9、列方程解一步计算的应用题1

合集下载

列方程解应用题

列方程解应用题

六年级数学列方程解应用题练习卷1 列方程解应用题的意义* 用方程式去解答应用题求得应用题的未知量的方法。

2 列方程解答应用题的步骤* 弄清题意,确定未知数并用x 表示; * 找出题中的数量之间的相等关系; * 列方程,解方程;* 检查或验算,写出答案。

3列方程解应用题的方法* 综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。

这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

* 分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。

这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

4列方程解应用题的范围小学范围内常用方程解的应用题: a 一般应用题; b 和倍、差倍问题;c 几何形体的周长、面积、体积计算;d 分数、百分数应用题;e 比和比例应用题。

1、新城中学今年绿化面积1800平方米,比去年的绿化面积的2倍还多40平方米,去年绿化面积是多少平方米?2、洗衣机厂今年每日生产洗衣机260台,比去年平均日产量的2.5倍少40台,去年平均日产洗衣机多少台?3、化肥厂用大、小两辆汽车运47吨化肥,大汽车运了8次,小汽车运了6次正好运完,大汽车每次运4吨,小汽车每次运多少吨?4、一匹布长36米,裁了10件大人衣服和8件儿童衣服,每件大人衣服用布2.4米,每件儿童衣服用布多少米?5、甲车每小时行48千米,乙车每小时行56千米,两车从相距12千米的两地同时背向而行,几小时后两车相距272千米?6、饲养场共养4800只鸡,母鸡只数比公鸡只数的1.5倍还多300只,公鸡、母鸡各养了多少只?7、哥哥和弟弟的年龄相加为35岁,哥哥比弟弟大3岁,哥哥和弟弟各多少岁?8、甲、乙两车同时从相距528千米的两地相向而行,6小时后相遇,甲车每小时比乙车快6千米,求甲、乙两车每小时各行多少千米?9、小李买苹果用去7.4元,比买2千克橘子多用0.6元,每千克橘子多少元?10、爱达小学图书室购买的文艺书比科技书多156本,文艺书的本数比科技书的3倍还多12本,文艺书和科技书各买了多少本?11、甲有书的本数是乙有书的本数的3倍,甲、乙两人平均每人有82本书,求甲、乙两人各有书多少本。

完整版)初一数学列方程解应用题归类含答案

完整版)初一数学列方程解应用题归类含答案

完整版)初一数学列方程解应用题归类含答案一、等积变形问题常见几何图形的面积、体积、周长计算公式,依据形状变化,但体积不变。

①圆柱体的体积公式为V=底面积×高=S·h=πrh②长方体的体积为V=长×宽×高=abc1.一段铁丝围成长方形,发现长比宽多2cm;围成正方形时,边长刚好为4cm。

求所围成的长方形的长和宽各是多少?解:设长方形的长为x,宽为x-2,则有x+x-2+4=4x,解得x=6,所以长方形的长为6cm,宽为4cm。

2.用一个底面半径为40mm,高为120mm的圆柱形玻璃杯向一个底面半径为100mm的大圆柱形玻璃杯中倒水,倒了满满10杯水后,大玻璃杯的液面离杯口还有10mm,大玻璃杯的高度是多少?解:由于10杯水的体积为10×40×40×π×120=π mm³,而大玻璃杯的底面积为100×100×π=π mm²,所以大玻璃杯的高度为π/π-10=22mm。

3.一个长方形养鸡场的长边靠墙,墙长14米,其他三边用竹篱笆围成。

现有长为35米的竹篱笆,小王打算用它围成一个鸡场,其中长比宽多5米;小赵也打算用它围成一个鸡场,其中长比宽多2米。

你认为谁的设计符合实际?按照他的设计,鸡场的面积是多少?解:设鸡场的长为x,宽为y,则有x+y=35,x-14=y+5或x-14=y+2,解得x=24,y=11或x=21,y=14.所以小王的设计符合实际,鸡场的面积为24×11=264平方米。

4.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高(精确到0.1毫米,π≈3.14)。

解:长方体铁盒中的水的体积为300×300×80=xxxxxxxmm³,而圆柱形水桶的体积为π×100×100×h=πh,所以h=xxxxxxx/(π)=229.18mm。

列方程解应用题.doc

列方程解应用题.doc

列方程解应用题——相遇问题1、小李和小刚家距离900米,两人同时从家出发相向行,小李每分走60米,小刚每分走90米,几分钟后两人相遇?2、小明和小刚家距离900米,两人同时从家出发相向行,5分钟后两人相遇,小刚每分走80米,小明每分走多少米?3、王强和赵文从相距2280米的两地出发相向而行,王强每分行60米,赵文每分行80米,王强出发3分钟后赵文出发,几分钟后两人相遇?4、两辆车从相距360千米的两地出发相向而行,甲车先出发,每小时行60千米,1小时后乙车出发,每小时行40千米,乙车出发几小时两车相遇?两村相距35千米,甲乙二人从两村出发,相向而行,甲每小时行5千米,乙每小时行4千米,甲先出发1小时后,乙才出发,当他们相距9千米时,乙行了多长时间?6、甲乙二人从相距45千米的两地同时出发相向而行,甲比乙每小时多行1千米,5小时后二人相遇,求两人的速度。

7、甲乙二人从相距100千米的两地出发相向而行,甲先出发1小时,他们在乙出发4小时后相遇,已知甲比乙每小时多行2千米,求两人的速度。

8、AB两地相距900米。

甲乙二人同时从A点出发,同向而行,甲每分行70米,乙每分行50米,甲到达A点后马上返回与乙在途中相遇,两人从出发到相遇一共用了多少时间?9、甲乙两地相距640千米。

一辆客车和一辆货车同时从甲地出发,同向而行,客车每小时行46千米,货车每小时34千米,客车到达乙地后马上返回与货车在途中相遇,问从出发到相遇一共用了多少时间?*10、甲每分钟走70米,乙每分钟走60米,丙每分钟走50米,甲从A地,乙丙从B地同时出发,相向而行,甲在遇到乙2分钟后又遇见丙,求AB两地距离。

*11、AB两地相距1120千米,甲乙两列火车同时从两地出发,相向而行。

甲列火车速度是60千米每小时,乙列火车的速度是48千米每小时,乙列火车出发时,从火车里飞出一只鸽子,以每小时80千米的速度向甲列火车飞去,当鸽子和甲列火车相遇时,乙列火车距离A 地还有多远?*12、甲乙二人沿400米的圆形跑道跑步,他们从同一地点同时出发,背向而行。

(完整版)列方程解应用题练习题

(完整版)列方程解应用题练习题

一、列方程解应用题和倍问题例1 图书馆买回来60本文艺书和科普书,其中文艺书的本数是科普书的3倍,文艺书有多少本?例2 一个果园有荔枝、龙眼和芒果这三种果树108棵,其中荔枝的棵树是龙眼的3倍,芒果的棵树是龙眼的2倍,这三种果树各有多少棵?例3一个水池装有甲、乙两排水管,甲管每小时的排水量是乙管的3倍。

水池里有16吨水,打开两管5小时能把水排完,甲管每小时排水量多少吨?例4 某粮店全天卖出大米、面粉和玉米面11520千克,卖出大米的千克数是面粉的6倍,面粉的千克数是玉米免的5倍,卖出的大米比玉米面多多少千克?较复杂的和倍问题例1甲粮仓有510吨大米,乙粮仓有1170吨大米,每天从乙粮仓调30吨大米到甲粮仓,多少天以后甲粮仓大米的吨数是乙粮仓的6倍?例2 图书馆买回来故事书、科普书和连环画236本,如果故事书增加10本,就是科普书本数的2倍,科普书减少12本,就是连环画本数的一半,买回来的故事书有多少本?例3 甲数与乙数的和是30,甲数的8倍与乙数的3倍的和是160.甲数、乙数各是多少?例4 甲站和乙站相距299千米,一辆大客车从甲站开往乙站,1.5小时后一辆小轿车从乙站开往甲站,行驶速度是客车的3倍,小轿车行驶2.5小时遇见大客车,小轿车每小时行多少千米?差倍问题一个问题的已知条件是有关数量的差与数量之间的倍的关系,这种问题就是差倍问题。

列方程解差倍问题,可以吧问题中的一个未知数量用x表示,再根据问题中的“差”或“倍”的关系,把其他未知数量用含有x 的式子表示,再找出数量之间的等量关系列方程。

在设未知数x时,通常把倍的关系中作为1的数量设为x较好。

例1一张办公桌的价钱是一把椅子的4倍,办公桌的定价比椅子贵138元,一张办公桌的价钱是多少钱?例2 一个书柜下层放的书的本数是上层的3倍,如果从下层取43本数放到上层,两层的书的本数相同,这个书柜一共方有多少本书?例3 水果店购进的一批西瓜,分三天售完,其中第一天售出的千克数是第二天的2倍,第二天售出的千克数是第三天的1.5倍,第三天售出的比第一天少88千克,这批西瓜共有多少千克?例4 有对黑棋子和白棋子,其中黑棋子的个数是白棋子的3倍,每次取走相同的个数的黑棋子和白棋子,取了若干次后,白棋子还剩8个,黑棋子还剩94个,原来这堆棋子中多少个黑棋子?较复杂的差倍问题例1 有两根同样长的绳子,第一根绳子剪去10米,第二根绳子剪去28米,第一根绳子剩下的长度是第二根的4倍。

