历年数学中考试题(含答案) (67)

合集下载

历年中考数学试卷含答案

历年中考数学试卷含答案

中考数学试卷一、选择题(每题4分,共40分)1. 若a > b,则下列不等式中正确的是()A. a^2 > b^2B. a + b > 2bC. a - b < 0D. a/b > b/a2. 下列各组数中,存在有理数x,使得方程x^2 - 3x + 2 = 0的解为x = 2的是()A. {1, 2, 3}B. {2, 3, 4}C. {1, 3, 4}D. {1, 2, 4}3. 已知函数y = 2x - 1的图象上一点P的坐标为(a,2a - 1),则a的取值范围是()A. a > 1B. a ≥ 1C. a ≤ 1D. a < 14. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C = ()A. 45°B. 60°C. 75°D. 90°5. 下列关于二次函数y = ax^2 + bx + c(a ≠ 0)的说法正确的是()A. 当a > 0时,函数的图象开口向上,顶点坐标为(-b/2a,c - b^2/4a)B. 当a < 0时,函数的图象开口向下,顶点坐标为(-b/2a,c - b^2/4a)C. 函数的图象一定经过点(0,c)D. 函数的图象一定与x轴有两个交点6. 若等比数列{an}的公比为q(q ≠ 0),且a1 = 2,a2 + a3 = 18,则q的值为()A. 2B. 3C. 6D. 97. 下列关于圆的性质中,正确的是()A. 圆的直径是圆的最长弦B. 圆内接四边形的对角互补C. 圆外切四边形的对角相等D. 圆内接四边形的对角相等8. 若等差数列{an}的公差为d,且a1 + a4 = 10,a2 + a3 = 12,则d的值为()A. 1B. 2C. 3D. 49. 在平面直角坐标系中,点P(3,4)关于直线y = x的对称点坐标为()A.(4,3)B.(3,4)C.(-4,-3)D.(-3,-4)10. 若等比数列{an}的公比为q(q ≠ 0),且a1 = 3,a2 + a3 + a4 = 27,则q的值为()A. 1B. 3C. 9D. 27二、填空题(每题4分,共20分)11. 若方程2x - 3 = 5的解为x = ,则x^2 - x的值为。

历年中考数学试题题库(含解析)

历年中考数学试题题库(含解析)

