2018版高中数学人教版a版必修一学案:第二单元 章末复习课 含答案
2018版高中数学人教版A版必修一学案第二单元 2.1.2 第2课时 指数函数及其性质的应用 Word版含答案
第课时指数函数及其性质的应用学习目标.理解指数函数的单调性与底数的关系(重点).能运用指数函数的单调性解决一些问题(重、难点).方向【例-】()下列大小关系正确的是( ).<<π.<π<.<<π.π<<()设=,=,=,则,,的大小关系是( ).<< .<<.<< .<<解析()<==π=<,故选.()∵>=<=,故>,又函数=在(-∞,+∞)上是减函数,且>,所以<,故<<,选.答案() ()方向解简单的指数不等式【例-】()不等式-≤的解集为.()已知->+(>,且≠),求的取值范围.()解析∵=-,∴原不等式可化为-≤-,∵函数=在上是减函数,∴-≥-,∴≥,故原不等式的解集是{≥}.答案{≥}()解当>时,∵->+,∴->+,解得<-;当<<时,∵->+,∴-<+,解得>-.综上所述,的取值范围是:当>时,<-;当<<时,>-.方向指数型函数的单调性【例-】判断()=-的单调性,并求其值域.解令=-,则原函数变为=.∵=-=(-)-在(-∞,]上递减,在[,+∞)上递增,又∵=在(-∞,+∞)上递减,∴=-在(-∞,]上递增,在[,+∞)上递减.∵=-=(-)-≥-,∴=,∈[-,+∞),∴<≤-=,∴原函数的值域为(].规律方法.比较幂值大小的三种类型及处理方法.解指数不等式的类型及应注意的问题()形如>的不等式,借助于函数=的单调性求解,如果的取值不确定,要对分为<<和>两种情况分类讨论.()形如>的不等式,注意将转化为以为底数的指数幂的形式,再借助于函数=的单调性求解..函数=()(>,≠)的单调性的处理技巧当>时,=()与=()的单调性相同,当<<时,=()与=()的单调性相反.题型二指数函数的实际应用【例】某化工厂生产一种溶液,按市场要求,杂质含量不能超过,若初始溶液含杂质,每过滤一次可使杂质含量减少.()写出杂质含量与过滤次数的函数关系式;()过滤次后的杂质含量是多少?过滤次后的杂质含量是多少?至少应过滤几次才能使产品达到市场要求?解()过滤次后的杂质含量为×=×;过滤次后的杂质含量为×=×;过滤次后的杂质含量为×=×;…过滤次后的杂质含量为×(∈*).故与的函数关系式为=×(∈*).()由()知当=时,=×=>,当=时,=×=<,所以至少应过滤次才能使产品达到市场要求.规律方法指数函数在实际问题中的应用()与实际生活有关的问题,求解时应准确读懂题意,从实际问题中提取出模型转化为数学问题.()在实际问题中,经常会遇到指数增长模型:设基数为,平均增长率为,则对于经过时间后的总量可以用=(+)来表示,这是非常有用的函数模型.。
2017-2018学年高中数学人教A版必修1学案:2.2对数函数知识导学案及答案
ab=N.
对数的运算性质就是把真数的乘、除、乘方降级为对数的加、减、乘运算
.
一般地 , 我们称 log aN= log b N 为对数的换底公式 . 换底公式是对数中一个非常重要的公 log b a
式, 这是因为它是对一个对数进行变形运算的主要依据之一
, 是对数的运算性质 . 对数运算性
质应用的前提是式子中对数的底相同 . 若底不同则需要利用换底公式化为底相同的
底数 0 到 1 之间 , 图象从上往下减 .
无论函数增和减 , 图象都过 (1,0) 点.
比较两个对数型的数的大小是一种常见的题型
, 好好把握 .
两个同底数的对数比较大小的一般步骤 :
①确定所要考查的对数函数 ;
②根据对数底数判断对数函数增减性 ;
③比较真数大小 , 然后利用对数函数的增减性判断两对数值的大小
. 我们在
应用换底公式时 , 一方面要证明它和它的几个推论 ; 另一方面要结合构成式子的各对数的特
点选择一个恰当的数作为对数的底 , 不要盲目地换底 , 以简化我们的解题过程 .
有了对数的概念后 , 要求 log 0. 840.5 的值 , 我们需要引入两个常用的对数 : 常用对数和自
然对数 . 常用对数是指以 10 为底的对数 ; 自然对数是指以 e(e=2.718 28… , 是一个无理数 ) 为
图象关于直线 y=x 对称 .
x
因此 , 我们只要画出和 y=a 的图象关于直线 y=x 对称的曲线 , 就可以得到 y=log ax 的图象 ,
然后根据图象特征得出对数函数的性质 .
