2018年春期叙永二中高二第三次月考试题
17—18学年下学期高二第三次月考物理试题(无答案) (2)
2017--2018 学年第二学期高二第三次月考理科综合物理试卷二、选择题:本题共 8 小题,每小题 6 分,共 48 分。
在每小题给出的四个选项中,第14~18 题只有一项符合题目要求,第 19~21 题有多项符合题目要求。
全部选对的得 6 分,选对但不全的得 3 分,有选错的得 0 分14.下列说法不符合物理学史的是()A.奥斯特发现了电流的磁效应B.法拉第发现了电磁感应现象C.牛顿解释了涡旋电场的产生原理D.楞次找到了判断感应电流方向的方法15.如图所示,接在照明电路中的自耦变压器的副线圈上通过输电线接有三个灯泡 L1、L2 和 L3,输电线的等效电阻为 R.当滑动触头 P 向上移动一段距离后,下列说法正确的是()A.等效电阻 R 上消耗的功率变大B.三个灯泡都变亮C.原线圈两端的输入电压减小 D.原线圈中电流表示数减小16. 如图所示,面积为 0.2 m2 的 100 匝线圈处在匀强磁场中,磁场方向垂直于线圈平面,已知磁感应强度随时间变化的规律为 B=(2+0.2t)T,定值电阻 R1=6Ω,线圈电阻R2=4Ω,则 a、b 两点间电压 U ab ()A、2.4VB、0.024VC、4VD、1.6V17.如图所示,闭合金属线框从一定高度自由下落进入匀强磁场中,磁场足够大,从ab 边开始进入磁场到cd 边刚进入磁场的这段时间内,若线框平面与磁感线保持垂直,则线框运动的速度−时间图象不可能的是()18.如图所示,N 匝矩形导线框以角速度 ω 在磁感应强度为 B 的匀强磁场中绕轴 OO ′匀速转动,线框面 积为 S ,线框的电阻、电感均不计,外电路接有电阻 R 、交流理想电流表和二极管 D.二极管 D 具有单向 导电性,即正向电阻为零,反向电阻无穷大.下列说法正确的是( )A .图示位置电流表的示数为 0B .R 两端电压的有效值 U =NBSC .一个周期内通过 R 的电荷量 q =2BS/RD .交流电流表的示数 I =2RωNBS 19.电阻 R 、电容 C 和电感器 L 是常用的电子元器件,在频率为 f 的交变电流电路中,如图所示,当开关 S 依次分别接通 R 、C. L 支路,这时通过各支路的电流有效值相等。
2018年下学期高二第三次月考试题
2018年下学期高二第三次月考试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试用时120分钟。
第Ⅰ卷第一部分听力(共两节,满分20分)第一节(共5小题;每小题1分,满分5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What is the woman going to do tonight?A. Go to the cinema.B.Attend a meeting.C. Watch TV.2. What will the man buy for the woman?A. Notebooks.B. Pencils.C. Paper.3. What is the man's favorite sport?A. Tennis.B. Volleyball.C. Basketball.4. What's the weather probably like now?A. Rainy.B. Sunny.C. Cloudy.5. When will the speakers probably leave for the train station?A.At 3:30 pm.B.At 4:00 pm.C.At 4:30 pm.第二节(共15小题;每小题1分,满分15分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
听第6段材料,回答第6、7题。
6. Who is Sara?A.Alisa’s classmate.B. The woman’s teacher.C. The woman’s friend.7. What will the woman probably do next?A. Do her homework.B. Take a photo of flowers.C. Introduce the man to Sara.听第7段材料,回答第8、9题。
四川省叙永县第二中学校2018-2019学年高三上学期第三次月考试卷数学含答案
四川省叙永县第二中学校2018-2019学年高三上学期第三次月考试卷数学含答案班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知双曲线和离心率为4sinπ的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若21cos 21=∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26 D .272. 若变量x y ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则目标函数32z x y =-的最小值为( )A .-5B .-4 C.-2 D .3 3. 函数y=a x +2(a >0且a ≠1)图象一定过点( )A .(0,1)B .(0,3)C .(1,0)D .(3,0)4. 一个空间几何体的三视图如图所示,其中正视图为等腰直角三角形,侧视图与俯视图为正方形, 则该几何体的体积为( )A .64B .32C .643 D .3235. 已知集合,则A0或B0或3C1或D1或36. 如果点P (sin θcos θ,2cos θ)位于第二象限,那么角θ所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限7. 已知全集{}1,2,3,4,5,6,7U =,{}2,4,6A =,{}1,3,5,7B =,则()U A B =ð( )A .{}2,4,6B .{}1,3,5C .{}2,4,5D .{}2,5 8. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60πD .72π9. 两个随机变量x ,y 的取值表为若x ,y 具有线性相关关系,且y ^=bx +2.6,则下列四个结论错误的是( )A .x 与y 是正相关B .当y 的估计值为8.3时,x =6C .随机误差e 的均值为0D .样本点(3,4.8)的残差为0.6510.已知命题p :对任意()0x ∈+∞,,48log log x x <,命题:存在x ∈R ,使得tan 13x x =-,则下列命题为真命题的是( )A .p q ∧B .()()p q ⌝∧⌝C .()p q ∧⌝D .()p q ⌝∧ 11.设,,a b c R ∈,且a b >,则( )A .ac bc >B .11a b< C .22a b > D .33a b > 12.阅读右图所示的程序框图,若8,10m n ==,则输出的S 的值等于( )A .28B .36C .45D .120二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.设,y x 满足约束条件2110y x x y y ≤⎧⎪+≤⎨⎪+≥⎩,则3z x y =+的最大值是____________.14.已知一个算法,其流程图如图,则输出结果是 .15.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x = 处的导数302f ⎛⎫'<⎪⎝⎭,则13f ⎛⎫= ⎪⎝⎭___________. 16.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .三、解答题(本大共6小题,共70分。
叙永县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析
叙永县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 抛物线y 2=8x 的焦点到双曲线的渐近线的距离为( )A .1B .C .D .2. 棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )A .=B .0S =C .0122S S S =+D .20122S S S =3. 如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于( )A .12+B .12+23πC .12+24πD .12+π4. 已知a n =(n ∈N *),则在数列{a n }的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 305. 线段AB 在平面α内,则直线AB 与平面α的位置关系是( ) A .AB ⊂αB .AB ⊄αC .由线段AB 的长短而定D .以上都不对6. 已知函数f (x )=x 2﹣6x+7,x ∈(2,5]的值域是( )A .(﹣1,2]B .(﹣2,2]C .[﹣2,2]D .[﹣2,﹣1)7. 已知a=,b=20.5,c=0.50.2,则a ,b ,c 三者的大小关系是( )A .b >c >aB .b >a >cC .a >b >cD .c >b >a8. 已知抛物线C :28y x =的焦点为F ,P 是抛物线C 的准线上的一点,且P 的纵坐标为正数,Q 是直线PF 与抛物线C 的一个交点,若2PQ QF =,则直线PF 的方程为( )A .20x y --=B .20x y +-=C .20x y -+=D .20x y ++=9.若向量=(3,m),=(2,﹣1),∥,则实数m 的值为( ) A.﹣ B. C .2D .610.已知函数[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(n N ∈),若数列{}m a 满足*()()m a f m m N =∈,数列{}m a 的前m 项和为m S ,则10596S S -=( )A.909B.910C.911D.912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力. 11.