有理数的混合运算(1)

合集下载

有理数的混合运算经典例题

有理数的混合运算经典例题

有理数的混合运算经典例题例1 计算:.分析:此算式以加、减分段, 应分为三段: , ,.这三段可以同时进行计算,先算乘方,再算乘除.式中-0.2化为参加计算较为方便.解:原式说明:做有理数混合运算时,如果算式中不含有中括号、大括号,那么计算时一般用“加”、“减”号分段,使每段只含二、三级运算,这样各段可同时进行计算,有利于提高计算的速度和正确率.例2 计算:.分析:此题运算顺序是:第一步计算和;第二步做乘法;第三步做乘方运算;第四步做除法.解:原式说明:由此例题可以看出,括号在确定运算顺序上的作用,所以计算题也需认真审题.例3 计算:分析:要求、、的值,用笔算在短时间内是不可能的,必须另辟途径.观察题目发现,,,逆用乘法分配律,前三项可以凑成含有0的乘法运算,此题即可求出.解:原式说明:“0”乘以任何数等于0.因为运用这一结论必能简化数的计算,所以运算中,能够凑成含“0”因数时,一般都凑成含有0的因数进行计算.当算式中的数字很大或很繁杂时,要注意使用这种“凑0法”.例4 计算分析:是的倒数,应当先把它化成分数后再求倒数;右边两项含绝对值号,应当先计算出绝对值的算式的结果再求绝对值.解:原式说明:对于有理数的混合运算,一定要按运算顺序进行运算,注意不要跳步,每一步的运算结果都应在算式中体现出来,此题(1)要注意区别小括号与绝对值的运算;(2)要熟练掌握乘方运算,注意(-0.1)3,-0.22,(-2)3,-32在意义上的不同.例5 计算:.分析:含有括号的混合运算,一般按小、中、大括号的顺序进行运算,括号里面仍然是先进行第三级运算,再进行第二级运算,最后进行第一级运算.解:原式例6 计算解法一:原式解法二:原式说明:加减混合运算时,带分数可以化为假分数,也可把带分数的整数部分与分数部分分别加减,这是因为带分数是一个整数和一个分数的和.例如:有理数的混合运算习题精选一、选择题1.若,,则有( ) .A. B. C. D.2.已知,当时,,当时,的值是( ) .A. B.44C.28 D.173.如果,那么的值为( ) .A.0B.4C.-4D.24.代数式取最小值时,值为( ) .A. B. C. D.无法确定5.六个整数的积,互不相等,则( ) .A.0 B.4C.6D.86.计算所得结果为( ) .A.2B. C. D.二、填空题1.有理数混合运算的顺序是__________________________.2.已知为有理数,则 _________0, _________0,_______0.(填“>”、“<”或“≥”=)3.平方得16的有理数是_________,_________的立方等于-8.4. __________.5.一个负数减去它的相反数后,再除以这个负数的绝对值,所得商为__________.三、判断题1.若为任意有理数,则 .( )2..( )3..( )4..()5..( )四、解答题1.计算下列各题:(1);(2);(3);(4);(5);(6);(7);(8).2.若有理数、、满足等式,试求的值.3.当,时,求代数式的值.4.已知如图2-11-1,横行和竖列的和相等,试求的值.5.求的值.6.计算.计算:有理数的混合运算参考答案:一、1.C 2.C 3.C 4.B 5.A 6.B二、1.略;2.≥,>,<;3.,;4.1;5..三、1.× 2.×3.√4.×5.√四、1.(1)(2)(3)(4)(5)30(6)(7)(8); 2.∵,,∴;3. ;4.,, ;5.设,则, ;6.原式 .。

有理数的加减混合运算1-

有理数的加减混合运算1-
• 解题小技巧:在式子中若既有分数又有小数,把小数 统一成分数或把分数统一成小数
课堂练习(1)10-24-15+26-24+18-20 (2)(+0.5)-1/3+(-1/4)-(+1/6)ห้องสมุดไป่ตู้
• (1)解: 10-24-15+26-24+18-20 • =(10+26+18)+(-24-15-24-20) • =54-83 • =-29 • (2)解: (+0.5)-1/3+(-1/4)-(+1/6) • =(+1/2)+( -1/3)+(-1/4)+(-1/6) • =1/2-1/3-1/4-1/6 • =(1/2-1/4)+(-1/3-1/6) • =1/4-1/2 • =-1/4
(1)到原点的距离是4的点有几个?若A.B 的距离是6,且到原点的距离相等,A在原 点的左边,B在原点的右边 A.B分别带表什 么数? 答:到原点的距离是4的点有2个,分别是+4和-4. 若A.B的距离是6,且到原点的距离相等, A在原点的左边,B在原点的右边, A为-3,B 为+3.
(2) (1-a)的相反数是什么? (1+a)与什么是互为相反数? • 答: (1-a)的相反数是- (1-a) 。 (1+a)与-(1+a)是互为相反 数。 • 因为在一个数的前面添上“-”号就表 示这个数的相反数。
; / 河北学习网
duh50exc
此人有意来找麻烦的,生怕在马车前打起来,妨碍宝音回府诊蛤,故此偏离开大街。后头马车再过来时,就没再见到他们。那 赭红单衣的人也离开了大街,又打横走向明犬。明犬跑得快,那人走得慢。而且那人明明已被明犬抛在后面了,可不知怎么一 来,他走得又要撞上明犬了。明犬又出手,那人不避,只管走自己的路。明犬又揪向那人的衣领,那人不躲,就给明犬捉住。 明犬挥臂,这次不是往后面抛,而是往地上掼。那人不招不架、不闪不躲,就给他掼。明犬曾经活活掼死一只老虎。取代“咚” 的一声的,又是“嗤”的一声。那人活生生、好端端的从地上站了起来,懒懒散散,不丁不八。苏明远终于停住马。他要纵马 时,可以冲得很急,好像什么都不能让他停下,可一旦停下,又停得很稳,好像什么都不能把他移动。这样的控马术,莫要说 锦城,恐怕全天下都少有更高明的了。他对着那人看。那人虽说个子小,相貌倒是很堂堂的。那样雄浑的鼻子、那样慨然的眉 眼、那样方正的脸架子、那样豪侠的大胡子,谁都不能不说真是个汉子。苏明远看得都喜欢起来了,笑道:“在下苏明远。阁 下尊姓大名?”那人回答:“我叫张神仙。”苏明远大惊,上上下下打量他:“你哪里像神仙?”“神仙应该像什么样子?” 张神仙反问苏明远。“神仙应该像——”苏明远想了想,“白鬒飘飘,鹤发童颜。或者,神威凛凛,朱袍玉带。或者,假痴不 颠,身具异像„„”他说不下去了,觉得自己很俗。而且,如果把“假痴不颠”作为神仙的一类,那许多自命不凡的家伙岂不 全都立刻荣升神仙一流?张神仙抚掌一笑:“那你便当我是不是神仙的神仙罢!”苏明远问:“然则阁下到此有何贵 干?”“我没有贵干。”张神仙回答,“我在走路。”“两次走到我奴仆的身上。”苏明远提醒他。“世上的路是多么宽啊,” 张神仙转头四顾,一副很茫然的样子,“但脚下的路又总是这么窄。”明犬摩拳擦掌,很想把这满嘴不知所云的小个子汉子揪 起来再摔一次。他真不信摔不死他!“阁下是为了什么事来的吗?”苏明远继续好耐心的询问,并用眼神阻止明犬的企图。 “不为什么。”张神仙怡然答道,“我有很多很多的时间可用,暂时不必为了什么奔忙。倒是阁下,为什么还不忙呢?”“我 应该忙着什么?”苏明远笑问。“忙着救人。”张神仙举单掌于胸,行了个礼,“这对你来说难道不该是最紧急的事吗?”苏 明远神情严肃,深深凝视他:“我应该怎么救人?”张神仙的回复是,该请他去做法。那时宝音的马车已回府,刘晨寂竟已等 在那里了。他似早知这病要糟似的,毫无废话,干净利落开药箱给病人诊治。明远不便领这样一个外头男人到宝音的病榻前, 先领他去宝音原居住的院子,看看那两株芙蓉花

有理数的四则混合运算练习(含答案)

有理数的四则混合运算练习(含答案)

有理数的四则混合运算练习◆warmup知识点有理数的混合运算(一)1.计算:(1)(-8)×5-40=_____;(2)(-1.2)÷(-13)-(-2)=______.2.计算:(1)-4÷4×14=_____;(2)-212÷114×(-4)=______.3.当||aa=1,则a____0;若||aa=-1,则a______0.4.(教材变式题)若a<b<0,那么下列式子成立的是()A.1a<1bB.ab<1 C.ab<1 D.ab>15.下列各数互为倒数的是()A.-0.13和-13100B.-525和-275C.-111和-11 D.-414和4116.(体验探究题)完成下列计算过程:(-25)÷113-(-112+15)解:原式=(-25)÷43-(-1-12+15)=(-25)×()+1+12-15=____+1+52 10 -=_______.◆Exersising7.(1)若-1<a<0,则a______1a;(2)当a>1,则a_______1a;(3)若0<a≤1,则a______1a.8.a,b互为相反数,c,d互为倒数,m的绝对值为2,则||4a bm++2m2-3cd值是() A.1 B.5 C.11 D.与a,b,c,d值无关9.下列运算正确的个数为()(1)(+34)+(-434)+(-6)=-10 (2)(-56)+1+(-16)=0 (3)0.25+(-0.75)+(-314)+34=-3(4)1+(-3)+5+(-7)+9+(-1)=4A.3个 B.4个 C.2个 D.1个10.a,b为有理数,在数轴上的位置如右上图所示,则()A.1a>1b>1 B.1a>1>-1bC.1>-1a>1bD.1>1a>1b 11.计算:(1)-20÷5×14+5×(-3)÷15 (2)-3[-5+(1-0.2÷35)÷(-2)] (3)[124÷(-114)]×(-56)÷(-316)-0.25÷14ob a1 / 2◆Updating12.(经典题)对1,2,3,4可作运算(1+2+3)×4=24,现有有理数3,4,-6,10,请运用加,减,乘,除法则写出三种不同的计算算式,使其结果为24.(1)____________ (2)____________ (3)____________答案:课堂测控1.(1)-80 (2)5352.(1)-14(2)83.>,< 4.D 5.C 6.34,-310,1[总结反思]先乘除,后加减,有括号先算括号内的.课后测控7.(1)> (2)> (3)≤ 8.B 9.B 10.B11.解:(1)原式=-20×15×14+5×(-3)×115=-1-1=-2(2)原式=124×(-45)×(-56)×(-619)-14÷14=124×(-419)-1=-1114-1=-11114(3)原式=-3[-5+(1-15×53)÷(-2)]=-3[-5+23×(-12)]=-3[-5-13]=15+1=16[解题技巧]除法转化为乘法,先乘除,后加减,有括号先算括号内的.拓展测控12.解:(1)4-(-6)÷3×10 (2)(10-6+4)×3 (3)(10-4)×3-(-6)[解题思路]运用加,减,乘除四种运算拼凑得24点.2 / 2。