疑难导析
通过将对数函数与指数函数的图象进行对比 , 可以发现 : 当 a>1 或 0<a<1 时 , 对数函数与
人教新课标版数学高一必修1第二章章末复习
章末复习课知识概览对点讲练比较大小的问题比较几个数的大小是幂、指数、对数函数的又一重要应用,常用的方法有:单调性法、搭桥法、图象法、特殊值法、作差法、作商法等.【例1】 比较三个数0.32,log 20.3,20.3的大小.规律方法 比较幂函数、指数函数、对数函数型的数值间的大小关系时要注意:(1)若指数相同,底数不同,则利用幂函数的单调性;(2)若底数相同,指数不同,则利用指数函数的单调性;(3)若底数不同,指数也不同,以及一些对数函数型数值等,应寻找媒介数(常用0,1)进行比较;(4)作差比较和作商比较是常用技巧.变式迁移1 设a =log 123,b =(13)0.2,c =213,则( ) A .a <b <c B .c <b <a C .c <a <b D .b <a <c求函数最值问题【例2】 f (x )=9x +12-3x +a ,x ∈[1,2]的最大值为5,求其最小值.规律方法 利用换元法求值域必须先求出新元的取值范围作为新函数的定义域.变式迁移2 已知函数y =ax 2-3x +3,当x ∈[1,3]时有最小值18,求a 的值.函数性质的综合应用【例3】 已知偶函数f (x )在x ∈[0,+∞)上是增函数,且f (12)=0,求不等式f (log a x )>0(a >0且a ≠1)的解集.规律方法 关于指数函数、对数函数的综合性问题主要是对常用的函数思想方法的深入理解、综合思考和灵活应用,这些问题往往要综合利用同步等价转化、数形结合和分类讨论等数学思想才能解决.这是提高分析问题、解决问题能力的重要途径.变式迁移3 若-1<log a 23<1,求a 的取值范围.指、对数函数的图象与性质是高考考查的重点之一.一要注意它的定义域,二要注意底数的范围;对数函数与指数函数互为反函数,要注意以它们为载体,考查利用单调性比较大小及有关应用,考查函数性质的综合应用.课时作业一、选择题1.已知集合A ={y |y =log a x ,x >0,a >0且a ≠1},B =⎩⎨⎧⎭⎬⎫x |y =⎝⎛⎭⎫12x ,y ≥2,则A ∩B 等于( )A .{x |x ≥-1}B .{x |x ≤-1}C .{x |x ≥0}D .{x |x >0}2.设a >b >1,0<x <1,则有( )A .x a >x bB .b x >a xC .log a x >log b xD .log x a >log x b3.若log m 2<log n 2<0,则实数m 、n 的大小关系是( )A .1<n <mB .0<n <m <1C .1<m <nD .0<m <n <14.函数y =(|x |)12的图象可能是下列四个图中的( )5.函数y =2+log 2x (x ≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞)二、填空题6.设f (x )=⎩⎪⎨⎪⎧3-x x ∈(-∞,1]log 81x x ∈(1,+∞),则满足f (x )=14的x 值为________. 7.已知a >1,0<x <1且a log b (1-x )>1,那么b 的取值范围是______________.8.对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2)有如下结论:①f (x 1+x 2)=f (x 1)·f (x 2);②f (x 1·x 2)=f (x 1)+f (x 2);③f (x 1)-f (x 2)x 1-x 2>0;④f (x 1+x 22)<f (x 1)+f (x 2)2. 当f (x )=lg x 时,上述结论中正确的结论的序号是________.三、解答题9.已知函数f (x )=(log 14x )2-log 14x +5,x ∈[2,4],求f (x )的最小值.10.若f (x )=1+log x 3,g (x )=2log x 2,试比较f (x )与g (x )的大小.章末复习课 答案对点讲练【例1】 解 方法一∵0.32<12=1,log 20.3<log 21=0,20.3>20=1,∴log 20.3<0.32<20.3. 方法二 作出函数图象如图所示,由图象即可看出log 20.3<0.32<20.3.变式迁移1 A [∵a =log 123<0,0<b =(13)0.2<1,c =213>1,∴a <b <c .] 【例2】 解 f (x )=32x +1-3x +a .设3x =t ,则t ∈[3,9].∴f (x )=g (t )=3t 2-t +a=3⎝⎛⎭⎫t -162+a -112,t ∈[3,9]. ∴f (x )max =g (9)=3·92-9+a =5,∴a =-229,∴f (x )min =g (3)=24+a =-205.变式迁移2 解 令t =x 2-3x +3=(x -32)2+34, 当x ∈[1,3]时,t ∈[34,3], ①若a >1,则y min =a 34=18, 解得a =116,与a >1矛盾.