度时,下列操作中错误的是( )。

A、比色皿外壁有水珠B、待测溶液注到比色皿的2/3高度处C、光度计没有调零D、将比色皿透光面置于光路中8、下列说法正确的是( )。

A、透光率与浓度成正比B、吸光度与浓度成正比C、摩尔吸光系数随波长而改变D、玻璃棱镜适用于紫外光区9、在分光光度分析中,常出现工作曲线不过原点的情况。

与这一现象无关的情况有( )。

A、试液和参比溶液所用吸收池不匹配B、参比溶液选择不当C、显色反应的灵敏度太低D、被测物质摩尔吸光系数太大10、质量相等的A、B两物质,其摩尔质量M A>M B。

经相同方式发色后,在某一波长下测得其吸光度相等,则在该波长下它们的摩尔吸光系数的关系是( )。

A、εA>εBB、εA<εBC、εA=εBD、2εA>εB11、影响吸光物质摩尔吸光系数的因素是( )。

仪器分析第三章(含练习题)

仪器分析第三章(含练习题)

C
C
p
极性
非极性
n → p*跃迁:兰移; ;
p → p*跃迁:红移;
N-亚硝基二甲胺在不同溶剂中的紫外吸收光谱图
由于溶剂对电子光谱图影响很大,因此,在吸收 光谱图上或数据表中必须注明所用的溶剂。在进行紫 外光谱法分析时,必须正确选择溶剂。选择溶剂时注 意下列几点:
3.2 光吸收的基本定律
如:异丙叉丙酮
吸收带
max(正己烷)
max(氯仿)
max(甲醇)
max(水)
p→p *p n→
*
230nm
329nm
238nm
315nm
237nm
309nm
243nm
305nm
溶剂极性增加,n→π *跃迁吸收带蓝移是因为:
C
O ‥ n轨道
· C
· O
p * 轨道
从上面C=O(羰基)键的电子云分布可以知道,相 对于激发态π*轨道来说,基态时氧原子上的n电子处于定 域状态,更为集中,使得羰基的极性较为明显,因此,在 n→π*跃迁中,基态的极性比激发态更强一些。
3.1.4 常用术语
吸收峰、谷、肩峰、末端吸收
3.1.4 常用术语
☺吸收曲线
同一种物质对不同波长光 的吸光度不同。吸光度最大 处对应的波长称为最大吸收 波长(λmax)
λmax
不同浓度的同一种物质, 其吸收曲线形状相似, λmax不变。而对于不同物 质,它们的吸收曲线形状 和λmax则不相同。 ——定性分析依据
第3章 紫外-可见分光光度法法
Ultraviolet and visible Spectrometry (UV-Vis)
• 紫外-可见吸收光谱
• 朗伯-比尔定律

仪器分析 第三章高效液相色谱分析

仪器分析 第三章高效液相色谱分析

主要分离机理
吸附能,氢键 疏水分配作用 溶质分子大小 库仑力 立体效应 生化特异亲和力
主要分析对象或应用领域
异构体分离、族分离,制备 各种有机化合物的分离、分析与制备 高分子分离,分子量及其分布的测定 无机离子、有机离子分析 手性异构体分离,药物纯化 蛋白、酶、抗体分离,生物和医药分析
第二节 影响色谱峰扩展及色谱分离的因素
同时消耗样品少。
2、HPLC与经典液相色谱相比有以下优点:
(1)速度快-通常分析一个样品在15~30 min,有些样 品甚至在5 min内即可完成。 ( 2 )分辨率高 - 可选择固定相和流动相以达到最佳分离 效果。 (3)灵敏度高-紫外检测器可达0.01ng,荧光和电化学 检测器可达0.1pg。 ( 4 )柱子可反复使用 - 用一根色谱柱可分离不同的化合 物。 ( 5 )样品量少,容易回收 - 样品经过色谱柱后不被破坏, 可以收集单一组分或做制备。
基本要求: ①流量稳定,其RSD应<0.5%,这对定性定 量的准确性至关重要;②流量准确可调,0.1~10 ml/min, ③输出压力高,一般应能达到 150 ~ 300kg/cm2 ;④液流稳 定,无脉动;⑤ 死体积小,要求小于0.5ml。⑥密封性能好, 耐腐蚀。
泵的使用及注意事项: ①防止任何固体微粒进入泵体,因为尘埃或其它任何杂 质微粒都会磨损柱塞、密封环、缸体和单向阀,因此应预 先过滤除去流动相中的任何固体微粒,泵的入口都应连接 砂滤棒。 ②流动相不应含有任何腐蚀性物质,含有缓冲液的流动 相不应保留在泵内,尤其是在停泵过夜或更长时间的情况 下。如果将含缓冲液的流动相留在泵内,由于蒸发或泄漏, 甚至只是由于溶液的静臵,就可能析出盐的微细晶体,这 些晶体将和上述固体微粒一样损坏密封环和柱塞等。 因此,用后必须泵入纯水将泵充分清洗后,再换成适合于 色谱柱保存和有利于泵维护的溶剂(如对于反相键合硅胶 固定相,可以是甲醇或甲醇-水)。

