一种承压矩形容器的计算

合集下载

槽钢矩形管方管规及载荷计算

槽钢矩形管方管规及载荷计算

槽钢规格表大全2012(最新)槽钢规格表大全2012(最新)国际标准槽钢规格,槽钢规格表2012年最新更新版!C160*60*20 是槽钢腹板高160 翼缘板宽60 钢板厚20槽钢规格表大全2012(最新)500X300X8.0--12.0mm 450X250X6.0--12.0mm 400X300X6.0--12.0mm 400X200X6.0--12.0mm 350X250X6.0--12.0mm 350X150X6.0--12.0mm 300X200X6.0--12.0mm 300X150X6.0--12.0mm 300X100X4.0--10.0mm 280X180X4.0--10.0mm 250X150X4.0--10.0mm 250X100X4.0--10.0mm 200X150X4.0--10.0mm200X100X4.0--10.0mm 200X95X4.0--10.0mm 160X80X4.0--10.0mm 150X100X3.0--10.0mm 150X90X3.0--10.0mm 150X75X3.0--8.0mm 140X80X3.0--10.0mm 120X100X3.0--10.0mm 120X80X2.0--8.0mm 120X60X2.0--5.0mm 120X50X2.0--5.0mm 120X40X2.0--4.0mm 100X80X2.0--8.0mm 100X60X2.0--5.0mm 100X50X1.0--5.0mm 100X40X2.0--3.0mm 90X60X2.0--4.0mm80X60X1.4--4.0mm80X50X1.2--3.0mm80X40X0.9--4.0mm70X50X1.2--4.0mm70X30X1.5--3.0mm60X40X0.8--4.0mm60X30X0.8--3.0mm50X40X0.8--3.0mm50X30X0.7--4.0mm50X25X0.7--3.0mm50X20X0.7--1.7mm40X30X0.7--3.0mm40X25X0.7--2.5mm40X20X0.6--3.0mm30X20X0.6--2.0mm20X14X0.5--1.2mm20X10X0.5--1.2mm方管承载力计算公式比如50*30*1.5的方管二个端点架起,中间悬空1米的跨度,在这1米的跨度上50*30*1.5的方管能放多重的物品。

矩形容器设计计算(D型-横向加固)-JB4735

矩形容器设计计算(D型-横向加固)-JB4735

8 最终选择壁厚(3段) 9 最终选择壁厚(4段) 10 最终选择壁厚(5段)
11 顶板厚度
12 底板厚度
13 容器自身重量
14 顶板加强筋总长
15
顶板加强筋单位长度 重量
16 顶板加强筋总重
17 顶边加固件总长
18
顶边加固件单位长度 重量
19 顶边加固件总重
20 横向加固件总长
21
横向加固件单位长度 重量
119
变形最大挠度
f4max 计算
3.88
120
判断选型是否有效
壁板5刚度OK
121
顶板强度计算(如不作顶板设计,则此节可忽略)
122
顶板附加载荷 Pa
0.0012
123
顶板加强筋沿L方向的间距 Lt
200
124
顶板加强筋沿W方向的间距 Lw
200
125
查图系数
按标准 B/A
1.00000
126
计算系数
59.91
f4max 计算
2.84
壁板4刚度OK
第五段壁板厚度计算
h1 设计
1550
h2 设计
2600
h3 设计
3500
h4 设计
4300
h5 设计
5000
F4 计算
0.00
IcT4
计算
#REF!
109
第五道加固圈选型是否有效
#REF!
110 111
第五段
查图系数 壁厚计算系数
按标准 B/A α5 查图8-7
72
第三段壁板计算厚度
73
第三段壁板厚度
74
根据计算结果选择壁板厚度

方管载荷计算公式

方管载荷计算公式

方管承载力计算公式比如50*30*1.5的方管二个端点架起,中间悬空1米的跨度,在这1米的跨度上50*30*1.5的方管能放多重的物品。

M=Pac/L(M:弯矩,P集中力,a集中力距支座距离,c集中力距另一支座距离,L跨度,L=a+c)W=b*h*h*h/12(仅用于矩形截面)f=M/W≤材料的许用应力(弹性抗拉强度/安全系数)。

钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。

在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。

①抗拉强度(σb)试样在拉伸过程中,在拉断时所承受的最大力(Fb),出以试样原横截面积(So)所得的应力(σ),称为抗拉强度(σb),单位为N/mm2(MPa)。

它表示金属材料在拉力作用下抵抗破坏的最大能力。

计算公式为:式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。

②屈服点(σs)具有屈服现象的金属材料,试样在拉伸过程中力不增加(保持恒定)仍能继续伸长时的应力,称屈服点。

若力发生下降时,则应区分上、下屈服点。

屈服点的单位为N/mm2(MPa)。

上屈服点(σsu):试样发生屈服而力首次下降前的最大应力;下屈服点(σsl):当不计初始瞬时效应时,屈服阶段中的最小应力。

屈服点的计算公式为:式中:Fs--试样拉伸过程中屈服力(恒定),N(牛顿);So--试样原始横截面积,mm2。

③断后伸长率(σ)在拉伸试验中,试样拉断后其标距所增加的长度与原标距长度的百分比,称为伸长率。

以σ表示,单位为%。

计算公式为:式中:L1--试样拉断后的标距长度,mm;L0--试样原始标距长度,mm。

④断面收缩率(ψ)在拉伸试验中,试样拉断后其缩径处横截面积的最大缩减量与原始横截面积的百分比,称为断面收缩率。

以ψ表示,单位为%。

计算公式如下:式中:S0--试样原始横截面积,mm2;S1--试样拉断后缩径处的最少横截面积,mm2。

完整版矩形截面偏心受压构件正截面的承载力计算

完整版矩形截面偏心受压构件正截面的承载力计算

矩形截面偏心受压构件正截面的承载力计算-、矩形截面大偏心受压构件正截面的受压承载力计算公式(一)大偏心受压构件正截面受压承载力计算(1)计算公式由力的平衡条件及各力对受拉钢筋合力点取矩的力矩平衡条件, 计算公式:N 1 f c bx f y A s f y A s式中:N —轴向力设计值;a —混凝土强度调整系数;e —轴向力作用点至受拉钢筋A S合力点之间的距离;he e a (7-25)2e i e°e aT—考虑二阶弯矩影响的轴向力偏心距增大系数,按式(7-22)计算;e i —初始偏心距;e o —轴向力对截面重心的偏心距,e o = M/N ;e a —附加偏心距,其值取偏心方向截面尺寸的1/30和20 mm中的较大者;x —受压区计算高度。