新初一数学分班考奥数专题9:列方程解应用题

新初一数学分班考奥数专题9:列方程解应用题

九 列方程解应用题(1)年级 班 姓名 得分一、填空题1.一个分数约分后将是54,如果将这个分数的分子减少124,分母减少11,所得的新分数约分后将是94.那么原分数是 . 2.八个自然数排成一行,从第三个数开始,每个数都等于它前面两个数的和.已知第一个数是3,第八个数是180,那么第二个数是 .3,□,□,□,□,□,□1803.一个长方形的长与宽之比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米.原长方形的面积是 平方厘米.4.某商品按每个5元利润卖出11个的价钱,与按每个11元的利润卖出10个价钱一样多.这个商品的成本是 元.5.粮店中的大米占粮食总量的73,卖出600千克大米后,大米占粮食总量的31.这个粮店原来共有粮食 千克.6.从家里骑摩托车到火车站赶乘火车.如果每小时行30千米,那么早到15分钟;如果每小时行20千米,则迟到5分钟.如果打算提前5分钟到,摩托车的速度应是 .7.两个杯中分别装有浓度40%与10%的食盐水,倒在一起后混合食盐水浓度为30%.若再加入300克20%的食盐水,则浓度变为25%.那么原有40%的食盐水 克.8.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1:2:3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需 工时.9.一个运输队包运1998套玻璃具.运输合同规定:每套运费以1.6元计算,每损坏一套,不仅不得运费,还要从总费中扣除赔偿费18元.结果这个运输队实际得运费3059.6元,那么,在运输过程中共损坏 套茶具.10.摄制组从A 市到B 市有一天的路程,计划上午比下午多走100千米到C 市吃午饭.由于道路堵车,中午才赶到一个小镇,只行驶了原计划的三分之一.过了小镇,汽车赶了400千米,傍晚才停下来休息.司机说,再走从C 市到这里的二分之一,就到达目的地了.那么A ,B 两市相距 千米.二、解答题11.A 、B 两地相距30千米.甲骑自行车从A 到B ,开始速度为每小时20千米,一段时间后减速为每小时15千米.甲出发1小时后,乙驾驶摩托车以每小时48千米的速度也由A 到B ,中途因加油耽误了10.5分钟.结果甲乙两人同时到达B 地.甲出发后多少分钟开始减速的?12.一批树苗,按下列原则分给各班栽种;第一班取走100棵又取走剩下树苗的101,第二班取走200棵又取走剩下树苗的101.第三班取走300棵又取走剩下树苗的101,照此类推,第i 班取走树苗100´i 棵又取走剩下树苗的101.直到取完为止.最后各班所得树苗都相等.试问这批树苗有多少棵?有几个班?每个班取走树苗多少棵?13.一辆汽车在上坡路上行驶的速度是每小时40千米,在下坡路上行驶的速度是每小时50千米,在平路上行驶的速度是每小时45千米.某日这辆汽车从甲地开往乙地,先是用了31的时间走上坡路,然后用了31的时间走下坡路,最后用了31的时间走平路.已知汽车从乙地按原路返回甲地时,比从甲地开往乙地所用的时间多15分钟,求甲、乙两地的距离.14.兄弟两人骑马进城,全程51千米.马每小时行12千米,但只能由一个人骑.哥哥每小时步行5千米,弟弟每小时步行4千米.两人轮换骑马和步行,骑马者走过一段距离就下鞍拴马(下鞍拴马的时间忽略不计),然后独自步行.而步行者到达此地,再上马前进.如果他们早晨六点动身,何时能同时到达城里?———————————————答 案——————————————————————1. 335268. 设原分数是x x 54,由题意有941151244=--x x ,解得x =67,所以原分数是335268675674=´´. 2. 12设第二个数是x ,则这八个数可写为3,x ,3+x ,3+2x ,6+3x ,9+5x ,15+8x ,24+13x .由24+13x =180,解得 x =12.3. 630设原长方形的长是14a 厘米,则宽是5a 厘米.由题意可列方程14a ´5a +182=(14a -13)´(5a +13)70a 2+182=70a 2+117a -169解得a =3,所以原长方形的面积为14a ´5a =70a 2=630(平方厘米)4. 55设成本是x 元.根据题意可列方程(x +5)´11=(x +11)´10,解得x =55(元).5. 4200设原来有粮食x 千克,根据现有大米可列方程,31)600(60073´-=-´x x 解得x =4200(千克).6. 42设离火车开车时刻还有x 分钟,根据从家到火车站的距离,可列方程)5(6020)15(6030+´=-´x x ,解得x =55(分钟),所求速度应是30´[(55-15)÷(55-5)]=24(千米/小)7. 200浓度为30%与20%的食盐水混合成25%的食盐水,则30%与20%的食盐水的质量应相同,所以40%与10%的食盐水混合成30%的食盐水有300克.设原有40%的食盐水x 克,则10%的食盐水有300-x (克).由x ´40%+(300-x )´10%=300´30%,解得x =200(克).8. 20设缝纫师做一件衬衣的时间为x ,则一条裤子的时间为2x ,做一件上衣用时为3x .由于十个工时完成2件衬衣、3条裤子、4件上衣,即2x +3´(2x )+4´(3x )=10(工时).即20x =10(工时),则完成2件上衣、10条裤子、14件衬衣共需:2´(3x )+10´(2x )+14x =40x =20(工时).9. 7设共损坏x 套茶具,依题意,得1.6´(1998-x )-18´x =3059.6,解得x =7.10. 600设BC =x 千米,则AC =(x +1)千米,依题意,得x x x x ++=+++)1(31400)100(31解得x =250,两地相距(x +1)+x =2x +1=600(千米).11. 设甲出发后x 分钟开始减速的,依题意,得20´30601)605.10604830(1560=´-++´´+x x .解得x =36(分钟). 答:甲出发后36分钟开始减速.12. 设这批树苗有x 棵,则第一班取走树苗(100+)10100-x 棵,第二班取走 树苗10)1010100(200200-+--+x x 棵.依题意,得10)10100100(20020010100100-+--+=-+x x x ,解得x =8100,于是第一班取走的棵数,也就是每个班取走的棵数为900101008100100=-+,参加栽树的班数为99008100=,所以这批树苗有8100棵,共有9个班,每个班取走的树苗都是900棵. 13. 设汽车从甲到乙所用时间为3x 小时,依题意,得60153504*********+=++x x x x ,解得x =5,故甲、乙两地的距离为40x +50x +45x =135x =675(千米).14. 设哥哥步行了x 千米,则骑马行了51-x 千米.而弟弟正好相反,步行了51-x 千米,骑马行x 千米,依题意,得1245112515x x x x +-=-+,解得x =30(千米).所以两人用的时间同为437476123051530=+=-+(小时)=7小时45分.早晨6点动身,下午1点45分到达.九 列方程解应用题(2)年级 班 姓名 得分一、填空题1.要将一批《小学数学》杂志打包后送往邮局(要求每包所装册数相同),这批杂志的53够打包还多44本.如果这批杂志刚好可以打9包,这批杂志共 本. 2.由于浮力的作用,金放在水里称,重量减轻191,银放在水里称,重量减轻101.有一块重500克的金银合金,放在水里称减轻了32克,这块合金含金 克.3.小红把平时节省下来的全部五分硬币先围成一个正三角形,正好用完,后来又改围成一个正方形,也正好用完.正方形每条边比三角形每条边少用5枚硬币.小红的五分硬币共价值 元.4.某时刻钟表时针在10点到11点之间,这时刻再过6分钟后分针和这个时刻的3分钟前时针正好方向相反用在一条直线上,那么钟表在这个时刻表示的时间是 .5.甲、乙两个粮食仓库,甲仓库存粮是乙仓库存粮的70%.如果从乙仓库调50吨粮食到甲仓库,甲仓库的存粮就是乙仓库存粮的80%.甲、乙两仓库共存粮 吨.6.甲、乙两车先后以相同的速度从A 站开出,10点整甲车距A 站的距离是乙车距A 站距离的三倍,10点10分甲车距A 站的距离是乙车距A 站距离的二倍.那么甲车是 点 分从A 站开出的.7.在甲、乙、丙三缸酒精溶液中,纯酒精的含量分别占48%、62.5%和32.已知三缸酒精溶液总量是100千克,其中甲缸酒精溶液的量等于乙、丙两缸酒精溶液的总量.三缸溶液混合后,所含纯酒精的百分数将达56%.那么,丙缸中纯酒精的量是 千克.8.春风小学原计划栽种杨树、柳树和槐树共1500棵.植树开始后,当栽了杨树总数的53和30棵柳树后,又临时运来15棵槐树,这时剩下的三种树的棵数正好相等.原计划栽杨树 棵,槐树 棵,柳树 棵.9.某造纸厂在100天里共生产2000吨纸.开始阶段,每天只能生产10吨纸.中间阶段由于改进了生产规程,每天的产量提高了一倍.最后阶段由于购置了新设备,每天的产量又比中间阶段提高了一倍半.已知中间阶段生产天数的2倍比开始阶段多13天,那么最后阶段有 天.10.甲、乙两车分别从A 、B 两地出发,相向而行.出发时,甲、乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%这样,当甲到达B 地时,乙离A 地还有10千米.那么A 、B 两地相距 千米.二、解答题11.某公路干线上,分别有两个小站A和B,A、B两站相距63千米,A站有一辆汽车其最大时速为45千米/小时,B站有一辆汽车其最大时速为36千米/小时.如果两车同时同向分别以最大时速从两站开出.求经过多长时间后,两车相距108千米.12.下表显示了某次钓鱼比赛的结果,上行的值表示钓到的鱼数,下行的值表示钓到n条鱼的参赛人数.N0 1 2 3 … 13 14 15钓到n条鱼的人数9 5 7 23 … 5 2 1当天的报纸对这次比赛做了如下报道:a)获胜者钓到15条鱼;b)对钓到3条或3条以上的鱼的所有参赛者来说,每人平均钓到6条鱼;c)对钓到12条或12条以下的鱼的所有参赛者来说,每人平均钓到5条鱼.问本次比赛钓到的鱼的总数是多少?13.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度.14.甲杯中装有含盐20%的盐水40千克,乙杯中装有含盐4%的盐水60千克,现从甲杯中取出一些盐水放入丙杯,再从乙杯中取一些盐水放入丁杯.然后将丁杯盐水全倒入甲杯,把丙杯盐水全倒入乙杯,结果甲、乙两杯成为含盐浓度相同的两杯盐水.若已知从乙杯取出并倒入丁杯的盐水重量是从甲杯取出并倒入丙杯盐水重量的6倍,试确定从甲杯取出并倒入丙杯的盐水多少千克?———————————————答 案——————————————————————1. 990设每包x 本,则共有9x 本.根据题意有9x ´44553+=x ,解得x =110(本).所以共有9´110=990(本).2. 380设含金x 克,则含银500-x 克.根据减轻的重量可列方程321050019=-+x x ,解得x =380(克).3. 3设三角形每边有x 枚,则正方形每边有x -5枚.由题意得3(x -1)=4(x -6),解得x =21.所以小红共有五分硬币3´(21-1)=60(枚),价值3元.4. 10点15分设钟表这个时刻表示的时间是10点x 分,依题意,得300+180)6(60360)3(6030++´=-´x x .解得x =15(分钟).即表示的时间是10点15分. 5. 1530设乙仓库原存粮x 吨,则甲仓库原存粮x ´70%吨.根据题意有x ´70%+50=(x -50) ´80%,解得x =900(吨).甲、乙两仓库共存粮900´(1+70%)=1530(吨).6. 9点30分因为两车速度相同,所以甲、乙两车距A 站的距离之比等于甲、乙两车行驶时间之比.设10点时乙车行驶了x 分钟,则甲车行驶了3x 分钟.根据题意有2(x +10)=3x +10,解得x =10.所以10点时甲车已行驶了3´10=30(分钟),即甲车9点30分出发.7. 12设丙缸酒精溶液的重量为x 千克,则乙缸为50-x (千克).根据纯酒精的量可列方程50´48%+(50-x )´62.5%+x ´32=100´56%,解得x =18(千克).所以丙缸中纯酒精含量是18´32=12(千克). 8. 825,315,360设后来每种树的棵数为x ,则已经载了杨树x x 2353)531(=´-÷(棵). 根据原来的总棵树,可得方程15001530233=-++x x .解得,x =330.因此杨树82552330=÷(棵),槐树:330-15=315(棵),柳树:330+30=360(棵). 9. 17设中间阶段为x 天,则开始阶段为2x -13(天),最后阶段为113-3x (天).由题意知,开始、中间、最后阶段的日产量依次为10、20和50吨.由总产量可列方程10´(2x -13)+20x +50´(113-3x )=2000,解得x =32.所以最后阶段有113-3´32=17(天).10. 450甲、乙原来的速度比是5:4,相遇后的速度比是5´(1-20%):4´(1+20%)=4:4.8=5:6.相遇时,甲、乙分别走了全程的95和94.设全程x 千米,则6)1095(594÷-=÷x x ,解得x =450(千米). 11. 设经过x 小时后,两车相距108千米,依题意,得45x -(36x +63)=108(沿AB 方向)或(45x +63-36x =108+63)(沿BA 方向).解得x =19或x =5.答:若沿AB 方向出发,19小时后,两车相距108千米;若沿BA 方向出发,5小时后,两车相距108千米.12. 设参赛选手的总人数为x ,则x -19+5+77=x -21个选手钓到3条或更多的鱼,本次比赛钓到的鱼的总数为6(x -2)+2´7+1´5=6x -107;有x -(5+2+1)=x -8个选手钓到12条或更少的鱼,本次比赛钓到的鱼的总数为5(x -8)+13´5+14´2+15´1=5x +68.所以6x -107=5x +68.解得x =175.本次比赛钓到的鱼的总数是943条.13. 设原速度为x 海里/时,则减速前所用的时间为x48240-,减速后所用的时间为1048-x ,按原速减少4海里/时航行全程时间为4240-x .依题意有4240104848240-=-+-x x x ,所以4(x -10)(x -4)+x (x -4)=5x (x -10),解得x =16(海里/小时). 答:原来的速度为16海里/时.14. 设从甲杯取到丙杯有x 千克盐水,则从乙杯取到丁杯6x 千克盐水,则xx x x x x x x +-´+´-=+-´+´-)660(%20%4)660(6)40(%46%20)40(,解得x =8(千克). 答:从甲杯取出并倒入丙杯的盐水为8千克.。