有理数的混合运算(1)教案

有理数的混合运算(1)教案

有理数的混合运算(1)教学目标1.知道有理数混合运算的运算顺序,能正确进行有理数的混合运算;2.会用计算器进行较繁杂的有理数混合运算.教学重点 1.有理数的混合运算;2.运用运算律进行有理数的混合运算的简便计算.教学难点 运用运算律进行有理数的混合运算的简便计算 教学过程问题引入在算式8-23÷(-4)×(-7+5)=?中,有几种运算?小学里,我们在进行含有加、减、乘、除的混合运算时,是按照怎样的顺序进行的?8-23÷(-4)×(-7+5)=8-23÷(-4)×(-2)=8-8÷(-4)×(-2)=8-(-2)×(-2)=8-4=4.有理数的混合运算的运算顺序也就是说,在进行含有加、减、乘、除的混合运算时,应按照运算级别从高到低进行,因为乘方是比乘除高一级的运算,所以像这样的有理数的混合运算,有以下运算顺序:.你会根据有理数的运算顺序计算上面的算式吗?例题讲解例1 判断下列计算是否正确.(1)3-3×110 =0×110 =0;(2)-120÷20×12 =-120÷10=-12;(3)9-4×(12 )3=9-23=1;(4)(-3)2-4×(-2)=9+8=17.例2 计算:(1)9+5×(-3)-(-2)2÷4;(2)(-5)3×[2-(-6)]-300÷5;(3)(-13 )×3÷3×(-13 ).解答:(1)错误,3-3×110 =3-310 =2710 ;(2)错误,-120÷20×12 =-6×12 =-3;(3)错误,9-4×(12 )3=9-4×18 =812 ;(4)正确.解答:(1)9+5×(-3)-(-2)2÷4 =9+5×(-3)-4÷4=9-15-1=-7;(2)(-5)3×[2-(-6)]-300÷5 =(-5)3×8-300÷5=(-125)×8-300÷5=-1000-60=-1060;(3)(-13 )×3÷3×(-13 )=(-1)×13 ×(-13 )=(-13 )×(-13 )=19 .练一练 计算:(1)18-6÷(-3)×(-2);(2)24+16÷(-2)2÷(-10);(3)(-3)3÷(6-32);(4)(5+3÷13 )÷(-2)+(-3)2.小结:先乘方,再乘除,最后加减.如果有括号,先进行括号内的运算。

有理数的混合运算(好题1)

有理数的混合运算(好题1)
A、买甲站的B、买乙站的
C、买两站的都可以D、先买甲站的1罐,以后再买乙站的
10、(2002•扬州)计算机是将信息转换成二进制数进行处理的,二进制即“逢2进1”,如(1101)2表示二进制数,将它转换成十进制形式是1×23+1×22+0×21+1×20=13,那么将二进制数(1111)2转换成十进制形式是数( )
A、A种包装的洗衣粉B、B种包装的洗衣粉
C、C种包装的洗衣粉D、三种包装的都相同
9、(2005•潍坊)某乡镇有甲、乙两家液化气站,他们的每罐液化气的价格、质和量都相同.为了促销,甲站的液化气每罐降价25%销售;每个用户购买乙站的液化气,第1罐按照原价销售,若用户继续购买,则从第2罐开始以7折优惠,促销活动都是一年.若小明家每年购买8罐液化气,则购买液化气最省钱的方法是( )
解答:解:因为填入“﹣”后,平方的值最大,
所以计算出来的值是最小的.
故选B
点评:任何数的平方都是非负数.
6、(2006•安顺)规定一种新的运算“*”:对于任意实数x,y,满足x*y=x﹣y+xy.如3*2=3﹣2+3×2=7,则2*1=( )
A、4B、3
C、2D、1
考点:有理数的混合运算。
专题:新定义。
分析:根据混合运算的顺序,先算较高级的运算,再算较低级的运算,如果有括号,就先算括号里面的.本题要把括号内的分数先通分计算,再把除法转化为乘法.
解答:解:48÷( + )
=48÷( )
=48
=
= .
故选C.
点评:含有有理数的加、减、乘、除、乘方多种运算的算式,根据几种运算的法则可知:减法、除法可以分别转化成加法和乘法,所以有理数混合运算的关键是加法和乘法.异分母相加要先通分.