(2)适用条件1)为了保证构件破坏时受拉区钢筋应力先达到屈服强度,要求x X b式中X b—界限破坏时,受压区计算高度,X b b h o ,心的计算见与受弯构件相同。

Ne 1 fcbx h02 f y A s h o a (7-24)可以得到下面两个基本(7-23)(7-26)(7-27)團社埜大催&量B■坏的■茴ttK屬腦2)为了保证构件破坏时,受压钢筋应力能达到屈服强度,和双筋受弯构件相同,要求满足:x 2a式中a'—纵向受压钢筋合力点至受压区边缘的距离。

(二)小偏心受压构件正截面受压承载力计算(1)计算公式根据力的平衡条件及力矩平衡条件可得式中x —受压区计算高度,当x> h,在计算时,取x= h;os —钢筋As的应力值,可根据截面应变保持平面的假定计算,亦可近似取:(7-28)N i f c bx f y A s s A sxNe 1 f c bx h02f y A s h o a sNe' i f c bx | ass A s h0 a s(7-29)(7-30)(7-小備心5E压计算图解(■M虚拉不思■加儿豎氐F腑IMG儿曼压屈要求满足:x b —界限破坏时受压区计算高度,X bb ho ;X b /h o ;e 、e '‘一分别为轴向力作用点至受拉钢筋A 合力点和受压钢筋 A’合力点之间的距离(2)对于小偏心受压构件当 N f c bh 时,除按上述式(7-30)和式(7-31)或式(7-32)计算外,还应满足下列条件:式中h o —钢筋A s 合力点至离纵向较远一侧边缘的距离,即 h o h a s 。

压力容器上常见几何体计算公式,在网站上自己总结的,请珍藏!

压力容器上常见几何体计算公式,在网站上自己总结的,请珍藏!