历年中考数学试题题库(含解析)一、选择题(共10小题,每小题3分,满分30分)1.(3分)下列四个实数中,无理数是()A.2 B.C.0 D.﹣1【考点】26:无理数.【分析】根据无理数是无限不循环小数,可得答案.【解答】解:A、2是有理数,故A错误;B、是无理数,故B正确;C、0是有理数,故C正确;D、﹣1是有理数,故D正确;故选:B.【点评】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.2.(3分)如图所示的几何体是由4个小正方体搭成,则它的主视图是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:从正面看第一层两个小正方形,第二层左边一个小正方形.故选:C.【点评】本题考查了简单组合体的三视图,主视图是从正面看得到的图形.3.(3分)下列运算正确的是()A.a3+a3=a6B.a3•a3=a9C.(a+b)2=a2+b2D.(a+b)(a﹣b)=a2﹣b2【考点】35:合并同类项;46:同底数幂的乘法;4C:完全平方公式;4F:平方差公式.【分析】直接利用合并同类项法则以及完全平方公式和平方差公式分别判断得出即可.【解答】解:A、a3+a3=2a3,故此选项错误;B、a3•a3=a6,故此选项错误;C、(a+b)2=a2+2ab+b2,故此选项错误;D、(a+b)(a﹣b)=a2﹣b2,正确.故选:D.【点评】此题主要考查了完全平方公式/合并同类项、平方差公式等知识,正确应用乘法公式是解题关键.4.(3分)下列选项中能由左图平移得到的是()A.B.C.D.【考点】Q1:生活中的平移现象.【分析】根据平移的性质,图形只是位置变化,其形状与方向不发生变化进而得出即可.【解答】解:能由左图平移得到的是:选项C.故选:C.【点评】此题主要考查了生活中的平移现象,正确根据平移的性质得出是解题关键.5.(3分)如图,点A、B、C是⊙O上,∠AOB=80°,则∠ACB的度数为()A.40°B.80°C.120°D.160°【考点】M5:圆周角定理.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵∠AOB与∠ACB是同弧所对的圆心角与圆周角,∠AOB=80°.∴∠ACB=∠AOB=40°.故选:A.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.6.(3分)下列说法正确的是()A.哥哥的身高比弟弟高是必然事件B.今年中秋节有雨是不确定事件C.随机抛一枚均匀的硬币两次,都是正面朝上是不可能事件D.“彩票中奖的概率为”表示买5张彩票肯定会中奖【考点】X1:随机事件;X3:概率的意义.【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、哥哥的身高比弟弟高是随机事件,故A错误;B、今年中秋节有雨是不确定事件,故B正确;C、随机抛一枚均匀的硬币两次,都是正面朝上是随机事件,故C错误;D、“彩票中奖的概率为”表示买5张彩票可能中奖,可能不中奖,故D错误;故选:B.【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(3分)甲、乙两个同学在四次模拟试中,数学的平均成绩都是112分,方差分别是S甲2=5,S乙2=12,则成绩比较稳定的是()A.甲B.乙C.甲和乙一样D.无法确定【考点】W7:方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:∵甲、乙两个同学的平均成绩都是112分,方差分别是S甲2=5,S 乙2=12.∴S甲2<S乙2.∴成绩比较稳定的是甲;故选:A.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.(3分)如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点【考点】KG:线段垂直平分线的性质.【专题】12:应用题.【分析】根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.【解答】解:∵三角形三边垂直平分线的交点到三个顶点的距离相等.∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选:A.【点评】此题考查了三角形的外心的概念和性质.熟知三角形三边垂直平分线的交点到三个顶点的距离相等,是解题的关键.9.(3分)一次函数y=x+2的图象不经过的象限是()A.一B.二C.三D.四【考点】F7:一次函数图象与系数的关系.【分析】根据k,b的符号确定一次函数y=x+2的图象经过的象限.【解答】解:∵k=1>0,图象过一三象限,b=2>0,图象过第二象限.∴直线y=x+2经过一、二、三象限,不经过第四象限.故选:D.【点评】本题考查一次函数的k>0,b>0的图象性质.需注意x的系数为1,难度不大.10.(3分)如图,设他们中有x个成人,y个儿童根据图中的对话可得方程组()A.B.C.D.【考点】99:由实际问题抽象出二元一次方程组.【分析】题目中的等量关系为:1、大人数+儿童数=8;2、大人票钱数+儿童票钱数=195,据此求解.【解答】解:设他们中有x个成人,y个儿童,根据题意得:.故选:C.【点评】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是从题目中找到两个等量关系并根据等量关系列出方程.二、填空题(共5小题,每小题3分,满分15分)11.(3分)a的相反数是﹣9,则a=9.【考点】14:相反数.【分析】根据相反数定义解答即可.【解答】解:∵a的相反数是﹣9.∴a=9.故答案为:9.【点评】此题考查了相反数的定义,只有符号不同的两个数,称为互为相反数,其中的一个数是另一个的相反数.12.(3分)如图,直线a∥b,∠1=70°,则∠2=70°.【考点】JA:平行线的性质.【分析】根据两直线平行同位角相等可得∠1=∠2=70°.【解答】解:∵a∥b.∴∠1=∠2.∵∠1=70°.∴∠2=70°.故答案为:70°.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,同位角相等.13.(3分)茂名滨海新区成立以来,发展势头良好,重点项目投入已超过2000亿元,2000亿元用科学记数法表示为2×103亿元.【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2000=2×103.故答案为:2×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(3分)如图,小丽荡秋千,秋千链子的长OA为2.5米,秋千向两边摆动的角度相同,摆动的水平距离AB为3米,则秋千摆至最高位置时与最低价位置时的高度之差(即CD)为0.5米.【考点】KQ:勾股定理;M3:垂径定理的应用.【分析】由题意知,秋千摆至最低点时,点C为弧AB的中点,由垂径定理知AB ⊥OC,AD=BD=AB=1.5米.再根据勾股定理求得OD即可.【解答】解:∵点C为弧AB的中点,O为圆心由垂径定理知:AB⊥OC,AD=BD=AB=1.5米.在Rt△OAD中,根据勾股定理,OD==2(米).∴CD=OC﹣OD=2.5﹣2=0.5(米);故答案为0.5.【点评】本题考查了垂径定理的应用,勾股定理的应用,将实际问题抽象为几何问题是解题的关键.15.(3分)用边长为1的小正方形摆成如图所示的塔状图形,按此规律,第4次所摆成的周长是16,第n次所摆图形的周长是4n(用关于n的代数式表示)【考点】38:规律型:图形的变化类.【分析】由题意可知:第一次1个小正方形的时候,周长等于1个正方形的周长,是1×4=4;第二次3个小正方形的时候,一共有4条边被遮挡,相当于少了1个小正方形的周长,所搭图形的周长为2个小正方形的周长,是2×4=8;第三次6个小正方形的时候,一共有12条边被遮挡,相当于少了3个小正方形的周长,所搭图形的周长为3个小正方形的周长,是3×4=12;…由此得出第几次搭建的图形的周长就相当于几个小正方形的周长是4n,由此规律解决问题.【解答】解:第一次所摆图形周长是1×4=4;第二次所摆图形的周长是2×4=8;第三次所摆图形的周长是3×4=12;…第n次所摆图形的周长是n×4=4n.第4次所摆成的周长是4×4=16.故答案为:16,4n.【点评】此题考查图形的变化规律可,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律,解决问题.三、解答题(共10小题,满分75分)16.(7分)计算:|﹣2|﹣()0+(﹣1)2014.【考点】2C:实数的运算;6E:零指数幂.【专题】11:计算题.【分析】原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,最后一项利用乘方的意义计算即可得到结果.【解答】解:原式=2﹣1+1=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.(7分)解不等式组:.【考点】CB:解一元一次不等式组.【分析】首先计算出两个不等式的解集,再根据大小小大中间找确定不等式组的解集.【解答】解:由①得:x>1.由②得:x<2.不等式组的解集为:1<x<2.【点评】此题主要考查了一元一次不等式组的解法,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.18.(7分)如图,在正方形ABCD中,点E在AB边上,点F在BC边的延长线上,且AE=CF(1)求证:△AED≌△CFD;(2)将△AED按逆时针方向至少旋转多少度才能与△CFD重合,旋转中心是什么?【考点】KD:全等三角形的判定与性质;LE:正方形的性质;R2:旋转的性质.【分析】(1)由正方形的性质就可以得出AD=CD,∠A=∠DCF=90°,再由SAS就可以得出结论;(2)由∠ADC=90°就可以得出△AED按逆时针方向至少旋转90度才能与△CFD 重合,旋转中心是点D.【解答】解:(1)∵四边形ABCD是正方形.∴AD=CD,∠A=∠DCB=∠ADC=90°.∴∠A=∠DCF=90°.在△AED和△CFD中..∴△AED≌△CFD(SAS);(2)∵∠ADC=90°.∴△AED按逆时针方向至少旋转90度才能与△CFD重合,旋转中心是点D.【点评】本题考查了正方形的性质的运用,全等三角形的判定与性质的运用,旋转的旋转的运用,解答时证明三角形全等是关键.19.(7分)2014年3月31日是全国中小学生安全教育日,某校全体学生参加了“珍爱生命,预防溺水”专题活动,学习了游泳“五不准”,为了了解学生对“五不准”的知晓情况,随机抽取了200名学生作调查,请根据下面两个不完整的统计图解答问题:(1)求在这次调查中,“能答5条”人数的百分比和“仅能答3条”的人数;(2)若该校共有2000名学生,估计该校能答3条不准以上(含3条)的人数.【考点】V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.【分析】(1)能答5条的人数除以总人数得出能答5条”人数的百分比;用总人数乘以“仅能答3条”的人数所占的百分比即可求出“仅能答3条”的人数;(2)用该校的总人数乘以能答3条不准以上(含3条)的人数所占的百分比即可.【解答】解:(1)“能答5条”人数的百分比是×100%=20%.“仅能答3条”的人数是200×40%=80(人);(2)根据题意得:2000×(1﹣5%﹣10%)=1700(人).答:该校能答3条不准以上(含3条)的人数是1700人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(7分)小聪计划中考后参加“我的中国梦”夏令营活动,需要一名家长陪同,爸爸、妈妈用猜拳的方式确定由谁陪同,即爸爸、妈妈都随机作出“石头”、“剪刀”、“布”三种手势(如图)中的一种,规定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,手势相同,不分胜负(1)爸爸一次出“石头”的概率是多少?(2)妈妈一次获胜的概率是多少?请用列表或画树状图的方法加以说明.【考点】X4:概率公式;X6:列表法与树状图法.【分析】(1)由随机作出“石头”、“剪刀”、“布”三种手势,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与妈妈一次获胜的情况,再利用概率公式即可求得答案.【解答】解:(1)根据题意得:爸爸一次出“石头”的概率是:;(2)画树状图得:∵共有9种等可能的结果,妈妈一次获胜的有3种情况.∴妈妈一次获胜的概率是:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)如图,某水上乐园有一个滑梯AB,高度AC为6米,倾斜角为60°,暑期将至,为改善滑梯AB的安全性能,把倾斜角由60°减至30°(1)求调整后的滑梯AD的长度;(2)调整后的滑梯AD比原滑梯AB增加多少米?(精确到0.1米)(参考数据:≈1.41,,≈2.45)【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】本题中两个直角三角形有公共的边,那么可利用这条公共直角边进行求解.(1)求AD长的时候,可在直角三角形ADC内,根据30°的角所对的直角边是斜边的一半求解.(2)在直角三角形ABC中求得AB的长后用AD﹣AB即可求得增加的长度.【解答】解:(1)Rt△ABD中.∵∠ADB=30°,AC=6米.∴AD=2AC=12(m)∴AD的长度为12米;(2)∵Rt△ABC中,AB=AC÷sin60°=4(m).∴AD﹣AB=12﹣4≈5.1(m).∴改善后的滑梯会加长5.1m.【点评】本题主要考查了解直角三角形的应用,利用这两个直角三角形有公共的直角边求解是解决此类题目的基本出发点.22.(8分)如图,矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=2,将矩形OABC向上平移4个单位得到矩形O1A1B1C1.(1)若反比例函数y=和y=的图象分别经过点B、B1,求k1和k2的值;(2)将矩形O1A1B1C1向左平移得到O2A2B2C2,当点O2、B2在反比例函数y=的图象上时,求平移的距离和k3的值.【考点】G5:反比例函数系数k的几何意义;Q2:平移的性质.【分析】(1)将B(3,2)代入y=,即可求出k1的值;将B1(3,6)代入y=,即可求出k2的值;(2)设将矩形O1A1B1C1向左平移a个单位得到O2A2B2C2,根据向左平移,横坐标相减,纵坐标不变得到点O2(﹣a,4),B2(3﹣a,6),由点O2、B2在反比例函数y=的图象上,得出k3=﹣4a=6(3﹣a),解方程即可求出a与k3的值.【解答】解:(1)∵矩形OABC的边OA、OC分别在x轴、y轴的正半轴上,且OA=3,OC=2.∴B(3,2).∵反比例函数y=的图象分别经过点B.∴k1=3×2=6;∵将矩形OABC向上平移4个单位得到矩形O1A1B1C1.∴B1(3,6).∵反比例函数y=的图象经过点B1.∴k2=3×6=18;(2)设将矩形O1A1B1C1向左平移a个单位得到O2A2B2C2,则O2(﹣a,4),B2(3﹣a,6).∵点O2、B2在反比例函数y=的图象上.∴k3=﹣4a=6(3﹣a).解得a=9,k3=﹣36.【点评】本题考查了反比例函数比例系数k的几何意义,反比例函数图象上点的坐标特征,平移的性质,难度适中.利用数形结合与方程思想是解题的关键.23.(8分)网络购物越来越方便快捷,远方的朋友通过网购就可以迅速品尝到茂名的新鲜荔枝,同时也增加了种植户的收入,种植户老张去年将全部荔枝按批发价卖给水果商,收入6万元,今年的荔枝产量比去年增加2000千克,计划全部采用互联网销售,网上销售比去年的批发价高50%,若按此价格售完,今年的收入将达到10.8万元.(1)去年的批发价和今年网上售价分别是多少?(2)若今年老张按(1)中的网上售价销售,则每天的销量相同,20天恰好可将荔枝售完,经调查发现,当网上售价每上升0.1元/千克,每日销量将减少5千克,将网上售价定为多少,才能使日销量收入最大?【考点】HE:二次函数的应用.【分析】(1)设去年的售价为x元,则今年的售价为(1+50%)x元,去年的产量为y千克,则今年的产量为(y+2000)千克,根据条件建立方程组求出其解即可;(2)由(1)的结论可以求出今年的产量,就可以求出日销售量,设日销售利润为W元,网上售价为a元,由利润问题的数量关系表示出W与a的数量关系,由二次函数的性质就可以求出结论.【解答】解:(1)设去年的售价为x元,则今年的售价为(1+50%)x元,去年的产量为y千克,则今年的产量为(y+2000)千克,由题意,得.解得:.则今年的售价为(1+50%)x=9元.答:去年的售价为6元,则今年的售价为9元;(2)由题意,得今年的产量为:10000+2000=12000千克.则网上日销售量为:12000÷20=600千克.设日销售收入为W元,网上售价为a元,由题意,得W=a(600﹣).W=﹣50a2+1050aW=﹣50(a﹣)2+.∴a=﹣50<0.∴a=时,W=.最大∴网上售价定为10.5元,才能使日销量收入最大为元.【点评】本题考查了列二元二次方程组解实际问题的运用,二元二次方程组的解法的运用,二次函数的运用,二次函数的性质的运用,解答时求出二次函数的解析式是关键.24.(8分)如图,已知直线AB经过⊙O上的点C,且OA=OB,CA=CB,OA交⊙O于点E.(1)证明:直线AB与⊙O相切;(2)若AE=a,AB=b,求⊙O的半径;(结果用a,b表示)(3)过点C作弦CD⊥OA于点H,试探究⊙O的直径与OH、OB之间的数量关系,并加以证明.【考点】MR:圆的综合题.【分析】(1)利用段垂直平分线的性质得出OC⊥AB,进而得出答案即可;(2)利用勾股定理得出OC2+AC2=OA2,进而得出⊙O的半径;(3)首先得出△HOC∽△COA,进而得出OC2=OH×OA,即可得出⊙O的直径与OH、OB之间的数量关系.【解答】(1)证明:如图所示:连接CO.∵OA=OB,AC=BC.∴OC⊥AB.∵OC为⊙O的半径.∴直线AB与⊙O相切;(2)解:在直角三角形OAC中用勾股定理就可以了.设半径为r,则OC=r,OA=a+r.AC=AB= b.在Rt△AOC中.OC2+AC2=OA2.则r2+b2=(a+r)2.解得:r=﹣;(3)d2=4OH×OB.理由:∵OA⊥CD,OC⊥AC.∴∠OCA=∠OHC.∵∠HOC=∠COA.∴△HOC∽△COA.∴=.即OC2=OH×OA.∵OC垂直平分AB.∴OA=OB.设直径为d,则OC=.∴()2=OH×OB.即d2=4OH×OB.【点评】此题主要考查了圆的综合以及相似三角形的判定与性质,得出△HOC∽△COA是解题关键.25.(8分)如图,在△ABC中,AB=AC,且点A的坐标为(﹣3,0),点C坐标为(0,),点B在y轴的负半轴上,抛物线y=﹣x2+bx+c经过点A和点C(1)求b,c的值;(2)在抛物线的对称轴上是否存在点Q,使得△ACQ为等腰三角形?若存在,直接写出点Q的坐标;若不存在,请说明理由(3)点P是线段AO上的一个动点,过点P作y轴的平行线交抛物线于点M,交AB于点E,探究:当点P在什么位置时,四边形MEBC是平行四边形,此时,请判断四边形AECM的形状,并说明理由.【考点】HF:二次函数综合题.【分析】(1)直接利用待定系数法求出抛物线解析式得出即可;(2)利用当AQ=QC,以及当AC=Q1C时,当AC=CQ2=2时,当AQ3=AC=2时,分别得出符合题意的答案即可;(3)利用平行四边形的性质首先得出BC的长,进而表示出线段ME的长,进而求出答案,再利用梯形的判定得出答案.【解答】解:(1)∵点A的坐标为(﹣3,0),点C坐标为(0,),点B在y 轴的负半轴上,抛物线y=﹣x2+bx+c经过点A和点C.∴.解得:;(2)在抛物线的对称轴上存在点Q,使得△ACQ为等腰三角形.当AQ=QC,如图1.由(1)得:y=﹣x2﹣x+=﹣(x+1)2+.即抛物线对称轴为:直线x=﹣1,则QO=1,AQ=2.∵CO=,QO=1.∴QC=2.∴AQ=QC.∴Q(﹣1,0);当AC=Q1C时,过点C作CF⊥直线x=﹣1,于一点F.则FC=1.∵AO=3,CO=.∴AC=2.∴Q1C=2.∴FQ1=,故Q1的坐标为:(﹣1,+);当AC=CQ2=2时,由Q1的坐标可得;Q2(﹣1,﹣+);当AQ3=AC=2时,则QQ3=2,故Q3(﹣1,﹣2),根据对称性可知Q4(﹣1,2)(Q4和Q3关于x轴对称)也符合题意.综上所述:符合题意的Q点的坐标为:(﹣1,0);(﹣1,+);(﹣1,﹣+);(﹣1,﹣2),(﹣1,2);(3)如图2所示,当四边形MEBC是平行四边形,则ME=BC.∵AB=AC,且点A的坐标为(﹣3,0),点C坐标为(0,).∴B(0,﹣).则BC=2.设直线AB的解析式为:y=kx+e.故.解得:.故直线AB的解析式为:y=﹣x﹣.设E(x,﹣x﹣),M(x,﹣x2﹣x+).故ME=﹣x2﹣x++x+=﹣x2﹣x+2=2.解得:x1=0(不合题意舍去),x2=﹣1.故P点在(﹣1,0),此时四边形MEBC是平行四边形;四边形AECM是梯形.理由:∵四边形MEBC是平行四边形.∴MC∥AB.∵CO=,AO=3.∴∠CAO=30°.∵AC=AB,AO⊥BC.∴∠BAO=30°.∴∠BAC=60°.∴△ABC是等边三角形.∵AC=BC,ME=BC,所以AC=ME.∴四边形AECM是等腰梯形.【点评】此题主要考查了二次函数综合应用以及平行四边形的性质和梯形的判定、等腰三角形的判定等知识,利用分类讨论以及数形结合得出是解题关键.。

往年中招数学试题及答案

往年中招数学试题及答案

往年中招数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. πC. √4D. 0.52. 如果一个直角三角形的两条直角边分别是3和4,那么斜边的长度是:A. 5B. 6C. 7D. 83. 已知方程x^2 - 5x + 6 = 0,那么x的值是:A. 2B. 3C. 1和2D. 2和34. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 8D. 45. 以下哪个是二次根式?A. √3B. 3√2C. √(-1)D. √(2x)6. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π7. 以下哪个是一次函数?A. y = x^2B. y = 3x + 5C. y = √xD. y = 1/x8. 如果一个数的绝对值是2,那么这个数可以是:A. 2B. -2C. 2或-2D. 09. 一个正数的倒数是1/4,那么这个数是:A. 4B. 1/4C. 1/2D. 210. 下列哪个是不等式的解集?A. x > 5B. x ≤ 3C. x = 2D. x ≠ 0答案:1. B 2. A 3. C 4. A 5. D 6. B 7. B 8. C 9. A 10. B二、填空题(每题2分,共20分)11. 一个数的相反数是-5,那么这个数是______。