②若0<a <1,则y min =a 3=18, 解得a =12,满足题意. 综合①、②知a =12. 【例3】 解 f (x )是偶函数,且f (x )在[0,+∞)上递增, f (12)=0, ∴f (x )在(-∞,0)上递减,f (-12)=0, 则有log a x >12,或log a x <-12. (1)当a >1时,log a x >12或log a x <-12, 可得x >a ,或0<x <a a; (2)当0<a <1时,log a x >12或log a x <-12, 可得0<x <a ,或x >a a. 综上可知,当a >1时,f (log a x )>0的解集为(0,a a)∪(a ,+∞); 当0<a <1时,f (log a x )>0的解集为(0,a )∪(a a ,+∞). 变式迁移3 解 -1<log a 23<1, 即log a 1a =-1<log a 23<1=log a a . (1)当a >1时,有log a x 为增函数,1a <23<a . ∴a >32,结合a >1,故a >32. (2)当0<a <1时,有log a x 为减函数,1a >23>a . ∴a <23,结合0<a <1,故0<a <23. ∴a 的取值范围是⎩⎨⎧⎭⎬⎫a |0<a <23∪⎩⎨⎧⎭⎬⎫a |a >32. 课时作业1.B [∵A =R ,B =(-∞,-1],B A ,∴A ∩B =B =(-∞,-1].]2.C [画图象可知.]3.B [画图象可知.]4.D [由y =(|x |)12知函数为偶函数,且0<x <1时,y >x .] 5.C [x ≥1时,log 2x ≥0,∴y ≥2.]6.3解析 ∵f (x )=14, 当3-x =14时,x =log 34∉(-∞,1], 当log 81x =14时, 即x =8114=[(±3)4]14=±3, ∵x ∈(1,+∞),∴x =3,综上可知,满足f (x )=14的x 的值是3. 7.(0,1)解析 ∵a log b (1-x )>a 0,且a >1,∴log b (1-x )>0.又∵0<x <1,∴0<1-x <1.∴0<b <1.8.②③解析 f (x )=lg x ,则lg(x 1x 2)=lg x 1+lg x 2,②正确; 又f (x )为单调增函数,故③正确.9.解 令log 14x =t ,因为x ∈[2,4], 所以t ∈[-1,-12]. 所以原函数⇔y =t 2-t +5,t ∈[-1,-12]. 由二次函数性质知当t =-12时,y 取到最小值,且y min =234. 10.解 f (x )-g (x )=log x 3x -log x 4=log x 3x 4. 当0<x <1时,log x 34x >0,f (x )>g (x ); 当x =43时,f (x )=g (x ); 当1<x <43时,log x 34x <0,f (x )<g (x ). 当x >43时,log x 34x >0,f (x )>g (x ). 综上所述,当x ∈(0,1)∪⎝⎛⎭⎫43,+∞时,f (x )>g (x );当x =43时,f (x )=g (x ); 当x ∈⎝⎛⎭⎫1,43时,f (x )<g (x ).。
2018版高中数学人教版A版必修一学案第二单元 习题课 基本初等函数(Ⅰ) Word版含答案
习题课基本初等函数(Ⅰ)学习目标.能够熟练进行指数、对数的运算(重点).进一步理解和掌握指数函数、对数函数、幂函数的图象和性质,并能应用它们的图象和性质解决相关问题(重、难点)..三个数,的大小顺序是( ).<<.<<.<<.<<解析由指数函数和对数函数的图象可知:><<,<,∴<<,故选.答案.已知<<,-<<,则函数=+的图象必定不经过( ).第四象限.第一象限.第二象限.第三象限解析因为<<,所以函数=的图象过(),且过第一、二象限,又-<<,所以函数=+的图象可认为是由=的图象向下平移个单位得到的,所以函数=+的图象经过第一、二、四象限,不经过第三象限.答案.-+=.解析原式=-+=-+=+=(+)==.答案.函数()=(-++)的值域是.解析∵-++=-(-)+≤,∴(-++)≤=,故()的值域是(-∞,].答案(-∞,]类型一指数与对数的运算【例】计算:()-+-;()--+[(-)]-+-+.解()原式=-=-=-.()原式=×))-+-+×))+=-+++=. 规律方法指数、对数的运算应遵循的原则 ()指数的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算;其次若出现分式则要注意分子、分母因式分解以达到约分的目的;规律方法指数、对数的运算应遵循的原则()指数的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算;其次若出现分式则要注意分子、分母因式分解以达到约分的目的;()对数的运算首先注意公式应用过程中范围的变化,前后要等价,熟练地运用对数的三个运算性质并结合对数恒等式、换底公式是对数计算、化简、证明的常用技巧.【训练】计算:()-+×-;()+++-.解()原式=--+×()=-.