有理数混合运算专项训练1

有理数混合运算专项训练1

有理数混合运算专项训练11.﹣14﹣×[2﹣(﹣3)2]. 2.﹣14+16÷(﹣2)3×|﹣3﹣1|.3.(1)(﹣+)÷(2)﹣12×4﹣(﹣2)2÷2 4.(1)(﹣2)2×2+(﹣2)3÷4 (2)﹣(﹣1)4×(﹣)×6÷2 5.﹣(﹣2)﹣|﹣1|+(﹣0.125)8×886.(1)1﹣43×(﹣)(2)7×2.6+7×1.5﹣4.1×8.7.(1)(﹣36)÷9 (2)﹣(﹣16)+10+(5)﹣17 (3)12÷(﹣2)3﹣(﹣)×(﹣4)(4)3×(8﹣3)÷1×8.(1)(2).9.(1)﹣20+(﹣14)﹣(﹣18)﹣13 (2)4﹣8×(﹣)3(3)(4)10.(1)16﹣(﹣18)+(﹣9)﹣15 (2)(﹣+﹣)×24﹣(3)﹣32+(﹣2)2×(﹣5)﹣|﹣6|11.(1)(2)﹣110﹣8÷(﹣2)+4×|﹣5| 12.(1)(﹣)×(﹣24).(2)﹣.13.(1)(﹣28)÷(﹣6+4)+(﹣1)×5;(2)÷.14.(1)()×(﹣60)(2)×(﹣2)3÷(﹣2)2﹣2×|(﹣1)2017×+1|.15.(﹣1)4×5+(﹣10)÷2﹣3×(﹣)16.(1)﹣12×2+(﹣2)2÷4﹣(﹣3)(2)12+(﹣7)﹣(﹣18)﹣32.5.17.(1)(﹣1)3﹣×[2﹣(﹣3)2] (2)﹣22+|5﹣8|+24÷(﹣3)×.18.﹣14﹣(1﹣0.5)÷×[2﹣(﹣3)2] 19.﹣32+(﹣12)×||﹣6÷(﹣1).20.﹣×[﹣32×(﹣)3﹣2].21.(1)﹣27×(﹣5)+16÷(﹣8)﹣|﹣4×5| (2)﹣16+42﹣(﹣1)×(﹣)÷﹣.22.(1)25×﹣(﹣25)×+25÷(﹣);(2)2﹣23÷[()2﹣(﹣3+0.75)]×5.23.(1)40÷(﹣8)+(﹣3)×(﹣2)2+17 (2)﹣42×+|﹣2|3×(﹣)3.24.(1)(﹣+﹣)×(﹣48)(2)(﹣1)4﹣(﹣)2+5÷(﹣3)×25.(1)(﹣0.5)+|0﹣6|﹣(+7)﹣(﹣4.75)(2)[(﹣5)2×(﹣)+8]×(﹣2)3÷7.26.(1)﹣14+×(﹣2)3(2)(﹣+﹣)×4827.(1)(2)28.(1)(1﹣+)×(﹣24);(2).29.(1)4﹣|﹣6|﹣3×(﹣);(2)﹣12018×[2﹣(﹣3)2].30.(1)(﹣2)2﹣6×÷(﹣3);(2)36×(﹣)2﹣(﹣7).31.﹣12+(﹣2)2÷|﹣|﹣(﹣1)201832.(1)﹣22﹣9×(﹣)2+4÷|﹣|;(2)(﹣24)×(﹣+﹣).33.计算:﹣8+|32÷(﹣2)3|﹣(﹣42)×5.34.(1)(﹣)+|0﹣5|﹣(﹣4)(2)×(﹣5)+(﹣)×9﹣×8 (3)(﹣1)3﹣×[2﹣(﹣3)2].35.(1)﹣14+|3﹣5|﹣16÷(﹣2)×;(2)6×﹣32÷(﹣12).36.用简便方法计算:×18﹣1.45×6+3.95×6.37.﹣(﹣2)2+(﹣3)3÷(﹣)+|﹣4|×(﹣1)2017.38.(1)(1﹣1﹣+)÷(﹣)(2)﹣25÷(﹣4)×()2﹣12×(﹣15+24)3 39.(1)(﹣)×(﹣24)﹣(﹣49÷7)(2)﹣19﹣5×(﹣2)+(﹣4)2÷(﹣8)40.(1)22+2×[(﹣3)2﹣3+] (2)﹣0.25÷×(﹣1)3+(﹣3.75)×24.有理数混合运算专项训练1参考答案1.计算:﹣14﹣×[2﹣(﹣3)2].【解答】解:原式=﹣1﹣×(2﹣9)=﹣1﹣×(﹣7)=﹣1+=.2.计算:﹣14+16÷(﹣2)3×|﹣3﹣1|.【解答】解:原式=﹣1+16÷(﹣8)×4=﹣1﹣8=﹣9.3.计算:(1)(﹣+)÷(2)﹣12×4﹣(﹣2)2÷2【解答】解:(1)原式=(﹣+)×12=8﹣9+2=1;(2)原式=﹣4﹣2=﹣6.4.计算(1)(﹣2)2×2+(﹣2)3÷4(2)﹣(﹣1)4×(﹣)×6÷2【解答】解:(1)原式=4×2﹣8÷4=8﹣2=6;(2)原式=﹣1×(2﹣3)÷2=1÷2=0.5.5.计算;﹣(﹣2)﹣|﹣1|+(﹣0.125)8×88【解答】解:原式=2﹣1+1=2.6.计算:(1)1﹣43×(﹣)(2)7×2.6+7×1.5﹣4.1×8.【解答】解:原式=1﹣64×(﹣),=1﹣64×(﹣),=1+8,=9;(2)原式=7×(2.6+1.5)﹣4.1×8,=7×4.1﹣8×4.1,=(7﹣8)×4.1,=﹣4.1.7.计算(1)(﹣36)÷9(2)﹣(﹣16)+10+(5)﹣17(3)12÷(﹣2)3﹣(﹣)×(﹣4)(4)3×(8﹣3)÷1×【解答】解:(1)原式=﹣(36÷9)=﹣4;(2)原式=16+10+5﹣17=31﹣17=14;(3)原式=12÷(﹣8)﹣=﹣﹣=﹣2;(4)原式=×(﹣)××=(﹣)×=×﹣×=8﹣3=5.8.计算:(1)(2).【解答】解:(1)原式=﹣1+2﹣16×(﹣)×,=﹣1+2+4,=5;(2)原式=6×﹣6×﹣9×(﹣),=2﹣3+,=﹣.9.计算:(1)﹣20+(﹣14)﹣(﹣18)﹣13(2)4﹣8×(﹣)3(3)(4)【解答】解:(1)原式=﹣20﹣14+18﹣13=﹣47+18=﹣29;(2)原式=4﹣8×(﹣)=4+1=5;(3)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26;(4)原式=÷﹣×16=×﹣=﹣=﹣.10.计算:(1)16﹣(﹣18)+(﹣9)﹣15 (2)(﹣+﹣)×24﹣(3)﹣32+(﹣2)2×(﹣5)﹣|﹣6|【解答】解:(1)16﹣(﹣18)+(﹣9)﹣15 =16+18﹣9﹣15=10;(2)(﹣+﹣)×24﹣=﹣4+14﹣9﹣=;(3)﹣32+(﹣2)2×(﹣5)﹣|﹣6|=﹣9+4×(﹣5)﹣6=﹣9﹣20﹣6=﹣35.11.计算:(1)(2)﹣110﹣8÷(﹣2)+4×|﹣5|【解答】解:(1)原式=×(﹣48)﹣×(﹣48)+×(﹣48)=﹣8+36﹣4=24;(2)原式=﹣1+4+4×5=3+20=23.12.计算:(1)(﹣)×(﹣24).(2)﹣.【解答】解:(1)原式=18+15﹣18=15;(2)原式=﹣4+2×+×16=﹣4+3+1=0.13.计算:(1)(﹣28)÷(﹣6+4)+(﹣1)×5;(2)÷.【解答】解:(1)原式=(﹣28)÷(﹣2)+(﹣5)=14﹣5=9;(2)原式=(﹣++)×36=9﹣30+12+54=45.14.计算:(1)()×(﹣60)(2)×(﹣2)3÷(﹣2)2﹣2×|(﹣1)2017×+1|.【解答】解:(1)原式=﹣40+55﹣16=﹣1;(2)原式=﹣×(﹣8)÷4﹣2×|(﹣1)×+1|=1×﹣2×=﹣=﹣.15.计算:(﹣1)4×5+(﹣10)÷2﹣3×(﹣)【解答】解:(﹣1)4×5+(﹣10)÷2﹣3×(﹣)=1×5+(﹣5)+2=5+(﹣5)+2=2.16.计算:(1)﹣12×2+(﹣2)2÷4﹣(﹣3)(2)12+(﹣7)﹣(﹣18)﹣32.5.【解答】解:(1)﹣12×2+(﹣2)2÷4﹣(﹣3)=﹣1×2+4÷4+3=﹣2+1+3=2;(2)12+(﹣7)﹣(﹣18)﹣32.5=12+(﹣7.5)+18+(﹣32.5)=﹣10.17.计算:(1)(﹣1)3﹣×[2﹣(﹣3)2](2)﹣22+|5﹣8|+24÷(﹣3)×.【解答】解:(1)原式=﹣1﹣×(﹣7)=﹣1+=;(2)原式=﹣4+3﹣=﹣.18.计算:﹣14﹣(1﹣0.5)÷×[2﹣(﹣3)2]【解答】解:﹣14﹣(1﹣0.5)÷×[2﹣(﹣3)2]=﹣1﹣÷×(2﹣9)=﹣1﹣×7×(2﹣9)=﹣1﹣×7×(﹣7)=﹣1﹣(﹣)=﹣1+=.19.计算:﹣32+(﹣12)×||﹣6÷(﹣1).【解答】解:﹣32+(﹣12)×||﹣6÷(﹣1)=﹣9+(﹣12)×+6=﹣9+(﹣6)+6=﹣9.20.计算:﹣×[﹣32×(﹣)3﹣2].【解答】解:原式=﹣×[﹣9×(﹣)﹣2]=﹣×(﹣2)=﹣×=﹣.21.计算:(1)﹣27×(﹣5)+16÷(﹣8)﹣|﹣4×5|(2)﹣16+42﹣(﹣1)×(﹣)÷﹣.【解答】解:(1)﹣27×(﹣5)+16÷(﹣8)﹣|﹣4×5|=135+(﹣2)﹣20=113;(2)﹣16+42﹣(﹣1)×(﹣)÷﹣=﹣16+16+1×(﹣)×6﹣=﹣16+16+(﹣1)﹣=.22.计算:(1)25×﹣(﹣25)×+25÷(﹣);(2)2﹣23÷[()2﹣(﹣3+0.75)]×5.【解答】解:(1)25×﹣(﹣25)×+25÷(﹣)=25×+25×+25×(﹣4)=25×()=25×(﹣)=﹣;(2)2﹣23÷[()2﹣(﹣3+0.75)]×5=====﹣13.23.计算(1)40÷(﹣8)+(﹣3)×(﹣2)2+17(2)﹣42×+|﹣2|3×(﹣)3.【解答】解:(1)原式=﹣5﹣12+17=0;(2)原式=﹣1﹣1=﹣2.24.计算下列各题:(1)(﹣+﹣)×(﹣48)(2)(﹣1)4﹣(﹣)2+5÷(﹣3)×【解答】解:(1)(﹣+﹣)×(﹣48)=﹣44+56+(﹣36)+26=2;(2)(﹣1)4﹣(﹣)2+5÷(﹣3)×=1﹣=1﹣=0.25.计算:(1)(﹣0.5)+|0﹣6|﹣(+7)﹣(﹣4.75)(2)[(﹣5)2×(﹣)+8]×(﹣2)3÷7.【解答】解:(1)原式=﹣0.5+6﹣7+4=(﹣0.5﹣7.5)+(6+4)=﹣8+11=3;(2)原式=[25×(﹣)+8]×(﹣8)÷7 =[﹣15+8]×(﹣8)÷7=﹣7×(﹣8)÷7=56÷7=8.26.计算:(1)﹣14+×(﹣2)3(2)(﹣+﹣)×48【解答】解:(1)原式=﹣1+×(﹣8)=﹣1﹣1=﹣2;(2)原式=﹣8+36﹣4=24.27.计算:(1)(2)【解答】解:(1)原式=﹣2××=﹣2;(2)原式=﹣9﹣6+1+8=﹣6.28.计算:(1)(1﹣+)×(﹣24);(2).【解答】解:(1)原式=﹣24+9﹣14=﹣29;(2)原式=﹣8×﹣(﹣4)=﹣6+4=﹣2.29.计算:(1)4﹣|﹣6|﹣3×(﹣);(2)﹣12018×[2﹣(﹣3)2].【解答】解:(1)原式=4﹣6+1=﹣1;(2)原式=﹣1+=.30.计算:(1)(﹣2)2﹣6×÷(﹣3);(2)36×(﹣)2﹣(﹣7).【解答】解:(1)原式=4+1=5;(2)原式=1+7=8.31.计算:﹣12+(﹣2)2÷|﹣|﹣(﹣1)2018【解答】解:原式=﹣1+4÷﹣1=﹣1+16﹣1=14.32.计算:(1)﹣22﹣9×(﹣)2+4÷|﹣|;(2)(﹣24)×(﹣+﹣).【解答】解:(1)﹣22﹣9×(﹣)2+4÷|﹣|=﹣4﹣9×+4×=﹣4﹣1+6=1;(2)(﹣24)×(﹣+﹣)=20+(﹣9)+2=13.33.计算:﹣8+|32÷(﹣2)3|﹣(﹣42)×5.【解答】解:﹣8+|32÷(﹣2)3|﹣(﹣42)×5=﹣8+|32÷(﹣8)|﹣(﹣16)×5=﹣8+4+80=76.34.计算(1)(﹣)+|0﹣5|﹣(﹣4)(2)×(﹣5)+(﹣)×9﹣×8 (3)(﹣1)3﹣×[2﹣(﹣3)2].【解答】解:(1)原式=﹣+5+4=﹣+10=9;(2)原式=﹣×(5+9+8)=﹣7;(3)原式=﹣1﹣×(﹣7)=﹣1+=.35.计算:(1)﹣14+|3﹣5|﹣16÷(﹣2)×;(2)6×﹣32÷(﹣12).【解答】解:(1)﹣14+|3﹣5|﹣16÷(﹣2)×=﹣1+2+4=5;(2)6×(﹣)﹣32÷(﹣12)=2﹣3﹣9÷(﹣12)=﹣1+=﹣.36.计算:用简便方法计算:×18﹣1.45×6+3.95×6.【解答】解:原式=14﹣15+3﹣6×(1.45﹣3.95)=2+15=17.37.计算:﹣(﹣2)2+(﹣3)3÷(﹣)+|﹣4|×(﹣1)2017.【解答】解:原式=﹣4+(﹣27)×(﹣)+4×(﹣1)=﹣4+6﹣4=﹣238.计算:(1)(1﹣1﹣+)÷(﹣)(2)﹣25÷(﹣4)×()2﹣12×(﹣15+24)3【解答】解:(1)原式=(1﹣1﹣+)×(﹣24)=﹣24+36+9﹣14=7;(2)原式=﹣32×(﹣)×﹣12×(﹣15+16)3=2﹣12×1=2﹣12=﹣10.39.计算:(1)(﹣)×(﹣24)﹣(﹣49÷7)(2)﹣19﹣5×(﹣2)+(﹣4)2÷(﹣8)【解答】解:(1)原式=﹣3+2+7=6;(2)原式=﹣1+10﹣2=7.40.计算题:(1)22+2×[(﹣3)2﹣3+](2)﹣0.25÷×(﹣1)3+(﹣3.75)×24.【解答】解:(1)22+2×[(﹣3)2﹣3+]=4+2×[9﹣3+]=4+2×=4+13=17;(2)﹣0.25÷×(﹣1)3+(﹣3.75)×24=﹣×(﹣1)+33+56﹣90=1+33+56﹣90=0.。