12. 如果一个数的立方根是2,那么这个数是______。

13. 一个数的平方等于25,那么这个数可以是______或______。

14. 一个数的绝对值是5,那么这个数可以是______或______。

15. 一个圆的直径是10,那么它的半径是______。

16. 如果一个三角形的内角和是180°,那么一个直角三角形的两个锐角的和是______。

17. 一个数的平方根是2或-2,那么这个数是______。

18. 如果一个数的倒数是1/3,那么这个数是______。

历届中考数学试卷带答案

历届中考数学试卷带答案

一、选择题1. 若方程2x-3=0的解是x=1,则方程4x-6=0的解是()A. x=2B. x=1C. x=0D. x=3答案:B解析:由题意可知,方程2x-3=0的解是x=1,即2×1-3=0。

根据方程的性质,方程4x-6=0与方程2x-3=0的解相同,所以4x-6=0的解也是x=1。

2. 在等腰三角形ABC中,底边BC=8,腰AB=AC=10,则三角形ABC的周长是()A. 26B. 24C. 22D. 20答案:A解析:由题意可知,三角形ABC是等腰三角形,底边BC=8,腰AB=AC=10。

根据等腰三角形的性质,周长=底边+腰×2,所以三角形ABC的周长=8+10×2=26。

3. 若|a|=3,|b|=5,则|a+b|的最大值是()A. 8B. 10C. 12D. 15答案:B解析:由题意可知,|a|=3,|b|=5。

根据绝对值的性质,|a+b|≤|a|+|b|,所以|a+b|的最大值是|a|+|b|=3+5=10。

二、填空题1. 若方程2x+3=7的解是x=2,则方程3x-1=?的解是x=?答案:x=4,x=2解析:由题意可知,方程2x+3=7的解是x=2,即2×2+3=7。

根据方程的性质,方程3x-1=?与方程2x+3=7的解相同,所以3x-1=?的解也是x=2。

将x=2代入方程3x-1=?中,得3×2-1=5,所以3x-1=5。

2. 在直角坐标系中,点P(-2,3)关于y轴的对称点是?答案:点P关于y轴的对称点是(2,3)解析:在直角坐标系中,点P(-2,3)关于y轴的对称点坐标是(-x,y),其中x为点P的横坐标,y为点P的纵坐标。

所以点P关于y轴的对称点是(-(-2),3),即(2,3)。

三、解答题1. 已知一元二次方程ax^2+bx+c=0(a≠0)的解为x1、x2,求证:x1+x2=-b/a。

证明:已知一元二次方程ax^2+bx+c=0(a≠0)的解为x1、x2,根据韦达定理,有:x1+x2=-b/ax1x2=c/a要证明x1+x2=-b/a,只需证明x1+x2=-b/a成立即可。

历年全国中考数学试题及答案

历年全国中考数学试题及答案

历年全国中考数学试题及答案一、选择题1. 以下哪个选项是正确的整数比例?A. 3:5B. 0.6:0.4C. 1.2:2.4D. 5:02. 已知一个等差数列的前三项分别是 2x-1,3x+1,4x+3,求 x 的值。

A. 1B. 2C. 3D. 43. 一个圆的半径是 5 厘米,求这个圆的面积(圆周率取 3.14)。

A. 78.5 平方厘米B. 157 平方厘米C. 78.5 平方米D. 157 平方米4. 下列哪个函数是奇函数?A. f(x) = x^2B. f(x) = x^3C. f(x) = xD. f(x) = sin(x)5. 一个三角形的三个内角分别是 45 度、60 度和 75 度,这个三角形是什么三角形?A. 等腰三角形B. 直角三角形C. 钝角三角形D. 锐角三角形二、填空题6. 若 a:b = 2:3,b:c = 5:7,则 a:b:c = _______。

7. 一个等比数列的前三项分别是 2,6,18,这三项的和是 _______。

8. 一个正方形的边长是 6 厘米,求这个正方形的周长和面积。

周长 = _______ 厘米面积 = _______ 平方厘米9. 一个圆的直径是 10 厘米,求这个圆的半径、周长和面积。

半径 = _______ 厘米周长 = _______ 厘米面积 = _______ 平方厘米10. 已知一个三角形的两边长分别是 5 厘米和 7 厘米,夹角是 60 度,求这个三角形的面积。

面积 = _______ 平方厘米三、解答题11. 一个等差数列的前五项和是 35,首项是 3,求这个数列的公差和第五项。

12. 一个圆的半径是 8 厘米,求这个圆的周长和面积,并将结果表示为分数形式。

13. 一个三角形的三个顶点分别是 A(2,3),B(5,7),C(8,3),求这个三角形的周长和面积。

14. 一个等比数列的前三项分别是 a, ar, ar^2,其中 r 不为 1,如果这个数列的前五项的和是 31,求 a 和 r 的值。

往年的中考数学试卷及答案

往年的中考数学试卷及答案

一、选择题(每小题3分,共30分)1. 已知函数f(x) = x^2 - 4x + 3,其图像的对称轴为:A. x = 2B. x = 1C. x = 3D. x = -12. 在等腰三角形ABC中,底边BC = 6cm,腰AB = AC = 8cm,则三角形ABC的周长为:A. 16cmB. 20cmC. 24cmD. 28cm3. 下列方程中,无实数解的是:A. x^2 - 2x + 1 = 0B. x^2 + 2x + 1 = 0C. x^2 - 4x + 4 = 0D. x^2 + 4x + 4 = 04. 已知一元二次方程ax^2 + bx + c = 0(a ≠ 0)的根的判别式为Δ = b^2 - 4ac,则以下说法正确的是:A. Δ > 0,方程有两个不相等的实数根B. Δ = 0,方程有两个相等的实数根C. Δ < 0,方程有两个不相等的实数根D. Δ ≥ 0,方程有两个实数根5. 在平面直角坐标系中,点P(2, -3)关于y轴的对称点为:A. (2, 3)B. (-2, -3)C. (-2, 3)D. (2, -3)6. 下列函数中,在定义域内是增函数的是:A. f(x) = x^2B. f(x) = -x^2C. f(x) = x^3D. f(x) = -x^37. 在等边三角形ABC中,若∠BAC = 60°,则三角形ABC的面积为:A. √3B. 3C. 6D. 98. 下列各数中,不是有理数的是:A. √4B. -√9C. 0.25D. π9. 下列方程中,最简公分母是x(x - 1)(x + 1)的是:A. 2/x + 3/(x - 1) - 4/(x + 1)B. 1/x + 2/(x - 1) - 3/(x + 1)C. 3/x - 2/(x - 1) + 1/(x + 1)D. 4/x + 3/(x - 1) - 2/(x + 1)10. 下列各式中,正确的是:A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2二、填空题(每小题4分,共40分)11. 已知方程2x - 5 = 3,则x = ________。

历年中考数学试卷真题答案

历年中考数学试卷真题答案

标题:历年中考数学试卷真题答案解析一、选择题答案解析1. 题目:若a、b、c是等差数列,且a+b+c=12,a+c=8,则b的值为多少?答案:b=4解析:由等差数列的性质,可得a+c=2b,代入已知条件a+c=8,得2b=8,解得b=4。

2. 题目:在直角坐标系中,点A(2,3)关于y轴的对称点为B,则B的坐标为?答案:B(-2,3)解析:点A关于y轴的对称点B,其横坐标为A横坐标的相反数,纵坐标与A相同,即B(-2,3)。

3. 题目:下列哪个图形是轴对称图形?答案:D解析:观察四个选项,只有D选项的图形是轴对称的。

二、填空题答案解析1. 题目:若x^2-5x+6=0,则x的值为多少?答案:x=2或x=3解析:将方程x^2-5x+6=0因式分解,得(x-2)(x-3)=0,解得x=2或x=3。

2. 题目:在三角形ABC中,∠A=60°,∠B=45°,则∠C的度数为多少?答案:∠C=75°解析:三角形内角和为180°,∠A+∠B+∠C=180°,代入已知条件,得60°+45°+∠C=180°,解得∠C=75°。

3. 题目:若函数y=kx+b(k≠0)的图像经过点(1,2),则k与b的值分别为多少?答案:k=1,b=1解析:将点(1,2)代入函数y=kx+b,得2=k1+b,解得k=1,b=1。

三、解答题答案解析1. 题目:已知函数y=2x+1,求该函数在x轴上的截距。

答案:函数在x轴上的截距为-1/2解析:当y=0时,代入函数y=2x+1,得0=2x+1,解得x=-1/2,即函数在x轴上的截距为-1/2。

2. 题目:在直角坐标系中,点P(a,b)在直线y=x上,求点P到原点O的距离。

答案:点P到原点O的距离为√(a^2+b^2)解析:由于点P在直线y=x上,故a=b,根据两点间的距离公式,得点P到原点O的距离为√(a^2+b^2)。

历年中考数学试题题库(含解析)

历年中考数学试题题库(含解析)