列方程解应用题(全部)

列方程解应用题(全部)

1、路程、速度、时间的关系:s vt
v s t
ts v
2、分析方法——画线段图。3、相向而行、同向而行、背向而行
例1、已知A、B两地相距158km,甲、乙两人骑自行车分别从A、 B两地出发相向而行,甲先走30分钟后乙再出发,如果甲的速度为 20km/h,乙比甲每小时少走3km,求乙出发多少时间后两人相遇?
1、两位数的表示方法: ab 10a b
2、三位数的表示方法:abc 100a 10b c
例1、有一个两位数,十位上的数字比个位上的数字的2倍多 2,若把十位上的数字与个位上的数字对调,就得到一个新 数,新数比原数小45,你能求出这个两位数吗?
例2、有一个两位数,个位于上的数字与十位上的数字之和为 9,十位上的数字与个位上的数字互换位置得到的新数比原数 大27,求这个两位数?
例:学校团委组织60名团员为学校建花坛搬砖。初一同学每人 搬6块,其他年级同学每人搬8块,总共搬了400块。问初一年级 的同学有多少人参加了搬砖?
分析——列方程解应用题的一般步骤 1、找相等关系:初一年级学生数+其它年级学生数=60
初一同学搬砖总数+其它年级同学搬砖总数=400 2、设未知数:设初一年级有x人参加了搬砖。(单位) 3、按相等关系列出方程:
100%
3、商品的销售额=售价 销量,商品的总利润=单件商品利润 销量。
例1、某种商品因换季准备打折出售,如果按定价的七五折出售,将赔 25元,如果按定价的九折出售将赚20元,问这种商品的定价是多少?
例2、某商品的进价为1000元,标价为1500元,商店要求以利润率 不低于5%的售价进行打折出售,问该商店最多可以打多少折出 售该商品?
例2、甲骑自行车从A地出发,以每小时15km的速度驶向B地,经 半小时后乙骑自行车从B地出发,以每小时20km的速度驶向A地, 两人相遇时,乙已超过AB两地的中点5km,求A、B两地的距离。

沪教版 六年级(上)学期数学 列方程解应用题(一) (含解析)

沪教版 六年级(上)学期数学 列方程解应用题(一) (含解析)

沪教版六年级(上)数学辅导教学讲义1.综合复习小学所学的多种类型的应用题解法;2.训练列方程解应用题的熟练程度,提高速度和准确度.在解决和差倍问题时,要注意找到“1倍量”,一般将其设为x后,根据总数的和或差的关系列出方程。

回顾上次课的预习思考内容写出下列应用题中的等量关系:(1) 故宫的面积是72万平方米,比天安门广场面积的2倍少16万平方米。

天安门广场的面积多少万平方米?___________________=____________________________________________。

(2) 妈妈今年的年龄儿子的3倍,妈妈比儿子大24岁。

儿子和妈妈今年分别是多少岁?____________=____________________;____________=____________________。