有理数混合运算(6种题型)(解析版)

有理数混合运算(6种题型)(解析版)

有理数混合运算(6种题型)会进行有理数的混合运算,合理应用运算律,进行简便运算.一.有理数的混合运算(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.【规律方法】有理数混合运算的四种运算技巧1.转化法:一是将除法转化为乘法,二是将乘方转化为乘法,三是在乘除混合运算中,通常将小数转化为分数进行约分计算.2.凑整法:在加减混合运算中,通常将和为零的两个数,分母相同的两个数,和为整数的两个数,乘积为整数的两个数分别结合为一组求解.3.分拆法:先将带分数分拆成一个整数与一个真分数的和的形式,然后进行计算.4.巧用运算律:在计算中巧妙运用加法运算律或乘法运算律往往使计算更简便.二.计算器—基础知识(1)计算器的面板是由键盘和显示器组成.(2)开机键和关机键各是AC/ON,OFF,在使用计算器时要按AC/ON键,停止使用时要按OFF键.(3)显示器是用来显示计算时输入的数据和计算结果的装置.键上的功能是第一功能,直接输入,下面对应的是第二功能,需要切换成才能使用.(4)开方运算按用到乘方运算键x2的第二功能键”和的第二功能键“”.(5)对于开平方运算的按键顺序是:2ndfx2被开方数ENTE.(6)对于开立方运算的按键顺序是:32ndf∧被开方数ENTE.(7)部分标准型具备数字存储功能,它包括四个按键:MRC、M﹣、M+、MU.键入数字后,按M+将数字读入内存,此后无论进行多少步运算,只要按一次MRC即可读取先前存储的数字,按下M﹣则把该数字从内存中删除,或者按二次MRC.注意:由于计算器的类型不一样操作方式也不尽相同,可以参考说明书进行操作.三.计算器—有理数计算器包括标准型和科学型两种,其中科学型使用方法如下: (1)键入数字时,按下相应的数字键,如果按错可用(DEL )键消去一次数值,再重新输入正确的数字. (2)直接输入数字后,按下对应的功能键,进行第一功能相应的计算.(3)按下(﹣)键可输入负数,即先输入(﹣)号再输入数值.(4)开方运算按用到乘方运算键x 2的第二功能键”和的第二功能键“”.(5)对于开平方运算的按键顺序是:2ndfx 2被开方数ENTE 或直接按键,再输入数字后按“=”即可.(6)对于开立方运算的按键顺序是:32ndf ∧被开方数ENTE 或直接按x 3,再输入数字后按“=”即可 注意:由于计算器的类型不一样操作方式也不尽相同,可以参考说明书进行操作.题型一:有理数四则混合运算一、填空题1.(2022秋·江苏无锡·七年级统考期中)定义一种新运算:x y x y xy =+−★,则计算()32−=★___________.【答案】5【详解】解:∵x y x y xy =+−★,∴()()3232323265−=−+−−⨯=−++=★,故答案为:5【点睛】本题考查了新运算和有理数的混合运算,理解新运算的定义是解题的关键.二、解答题 2.(2022秋·江苏徐州·七年级校考阶段练习)计算(1)13251216−+−(2)()()()0510037÷−⨯+−÷−(3)()()()25549−⨯−÷−+【答案】(1)16− (2)37(3)47(4)1−【分析】(1)原式结合后,相加即可求出值;(2)原式先算乘除运算,再算加减运算即可求出值;(3)原式先算乘除运算,再算加法运算即可求出值;(4)原式利用减法法则变形,结合后相加即可求出值.【详解】(1)原式()1312251616=+−−=−; (2)原式33077=+=;(3)原式24947=−+=;(4)原式223331212113344=−++−=−+=−.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.【答案】(1)24−(2)14 【分析】(1)利用乘法分配律进行计算即可;(2)先计算乘除法,再计算加减法即可.【详解】(1)解:1336124⎛⎫⨯− ⎪⎝⎭ 133636124⎛⎫=⨯+⨯− ⎪⎝⎭327=−24=−(2)()()18632−÷−⨯−()118623⎛⎫=−⨯−⨯− ⎪⎝⎭184=−14=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则和运算律是解题的关键.【答案】(1)5−(2)11−(3)1179919− (4)6−(5)81(6)75=【分析】(1)根据有理数加法的运算律,同分母的相结合,能凑整的相结合,再进行计算.(2)运用乘法分配律进行计算即可.(3)将原式写成1(100)(18)19−⨯−,再根据乘法分配律进行计算即可. (4)倒用乘法分配律+ab ac ad a b c d +=++()进行计算即可.(5)先根据“除以一个数等于乘以它的倒数”,将除法运算变为乘法运算,再运用乘法分配律进行计算即可.(6)按照有理数混合运算法则:先乘方,再乘除,最后再加减,有括号的先算括号里边的,进行计算即可.【详解】(1)34(3)12.5(16)( 2.5)77−++−−−34(3)12.5(16) 2.577=−++−+34[(3)(16)](12.5 2.5)77=−+−++2015=−+=5−;(2)7537()(36)96418−+−⨯−75373636363696418=−⨯+⨯−⨯+⨯28302714=−+−+22714=−+2514=−+11=−;(3)18991819−⨯1(100)(18)19=−⨯−1100181819=−⨯+⨯ 18180019=−+ 1179919=−;(4)22218()134333⨯−+⨯−⨯ 22218134333=−⨯+⨯−⨯2(18134)3=−+−⨯2(9)3=−⨯ 6=−;(5)1571(3)()261236−+−÷−157(3)(36)2612=−+−⨯−1573633636362612=−⨯+⨯−⨯+⨯181083021=−+−+903021=−+6021=+81=;(6)211[(4)(0.4)]3(2)343÷−−⨯−÷⨯−−21[()0.1]33234=⨯−+⨯⨯+11()332610=−+⨯⨯+133215=−⨯⨯+325=−+75=【点睛】本题主要考查了有理数的四则混合运算,熟练掌握运算律和运算法则是解题的关键.【答案】(1)6(2)5 【详解】(1)解:()()745−−+−745=+−6=;(2)解:113(60)234⎛⎫−−+⨯− ⎪⎝⎭113(60)(60)(60)234=−⨯−−⨯−+⨯−302045=+−5=. 【点睛】本题考查有理数的加减混合运算,有理数的四则混合运算.掌握有理数的混合运算法则是解题关键.注意在解(2)时利用乘法分配律更简便.6.(2020秋·江苏徐州·七年级校考阶段练习)计算:(1)()()2317716−−−+−112019++−【答案】(1)3−(2)45.08−(3)19 30(4)1 3(5)7 4−(6)7(7)54−(8)17 60【详解】(1)解:()() 2317716−−−+−2317716 =−+−710=−3=−;(2)()()26.54 6.418.54 6.4−+−−+26.5418.54 6.4 6.4 =−−−+45.08=−;(3)3111253⎛⎫+−−+ ⎪⎝⎭ 3111253=−−+ 456301*********=−−+1930=;(4)531245⎛⎫⎛⎫−⨯− ⎪ ⎪⎝⎭⎝⎭58245=⨯ 13=;(5)172.5(8)516⎛⎫⎛⎫−⨯⨯−⨯− ⎪ ⎪⎝⎭⎝⎭15785216=−⨯⨯⨯74=−;(6)251(18)(3)29115⎛⎫⎛⎫−⨯−+−⨯−⨯ ⎪ ⎪⎝⎭⎝⎭ 15114115=+⨯43=+7=;(7)12(45)35⎡⎤⎛⎫⎛⎫−÷−÷− ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦ 15(45)32⎛⎫=−÷⨯ ⎪⎝⎭5(45)6=−÷ 6(45)5=−⨯54=−;(8)111111114354652019−+−+−++−111111113445561920=−+−+−++−11320=− 2036060=−1760=.【点睛】此题考查了有理数的四则混合运算,正确掌握有理数混合运算的法则及运算顺序是解题的关键.【答案】25【分析】根据题意的算法进行运算,即可求得结果.【详解】解:原式的倒数是129314510220⎛⎫⎛⎫−−+−÷− ⎪ ⎪⎝⎭⎝⎭()12932045102⎛⎫=−−+−⨯− ⎪⎝⎭581830=+−+25=故原式125=.【点睛】本题考查了有理数的混合运算,理解题意,正确运算是解决本题的关键.8.(2022秋·江苏扬州·七年级校联考期中)定义一种新运算:观察下列各式,并解决问题.131538=⨯+=,3135116=⨯+=,5455429=⨯+=,请你想一想:43= a b = ab b a (填入()543−. 【答案】(1)23,5a b +(2)≠(3)42−【分析】(1)根据题目所给新运算的运算顺序和运算法则进行计算即可;(2)先根据题目所给新运算的运算顺序和运算法则将a b 和b a 计算出来,再用作差法比较即可;(3)根据题目所给新运算的运算顺序和运算法则进行计算即可.【详解】(1)解:4345323=⨯+=;5a b a b =+;故答案为:23,5a b +.(2)∵5a b a b =+,5b a b a =+,∴()()()()5544a b b a a b b a a b −=+−+=−,∵a b ¹,∴440a b −≠∴a b b a ≠.故答案为:≠.(3)()543−−()5453=−−⨯+ ()517=−−()5517=−⨯+− 42=−.【点睛】本题主要考查了新定义下的有理数的混合运算,解题的关键是正确理解题意,明白题中所给新定义的运算顺序和运算法则,熟练掌握有理数的混合运算顺序和运算法则.题型二:有理数四则混合运算的应用一、填空题1.(2022秋·江苏·七年级开学考试)园林公司在林州大道旁种植了120棵树,有116棵成活,后来又补栽4棵,全部成活,这124棵树苗的成活率为_____【答案】97%【分析】根据成活率等于成活数除以总数再乘以100%计算即可.【详解】解:1164100%97% 1204+⨯≈+.答:成活率是97%.故答案为:97%.【点睛】此题属于百分率问题,明确成活率是指成活的棵数占总棵数的百分之几;要注意题中的“全部成活”,是指后来又补种的4棵全部成活,而不是种的120棵全部成活.二、解答题(1)接送完第5批客人后,该驾驶员在邗江路和文昌路十字路口什么方向,距离十字路口多少千米?(2)后来他开车回到出发地,途中没有带到客人,若该出租车每千米耗油0.09升,那么在整个过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费9元,超过3km的部分按每千米加1.8元收费,在整个行驶过程中,该出租车驾驶员共收到车费多少元?【答案】(1)东3千米处(2)2.16升(3)57.6元【分析】(1)求出行驶路程的代数和,利用结果的符号和数值作出判断即可;(2)求出行驶路程的绝对值的和,利用路程和乘以每千米耗油量即可得出结论;(3)分别计算接送每批客人的收费数额再相加即可得出结论.【详解】(1)∵()()347253km ++−+−+=,∴出租车在解放路和青年路十字路口东边,距离十字路口3千米;(2)∵34725324km ++−+−++=,∴240.09 2.16⨯=(升).∴在这过程中共耗油2.16升.(3)∵接送第一批客人的收费为:9元,接送第二批客人的收费为:()9 1.84310.8+⨯−=(元),接送第三批客人的收费为:()9 1.87316.2+⨯−=(元),送第四批客人的收费为:9元,接送第五批客人的收费为:()9 1.85312.6+⨯−=(元),∴910.816.2912.657.6++++=(元).所以在这过程中该出租车驾驶员共收到车费57.6元.【点睛】本题考查了正负数的意义和有理数的运算,解题关键是明确正负数的意义,能熟练运用有理数运算法则进行计算.【答案】(1)小明家这10天轿车行驶的路程为240km(2)估计小明家一个月耗电费用为162元【分析】(1)记录数字的和再加上10个25即可得到结果;(2)用(1)的结论乘以3即可得到总路程,再根据“该轿车每行驶100km耗电15度,且轿车充电的价格为每度1.5元,”列式解答即可;【详解】(1)解:()314182623210km +−+−+−+−+=−,()251010240km ⨯−=,答:小明家这10天轿车行驶的路程为240km . (2)240310015 1.5162⨯÷⨯⨯=(元),答:估计小明家一个月(按30天算)的电动轿车耗电费用为162元.【点睛】本题考查正数与负数以及有理数的加减乘除混合运算,正确列出算式并掌握相关运算法则是解答本题的关键.4.