在平面直角坐标系中,向量=(1,2),=(2,m),若O ,A ,B 三点能构成三角形,则( )A .B .C .D .12.设F 1,F 2是双曲线的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,则△PF 1F 2的面积等于( ) A.B.C .24D .48二、填空题13.设m 是实数,若x ∈R 时,不等式|x ﹣m|﹣|x ﹣1|≤1恒成立,则m 的取值范围是 .14.定义:[x](x ∈R )表示不超过x 的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论: ①函数y=[sinx]是奇函数;②函数y=[sinx]是周期为2π的周期函数; ③函数y=[sinx]﹣cosx 不存在零点;④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.其中正确的是 .(填上所有正确命题的编号)15.阅读如图所示的程序框图,则输出结果S 的值为 .【命题意图】本题考查程序框图功能的识别,并且与数列的前n 项和相互联系,突出对逻辑判断及基本运算能力的综合考查,难度中等.16.幂函数1222)33)(+-+-=m m xm m x f (在区间()+∞,0上是增函数,则=m .17.在△ABC 中,若角A 为锐角,且=(2,3),=(3,m ),则实数m 的取值范围是 .18.已知函数()ln a f x x x =+,(0,3]x ∈,其图象上任意一点00(,)P x y 处的切线的斜率12k ≤恒 成立,则实数的取值范围是 .三、解答题19.已知函数,且. (Ⅰ)求的解析式;(Ⅱ)若对于任意,都有,求的最小值;(Ⅲ)证明:函数的图象在直线的下方.20.已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)若,求函数的单调递增区间.21.已知圆C经过点A(﹣2,0),B(0,2),且圆心在直线y=x上,且,又直线l:y=kx+1与圆C相交于P、Q两点.(Ⅰ)求圆C的方程;(Ⅱ)若,求实数k的值;(Ⅲ)过点(0,1)作直线l1与l垂直,且直线l1与圆C交于M、N两点,求四边形PMQN面积的最大值.22.(1)化简:(2)已知tanα=3,计算的值.23.某校从高一年级学生中随机抽取40名学生作为样本,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),[90,100)后得到如图的频率分布直方图. (Ⅰ)求图中实数a 的值;(Ⅱ)根据频率分布直方图,试估计该校高一年级学生其中考试数学成绩的平均数;(Ⅲ)若从样本中数学成绩在[40,50)与[90,100]两个分数段内的学生中随机选取2名学生,试用列举法求这两名学生的数学成绩之差的绝对值不大于10的概率.24.【海安县2018届高三上学期第一次学业质量测试】已知函数()()2x f x x ax a e =++,其中a R ∈,e 是自然对数的底数.(1)当1a =时,求曲线()y f x =在0x =处的切线方程; (2)求函数()f x 的单调减区间;(3)若()4f x ≤在[]4,0-恒成立,求a 的取值范围.叙永县第二中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案) 一、选择题1. 【答案】A【解析】解:因为抛物线y 2=8x ,由焦点公式求得:抛物线焦点为(2,0)又双曲线.渐近线为y= 有点到直线距离公式可得:d==1.故选A .【点评】此题主要考查抛物线焦点的求法和双曲线渐近线的求法.其中应用到点到直线的距离公式,包含知识点多,属于综合性试题.2. 【答案】A 【解析】试题分析:不妨设棱台为三棱台,设棱台的高为2h 上部三棱锥的高为,根据相似比的性质可得:220()2()a S a h S a S a hS '⎧=⎪+⎪⎨'⎪=+⎪⎩,解得=A . 考点:棱台的结构特征. 3. 【答案】C【解析】解:根据几何体的三视图,得; 该几何体是一半圆台中间被挖掉一半圆柱, 其表面积为S=[×(2+8)×4﹣2×4]+[×π•(42﹣12)+×(4π×﹣π×)+×8π]=12+24π. 故选:C .【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.4. 【答案】C【解析】解:a n ==1+,该函数在(0,)和(,+∞)上都是递减的,图象如图,∵9<<10.∴这个数列的前30项中的最大项和最小项分别是a10,a9.故选:C.【点评】本题考查了数列的函数特性,考查了数形结合的解题思想,解答的关键是根据数列通项公式画出图象,是基础题.5.【答案】A【解析】解:∵线段AB在平面α内,∴直线AB上所有的点都在平面α内,∴直线AB与平面α的位置关系:直线在平面α内,用符号表示为:AB⊂α故选A.【点评】本题考查了空间中直线与直线的位置关系及公理一,主要根据定义进行判断,考查了空间想象能力.公理一:如果一条线上的两个点在平面上则该线在平面上.6.【答案】C【解析】解:由f(x)=x2﹣6x+7=(x﹣3)2﹣2,x∈(2,5].∴当x=3时,f(x)min=﹣2.当x=5时,.∴函数f(x)=x2﹣6x+7,x∈(2,5]的值域是[﹣2,2].故选:C.7.【答案】A【解析】解:∵a=0.50.5,c=0.50.2,∴0<a<c<1,b=20.5>1,∴b>c>a,故选:A.8.【答案】B【解析】考点:抛物线的定义及性质.【易错点睛】抛物线问题的三个注意事项:(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程.(2)注意应用抛物线定义中的距离相等的转化来解决问题.(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点.9.【答案】A【解析】解:因为向量=(3,m),=(2,﹣1),∥,所以﹣3=2m,解得m=﹣.故选:A.【点评】本题考查向量共线的充要条件的应用,基本知识的考查.10.【答案】A.【解析】11.【答案】B【解析】【知识点】平面向量坐标运算【试题解析】若O,A,B三点能构成三角形,则O,A,B三点不共线。
2017-2018学年高二下学期第三次月考英语试题含答案
南康中学、于都中学高二年级联合考试英语试卷第一部分听力(共两节,满分30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. What is the man’s advice for the woman?A. Having her ears checked.B. Listening carefully to Jack.C. Being calm and patient.2. What does the man mean?A. Doctor Peterson won’t see anyone tomorrow.B. Doctor Peterson is quite busy tomorrow.C. Doctor Peterson is busy all day today.3. What does the woman think of Angelina’s husband?A. Quiet.B. Impolite.C. Proud.4. Who is Mary?A. The speakers’ colleague.B. The woman’s classmate.C. The man’s classmate.5. What are the speakers talking about?A. Painting pictures.B. Taking photographsC. Getting close to nature.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
2017-2018学年高二年级上学期第三次月考试卷
2017-2018学年高二年级上学期第三次月考试卷分值:150 时间120分钟第一部分听力(共两节满分30分)第一节听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. Where might the woman be right now?A. In a library.B. At a bookstore.C. At a furniture store.2. What is the probable relationship between the speakers?A. Mother and son.B. Teacher and student.C. Football coach and player.3. How will the man help the woman?A. By showing her how to do it.B. By doing the problem for her.C. By making some notes on her work.4. What can we learn about the dish?A. It is spicy.B. It is sweet.C. It is sour.5. What do the speakers mainly discuss?A. Healthy recipes.B. Close relationships.C. Routine physical exams.第二节听下面5段对话或独白。
每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。
每段对话或独白读两遍。
四川省泸州市叙永县第二中学高三物理月考试卷带解析