仪器分析第三章发射光谱

仪器分析第三章发射光谱
试样蒸发、激发产生辐射→色散分光形成 光谱→检测、记录光谱→根据光谱进行定性 或定量分析
发射光谱的分析基础:
定性分析:特征谱线的波长 定量分析:特征谱线的强度(黑度),主要的
26
二、原子发射光谱的分析仪器
光源 分光系统 检测器 信号显示系统
27
光源
作用:提供稳定,重现性好的能量,使试样中的被 测元素蒸发、解离、原子化和激发,产生电子跃迁, 发生光辐射
19
4、原子发射光谱图
元素标准光谱图
20
21
5、谱线的自吸和自蚀
自吸和自蚀
影响自吸和自蚀的因素 谱线的固有强度 弧层厚度 溶液浓度
22
自吸和自蚀
发射光谱是通过物质的蒸发、激发、 迁移和射出弧层而得到的。在一般光 源中,是在弧焰中产生的,弧焰具有 一定的厚度,如下图:
a b
23
a
自吸和自蚀
发射光谱的分析过程 发射线的波长 发射谱线的强度 原子发射光谱图 谱线的自吸和自蚀
3
1、发射光谱的分析过程
激发态原子
外 层 电 子 跃 迁
基态原子
光电法 摄谱法
原子化
热或电
光电倍增管 感光板
气态分子
气 化
样品分子
4
原子发射光谱示意图
5
一般情况下,原子处于基态, 在激发光源作用下,原子获得能 量,外层电子从基态跃迁到较高 能态变为激发态 ,约经10-8 s,外 层电子就从高能级向较低能级或 基态跃迁,多余的能量的发射可 得到一条光谱线。
第三章 原子发射光谱法
Atomic Emission Spectrometry,AES
1
特点: 优点——灵敏度高、简便快速、可靠性高、

新编仪器分析第四版第三章分子发光分析法

新编仪器分析第四版第三章分子发光分析法
a. 化学反应必须产生足够的化学能,且被发光物质
吸收形成电子激发态。
在紫外可见光区观察化学发光,160~420kJ· mol-1激发能。 化学反应多是在有O3、H2O2等参加的高能反应。
b. 处于激发态分子能够以光的形式释放能量返回基态
45
2.化学发光效率

化学发光效率CL
激发态分子的产率
发射的光子数 CL Ce em 参加反应的分子数 激发态分子数 发射的光子数 参加反应的分子数 激发态分子数
第三章 分子发光分析法
1

第一节 概述 分子发光(molecular luminescence)
某些物质分子吸收能量跃迁到较高的电子激发态后, 返回基态的过程中伴随发光的现象。以此建立的起来 的分析方法很为非自发光分析法。

M+ 能量 →M*
M
2
分子发光分析法: 根据物质所发射的光谱线的位置及强度 进行物质鉴定和含量测定的方法。
620
17
二、分子荧光的性质
1、荧光激发光谱
18
(1)激发光谱的绘制
固定第二单色器波长,改变第一单色器波长进行扫描 反映了激发光波长连续变化时,某一固定荧光测定波长强度
的变化。Fλ—纵坐标, λex(激发波长)—横坐标
光源 第一单色器 或滤光片
激发

记录仪 荧光
固定em 荧光波长
第二单色器 或滤光片
22
镜像关系?
IF4800
4400
固定em=620nm(MAX)
1→ 4 1→ 3
固定ex=290nm (MAX)
1→4 1→3 1→2
4 3 2 1
S1
4000 3600 3200 2800 2400 2000 1600 1200 800 400

现代生物仪器分析第三章 分子荧光光谱法

现代生物仪器分析第三章 分子荧光光谱法

第二节 荧光分析的原理
(一)荧光发生机理 物质的基态分子受一激发光源的照射, 被激发至激发态,在返回基态时,产生 波长与入射光相同或较长的荧光。 通过测定物质分子产生的荧光强度进行
分 析 的 方 法 称 为 荧 光 分 析 (fluorescence analysis)。
1、分子的激发态