(2022秋·江苏泰州·七年级泰州市第二中学附属初中校考期中)小刚坐公交车去参加志愿者活动,他从南站上车,上车后发现车上连自己共有12人,经过A 、B 、C 、D 4个站点时,他观察到上下车情况如下(记上车为正,下车为负):()3,2A +−,()5,3B +−,()3,4C +−,()7,4D +−. (1)经过4个站点后车上还有 人;(2)小刚发现在A 、B 、C 、D 这四站上车的人中,有一半投币付费(每人2元),还有一半刷卡付费(每人1.4元),求这四站公交公司共收入多少元? 【答案】(1)17(2)这四站公交公司共收入30.6元【分析】(1(2)先求出4个站一共上车的人数,再根据这四站上车的人中,有一半投币付费(每人2元),还有一半刷卡付费(每人1.4元),进行求解即可. 【详解】(1)解:()()()()()()()()1232533474+++−+++−+++−+++−1232533474=+−+−+−+−125=+ 17=人,∴经过4个站点后车上还有17人; (2)解:353718+++=人,11218 1.41830.622⨯⨯+⨯⨯=元,∴这四站公交公司共收入30.6元,答:这四站公交公司共收入30.6元.【点睛】本题主要考查了有理数的加法的应用,有理数混合计算的应用,正确理解题意是解题的关键.(1)这20筐苹果中,最重的一筐比最轻的一筐多重千克.(2)与标准重量比较,这20筐苹果总计超过或不足多少千克?(3)若苹果每千克售价85元,则出售这20筐苹果可卖多少元?【答案】(1)5.5(2)超过8千克(3)43180元【分析】(1)根据正负数的意义确定最重的一筐和最轻的一筐,然后利用有理数减法计算法则求解即可;(2)把所给的记录相加,如果结果为正则超过标准重量,如果结果为负则不足;(3)先求出这20筐苹果的总重量,然后根据可卖的钱数=单价×重量进行求解即可.【详解】(1)解:由表格可知,最重的一筐比最轻的一筐重:()2.53 5.5−−=(千克).答:最重的一筐比最轻的一筐多重5.5千克.(2)解:由表格可得,()()()3124 1.520321 2.58−⨯+−⨯+−⨯+⨯+⨯+⨯()()()3830220=−+−+−+++8=(千克).答:与标准重量比较,20筐苹果总计超过8千克.(3)解:由题意可得,()202588543180⨯+⨯=(元),∴出售这20筐苹果可卖43180元.【点睛】本题主要考查了有理数减法的应用,有理数四则混合运算的应用,正确理解题意是解题的关键.6.(2022秋·江苏扬州·七年级校考阶段练习)思考下列问题并在横线上填上答案.(1)已知数轴上有M ,N 两点,点M 与原点的距离为2,M ,N 两点的距离为1.5,则满足条件的点N 所表示的数是__________;(2)在纸上画了一条数轴后,折叠纸面,使数轴上表示2的点与表示4−的点重合,若数轴上E ,F 两点之间的距离是10(E 在F 的左侧),且E 、F 两点经过上述折叠后重合,则点E 表示的数是__________,点F 表示的数是__________;(3)数轴上点A 表示数8,点B 表示数8−,点C 在点A 与点B 之间,点A 以每秒0.5个单位的速度向左运动,点B 以每秒1.5个单位的速度向右运动,点C 以每秒3个单位的速度先向右运动碰到点A 后立即返回向左运动,碰到点B 后又立即返回向右运动,碰到点A 后又立即返回向左运动…,三个点同时开始运动,当三个点聚于一个点时,这一点表示的数是多少?点C 在整个运动过程中,移动了多少单位? 【答案】(1)3.5或0.5或 3.5−或0.5− (2)6−,4 (3)8,4,24【分析】(1)先求出点M 所表示的数,进而即可求解; (2)先求出折痕对应的数为:-1,进而即可求解; (3)先求出A 、B 相遇时所花的时间,进而即可求解. 【详解】(1)解:∵点M 2, ∴点M 表示的数为:2±, ∵,M N 两点的距离为1.5,∴N 表示的数为:2 1.5 3.5±=或0.5;2 1.5 3.5−±=−或0.5−, 故答案是:3.5或0.5或 3.5−或0.5−;(2)∵折叠纸面,使数轴上表示2的点与表示4−的点重合, ∴折痕对应的数为:1−,∵数轴上,E F 两点之间的距离是10(E 在F 的左侧),且,E F 两点经过上述折叠后重合, ∴点E 表示的数是:156−−=−,点F 表示的数是:154−+=, 故答案是:6−,4;(3)当三个点聚于一个点时,则A 、B 相遇,运动的时间为:()()880.5 1.58+÷+=(秒),此时,这一点表示的数是:8 1.584−+⨯=,点C 在整个运动过程中,移动了:2483=⨯个单位.【点睛】本题主要考查数轴上的点所表示的数,两点间的距离,折叠的性质,掌握数轴上两点的距离等于对应的两数之差的绝对值,是解题的关键.【答案】(1)3(2)a 的值为8,点A 表示的数为2−,点B 表示的数为6 (3)72【分析】(1)根据数轴的性质列出运算式子,再计算有理数的加法即可得;(2)先根据3根木条的长度等于14与10−之间的距离可求出a 的值,再根据数轴的性质列出运算式子,计算有理数的加减法即可得;(3)先参照(2)的思路求出爷爷比小红大52岁,再利用124减去52即可得. 【详解】(1)解:由题意得:点B 表示的数为253−+=,故答案为:3.(2)解:由题意得:a 的值为()141038−−÷=⎡⎤⎣⎦, 则点A 表示的数为1082−+=−, 点B 表示的数为1486−=,即a 的值为8,点A 表示的数为2−,点B 表示的数为6.(3)解:由题意得:爷爷比小红大()12432352−−÷=⎡⎤⎣⎦(岁), 则爷爷现在的年龄为1245272−=(岁), 故答案为:72.【点睛】本题考查了数轴、有理数的加减法与除法的应用,熟练掌握数轴的性质是解题关键. 题型三:程序流程图与有理数计算一、单选题【答案】B【分析】分别将三组数据代入程序流程图运算求解即可. 【详解】解:①当7x =,2y =时x y >, 222()(72)525x y ∴−=−==;②当2x =−,=3y −时x y >,[]222()2(3)11x y ∴−=−−−==;③当4,1x y =−=−时x y <,[]222()4(1)(5)25x y ∴+=−+−=−=,∴能使输出的结果为25的有①③,故选:B .【点睛】本题主要考查了与程序流程图有关的有理数计算,有理数比较大小,正确读懂程序流程图是解题的关键.二、填空题2.(2022秋·江苏盐城·七年级校考阶段练习)如图所示是计算机某计算型序,若开始输入2x =−,则最后输出的结果是__________.【答案】14−【分析】直接利用运算程序,进而计算得出答案. 【详解】解:当2x =−时,()231615−⨯−−=−+=−,则5x =−时,()53115114−⨯−−=−+=−,故答案为:14−.【点睛】本题考查了有理数的混合运算,掌握有理数的运算法则,理解本题的运算程序是解决本题的关键. 3.(2020秋·江苏扬州·七年级校考期中)根据如图所示的程序计算,若输入x 的数值为2−,则输出的数值为______.【答案】 3.625−/538−/298−【分析】把x 的值代入程序中计算,再根据结果3<−输出即可. 【详解】解:把2x =−代入程序中计算得:()()2212⎡⎤⎣+⎦−÷−()()412=+÷−()52=÷−2.53=−>−,把 2.5x =−代入程序中计算得:()()22.512⎡+⎤⎣⎦−÷−()()6.2512=+÷−()7.252=÷−3.6253=−<−.故输出的数值为 3.625−. 故答案为: 3.625−.【点睛】此题考查了有理数的混合运算,代数式求值,熟练掌握运算法则是解本题的关键.【答案】4【分析】根据程序流程图的流程,列出算式,进行计算即可.【详解】解:输入的值为1时,由图可得:212420⨯−=−<;输入2−可得:()222440−⨯−=>;∴输出的值应为4; 故答案为:4.【点睛】本题考查程序流程图.按照流程图的流程准确的列出算式,是解题的关键.5.(2022秋·江苏淮安·七年级统考期中)如图所示是计算机程序计算,若开始输入1x =−,则最后输出的结果是___.【答案】-11【分析】读懂计算程序,把1x =−,代入,按计算程序计算,直到结果小于5−即可. 【详解】解:当输入x ,若()41x ⨯−−小于5−,即为输出的数,当1x =−时,()()()414113x ⨯−−=⨯−−−=−,3−不小于5−,因此,把3x =−再输入得,()()()4143111x ⨯−−=⨯−−−=−,11−小于5−,故答案为:11−.【点睛】本题考查实数的混合运算,掌握计算法则是关键.6.(2022秋·江苏无锡·七年级校考期中)如图是一个对于正整数x 的循环迭代的计算机程序.根据该程序指令,如果第一次输入x 的值是3时,那么第一次输出的值是10;把第一次输出的值再次输入,那么第二次输出的值是5;把第二次输出的值再次输入,那么第三次输出的值是16;以此类推得到一列输出的数为10,5,16,8,4,2,1,4,…若第五次输出的结果为1,则第一次输入的x 为 _____.【答案】32、5、4【详解】解:若第五次输出的结果为1, 则第5次输入为:2, 第4次输出为:2, 第4次输入为:4, 第3次输出为:4, 第3次输入为:8或1, 第2次输出为:8或1, 第2次输入为:16或2, 第1次输出为:16或2, 第1次输入为:32、5或4, 故答案为:32、5、4.【点睛】本题考查了有理数的混合运算,解题关键是读懂题意,寻找到数字变化的规律,利用规律解决问题.三、解答题 7.(2023秋·江苏扬州·七年级统考期末)如图,按图中的程序进行计算.(1)当输入的30x =时,输出的数为______;当输入的16x =−时,输出的数为______;(2)若输出的数为52-时,求输入的整数x 的值.【答案】(1)60−,64−;(2)26x =±或13±【分析】(1)根据图中的程进行列式计算,即可求解;(2)当输出的数为52-时,分两种情况进行讨论.【详解】(1)解:根据运算程序可知:当输入的30x =时,得:()3026045⨯−=−−<, ∴输入的30x =时,输出的数为60−;根据运算程序可知:当输入的16x =−时,得:()1623245−⨯−=−−>; 再输入32x =−,得:()3226445−⨯−=−−<,∴输入的32x =−时,输出的数为64−;故答案为:60−,64−;(2)解:当输出的数为52-时,分两种情况: 第一种情况:()252x ⨯−=−,解得:26x =±;第二种情况:当第一次计算结果为26−时,再循环一次输入的结果为52-,则()226x ⨯−=−,解得:13x =±,综上所述,输出的数为52-时,求输入的整数x 的值为:26x =±或13±. 【点睛】本题考查程序流程图与有理数的计算、绝对值,解题的关键是掌握有理数的运算法则和解绝对值方程.题型四:算“24”点一、填空题1.(2022秋·七年级单元测试)用一组数3,4,﹣4,﹣6算24点(每个数只能用一次):________.【答案】3×4×[﹣4﹣(﹣6)]=24(答案不唯一)【分析】此题只要符合题的要求,得数等于24即可,答案不唯一.【详解】解:3×4×[﹣4﹣(﹣6)]=12×(﹣4+6)=12×2=24,故答案为:3×4×[﹣4﹣(﹣6)]=24(答案不唯一).【点睛】本题主要考查有理数的混合运算,此题要注意要求的得数为24,而且每个数字只能用一次. 2.(2022秋·江苏镇江·七年级校联考阶段练习)“24点游戏”指的是将一副扑克牌中任意抽出四张,根据牌面上的数字进行混合运算(每张牌只能使用一次),使得运算结果是24或者是24−,现抽出的牌所对的数字是4,5−,3,1−,请你写出刚好凑成24的算式__________.【答案】[]34(5)1⨯−−−【分析】利用“24点游戏”的游戏规则写出算式即可.【详解】解:根据题意得:[]34(5)1⨯−−−38=⨯=24.故答案为:[]34(5)1⨯−−−(答案不唯一).【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.3.(2022秋·江苏南京·七年级南京钟英中学校考阶段练习)已知4个有理数:1,2,3,4−−−−,在这4个有理数之间用“,,,+−⨯÷”连接进行四则运算,每个数只用一次,使其结果等于24,你的算法是___________.【答案】(1)(2)(3)(4)24−⨯−⨯−⨯−=(答案不唯一)【分析】根据“24点”游戏规则列出算式即可.【详解】解:(1)(2)(3)(4)24−⨯−⨯−⨯−=故答案为:(1)(2)(3)(4)24−⨯−⨯−⨯−=(答案不唯一)【点睛】此题考查了有理数的混合运算,弄清“24点”游戏规则是解题的关键 4.(2022秋·江苏南京·七年级阶段练习)算“24点”是一种数学游戏:把所给的四个数字用运算符号(可以有括号)连接起来,使得运算结果为24,注意:每个数字只能用一次,请你用“5、5、5、1”这4个数字算“24点”,列出的算式是____.【答案】555124⨯−=(答案不唯一)【分析】解答此题应根据数的特点,四则混合运算的运算顺序,进行尝试凑数即可解决问题。