()原式=)+(×)+÷=-++=-++=. 类型二指数、对数型函数的定义域、值域类型二指数、对数型函数的定义域、值域【例】()求函数=-+(≤≤)的值域;()已知-≤≤-,求函数()=·的最大值和最小值.解()令=-+,则=.又=-+=(-)+≤≤,∴当=时,=;当=时,=.故≤≤,∴≤≤,故所求函数的值域为.()∵-≤≤-,∴≤≤,∴()=·=(-)(-)=()-+=-.当=时,()=,当=时,()=-.规律方法函数值域(最值)的求法()直观法:图象在轴上的“投影”的范围就是值域的范围.()配方法:适合二次函数.()反解法:有界量用来表示.如=中,由=≥可求的范围,可得值域.()换元法:通过变量代换转化为能求值域的函数,特别注意新变量的范围.()单调性:特别适合于指、对数函数的复合函数.【训练】()函数()=+的定义域是.()函数()=(\\((),≥,,<))的值域为.解析()由题意可得(\\(->,+>,(+(≥,))解得≤<,则()的定义域是[).()当≥时,≤=,当<时,<<=,所以()的值域为(-∞,]∪()=(-∞,).答案()[) ()(-∞,)类型三指数函数、对数函数、幂函数的图象问题【例】()若<(>,且≠),则函数()=+的图象大致是( )。
2017-2018学年高一数学必修1全册同步课时作业含解析【人教A版】
2017-2018学年高一数学必修1 全册同步课时作业目录1.1.1-1集合与函数概念1.1.1-2集合的含义与表示1.1.1-3集合的含义与表示1.1.2集合间的包含关系1.1.3-1集合的基本运算(第1课时)1.1.3-2集合的基本运算(第2课时)1.1习题课1.2.1函数及其表示1.2.2-1函数的表示法(第1课时)1.2.2-2函数的表示法(第2课时)1.2.2-3函数的表示法(第3课时)1.2习题课1.3.1-1单调性与最大(小)值(第1课时)1.3.1-2单调性与最大(小)值(第2课时)1.3.1-3单调性与最大(小)值(第3课时)1.3.1-4单调性与最大(小)值(第4课时)1.3.2-1函数的奇偶性(第1课时)1.3.2-2函数的奇偶性(第2课时)函数的值域专题研究第一章单元检测试卷A第一章单元检测试卷B 2.1.1-1基本初等函数(Ⅰ)2.1.1-2指数与指数幂的运算(第2课时)2.1.2-1指数函数及其性质(第1课时)2.1.2-2指数函数及其性质(第2课时)2.1.2-3对数与对数运算(第3课时)2.2.1-1对数与对数运算(第1课时)2.2.1-2对数与对数运算(第2课时)2.2.1-3对数与对数运算(第3课时)2.2.2-1对数函数及其性质(第1课时)2.2.2-2对数函数的图像与性质(第2课时)2.2.2-3对数函数的图像与性质2.3 幂函数图像变换专题研究第二章单元检测试卷A第二章单元检测试卷B3.1.1函数的应用3.1.2用二分法求方程的近似解3.2.1函数模型及其应用3.2.2函数模型的应用实例第三章单元检测试卷A第三章单元检测试卷B全册综合检测试题模块A全册综合检测试题模块B1.1.1-1集合与函数概念课时作业1.下列说法中正确的是()A.联合国所有常任理事国组成一个集合B.衡水中学年龄较小的学生组成一个集合C.{1,2,3}与{2,1,3}是不同的集合D.由1,0,5,1,2,5组成的集合有六个元素答案 A解析根据集合中元素的性质判断.2.若a 是R 中的元素,但不是Q 中的元素,则a 可以是( ) A.3.14 B.-2 C.78 D.7答案 D解析 由题意知a 应为无理数,故a 可以为7. 3.设集合M ={(1,2)},则下列关系式成立的是( ) A.1∈M B.2∈M C.(1,2)∈M D.(2,1)∈M 答案 C4.若以方程x 2-5x +6=0和方程x 2-x -2=0的解为元素的集合为M ,则M 中元素的个数为( )A.1B.2C.3D.4 答案 C解析 M ={-1,2,3}.5.若2∈{1,x 2+x},则x 的值为( ) A.-2 B.1 C.1或-2 D.-1或2 答案 C解析 由题意知x 2+x =2,即x 2+x -2=0.解得x =-2或x =1.6.已知集合M ={a ,b ,c}中的三个元素可构成某一三角形的三边长,那么此三角形一定不是( ) A.直角三角形 B.锐角三角形 C.钝角三角形 D.等腰三角形 答案 D解析 因集合中的元素全不相同,故三角形的三边各不相同.所以△ABC 不可能是等腰三角形.7.设a ,b ∈R ,集合{1,a}={0,a +b},则b -a =( ) A.1 B.-1 C.2 D.-2 答案 A解析 ∵{1,a}={0,a +b},∴⎩⎪⎨⎪⎧a =0,a +b =1,∴⎩⎪⎨⎪⎧a =0,b =1.∴b -a =1,故选A. 8.下列关系中①-43∈R ;②3∉Q ;③|-20|∉N *;④|-2|∈Q ;⑤-5∉Z ;⑥0∈N .其正确的是________. 答案 ①②⑥ 9.下列说法中①集合N 与集合N *是同一个集合;②集合N 中的元素都是集合Z 中的元素;③集合Q 中的元素都是集合N 中的元素;④集合Q 中的元素都是集合R 中的元素. 其中正确的个数是________. 答案 2解析 由数集性质知①③错误,②④正确.10.