(3) 甲、乙两人原来存款数相同。

后来甲取出250元,而乙又存入350元,这时乙的存款数正好是甲存款数的4倍。

原来每人存款多少元?___________________=____________________________________________。

案例1:小王原来的钱数是小李的3倍,他们各自买了80元的书之后,小王的钱数变成了小李的5倍,请问小王和小李原来各有多少钱?教法说明:有些应用题会出现前后变化的情况,例如“小王给小李5元,他们的钱就一样多了”之类的条件,遇上这种情况,一定要分清“变化前”和“变化后”这两个时间点的不同,虽然是同一人,不同时间他有的钱数是不同的,也要分清倍数关系所对应的时间。

李之后的钱”。

它们之间的关系如下图所示:利用这个关系图,可以比较方便地列出方程并求解。

参考答案:设小李原来的钱为x元,3x-80=5(x-80)x=1603x=480答:小王和小李原来各有160元和480元。

总结:列方程解应用题的一般步骤:1.审题,迅速理解题意。

2.思考,找到题中的数量关系。

人教版初一数学一元一次方程与实际问题

人教版初一数学一元一次方程与实际问题

人教版初一数学一元一次方程与实际问题本文涉及到的格式错误已经被删除。

一元一次方程解应用题(1)——路程问题教学目标:1.掌握行程问题,能够熟练地利用路程、速度、时间的关系列方程。

2.提高学生分析实际问题中数量关系的能力。

研究过程:基本等量关系:1.路程 = 速度 ×时间,时间 = 路程 ÷速度,速度 = 路程 ÷时间。

2.相向而行相遇时的等量关系:快者的路程 - 慢者的路程= 两人初相距的路程;同向而行追击时的等量关系:快者的路程 + 慢者的路程 = 两人初相距的路程。

新课探究:例1:甲、乙两站间的路程为360 km,一列慢车从甲站开出,每小时行驶48 km;一列快车从乙站开出,每小时行驶72 km。

⑴两列火车同时开出,相向而行,经过多少小时相遇?⑵快车先开25分钟,两车相向而行,慢车行驶了多少小时相遇?练一:1.甲、乙两人骑自行车同时从相距65 km的两地相向而行,2小时相遇,甲比乙每小时多骑2.5 km,求乙的速度?2.甲、乙两人在运动场上进行慢跑晨练,甲跑一圈3分钟,乙跑一圈2分钟,两人同时同地反向慢跑,求两人几分钟后第一次相遇?例2:一队学生去校外进行野外长跑训练。

他们以5 km/h 的速度行进,跑了18分钟的时候,学校要将一个紧急通知传给队长。

一名老师从学校出发,骑自行车以14 km/h的速度按原路追上去。

这名老师用多少时间可以追上学生队伍?练二:1.甲的步行速度是每小时5 km,乙的步行速度是每小时7.5 km,乙在甲的后面同时同向出发,120分钟后追上甲,那么开始时甲、乙两人相距多少千米?2.某班学生以每小时4 km的速度从学校步行到校办农场参加活动,走了1.5小时后,XXX奉命回学校取一件物品,他以每小时6 km的速度回校取了物品后,立即又以同样的速度追赶队伍,结果在距农场2 km处追上了队伍,求学校到农场的距离。

巩固练:1.在800米圆形跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米。

列方程解分数应用题十套

列方程解分数应用题十套

列方程解分数应用题(一)列方程解分数应用题(一)1、一个人抄一篇稿件,第一次抄1500个字,第二次抄2000个字,个字,还剩下还剩下83没有抄,没有抄,这篇稿件共有多少个这篇稿件共有多少个这篇稿件共有多少个字?2、某机器厂七月份上半月完成月计划的52,下半月完成月计划的43,结果超额完成机器6台,原计划生产机器多少台?3、某筑路队修一条公路,某筑路队修一条公路,第一天修了全长的第一天修了全长的41,第二天修了余下的51,这时距中点6千米,这条公路长多少千米?4、步行者走完2千米及所余路程的一半后,还剩全程的31又2千米,全程共有多少千米?5、某厂要运走一批化工原料,上午运了52吨,下午运了余下的883,这一天共运走这批原料的21,这批化工原料共有多少吨?6、一筐苹果,筐占苹果重量的252,苹果卖掉48千克后,苹果的重量相当于筐重的21,问原来苹果有几千克?7、一个班早晨到校时缺席人数是出席人数的61,后来一个同学因病请假了,这时缺席的人是出席人数的51。

问这个班有多少名学生?8、商店运进一批香蕉,商店运进一批香蕉,第一天卖出全部的第一天卖出全部的92,第二天卖出剩下的71,第三天补进第二天剩下的21,这时还有香蕉305千克,问原来有香蕉多少千克?列方程解分数应用题(二)1、五年一班有54名学生,女生人数的52等于男生人等于男生人数的21,男女生各有多少人?2、五年级与六年级共有学生270人,五年级学生人数的52比六年级学生的41多4人,这两个年级的学生相差多少人?3、饲养场有牛和羊980头,牛的头数比羊的52还多28头,问饲养场牛羊各多少头?4、两根钢筋共长18米,如果把第一根截去51,把第二根接长0.9米,那么两根钢筋就一样长了,两根钢筋原来各长几米?5、一只布袋中装有黑、白、花三种球,黑球的32与白球同样多,白球的32再加3只与花球一样多,黑球比花球多32只。

布袋中有多少只球?6、某厂共有职工152人,选出男职工的111和5名女职工去修理厂房,剩下的男女工人数相等,问这个厂男、女职工各多少人?7、两个仓库共有水泥84吨,如果从甲仓库取出51放入乙仓库,那么甲仓库的水泥就比乙仓库的水泥多31,求两个仓库原来各有水泥多少吨?8、一批货物重1000吨,由三个运输队运送到某地,第一队运了这批货物的52,第三队运的是第一、二队运的31,三个队各运货物多少吨?列方程解分数应用题(三)1、金工车间有两班职工,甲班职工比乙班职工少9人,因工作需要,从甲调出3人到乙班,这时甲班职工比乙班少83,两个班原来各有职工多少人?2、光明小学六年级上学期男生人数占总人数的55%55%,,今年开学初转走了3名男生,又转来了3名女生,这时女生占总人数的48%48%,,光明小学六年级现在有女生多少人?3、水果店运来一批梨,第一天比第二天多卖出51,第一天比第一天少卖出152千克,两天正好卖完,这批梨有多少千克?4、王师傅加工一批零件,第一天每小时加工20个,第二天每小时加工30个,两天加工的数量同样多,共用了小时,这批零件共有多少个?5、哥哥和弟弟共有图书若干本,哥哥的图书占总图书的553,若哥哥给弟弟9本,则两人的图书同样多,哥哥原来有图书多少本?6、甲乙丙三个同学参加储蓄,甲乙丙三个同学参加储蓄,甲存款是乙的甲存款是乙的54,丙存款比乙少40%40%,已知甲存了,已知甲存了500元,丙存了多少元?7、小王和小李共同加工一批儿童服装,小王单独做要18天完成,小李每天加工16件,当完成任务时,小王做了这批服装的95,这批儿童服装共有多少件?8、东风农场原来有旱田108公顷,水田36公顷,为了提高产量,将一部分旱田改为水田,使水田的面积是旱田的75,问:将多少公顷旱田改为水田?列方程解分数应用题(四)1、一根钢筋,锯下20%20%后,又接上后,又接上2米,这时钢筋比原来短101,原来这根钢筋有多长?2、业余体校新购进三种球,其中篮球占总数的31,足球的个数与其它两种球个数的比是1:5,排球有150个,三种球共有多少个?3、粮店中的大米占粮食总量的73,卖出600千克大米后,大米占粮食总量的31,这个粮店原来共有粮食多少千克?4、五年一班有一部分学生参加运动会,其中72是女生,男生是20人,已知全班男生有54参加了运动会,没有参加运动会的占全班人数的239,这个班有多少名女生?5、六一班共有学生40人,其中女生占全班人数的52,后来又转来几名女生,这时女生人数占全班人数的157,又转来几名女生?6、加工一批零件,如果师傅单独做20小时完成,师徒二人合作12小时完成,现在师徒二人合作,完成任务时,师傅比徒弟多做了960个,这批零件有多少个?7、育红小学高年级学生人数占全校学生总数的36%36%,,中年级学生人数是高年级的995,低年级比中年级多84人,育红小学共有学生多少人?8、学校植树,第一天完成了计划的83,第二完成余下的32,第三天植树55棵,结果超过计划41完成任务,原计划植树多少棵?列方程解分数应用题(五)1、参加六一联欢的少先队员中,女队员占73,男队员比女队员的32多40人,女队员有多少人?2、一天某班第一节缺席的人数是出席人数的61,课间又有一位同学请假离去,于是缺席人数占出席人数的51,这个班有多少名学生?3、某厂的工人中,女工比男工多32,后来又把45名男工换为女工,使得女工人数达到总人数的2920,这时有多少名女工?4、阅览室里有36名同学在看书,其中94是女生,后来又转来了几名女生,使得女生人数达到总人数的199,又来了几名女生?5、赵军从甲地乘车到乙地,原计划每小时行40千米,实际每小时只行了30千米,当行到比全程的32多多2020千米时,已经比预定行完全程的时间多用了31小时,甲乙两地相距多少千米?6、两个鸡笼,小笼里的鸡比大笼的少18只,如果从小笼里取出6只放入大笼,那么小笼里鸡的只数就是大笼的74,两个笼子里原来各有多少只鸡?7、五一班女同学比男同学的32多4人,如果男同学减少3人,女同学增加4人,那么男女人数相等,这个班男女同学各有几人?8、箱子里有红、黄、蓝三种颜色的球,红球的32与黄球同样多,黄球的32再加上3个与蓝球同样多,红球比蓝球多32个,箱子里有多少个黄球?列方程解分数应用题(六)1、一个数学兴趣小组,一个数学兴趣小组,女生占全组人数的女生占全组人数的41,后来又吸收了4名女生参加,这时女生人数占全组人数的31,男生有多少人?2、甲乙二人共存款108元,如果甲取出自己存款的52,乙取出12元后,二人所存钱数相等,甲乙二人原来各存款多少元? 3、金放在水里称,重量减少1/191/19,,银放在水里称,银放在水里称,重重量减少1/101/10,一块金银合金重,一块金银合金重770克,放在水里称,重量减少了50克,这块合金含金、银各多少克?4、甲乙二人共有人民币若干元,其中甲占60%60%,若乙,若乙给甲12元,则乙余下的钱占总数的25%25%,甲乙二人共,甲乙二人共有人民币多少元?5、四位同学共种树60棵,第一位同学种的是其它同学种的一半,第二位同学种的是其它同学种的1/31/3,,第三位同学种的是其它同学种的1/41/4,,第四位同学种了多少棵?6、甲乙二人各有人民币若干元,其中甲占60%60%,若乙,若乙给甲12元后,乙剩下的钱相当于甲的1/31/3,甲乙二人,甲乙二人共有人民币多少元?7、甲乙二人各有人民币若干元,乙是甲的2/32/3,若乙,若乙给甲12元,则乙相当于甲的1/31/3,甲乙二人共有人民,甲乙二人共有人民币多少元?8、甲乙二人同时从东镇到西镇,甲走了全程的2/5时,乙只走了千米乙只走了千米,,当甲到达西镇时当甲到达西镇时,,乙离西镇还有全程的3/11,3/11,求东西两镇的距离。