四川省泸州市叙永县第二中学高三物理月考试卷含解析一、选择题:本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意1. 如图2所示中的虚线是两个等量点电荷所产生的静电场中的一簇等势线,若不计重力的带电粒子从a点射入电场后恰能沿图中的实线运动,b点是其运动轨迹上的另一点,则下述判断正确的是()A.由a到b的过程中电场力对带电粒子做正功B.由a到b的过程中带电粒子的动能减小C.若粒子带正电,两等量点电荷均带正电D.若粒子带负电,a点电势高于b点电势参考答案:A2. 如图所示,在粗糙水平地面上放着一个截面为四分之一圆弧的柱状物体A,A的左端紧靠竖直墙,A与竖直墙之间放一光滑圆球B,整个装置处于静止状态,若把A向右移动少许后,它们仍处于静止状态,则()A.B对墙的压力增大B.A与B之间的作用力增大C.地面对A的摩擦力减小D.A对地面的压力减小参考答案:C【考点】共点力平衡的条件及其应用;物体的弹性和弹力.【分析】对小球进行受力分析,根据A物体移动可得出小球B受A支持力方向的变化,由几何关系可得出各力的变化,对整体进行分析可得出水平向上摩擦力及竖直向上的压力的变化.【解答】解:对小球B受力分析,作出平行四边形如图所示:A滑动前,B球受墙壁及A的弹力的合力与重力大小相等,方向相反;如图中实线所示;而将A向外平移后,B受弹力的方向将上移,如虚线所示,但B仍受力平衡,由图可知A球对B的弹力及墙壁对球的弹力均减小;故A错误,B错误;以AB为整体分析,水平方向上受墙壁的弹力和地面的摩擦力而处于平衡状态,弹力减小,故摩擦力减小,故C正确;竖直方向上受重力及地面的支持力,两物体的重力不变,故A对地面的压力不变,故D错误;故选:C.3. 关于近代物理,下列说法正确的是___________A.β衰变时β射线是原子内部核外电子释放出来的B.组成原子核的核子质量之和大于原子核的质量C.发生光电效应时,光电子的最大初动能与入射光的频率成正比D.α粒子散射实验表明核外电子轨道是量子化的参考答案:B4. 某实验小组在“探究加速度与物体受力的关系”实验中,设计出如下的实验方案,其实验装置如图所示.已知小车质量M=214.6 g,砝码盘质量m0=7.8 g,所使用的打点计时器交流电频率f=50 Hz.其实验步骤是:A.按图中所示安装好实验装置;B.调节长木板的倾角,轻推小车后,使小车能沿长木板向下做匀速运动;C.取下细绳和砝码盘,记下砝码盘中砝码的质量m;D.先接通电源,再放开小车,打出一条纸带,由纸带求得小车的加速度a;E.重新挂上细绳和砝码盘,改变砝码盘中砝码的质量,重复B-D步骤,求得小车在不同合外力F作用下的加速度.回答下列问题:(1)按上述方案做实验,是否要求砝码和砝码盘的总质量远小于小车的质量?_______(填“是”或“否”).(2)实验中打出的其中一条纸带如下图所示,由该纸带可求得小车的加速度a=_______ m/s2.(3)某同学将有关测量数据填入他所设计的表格中,如下表,他根据表中的数据画出a-F图象(如图).造成图线不过坐标原点的一条最主要原因是______________________________________________________________________,从该图线延长线与横轴的交点可求出的物理量是______________,其大小为________.参考答案:5. 北斗卫星导航系统(英文简称“COMPASS”,中文音译名称“BD”或“Beidou”)是我国自主建设、独立运行,并与世界其他卫星导航系统兼容共用的全球卫星导航系统,可在全球范围内全天候、全天时为各类用户提供高精度、高可靠的定位、导航、授时服务,并兼具短报文通信能力。
下学期高二第三次月考数学(文)试题(附答案)
南康中学2017~2018学年度第二学期高二第三次大考数学(文科)试卷一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将答案填在答题卷相应表格内. 1.若复数z 满足 i 2z =,其中i 为虚数单位,则z 等于( ) A .2-iB .2iC .2-D .22.已知集合{}}{20,1,2,3,0A B x x x ==-=,则集合AB 的子集个数为( )A .2B .4C .6D . 83.幂函数2268()(44)m m f x m m x -+=-+在),(+∞0为增函数,则m 的值为( ) A .1或3B .1C .3D .24.命题“对任意x ∈R ,都有32x x >”的否定是( )A .存在0x ∈R ,使得3200x x >B .不存在0x ∈R ,使得3200x x > C .存在0x ∈R ,使得3200x x ≤ D .对任意x ∈R ,都有32x x ≤ 5.已知命题:p 直线4π-=x 是曲线143sin(2)(++=πx x f 的对称轴;命题:q 抛物线24x y =的准线方程为.1-=x 则下列命题是真命题的是( )A .p 且qB .p 且q ⌝C .p ⌝且qD .p ⌝或q6.一个几何体的三视图如图所示,则该几何体的体积为( ) A .316B .332C .16D .327.执行如下图的程序框图,如果输入的N 的值是6,那么输出的p 的值是( ) A .15 B .105 C .120D .7208. 如图,正四棱锥P ABCD -底面的四个顶点,,,A B C D 在球O 的同一个大圆上,点P 在球面上,如果163P ABCD V -=,则球O 的体积是( ) A .163πB .8πC .16πD .323π 9.已知实数y x ,满足条件2208400,0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数(0,0)x y z a b a b =+>>的最大值为9,则4a b +的最小值为( ) A .169B .16C .4D .4310.设函数3()12f x x x b =-+,则下列结论正确的是( ) A .函数)(x f 在(,1)-∞-上单调递增 B .函数)(x f 在(,1)-∞-上单调递减C .若6b =-,则函数)(x f 的图像在点(2,(2))f --处的切线方程为10y =D .若0b =,则函数)(x f 的图像与直线10y =只有一个公共点 11.已知数列{}n a ,{}n b 满足111==b a ,+++∈==-N n b b a a nn n n ,211, 则数列{}n a b 的前10项的和为( )A .)14(349- B.)14(3410- C .)14(319- D .)14(3110- 12.已知双曲线)0(13222>=-b by x 的左、右焦点分别为21,F F ,其一条渐近线方程为x y 2=,点P 在该双曲线上,且821=⋅PF ,则=∆21F PF S ( )A .4B .64C .8D .212二.填空题:本大题共4小题,每小题5分,共20分.请将答案填在答题卷相应横线上. 13.设()f x 为定义在R 上的奇函数,当0x ≤时,()232x f x x m =-+(m 为实常数),则(1)f = .14.已知函数)(x f y =的定义域为[]8,1-,则函数(21)()2f xg x x +=+的定义域为______________15.已知偶函数)(x f 满足()(2)0f x f x -+=,且当]1,0[∈x 时,x e x x f ⋅=)(,若在区间]3,1[-内,函数k kx x f x g 2)()(--=有且仅有3个零点,则实数k 的取值范围是16.已知椭圆22221(0)x y a b a b+=>>上一点A 关于原点的对称点为点,B F 为其右焦点,若AF BF ⊥,设α=∠ABF ,且,64ππα⎡⎤∈⎢⎥⎣⎦,则椭圆的离心率e 的取值范围为______________三.解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数21()2cos ,.22f x x x x R =--∈ (Ⅰ)求函数()f x 的最小值和最小正周期;(Ⅱ)设ABC ∆的内角A B C 、、的对边分别为a b c 、、,满足()0c f C ==且sin 2sin B A =,求a b 、的值.18.(本小题满分12分)某工厂生产,A B 两种元件,其质量按测试指标φ划分为:5.7≥φ为正品,5.7<φ为次品.现从一批产品中随机抽取这两种元件各5件进行检测,检测结果记录如下:由于表格被污损,数据y x ,看不清,统计员只记得x y <,且,A B 两种元件的检测数据的平均数相等,方差也相等. (Ⅰ)求表格中x 与y 的值;(Ⅱ)若从被检测的5件B 种元件中任取2件,求取出的2件都为正品的概率.19.(本小题满分12分)如图,三棱锥ABC P -中,PB ⊥底面ABC ,90BCA ∠=,2===CA BC PB ,E 为PC 的中点,点F 在PA 上,且FA PF =2.(Ⅰ)求证:平面PAC ⊥平面BEF ; (Ⅱ)三棱锥A BFC -的体积20.(本小题满分12分)已知椭圆E :221x y t+=的焦点在x 轴上,抛物线C :2x =与椭圆E 交于A ,B 两点,直线AB 过抛物线的焦点. (Ⅰ)求椭圆E 的方程和离心率e 的值;(Ⅱ)已知过点H (2,0)的直线l 与抛物线C 交于M 、N 两点,又过M 、N 作抛物线C 的切线l 1,l 2,使得l 1⊥l 2,问这样的直线l 是否存在?若存在,求出直线l 的方程;若不存在,说明理由.21.(本小题满分12分)已知函数2()ln (0,,)f x x ax bx x a R b R =++>∈∈.(Ⅰ)若曲线()y f x =在点(1,(1))f 处的切线方程为220x y --=,求()f x 的极值; (Ⅱ)若1b =,是否存在a R ∈,使()f x 的极值大于零?若存在,求出a 的取值范围;若不存在,请说明理由.请考生在第22、23题中任选一题做答。
叙永县二中2018-2019学年上学期高二数学12月月考试题含解析