压力容器上常见几何体计算公式,在网站上自己总结的,请珍藏!在网站上自己总结的,请珍藏!望大家互传1.钢板重量计算公式公式:7.85×长度(m)×宽度(m)×厚度(mm)例:钢板6m(长)×1.51m(宽)×9.75mm(厚)计算:7.85×6×1.51×9.75=693.43kg2.钢管重量计算公式公式:(外径-壁厚)×壁厚mm×0.02466×长度m例:钢管114mm(外径)×4mm(壁厚)×6m(长度)计算:(114-4)×4×0.02466×6=65.102kg3.圆钢重量计算公式公式:直径mm×直径mm×0.00617×长度m例:圆钢Φ20mm(直径)×6m(长度)计算:20×20×0.00617×6=14.808kg4.方钢重量计算公式公式:边宽(mm)×边宽(mm)×长度(m)×0.00785例:方钢 50mm(边宽)×6m(长度)计算:50×50×6×0.00785=117.75(kg)5.扁钢重量计算公式公式:边宽(mm)×厚度(mm)×长度(m)×0.00785例:扁钢 50mm(边宽)×5.0mm(厚)×6m(长度)计算:50×5×6×0.00785=11.7.75(kg)6.六角钢重量计算公式公式:对边直径×对边直径×长度(m)×0.00068例:六角钢 50mm(直径)×6m(长度)计算:50×50×6×0.0068=102(kg)7.螺纹钢重量计算公式公式:直径mm×直径mm×0.00617×长度m 例:螺纹钢Φ20mm(直径)×12m(长度)计算:20×20×0.00617×12=29.616kg8.扁通重量计算公式公式:(边长+边宽)×2×厚×0.00785×长m 例:扁通100mm×50mm×5mm厚×6m(长) 计算:(100+50)×2×5×0.00785×6=70.65kg 9.方通重量计算公式公式:边宽mm×4×厚×0.00785×长m例:方通50mm×5mm厚×6m(长)计算:50×4×5×0.00785×6=47.1kg10.等边角钢重量计算公式公式:边宽mm×厚×0.015×长m(粗算) 例:角钢50mm×50mm×5厚×6m(长)计算:50×5×0.015×6=22.5kg(表为22.62) 11.不等边角钢重量计算公式公式:(边宽+边宽)×厚×0.0076×长m(粗算)例:角钢100mm×80mm×8厚×6m(长)计算:(100+80)×8×0.0076×6=65.67kg(表65.676)其他有色金属12.黄铜管重量计算公式公式:(外径-壁厚)×厚×0.0267×长m例:黄铜管20mm×1.5mm厚×6m(长)计算:(20-1.5)×1.5×0.0267×6=4.446kg13.紫铜管重量计算公式公式:(外径-壁厚)×厚×0.02796×长m例:紫铜管20mm×1.5mm厚×6m(长)计算:(20-1.5)×1.5×0.02796×6=4.655kg14.铝花板重量计算公式公式:长m×宽m×厚mm×2.96例:铝花板 1m宽×3m长×2.5mm厚计算:1×3×2.5×2.96=22.2kg黄铜板:比重8.5紫铜板:比重8.9锌板:比重7.2铅板:比重11.37计算方式:比重×厚度=每平方的重量注:公式中长度单位为米,面积单位为平方米,其余单位均为毫米长方形的周长=(长+宽)×2正方形的周长=边长×4长方形的面积=长×宽正方形的面积=边长×边长三角形的面积=底×高÷2平行四边形的面积=底×高梯形的面积=(上底+下底)×高÷2直径=半径×2 半径=直径÷2圆的周长=圆周率×直径=圆周率×半径×2圆的面积=圆周率×半径×半径长方体的表面积= (长×宽+长×高+宽×高)×2长方体的体积 =长×宽×高正方体的表面积=棱长×棱长×6正方体的体积=棱长×棱长×棱长圆柱的侧面积=底面圆的周长×高圆柱的表面积=上下底面面积+侧面积圆柱的体积=底面积×高圆锥的体积=底面积×高÷3长方体(正方体、圆柱体)的体积=底面积×高平面图形周长—C,面积—S,正方形:a—边长C=4a ;S=a2长方形:a、b—边长C=2(a+b) ;S=ab三角形:a、b、c—三边长, H—a边上的高,s—周长的一半,A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2·sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)四边形:d,D-对角线长,α-对角线夹角S=dD/2·sinα平行四边形:a,b-边长,h-a边的高,α-两边夹角S=ah=absinα菱形:a-边长,α-夹角,D-长对角线长,d-短对角线长S=Dd/2=a2sinα梯形:a和b-上、下底长,h-高,m-中位线长S=(a+b)h/2=mh圆:r-半径,d-直径 C=πd=2πr=πd2/4扇形:r—扇形半径,a—圆心角度数C=2r+2πr×(a/360)S=πr2×(a/360)弓形:l-弧长,b-弦长,h-矢高,r-半径,α-圆心角的度数S=r2/2·(πα/180-sinα)=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2=παr2/360 - b/2·[r2-(b/2)2]1/2=r(l-b)/2 + bh/2≈2bh/3圆环:R-外圆半径,r-内圆半径,D-外圆直径,d-内圆直径S=π(R2-r2)=π(D2-d2)/4椭圆:D-长轴,d-短轴S=πDd/4立方图形:面积S和体积Va-边长 S=6a2V=a3长方体:a-长,b-宽,c-高S=2(ab+ac+bc)V=abc棱柱:S-底面积,h-高V=Sh棱锥:S-底面积,h-高V=Sh/3棱台:S1和S2-上、下底面积,h-高V=h[S1+S2+(S1S1)1/2]/3拟柱体:S1-上底面积,S2-下底面积,S0-中截面积,h-高V=h(S1+S2+4S0)/6圆柱:r-底半径,h-高,C—底面周长,S底—底面积,S侧—侧面积,S表—表面积C=2πrS底=πr2S侧=ChS表=Ch+2S底V=S底h=πr2h空心圆柱:R-外圆半径,r-内圆半径,h-高V=πh(R2-r2)直圆锥:r-底半径,h-高V=πr2h/3圆台:r-上底半径,R-下底半径,h-高V=πh(R2+Rr+r2)/3球:r-半径,d-直径V=4/3πr3=πd2/6球缺:h-球缺高,r-球半径a-球缺底半径V=πh(3a2+h2)/6=πh2(3r-h)/3a2=h(2r-h)球台:r1和r2-球台上、下底半径,h-高V=πh[3(r12+r22)+h2]/6圆环体:R-环体半径,D-环体直径,r-环体截面半径,d-环体截面直径V=2π2Rr2=π2Dd2/4桶状体:D-桶腹直径,d-桶底直径,h-桶高V=πh(2D2+d2)/12(母线是圆弧形,圆心是桶的中心)V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形)890123456789。

矩形容器计算(ABCDE型通用)V1.1

矩形容器计算(ABCDE型通用)V1.1

设计压力,MPa 常压加固柱型号HW300X300X12X12设计温度,℃50加固柱截面系数,cm³1115容器长L,mm 10000加固柱间距L p,mm450容器宽W,mm 6000型钢和宽度W方向水平布置,底板型钢支撑实际跨距,mm200容器高H,mm 8000加固圈型号等边角钢50X50X5型钢材料Q235A 加固圈惯性矩,cm411.21壁板材料Q235A 顶边加固件型号等边角钢50X50X5设温壁板材料许用应力[σ]t,MPa 135顶边加固件惯性矩,cm411.21常温型钢许用应力[σ]b,MPa135介质名称水材料弹性模量E t,MPa 191000介质密度ρ,Kg/m31000顶板加强筋型号等边角钢100X100X12顶板加强筋沿L方向上的间距A=L T,mm200钢板负偏差C1,mm0.8钢材密度ρM=,Kg/m³7850顶板加强筋截面系数,cm³29.48顶板加强筋沿W方向上的间距B=W T,mm200腐蚀裕量C2, mm2底板厚度δbn,mm8拉杆近似直径,m m 26.2211623拉杆直径,mm加速度g,N/Kg9.81顶板名义厚度δT ,mm4实际的加固圈数量及各段间距H1,mm H2,mm H3,mm H4,mm H5,mm H6,mm4250016001500130011000推荐的加固圈数量及各段间距H1H2H3H4H5H61480032000000 2360024002000000 3296020001680136000 4248016801440128011200各段壁板厚度δin,mm 101618181801.设计条件示意图。

偏心受压矩形构件计算(刘荣桢)

偏心受压矩形构件计算(刘荣桢)