五年级列方程解决问题

五年级列方程解决问题

五年级列方程解决问题1.妈妈买了3千克葡萄,付出20元,找回5元,每千克葡萄多少元?2.一堆煤重20吨,一辆货车运了4次,还剩一半没有运,这辆货车平均每次运多少吨?3.一个图书馆有儿童读物2.5万册,其它读物是儿童读物的3倍少0.2万册,其它读物有多少册?4.一张桌子125元,是一张凳子的5倍还多15元,一张方凳多少元?5.小芳买了2本笔记本和5枝圆珠笔,共用去7.5元,每枝圆珠笔0.5元,每本笔记本多少元?6.甲乙两地相距300千米,一辆汽车由甲地开出5小时后,距离乙地还有74.5千米,这辆汽车平均每小时行多少千米?7.水果店运来4箱苹果和6箱梨,共用去244元,已知苹果每箱28元,梨每箱多少元?8.两城相距480千米,甲乙两辆汽车同时从两城相对开出,3小时后两车相遇,已知甲车每小时行85千米,乙车每小时行多少千米?9. 新岭要修一条长3300米的公路,甲乙两个工程队同时施工,15天完成,甲队每天修125米,乙队每天修多少米?10.甲乙两车同时从相距528千米的两地相向而行,6小时相遇,甲车每小时比乙车快6千米,求甲乙每小时各行多少千米?五年级列方程解决问题1.小军有邮票的张数是小林的3倍,他们一共有邮票240张,求小军和小林各有邮票多少张?2.某植物园有松树和榕树120棵,已知松树是榕树棵数的2倍,问榕树,松树各有多少棵?3.饲养场有公鸡和母鸡480只,母鸡比公鸡的2倍还多30只,这个饲养场公鸡和母鸡各有多少只?4. 小青家今年养了50只鸡,比鹅的3倍还多5只,小青家今年养鹅多少只?5. 甲乙两辆汽车分别从相距800千米的两城相向开出,8小时相遇,已知甲车每小时行驶45千米, 乙车每小时会驶多少千米?6. 香蕉每千克4.50元,梨每千克4元,小红的妈妈买了4千克香蕉,给了营业员30元,剩下的钱去买梨,能买梨多少千克?7.小红和小军一共储蓄了235元,已知小红储蓄的是小军的1.5倍,小红和小军各储蓄多少元?8.汽车站有480箱货物,一辆货车运了5次,还剩30箱,平均每次运多少箱?9.三个数的平均数是120,甲数是乙数的2倍,丙数比甲数多5,甲, 乙,丙三个数各是多少?10.甲仓库粮是乙仓库的3倍,如果从甲仓库运出90吨,从乙仓运出10吨,则两仓库存粮相等,甲乙两仓库原各存粮多少吨?。