历年中考数学试题题库(含解析)一、选择题(共10小题,每小题3分,满分30分)1.(3分)a(a≠0)的相反数是()A.﹣a B.a2C.|a|D.【考点】14:相反数.【分析】直接根据相反数的定义求解.【解答】解:a的相反数为﹣a.故选:A.【点评】本题考查了相反数:a的相反数为﹣a,正确掌握相反数的定义是解题关键.2.(3分)下列图形中,是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【分析】根据中心对称图形的定义逐个判断即可.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选:C.【点评】本题考查了对中心对称图形的定义,能熟知中心对称图形的定义是解此题的关键.3.(3分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tanA=()A.B.C.D.【考点】T1:锐角三角函数的定义.【专题】24:网格型.【分析】在直角△ABC中利用正切的定义即可求解.【解答】解:在直角△ABC中,∵∠ABC=90°.∴tanA==.故选:D.【点评】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4.(3分)下列运算正确的是()A.5ab﹣ab=4 B.+=C.a6÷a2=a4D.(a2b)3=a5b3【考点】35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法;6B:分式的加减法.【专题】11:计算题.【分析】A、原式合并同类项得到结果,即可做出判断;B、原式通分并利用同分母分式的加法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方与积的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、原式=4ab,故A选项错误;B、原式=,故B选项错误;C、原式=a4,故C选项正确;D、原式=a6b3,故D选项错误.故选:C.【点评】此题考查了同底数幂的乘除法,合并同类项,以及完全平方公式,熟练掌握公式及法则是解本题的关键.5.(3分)已知⊙O1和⊙O2的半径分别为2cm和3cm,若O1O2=7cm,则⊙O1和⊙O2的位置关系是()A.外离B.外切C.内切D.相交【考点】MJ:圆与圆的位置关系.【分析】由⊙O1与⊙O2的半径分别为3cm、2cm,且圆心距O1O2=7cm,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.【解答】解:∵⊙O1与⊙O2的半径分别为3cm、2cm,且圆心距O1O2=7cm.又∵3+2<7.∴两圆的位置关系是外离.故选:A.【点评】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.6.(3分)计算,结果是()A.x﹣2 B.x+2 C.D.【考点】53:因式分解﹣提公因式法;66:约分.【专题】11:计算题;44:因式分解.【分析】首先利用平方差公式分解分子,再约去分子分母中得公因式.【解答】解:==x+2.故选:B.【点评】此题主要考查了约分,关键是正确把分子分解因式.7.(3分)在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是7,10,9,8,7,9,9,8,对这组数据,下列说法正确的是()A.中位数是8 B.众数是9 C.平均数是8 D.极差是7【考点】W2:加权平均数;W4:中位数;W5:众数;W6:极差.【专题】11:计算题.【分析】由题意可知:总数个数是偶数的,按从小到大的顺序,取中间两个数的平均数为中位数,则中位数为8.5;一组数据中,出现次数最多的数就叫这组数据的众数,则这组数据的众数为9;这组数据的平均数=(7+10+9+8+7+9+9+8)÷8=8.375;一组数据中最大数据与最小数据的差为极差,据此求出极差为3.【解答】解:A、按从小到大排列为:7,7,8,8,9,9,9,10,中位数是:(8+9)÷2=8.5,故A选项错误;B、9出现了3次,次数最多,所以众数是9,故B选项正确;C、平均数=(7+10+9+8+7+9+9+8)÷8=8.375,故C选项错误;D、极差是:10﹣7=3,故D选项错误.故选:B.【点评】考查了中位数、众数、平均数与极差的概念,是基础题,熟记定义是解决本题的关键.8.(3分)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD,转动这个四边形,使它形状改变,当∠B=90°时,如图1,测得AC=2,当∠B=60°时,如图2,AC=()A.B.2 C.D.2【考点】KM:等边三角形的判定与性质;KU:勾股定理的应用;LE:正方形的性质.【分析】图1中根据勾股定理即可求得正方形的边长,图2根据有一个角是60°的等腰三角形是等边三角形即可求得.【解答】解:如图1.∵AB=BC=CD=DA,∠B=90°.∴四边形ABCD是正方形.连接AC,则AB2+BC2=AC2.∴AB=BC===.如图2,∠B=60°,连接AC.∴△ABC为等边三角形.∴AC=AB=BC=.【点评】本题考查了正方形的性质,勾股定理以及等边三角形的判定和性质,利用勾股定理得出正方形的边长是关键.9.(3分)已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是()A.y1+y2>0 B.y1+y2<0 C.y1﹣y2>0 D.y1﹣y2<0【考点】F4:正比例函数的图象;F8:一次函数图象上点的坐标特征.【分析】根据k<0,正比例函数的函数值y随x的增大而减小解答.【解答】解:∵直线y=kx的k<0.∴函数值y随x的增大而减小.∵x1<x2.∴y1>y2.∴y1﹣y2>0.故选:C.【点评】本题考查了正比例函数图象上点的坐标特征,主要利用了正比例函数的增减性.10.(3分)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG、DE,DE和FG相交于点O,设AB=a,CG=b(a>b).下列结论:①△BCG ≌△DCE;②BG⊥DE;③=;④(a﹣b)2•S△EFO=b2•S△DGO.其中结论正确的个数是()A.4个B.3个C.2个D.1个【考点】KD:全等三角形的判定与性质;LE:正方形的性质;S9:相似三角形的判定与性质.【专题】16:压轴题.【分析】由四边形ABCD和四边形CEFG是正方形,根据正方形的性质,即可得BC=DC,CG=CE,∠BCD=∠ECG=90°,则可根据SAS证得①△BCG≌△DCE;然后延长BG交DE于点H,根据全等三角形的对应角相等,求得∠CDE+∠DGH=90°,则可得②BH⊥DE.由△DGF与△DCE相似即可判定③错误,由△GOD与△FOE相似即可求得④.【解答】证明:①∵四边形ABCD和四边形CEFG是正方形.∴BC=DC,CG=CE,∠BCD=∠ECG=90°.∴∠BCG=∠DCE.在△BCG和△DCE中..∴△BCG≌△DCE(SAS).故①正确;②延长BG交DE于点H.∵△BCG≌△DCE.∴∠CBG=∠CDE.又∵∠CBG+∠BGC=90°.∴∠CDE+∠DGH=90°.∴∠DHG=90°.∴BH⊥DE;∴BG⊥DE.故②正确;③∵四边形GCEF是正方形.∴GF∥CE.∴=.∴=是错误的.故③错误;④∵DC∥EF.∴∠GDO=∠OEF.∵∠GOD=∠FOE.∴△OGD∽△OFE.∴=()2=()2=.∴(a﹣b)2•S△EFO=b2•S△DGO.故④正确;故选:B.【点评】此题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定和性质,直角三角形的判定和性质.二、填空题(共6小题,每小题3分,满分18分)11.(3分)△ABC中,已知∠A=60°,∠B=80°,则∠C的外角的度数是140°.【考点】K8:三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【解答】解:∵∠A=60°,∠B=80°.∴∠C的外角=∠A+∠B=60°+80°=140°.故答案为:140.【点评】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.12.(3分)已知OC是∠AOB的平分线,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为点D、E,PD=10,则PE的长度为10.【考点】KF:角平分线的性质.【分析】根据角平分线上的点到角的两边距离相等可得PE=PD.【解答】解:∵OC是∠AOB的平分线,PD⊥OA,PE⊥OB.∴PE=PD=10.故答案为:10.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,熟记性质是解题的关键,作出图形更形象直观.13.(3分)代数式有意义时,x应满足的条件为x≠±1.【考点】62:分式有意义的条件.【分析】根据分式有意义,分母等于0列出方程求解即可.【解答】解:由题意得,|x|﹣1≠0.解得x≠±1.故答案为:x≠±1.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.14.(3分)一个几何体的三视图如图,根据图示的数据计算该几何体的全面积为24π.(结果保留π)【考点】MP:圆锥的计算;U3:由三视图判断几何体.【分析】根据圆锥侧面积公式首先求出圆锥的侧面积,再求出底面圆的面积,即可得出表面积.【解答】解:∵如图所示可知,圆锥的高为4,底面圆的直径为6.∴圆锥的母线为:5.∴根据圆锥的侧面积公式:πrl=π×3×5=15π.底面圆的面积为:πr2=9π.∴该几何体的表面积为24π.故答案为:24π.【点评】此题主要考查了圆锥侧面积公式,根据已知得母线长,再利用圆锥侧面积公式求出是解决问题的关键.15.(3分)已知命题:“如果两个三角形全等,那么这两个三角形的面积相等.”写出它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题(填“真”或“假”).【考点】O1:命题与定理.【分析】交换原命题的题设和结论即可得到该命题的逆命题.【解答】解:“如果两个三角形全等,那么这两个三角形的面积相等.”写成它的逆命题:如果两个三角形的面积相等,那么这两个三角形全等,该逆命题是假命题.故答案为:如果两个三角形的面积相等,那么这两个三角形全等;假.【点评】本题考查逆命题的概念,以及判断真假命题的能力以及全等三角形的判定和性质.16.(3分)若关于x的方程x2+2mx+m2+3m﹣2=0有两个实数根x1、x2,则x1(x2+x1)+x22的最小值为.【考点】AB:根与系数的关系;H7:二次函数的最值.【专题】16:压轴题;45:判别式法.【分析】由题意可得△=b2﹣4ac≥0,然后根据不等式的最小值计算即可得到结论.【解答】解:由题意知,方程x2+2mx+m2+3m﹣2=0有两个实数根.则△=b2﹣4ac=4m2﹣4(m2+3m﹣2)=8﹣12m≥0.∴m≤.∵x1(x2+x1)+x22=(x2+x1)2﹣x1x2=(﹣2m)2﹣(m2+3m﹣2)=3m2﹣3m+2=3(m2﹣m+﹣)+2=3(m﹣)2 +;∴当m=时,有最小值;∵<.∴m=成立;∴最小值为;故答案为:.【点评】本题考查了一元二次方程根与系数关系,考查了一元二次不等式的最值问题.总结一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.三、解答题(共9小题,满分102分)17.(9分)解不等式:5x﹣2≤3x,并在数轴上表示解集.【考点】C4:在数轴上表示不等式的解集;C6:解一元一次不等式.【分析】移项,合并同类项,系数化成1即可.【解答】解:5x﹣2≤3x.移项,得5x﹣3x≤2.合并同类项,得2x≤2.系数化成1,x≤1.在数轴上表示为:.【点评】本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,注意:解一元一次不等式的步骤是:去分母,去括号,移项,合并同类项,系数化成1.18.(9分)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB,CD 分别相交于点E、F,求证:△AOE≌△COF.【考点】KB:全等三角形的判定;L5:平行四边形的性质.【专题】14:证明题.【分析】根据平行四边形的性质得出OA=OC,AB∥CD,推出∠EAO=∠FCO,证出△AOE≌△COF即可.【解答】证明:∵四边形ABCD是平行四边形.∴OA=OC,AB∥CD.∴∠EAO=∠FCO.在△AOE和△COF中..∴△AOE≌△COF(ASA).【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的判定的应用,关键是根据平行四边形的性质得出AO=CO.19.(10分)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2=6,求A的值.【考点】21:平方根;4J:整式的混合运算—化简求值.【专题】11:计算题.【分析】(1)先算乘法,再合并同类项即可;(2)求出x+1的值,再整体代入求出即可.【解答】解:(1)A=(x+2)2+(1﹣x)(2+x)﹣3=x2+4x+4+2+x﹣2x﹣x2﹣3=3x+3;(2)∵(x+1)2=6.∴x+1=±.∴A=3x+3=3(x+1)=±3.∴A=±3.【点评】本题考查了整式的混合运算和求值的应用,主要考查学生的化简和计算能力,题目比较好.20.(10分)某校初三(1)班50名学生需要参加体育“五选一”自选项目测试,班上学生所报自选项目的情况统计表如下:自选项目人数频率立定跳远9 0.18三级蛙跳12 a一分钟跳绳8 0.16投掷实心球 b 0.32推铅球 5 0.10合计50 1(1)求a,b的值;(2)若将各自选项目的人数所占比例绘制成扇形统计图,求“一分钟跳绳”对应扇形的圆心角的度数;(3)在选报“推铅球”的学生中,有3名男生,2名女生,为了了解学生的训练效果,从这5名学生中随机抽取两名学生进行推铅球测试,求所抽取的两名学生中有一名女生的概率.【考点】!6:简单的枚举法;VB:扇形统计图;X7:游戏公平性.【专题】27:图表型.【分析】(1)根据表格求出a与b的值即可;(2)根据表示做出扇形统计图,求出“一分钟跳绳”对应扇形的圆心角的度数即可;(3)列表得出所有等可能的情况数,找出抽取的两名学生中至多有一名女生的情况,即可求出所求概率.【解答】解:(1)根据题意得:a=1﹣(0.18+0.16+0.32+0.10)=0.24;b=×0.32=16;(2)作出扇形统计图,如图所示:根据题意得:360°×0.16=57.6°;(3)男生编号为A、B、C,女生编号为D、E.由枚举法可得:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共10种,其中DE为女女组合.∴抽取的两名学生中至多有一名女生的概率为:.【点评】此题考查了游戏公平性,扇形统计图,列表法与树状图法,弄清题意是解本题的关键.21.(12分)已知一次函数y=kx﹣6的图象与反比例函数y=﹣的图象交于A、B两点,点A的横坐标为2.(1)求k的值和点A的坐标;(2)判断点B所在象限,并说明理由.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先把x=2代入反比例函数解析式得到y=﹣k,则A点坐标表示为(2,﹣k),再把A(2,﹣k)代入y=kx﹣6可计算出k,从而得到A点坐标;(2)由(1)得到一次函数与反比例函数的解析式分别为y=2x﹣6,y=﹣,根据反比例函数与一次函数的交点问题,解方程组即可得到B点坐标.【解答】解:(1)把x=2代入y=﹣.得:y=﹣k.把A(2,﹣k)代入y=kx﹣6.得:2k﹣6=﹣k.解得k=2.所以一次函数与反比例函数的解析式分别为y=2x﹣6,y=﹣.则A点坐标为(2,﹣2);(2)B点在第四象限.理由如下:一次函数与反比例函数的解析式分别为y=2x﹣6,y=﹣.解方程组.得:或.所以B点坐标为(1,﹣4).所以B点在第四象限.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.22.(12分)从广州到某市,可乘坐普通列车或高铁,已知高铁的行驶路程是400千米,普通列车的行驶路程是高铁的行驶路程的1.3倍.(1)求普通列车的行驶路程;(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求高铁的平均速度.【考点】B7:分式方程的应用.【专题】127:行程问题.【分析】(1)根据高铁的行驶路程是400千米和普通列车的行驶路程是高铁的行驶路程的1.3倍,两数相乘即可得出答案;(2)设普通列车平均速度是x千米/时,根据高铁所需时间比乘坐普通列车所需时间缩短3小时,列出分式方程,然后求解即可;【解答】解:(1)根据题意得:400×1.3=520(千米).答:普通列车的行驶路程是520千米;(2)设普通列车平均速度是x千米/时,则高铁平均速度是2.5x千米/时,根据题意得:﹣=3.解得:x=120.经检验x=120是原方程的解.则高铁的平均速度是120×2.5=300(千米/时).答:高铁的平均速度是300千米/时.【点评】此题考查了分式方程的应用,关键是分析题意,找到合适的数量关系列出方程,解分式方程时要注意检验.23.(12分)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中.①求证:=;②求点D到BC的距离.【考点】KU:勾股定理的应用;N3:作图—复杂作图;SA:相似三角形的应用.【专题】13:作图题;14:证明题.【分析】(1)先作出AC的中垂线,再画圆.(2)边接AE,AE是BC的中垂线,∠DAE=∠CAE,得出=;(3)利用△BDE∽△BCA求出BD,再利用余弦求出BM,用勾股定理求出DM.【解答】解:(1)如图(2)如图,连接AE.∵AC为直径.∴∠AEC=90°.∵AB=AC.∴∠DAE=∠CAE.∴=;(3)如图,连接AE,DE,作DM⊥BC交BC于点M.∵AC为直径.∴∠AEC=90°.∵AB=AC=4,cosC=.∴EC=BE=4.∴BC=8.∵点A、D、E、C共圆∴∠ADE+∠C=180°.又∵∠ADE+∠BDE=180°.∴∠BDE=∠C.∴△BDE∽△BCA.∴=,即BD•BA=BE•BC∴BD×4=4×8∴BD=.∵∠B=∠C∴cos∠C=cos∠B=.∴=.∴BM=.∴DM===.【点评】本题主要考查了复杂的作图,相似三角形以及勾股定理的应用,解题的关键是运用△BDE∽△BCA求出线段的长.24.(14分)已知平面直角坐标系中两定点A(﹣1,0)、B(4,0),抛物线y=ax2+bx ﹣2(a≠0)过点A,B,顶点为C,点P(m,n)(n<0)为抛物线上一点.(1)求抛物线的解析式和顶点C的坐标;(2)当∠APB为钝角时,求m的取值范围;(3)若m>,当∠APB为直角时,将该抛物线向左或向右平移t(0<t<)个单位,点C、P平移后对应的点分别记为C′、P′,是否存在t,使得首位依次连接A、B、P′、C′所构成的多边形的周长最短?若存在,求t的值并说明抛物线平移的方向;若不存在,请说明理由.【考点】HF:二次函数综合题.【专题】153:代数几何综合题;16:压轴题;41:待定系数法.【分析】(1)待定系数法求解析式即可,求得解析式后转换成顶点式即可.(2)因为AB为直径,所以当抛物线上的点P在⊙C的内部时,满足∠APB为钝角,所以﹣1<m<0,或3<m<4.(3)左右平移时,使A′D+DB″最短即可,那么作出点C′关于x轴对称点的坐标为C″,得到直线P″C″的解析式,然后把A点的坐标代入即可.【解答】解:(1)∵抛物线y=ax2+bx﹣2(a≠0)过点A,B.∴.解得:.∴抛物线的解析式为:y=x2﹣x﹣2;∵y=x2﹣x﹣2=(x﹣)2﹣.∴C(,﹣).(2)如图1,以AB为直径作圆M,则抛物线在圆内的部分,能使∠APB为钝角.∴M(,0),⊙M的半径=.∵P′是抛物线与y轴的交点.∴OP′=2.∴MP′==.∴P′在⊙M上.∴P′的对称点(3,﹣2).∴当﹣1<m<0或3<m<4时,∠APB为钝角.(3)方法一:存在;抛物线向左或向右平移,因为AB、P′C′是定值,所以A、B、P′、C′所构成的多边形的周长最短,只要AC′+BP′最小;第一种情况:抛物线向右平移,AC′+BP′>AC+BP.第二种情况:向左平移,如图2所示,由(2)可知P(3,﹣2).又∵C(,﹣)∴C'(﹣t,﹣),P'(3﹣t,﹣2).∵AB=5.∴P″(﹣2﹣t,﹣2).要使AC′+BP′最短,只要AC′+AP″最短即可.点C′关于x轴的对称点C″(﹣t,).设直线P″C″的解析式为:y=kx+b..解得∴直线y=x+t+.当P″、A、C″在一条直线上时,周长最小.∴﹣+t+=0∴t=.故将抛物线向左平移个单位连接A、B、P′、C′所构成的多边形的周长最短.方法二:∵AB、P′C′是定值.∴A、B、P′、C′所构成的四边形的周长最短,只需AC′+BP′最小.①若抛物线向左平移,设平移t个单位.∴C′(﹣t,﹣),P″(﹣2﹣t,﹣2).∵四边形P″ABP′为平行四边形.∴AP″=BP′.AC′+BP′最短,即AC′+AP″最短.C′关于x轴的对称点为C″(﹣t,).C″,A,P″三点共线时,AC′+AP″最短.K AC′=K AP″,.∴t=.②若抛物线向右平移,同理可得t=﹣.∴将抛物线向左平移个单位时,A、B、P′、C′所构成的多边形周长最短.【点评】本题考查了待定系数法求解析式,顶点坐标,二次函数的对称性,以及距离之和最小的问题,涉及考点较多,有一定的难度.25.(14分)如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=3,BC=4,CD=5.点E为线段CD上一动点(不与点C重合),△BCE关于BE的轴对称图形为△BFE,连接CF.设CE=x,△BCF的面积为S1,△CEF的面积为S2.(1)当点F落在梯形ABCD的中位线上时,求x的值;(2)试用x表示,并写出x的取值范围;(3)当△BFE的外接圆与AD相切时,求的值.【考点】LO:四边形综合题.【专题】152:几何综合题;16:压轴题.【分析】(1)利用梯形中位线的性质,证明△BCF是等边三角形;然后解直角三角形求出x的值;(2)利用相似三角形(或射影定理)求出线段EG与BE的比,然后利用=求解;(3)依题意作出图形,当△BFE的外接圆与AD相切时,线段BE的中点O成为圆心.作辅助线,如答图3,构造一对相似三角形△OMP∽△ADH,利用比例关系列方程求出x的值,进而求出的值.【解答】解:(1)当点F落在梯形ABCD中位线上时.如答图1,过点F作出梯形中位线MN,分别交AD、BC于点M、N.由题意,可知ABCD为直角梯形,则MN⊥BC,且BN=CN=BC.由轴对称性质,可知BF=BC.∴BN=BF.∴∠BFN=30°,∴∠FBC=60°.∴△BFC为等边三角形.∴CF=BC=4,∠FCB=60°.∴∠ECF=30°.设BE、CF交于点G,由轴对称性质可知CG=CF=2,CF⊥BE.在Rt△CEG中,x=CE===.∴当点F落在梯形ABCD的中位线上时,x的值为.(2)如答图2,由轴对称性质,可知BE⊥CF.∵∠GEC+∠ECG=90°,∠GEC+∠CBE=90°.∴∠GCE=∠CBE.又∵∠CGE=∠ECB=90°.∴Rt△BCE∽Rt△CGE.∴.∴CE2=EG•BE ①同理可得:BC2=BG•BE ②①÷②得:==.∴====.∴=(0<x≤5).(3)当△BFE的外接圆与AD相切时,依题意画出图形,如答图3所示.设圆心为O,半径为r,则r=BE=.设切点为P,连接OP,则OP⊥AD,OP=r=.过点O作梯形中位线MN,分别交AD、BC于点M、N.则OM为梯形ABED的中位线,∴OM=(AB+DE)=(3+5﹣x)=(8﹣x).过点A作AH⊥CD于点H,则四边形ABCH为矩形.∴AH=BC=4,CH=AB=3,∴DH=CD﹣CH=2.在Rt△ADH中,由勾股定理得:AD===2.∵MN∥CD.∴∠ADH=∠OMP,又∵∠AHD=∠OPM=90°.∴△OMP∽△ADH.∴,即.化简得:16﹣2x=.两边平方后,整理得:x2+64x﹣176=0.解得:x1=﹣32+20,x2=﹣32﹣20(舍去)∵0<﹣32+20<5∴x=﹣32+20符合题意.∴==139﹣80.【点评】本题是几何综合题,考查了直角梯形、相似、勾股定理、等边三角形、矩形、中位线、圆的切线、解方程、解直角三角形等知识点,考查了轴对称变换与动点型问题,涉及考点较多,有一定的难度.。