叙永县二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 设实数,则a 、b 、c 的大小关系为( )A .a <c <bB .c <b <aC .b <a <cD .a <b <c2. 在ABC ∆中,角A ,B ,C 的对边分别是,,,BH 为AC 边上的高,5BH =,若2015120aBC bCA cAB ++=,则H 到AB 边的距离为( )A .2B .3 C.1 D .4 3. 满足集合M ⊆{1,2,3,4},且M ∩{1,2,4}={1,4}的集合M 的个数为( ) A .1B .2C .3D .44. 江岸边有一炮台高30米,江中有两条船,由炮台顶部测得俯角分别为45°和30°,而且两条船与炮台底部连线成30°角,则两条船相距( )A .10米B .100米C .30米D .20米 5. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A .1:2:3B .2:3:4C .3:2:4D .3:1:2 6. 在中,角、、所对应的边分别为、、,若角、、依次成等差数列,且,,则等于( )A .B .C .D .27. 设x ∈R ,则x >2的一个必要不充分条件是( ) A .x >1 B .x <1 C .x >3 D .x <38. 下列各组函数中,表示同一函数的是( )A 、()f x =x 与()f x =2x xB 、()1f x x =- 与()f x =C 、()f x x =与()f x = D 、()f x x =与2()f x =9. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量,,若,则角B 的大小为( )A .B .C .D .10.若复数z=(其中a ∈R ,i 是虚数单位)的实部与虚部相等,则a=( )A .3B .6C .9D .1211.将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 12.已知三棱锥S ABC -外接球的表面积为32π,090ABC ∠=,三棱锥S ABC -的三视图如图 所示,则其侧视图的面积的最大值为( )A .4B .C .8D .二、填空题13.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x = 处的导数302f ⎛⎫'<⎪⎝⎭,则13f ⎛⎫= ⎪⎝⎭___________.14.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{}的前10项的和为 .15.定义在R 上的偶函数f (x )在[0,+∞)上是增函数,且f (2)=0,则不等式f (log 8x )>0的解集是 .16.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 17.定义在R 上的函数)(x f 满足:1)(')(>+x f x f ,4)0(=f ,则不等式3)(+>x x e x f e (其 中为自然对数的底数)的解集为 .18.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等 于__________.三、解答题19.(本小题满分10分)选修4-4:坐标系与参数方程.在直角坐标系中,曲线C 1:⎩⎪⎨⎪⎧x =1+3cos αy =2+3sin α(α为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,C 2的极坐标方程为ρ=2sin (θ+π4).(1)求C 1,C 2的普通方程;(2)若直线C 3的极坐标方程为θ=3π4(ρ∈R ),设C 3与C 1交于点M ,N ,P 是C 2上一点,求△PMN 的面积.20.在平面直角坐标系xOy 中,圆C :x 2+y 2=4,A (,0),A 1(﹣,0),点P 为平面内一动点,以PA 为直径的圆与圆C 相切.(Ⅰ)求证:|PA 1|+|PA|为定值,并求出点P 的轨迹方程C 1;(Ⅱ)若直线PA 与曲线C 1的另一交点为Q ,求△POQ 面积的最大值.21.19.已知函数f(x)=ln.22.已知f(x)=x2﹣3ax+2a2.(1)若实数a=1时,求不等式f(x)≤0的解集;(2)求不等式f(x)<0的解集.23.【南通中学2018届高三10月月考】设,,函数,其中是自然对数的底数,曲线在点处的切线方程为.(Ⅰ)求实数、的值;(Ⅱ)求证:函数存在极小值;(Ⅲ)若,使得不等式成立,求实数的取值范围.24.已知函数f(x)=.(1)求函数f(x)的最小正周期及单调递减区间;(2)当时,求f(x)的最大值,并求此时对应的x的值.叙永县二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】A【解析】解:∵,b=20.1>20=1,0<<0.90=1.∴a<c<b.故选:A.2.【答案】D【解析】考点:1、向量的几何运算及平面向量基本定理;2、向量相等的性质及勾股定理.【方法点睛】本题主要考查向量的几何运算及平面向量基本定理、向量相等的性质及勾股定理,属于难题,平面向量问题中,向量的线性运算和数量积是高频考点,当出现线性运算问题时,注意两个向量的差+=(D点是AB的中点),另外,要选好基底OA OB ODOA OB BA-=,这是一个易错点,两个向量的和2AB AC,当涉及到向量数量积时,要记熟向量数量积的公式、坐标公式、几向量,如本题就要灵活使用向量,何意义等.3.【答案】B【解析】解:∵M∩{1,2,4}={1,4},∴1,4是M中的元素,2不是M中的元素.∵M⊆{1,2,3,4},∴M={1,4}或M={1,3,4}.故选:B.4.【答案】C【解析】解:如图,过炮台顶部A作水平面的垂线,垂足为B,设A处观测小船C的俯角为45°,设A处观测小船D的俯角为30°,连接BC、BDRt△ABC中,∠ACB=45°,可得BC=AB=30米Rt△ABD中,∠ADB=30°,可得BD=AB=30米在△BCD中,BC=30米,BD=30米,∠CBD=30°,由余弦定理可得:CD2=BC2+BD2﹣2BCBDcos30°=900∴CD=30米(负值舍去)故选:C【点评】本题给出实际应用问题,求炮台旁边两条小船距的距离.着重考查了余弦定理、空间线面的位置关系等知识,属于中档题.熟练掌握直线与平面所成角的定义与余弦定理解三角形,是解决本题的关键.5.【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2πR3圆锥的体积V圆锥=故圆柱、圆锥、球的体积的比为2πR3::=3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.6.【答案】C【解析】因为角、、依次成等差数列,所以由余弦定理知,即,解得所以,故选C答案:C7.【答案】A【解析】解:当x>2时,x>1成立,即x>1是x>2的必要不充分条件是,x<1是x>2的既不充分也不必要条件,x>3是x>2的充分条件,x<3是x>2的既不充分也不必要条件,故选:A【点评】本题主要考查充分条件和必要条件的判断,比较基础.8.【答案】C【解析】试题分析:如果两个函数为同一函数,必须满足以下两点:①定义域相同,②对应法则相同。
2017-2018学年高二下学期第三次月考英语试题含答案
南昌二中2018—2018学年度下学期第三次阶段性考试高二英语试卷第一部分:听力(共两节, 满分30分)第一节(共5小题;每小题1.5分,满分7.5分)请听下面5段对话,选出最佳选项。
1. What is the woman going to do?A. Have a coffee.B. Clean her office.C. Attend a meeting.2. What does the woman ask for?A. A dress of different size.B. A dress of better quality.C. A dress of a bright color.3. What does the man want to do?A. Borrow a ladder.B. Take his leave.C. Clean the roof.4. What will the woman probably do next?A. Go to the man’s place.B. Call the Hillsboro Hotel.C. Reserve an exhibition hall.5. Where are the speakers?A. At home.B. In a museum.C. In the city square.第二节(共15小题;每小题1.5分,满分22.5分)请听下面5段对话或独白,选出最佳选项。
请听第6段材料,回答6、7题。
6. Why has the man hardly seen the woman lately?A. She had a traffic accident.B. She moved to another place.C. She is working unusual hours.7. Where does the conversation take place?A. In an office.B. At a bus stop.C. In an apartment.请听第7段材料,回答第8至10题。
高二年级2018—2019学年度第二学期第三次月考
高二年级2018—2019学年度第二学期第三次月考全卷满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分听力(共20题,每小题1.5分,共30分)第一节(共5小题;每小题1.5分,满分7.5分)听下面五段对话。
每段对话后有一个小题,从题中所给的ABC 三个选项中选出最佳选项。
并标在试卷的相应位置。