初中数学列方程解应用题

初中数学列方程解应用题

列方程解应用题:1.列一元一次方程解应用题的一般步骤1审题:弄清题意.2找出等量关系:找出能够表示本题含义的相等关系.3设出未知数,列出方程:设出未知数后,表示出有关的含字母的式子,•然后利用已找出的等量关系列出方程.4解方程:解所列的方程,求出未知数的值.5检验,写答案:检验所求出的未知数的值是否是方程的解,•是否符合实际,检验后写出答案.2.和差倍分问题增长量=原有量×增长率现在量=原有量+增长量3.等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h= r2h②长方体的体积 V=长×宽×高=abc4.数字问题一般可设个位数字为a,十位数字为b,百位数字为c.十位数可表示为10b+a, 百位数可表示为100c+10b+a.然后抓住数字间或新数、原数之间的关系找等量关系列方程.5.市场经济问题1商品利润=商品售价-商品成本价 2商品利润率=商品利润商品成本价×100%3商品销售额=商品销售价×商品销售量4商品的销售利润=销售价-成本价×销售量5商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售.6.行程问题:路程=速度×时间时间=路程÷速度速度=路程÷时间1相遇问题:快行距+慢行距=原距2追及问题:快行距-慢行距=原距3航行问题:顺水风速度=静水风速度+水流风速度逆水风速度=静水风速度-水流风速度抓住两码头间距离不变,水流速和船速静不速不变的特点考虑相等关系.7.工程问题:工作量=工作效率×工作时间完成某项任务的各工作量的和=总工作量=18.储蓄问题利润=每个期数内的利息本金×100% 利息=本金×利率×期数1.将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作:2.兄弟二人今年分别为15岁和9岁,多少年后兄的年龄是弟的年龄的2倍3.将一个装满水的内部长、宽、高分别为300毫米,300毫米和80•毫米的长方体铁盒中的水,倒入一个内径为200毫米的圆柱形水桶中,正好倒满,求圆柱形水桶的高精确到毫米, ≈.4.有一火车以每分钟600米的速度要过完第一、第二两座铁桥,过第二铁桥比过第一铁桥需多5秒,又知第二铁桥的长度比第一铁桥长度的2倍短50米,试求各铁桥的长.5.有某种三色冰淇淋50克,咖啡色、红色和白色配料的比是2:3:5,•这种三色冰淇淋中咖啡色、红色和白色配料分别是多少克6.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.•已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,•求这一天有几个工人加工甲种零件.7.某地区居民生活用电基本价格为每千瓦时元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费.1某户八月份用电84千瓦时,共交电费元,求a.2若该用户九月份的平均电费为元,则九月份共用电多少千瓦•应交电费是多少元8.某家电商场计划用9万元从生产厂家购进50台电视机.已知该厂家生产3•种不同型号的电视机,出厂价分别为A种每台1500元,B种每台2100元,C种每台2500元.1若家电商场同时购进两种不同型号的电视机共50台,用去9万元,请你研究一下商场的进货方案.2若商场销售一台A种电视机可获利150元,销售一台B种电视机可获利200元,•销售一台C种电视机可获利250元,在同时购进两种不同型号的电视机方案中,为了使销售时获利最多,你选择哪种方案二元一次方程组应用题:一分配配套问题1.一张方桌由一个桌面和四个桌腿组成,如果1立方米木料可制作方桌桌面50个,或制作桌腿300条,现有5立方米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好制成方桌多少张2.运往灾区的两批货物,第一批共480吨,用8节火车车厢和20辆汽车正好装完;第二批共运524吨,用10节火车车厢和6辆汽车正好装完,求每节火车车厢和每辆汽车平均各装多少吨3.将若干练习本分给若干名同学,如果每人分4本,那么还余20本;如果每人分8本,那么最后一名同学分到的不足8本,求学生人数和练习本数;二行程问题航速问题1.相遇,相向而行, 甲走的路程+乙走的路程=总路程同时不同地前者走的路程+两者的距离=追者走的距离2.追击,同地不同时前者所用的时间—多用的时间=追者所用的时间3. 环形, 同向出发后者走的路程—前者走的路程=环形周长道路4.反向出发甲走的路程+乙走的路程=环形周长1. 甲、乙两车分别以均匀的速度在周长为600米的圆形轨道上运动;甲车的速度较快,当两车反向运动时,每15秒钟相遇一次,当两车同向运动时,每1分钟相遇一次,求两车的速度;2 甲、乙两人练习跑步,如果甲让乙先跑10米,甲跑5秒钟就可追上乙,如果甲让乙先跑2秒,那么甲跑4秒就能追上乙,问甲、乙每秒各跑多少米3甲乙两人相距6km,两人同时出发相向而行,1小时相遇;同时出发同向而行,3小时可追上乙;两人的平均速度各是多少44 A,B两地相距1200km ,一条船顺流航行需2小时30分,逆流航行需3小时20分,求飞机的平均速度和风速;三工程问题工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.1.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45 ;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套要求的期限是几天2 . 现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个.问甲、乙两人每天各做多少个零件3 一项工程,甲乙两人合作8天可完成,需费用3520元,若甲单独做6天后,剩下的由乙单独做还需12天才能完成,这样需要费用3480元;问:1甲一个人单独完成此工程费用为多少元2甲.乙两人单独做完成此项工程,个需多少天3哪一个人单独完成此工程的费用较省四.数字问题1.有一个两位数,个位上的数比十位上的数大5,如果把两个数字的位置对换,那么所得的新数与原数的和是143,求这个两位数2.有一个两位数,其值等于十位数字与个位数字之和的4倍,其十位数字比个位数字小2,求这个两位数.3 .一个三位数和一个两位数的差为225,在三位数的左边写这个两位数,得到一个五位数,在三位数的右边写上这个两位数,也得到一个五位数,已知前面的五位数比后面的五位数大225,求这个三位数和两位数.五和差倍分问题1 甲乙二人,若乙给甲10元,则甲所有的钱为乙的3倍,若甲给乙10元,则甲所有的钱为乙的2倍多10元,求甲乙各拥有多少钱2 甲乙两个商店各进洗衣机若干台,若甲店拨给乙店12台,则两店的洗衣机一样多,若乙店拨给甲店12台,则甲店的洗衣机比乙店洗衣机数的5倍还多6台,求甲、乙两店各进洗衣机多少台3 甲乙两条绳共长17米,如果甲绳子减去五分之一,乙绳增加1米,两条绳子相等,求甲、乙两条绳各长多少米六盈亏利润问题利润=标价—进价利润=进价×利润率盈利百分数.1 一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少2 工艺商场按标价销售某种工艺品时,每件获得45元利润;按标价的八折销售该工艺品10件与标价降低25元销售该工艺品12件所获利润相等,求该工艺品每件的进价、标价分别是多少元3 某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件七增长率问题增长量=原有量×增长率原有量=现有量—增长量现有量=原有量×1+增长率1. 某人装修房屋,原预算25000元;装修时因材料费下降了20%,工资涨了10%,实际用去21500元;求原来材料费及工资各是多少元2. 某单位甲、乙两人,去年共分得现金9000元,今年共分得现金12700元. 已知今年分得的现金,甲增加50%,乙增加30%. 两人今年分得的现金各是多少元八. 年龄问题解这类问题的基本关系是抓住两个人年龄的增长数相等;年龄问题的主要特点是:时间发生变化,年龄在增长,但是年龄差始终不变;年龄问题往往是“和差”、“差倍”等问题的综合应用1 . 父子的年龄差30岁,五年后父亲的年龄正好是儿子的3倍,问今年父亲和儿子各是多少岁2 . 现在父亲的年龄是儿子年龄的3倍,7年前父亲的年龄是儿子年龄的5倍,问父亲、儿子现在的年龄分别是多少岁一元二次方程应用题:变化前数量×1 x n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,求水稻每公顷产量的年平均增长率;2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是多少3.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为元,求2、3月份价格的平均增长率;4.某药品经两次降价,零售价降为原来的一半,已知两次降价的百分率相同,求每次降价的百分率商品销售问题:售价—进价=利润一件商品的利润×销售量=总利润单价×销售量=销售额1.某商店购进一种商品,进价30元.试销中发现这种商品每天的销售量P件与每件的销售价X元满足关系:P=100-2X销售量P,若商店每天销售这种商品要获得200元的利润,那么每件商品的售价应定为多少元每天要售出这种商品多少件2.某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产ⅹ只熊猫的成本为R元,售价每只为P元,且RP与x的关系式分别为R=500+30X,P=170—2X;(1)当日产量为多少时每日获得的利润为1750元(2)若可获得的最大利润为1950元,问日产量应为多少3.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克;现该商品要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元面积问题:1.有一面积为54cm2的长方形,将它的一组对边剪短5cm,另一组对边剪短2cm,刚好变成一个正方形,这个正方形的边长是多少2.如图,在长为10cm,宽为8cm的矩形的四个角上截去四个全等的正方形,使得留下的图形图中阴影部分面积是原矩形面积的80%,求所截去的小正方形的边长;3.张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已购买这种铁皮每平方米需20元钱,问张大叔购买这张铁皮共花了多少元钱4.如图,在宽为20m ,长为30m ,的矩形地面上修建两条同样宽且互相垂直的道路,余分作为耕地为551㎡;则道路的宽为行程问题:1、A、B两地相距82km,甲骑车由A向B驶去,9分钟后,乙骑自行车由B出发以每小时比甲快2km的速度向A驶去,两人在相距B点40km处相遇;问甲、乙的速度各是多少2、甲、乙二人分别从相距20千米的A、B两地以相同的速度同时相向而行,相遇后,二人继续前进,乙的速度不变,甲每小时比原来多走1千米,结果甲到达B地后乙还需30分钟才能到达A地,求乙每小时走多少千米.3、甲、乙两个城市间的铁路路程为1600公里,经过技术改造,列车实施了提速,提速后比提速前速度增加20公里/小时,列车从甲城到乙城行驶时间减少4小时,这条铁路在现有的安全条件下安全行驶速度不得超过140公里/小时.请你用学过的数学知识说明在这条铁路现有的条件下列车还可以再次提速.工程问题:1、某公司需在一个月31天内完成新建办公楼的装修工程.如果由甲、乙两个工程队合做,12天可完成;如果由甲、乙两队单独做,甲队比乙队少用10天完成.1求甲、乙两工程队单独完成此项工程所需的天数.2如果请甲工程队施工,公司每日需付费用2000元;如果请乙队施工,公司每日需付费用1400元.在规定时间内:A.请甲队单独完成此项工程出.B请乙队单独完成此项工程;C.请甲、乙两队合作完成此项工程.以上三种方案哪一种花钱最少2、搬运一个仓库的货物,如果单独搬空,甲需10小时完成,乙需12小时完成,丙需15小时完成,有货物存量相的两个仓库A和B,甲在A仓库,乙在B仓库同时开始搬运货物,丙开始帮助甲搬运,中途又转向帮助乙,最后两个仓库的货物同时搬完,丙帮助甲乙各多少时间列式子3、甲、乙两人都以不变的速度在环形路上跑步,相向而行,每隔2分钟相遇一次;同向而行,每隔6分钟相遇一次,已知甲比乙跑得快,求甲、乙每分钟各跑几圈。

列方程解应用题专题训练(教研)

列方程解应用题专题训练(教研)

列方程解应用题专题训练知识要点:1、列方程解应用题的意义★用方程式去解答应用题求得应用题的未知量的方法。

2、列方程解答应用题的步骤★弄清题意,确定未知数并用x表示;★找出题中的数量之间的相等关系;★列方程,解方程;★检查或验算,写出答案。

3、列方程解应用题的方法★综合法:先把应用题中已知数(量)和所设未知数(量)列成有关的代数式,再找出它们之间的等量关系,进而列出方程。

这是从部分到整体的一种思维过程,其思考方向是从已知到未知。

★分析法:先找出等量关系,再根据具体建立等量关系的需要,把应用题中已知数(量)和所设的未知数(量)列成有关的代数式进而列出方程。

这是从整体到部分的一种思维过程,其思考方向是从未知到已知。

4、常见的一般应用题一、以总量为等量关系建立方程例题两列火车同时从距离536千米的两地相向而行,4小时相遇,慢车每小时行60千米,快车每小时行多少小时?解法一:快车 4小时行的+慢车4小时行的=总路程解设:快车小时行X千米4X+60×4=5364X+240=5364X=296X=74解法二:解设:快车小时行X千米(X+60)×4=536X+60=536÷4 X=134一60 X=74答:快车每小时行驶74千米。