荧光和磷光这两种光致发光过程的机理不同, 可从实验观察激发态分子寿命的长短来加以区 别: 对于荧光来说,当激发光停止照射后,发光 过程几乎立即停止(在10-9~10-6秒,荧光寿 命fluorescence life time )。 磷光则将持续一段时间(在10-3~10秒)。
荧光分析法发展简史
2、分子荧光和磷光的产生


分子在室温时基本上处于电子能级的基态。当吸 收了紫外—可见光后,基态分子中的电子只能跃 迁到激发单线态的各个不同振动—转动能级,根 据自旋禁阻规律,不能直接跃迁到激发三重态的 各个振--转能级。 处于激发态的分子是不稳定的,它可能通过辐射 跃迁和无辐射跃迁等分子内的去活化过程释放多 余的能量而返回至基态,发射荧光是其中的一条 途径。


世界上第一次记录荧光现象是16世纪 西班牙的内科医生和植物学家 N.Monardes。 1575年他提出在含有一种木头切片的 水溶液中,可观察到极可爱的天蓝色。
1852年,stokes在考察奎宁和叶绿素的 荧光时,用分光光度计观察到其荧光的 波长比入射光的波长稍微长些,从而导 入了荧光是光发射的概念。 18工作。应用铝—桑色素配 合物的荧光进行铝的测定。 19世纪以前,荧光的观察是靠肉眼进行 的,直到1928年,才由Jette和West完成 了第一台荧光计。
激发单重态与激发三重态的性质不同

张寒琦仪器分析习题解答

张寒琦仪器分析习题解答

Cd
2
/ Cd
>Zn 2 / Zn
故Cd先析出
(b)
阳极: 4H O2 4e 2H 2O
O , H O
2 2
0.059 O2 , H 2O lg[ H ]4 pO2 4 0.059 4 1.229 lg (10 -8) 0.757 (V ) 4
照明系统的作用是将光源产生的光均匀地照明于狭缝上。
准光系统的作用是将通过狭缝的光源辐射经过准光镜变成平 行光束照射在分光系统(色散系统上)。 色散系统为棱镜或光栅,其作用是将光源产生的光分开,成 为分立的谱线。 投影系统的作用是将摄得的谱片进行放大,并投影在屏上以 便观察。 在定量分析时还需要有观测谱线黑度的黑度计及测量谱线间 距的比长仪。
2 RN D S 1 依题意: RN (新 ) RN (旧) 3
故: D(新 )
2 RN ( 新 ) S(新 )
S(新 ) 10 S(旧)
1 2 RN (旧) 1 2 RN (旧) 1 3 D(旧) 10 S (旧) 30 S(旧) 30
即:新检测器的检测限为旧检测器的1/30
《仪器分析》 张寒琦等编
习题解答
第三章 气相色谱法
3.5
答:气相色谱固定液的选择,一般首先根据样品的沸 点范围,选择温度适用范围合适的固定液;再根据结 构相似和相似相溶的原则,选择合适的固定液。 分析极性和非极性混合物时,宜选择极性固定液; 出峰顺序为先非极性物质,后极性物质。
3.9
解: 检测器的检测限与其噪音水平和灵敏度的关系为:

电解池的理论电动势:
E理 0.993 0.331 0.662 (V )
(b) iR 0.200 2.50 0.500 (V )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专业:生物工程姓名:潘红波学号:1025004350 1、从分离原理、仪器构造及应用范围上简要比较气相色谱及
液相色谱的异同点。

答:二者都是根据样品组分与流动相和固定相相互作用力的差别进行分离的。

从仪器构造上看,液相色谱需要增加高压泵以提高流动相的流动速度,克服阻力。

同时液相色谱所采用的固定相种类要比气相色谱丰富的多,分离方式也比较多样。

气相色谱的检测器主要采用热导检测器、氢焰检测器和火焰光度检测器等。

而液相色谱则多使用紫外检测器、荧光检测器及电化学检测器等。

但是二者均可与MS等联用。

二者均具分离能力高、灵敏度高、分析速度快,操作方便等优点,但沸点太高的物质或热稳定性差的物质难以用气相色谱进行分析。

而只要试样能够制成溶液,既可用于HPLC分析,而不受沸点高、热稳定性差、相对分子量大的限制。

2、液相色谱中影响色谱峰展宽的因素有哪些? 与气相色谱相
比较, 有哪些主要不同之处?
答:液相色谱中引起色谱峰扩展的主要因素为涡流扩散、流动的流动相传质、滞留的流动相传质以及柱外效应。