听完每段对话后,你都有十秒钟时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1. When should Susan go to meet Professor Brown?A. At 9: 30.B. At 10: 00.C. At 1 0: 30.2. Where is the man going first?A. To the Healey Supermarket.B. To the airport.C. T o Canada.3. What caused the difference in the price?A. The color.B. The size.C. The material.4. What is the woman planning to do?A. Go to have a coffee.B. Get a haircut.C. G o to the man’s house.5. What is the man’s attitude towards the plan?A. He doesn’t care.B. He is for it.C. He is against it.第二节(共15小题;每小题1.5分,满分22.5分)听下面五段对话。
叙永县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析
叙永县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 数列{a n }满足a 1=3,a n ﹣a n •a n+1=1,A n 表示{a n }前n 项之积,则A 2016的值为( )A .﹣B .C .﹣1D .12. 已知点A (0,1),B (3,2),C (2,0),若=2,则||为( )AD → DB → CD →A .1 B.43C. D .2533.在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为( )A .B .C .D .4. 已知抛物线:的焦点为,定点,若射线与抛物线交于点,与抛C 24y x =F (0,2)A FA C M 物线的准线交于点,则的值是( )C N ||:||MN FN A .B .C .D2)-21:(15. 若动点分别在直线: 和:上移动,则中点所),(),(2211y x B y x A 、011=-+y x 2l 01=-+y x AB M 在直线方程为( )A .B .C .D .06=--y x 06=++y x 06=+-y x 06=-+y x 6. 双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .47. 下列命题中正确的是( )A .复数a+bi 与c+di 相等的充要条件是a=c 且b=dB.任何复数都不能比较大小C .若=,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1=8. 在等差数列中,,公差,为的前项和.若向量,,{}n a 11a =0d ≠n S {}n a n 13(,)m a a =133(,)n a a=-且,则的最小值为( )0m n ×=2163n n S a ++A . B . C . D .43292【命题意图】本题考查等差数列的性质,等差数列的前项和,向量的数量积,基本不等式等基础知识,意在n 考查学生的学生运算能力,观察分析,解决问题的能力.9. 设P 是椭圆+=1上一点,F 1、F 2是椭圆的焦点,若|PF 1|等于4,则|PF 2|等于( )A .22B .21C .20D .1310.某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信息,可确定被抽测的人数及分数在内的人数分别为()[]90,100A .20,2B .24,4C .25,2D .25,411.“方程+=1表示椭圆”是“﹣3<m <5”的( )条件.A .必要不充分B .充要C .充分不必要D .不充分不必要12.已知集合A={y|y=x 2+2x ﹣3},,则有()A .A ⊆BB .B ⊆AC .A=BD .A ∩B=φ二、填空题13.过椭圆+=1(a >b >0)的左焦点F 1作x 轴的垂线交椭圆于点P ,F 2为右焦点,若∠F 1PF 2=60°,则椭圆的离心率为 . 14.如图,已知,是异面直线,点,,且;点,,且.若,分m n A B m ∈6AB =C D n ∈4CD =M N别是,的中点,与所成角的余弦值是______________.AC BD MN =m n【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.15.已知数列{a n}满足a n+1=e+a n(n∈N*,e=2.71828)且a3=4e,则a2015= .16.函数y=a x+1(a>0且a≠1)的图象必经过点 (填点的坐标)17.若函数f(x)=,则f(7)+f(log36)= .18.当下社会热议中国人口政策,下表是中国人民大学人口预测课题组根据我过2000年第五次人口普查预测的15﹣64岁劳动人口所占比例:年份20302035204020452050年份代号t12345所占比例y6865626261根据上表,y关于t的线性回归方程为 附:回归直线的斜率和截距的最小二乘估计公式分别为:=,=﹣.三、解答题19.在平面直角坐标系中,△ABC各顶点的坐标分别为:A(0,4);B(﹣3,0),C(1,1)(1)求点C到直线AB的距离;(2)求AB边的高所在直线的方程.20.某种产品的广告费支出x与销售额y(单位:百万元)之间有如下对应数据:x24568y3040605070(1)画出散点图;(2)求线性回归方程;(3)预测当广告费支出7(百万元)时的销售额.21.将射线y=x(x≥0)绕着原点逆时针旋转后所得的射线经过点A=(cosθ,sinθ).(Ⅰ)求点A的坐标;(Ⅱ)若向量=(sin2x,2cosθ),=(3sinθ,2cos2x),求函数f(x)=•,x∈[0,]的值域.22.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.23.已知函数f(x)=x3+x.(1)判断函数f(x)的奇偶性,并证明你的结论;(2)求证:f(x)是R上的增函数;(3)若f(m+1)+f(2m﹣3)<0,求m的取值范围.(参考公式:a3﹣b3=(a﹣b)(a2+ab+b2))24.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数.(1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.叙永县第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】D【解析】解:∵a 1=3,a n ﹣a n •a n+1=1,∴,得,,a 4=3,…∴数列{a n }是以3为周期的周期数列,且a 1a 2a 3=﹣1,∵2016=3×672,∴A 2016 =(﹣1)672=1.故选:D . 2. 【答案】【解析】解析:选C.设D 点的坐标为D (x ,y ),∵A (0,1),B (3,2),=2,AD → DB →∴(x ,y -1)=2(3-x ,2-y )=(6-2x ,4-2y ),∴即x =2,y =,{x =6-2x ,y -1=4-2y )53∴=(2,)-(2,0)=(0,),CD → 5353∴||==,故选C.CD → 02+(53)2533. 【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B 4.【答案】D 【解析】考点:1、抛物线的定义;2、抛物线的简单性质.【方法点睛】本题主要考查抛物线的定义和抛物线的简单性质,属于难题.与焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点的距离与点到直线的距离的转化:(1)将抛物线上的点到准线距转化为该点到焦点的距离;(2)将抛物线上的点到焦点的距离转化为到准线的距离,使问题M得到解决.本题就是将到焦点的距离转化为到准线的距离后进行解答的.5.【答案】D【解析】考点:直线方程6.【答案】C【解析】解:双曲线4x2+ty2﹣4t=0可化为:∴∴双曲线4x2+ty2﹣4t=0的虚轴长等于故选C.7.【答案】C【解析】解:A.未注明a,b,c,d∈R.B.实数是复数,实数能比较大小.C.∵=,则z1=z2,正确;D.z1与z2的模相等,符合条件的z1,z2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确.故选:C.8.【答案】A【解析】9.【答案】A【解析】解:∵P是椭圆+=1上一点,F1、F2是椭圆的焦点,|PF1|等于4,∴|PF2|=2×13﹣|PF1|=26﹣4=22.故选:A.【点评】本题考查椭圆的简单性质的应用,是基础题,解题时要熟练掌握椭圆定义的应用.10.【答案】C【解析】考点:茎叶图,频率分布直方图.11.【答案】C【解析】解:若方程+=1表示椭圆,则满足,即,即﹣3<m<5且m≠1,此时﹣3<m<5成立,即充分性成立,当m=1时,满足﹣3<m<5,但此时方程+=1即为x2+y2=4为圆,不是椭圆,不满足条件.即必要性不成立.故“方程+=1表示椭圆”是“﹣3<m<5”的充分不必要条件.故选:C.【点评】本题主要考查充分条件和必要条件的判断,考查椭圆的标准方程,根据椭圆的定义和方程是解决本题的关键,是基础题.12.【答案】B【解析】解:∵y=x2+2x﹣3=(x+1)2﹣4,∴y≥﹣4.则A={y|y≥﹣4}.∵x>0,∴x+≥2=2(当x=,即x=1时取“=”),∴B={y|y≥2},∴B⊆A.故选:B.【点评】本题考查子集与真子集,求解本题,关键是将两个集合进行化简,由子集的定义得出两个集合之间的关系,再对比选项得出正确选项.二、填空题13.【答案】 .【解析】解:由题意知点P的坐标为(﹣c,)或(﹣c,﹣),∵∠F1PF2=60°,∴=,即2ac=b2=(a2﹣c2).∴e2+2e﹣=0,∴e=或e=﹣(舍去).故答案为:.【点评】本题主要考查了椭圆的简单性质,考查了考生综合运用椭圆的基础知识和分析推理的能力,属基础题.14.【答案】5 12【解析】15.【答案】 2016 .