练一练①降落伞以每秒10米的速度从18000米高空下落,与此同时有一热汽球从地面升起,20分钟后伞球在空中相遇,热汽球每秒上升多少米?②甲、乙两个进水管往一个可装8吨水的池里注水,甲管每分钟注水400千克,要想在8分钟注满水池,乙管每分钟注水多少千克?③两城相距600千米,客货两车同时从两地相向而行,客车每小时行70千米,货车每小时行80千米,几小时两车相遇?④两地相距249千米,一列火车从甲地开往乙地,每小时行55.5千米,行了多少小时还离乙地有27千米?⑤电机厂计划生产1980台电动机,已经生产了4天,每天生产45台,由于改进了技术,以后每天比原来增产15台,实际完成任务需几天?二、以总量为等量关系建立方程例题甲、乙两个粮仓一共有粮6800包,甲是乙的3倍,两仓各有多少包?解设:乙仓有粮X包,那么甲仓有粮3X包甲粮仓的包数+乙粮仓的包数=总共的包数X+3X=68004X=6800X=17003X=3×1700=5100检验:1700+5100=6800包(甲乙两仓总共的包数)或5100÷1700=3(甲仓是乙仓的3倍)答:甲原有粮5100包,乙原有粮1700包。

(11)列方程解应用题(一)(1)

(11)列方程解应用题(一)(1)

---------------------------------------------------------------最新资料推荐------------------------------------------------------(11)列方程解应用题(一)(1)(第 11 课时)【列方程解应用题】 1. 列方程解应用题是一种不同于算术解法的新的解题方法。

它是用字母来代替未知数,根据题目中的已知条件找出等量关系,列出含有未知数的等式,也就是方程,然后解出未知数的值。

(1)列方程解应用题的优点在于可以使未知数直接参加运算;(2)列方程解应用题的关键在于要能正确地设立未知数,善于抓住已知量和未知量之间的数量关系,找出等量关系,建立方程。

2. 列方程解应用题的一般步骤:(1)理解题意;弄清题目所给的已知条件和未知条件,以及它们之间的相互关系。

(2)设未知数;未知数的设立有一定的窍门,不一定都以题目中最后所要求的量作为所设的未知数,而是应该根据题目的内容来确定。

如果设立的未知数不是题目最终要求的量,至少设立的这个未知数也要与已知条件和要求的答案关系紧密。

(3)找出题目中数量之间的等量关系,根据等量关系列出方程;(4)解方程;这是应该纯粹的计算过程,要细心运算。

1 / 6(5)检验,写出答案。

将求出的结果代入原应用题,依照题意检验结果的正确性。

注意不能只检验求得的结果是不是所列方程的解,要防止列方程式时出现的错误。

3. 找等量关系一般有下列方法:(1)以总量为等量关系建立方程;(2)以相差量为等量关系建立方程;(3)以较大的量(或几倍数)为等量关系建立方程;(4)以题中的等量为等量关系建立方程。

【专题训练】 1. 某工厂计划生产一批洗衣机,原计划 20 天完成,实际每天生产 300 台,结果提前 4 天完成任务。

原计划每天生产多少台? 2. 工程队要修一条 3 千米的公路,修了 5 天后,还剩下 300 米没有修,平均每天修多少米?3. 某班有男生 30 人,比女生的 2 倍少 16 人,这个班有女生多少人?4. 有甲、乙两桶油,甲桶油的重量是乙桶油的 3 倍。

苏教版五年级解方程式练习题

苏教版五年级解方程式练习题

苏教版五年级解方程式练习题解方程式是数学学习中的一个重要内容,它能够帮助我们解决各种实际问题。

本文将为大家介绍苏教版五年级解方程式的练习题,通过这些练习题的学习和解答,帮助学生更好地理解和掌握解方程的方法。

一、简单的一步方程求解1. 小明的年龄比小红大3岁,小红的年龄是7岁,那么小明的年龄是多少?解答:设小明的年龄为x岁,根据题目可知:x = 7 + 3计算得出:x = 10所以小明的年龄是10岁。

2. 假设一辆汽车每小时行驶60公里,那么它行驶10小时可以行驶多远?解答:设行驶的距离为d公里,根据题目可知:60 × 10 = d计算得出:d = 600所以这辆汽车行驶10小时可以行驶600公里。

二、含有未知数的较复杂方程求解1. 一串数的和是45,如果从中去掉一个数,那么剩下的数的和是30,那么被去掉的数是多少?解答:设被去掉的数为x,根据题目可知:45 - x = 30计算得出:x = 45 - 30计算得出:x = 15所以被去掉的数是15。

2. 甲、乙两个人一起种菜,甲每天种10棵,乙每天种8棵,一共种了5天,一共种了80棵菜。

那么这场菜园一开始有多少棵菜?解答:设菜园一开始的菜的数量为x棵,根据题目可知:10 × 5 + 8 × 5 = x 计算得出:50 + 40 = x计算得出:x = 90所以这场菜园一开始有90棵菜。

三、带有分式的方程求解1. 某个数的1/3等于12,那么这个数是多少?解答:设这个数为x,根据题目可知:x × 1/3 = 12计算得出:1/3x = 12通过移项,得到:x = 12 × 3计算得出:x = 36所以这个数是36。

2. 甲、乙两人同时修一段路程,其中甲修了2/3,乙修了1/4,如果这段路程共修了72天,那么甲需要多少天才能单独修完?解答:设甲修这段路程需要的天数为x,根据题目可知:x/72 = 2/3通过移项,得到:x = 72 × 2/3计算得出:x = 48所以甲需要48天才能单独修完这段路程。

列简易方程解应用题(1)(2)

列简易方程解应用题(1)(2)

列方程解应用题1例1、小亚买了7支铅笔,小巧也买了一些,她们一共买了21支铅笔,小巧买了多少支铅笔?例2、小巧买了14支铅笔,是小丁丁买的铅笔数的2倍,小丁丁买了多少支铅笔?练习1、甲乙两个书架,已知甲书架有540本书,比乙书架的3倍少30本.乙书架有多少本书?练习2、一只鲸的体重比一只大象的体重的37.5倍多12吨.已知鲸的体重是162吨,大象的体重是多少吨?练习3、某饲养场养鸡352只,比鸭的只数的4倍还多32只。

养鸭多少只?例3、育新小学共有108人参加学校科技小组,其中男生人数是女生人数的1.4倍。

参加科技小组的男、女生各有多少人?练习1、强强和丽丽共有奶糖40粒,强强比丽丽少6粒,强强有奶糖多少粒?练习2、一支钢笔比一支圆珠笔贵6.8元。

钢笔的价钱是圆珠笔价钱的4.4倍。

钢笔和圆珠笔的价钱各是多少元?练习3、体育比赛中参加跳绳的人数是踢毽子人数的3倍,已知踢毽子的人数比跳绳的人数少20人,跳绳、踢毽子各有多少人?(两种不同的设法)例4、食堂买了8千克黄瓜,付出15元,找回1.4元,每千克黄瓜是多少钱?思路1:付出的钱-用掉的钱=找回的钱思路2:用掉的钱+找回的钱=付出的钱练习1、王老师带500元去买足球,买了12个足球后,还剩140元,每个足球多少元?练习2、奶奶买4袋牛奶和2个面包,付给售货员35元,找回3.2元,每个面包6.3元,每袋牛奶多少元?练习3、小芳家买了一套桌椅,6张椅子配一张桌子,一共用了1120元,如果一张桌子730元,那么一把椅子多少钱?练习4、小刚去买大米和面粉,每千克大米2.6元,每千克面粉2.3元,他买了20千克面粉和一些大米,共付了61.6元,买大米多少千克?列方程解应用题2例1、小胖的年龄乘5,再加上7,就是王爷爷的年龄,王爷爷62岁,小胖几岁?练习1、小红今年11岁,妈妈今年39岁,小红几岁时,妈妈年龄是小红的3倍?练习2、李老师今年42岁,小明今年9岁,当小明几岁时,李老师的年龄是小明的4倍?例2、鸡兔共有8个头,26只脚,求鸡和兔共有几只?练习1、鸡兔同笼,共有35个头,94条腿,求鸡兔各有几只?练习2、鸡和兔共有20个头,兔脚比鸡脚多14只,求鸡兔各有几只?练习3、鸡兔同笼,鸡比兔多25只,一共有脚170只,求鸡兔各有几只?练习4、鸡和兔的数量相同,两只动物腿加起来共有48条,求鸡兔各有几只?例3、A大楼的总高度为258米,比B大楼的3倍还高24米,B大楼高多少米?练习:一、计算.4X+3X= 7a-5a= 7.5b-5b=S-0.5s= 9t+7t= 20t-5t-3t=二、看图列方程,并求出方程的解.桃树X棵X千克 2X千克520棵 1200千克杏树X棵X棵X棵三、填空1、铅笔每枝a元,买了m枝,付出b元,应找回( )元.2、服装计划做x套衣服,已经做了5天,每天做y套,还剩( )套.3、小东每小时走8千米,小明每小时走7千米,他们走t小时后,小东比小明我走( )千米.4、甲乙两数的和是m, 乙数是甲数的3倍,甲数是( ),乙数是( ).5、两种水果的价钱都是a元,小芳的妈妈分别买了2千克和3千克,一共花了( )元.6、一堆笔分给几个小朋友,若每人3根,将剩余6根,每人4根,将缺少6根,那么小朋友共()位。