ห้องสมุดไป่ตู้连理工大学(备注:适用于承载力验算,黄色部分为输入部分,绿色为输出部分,严禁更改公式,会造成错误) 其他 备注 偏心距增大系 ξ 1原始 ξ 1 偏心距增大系数n 根数 3 3
按右表取值
HPB300为0.58,HRB335为0.55, HRB400为0.52,HRB500为0.48
分析
大偏心按下表大偏心应力分析计算,
大小偏心情况 大偏心
大偏心应力计算分析 52062476.06 179613465.31 5720.00 270.15 2a' 72.75 86 365.22 1.23 安全 小偏心应力计算分析 52062476.06 5720.00 270.15 199.19 0.36 733.57 2.46 安全
数值弯矩设计值mknm16100压力设计值nkn29800安全要求k120直径受压钢筋面积asmm24618114受拉钢筋面积asmm26031916受压钢筋设计强度fynmm236000受拉钢筋设计强度fynmm236000构件高hmm60000构件宽bmm40000构件长度lmm520000构件约束情况系数100混凝土抗压强度设计值fcnmm21430钢筋保护层cmm3500界限受压区相对b055a值mm4300a值mm4200偏心距e0mm54027有效截面高度h0mm55700计算长度l0mm520000大小偏心情况偏心增大系数n106大偏心轴向压力作用点至钢筋as距离e31315轴向压力作用点至钢筋as距离emm82715钢筋受压力形成弯矩fyasenmm5206247606钢筋受拉力形成弯矩fyasenmm17961346531fcb572000eh0270152a受压区高度xmm727586抗压强度nukn36522nu安全系数k123安全钢筋受压力形成弯矩fyasenmm5206247606fcb572000eh027015受压区高度xmm19919相对受压区高度036抗压强度nukn73357nu安全系数k246安全小偏心应力计算分析偏心受压矩形构件计算表刘荣桢大连理工大学其他偏心情况分析大偏心应力计算分析备注1原始1偏心距增大系数n根数33按右表取值hpb300为058hrb335为055hrb400为052hrb500为048大偏心按下表大偏心应力分析计算a28602860bh0是否可行30635不可行fcbxfyasfyas16b计算公式105判定计算公式x16b取1值x16b取2值nufcbxfyasfyas小偏心极限学备注

槽钢矩形管方管规及载荷计算

槽钢矩形管方管规及载荷计算

槽钢规格表大全2012(最新)槽钢规格表大全2012(最新)国际标准槽钢规格,槽钢规格表2012年最新更新版!C160*60*20 是槽钢腹板高160 翼缘板宽60 钢板厚20槽钢规格表大全2012(最新)500X300X8.0--12.0mm 450X250X6.0--12.0mm 400X300X6.0--12.0mm 400X200X6.0--12.0mm 350X250X6.0--12.0mm 350X150X6.0--12.0mm 300X200X6.0--12.0mm 300X150X6.0--12.0mm 300X100X4.0--10.0mm 280X180X4.0--10.0mm 250X150X4.0--10.0mm 250X100X4.0--10.0mm 200X150X4.0--10.0mm200X100X4.0--10.0mm 200X95X4.0--10.0mm 160X80X4.0--10.0mm 150X100X3.0--10.0mm 150X90X3.0--10.0mm 150X75X3.0--8.0mm 140X80X3.0--10.0mm 120X100X3.0--10.0mm 120X80X2.0--8.0mm 120X60X2.0--5.0mm 120X50X2.0--5.0mm 120X40X2.0--4.0mm 100X80X2.0--8.0mm 100X60X2.0--5.0mm 100X50X1.0--5.0mm 100X40X2.0--3.0mm 90X60X2.0--4.0mm80X60X1.4--4.0mm80X50X1.2--3.0mm80X40X0.9--4.0mm70X50X1.2--4.0mm70X30X1.5--3.0mm60X40X0.8--4.0mm60X30X0.8--3.0mm50X40X0.8--3.0mm50X30X0.7--4.0mm50X25X0.7--3.0mm50X20X0.7--1.7mm40X30X0.7--3.0mm40X25X0.7--2.5mm40X20X0.6--3.0mm30X20X0.6--2.0mm20X14X0.5--1.2mm20X10X0.5--1.2mm方管承载力计算公式比如50*30*1.5的方管二个端点架起,中间悬空1米的跨度,在这1米的跨度上50*30*1.5的方管能放多重的物品。

55 矩形截面偏心受压构件正截面承载力计算

55 矩形截面偏心受压构件正截面承载力计算

不考虑间接钢筋影响的情况,而按普通轴心受压承载力计算:
◆对l0/d大于12的柱(易纵向弯曲,导致螺旋筋不起作用)。 ◆螺旋箍筋轴向力设计值小于普通箍筋柱的轴向力设计时。
◆当间接钢筋换算面积Ass0小于纵筋全部截面积的25%时(间接
钢筋配置少,套箍作用不明显)。
构造要求:
箍筋间距不应大于80mm及dcor/5,也不应小于40mm。
例题讲解:118页
5.2.2 轴心受压螺旋箍筋柱正截面受压承载力计算
箍筋作用:
增强机理:约束核心区砼在纵向受压时的横向变形, 从而提高了砼抗压强度和变形能力,这种受到约束的 混凝土称为约束砼。 等效增强:在柱的横向采用螺旋箍筋或焊接环筋也能 像直接配置纵向钢筋那样起到提高承载力和变形能力 的作用,相当于间接纵筋。
◆ 这种破坏具有明显预兆,变形能力较大,破坏特征与 (哪种
构件的一种破坏形式?)相似,承载力主要取决于受拉侧钢筋。
◆ 形成这种破坏的条件是:偏心距e0较大,且受拉侧纵向钢筋
配筋率合适,通常称为大偏心受压情况下的受拉破坏。
N
fyAs
f'yA's
2、受压破坏
产生受压破坏的条件有两种情况: ⑴当相对偏心距e0/h0较小,截面全部受压或大部分受压 ⑵或虽然相对偏心距e0/h0较大,但受拉侧纵向钢筋配置较多时
纵筋宜采用HRB400、RRB400、HRB500级钢筋(物尽其用) 箍筋一般采用HRB400、HRB335级钢筋,也可采用HPB300级。
5.1 受压构件的一般构造要求
5.1.3 纵筋
直径不宜小于12mm,常用16-32mm 单侧配筋率不小于0.2%,全部纵向钢筋最小配筋率附表4-5。 全部纵筋配筋率不宜超过5%。(回顾配筋率) 纵筋均匀布置,矩形截面不少于4根,圆形截面不少于6根。 保护层对一级环境取20mm,净间距不应小于50mm。