【解析】解:由a n+1=e+a n,得a n+1﹣a n=e,∴数列{a n}是以e为公差的等差数列,则a1=a3﹣2e=4e﹣2e=2e,∴a2015=a1+2014e=2e+2014e=2016e.故答案为:2016e.【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.16.【答案】 (0,2) 【解析】解:令x=0,得y=a0+1=2∴函数y=a x+1(a>0且a≠1)的图象必经过点(0,2)故答案为:(0,2).【点评】本题考查指数函数的单调性与特殊点,解题的关键是熟练掌握指数函数的性质,确定指数为0时,求函数的图象必过的定点17.【答案】 5 .【解析】解:∵f(x)=,∴f(7)=log39=2,f(log36)=+1=,∴f(7)+f(log36)=2+3=5.故答案为:5.18.【答案】 y=﹣1.7t+68.7 【解析】解:=,==63.6.=(﹣2)×4.4+(﹣1)×1.4+0+1×(﹣1.6)+2×(﹣2.6)=﹣17.=4+1+0+1+2=10.∴=﹣=﹣1.7.=63.6+1.7×3=68.7.∴y关于t的线性回归方程为y=﹣1.7t+68.7.故答案为y=﹣1.7t+68.7.【点评】本题考查了线性回归方程的解法,属于基础题.三、解答题19.【答案】【解析】解(1)∵,∴根据直线的斜截式方程,直线AB:,化成一般式为:4x﹣3y+12=0,∴根据点到直线的距离公式,点C到直线AB的距离为;(2)由(1)得直线AB的斜率为,∴AB边的高所在直线的斜率为,由直线的点斜式方程为:,化成一般式方程为:3x+4y﹣7=0,∴AB边的高所在直线的方程为3x+4y﹣7=0.20.【答案】【解析】解:(1)(2)设回归方程为=bx+a则b=﹣5/﹣5=1380﹣5×5×50/145﹣5×52=6.5故回归方程为=6.5x+17.5(3)当x=7时,=6.5×7+17.5=63,所以当广告费支出7(百万元)时,销售额约为63(百万元).【点评】本题考查线性回归方程的求法和应用,本题解题的关键是利用最小二乘法求出线性回归方程的系数,这是解答正确的主要环节.21.【答案】【解析】解:(Ⅰ)设射线y=x(x≥0)的倾斜角为α,则tanα=,α∈(0,).∴tanθ=tan(α+)==,∴由解得,∴点A的坐标为(,).(Ⅱ)f(x)=•=3sinθ•sin2x+2cosθ•2cos2x=sin2x+cos2x=sin(2x+)由x∈[0,],可得2x+∈[,],∴sin(2x+)∈[﹣,1],∴函数f(x)的值域为[﹣,].【点评】本题考查三角函数、平面向量等基础知识,考查运算求解能力,考查函数与方程的思想,属于中档题.22.【答案】【解析】【知识点】利用导数求最值和极值利用导数研究函数的单调性导数的概念和几何意义【试题解析】(Ⅰ)函数定义域为,又,所求切线方程为,即(Ⅱ)函数在上恰有两个不同的零点,等价于在上恰有两个不同的实根等价于在上恰有两个不同的实根,令则当时,,在递减;当时,,在递增.故,又.,,即23.【答案】【解析】解:(1)f(x)是R上的奇函数证明:∵f(﹣x)=﹣x3﹣x=﹣(x3+x)=﹣f(x),∴f(x)是R上的奇函数(2)设R上任意实数x1、x2满足x1<x2,∴x1﹣x2<0,f(x1)﹣f(x2)=(x1﹣x2)+[(x1)3﹣(x2)3]=(x1﹣x2)[(x1)2+(x2)2+x1x2+1]=(x1﹣x2)[(x1+x2)2+x22+1]<0恒成立,因此得到函数f(x)是R上的增函数.(3)f(m+1)+f(2m﹣3)<0,可化为f(m+1)<﹣f(2m﹣3),∵f(x)是R上的奇函数,∴﹣f(2m﹣3)=f(3﹣2m),∴不等式进一步可化为f(m+1)<f(3﹣2m),∵函数f(x)是R上的增函数,∴m+1<3﹣2m,∴24.【答案】(1)单调递增区间为;单调递减区间为.(2)(3)【解析】试题分析:把代入由于对数的真数为正数,函数定义域为,所以函数化为,求导后在定义域下研究函数的单调性给出单调区间;代入,,分和两种情况解不等式;当时,,求导,函数不存在极值点,只需恒成立,根据这个要求得出的范围.试题解析:(2)时,.当时,原不等式可化为.记,则,当时,,所以在单调递增,又,故不等式解为;当时,原不等式可化为,显然不成立,综上,原不等式的解集为.。
叙永县高中2018-2019学年高二上学期第三次月考试卷物理
叙永县高中2018-2019学年高二上学期第三次月考试卷物理班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. (多选)在如图所示的电路中,开关闭合后,灯泡L 能正常发光.当滑动变阻器的滑片向右移动时,下列判断正确的是A .滑动变阻器R 的阻值变小B .灯泡L 变暗C .电源消耗的功率增大D .电容器C 的电荷量增大【答案】BD 【解析】★2. 如图所示,回旋加速器D 形盒的半径为R ,所加磁场的磁感应强度为B ,用来加速质量为m 、电荷量为q 的质子(),质子从下半盒的质子源由静止出发,H 11加速到最大能量E 后,由A 孔射出.则下列说法正确的是( )A .回旋加速器加速完质子在不改变所加交变电压和磁场情况下,可以直接对()粒子进行加速He 24B .只增大交变电压U ,则质子在加速器中获得的最大能量将变大C .回旋加速器所加交变电压的频率为2mE2πmRD .加速器可以对质子进行无限加速【答案】C3. 如图所示,ab 是一弯管,其中心线是半径为R 的一段圆弧,将它置于一给定的匀强磁场中,方向垂直纸面向里。
有一束粒子对准a 端射入弯管,粒子的质量、速度不同,但都是一价负粒子,则下列说法正确的是A .只有速度大小一定的粒子可以沿中心线通过弯管B .只有质量大小一定的粒子可以沿中心线通过弯管 x.kwC .只有质量和速度乘积大小一定的粒子可以沿中心线通过弯管D .只有动能大小一定的粒子可以沿中心线通过弯管【答案】C【解析】 洛伦兹力提供向心力,根据牛顿第二定律,有,解得,故要保证粒子半径相同,故只有质量与速度的乘积一定的粒子才能沿中心线通过弯管,故只有C 正确。
【名师点睛】粒子沿着中心线运动时,只受磁场力,磁场力提供向心力,根据牛顿第二定律列式分析即可。
4. 如图所示,一圆盘可以绕其竖直轴在水平面内运动,圆盘半径为R ,甲、乙两物体的质量分别为M 和m (M >m ),它们与圆盘之间的最大静摩擦力均为正压力的μ倍,两物体用长为L 的轻绳连在一起,L <R .若将甲物体放在转轴位置上,甲、乙连线正好沿半径方向拉直,要使两物体与圆盘不发生相对滑动,则圆盘旋转的角速度最大不得超过(两物体看作质点)()A.mLg)m M (-μ B.MLg)m M (-μ C.MLg)m M (+μ D.mLg)m M (+μ【答案】D 【解析】5. 如图所示,直角三角形ABC 的边长AB 长为L ,为30°,三角形所围区域内存在着磁感应强度大小为B,方向垂直纸面向里的匀强磁场。
叙永县第二中学2018-2019学年上学期高三数学10月月考试题
叙永县第二中学2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 设等差数列{a n }的前n 项和为S n ,已知S 4=﹣2,S 5=0,则S 6=( )A .0B .1C .2D .32. 某校为了了解1500名学生对学校食堂的意见,从中抽取1个容量为50的样本,采用系统抽样法,则分段间隔为( )1111]A .10B .51C .20D .303. 底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60πD .72π4. 下列命题正确的是( )A .已知实数,a b ,则“a b >”是“22a b >”的必要不充分条件B .“存在0x R ∈,使得2010x -<”的否定是“对任意x R ∈,均有210x ->”C .函数131()()2xf x x =-的零点在区间11(,)32内D .设,m n 是两条直线,,αβ是空间中两个平面,若,m n αβ⊂⊂,m n ⊥则αβ⊥ 5. 如图框内的输出结果是( )A .2401B .2500C .2601D .27046. 已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( ) A .0B .1C .2D .37. 已知圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,则直线l 的方程为( ) A .x+y=0 B .x+y=2 C .x ﹣y=2 D .x ﹣y=﹣28. 已知正方体ABCD ﹣A 1B 1C 1D 1中,点E 为上底面A 1C 1的中心,若+,则x 、y 的值分别为( )A .x=1,y=1B .x=1,y=C .x=,y=D .x=,y=1 9. 过点P (﹣2,2)作直线l ,使直线l 与两坐标轴在第二象限内围成的三角形面积为8,这样的直线l 一共有( ) A .3条 B .2条 C .1条 D .0条10.已知定义在R 上的可导函数y=f (x )是偶函数,且满足xf ′(x )<0, =0,则满足的x 的范围为( )A .(﹣∞,)∪(2,+∞)B .(,1)∪(1,2)C .(,1)∪(2,+∞)D .(0,)∪(2,+∞)11.已知集合{}{2|5,x |y ,A y y x B A B ==-+===( )A .[)1,+∞B .[]1,3C .(]3,5D .[]3,5【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力. 12.某高二(1)班一次阶段考试数学成绩的茎叶图和频率分布直方图可见部分如图,根据图中的信 息,可确定被抽测的人数及分数在[]90,100内的人数分别为( )A .20,2B .24,4C .25,2D .25,4二、填空题13.已知n S 是数列1{}2n n -的前n 项和,若不等式1|12n n n S λ-+<+|对一切n N *∈恒成立,则λ的取值范围是___________.【命题意图】本题考查数列求和与不等式恒成立问题,意在考查等价转化能力、逻辑推理能力、运算求解能力. 14.