在气相色谱中径向扩散往往比较显著,而液相色谱中径向扩散的影响较弱,往往可以忽略。

另外,在液相色谱中还存在比较显著的滞留流动相传质及柱外效应。

3、在液相色谱中, 提高柱效的途径有哪些?其中最有效的途径是
什么?
答:液相色谱中提高柱效的途径主要有:
(1).提高柱内填料装填的均匀性; 减小粒度;选择薄壳形担体;
(2).改进固定相
(3).选用低粘度的流动相
(4).适当提高柱温
其中,减小粒度是最有效的途径。

4、液相色谱有几种类型?它们的保留机理是什么? 在这些类型
的应用中,最适宜分离的物质是什么?
答::液相色谱有以下几种类型:液-液分配色谱; 液-固吸附色谱;;离子交换色谱; 离子对色谱; 空间排阻色谱等
其中;液-液分配色谱的保留机理是通过组分在固定相和流动相间的多次分配进行分离的。

可以分离各种无机、有机化合物。

液-固吸附色谱是通过组分在两相间的多次吸附与解吸平衡实现分离的.最适宜分离的物质为中等相对分子质量的油溶性试样,凡是能够用薄层色谱分离的物质均可用此法分离。

离子色谱中由于键合基团不能全部覆盖具有吸附能力的载体,所以同时遵循吸附和分配的机理,最适宜分离的物质为与液-液色谱相同。

离子交换色谱和离子色谱是通过组分与固定相间亲合力差别而实现分离的.各种离子及在溶液中能够离解的物质均可实现分离,包括无机化合物、有机物及生物分子,如氨基酸、核酸及蛋白质等。

在离子对色谱色谱中,样品组分进入色谱柱后,组分的离子与对离子相
互作用生成中性化合物,从而被固定相分配或吸附进而实现分离的.各种有机酸碱特别是核酸、核苷、生物碱等的分离是离子对色谱的特点。

空间排阻色谱是利用凝胶固定相的孔径与被分离组分分子间的相对大小关系,而分离、分析的方法。

最适宜分离的物质是分子质量较大的物质。

5、何为正相色谱及反相色谱?在应用上有何特点?
答:在液-液色谱法中,一般为了避免固定液的流失,对于亲水性固定液常采用疏水性流动相,即流动相的极性小于固定相,及正相液-液色谱法,应用于分离非极性物质;反之若流动相的极性大于固定液的极性,即反相液-液色谱法,应用于分离极性物质。

6、何谓化学键合固定相?它有什么突出的优点?
答:利用化学反应将固定液的官能团键合在载体表面形成的固定相称为化学键合固定相.
优点:固定相表面没有液坑,比一般液体固定相传质快的多。

无固定相流失,增加了色谱柱的稳定性及寿命。

可以键合不同的官能团,能灵活地改变选择性,可应用与多种色谱类型及样品的分析。

有利于梯度洗提,也有利于配用灵敏的检测器和馏分的收集。

7、何谓化学抑制型离子色谱及非抑制型离子色谱?试述它们
的基本原理。

答:在离子色谱中检测器为电导检测器,以电解质溶液作为流动相,为了消除强电解质背景对电导检测器的干扰,通常除了分析柱外,还增加一根抑制柱,这种双柱型离子色谱法称为化学抑制型离子色谱法。

没有抑制柱的离子色谱法称为非抑制型离子色谱
分离阴离子,常使用NaOH溶液为流动相,钠离子的干扰非常严重,这时可在分析柱后加一根抑制柱,其中装填高容量H+型阳离子交换树脂,通过离子交换,使NaOH转化为电导值很小的H2O,从而消除了背景电导的影响。

但是如果选用低电导的流动相(如1×10-4~ 5 ×10-4mol的苯甲酸盐或邻苯二甲酸盐),则由于背景电导较低,不干扰样品的检测,这时候不必加抑制柱,只使用分析柱,称为非抑制型离子色谱法。

8、何谓梯度洗提?它与气相色谱中的程序升温有何异同之
处?
答:在一个分析周期内,按一定程序不断改变流动相的组成或浓度配比,称为梯度洗提.是改进液相色谱分离的重要手段.
梯度洗提与气相色谱中的程序升温类似,前者连续改变的是流动相的极性、pH或离子强度,而后者改变的温度,程序升温也是改进气相色谱分离的重要手段。

9、高效液相色谱进样技术与气相色谱进样技术有和不同之
处?
答:在液相色谱中为了承受高压,常常采用停流进样与高压定量进样阀进样的方式。

10、以液相色谱进行制备有什么优点?
答:以液相色谱进行制备时,分离条件温和,分离检测时不会导致试样被破坏,且易于回收原物。

相关文档
最新文档