压力容器常见结构的设计计算方法

压力容器常见结构的设计计算方法

压力容器常见结构的设计计算方法压力容器是一种常用的装置,用于存储和运输高压流体或气体。

压力容器的设计计算是确保容器在设计压力范围内安全运行的关键步骤。

常见压力容器的设计计算方法主要包括材料选择、壁厚计算、接缝焊缝设计和支撑设计等。

首先,在压力容器的设计计算中,材料选择是非常重要的一步。

根据工作环境和储存介质的性质,应当选择适合的材料,如碳钢、不锈钢、镍合金等。

材料的选择应考虑到其机械性能(强度、韧性)、抗腐蚀性能和焊接性能等。

其次,壁厚计算是压力容器设计计算中的关键步骤。

根据设计压力、储存介质的性质、容器尺寸和形状等因素,可以采用ASMEVIII-1或其他相关设计规范进行壁厚计算。

壁厚计算要确保容器在设计压力下不会发生永久性塑性变形或失稳。

接着,接缝焊缝设计是压力容器设计计算中的另一个关键步骤。

焊缝是容器的弱点,其设计要考虑焊接工艺、焊缝质量要求和应力分布等。

根据相关规范,例如ASMEIX,应对焊缝进行强度计算和疲劳分析,以确保焊缝的可靠性和耐久性。

最后,支撑设计是压力容器设计计算中的重要环节。

支撑结构的设计要考虑到容器的重量、形状和运行条件等因素。

一般常见的支撑结构包括支座、支撑脚和支撑环等。

在设计计算中,应根据容器的重量和载荷进行支撑结构的强度计算和稳定性分析。

需要注意的是,良好的压力容器设计计算不仅要遵循相关规范和标准,还应考虑实际运行条件和安全要求。

因此,在进行设计计算之前,应对工作环境、储存介质的特性、容器的运行周期和压力变化等进行充分的分析和评估。

总之,压力容器的设计计算涉及多个方面,包括材料选择、壁厚计算、接缝焊缝设计和支撑设计等。

在进行设计计算时,需要遵循相关规范和标准,并结合实际情况和安全要求进行综合考虑,以确保设计的压力容器安全可靠地运行。

偏心受压构件正截面承载力计算—矩形截面偏心受压构件正截面承载力计算

偏心受压构件正截面承载力计算—矩形截面偏心受压构件正截面承载力计算
f y(h0 as )
即x≤ξbh0,且x<2a’s,则由基本公式3可得:
Ne f y As h0 as
As As
Ne f y(h0 as )
(4)若判定为小偏心受压破坏
则按下式重新计算x:
N 1 fcbh0b
Ne 0.431 fcbh02 (1 b )(h0 as)
1
fcbh0
e
ei N
N Nu 1 fcbx f yAs f y As
Ne
Nue
1 fcbx(h0
x) 2
f yAs (h0
as )
e ei 0.5h as
fyAs
f'yA's
(1)情况1:As和A's均未知时 两个基本方程中有三个未知数,As、A's和 x,故无唯一解。 与双筋梁类似,为使总配筋面积(As+A's)最小?
• 2.截面复核
已知:截面尺寸、材料强度、e0、L0,AS,AS’
求: N 解:判断大小偏心
1.对于垂直弯矩作用方向还应按轴心受压进行验算即应满足:
N Nu 0.9 ( fcd A fsd As )
2.对于弯矩作用方向按偏心受压进行验算
偏心受压构件正截面承载力计算 基本公式
(建筑规范)
1.计算假定
计算方法及步骤
矩形截面偏心受压构件对称配筋的计算方法
对称配筋,即截面的两侧用相同数量的配筋和相同钢材规格,
As=As',fsd = fsd',as = as'
1.不对称配筋与对称配筋的比较: (1) 不对称配筋: 优点是充分利用混凝土的强度, 节省钢筋;缺点主要是施工不便,容易将钢筋的位置 对调。 (2) 对称配筋: 优点为对结构更有利(可能有相反 方向的弯矩),施工方便,构造简单,钢筋位置不易 放错;缺点是多用钢筋。

基本构件计算矩形截面偏心受压构件承载力的计算

基本构件计算矩形截面偏心受压构件承载力的计算

矩形截面偏心受压构件正截面承载力的计算一、基本公式1. 计算图式2. 基本公式由0=∑x N 得:)](11[g g g gsa cb u j A A R bx R N N σγγγ-''+=≤ 由0=∑gA M 得:)](1)2(1[00g g g sa cb u j a h A R x h bx R M e N '-''+-=≤γγγ由0=∑'gA M 得:)](1)2(1[0g g g sg a c b u j a h A a x bx R M e N '-+'--=≤'σγγγ 混凝土受压区高度由下式确定:e A R e A xh e bx R g gg g a '''-=+-σ)2(0(对偏心作用力点取矩) e e '、-分别为偏心压力j N 作用点至钢筋g A 合力作用点和钢筋g A '合力作用点的距离,按下式计算:η=e g a h e -+20;η='e g a h e '+-203.公式的注意事项(1)钢筋g A 的应力g σ取值当jg h x ξξ≤=0时,构件属于大偏心受压构件,这时取g g R =σ(受拉钢筋屈服);当jg h x ξξ>=0时,构件属于小偏心受压构件,这时g σ按下式计算,但不大于g R 值:)19.0(003.0-=ξσg g E ,式中g E 为受拉钢筋的弹性模量。