集合{1,2}与集合{2,1}是否表示同一集合?________;集合{(1,2)}与集合{(2,1)}是否表示同一集合?______.(填“是”或“不是”) 答案 是,不是11.若{a ,0,1}={c ,1b ,-1},则a =______,b =______,c =________.答案 -1 1 0解析 ∵-1∈{a ,0,1},∴a =-1. 又0∈{c ,1b ,-1}且1b ≠0,∴c =0,从而可知1b=1,∴b =1.12.已知集合A 中含有两个元素1和a 2,则a 的取值范围是________. 答案 a ∈R 且a ≠±1解析 由集合元素的互异性,可知a 2≠1,∴a ≠±1,即a ∈R 且a ≠±1. 13.对于集合A ={2,4,6},若a ∈A ,则6-a ∈A ,那么a 的值是________. 答案 2或414.设A 表示集合{2,3,a 2+2a -3},B 表示集合{a +3,2},若已知5∈A ,且5∉B ,求实数a 的值. 答案 -4解析 ∵5∈A ,且5∉B ,∴⎩⎪⎨⎪⎧a 2+2a -3=5,a +3≠5, 即⎩⎪⎨⎪⎧a =-4或a =2,a ≠2.∴a =-4. ►重点班·选做题15.若一数集的任一元素的倒数仍在该集合中,则称该数集为“可倒数集”. (1)判断集合A ={-1,1,2}是否为可倒数集; (2)试写出一个含3个元素的可倒数集.解析 (1)由于2的倒数为12不在集合A 中,故集合A 不是可倒数集.(2)若a ∈A ,则必有1a ∈A ,现已知集合A 中含有3个元素,故必有一个元素有a =1a ,即a=±1,故可以取集合A ={1,2,12}或{-1,2,12}或{1,3,13}等.下面有五个命题:①集合N (自然数集)中最小的数是1;②{1,2,3}是不大于3的自然数组成的集合;③a ∈N ,b ∈N ,则a +b ≥2;④a ∈N ,b ∈N ,则a·b ∈N ;⑤集合{0}中没有元素. 其中正确命题的个数是( ) A.0 B.1 C.2 D.3答案 B解析 因为0是自然数,所以0∈N .由此可知①②③是错误的,⑤亦错,只有④正确.故选B.1.1.1-2集合的含义与表示含解析课时作业1.用列举法表示集合{x|x 2-2x +1=0}为( ) A.{1,1} B.{1}C.{x =1}D.{x 2-2x +1=0}答案 B2.集合{1,3,5,7,9}用描述法表示应是( ) A.{x|x 是不大于9的非负奇数} B.{x|x ≤9,x ∈N } C.{x|1≤x ≤9,x ∈N } D.{x|0≤x ≤9,x ∈Z }答案 A3.由大于-3且小于11的偶数组成的集合是( ) A.{x|-3<x<11,x ∈Q } B.{x|-3<x<11}C.{x|-3<x<11,x =2k ,x ∈Q }D.{x|-3<x<11,x =2k ,x ∈Z }答案 D4.集合{x ∈N *|x<5}的另一种表示法是( ) A.{0,1,2,3,4} B.{1,2,3,4} C.{0,1,2,3,4,5} D.{1,2,3,4,5}答案 B5.设集合M ={x|x ∈R 且x ≤23},a =26,则( ) A.a ∉M B.a ∈MC.a =MD.{a|a =26}=M答案 A解析 首先元素与集合关系只能用符号“∈”与“∉”表示.集合中元素意义不同的不能用“=”连接,再有a =24>23,a 不是集合M 的元素,故a ∉M.另外{a|a =26}中只有一个元素26与集合M 中元素不相同.故D 错误.6.将集合⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x +y =5,2x -y =1表示成列举法,正确的是( ) A.{2,3} B.{(2,3)} C.{x =2,y =3} D.(2,3)答案 B7.下列集合中,不同于另外三个集合的是( ) A.{x|x =1} B.{x =1} C.{1}D.{y|(y -1)2=0}答案 B解析A,C,D都是数集.8.下列集合表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={(x,y)|x+y=1},N={y|x+y=1}C.M={4,5},N={5,4}D.M={1,2},N={(1,2)}答案 C解析A中M是点集,N是点集,是两个不同的点;B中M是点集,N是数集;D中M是数集,N是点集,故选C.9.设集合A={1,2,3},B={4,5},M={x|x=a+b,a∈A,b∈B},则M中元素的个数为()A.3B.4C.5D.6答案 B解析由集合中元素的互异性,可知集合M={5,6,7,8},所以集合M中共有4个元素.10.坐标轴上的点的集合可表示为()A.{(x,y)|x=0,y≠0或x≠0,y=0}B.{(x,y)|x2+y2=0}C.{(x,y)|xy=0}D.{(x,y)|x2+y2≠0}答案 C解析坐标轴上的点的横、纵坐标至少有一个为0,故选C.11.将集合“奇数的全体”用描述法表示为①{x|x=2n-1,n∈N*}; ②{x|x=2n+1,n∈Z};③{x|x=2n-1,n∈Z};④{x|x=2n+1,n∈R};⑤{x|x=2n+5,n∈Z}.