【启东中学2018届高三上学期第一次月考(10月)】已知函数()f x xlnx ax =-+在()0e ,上是增函数,函数()22xa g x e a =-+,当[]03x ln ∈,时,函数g (x )的最大值M 与最小值m 的差为32,则a 的值为______.15.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A B k k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),A B ϕ> ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线xy e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上)16.抽样调查表明,某校高三学生成绩(总分750分)X 近似服从正态分布,平均成绩为500分.已知P (400<X <450)=0.3,则P (550<X <600)= .17.下列命题:①集合{},,,a b c d 的子集个数有16个; ②定义在R 上的奇函数()f x 必满足(0)0f =;③2()(21)2(21)f x x x =+--既不是奇函数又不是偶函数; ④A R =,B R =,1:||f x x →,从集合A 到集合B 的对应关系f 是映射; ⑤1()f x x=在定义域上是减函数. 其中真命题的序号是 .三、解答题18.已知函数f(x)是定义在R 上的奇函数,当x ≥0时,.若,f(x-1)≤f(x),则实数a 的取值范围为A[] B[] C[]D[]19.如图,矩形ABCD 和梯形BEFC 所在平面互相垂直,BE ∥CF ,BC ⊥CF ,,EF=2,BE=3,CF=4.(Ⅰ)求证:EF ⊥平面DCE ;(Ⅱ)当AB 的长为何值时,二面角A ﹣EF ﹣C 的大小为60°.20.已知{}{}22,1,3,3,31,1A a a B a a a =+-=--+,若{}3A B =-,求实数的值.21.【徐州市第三中学2017~2018学年度高三第一学期月考】为了制作广告牌,需在如图所示的铁片上切割出一个直角梯形,已知铁片由两部分组成,半径为1的半圆O 及等腰直角三角形EFH ,其中FE FH ⊥,为裁剪出面积尽可能大的梯形铁片ABCD (不计损耗),将点,A B 放在弧EF 上,点,C D 放在斜边EH 上,且////AD BC HF ,设AOE θ∠=.(1)求梯形铁片ABCD 的面积S 关于θ的函数关系式;(2)试确定θ的值,使得梯形铁片ABCD 的面积S 最大,并求出最大值.22.(本小题满分10分)选修4—4:坐标系与参数方程以坐标原点为极点,以x 轴的非负半轴为极轴建立极坐标系,已知曲线C 的参数方程为⎪⎩⎪⎨⎧==θθsin 2cos 2y x (θ为参数,],0[πθ∈),直线l 的参数方程为2cos 2sin x t y t ì=+ïí=+ïîaa(t 为参数).(I )点D 在曲线C 上,且曲线C 在点D 处的切线与直线+2=0x y +垂直,求点D 的极坐标;(II )设直线l 与曲线C 有两个不同的交点,求直线l 的斜率的取值范围.【命题意图】本题考查圆的参数方程、直线参数方程、直线和圆位置关系等基础知识,意在考查数形结合思想、转化思想和基本运算能力.23.已知函数.(Ⅰ)求曲线在点处的切线方程;(Ⅱ)设,若函数在上(这里)恰有两个不同的零点,求实数的取值范围.叙永县第二中学2018-2019学年上学期高三数学10月月考试题(参考答案)一、选择题1. 【答案】D【解析】解:设等差数列{a n }的公差为d ,则S 4=4a 1+d=﹣2,S 5=5a 1+d=0,联立解得,∴S 6=6a 1+d=3故选:D【点评】本题考查等差数列的求和公式,得出数列的首项和公差是解决问题的关键,属基础题.2. 【答案】D 【解析】试题分析:分段间隔为50301500,故选D. 考点:系统抽样 3. 【答案】【解析】选A.设球O 的半径为R ,矩形ABCD 的长,宽分别为a ,b , 则有a 2+b 2=4R 2≥2ab ,∴ab ≤2R 2,又V 四棱锥P -ABCD =13S 矩形ABCD ·PO=13abR ≤23R 3. ∴23R 3=18,则R =3, ∴球O 的表面积为S =4πR 2=36π,选A. 4. 【答案】C 【解析】考点:1.不等式性质;2.命题的否定;3.异面垂直;4.零点;5.充要条件.【方法点睛】本题主要考查不等式性质,命题的否定,异面垂直,零点,充要条件.充要条件的判定一般有①定义法:先分清条件和结论(分清哪个是条件,哪个是结论),然后找推导关系(判断,p q q p ⇒⇒的真假),最后下结论(根据推导关系及定义下结论). ②等价转化法:条件和结论带有否定性词语的命题,常转化为其逆否命题来判断. 5. 【答案】B【解析】解:模拟执行程序框图,可得S=1+3+5+…+99=2500, 故选:B .【点评】本题主要考查了循环结构的程序框图,等差数列的求和公式的应用,属于基础题.6. 【答案】C【解析】解:集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z}={1,2},P ∩Q ≠∅,可得b 的最小值为:2. 故选:C .【点评】本题考查集合的基本运算,交集的意义,是基础题.7. 【答案】D【解析】【分析】由题意可得圆心C 1和圆心C 2,设直线l 方程为y=kx+b ,由对称性可得k 和b 的方程组,解方程组可得.【解答】解:由题意可得圆C 1圆心为(0,0),圆C 2的圆心为(﹣2,2),∵圆C 1:x 2+y 2=4和圆C 2:x 2+y 2+4x ﹣4y+4=0关于直线l 对称,∴点(0,0)与(﹣2,2)关于直线l 对称,设直线l 方程为y=kx+b ,∴•k=﹣1且=k •+b ,解得k=1,b=2,故直线方程为x ﹣y=﹣2, 故选:D . 8. 【答案】C【解析】解:如图,++().故选C .9. 【答案】C【解析】解:假设存在过点P (﹣2,2)的直线l ,使它与两坐标轴围成的三角形的面积为8,设直线l 的方程为:,则.即2a ﹣2b=ab直线l 与两坐标轴在第二象限内围成的三角形面积S=﹣ab=8,即ab=﹣16,联立,解得:a=﹣4,b=4.∴直线l 的方程为:,即x ﹣y+4=0, 即这样的直线有且只有一条,故选:C【点评】本题考查了直线的截距式、三角形的面积计算公式,属于基础题.10.【答案】D【解析】解:当x >0时,由xf ′(x )<0,得f ′(x )<0,即此时函数单调递减, ∵函数f (x )是偶函数,∴不等式等价为f (||)<,即||>,即>或<﹣,解得0<x <或x >2,故x 的取值范围是(0,)∪(2,+∞) 故选:D【点评】本题主要考查不等式的求解,根据函数奇偶性和单调性之间的关系是解决本题的关键.11.【答案】D【解析】{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5AB ∴=,故选D.12.【答案】C【解析】考点:茎叶图,频率分布直方图.二、填空题13.【答案】31λ-<<【解析】由2211111123(1)2222n n n S n n--=+⨯+⨯++-⋅+,211112222n S =⨯+⨯+…111(1)22n n n n -+-⋅+⋅,两式相减,得2111111212222222n n n n n S n -+=++++-⋅=-,所以1242n n n S -+=-,于是由不等式12|142n λ-+<-|对一切N n *∈恒成立,得|12λ+<|,解得31λ-<<. 14.【答案】52【解析】()1ln f x x a =--+',因为()f x 在()0e ,上是增函数,即()0f x '≥在()0e ,上恒成立,ln 1a x ∴≥+,则()max ln 1a x ≥+,当x e =时,2a ≥,又()22xa g x e a =-+,令xt e =,则()[]2,1,32a g t t a t =-+∈, (1)当23a ≤≤时,()()2max 112a g t g a ==-+,()()2min 2a g t g a ==,则()()max min 312g t g t a -=-=,则52a =,(2)当3a >时,()()2max 112a g t g a ==-+,()()2min 332a g t g a ==-+,则()()max min 2g t g t -=,舍。
叙永县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析
叙永县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知f (x )=ax 3+bx+1(ab ≠0),若f (2016)=k ,则f (﹣2016)=( ) A .kB .﹣kC .1﹣kD .2﹣k2. 已知三个数1a -,1a +,5a +成等比数列,其倒数重新排列后为递增的等比数列{}n a 的前三 项,则能使不等式1212111n na a a a a a +++≤+++成立的自然数的最大值为( ) A .9 B .8 C.7 D .5 3. 下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )A .3y x =B . 21y x =-+C .||1y x =+D .2xy -=4. 已知a n =(n ∈N *),则在数列{a n }的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 305. 若集合A ={-1,1},B ={0,2},则集合{z|z =x +y ,x ∈A ,y ∈B}中的元素的个数为( )A5 B4 C3 D26. 若1sin()34πα-=,则cos(2)3πα+= A 、78- B 、14- C、14 D 、787. 若双曲线﹣=1(a >0,b >0)的渐近线与圆(x﹣2)2+y 2=2相切,则此双曲线的离心率等于( )A .B .C .D .28. 若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是( )A .