(2)为保证构件破坏时,大偏心受压构件截面上的受压钢筋能达到抗压设计强度gR ',必须满足g a x '≥2,否则受压钢筋的应力可能达不到g R '。

与双筋截面受弯构件类似,这时可近似取g a x '=2,由截面受力平衡条件(0=∑'g A M )可得:)(0gg g s bu j a h A R M e N '-=≤'γγ 上式计算的正截面承载力u M 比不考虑受压钢筋gA '更小时,计算中不考虑受压钢筋g A '的影响。

矩形容器计算new

矩形容器计算new

储液密度p=1000Kg/m3=1E-06Kg/mm3重力加速度g=9.81m/s2容器顶边与第1加强圈的距离h1=200mm容器顶边与第1加强圈的距离H1=200mm容器顶边与第2加强圈的距离h2=400mm第1加强圈与第2加强圈的距离H2=200mm容器顶边与第3加强圈的距离h3=600mm第2加强圈与第3加强圈的距离H3=200mm第3加强圈与底板的距离H4=200mm容器顶边与底板的距离h=h411100mm容器垂直加固件间距离L p=2175mm设计温度下材料的弹性模量E t=187000MPa查图8-7,系数a1=0.001查图8-7,系数a2=0.001查图8-7,系数a3=0.001查图8-7,系数a4=0.001查图8-7,系数β1=0.001查图8-7,系数β2=0.001查图8-7,系数β3=0.001查图8-7,系数β4=0.001壁板材料(304L)许用应力[R]t=118MPa壁板材料(304L)腐蚀裕度C=0mm储罐短边长度L1=2175mm储罐长边长度L2=2175mm1.各段计算1.1 第1段第1道加固圈单位长度上的载荷F1=1/6*pgh2(h1+h2)=0.3924N/mm第1道加固圈所需的惯性矩I C,T1=1.3F1L p3/E t=28068mm4 2.80678cm4加固圈规格□50x10实际惯性矩 Ix1=ab3/12=10.41cm4合格第1段壁板计算厚度δ1=L p(3a1pgh1/[R]t)0.5=0.4858mm0.48577mm第1段壁板名义厚度δn=20mm第1段壁板有效厚度δ1e=20mm设垂直加固柱的间距Lp=300mm设壁板名义厚度δw,n=20mm有效厚度δw,e=20计算压力Pc=pgH=0.1089MPa查图8-7,系数a=0.055B/A=37壁板计算厚度δw,e=Lp/0.408(aPc/[R])0.5=5.2384mm加固柱的最大间距Lp,max=0.408δw,e([R]/aPc)0.5=1145.4mm加固柱所需截面系数Zp=Lp[(0.0642pgh3/[R])-δe2/6]=2E+06mm32169.84cm3加固圈规格□50x10实际截面系数 Wy=46.9cm3不合格1.2 第1段以下各段1.2.1 第2段由矩形容器顶端算起,第2道横向加F2=1/6*pg(h3-h1)(h3+h2+h1)=0.7848N/mm固圈单位长度上的载荷第2道加固圈所需的惯性矩I C,T2=1.3F2L p3/E t=56136mm4 5.61356cm4加固圈规格□50x10实际惯性矩 Ix1=ab3/12=10.41cm4合格第2段壁板计算厚度δ2=L p(6a2pg(h1+h2)/[R]t)0.5= 1.1899mm 1.18988mm第2段壁板名义厚度δn=20mm第2段壁板有效厚度δ2e=20mm第3段由矩形容器顶端算起,第3道横向加F3=1/6*pg(h4-h2)(h4+h3+h2)=211.68N/mm固圈单位长度上的载荷第3道加固圈所需的惯性矩I C,T3=1.3F3L p3/E t=2E+07mm41514.14cm4加固圈规格□180x100x6实际惯性矩 Ix=1643cm4合格第3段壁板计算厚度δ3=L p(6a3pg(h2+h3)/[R]t)0.5= 1.5361mm 1.53613mm第3段壁板名义厚度δn=20mm第3段壁板有效厚度δ3e=20mm第4段壁板计算厚度δ4=L p(6a4pg(h3+h4)/[R]t)0.5= 5.2544mm 5.25438mm第4段壁板名义厚度δn=20mm 第4段壁板有效厚度δ4e=20mm 2.各段刚度校核2.1第1段第1段的最大挠度f1=β1L p4pgh1/2E tδ1e3=0.0147mm 第1段壁板许用挠度[f]1=min{δ1e/2,η.Γ}δ1e/2=10mmΓ取L p、H1中较大值 Γ=2175mmΔ取L p、H1中较小值 Δ=200mmΔ/Γ0.092查图8-2 η=5E-05[f]1=0.1088mmf1<[f]1合格2.2 第1段以下各段第2段的最大挠度f2=β2L p4pg(h1+h2)/2E tδ2e3=0.044mm 第2段壁板许用挠度[f]2=min{δ2e/2,η.Γ}δ2e/2=10mmΓ取L p、H2中较大值 Γ=2175mmΔ取L p、H2中较小值 Δ=200mmΔ/Γ=0.092查图8-2 η=5E-05[f]2=0.1088mmf2<[f]2合格第3段的最大挠度f3=β3L p4pg(h2+h3)/2E tδ3e3=0.0734mm 第3段壁板许用挠度[f]3=min{δ3e/2,η.Γ}δ3e/2=10mmΓ取L p、H3中较大值 Γ=2175mmΔ取L p、H3中较小值 Δ=200mmΔ/Γ=0.092查图8-2 η=5E-05[f]3=0.1088mmf3<[f]3合格第4段的最大挠度f4=β4L p4pg(h3+h4)/2E tδ4e3=0.8585mm第4段壁板许用挠度[f]4=min{δ4e/2,η.Γ}δ4e/2=10mmΓ取L p、H4中较大值 Γ=2175mmΔ取L p、H4中较小值 Δ=200mmΔ/Γ=0.092查图8-2 η=5E-05[f]4=0.1088mmf4<[f]4不合格3.型钢上的矩形容器底板底板假设厚度δb=12mm底板有效厚度δbe=12mm支承的最大间距L b=1.25δbe([R]/pgh)0.5=493.78mm假设支承的间距L b=630mm底板计算厚度δb=0.8L b(pgh/[R])0.5=15.31mm4.顶边、底边加固件校核顶边、底边短边加固件所需惯性矩I c,T=0.217pgh12L13/E t=4685.2mm40.46852cm4加固圈规格□50x10实际惯性矩 Ix1=ab3/12=10.41cm4合格顶边、底边长边加固件所需惯性矩I c,T=0.217pgh12L23/E t=4685.2mm40.46852cm4加固圈规格□50x10实际惯性矩 Ix1=ab3/12=10.41cm4合格。