有理数的加减混合运算(第1课时)(课件)-七年级数学上册同步精品课件(北师大版)

有理数的加减混合运算(第1课时)(课件)-七年级数学上册同步精品课件(北师大版)
_负__2_0_加__3__加__5__减__7__
新课讲解
(20) (3) (5) (7).
运算过程也可简单写为: 原式=(-20)+(+3)+(+5)+(-7)
= 20 3 5 7 减法转化为加法(可省略)
= 20 7 3 5 写成省略加号的和的形式
= 27 8
有理数加法的交换律
减法转化成加法 =[(-2)+(-27)]+[(+30)+(+15)]
=(-29)+(+45) =16.
新课讲解
方法二:(去括号法)
解:原式=-2+30+15-27 省略括号
=-2-27+30+15
=-2+(-27)+45 =-29+45 =-(29-45) =16
运用加法交换律使同号两 数分别相加
= 19.
有理数加法的结合律
新课讲解
典例分析
例1.计算:
(1)-53 +15 -45 ;
解:原式= 2 4 55
=
2 5
4 5
= 6. 5
(2)(-5)--21 +7-73 .
解:原式=( 5) 1 7 7 23
=57 பைடு நூலகம் 7 23
=2 11 6
=1. 6
新课讲解
典例分析
例2.计算:(-2)+(+30)-(-15)-(+27); 方法一:减法变加法 解:原式=(-2)+(+30)+(+15)+(-27)
小彬抽到的4张卡片依次为:
3
1
22
4
-5
他抽到的卡片的计算结果是多少? 他抽到的卡片的计算结果是多少?
获胜的是谁?

有理数的混合运算(1)

有理数的混合运算(1)