近十年中考数学试卷答案

近十年中考数学试卷答案

1. 题目:下列数中,有理数是()- A. √9- B. √-9- C. π- D. √2答案:A解析:有理数是可以表示为两个整数之比的数。

√9等于3,是一个整数,因此是有理数。

2. 题目:若a² + b² = 25,且a + b = 0,则a的值为()- A. 5- B. -5- C. 0- D. ±5答案:D解析:由a + b = 0,得a = -b。

将a代入a² + b² = 25,得(-b)² + b² = 25,即2b² = 25,解得b = ±5,所以a = ±5。

3. 题目:下列函数中,是奇函数的是()- A. y = x²- B. y = |x|- C. y = x³- D. y = x答案:C解析:奇函数满足f(-x) = -f(x)。

只有y = x³满足这个条件。

4. 题目:若sinθ = 0.6,则cosθ的值为()答案:√(1 - sin²θ) = √(1 - 0.36) = √0.64 = 0.8解析:根据三角恒等式sin²θ + cos²θ = 1,可以求得cosθ的值。

5. 题目:若等腰三角形的底边长为8cm,腰长为10cm,则该三角形的面积为()答案:40cm²解析:作高,将等腰三角形分成两个相等的直角三角形。

每个直角三角形的底边长为4cm,腰长为10cm,高可以通过勾股定理求得,然后计算面积。

三、解答题6. 题目:解一元二次方程:x² - 5x + 6 = 0答案:x₁ = 2,x₂ = 3解析:使用求根公式x = (-b ± √(b² - 4ac)) / 2a,代入a = 1,b = -5,c = 6,解得x₁和x₂。

7. 题目:已知直角三角形ABC中,∠C = 90°,∠A = 30°,BC = 6cm,求AB和AC的长度。

历年中考数学试题及答案

历年中考数学试题及答案

历年中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正比例函数?A. \( y = 2x + 3 \)B. \( y = -\frac{1}{2}x \)C. \( y = x^2 \)D. \( y = \frac{1}{x} \)答案:B2. 一个数的平方根是它本身的数是:A. 0B. 1C. -1D. 2答案:A3. 计算下列表达式的结果:\( (3x - 5) + (2x + 4) \)A. \( 5x - 1 \)B. \( 5x + 1 \)C. \( x - 1 \)D. \( x + 1 \)答案:B4. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 20厘米D. 15厘米答案:A5. 下列哪个选项是反比例函数?A. \( y = 2x \)B. \( y = \frac{1}{x} \)C. \( y = x^2 \)D. \( y = 3 \)答案:B6. 一个三角形的内角和是:A. 90度B. 180度C. 360度D. 270度答案:B7. 计算下列表达式的值:\( \frac{2}{3} \times \frac{3}{4} \)A. \( \frac{1}{2} \)B. \( \frac{1}{4} \)C. \( \frac{3}{2} \)D. \( \frac{3}{4} \)答案:A8. 一个等腰三角形的底角是45度,那么它的顶角是:A. 90度B. 45度C. 60度D. 30度答案:A9. 一个数的立方根是它本身的数是:A. 0B. 1C. -1D. 2答案:A10. 计算下列表达式的值:\( (x - 2)^2 \)A. \( x^2 - 4x + 4 \)B. \( x^2 + 4x + 4 \)C. \( x^2 - 2x + 4 \)D. \( x^2 + 2x + 4 \)答案:A二、填空题(每题3分,共30分)1. 一个数的绝对值是5,那么这个数可能是______。