矩形容器1

矩形容器1

目 录一、设计工况:二、设计依据标准三、容器顶板强度计算四、容器侧板强度计算五、容器底板强度计算六、容器各部质量计算七、容器底座吊装强度计算一、设计工况:设计压力Pa P=2700设计温度o C T=50工作压力Pa p工=常压工作温度o C T工=25试验压力Pa P S =4000充装介质水介质密度kg/m3G=1000腐蚀裕量mm C1=1试验介质水试验介质密度kg/m3G' =1000容器容积m3V=22.88容器长边侧板宽度mm L L =4400容器短边侧板宽度mm L S =2600容器高度mm H =2000容器顶板厚度mm d1=6容器底板厚度mm d2=10容器长边侧板厚度mm d3=6容器短边侧板厚度mm d4=6容器顶部加强筋规格80x80x6底梁规格I10 100x68x4.5容器水平加强筋数量道N1=2容器水平加强筋规格63x63x6容器长侧板垂直加强筋数量道N2=5容器长侧板垂直加强筋规格63x63x6容器短侧板垂直加强筋数量道N3=3容器短侧板垂直加强筋规格63x63x6保温材料名称玻璃棉保温层厚度mm d in=75保温材料密度kg/m3G i=60容器主体材质Q235-A主体材质的材料屈服极限 MPa S=235设计温度下材料的许用应力 MPa [s]t =135设计温度下材料的许用压缩应力 MPa [s]cr t =103拼板焊缝系数f=0.70所有碳钢及不锈钢杨氏弹性模量GPa E =192.0二、设计依据标准。

*《钢制焊接常压容器》 JB4735-1997*《压力容器设计手册》(美)(吊耳强度计算部分)三、容器顶板强度计算四、容器侧板强度计算五、容器底板强度计算六、容器各部质量计算七、容器底座吊装强度计算。

方管载荷计算

方管载荷计算

方管承载力计算公式比如50*30*1。

5的方管二个端点架起,中间悬空1米的跨度,在这1米的跨度上50*30*1.5的方管能放多重的物品。

M=Pac/L(M:弯矩,P集中力,a集中力距支座距离,c集中力距另一支座距离,L跨度,L=a+ c)W=b*h*h*h/12(仅用于矩形截面)f=M/W≤材料的许用应力(弹性抗拉强度/安全系数).强度计算=M/W (其中,弯矩M=0。

125qL*2,W为截面模量)刚度计算=(5qL*4)/ 384EI钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。

在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等.①抗拉强度(σb)试样在拉伸过程中,在拉断时所承受的最大力(Fb),出以试样原横截面积(So)所得的应力(σ),称为抗拉强度(σb),单位为N/mm2(MPa).它表示金属材料在拉力作用下抵抗破坏的最大能力。

计算公式为:式中:Fb—-试样拉断时所承受的最大力,N(牛顿);So-—试样原始横截面积,mm2.②屈服点(σs)具有屈服现象的金属材料,试样在拉伸过程中力不增加(保持恒定)仍能继续伸长时的应力,称屈服点。

若力发生下降时,则应区分上、下屈服点。

屈服点的单位为N/mm2(MPa)。

上屈服点(σsu):试样发生屈服而力首次下降前的最大应力;下屈服点(σsl):当不计初始瞬时效应时,屈服阶段中的最小应力.屈服点的计算公式为:式中:Fs——试样拉伸过程中屈服力(恒定),N(牛顿);So—-试样原始横截面积,mm2.③断后伸长率(σ)在拉伸试验中,试样拉断后其标距所增加的长度与原标距长度的百分比,称为伸长率.以σ表示,单位为%。