(﹣∞,1]B .[0,1]C .(﹣2,﹣1)∪(﹣1,1]D .(﹣∞,﹣2)∪(﹣1,1]9. 下列命题中的假命题是( )A .∀x ∈R ,2x ﹣1>0B .∃x ∈R ,lgx <1C .∀x ∈N +,(x ﹣1)2>0D .∃x ∈R ,tanx=2 10.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个).经过2个小时,这种细菌由1个可繁殖成( )A .512个B .256个C .128个D .64个11.设函数,则有( )A .f (x )是奇函数,B .f (x )是奇函数, y=b xC .f (x )是偶函数D .f (x )是偶函数,12.设=(1,2),=(1,1),=+k ,若,则实数k 的值等于( )A .﹣B .﹣C .D .二、填空题13.若函数()ln f x a x x =-在区间(1,2)上单调递增,则实数的取值范围是__________.14.在△ABC 中,a=4,b=5,c=6,则= .15.若复数34sin (cos )i 55z αα=-+-是纯虚数,则tan α的值为 . 【命题意图】本题考查复数的相关概念,同角三角函数间的关系,意在考查基本运算能力.16.若tan θ+=4,则sin2θ= .17.对任意实数x ,不等式ax 2﹣2ax ﹣4<0恒成立,则实数a 的取值范围是 . 18.已知函数()f x 23(2)5x =-+,且12|2||2|x x ->-,则1()f x ,2()f x 的大小关系 是 .三、解答题19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,且120ABC ∠=︒.点E 是棱PC 的中点,平面ABE 与棱PD 交于点F . (1)求证://AB EF ;(2)若2PA PD AD ===,且平面PAD ⊥平面ABCD ,求平面PAF 与平面AFE 所成的锐二面角的余 弦值.【命题意图】本小题主要考查空间直线与平面,直线与直线垂直的判定,二面角等基础知识,考查空间想象能力,推理论证能力,运算求解能力,以及数形结合思想、化归与转化思想.20.已知函数()()xf x x k e =-(k R ∈). (1)求()f x 的单调区间和极值; (2)求()f x 在[]1,2x ∈上的最小值.(3)设()()'()g x f x f x =+,若对35,22k ⎡⎤∀∈⎢⎥⎣⎦及[]0,1x ∀∈有()g x λ≥恒成立,求实数λ的取值范围.21.已知命题p :x 2﹣2x+a ≥0在R 上恒成立,命题q :若p 或q 为真,p 且q 为假,求实数a 的取值范围.22.已知二次函数f(x)=x2+2bx+c(b,c∈R).(1)若函数y=f(x)的零点为﹣1和1,求实数b,c的值;(2)若f(x)满足f(1)=0,且关于x的方程f(x)+x+b=0的两个实数根分别在区间(﹣3,﹣2),(0,1)内,求实数b的取值范围.23.设函数f(x)=lnx﹣ax2﹣bx.(1)当a=2,b=1时,求函数f(x)的单调区间;(2)令F(x)=f(x)+ax2+bx+(2≤x≤3)其图象上任意一点P(x0,y0)处切线的斜率k≤恒成立,求实数a的取值范围;(3)当a=0,b=﹣1时,方程f(x)=mx在区间[1,e2]内有唯一实数解,求实数m的取值范围.24.(1)计算:(﹣)0+lne﹣+8+log62+log63;(2)已知向量=(sin θ,cos θ),=(﹣2,1),满足∥,其中θ∈(,π),求cos θ的值.叙永县第二高级中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题1. 【答案】D【解析】解:∵f (x )=ax 3+bx+1(ab ≠0),f (2016)=k , ∴f (2016)=20163a+2016b+1=k , ∴20163a+2016b=k ﹣1,∴f (﹣2016)=﹣20163a ﹣2016b+1=﹣(k ﹣1)+1=2﹣k . 故选:D .【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.2. 【答案】C 【解析】试题分析:因为三个数1,1,5a a a -++等比数列,所以()()()2115,3a a a a +=-+∴=,倒数重新排列后恰好为递增的等比数列{}n a 的前三项,为111,,842,公比为,数列1n a ⎧⎫⎨⎬⎩⎭是以为首项,12为公比的等比数列,则不等式1212111n n a a a a a a +++≤+++等价为()1181122811212n n ⎛⎫-- ⎪⎝⎭≤--,整理,得722,17,n n n N +≤∴≤≤≤∈,故选C. 1考点:1、等比数列的性质;2、等比数列前项和公式. 3. 【答案】C 【解析】试题分析:函数3y x =为奇函数,不合题意;函数21y x =-+是偶函数,但是在区间()0,+∞上单调递减,不合题意;函数2x y -=为非奇非偶函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年春期叙永二中高二第三次月考试题
数学(文)
一、选择题(每小题5分,共60分)
1.复数i
i
Z +-=
11,化简后得 A.i B.i - C.i +1 D.i -1
2.直线1:-=kx y l 将圆1)1()1(22=-+-y x 平分,则直线l 的方程为 A.1-=x y B.2-=x y C.12-=x y D.14
3
-=
x y 3.设全集U=N,集合A=}4|{2
x N x ∈,B=}2|2||{ -x x ,则()B A C U ⋂=
A.(0,2]
B.(2,4)
C.{0,1,2}
D.{1,2}
4.口袋里有除颜色外大小相同的3个红球和2个白球,一次摸出二个球,颜色相同的概率为 A.
51 B. 52 C. 53 D. 5
4 5.双曲线19
42
2=-y x 的渐近线方程是 A.x y 94±
= B.x y 49±= C.x y 32±= D.x y 2
3±= 6.函数73)(3
+-=x x x f 的极小值点是
A.1
B. 1-
C. )5,1(-
D. )9,1(
7.已知直线0)1(:,03:21=-+-=+-a ay x a l y ax l ,“1l 与2l 不垂直”是“2≠a ”的 A.充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 8.已知椭圆E 的中心在坐标原点,离心率为
2
1,E 的右焦点与抛物线C:x y 82
=的焦点重合,A,B 是C 的准线与E 的两个交点,则=||AB
A.3
B.6
C.9
D.12
9.为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下
根据上表可得回归直线方程∧
∧
∧
+=a x b y ,其中x b y a b ∧
∧
∧
-==,76.0.据此估计,该社区一户年收入为15万元家庭的年支出为
A.11.4万元
B.11.8万元
C.12.0万元
D.12.2万元
10. 中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框
图,若输入的2,2==n x ,a 依次为2,2,5,则输出的s = A.7 B.12 C.17 D.34
11.已知21,F F 是双曲线)0,0(122
22 b a b
y a x =-的两个焦点,
以21F F 为直径的圆与双曲线的一个交点为P ,且21PF F ∆的三条 边长成等差数列,则该双曲线的离心率是 A.2 B.3 C.2 D.5
12.函数3)(m
xe x f x
-
=恰有二个零点,则m 的取值范围是 A.]0,(-∞ B.),3(+∞-e C.),0(+∞ D. )0,3
(e
-
二、填空题(每小题5分,共20分)
13.命题.03,2≥+-∈∀x x R x 的否定是: . 14.函数3)(2-+=x x x f 在1=x 处的切线方程为 . 15.在区间(0,1)上任取二个数,满足“它们的和大于
3
2
”的概率为 . 16.已知函数x a x x f ln )(2-=在区间]2,1(上是增函数,x a x x g -=)(在区间]1,0(上为减函数,则a 的值为 .
三、解答题(17题10分,其余每题12分,共70分)
17.命题p:0822
≤--x x .命题q:2|2|≤-m x .p 是q 的必要不充分条件,求m 的取值范围.
18.已知曲线C :)0(22 p px y =,F 是曲线C 的焦点,M (0,24),直线MF 交曲线C 于点P.且PF MP =. (1)求曲线C 的方程; (2)过点F ,倾斜角为4
π
的直线l 交曲线C 于A,B 两点,求AOB ∆的面积.(O 为坐标原点)
19.已知函数bx ax x x f ++=2
3)(在1=x 处的切线方程为1+=x y .
(1)求b a ,的值;
(2)设函数x x f x g 13)()(-=,求)(x g 的极大值与极小值.
20.为了解某班学生喜爱打篮球是否与性别有关,对全班50人进行了问卷调查,得到结果如
已知全班50人中,随机抽取一人,抽到喜爱打篮球的概率为
5
. (1)将表补充完整(不需要计算过程);
(2)能否有%5.99的把握认为喜爱打篮球与性别有关?说明理由.
d c b a n d b c a d c b a bc ad n K +++=++++-=,)
)()()(()(2
2
21.已知定义在正实数集上的函数).0(ln 3)(,22
)(22
a b x a x g ax x x f +=+=
设两曲线)(),(x g y x f y ==有公共点,且在该点处的切线相同.
(1)用a 表示b ,并求b 的最大值; (2)求证:当0 x 时,)()(x g x f ≥.
22.已知曲线C:为参数)
αα
α(sin cos 2⎩⎨
⎧==y x ,在极坐标系中,曲线D :01
sin cos =--ρθθk . (1)将曲线C 与曲线D 的方程化为普通方程;
(2)曲线C 截曲线D 所得弦长的最大值.。