其中正确的是________.答案②③⑤12.已知命题:(1){偶数}={x|x=2k,k∈Z};(2){x||x|≤2,x∈Z}={-2,-1,0,1,2};(3){(x,y)|x+y=3且x-y=1}={1,2}.其中正确的是________.答案(1)(2)13.已知集合A={1,0,-1,3},B={y|y=|x|,x∈A},则B=________.答案{0,1,3}解析 ∵y =|x|,x ∈A ,∴y =1,0,3,∴B ={0,1,3}. 14.用∈或∉填空:(1)若A ={x|x 2=x},则-1________A ; (2)若B ={x|x 2+x -6=0},则3________B ; (3)若C ={x ∈N |1≤x ≤10},则8________C ; (4)若D ={x ∈Z |-2<x<3},则1.5________D. 答案 (1)∉ (2)∉ (3)∈ (4)∉ ►重点班·选做题15.用另一种方法表示下列集合. (1){x||x|≤2,x ∈Z };(2){能被3整除,且小于10的正数}; (3)坐标平面内在第四象限的点组成的集合. (4){(x ,y)|x +y =6,x ,y 均为正整数}; (5){-3,-1,1,3,5}. (6)被3除余2的正整数集合.答案 (1){-2,-1,0,1,2} (2){3,6,9}(3)⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫(x ,y )⎪⎪⎪⎩⎪⎨⎪⎧x>0,y<0 (4){(1,5),(2,4),(3,3),(4,2),(5,1)} (5){x|x =2k -1,-1≤k ≤3,k ∈Z } (6){x|x =3n +2,n ∈N }16.已知集合{x|x 2+ax +b =0}={2,3},求a ,b 的值. 答案 -5 6解析 ∵{x|x 2+ax +b =0}={2,3}, ∴方程x 2+ax +b =0有两实根x 1=2,x 2=3. 由根与系数的关系得a =-(2+3)=-5,b =2×3=6.1.下列集合是有限集的是( ) A.{x|x 是被3整除的数}B.{x ∈R |0<x <2}C.{(x ,y)|2x +y =5,x ∈N ,y ∈N }D.{x|x 是面积为1的菱形}答案 C解析 C 中集合可化为:{(0,5),(1,3),(2,1)}.2.已知集合A ={x|x 2-2x +a>0},且1∉A ,则实数a 的取值范围是( ) A.{a|a ≤1}B.{a|a ≥1}C.{a|a≥0}D.{a|a≤-1}答案 A解析因为1∉A,所以当x=1时,1-2+a≤0,所以a≤1,即a的取值范围是{a|a≤1}.1.1.1-3集合的含义与表示课时作业(三)1.设x ∈N ,且1x ∈N ,则x 的值可能是( )A.0B.1C.-1D.0或1答案 B解析 首先x ≠0,排除A ,D ;又x ∈N ,排除C ,故选B.2.下面四个关系式:π∈{x|x 是正实数},0.3∈Q ,0∈{0},0∈N ,其中正确的个数是( ) A.4 B.3 C.2 D.1 答案 A解析 本题考查元素与集合之间的关系,由数集的分类可知四个关系式均正确. 3.集合{x ∈N |-1<x<112}的另一种表示方法是( )A.{0,1,2,3,4}B.{1,2,3,4}C.{0,1,2,3,4,5}D.{1,2,3,4,5} 答案 C解析 ∵x ∈N ,且-1<x<112,∴集合中含有元素0,1,2,3,4,5,故选C.4.已知集合A ={x ∈N *|-5≤x ≤5},则必有( ) A.-1∈A B.0∈A C.3∈A D.1∈A 答案 D解析 ∵x ∈N *,-5≤x ≤5,∴x =1,2,即A ={1,2},∴1∈A. 5.集合M ={(x ,y)|xy<0,x ∈R ,y ∈R }是( ) A.第一象限内的点集 B.第三象限内的点集 C.第四象限内的点集 D.第二、四象限内的点集 答案 D解析 根据描述法表示集合的特点,可知集合表示的是横、纵坐标异号的点的集合,这些点在第二、四象限内.6.若a ,b ,c ,d 为集合A 的四个元素,则以a ,b ,c ,d 为边长构成的四边形可能是( ) A.矩形 B.平行四边形 C.菱形D.梯形答案 D解析 由于集合中的元素具有“互异性”,故a ,b ,c ,d 四个元素互不相同,即组成四边形的四条边互不相等.7.集合A ={x|x ∈N ,且42-x ∈Z },用列举法可表示为A =________.答案 {0,1,3,4,6}解析 注意到42-x ∈Z ,因此,2-x =±2,±4,±1,解得x =-2,0,1,3,4,6,又∵x ∈N ,∴x =0,1,3,4,6.8.一边长为6,一边长为3的等腰三角形所组成的集合中有________个元素. 答案 1解析 这样的三角形只有1个,是两腰长为6,底边长为3的等腰三角形. 9.点P(1,3)和集合A ={(x ,y)|y =x +2}之间的关系是________. 答案 P ∈A解析 在y =x +2中,当x =1时,y =3,因此点P 是集合A 的元素,故P ∈A. 10.