中考数学试卷历年及答案

中考数学试卷历年及答案

一、选择题(每题3分,共30分)1. 若a,b是方程x^2 - 5x + 6 = 0的两个根,则a + b的值为:A. 2B. 3C. 4D. 5答案:D2. 在直角坐标系中,点A(-1,2)关于y轴的对称点的坐标是:A.(-1,-2)B.(1,2)C.(1,-2)D.(-1,-2)答案:B3. 下列函数中,在实数范围内有最大值的是:A. y = x^2 - 2x + 1B. y = -x^2 + 4x - 3C. y = 2x + 1D. y = x - 3答案:B4. 若sinα = 1/2,且α在第二象限,则cosα的值为:A. -√3/2B. √3/2C. 1/2答案:A5. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积为:A. 24cm^3B. 36cm^3C. 48cm^3D. 54cm^3答案:A6. 下列命题中,正确的是:A. 任何两个有理数都是相等的B. 平行四边形的对边相等C. 等腰三角形的底角相等D. 所有正方形的内角都是直角答案:C7. 若a,b,c是等差数列,且a + b + c = 18,则a + c的值为:A. 6B. 9C. 12D. 15答案:C8. 在△ABC中,若∠A = 60°,∠B = 45°,则∠C的度数是:A. 75°B. 105°D. 135°答案:B9. 若m,n是方程x^2 - 4x + 3 = 0的两个根,则m^2 + n^2的值为:A. 7B. 8C. 9D. 10答案:C10. 下列图形中,是轴对称图形的是:A. 矩形B. 菱形C. 梯形D. 一般四边形答案:B二、填空题(每题3分,共30分)11. 二项式(a + b)^3的展开式中,a^2b的系数是______。

答案:312. 若sinα = 1/3,且α在第三象限,则cosα的值是______。

答案:-2√2/313. 下列方程中,是分式方程的是______。

历届中考数学试卷答案

历届中考数学试卷答案

1. 下列数中,不是有理数的是()A. -1/2B. √2C. 0.25D. -3答案:B解析:有理数是可以表示为两个整数之比的数,而√2是无理数,不能表示为两个整数之比。

2. 已知等腰三角形ABC中,AB=AC,∠BAC=60°,则∠B=()A. 30°B. 45°C. 60°D. 90°答案:C解析:在等腰三角形中,底角相等,所以∠B=∠C。

由于∠BAC=60°,所以∠B=∠C=60°。

3. 若a、b、c是等差数列,且a+c=8,b=5,则该数列的公差d=()A. 1B. 2C. 3D. 4答案:B解析:在等差数列中,任意两个相邻项的差相等,即a+d=b,b+c=c+d。

由a+c=8和b=5,得a+5=8,解得a=3。

因此,d=b-a=5-3=2。

4. 下列函数中,定义域为全体实数的是()A. y=1/xB. y=√xC. y=x^2D. y=|x|答案:C解析:函数y=1/x的定义域为除了0以外的所有实数;函数y=√x的定义域为x≥0;函数y=x^2的定义域为全体实数;函数y=|x|的定义域为全体实数。

5. 已知函数f(x)=2x+1,则f(-3)=()A. -5B. -7C. -9D. -11答案:C解析:将x=-3代入函数f(x)=2x+1中,得f(-3)=2(-3)+1=-6+1=-5。

6. 若a^2+b^2=50,ab=18,则a^2-b^2=()答案:10解析:由平方差公式得a^2-b^2=(a+b)(a-b)。

将a^2+b^2=50和ab=18代入,得(a+b)^2=50+218=86,所以a+b=√86。

同理,a-b=√(50-218)=√14。

因此,a^2-b^2=(a+b)(a-b)=√86√14=√(8614)=√1196=10。

7. 在平面直角坐标系中,点A(2,3),点B(-4,-1),则线段AB的中点坐标为()答案:( -1,1 )解析:线段AB的中点坐标为两个端点坐标的平均值。

初三往年中考试卷数学答案

初三往年中考试卷数学答案

1. 下列各数中,不是有理数的是()A. 0.001001001…B. √2C. 3/4D. -1/2答案:B解析:有理数包括整数和分数,而√2是无理数,不属于有理数。

2. 若a、b、c是三角形的三边,则下列各式中,正确的是()A. a+b>cB. a-b>cC. a+b+c>0D. a-b-c<0答案:A解析:根据三角形的性质,任意两边之和大于第三边,故选A。

3. 下列函数中,y是x的二次函数的是()A. y=2x+3B. y=x²-4x+5C. y=3x-2D. y=2x²+3x+1答案:B解析:二次函数的一般形式为y=ax²+bx+c,其中a≠0,故选B。

4. 已知x²+2x+1=0,则x的值为()A. -1B. 1C. -1±√2D. 1±√2答案:A解析:由完全平方公式得(x+1)²=0,解得x=-1。

5. 下列各式中,能表示直角三角形的是()A. a²+b²=c²B. a²-b²=c²C. a²+b²=c²+2abD. a²-b²=c²-2ab答案:A解析:勾股定理指出直角三角形的两条直角边的平方和等于斜边的平方,故选A。

6. 已知一次函数y=kx+b的图象经过点(1,2),则k和b的值分别为()A. k=2,b=1B. k=1,b=2C. k=-1,b=2D. k=2,b=-1答案:B解析:将点(1,2)代入一次函数得2=k+b,解得k=1,b=2。

7. 若等差数列{an}的前n项和为Sn,公差为d,首项为a1,则下列各式中,正确的是()A. Sn=n²B. Sn=n(n+1)/2C. Sn=n(a1+an)/2D. Sn=n(a1+an)答案:C解析:等差数列的前n项和公式为Sn=n(a1+an)/2,故选C。

往年中考数学试题及答案

往年中考数学试题及答案

往年中考数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是无理数?A. 0.33333(无限循环)B. πC. √2D. 1/3答案:C2. 如果一个三角形的两边长分别为3和4,且第三边长为整数,那么这个三角形的周长可能是多少?A. 7B. 8C. 9D. 10答案:B3. 以下哪个表达式的结果不是整数?A. (-2)^2B. 3 * 4C. 5 - 3D. √9答案:A4. 一个圆的半径是5,那么这个圆的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B5. 一个数列的前三项为2, 4, 8,这个数列是等比数列,那么第四项是多少?A. 16B. 24C. 32D. 64答案:A二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别为3和4,那么斜边的长度是________。

答案:57. 一个数的平方根是4,那么这个数是________。

答案:168. 如果一个数的绝对值是5,那么这个数可能是________或________。

答案:5 或 -59. 一个正整数的最小公倍数是它本身,这个数是________。

答案:110. 一个圆的直径是14,那么这个圆的半径是________。

答案:7三、解答题(每题10分,共20分)11. 解方程:2x + 5 = 13。

解:首先将常数项移到等号右边,得到 2x = 13 - 5,即 2x = 8。

然后将两边除以2,得到 x = 4。

12. 证明:如果一个角是直角,那么它的余角也是直角。

证明:设∠A为直角,根据直角的定义,我们知道∠A = 90°。

根据余角的定义,∠A的余角∠B满足∠A + ∠B = 90°。

将∠A的值代入,得到90° + ∠B = 90°,从而得出∠B = 0°。

但根据余角的定义,∠B应该是一个小于90°的角,这里出现了矛盾。

因此,如果一个角是直角,它的余角不可能也是直角。

历届数学中考试题及答案

历届数学中考试题及答案

历届数学中考试题及答案一、题目解析在中考中,数学作为一门重要科目,其题目既有基础知识的考察,也有运算能力和解决问题的能力的考验。

本文将给出历届数学中考试题及答案,让读者能够更好地了解数学中考的内容和难度。

二、数学试题及答案1. 2015年中考数学试题试题:已知函数f(x) = 2x - 3,求f(4)的值。

答案:将x = 4代入函数f(x)中,得到f(4) = 2(4) - 3 = 8 - 3 = 5。

2. 2016年中考数学试题试题:已知集合A = {1, 2, 3, 4},集合B = {3, 4, 5, 6},则A∪B的元素个数是多少?答案:集合A∪B表示A和B的并集,即集合A和集合B所有元素的总和。

根据题中给出的集合A和集合B,可知A∪B = {1, 2, 3, 4, 5, 6},元素个数为6。

3. 2017年中考数学试题试题:已知矩形的长为5cm,宽为3cm,求矩形的面积和周长。

答案:矩形的面积可以通过长乘以宽来计算,即5cm * 3cm = 15cm²。

矩形的周长可以通过将长和宽各自乘以2后相加来计算,即(5cm +3cm)* 2 = 16cm。

4. 2018年中考数学试题试题:解方程2x + 3 = 9的解为多少?答案:通过移项和化简方程可得2x = 9 - 3,即2x = 6。

再将方程两边都除以2,得到x = 3。

5. 2019年中考数学试题试题:已知三角形的底边长度为4cm,高为3cm,求三角形的面积和周长。

答案:三角形的面积可以通过底边乘以高后再除以2来计算,即(4cm * 3cm)/ 2 = 6cm²。

三角形的周长可以通过将底边、高和斜边之和计算得出,但题目未给出斜边的长度无法计算。

6. 2020年中考数学试题试题:已知集合A = {2, 4, 6, 8},集合B = {6, 8, 10, 12},则A∩B的元素个数是多少?答案:集合A∩B表示A和B的交集,即集合A和集合B共有的元素。

历年中考数学试卷答案

历年中考数学试卷答案

一、选择题(每题5分,共50分)1. 已知二次函数y=ax^2+bx+c的图象开口向上,且a>0,则下列结论正确的是()A. a>bB. a<cC. b+c>0D. a+b+c>0答案:D2. 若∠A、∠B、∠C是等腰三角形ABC的三个内角,且∠A=60°,则∠B的度数是()A. 30°B. 60°C. 90°D. 120°答案:B3. 已知等差数列{an}的前n项和为Sn,且a1=2,S5=50,则公差d是()A. 2B. 4C. 6D. 8答案:B4. 在直角坐标系中,点P(3,4)关于y轴的对称点是()A.(-3,4)B.(3,-4)C.(-3,-4)D.(3,4)答案:A5. 下列函数中,定义域为实数集R的是()A. y=1/xB. y=x^2C. y=√xD. y=lg(x-1)答案:B二、填空题(每题5分,共50分)6. 若|a|=3,则a的值为______。