列方程及列方程解应用题

列方程及列方程解应用题

解一元一次方程知识点:解方程的一般方法步骤(1)去分母:在方程的左右两边同时乘以分母的最小公倍数;注意不能漏掉没有分母的项;(2)去括号:注意括号外面的乘数要乘以括号里面的每一项;(3)移项:注意移项规律和变号;(4)合并同类项:所有的常数项属于同类项;(5)系数化为1:方程左右两边同时除以含未知数的项的系数。

小结:因为数字和数字之间可以相加减,字母和字母之间可以相加减所以把所有的数字放到等号的一边,所有的字母放到等号的另一边,这就需要通过移项来完成。

移项要变号;【典型例题】例1 解方程:(1)6x=8+5x (2) 6-3x=13-4x (3) 25-8x =2x+5解:6x-5x=8 解:4x-3x=13-6 解:25-5=8x+2x x=8 x=7 20=10xx=2例3 解方程:3x-8x-20=15x-35+4例4解方程:(1) 3(x+2)=4(x+1) (2) 2-2(x-1)=4 (3) 3(x+2)=23-4(x-1)(4) 81x-342=76(x-2) (5) 7-3(20-x)=6x-7(9-x) (6)3x-4(2x+5)=7(x-5)+4(2x+1)例5解方程31_2x-43_2x=1【课堂练习】:解方程1.3x+6=4x+4 2. 7+2x=19-4x 3.8z-3-3z=4z+1 4.34-51x-56+5x=8-56x 5.3(2x+1)=2(1+x)+3(x+3)6 . 13x-4(2x+5)=17(x-2)-4(2x-1) 7.17(2-3x)-5(12-x)=8(1-7x)8.(3x-1)-9(5x-11)-2(2x-7)=30 9.x5x5=32--10、2(x+1)5(x+1)=136-11、5x4x123-+-=12、2-2x4x7312--=-【课后作业】:解方程1、2-(1-x)=42、4-2x=6-3x3、8y-(8-5y)=3y+2(4y+7)4、2(3y-4)+7(4-y)=4y5、5(x+8)-5=6(2x-7)6、4x-3(20-x)=5x-7(20-x)7、3(x-2)-5(2x-1)=4(1-2x)8、13(x-5)=3-23(x-5)9、5x4x123-+-=10、2-2x4x7312--=-一元一次方程的应用知识点:一、重难点(1)重点:由题意找出等量关系,列一元一次方程,解应用题及解应用题的一般步骤(2)难点:根据题目中的已知量与未知量间的相等关系列方程。

列方程解应用题(一)

列方程解应用题(一)

列方程解应用题(一)列方程解应用题一般分为五步:(一)审题;(弄清已知数和未知数以及它们之间的关系)(二)用字母表示未知数;(通常用“x”表示)(三)根据等量关系列出方程;(四)解方程求出未知数的值;(五)验算并答题。

1.淮安市佳一才艺学校买来32支圆珠笔和64本练习本奖给三好学生,一共付出89.6元。

已知每本练习本0.5元,每支圆珠笔的价钱是多少元?2.要铺设一条长213.6米的路,甲队平均每天铺10.8米。

7天后,乙队一起参加铺路,两队又合铺6天完成了任务。

甲乙两队合铺一天能完成多少米?3.水果店有苹果和梨共308.3千克,已知苹果的重量是梨的2倍还多8千克。

梨有多少千克?4.甲乙两人同时从A地出发到B地,甲到B地后立即按原路返回,在距B地32千米处与乙相遇。

已和甲每小时行20千米,乙每小时行12千米。

问从出发到相遇时各行了多少千米?5.小李从图书馆借一本书,每天看6页,8天只看了这本书的一半,从这以后,他每天看8页,那么他看完这本书共需多少天?6.陈老师去文具店买乒乓球,如果买50个,但所带的钱还缺5元,如果改买45个,还缺1.5元,那么每个乒乓球要多少元?7.工厂三个车间共有工人480人,如果从第一车间调12人到第二车间,从第二车间调18人到第三车间,这三个车间的人数相等。

第二车间原有工人多少人?8.王明和杨荣的存款数相等,后来王明取出了60元,杨荣存入了20元,这时杨荣的存款是王明的3倍,求两人原有存款各多少元?9.学校买来4个篮球和9个足球,共用去76.2元,一个篮球和一个足球共价12.8元,每个足球多少元?10.一批小麦存放在两个粮库中,甲库所存小麦的数量是乙库的2倍。

后来从甲库运走86吨,从乙库运走40吨,这时两库所剩小麦的数量相等。

甲库原来有小麦多少吨?11.李老师到体育用品店买3副羽毛球拍,付出110元,找回5元。

每副羽毛球拍的售价是多少元?12.甲乙两地之间的路程是200千米,一辆汽车以每小时48千米的速度从甲地开往乙地,汽车在离乙地还有32千米时,已经行了多少小时?13.某服装厂计划加工800套西服,已经做了4天,平均每天加工60套,剩下的要在7天内完成,平均每天应加工多少套?14.甲乙两个车间,甲车间有工人112人,乙车间有工人94人,要使两个车间的人数相等,要从甲车间调几人到乙车间?15.小伟爸爸今年的岁数是小伟的7倍,再过10年,小伟爸爸的岁数是小伟岁数的3倍。

列方程解应用题选题(1-10)

列方程解应用题选题(1-10)

列方程解应用题—1 姓名:1.成都七中育才学校六年级共有学生276人,比二年级人数的3倍还多51人,成都七中育才学校二年级共有()人。

2.某学校共有学生460人,其中男生人数是女生人数的1.3倍,男生有()人,女生有()人。

3.学校有足球和篮球共45个,其中篮球的个数比足球的2倍少6个,学校有篮球()个。

4.两个数的和是240,商是3,那么较大的一个数是()。

5.甲桶里有油500千克,乙桶里有油160千克,甲桶的油要倒入乙桶()千克,才能使甲桶油乙桶的2倍。

6.甲、乙、丙三个数的和是360,已知甲数是乙数的3倍,乙数是丙数的2倍,求甲、乙、丙三数各是()、()、()。

7.某校六年级人数是二年级人数的3倍多18人,比二年级人数的4倍少66人。

六年级有()人。

8.某小卖部有啤酒300瓶,汽水212瓶,每天卖出去啤酒和汽水各21瓶,()天后剩下的啤酒是汽水的3倍。

9.小红的爸爸妈妈每月收入6000元,如果他们家每月支出比储蓄少600元,那么她家每月要储蓄()元。

10.师徒两人4小时共做124个零件,如果徒弟每小时比师傅少做7个零件,那么师傅每小时做()个零件。

列方程解应用题—2 姓名:1.三个修路队共修路1760米,甲队修的是乙队的3倍,乙队比丙队少修240米,甲队修了()米。

2.儿子今年9岁,妈妈今年33岁,()年前妈妈的年龄正好是儿子的5倍。

3.爸爸17年前的年龄相当于儿子11年后的年龄,当爸爸的年龄是儿子年龄的8倍时,爸爸()岁。

4.在一个减法算式里,被减数、减数、差的和是420,已知减数是差的2.5倍,那么减数是()。

5.在一个减法算式里,被减数、减数、差的和是190,已知差是减数的4倍,那么差是()。

6.一个长方形的周长是150分米,其中宽比长少15分米,那么这个长方形的面积是()平方分米。

7.把长140厘米的铁丝围成一个长方形,使长比宽多18厘米,长是()厘米。

8.两个数相除,商是24,余数是8,被除数、除数、商与余数的和是1840,则被除数是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

列方程解一步计算的应用题(一)
教学内容:冀教版《数学》五年级下册第27、28页。

教学目标:
1.知识与技能
会用等式的基本性质解一步计算的方程,会解决已知一个数的几倍是多少,求这个数的简单问题。

2.过程与方法
结合具体事例,经历列方程和应用等式的基本性质解方程的过程。

3.情感、态度与价值观
积极参加数学活动,获得运用已有知识解决问题的成功体验,激发学习解方程的兴趣。

教学方案:
教学反思:
王敬:这节课通过创设情境,让学生学会找等量关系式,并列出方程,再依据等式的基本性质进行解方程,同过练习,发现大多数学生会列方程,但不会说等量关
系,有的同学不写解,下节课将加大这方面的训练。

马桂华:学生利用数量关系能自主列方程,并能正确解答,但在课堂上给学生创设展示自己的空间的机会不多。

樊会侠:本节课课堂气氛活跃,能利用等式的基本性质解决问题,但计算的准确性不高,在列方程解应用题是应把找等量关系作为重点训练。

相关文档
最新文档