用列举法表示集合A ={(x ,y)|x +y =3,x ∈N ,y ∈N *}为________. 答案 {(0,3),(1,2),(2,1)}解析 集合A 是由方程x +y =3的部分整数解组成的集合,由条件可知,当x =0时,y =3;当x =1时,y =2;当x =2时,y =1.故A ={(0,3),(1,2),(2,1)}.11.若A ={-2,2,3,4},B ={x|x =t 2,t ∈A},用列举法表示集合B =________. 答案 {4,9,16}解析 由题意可知集合B 是由集合A 中元素的平方构成,故B ={4,9,16}.12.下列集合中:A ={x =2,y =1},B ={2,1},C ={(x ,y)|⎩⎪⎨⎪⎧x +y =3,x -y =1},D ={(x ,y)|x =2且y =1},与集合{(2,1)}相等的共有________个. 答案 2解析 因为集合{(2,1)}的元素表示的是有序实数对,由已知集合的代表元素知,元素为有序实数对的是C ,D ,而A 表示含有两个元素x =2,y =1的集合,B 表示含有2个元素的集合.13.设A 是满足x<6的所有自然数组成的集合,若a ∈A ,且3a ∈A ,求a 的值. 解析 ∵a ∈A 且3a ∈A ,∴a<6且3a<6,∴a<2. 又∵a 是自然数,∴a =0或1.14.已知集合A 含有两个元素a 和a 2,若1∈A ,求实数a 的值.解析 本题中已知集合A 中有两个元素且1∈A ,据集合中元素的特点需分a =1和a 2=1两种情况,另外还要注意集合中元素的互异性.若1∈A ,则a =1或a 2=1,即a =±1. 当a =1时,集合A 有重复元素,∴a ≠1;当a =-1时,集合A 含有两个元素1,-1,符合互异性. ∴a =-1. ►重点班·选做题15.已知集合A ={0,2,5,10},集合B 中的元素x 满足x =ab ,a ∈A ,b ∈A 且a ≠b ,写出集合B.解析 当⎩⎪⎨⎪⎧a =0,b ≠0或⎩⎪⎨⎪⎧a ≠0,b =0时,x =0; 当⎩⎪⎨⎪⎧a =2,b =5或⎩⎪⎨⎪⎧a =5,b =2时,x =10; 当⎩⎪⎨⎪⎧a =2,b =10或⎩⎪⎨⎪⎧a =10,b =2时,x =20; 当⎩⎪⎨⎪⎧a =5,b =10或⎩⎪⎨⎪⎧a =10,b =5时,x =50. 所以B ={0,10,20,50}.1.已知A ={x|3-3x>0},则有( ) A.3∈A B.1∈A C.0∈A D.-1∉A答案 C解析 因为A ={x|3-3x>0}={x|x<1},所以0∈A.2.“今有三女,长女五日一归,中女四日一归,小女三日一归,问三女何时相会”.(选自《孙子算经》),请将三女前三次相会的天数用集合表示出来.解析 三女相会的日数,即为5,4,3的公倍数,它们的最小公倍数为60,因此三女前三次相会的天数用集合表示为{60,120,180}.3.数集M 满足条件:若a ∈M ,则1+a 1-a ∈M(a ≠±1且a ≠0),已知3∈M ,试把由此确定的集合M 的元素全部求出来.解析 ∵a =3∈M ,∴1+a 1-a =1+31-3=-2∈M ,∴1-21+2=-13∈M.∴1-131+13=12∈M ,∴1+121-12=3∈M.即M =⎩⎨⎧⎭⎬⎫3,-2,-13,12.4.设集合A ={x ,y},B ={0,x 2},若集合A ,B 相等,求实数x ,y 的值. 解析 因为A ,B 相等,则x =0或y =0.(1)当x =0时,x 2=0,则B ={0,0},不满足集合中元素的互异性,故舍去. (2)当y =0时,x =x 2,解得x =0或x =1.由(1)知x =0应舍去. 综上知:x =1,y =0.5.集合A ={x|⎩⎪⎨⎪⎧y =x ,y =x 2}可化简为________. 以下是两位同学的答案,你认为哪一个正确?试说明理由.学生甲:由⎩⎪⎨⎪⎧y =x ,y =x 2,得x =0或x =1,故A ={0,1}; 学生乙:问题转化为求直线y =x 与抛物线y =x 2的交点,得到A ={(0,0),(1,1)}. 解析 同学甲正确,同学乙错误.由于集合A 的代表元素为x ,因此满足条件的元素只能为x =0,1;而不是实数对⎩⎪⎨⎪⎧x =0,y =0,⎩⎪⎨⎪⎧x =1,y =1.故同学甲正确.1.1.2集合间的包含关系课时作业(四)1.数0与集合∅的关系是()A.0∈∅B.0=∅C.{0}=∅D.0∉∅答案 D2.集合{1,2,3}的子集的个数是()A.7B.4C.6D.8答案 D3.下列集合中表示空集的是()A.{x∈R|x+5=5}B.{x∈R|x+5>5}C.{x∈R|x2=0}D.{x∈R|x2+x+1=0}答案 D解析∵A,B,C中分别表示的集合为{0},{x|x>0},{0},∴不是空集;又∵x2+x+1=0无解,∴{x∈R|x2+x+1=0}表示空集.4.已知集合P={1,2,3,4},Q={y|y=x+1,x∈P},那么集合M={3,4,5}与Q的关系是()A.M QB.M QC.Q MD.Q=M答案 A5.