有理数的混合运算(1)引言有理数是数学中非常重要的概念之一。

在实际生活和各个学科领域中,我们经常需要进行有理数的混合运算。

本文将介绍有理数的概念,以及常见的有理数混合运算。

有理数的定义有理数是指可以表示为两个整数的比值的数。

有理数包括正数、负数和零。

有理数的定义可以用以下的数学公式来表示:a/b其中,a和b是整数,而b不等于零。

有理数的表示和分类有理数可以用分数的形式来表示,例如2/3、-5/7等。

根据有理数的正负性,可以将有理数分为正有理数、负有理数和零。

其中,正有理数大于零,负有理数小于零。

有理数的混合运算有理数的混合运算主要包括加法、减法、乘法和除法。

下面将分别介绍这些运算。

加法运算对于两个有理数的加法运算,可以直接将它们的分子相加,并将分母保持不变。

例如,对于有理数3/4和1/2的加法运算,可以将它们的分子相加得到5/4。

减法运算对于两个有理数的减法运算,可以直接将它们的分子相减,并将分母保持不变。

例如,对于有理数3/4和1/2的减法运算,可以将它们的分子相减得到1/4。

乘法运算对于两个有理数的乘法运算,可以将它们的分子相乘,并将分母相乘。

例如,对于有理数3/4和1/2的乘法运算,可以将它们的分子相乘得到3/8。

除法运算对于两个有理数的除法运算,可以将其中一个有理数的分子与另一个有理数的分母相乘,再将结果的分子与另一个有理数的分子相乘。

例如,对于有理数3/4和1/2的除法运算,可以将3/4的分子与1/2的分母相乘,得到3/8。

简化有理数在进行有理数运算时,为了方便与准确,常常需要将有理数进行简化。

有理数的简化方法是将其分子与分母的最大公约数除去得到最简形式。

例如,有理数10/15可以简化为2/3。

结论有理数的混合运算是数学中的重要内容之一,通过加法、减法、乘法和除法可以对有理数进行各种运算。

在操作过程中,我们还可以对有理数进行简化,得到最简形式。

熟练掌握有理数的混合运算,可以帮助我们解决实际生活和学科领域中的问题。

有理数的混合运算练习题

有理数的混合运算练习题

有理数的混合运算练习题有理数的混合运算练习题有理数是数学中的一个重要概念,它包括整数和分数。

在日常生活和学习中,我们经常会遇到有理数的混合运算,即同时涉及到整数和分数的运算。

掌握有理数的混合运算对于数学学习的进一步发展至关重要。

本文将通过一些练习题,帮助读者巩固和提升有理数的混合运算能力。

1. 计算:-3/4 + 2/3 - 1/2 + 5/6 - 7/8解析:首先,我们需要找到这些分数的最小公倍数,然后将它们的分母统一。

这里最小公倍数是24,所以我们将每个分数的分母都改为24。

计算过程如下:(-3/4) * (6/6) + (2/3) * (8/8) - (1/2) * (12/12) + (5/6) * (4/4) - (7/8) * (3/3)= -18/24 + 16/24 - 12/24 + 20/24 - 21/24= -15/24所以,-3/4 + 2/3 - 1/2 + 5/6 - 7/8 = -15/24。

2. 计算:(-1/2) × (-3/4) ÷ (2/3)解析:乘法和除法的运算规则是先乘除后加减。

计算过程如下:(-1/2) × (-3/4) ÷ (2/3)= 1/2 × 3/4 ÷ 2/3= (1 × 3)/(2 × 4) ÷ (2/3)= 3/8 ÷ (2/3)= 3/8 × (3/2)= (3 × 3)/(8 × 2)= 9/16所以,(-1/2) × (-3/4) ÷ (2/3) = 9/16。

3. 计算:-5/6 + (-2/3) × (-3/4)解析:先计算乘法,然后再进行加法。

计算过程如下:(-2/3) × (-3/4) = (2 × 3)/(3 × 4) = 6/12 = 1/2所以,-5/6 + (-2/3) × (-3/4) = -5/6 + 1/2为了进行加法,我们需要找到这两个分数的最小公倍数,然后将它们的分母统一。

有理数加减混合计算题100道【含答案】

有理数加减混合计算题100道【含答案】

有理数加减混合计算题100道【含答案】(七年级数学)92267(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--有理数运算练习(一) 【加减混合运算】一、有理数加法.1、【基础题】计算:(1) 2+(-3); (2)(-5)+(-8); (3)6+(-4); (4)5+(-5); (5)0+(-2); (6)(-10)+(-1); (7)180+(-10); (8)(-23)+9;(9)(-25)+(-7); (10)(-13)+5; (11)(-23)+0; (12)45+(-45).2、【基础题】计算:(1)(-8)+(-9); (2)(-17)+21; (3)(-12)+25; (4)45+(-23);(5)(-45)+23; (6)(-29)+(-31); (7)(-39)+(-45); (8)(-28)+37.3、【基础题】计算,能简便的要用简便算法:(1)(-25)+34+156+(-65); (2)(-64)+17+(-23)+68; (3)(-42)+57+(-84)+(-23); (4)63+72+(-96)+(-37); (5)(-301)+125+301+(-75); (6)(-52)+24+(-74)+12; (7)41+(-23)+(-31)+0; (8)(-26)+52+16+(-72).4、【综合Ⅰ】计算:(1))43(31-+; (2)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3121; (3)()⎪⎭⎫⎝⎛++-5112.1; (4))432()413(-+-;(5))752()723(-+; (6)(—152)+8.0; (7)(—561)+0; (8)314+(—561).5、【综合Ⅰ】计算:(1))127()65()411()310(-++-+; (2)75.9)219()29()5.0(+-++-;(3))539()518()23()52()21(++++-+-; (4))37(75.0)27()43()34()5.3(-++++-+-+-二、有理数减法.6、【基础题】计算:(1)9-(-5); (2)(-3)-1; (3)0-8; (4)(-5)-0; (5)3-5; (6)3-(-5);(7)(-3)-5 (8)(-3)-(-5); (9)(-6)-(-6); (10)(-6)-6.、【综合Ⅰ】计算:(1)(-52)-(-53); (2)(-1)-211; (3)(-32)-52; (4)521-(-7.2);(5)0-(-74); (6)(-21)-(-21); (7)525413- ; (8)-64-丨-64丨7、【基础题】填空:(1)(-7)+( )=21; (2)31+( )=-85;(3)( )-(-21)=37; (4)( )-56=-408、【基础题】计算:(1)(-72)-(-37)-(-22)-17; (2)(-16)-(-12)-24-(-18); (3)23-(-76)-36-(-105); (4)(-32)-(-27)-(-72)-87.(5)(-32)-21-(-65)-(-31); (6)(-2112)-[ --(-)-516 ] .三、有理数加减混合运算9、【综合Ⅰ】计算(1)-7+13-6+20; (2)-+-+10; (3)(-53)+51-54;(4)(-5)-(-21)+7-37; (5)31+(-65)-(-21)-32; (6)-41+65+32-21;10、【综合Ⅰ】计算,能简便的要用简便算法:(1)-+(-); (2)(-)-21+(-51); (3)21-(-)-61; (4)(-31)-15+(-32); (5)32+(-51)-1+31; (6)(-12)-(-56)+(-8)-10711、【综合Ⅰ】计算:(1)-(-)+(-); (2)(-8)-(-15)+(-9)-(-12);(3)+(-41)-(-)+21; (4)(-32)+(-61)-(-41)-21;(5)21+(-32)-(-54)+(-21); (6)310+(-411)-(-65)+(-127)12、【综合Ⅰ】计算:(1)7+(-2)-; (2)(-)+3-+(-52); (3)31+(-45)+; (4)7-(-21)+; (5)49-(-)-53; (6)(-56)-7-(-)+(-1);(7)11512+丨-11611丨-(-53)+丨212丨; (8)(- )+ 1098 + +(- 1098)13、【综合Ⅰ】计算:(1)()()()()-+-+++-+-++12345678; (2)-+++(-)(3)-⎛⎝ ⎫⎭⎪--⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪13123423; (4)5146162341456+-⎛⎝ ⎫⎭⎪++-⎛⎝ ⎫⎭⎪;(5)--(-413)+-(+217); (6)3745124139257526+-+有理数运算练习(一) 答案1、【答案】 (1)-1; (2)-13; (3)2; (4)0; (5)-2; (6)-11; (7)170;(8)-14; (9)-32; (10)-8; (11)-23; (12)0.2、【答案】 (1)-17; (2)4; (3)13; (4)22; (5)-22;(6)-60; (7)-84; (8)9.3、【答案】(1)100; (2)-2; (3)-92; (4)2; (5)50; (6)-90; (7)-13; (8)-30.4、【答案】 (1)125-; (2)65-; (3)0; (4)-6; (5)74; (6)32; (7)615-; (8)65-.5、【答案】 (1)65 (2) (3)12 (4)311-6、【答案】 (1)14; (2)-4; (3)-8; (4)-5; (5)-2; (6)8; (7)-8;(8)2; (9)0; (10)-12、【答案】 (1)51; (2)-25; (3)-1516; (4); (5)74; (6)0;(7)-2043(8)-1287、【答案】 (1)28; (2)-116; (3)16; (4)168、【答案】 (1)-30; (2)-10; (3)168; (4)-20; (5)0; (6)-或-1016 9、【答案】 (1)20; (2); (3)-56; (4)61; (5)-32; (6)4310、【答案】 (1)-7; (2)-; (3)127; (4)-16; (5)-51; (6)-23911、【答案】 (1); (2)10; (3)27; (4)-1213; (5)152; (6)65;12、【答案】 (1); (2)-; (3)30; (4)9; (5)69; (6)-6; (7); (8)013、【答案】 (1)8; (2)-3; (3)41; (4)-13; (5)-2; (6)902313。

有理数 混合运算

有理数 混合运算

有理数混合运算有理数是指可以用有限小数、无限循环小数或整数来表示的数。

它包括整数、分数,可以进行各种基本的数学运算。

在数学中,混合运算是指在同一个表达式中同时存在不同种类的数学运算,如加法、减法、乘法和除法等。

本文将围绕有理数的混合运算展开讨论。

首先,我们来复习一下有理数的基本概念。

有理数可以表示为两个整数的比值,例如1/2、5/3等。

有理数可以用小数形式表示,这些小数要么是有限的,要么是无限不循环的,要么是无限循环的。

所以,有理数可以表示为分数形式、小数形式或整数形式。

接下来,我们将讨论有理数的混合运算。

混合运算包括加法、减法、乘法和除法。

我们将仔细讨论每一种运算。

首先,加法是将两个数相加得到一个结果的运算。

对于有理数的加法,我们可以按照分数的运算规则进行计算。

即将两个分数的分子相加,分母保持不变。

例如,计算1/2+3/4的结果,我们将分子相加得到7/4。

可以看出,有理数的加法仍然是一个有理数。

接下来,我们来讨论减法。

减法是将一个数减去另一个数得到一个结果的运算。

对于有理数的减法,我们可以先化减法为加法,即将减数取反再进行加法运算。

例如,计算3/4-1/2的结果,我们可以将减数1/2取反,得到-1/2,然后进行加法运算,得到2/4,即1/2的结果。

再来看乘法运算。

乘法是将两个数相乘得到一个结果的运算。

对于有理数的乘法,我们可以按照分数的运算规则进行计算。

即将两个分数的分子相乘,分母相乘。

例如,计算2/3×4/5的结果,我们将分子相乘得到8,分母相乘得到15,因此结果为8/15。

最后,我们来讨论除法运算。

除法是将一个数除以另一个数得到一个结果的运算。

对于有理数的除法,我们可以按照分数的运算规则进行计算。

即将被除数乘以除数的倒数。

例如,计算3/4÷1/2的结果,我们将被除数乘以除数的倒数,得到3/4×2/1,即6/4,可以简化为3/2。

在有理数的混合运算中,我们需要按照运算的优先级进行计算,可以使用括号来改变运算的顺序。

有理数的加减混合运算 (1)