7. 二项式定理中,x^3项的系数是______。

8. 已知等差数列{an}的前n项和为Sn,若S3=18,公差d=3,则S6=______。

9. 在△ABC中,∠A=60°,∠B=45°,则∠C的度数是______。

10. 若函数y=kx+b的图象经过点(2,3),则k+b=______。

三、解答题(每题15分,共45分)11. 解方程:x^2-5x+6=0。

答案:x1=2,x2=3。

12. 已知函数f(x)=x^2-4x+4,求f(x)的对称轴方程。

答案:x=2。

13. 已知等差数列{an}的前n项和为Sn,若a1=1,公差d=2,求Sn的表达式。

答案:Sn=n^2。

请注意,以上答案仅供参考,实际考试答案需根据具体试卷内容来确定。

在备考过程中,建议多做真题和模拟题,熟悉各种题型和解题方法。

历届中考试题及答案数学

历届中考试题及答案数学

历届中考试题及答案数学一、整数运算1.已知整数a=337,b=384,求满足a+b=721的整数a的值。

答案:a=3372.已知整数a=-519,b=284,求满足a+b=-235的整数a的值。

答案:a=2843.已知整数a=-173,b=-612,求满足a+b=-785的整数a的值。

答案:a=-6124.已知整数a=-819,b=291,求满足a+b=-528的整数a的值。

答案:a=-8195.已知整数a=628,b=125,求满足a+b=753的整数a的值。

答案:a=628二、分数运算1.已知分数a=3/4,b=1/2,求满足a+b=7/8的真分数a的值。

答案:a=3/82.已知分数a=5/6,b=2/3,求满足a+b=4/3的真分数a的值。

答案:a=1/23.已知分数a=7/8,b=1/4,求满足a+b=5/8的真分数a的值。

答案:a=1/84.已知分数a=2/5,b=3/10,求满足a+b=3/5的真分数a的值。

答案:a=1/105.已知分数a=5/7,b=1/3,求满足a+b=4/7的真分数a的值。

答案:a=1/7三、代数运算1.已知代数表达式a=2x-3,b=-x+5,求满足a+b=0的代数表达式a 的值。

答案:a=x-22.已知代数表达式a=3x+2,b=-2x+4,求满足a+b=5的代数表达式a 的值。

答案:a=5x+23.已知代数表达式a=7x-5,b=3x+4,求满足a+b=3的代数表达式a 的值。

答案:a=10x-14.已知代数表达式a=4x+3,b=-x+2,求满足a+b=-3的代数表达式a 的值。

答案:a=3x-15.已知代数表达式a=x^2+3x+4,b=-x^2+x+6,求满足a+b=10的代数表达式a的值。

答案:a=2x^2+4x-2四、几何运算1.已知三角形ABC,角A=45°,角B=60°,求满足角A+角B+角C=180°的角C的度数。

往年中考数学试卷及答案

往年中考数学试卷及答案

一、选择题(每小题3分,共30分)1. 已知函数y=2x-3,若x=4,则y的值为()A. 5B. 7C. 9D. 112. 在直角坐标系中,点A(2,3)关于x轴的对称点坐标为()A.(2,-3)B.(-2,3)C.(2,-3)D.(-2,-3)3. 如果一个数的平方是25,那么这个数是()A. ±5B. ±10C. ±15D. ±204. 下列选项中,能被3整除的是()A. 15B. 16C. 17D. 185. 下列图形中,是轴对称图形的是()A. 矩形B. 正方形C. 三角形D. 梯形6. 下列方程中,x=3是它的解的是()A. 2x+1=7B. 3x-5=1C. 4x+2=9D. 5x-3=107. 在等腰三角形ABC中,AB=AC,若∠B=40°,则∠A的度数是()A. 40°B. 50°C. 60°D. 70°8. 已知a=2,b=3,则a²+b²的值是()A. 7B. 8C. 9D. 109. 下列选项中,是直角三角形的是()A. 边长分别为3,4,5的三角形B. 边长分别为5,12,13的三角形C. 边长分别为6,8,10的三角形D. 边长分别为7,24,25的三角形10. 下列不等式中,正确的是()A. 2x < 4B. 3x > 9C. 4x ≤ 12D. 5x ≥ 15二、填空题(每小题3分,共30分)11. 已知x²-5x+6=0,则x的值为______。

12. 在直角坐标系中,点P(-1,2)关于y轴的对称点坐标为______。

13. 下列数中,是质数的是______。

14. 下列图形中,是圆的是______。

15. 下列方程中,x=2是它的解的是______。

16. 在等边三角形ABC中,若∠B=60°,则∠C的度数是______。

历年全国中考数学试题及答案

历年全国中考数学试题及答案

历年全国中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是圆的周长公式?A. C = πrB. C = 2πrC. C = πdD. C = 2πd答案:B2. 已知直角三角形的两直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 如果一个数的平方等于9,那么这个数是多少?A. 3B. -3C. 3或-3D. 以上都不是答案:C4. 以下哪个函数是一次函数?A. y = x^2B. y = 2x + 3C. y = \frac{1}{x}D. y = x^3 - 2x答案:B5. 一个数的绝对值等于它本身,这个数是?A. 正数B. 负数C. 非负数D. 非正数答案:C6. 计算下列哪个表达式的结果为0?A. 2x + 3 - (2x + 3)B. 4x^2 - 4x^2C. 5x - 5x + 1D. 3x^2 - 2x + 1答案:B7. 以下哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bc(c > 0)C. 如果a > b,那么a/c > b/c(c > 0)D. 以上都是答案:D8. 一个等腰三角形的底角为70°,那么顶角的度数是多少?A. 40°B. 70°C. 80°D. 100°答案:A9. 以下哪个图形是轴对称图形?A. 平行四边形B. 矩形C. 菱形D. 不规则多边形答案:B10. 计算下列哪个表达式的结果是负数?A. (-2)^3B. (-2)^2C. (-2)^1D. (-2)^0答案:A二、填空题(每题3分,共15分)11. 一个数的相反数是-5,那么这个数是________。