计算公式为:式中:L1—-试样拉断后的标距长度,mm;L0—-试样原始标距长度,mm。

④断面收缩率(ψ)在拉伸试验中,试样拉断后其缩径处横截面积的最大缩减量与原始横截面积的百分比,称为断面收缩率。

矩管横梁承载计算公式

矩管横梁承载计算公式

矩管横梁承载计算公式矩管横梁是一种常见的结构梁型,它由矩形截面的管材构成,用于承载横向荷载和弯矩。

在工程设计中,为了保证横梁的安全性能,需要进行承载能力的计算和分析。

本文将介绍矩管横梁的承载计算公式及相关理论知识。

1. 矩管横梁的基本结构和受力分析。

矩管横梁通常由矩形截面的钢管或混凝土管构成,其受力分析主要包括横向荷载和弯矩。

在受力分析中,我们需要考虑横梁的截面尺寸、材料特性以及受力条件等因素。

2. 矩管横梁的承载能力计算公式。

矩管横梁的承载能力可以通过以下公式进行计算:弯矩承载能力:M = σ×W。

其中,M为横梁的弯矩承载能力,单位为N·m;σ为横梁材料的抗弯强度,单位为N/mm²;W为横梁的截面模量,单位为mm³。

横向荷载承载能力:P = τ×A。

其中,P为横梁的横向荷载承载能力,单位为N;τ为横梁材料的剪切强度,单位为N/mm²;A为横梁的截面面积,单位为mm²。

3. 矩管横梁承载能力计算实例。

假设一根矩管横梁的截面尺寸为200mm×300mm,材料为Q345B钢,要求其承载弯矩为1000N·m,横向荷载为500N。

根据上述公式,我们可以计算出该横梁的承载能力。

首先计算横梁的截面模量W:W = bh³/6。

= 200mm×300mm³/6。

= 6000000mm³。

然后查表得到Q345B钢的抗弯强度σ为235N/mm²,剪切强度τ为180N/mm²。

代入公式计算弯矩承载能力:M = σ×W。

= 235N/mm²×6000000mm³。

= 1410000000N·mm。

= 1410N·m。

计算横向荷载承载能力:A = bh。

= 200mm×300mm。

= 60000mm²。

压力容器常用计算公式

压力容器常用计算公式
转换接头连接部分 设计压力PC= 设计温度:t 材质: 设计温度下许用应力[σ]t 外径D0 实际内径Di= 焊缝系数φ 计算厚度δ=PCD0/{2[σ]tφ+PC}= 腐蚀余量C1 厚度负偏差C2 名义厚度δn 有效厚度δe δe>δ 1 40 16MnR 170 2000 1980 1 5.9 2 0 10 8 合格 Mpa ℃ 锻钢 Mpa mm mm mm mm mm mm mm 设计压力PC= 设计温度:t 材质:
压力表螺纹部分 6.8 20 20 170 18.631
设计温度下许用应力[σ]t 螺纹小径D0
实际内径Di= 14 焊缝系数φ 1 计算厚度δ=PCD0/{2[σ]tφ+PC}= 0.365314 腐蚀余量C1 厚度负偏差C2 名义厚度δn 有效厚度δe δe>δ 1.5 0 2.3155 0.8155 合格
名义厚度δn 有效厚度δe 厚度负偏差C2 腐蚀余量C1 计算厚度δ=PCD0/{2[σ]tφ+PC}= δe>δ 焊缝系数φ 实际内径Di= 外径D0
9 6 1 2 6 合格 1 1982 2000
mm mm mm mm mm
mm mm

设计温度下许用应力[σ]t
170
Mpa
Mpa ℃ 锻钢 Mpa mm mm mm mm mm

矩形常压容器计算书((1)

矩形常压容器计算书((1)

矩形常压容器计算书((1)A、B矩形板计算公式与图表中矩形边的一般符号,mm ;应用时视具体问题以L 、L P 、L T 代替A,以H 、H i 、W 、W b扁钢宽度,mm ;C厚度附加量,C=C 1+C 2,mm ;C1钢板厚度负偏差,mm ;C 2腐蚀裕量,mm ;dC 、E 型矩形容器圆钢拉杆直径,mm ;Et设计温度下材料的弹性模量,Mpa ;[f]壁板或顶板的许用挠度,mm ;fw.max,fT,max壁板,顶板的最大绕度,mm ;g重力加速度,g=9.81m/s 2;H容器高度,mm ;Hc ,Lc顶边加固件承受储液压力的高度,宽度,mm ,应用时视具体问题以H 、h 1代替Hc ,以L 、Lp 代替Lc ;I c ,T顶边加固圈所需的惯性矩,mm 4;L容器长度,mm(L>W)L b底板支撑梁间距,mm ;L b ,max 底板支撑梁最大间距,mm ;LP,LP.max C 、E 、G 型矩形容器加固柱间距,最大间距,mm ;M 加固柱承受的最大弯矩,N ·mmp c 计算压力,MPaW 容器宽度,mm ;Z p C 、E 、G 型矩形容器加固柱所需截面系数,mm 3;Г、△矩形板的长边和短边,Г为A 、B 中的较大值,△为A 、B 中的较小值,mm ;α、β系数,见图8-5、8-7、8-15;[σ]b 常温下型钢结构件材料的许用应力,MPa ;[σ]t 设计温度下矩形板材料的许用应力,MPa ;δb 、δb 、n 、δb 、e 底板计算厚度、名义厚度、有效厚度,mm ;δe矩形容器壁板、底板的有效厚度,mm δw 、δw.n 、δw.e壁板的计算厚度、名义厚度、有效厚度,mm ;η可选许用挠度的系数;ρ储液密度,kg/mm 3,ρ=1×10-6 kg/mm 3Ρm矩形板或者加固件的材料密度,kg/mm 3,ρM =7.85×10-6 kg/mm 3设备位号长L mm 4000设计压力MPa 0.01宽W mm 2000设计温度℃80高H mm2000一符号意义容器尺寸介质名称30%碱溶液、水、酸性盐等组分O0Cr19Ni1 0A=Lp=1200mmρ= 1.0X10-6Kg/mm3 B=H=2000mm g=g=9.81m/s2α=0.042β=0.0438钢板厚度负偏差C1=0.42mm腐蚀裕量C2=2mmPc=ρgH=1.0X10-6×9.81×2000=0.01962MPa=7.704259mmδWn=δW+C1+C2=10.12426mm最终取壁板名义厚度δWn=10mm壁板刚度校核根据设计条件计算壁板最大挠度的给参数分别为:A=Lp=1200mmρ= 1.0X10-6Kg/mm3 B=H=2000mm g=g=9.81m/s2α=0.042β=0.0438Et= 1.93X105δw.e=δWn-(C1+C2)=7.58mmfw.max=(βXA4XPc)/(EtXδw.e3)=31.6811[f]=5〔δw.e/2+A/500*√(B/A)〕=34.44193壁板刚度校核结论:fw.max<[f],刚度满足要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档