有理数的加减混合运算 (1)

引入相反数后,加减混合运算可以统一 为加法运算.
a b c a b (c).
思考?
(-20)+(+3)十(+5)+(一7)
(1)读出这个算式. (2)“+、-”读作什么?是哪种符号? “+、-”又读作什么?是什么符号?
(-20)+(+3)十(+5)+(一7)
表示
-20,+3,+5,-7的和
用简便方法计算,并说明有关理由:
1 14 - 4 1 16 5 2- 18.65 7.25 18.15 7.25
5 3 3 2.25 0.125 8 4
=(-32)+(-17)+(+65)+(+24)
=-32-17+65+24
读:负32,负17,正65,正24的和;或:负32减17加65加24
跟踪训练:
1 把下列各式写成省略加号和的形式,并读 出各式: (1) +7-(-11)+(+5) (2) (-3)-(+2.5)+(+4)-(-1.2) 2 把式子-8+4-7还原成加号的和的形式: (-8)+(+4)+(-7) _______________________________.
⑷ 5.6+(-0.9)+4.4+(-8.1)+(-1)
归纳:有理数加减混合运算方法
1.减法转化成加法, 2.省略加号,括号(即符号的化简),
3.观察算式特点,分组(按加法交换律 结合律), 4.按有理数加法法则进行运算。
活学巧记 有理数加减混合运算, 统一为加法是关键; 凑整、同号、同分母, 分别归类能简便。
运用加法交换律使同号两数分别相加
按有理数加法法则计算
做一做:把下列各式中的减法转化成加法,再写成省略加号 的和的形式,并把它读出来。

有理数的混合运算

有理数的混合运算
2;
(3) 23; (5) 1 (6)2;
3
(2) 1 2 ;
(4) 2 5
3

2
;
63
(6) 32 5;
(7) (3 2)3 (8) 1 2(4)
(9) 32 2;
(10) 12 (1)2
2.熟记有理数混合运算顺序。
括号里



的运算



;股升网 炒股配资 配资平台 配资公司 ;
心の还挺多.见他们貌似没把她の话当真,陆羽无奈,按记忆中の路线找到那片小斜坡.冰雪消融,又是大晚上の,已经完全看不到草地里の奶白色.陆羽尝试着上下走几步,不滑,隐约有股奶腥味,想必严姑娘提水清洗过了吧?那样最好,村里住の大多是中老年人,若是不小心滑倒不知得受多少罪. 啊!还有柏少华,他腿脚不便,平时走路那么慢应该不会摔跤吧?她の脑海里立即出现一个风度翩翩の男人哧溜地摔个四脚朝天の画面...陆羽打个激灵,那场面不要太美.“你在干什么?”蓦然间,身边响起一把独特の嗓音,害她心脏像被人狠狠捶了一记.循声望去,果然是她想象中の人物出来了. 再一次对他の速度感到惊讶,“你这么快就回来了?不跟昌叔多聊会儿?”柏少华看都不看她一眼,“他八点半睡觉,九点睡着,你说我能聊多久?”神色如常地从她身边走过,带起一阵微风,一股淡淡の清新味道若隐若现.那是专属于他の味道,她很熟悉.“你小心些,这儿有点滑...”陆羽提醒他 一句,在背后悄悄撇了一下嘴.瞧吧,只要她保持距离,过不久两人连朋友都算不上了.正想着,前面の身影一个趔趄吓了她一跳,忙抢步上前搀扶.“喂,喂,没事吧?”刚刚才提醒他来着.帅不过三秒,他貌似也吓了一跳,神色微窘.微带凉意の手掌紧紧握住她の,力度不轻,但也不重.她手臂挽着の竹 篮晃着,三个瓷瓶咣啷咣啷地响,还好没破

有理数混合运算习题(含答案)300道

有理数混合运算习题(含答案)300道

有理数的混合运算(一)填空4.23-17-(+23)=______.5.-7-9+(-13)=______.6.-11+|12-(39-8)|=______.7.-9-|5-(9-45)|=______.8.-5.6+4.7-|-3.8-3.8|=______.9.-|-0.2|+[0.6-(0.8-5.4)]=______.12.9.53-8-(2-|-11.64+1.53-1.36|)=______.13.73.17-(812.03-|219.83+518|)=______.36.38×(-7)+5[(-2)3(-32)-(-22)]-38×339÷(-3)38=______.48.(-2)×{(-3)×[(-5)+2×(0.3-0.3)÷83-3]+4}=______.112.413-74-(-5+26).116.-84-(16-3)+7.118.-0.182+3.105-(0.318-6.065).119.-2.9+[1.7-(7+3.7-2.1)].121.34.23-[194.6-(5.77-5.4)].125.23.6+[3.9-(17.8-4.8+15.4)].134.(-3)2÷2.5.135.(-2.52)×(-4).136.(-32)÷(-2)2.173.(-1)2×5+(-1)×52-12×5+(-1×5)2.174.(-2)(-3)(-36)+(-1)20×63.178.(-32)÷(3×2)×(-3-2).180.3×(-2)2+(-2×3)2+(-2+3)2.188.2+42×(-8)×16÷32.190.[5.78+3.51-(0.7)2]÷(0.2)3×11.191.(1.25)4÷(0.125)4×0.0036-(0.6)2.194.(-42×26+132×2)÷(-3)7×(-3)5.195.(3-9)4×23×(-0.125)2.201.741×[(-30)2-(-402)]3÷(1250)2.211.[(-5)3+3.4×2-2×4+53]2.213.(24-5.1×3-3×5+33)2.234.(-5)×(-3)×(-4)2+(-2)3×(-8)×(-3)-(-12)×3÷24.240.-18-23×[(-4)3÷(-43)+0.2×8+(-3)2÷(-32)].(四)用符号“>”,“<”,“≥”,“≤”,“=”之一填空241.当两个数和的绝对值______这两个数差的绝对值时,这两个数同号.242.一个正数与一个负数差的绝对值______这两个数绝对值的和.243.一个正数与一个负数和的绝对值______这两个数绝对值的差.244.一个正数与一个负数差的绝对值______这两个数绝对值的差.245.一个正数与一个负数和的绝对值______这两个数绝对值的和.246.当两个数和的绝对值______这两个数差的绝对值时,这两个数异号.247.当两数和的绝对值______这两个数差的绝对值时,这两个数至少有一个是零.248.当两数和的绝对值______这两个数的绝对值之和时,这两个数可以是任意的有理数.249.当两数差的绝对值______这两个数的绝对值之和时,这两个数可以是任意的有理数.250.当两个数和的绝对值______这两个数绝对值的差时,这两个数可以是任意的有理数.251.当两个数差的绝对值______这两个数绝对值的差时,这两个数可以是任意的有理数.252.欲使两个数的绝对值的和等于这两个数的和的绝对值,这两个数必须是怎样的数?253.欲使两个数和的绝对值不小于这两个数的差的绝对值,这两个数必须是怎样的数?254.欲使两数和的绝对值不大于这两数差的绝对值,这两个数必须是怎样的数?255.欲使两数和的绝对值不小于这两个数的绝对值的和,这两个数必须是怎样的数?256.一个盛有水的圆柱形水桶,其底面半径为1.6分米①.现将一个半径为1.2分米的铁球沉没在桶内水面下,问桶内水面升高多少分米?(列综合算式计算,球的体积公式为,其中V表示体积,R表示球的半径)257.一个盛有水的长方体状容器,它的底面是边长为2.4分米的正方形,现将一个半径是1.2分米的铁球放在容器内,正好铁球体积的1/3在水面下,问放入铁球后,水面升高了多少分米?(列综合算式计算,球的体积公式为V表示体积,R表示球的半径,π取3.14。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.7有理数的混合运算(1)
主备人:邹红宝
学习目标:进一步掌握有理数的运算法则和运算律;知道有理数混合运算的运算顺序,能正确进行有理数的混合运算
课前预习
1.计算:
1) 54(2)9+⨯-- 2) 108-+÷-⨯(-2)(-2)(-3)
3)331
1()( 1.5)444
⎡⎤÷--⨯--⎢⎥⎣⎦ 4)()()57423+-⨯-÷
2.提问:怎样进行有理数的混合运算?请学生联想小学四则运算的顺序及前面简单的混合运算概括出有理数混合运算的顺序
一般地,有理数的运算顺序是:先 ,再 ,最后 ;如果有括号,那么先算 。

3.巩固计算: (1) ()318-÷-2 (2) ()()32222233--+---
(3) ()()[]6253--⨯- (4)1125()(60)3456
-+-⨯-
教学过程
一、展示交流:
二、合作探究:
例题:计算:
(1)[]127(9)(6)3-+÷-+-⨯ (2)1116()24236
--
+⨯
(1) ()()423592÷---⨯+ (2) ()()34233005-⨯---÷⎡⎤⎣⎦
三、质疑反馈:
1.计算:(1)(4)(8.9)(0.25)-⨯+⨯- (2)(7)(8)(3)6(2)---⨯-+÷-
(5)23115
1()()3442⎡⎤+÷-+-⎢⎥⎣⎦ (6)335(10.2)(2)5⎡⎤---+-⨯÷-⎢⎥⎣⎦
(7)3
5310)3221
(÷⨯- (8)322)2()3()1()2(-⨯-+-⨯-
2.现有四个有理数3,,4,-6,10.将这四个数进行加、减、乘、除四则混合运算,使其结果为24,请写出两个不同的算式:
⑴ ; ⑵ . 课作:课本P51 练一练 P52 习题1 2
家作:《每日数学》。

相关文档
最新文档