答案:512. 一个数的立方根是2,那么这个数是________。

答案:813. 一个等差数列的首项是3,公差是2,那么第5项是________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省湘西州中考数学模拟试卷一、填空题(共8小题,每小题4分,满分32分)1.(4分)(2016•湘西州)2的相反数是.2.(4分)(2016•湘西州)使代数式有意义的x取值范围是.3.(4分)(2016•湘西州)四边形ABCD是某个圆的内接四边形,若∠A=100°,则∠C=.4.(4分)(2016•湘西州)如图,直线CD∥BF,直线AB与CD、EF分别相交于点M、N,若∠1=30°,则∠2=.5.(4分)(2016•湘西州)某地区今年参加初中毕业学业考试的九年级考生人数为31000人,数据31000人用科学记数法表示为人.6.(4分)(2016•湘西州)分解因式:x2﹣4x+4=.7.(4分)(2016•湘西州)如图,在⊙O中,圆心角∠AOB=70°,那么圆周角∠C=.8.(4分)(2016•湘西州)如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为.二、选择题(共10小题,每小题4分,满分40分)9.(4分)(2016•湘西州)一组数据1,8,5,3,3的中位数是()A.3 B.3.5 C.4 D.510.(4分)(2016•湘西州)下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形B.等腰三角形C.矩形 D.正方形11.(4分)(2016•湘西州)下列说法错误的是()A.对角线互相平分的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形12.(4分)(2016•湘西州)计算﹣的结果精确到0.01是(可用科学计算器计算或笔算)()A.0.30 B.0.31 C.0.32 D.0.3313.(4分)(2016•湘西州)不等式组的解集是()A.x>1 B.1<x≤2 C.x≤2 D.无解14.(4分)(2016•湘西州)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对15.(4分)(2016•湘西州)在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为()A.B.C.D.116.(4分)(2016•湘西州)一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限17.(4分)(2016•湘西州)如图,在△ABC中,DE∥BC,DB=2AD,△ADE的面积为1,则四边形DBCE的面积为()A.3 B.5 C.6 D.818.(4分)(2016•湘西州)在RT△ABC中,∠C=90°,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则⊙C与直线AB的位置关系是()A.相交 B.相切 C.相离 D.不能确定三、解答题(共8小题,满分78分)19.(5分)(2016•湘西州)计算:(﹣3)0﹣2sin30°﹣.20.(5分)(2016•湘西州)先化简,再求值:(a+b)(a﹣b)﹣b(a﹣b),其中,a=﹣2,b=1.21.(8分)(2016•湘西州)如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.22.(8分)(2016•湘西州)如图,已知反比例函数y=的图象与直线y=﹣x+b都经过点A(1,4),且该直线与x轴的交点为B.(1)求反比例函数和直线的解析式;(2)求△AOB的面积.23.(8分)(2016•湘西州)某校为了了解学生家长对孩子用手机的态度问题,随机抽取了100名家长进行问卷调查,每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这100名家长的问卷真实有效),将这100份问卷进行回收整理后,绘制了如下两幅不完整的统计图.(1)“从来不管”的问卷有份,在扇形图中“严加干涉”的问卷对应的圆心角为.(2)请把条形图补充完整.(3)若该校共有学生2000名,请估计该校对手机问题“严加干涉”的家长有多少人.24.(8分)(2016•湘西州)测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.25.(12分)(2016•湘西州)某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.(1)求甲、乙每个商品的进货单价;(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?26.(24分)(2016•湘西州)如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD 的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.2016年湖南省湘西州中考数学试卷参考答案与试题解析一、填空题(共8小题,每小题4分,满分32分)1.(4分)(2016•湘西州)2的相反数是﹣2.【分析】根据相反数的定义可知.【解答】解:﹣2的相反数是2.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数.0的相反数是其本身.2.(4分)(2016•湘西州)使代数式有意义的x取值范围是x≥1.【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【解答】解:∵代数式有意义,∴x﹣1≥0,解得:x≥1.故答案为:x≥1.【点评】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.3.(4分)(2016•湘西州)四边形ABCD是某个圆的内接四边形,若∠A=100°,则∠C=80°.【分析】直接根据圆内接四边形的性质进行解答即可.【解答】解:∵四边ABCD是圆的内接四边形,∠A=100°,∴∠C=180°﹣100°=80°.故答案为:80°.【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.4.(4分)(2016•湘西州)如图,直线CD∥BF,直线AB与CD、EF分别相交于点M、N,若∠1=30°,则∠2=30°.【分析】直接利用对顶角的定义得出∠DMN的度数,再利用平行线的性质得出答案.【解答】解:∵∠1=30°,∴∠DMN=30°,∵CD∥BF,∴∠2=∠DMN=30°.故答案为:30°.【点评】此题主要考查了平行线的性质,正确得出∠2=∠DMN是解题关键.5.(4分)(2016•湘西州)某地区今年参加初中毕业学业考试的九年级考生人数为31000人,数据31000人用科学记数法表示为 3.1×104人.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:31000=3.1×104,故答案为:3.1×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.6.(4分)(2016•湘西州)分解因式:x2﹣4x+4=(x﹣2)2.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.7.(4分)(2016•湘西州)如图,在⊙O中,圆心角∠AOB=70°,那么圆周角∠C=35°.【分析】根据在同圆或等圆中,同弧所对的圆周角等于圆心角的一半列式计算即可得解.【解答】解:∵圆心角∠AOB=70°,∴∠C=∠AOB=×70°=35°.故答案为:35°.【点评】本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.8.(4分)(2016•湘西州)如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为24.【分析】直接根据菱形面积等于两条对角线的长度的乘积的一半进行计算即可.【解答】解:菱形的面积=×6×8=24,故答案为:24.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.菱形面积等于两条对角线的长度的乘积的一半.二、选择题(共10小题,每小题4分,满分40分)9.(4分)(2016•湘西州)一组数据1,8,5,3,3的中位数是()A.3 B.3.5 C.4 D.5【分析】根据中位数计算:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:把这组数据按照从小到大的顺序排列为:1,3,3,5,8,故这组数据的中位数是3.故选:A.【点评】本题考查了中位数的定义,解题的关键是牢记定义,此题比较简单,易于掌握.10.(4分)(2016•湘西州)下列图形中,是轴对称图形但不是中心对称图形的是()A.平行四边形B.等腰三角形C.矩形 D.正方形【分析】根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.【解答】解:A、平行四边形不是轴对称图形,是中心对称图形.故本选项错误;B、等腰三角形是轴对称图形,不是中心对称图形.故本选项正确.C、矩形是轴对称图形,也是中心对称图形.故本选项错误;D、正方形是轴对称图形,也是中心对称图形.故本选项错误;故选B.【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,熟练掌握概念是解答此题的关键.11.(4分)(2016•湘西州)下列说法错误的是()A.对角线互相平分的四边形是平行四边形B.两组对边分别相等的四边形是平行四边形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等,另一组对边平行的四边形是平行四边形【分析】根据平行四边形的判定定理进行分析即可.【解答】解:A、两条对角线互相平分的四边形是平行四边形,故本选项说法正确;B、两组对边分别相等的四边形是平行四边形,故本选项说法正确;C、一组对边平行且相等的四边形是平行四边形,故本选项说法正确;D、一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如:等腰梯形,故本选项说法错误;故选:D.【点评】此题主要考查了平行四边形的判定:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.12.(4分)(2016•湘西州)计算﹣的结果精确到0.01是(可用科学计算器计算或笔算)()A.0.30 B.0.31 C.0.32 D.0.33【分析】首先得出≈1.732,≈1.414,进一步代入求得答案即可.【解答】解:∵≈1.732,≈1.414,∴﹣≈1.732﹣1.414=0.318≈0.32.故选:C.【点评】此题主要考查了利用计算器求数的开方运算,解题首先注意要让学生能够熟练运用计算器计算实数的四则混合运算,同时也要求学生会根据题目要求取近似值.13.(4分)(2016•湘西州)不等式组的解集是()A.x>1 B.1<x≤2 C.x≤2 D.无解【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≤2,由②得:x>1,则不等式组的解集为1<x≤2,故选B【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.14.(4分)(2016•湘西州)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对【分析】分4cm为等腰三角形的腰和5cm为等腰三角形的腰,先判断符合不符合三边关系,再求出周长.【解答】解:当4cm为等腰三角形的腰时,三角形的三边分别是4cm,4cm,5cm符合三角形的三边关系,∴周长为13cm;当5cm为等腰三角形的腰时,三边分别是,5cm,5cm,4cm,符合三角形的三边关系,∴周长为14cm,故选C【点评】此题是等腰三角形的性质题,主要考查了等腰三角形的性质,三角形的三边关系,分类考虑是解本题的关键.15.(4分)(2016•湘西州)在一个不透明的口袋中装有6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸出一个球,摸到红球的概率为()A.B.C.D.1【分析】先求出总的球的个数,再根据概率公式即可得出摸到红球的概率.【解答】解:∵袋中装有6个红球,2个绿球,∴共有8个球,∴摸到红球的概率为=;故选A.【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.16.(4分)(2016•湘西州)一次函数y=﹣2x+3的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】首先确定k,k>0,必过第二、四象限,再确定b,看与y轴交点,即可得到答案.【解答】解:∵y=﹣2x+3中,k=﹣2<0,∴必过第二、四象限,∵b=3,∴交y轴于正半轴.∴过第一、二、四象限,不过第三象限,故选:C.【点评】此题主要考查了一次函数的性质,直线所过象限,受k,b的影响.17.(4分)(2016•湘西州)如图,在△ABC中,DE∥BC,DB=2AD,△ADE的面积为1,则四边形DBCE的面积为()A.3 B.5 C.6 D.8【分析】根据相似三角形的判定与性质,可得△ABC的面积,根据面积的和差,可得答案.【解答】解:由DE∥BC,DB=2AD,得△ADE∽△ABC,=.由,△ADE的面积为1,得=,得S△ABC=9.S DBCE=S ABC﹣S△ADE=8,故选:D.【点评】本题考查了相似三角形的判定与性质,利用相似三角形面积的比等于相似比的平方得出S△ABC=9是解题关键.18.(4分)(2016•湘西州)在RT△ABC中,∠C=90°,BC=3cm,AC=4cm,以点C为圆心,以2.5cm为半径画圆,则⊙C与直线AB的位置关系是()A.相交 B.相切 C.相离 D.不能确定【分析】过C作CD⊥AB于D,根据勾股定理求出AB,根据三角形的面积公式求出CD,得出d<r,根据直线和圆的位置关系即可得出结论.【解答】解:过C作CD⊥AB于D,如图所示:∵在Rt△ABC中,∠C=90,AC=4,BC=3,∴AB==5,∵△ABC的面积=AC×BC=AB×CD,∴3×4=5CD,∴CD=2.4<2.5,即d<r,∴以2.5为半径的⊙C与直线AB的关系是相交;故选A.【点评】本题考查了直线和圆的位置关系,用到的知识点是勾股定理,三角形的面积公式;解此题的关键是能正确作出辅助线,并进一步求出CD的长,注意:直线和圆的位置关系有:相离,相切,相交.三、解答题(共8小题,满分78分)19.(5分)(2016•湘西州)计算:(﹣3)0﹣2sin30°﹣.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(﹣3)0﹣2sin30°﹣的值是多少即可.【解答】解:(﹣3)0﹣2sin30°﹣=1﹣2×﹣2=1﹣1﹣2=﹣2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行.另外,有理数的运算律在实数范围内仍然适用.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了特殊角的三角函数值,要牢记30°、45°、60°角的各种三角函数值.20.(5分)(2016•湘西州)先化简,再求值:(a+b)(a﹣b)﹣b(a﹣b),其中,a=﹣2,b=1.【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣b2﹣ab+b2=a2﹣ab,当a=﹣2,b=1时,原式=4+2=6.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.(8分)(2016•湘西州)如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.【分析】(1)由点O是线段AB和线段CD的中点可得出AO=BO,CO=DO,结合对顶角相等,即可利用全等三角形的判定定理(SAS)证出△AOD≌△BOC;(2)结合全等三角形的性质可得出∠A=∠B,依据“内错角相等,两直线平行”即可证出结论.【解答】证明:(1)∵点O是线段AB和线段CD的中点,∴AO=BO,CO=DO.在△AOD和△BOC中,有,∴△AOD≌△BOC(SAS).(2)∵△AOD≌△BOC,∴∠A=∠B,∴AD∥BC.【点评】本题考查了全等三角形的判定与性质以及平行线的判定定理,解题的关键是:(1)利用SAS证出△AOD≌△BOC;(2)找出∠A=∠B.本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等,结合全等三角形的性质找出相等的角,再依据平行线的判定定理证出两直线平行即可.22.(8分)(2016•湘西州)如图,已知反比例函数y=的图象与直线y=﹣x+b都经过点A(1,4),且该直线与x轴的交点为B.(1)求反比例函数和直线的解析式;(2)求△AOB的面积.【分析】(1)把A点坐标分别代入y=和y=﹣x+b中分别求出k和b即可得到两函数解析式;(2)利用一次函数解析式求出B点坐标,然后根据三角形面积公式求解.【解答】解:(1)把A(1,4)代入y=得k=1×4=4,所以反比例函数的解析式为y=;把A(1,4)代入y=﹣x+b得﹣1+b=4,解得b=5,所以直线解析式为y=﹣x+5;(2)当y=0时,﹣x+5=0,解得x=5,则B(5,0),所以△AOB的面积=×5×4=10.【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点23.(8分)(2016•湘西州)某校为了了解学生家长对孩子用手机的态度问题,随机抽取了100名家长进行问卷调查,每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这100名家长的问卷真实有效),将这100份问卷进行回收整理后,绘制了如下两幅不完整的统计图.(1)“从来不管”的问卷有25份,在扇形图中“严加干涉”的问卷对应的圆心角为72°.(2)请把条形图补充完整.(3)若该校共有学生2000名,请估计该校对手机问题“严加干涉”的家长有多少人.【分析】(1)用问卷数“从来不管”所占百分比即可;用“严加干涉”部分占问卷总数的百分比乘以360°即可;(2)由(1)知“从来不管”的问卷数,再将问卷总数减去其余两个类别数量可得“严加干涉”的数量,进而补全条形统计图;(3)用“严加干涉”部分所占的百分比的乘以2000即可得到结果.【解答】解:(1)“从来不管”的问卷有100×25%=25(份),在扇形图中“严加干涉”的问卷对应的圆心角为:360°×20%=72°,故答案为:25,72°.(2)由(1)知,“从来不管”的问卷有25份,则“严加干涉”的问卷有100﹣25﹣55=20(份),补全条形图如图:(3)2000×20%=400(人),答:估计该校对手机问题“严加干涉”的家长有400人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了利用样本估计总体.24.(8分)(2016•湘西州)测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.【分析】(1)由题意可知△BCD是等腰直角三角形,所以BC=DC.(2)直接利用tan50°=,进而得出BC的长求出答案.【解答】解:(1)∵∠BDC=45°,∠C=90°,∴BC=DC=20m,答:建筑物BC的高度为4m;(2)设DC=BC=xm,根据题意可得:tan50°==≈1.2,解得:x=25,答:建筑物BC的高度为25m.【点评】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键.25.(12分)(2016•湘西州)某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.(1)求甲、乙每个商品的进货单价;(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?【分析】(1)设甲每个商品的进货单价是x元,每个乙商品的进货单价是y元,根据甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同即可列方程组求解;(2)设甲进货x件,乙进货(100﹣x)件,根据两种商品的进货总价不高于9000元,两种商品全部售完后的销售总额不低于10480元即可列不等式组求解;(3)把利润表示出甲进的数量的函数,利用函数的性质即可求解.【解答】解:(1)设甲每个商品的进货单价是x元,每个乙商品的进货单价是y元.根据题意得:,解得:,答:甲商品的单价是每件100元,乙每件80元;(2)设甲进货x件,乙进货(100﹣x)件.根据题意得:,解得:48≤x≤50.又∵x是正整数,则x的正整数值是48或49或50,则有3种进货方案;(3)销售的利润w=100×10%x+80(100﹣x)×25%,即w=2000﹣10x,则当x取得最小值48时,w取得最大值,是2000﹣10×48=1520(元).此时,乙进的件数是100﹣48=52(件).答:当甲进48件,乙进52件时,最大的利润是1520元.【点评】本题考查了二元一次方程组的应用以及不等式组、一次函数的性质,正确求得甲进货的数量的范围是关键.26.(24分)(2016•湘西州)如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax2+bx经过点B(1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD⊥DE,BD=DE,求D点的坐标;(3)在条件(2)下,在抛物线的对称轴上找一点M,使得△BDM的周长为最小,并求△BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△PAD 的面积最大?若存在,请求出△PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.【分析】(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式,得到关于a、b的方程组,求得a、b的值,从而可得到抛物线的解析式;(2)依据同角的余角相等证明∠BDC=∠DE0,然后再依据AAS证明△BDC≌△DEO,从而得到OD=AO=1,于是可求得点D的坐标;(3)作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.先求得抛物线的对称轴方程,从而得到点B′的坐标,由轴对称的性质可知当点D、M、B′在一条直线上时,△BMD的周长有最小值,依据两点间的距离公式求得BD和B′D的长度,从而得到三角形的周长最小值,然后依据待定系数法求得D、B′的解析式,然后将点M的横坐标代入可求得点M的纵坐标;(4)过点F作FG⊥x轴,垂足为G.设点F(a,﹣2a2+6a),则OG=a,FG=﹣2a2+6a.然后依据S△FDA=S梯形DOGF﹣S△ODA﹣S△AGF的三角形的面积与a的函数关系式,然后依据二次函数的性质求解即可.【解答】解:(1)将点B(1,4),E(3,0)的坐标代入抛物线的解析式得:,解得:,抛物线的解析式为y=﹣2x2+6x.(2)如图1所示;∵BD⊥DE,∴∠BDE=90°.∴∠BDC+∠EDO=90°.又∵∠ODE+∠DEO=90°,∴∠BDC=∠DE0.在△BDC和△DOE中,,∴△BDC≌△DEO.∴OD=AO=1.∴D(0,1).(3)如图2所示:作点B关于抛物线的对称轴的对称点B′,连接B′D交抛物线的对称轴与点M.∵x=﹣=,∴点B′的坐标为(2,4).∵点B与点B′关于x=对称,∴MB=B′M.∴DM+MB=DM+MB′.∴当点D、M、B′在一条直线上时,MD+MB有最小值(即△BMD的周长有最小值).∵由两点间的距离公式可知:BD==,DB′==,∴△BDM的最小值=+.设直线B′D的解析式为y=kx+b.将点D、B′的坐标代入得:,解得:k=,b=1.∴直线DB′的解析式为y=x+1.将x=代入得:y=.∴M(,).(4)如图3所示:过点F作FG⊥x轴,垂足为G.设点F(a,﹣2a2+6a),则OG=a,FG=﹣2a2+6a.∵S梯形DOGF=(OD+FG)•OG=(﹣2a2+6a+1)×a=﹣a3+3a2+a,S△ODA=OD•OA=×1×1=,S△AGF=AG•FG=﹣a3+4a2﹣3a,∴S△FDA=S梯形DOGF﹣S△ODA﹣S△AGF=﹣a2+a﹣.∴当a=时,S△FDA的最大值为.∴点P的坐标为(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数、一次函数的解析式、全等三角形的性质和判定、轴对称的性质、二次函数的图象和性质得到△FDA的面积与a的函数关系式是解题的关键.。

相关文档
最新文档