下列六个关系式中正确的个数为()①{a,b}={b,a};②{a,b}⊆{b,a};③∅={∅};④{0}=∅;⑤∅ {0};⑥0∈{0}.A.6B.5C.4D.3个及3个以下答案 C解析其中①②⑤⑥是正确的,对于③应为∅ {∅}或∅∈{∅};对于④应为{0} ∅.6.若集合A={-1,2},B={x|x2+ax+b=0},且A=B,则有()A.a=1,b=-2B.a=2,b=2C.a=-1,b=-2D.a=-1,b=2答案 C解析由A=B知-1与2是方程x2+ax+b=0的两根,∴⎩⎪⎨⎪⎧-1+2=-a ,(-1)×2=b ,∴⎩⎪⎨⎪⎧a =-1,b =-2. 7.集合P ={x|y =x 2},Q ={y|y =x 2},则下列关系中正确的是( ) A.P Q B.P =Q C.P ⊆Q D.P Q答案 D解析 P ,Q 均为数集,P ={x|y =x 2}=R ,Q ={y|y =x 2}={y|y ≥0},∴Q P ,故选D. 8.已知集合A {1,2,3},且A 中至少含有一个奇数,则这样的集合A 的个数为( ) A.6 B.5 C.4 D.3答案 B解析 A ={1},{3},{1,2},{1,3},{2,3}共5个.9.若A ={(x ,y)|y =x},B ={(x ,y)|yx =1},则A ,B 关系为( )A.A BB.B AC.A =BD.A B答案 B10.已知集合A ={-1,3,m},集合B ={3,4},若B ⊆A ,则实数m =________. 答案 4解析 ∵B ⊆A ,A ={-1,3,m},∴m =4.11.已知非空集合A 满足:①A ⊆{1,2,3,4};②若x ∈A ,则5-x ∈A.符合上述要求的集合A 的个数是________. 答案 3解析 由“若x ∈A ,则5-x ∈A ”可知,1和4,2和3成对地出现在A 中,且A ≠∅.故集合A 的个数等于集合{1,2}的非空子集的个数,即3个.12.设集合A ={x ∈R |x 2+x -1=0},B ={x ∈R |x 2-x +1=0},则集合A ,B 之间的关系是________. 答案 B A解析 ∵A ={-1-52,-1+52},B =∅,∴B A.13.已知M ={y|y =x 2-2x -1,x ∈R },N ={x|-2≤x ≤4},则集合M 与N 之间的关系是________. 答案 N M14.设A ={x ∈R |-1<x<3},B ={x ∈R |x>a},若A B ,求a 的取值范围. 答案 a ≤-1解析 数形结合,端点处单独验证.15.设集合A ={1,3,a},B ={1,a 2-a +1},B ⊆A ,求a 的值.解析 因为B ⊆A ,所以B 中元素1,a 2-a +1都是A 中的元素,故分两种情况. (1)a 2-a +1=3,解得a =-1或2,经检验满足条件. (2)a 2-a +1=a ,解得a =1,此时A 中元素重复,舍去. 综上所述,a =-1或a =2. ►重点班·选做题16.a ,b 是实数,集合A ={a ,ba ,1},B ={a 2,a +b ,0},若A =B ,求a 2 015+b 2 016.答案 -1解析 ∵A =B ,∴b =0,A ={a ,0,1},B ={a 2,a ,0}.∴a 2=1,得a =±1.a =1时,A ={1,0,1}不满足互异性,舍去;a =-1时,满足题意.∴a 2015+b 2 016=-1.1.设a ,b ∈R ,集合{1,a +b ,a}={0,ba ,b},则b -a 等于( )A.1B.-1C.2D.-2答案 C解析 ∵a ≠0,∴a +b =0,∴ba =-1.∴b =1,a =-1,∴b -a =2,故选C.2.设集合A ={x|-3≤x ≤2},B ={x|2k -1≤x ≤k +1}且B ⊆A ,求实数k 的取值范围. 解析 ∵B ⊆A ,∴B =∅或B ≠∅.①B =∅时,有2k -1>k +1,解得k>2. ②B ≠∅时,有⎩⎪⎨⎪⎧2k -1≤k +1,2k -1≥-3,k +1≤2,解得-1≤k ≤1.综上,-1≤k ≤1或k>2.1.1.3-1集合的基本运算(第1课时)课时作业(五)1.(2014·广东)已知集合M ={-1,0,1},N ={0,1,2},则M ∪N =( ) A.{0,1} B.{-1,0,2} C.{-1,0,1,2} D.{-1,0,1}答案 C解析 M ∪N ={-1,0,1,2}.2.若集合A ={x|-2<x<1},B ={x|0<x<2},则集合A ∩B =( ) A.{x|-1<x<1} B.{x|-2<x<1} C.{x|-2<x<2} D.{x|0<x<1} 答案 D3.设A ={x|1≤x ≤3},B ={x|x<0或x ≥2},则A ∪B 等于( ) A.{x|x<0或x ≥1} B.{x|x<0或x ≥3} C.{x|x<0或x ≥2} D.{x|2≤x ≤3} 答案 A4.设集合A ={1,2},则满足A ∪B ={1,2,3}的集合B 的个数是( ) A.1 B.3 C.4 D.8答案 C解析 ∵A ={1,2},A ∪B ={1,2,3},∴B ={3}或{1,3}或{2,3}或{1,2,3},故选C.5.设集合M ={m ∈Z |-3<m<2},N ={n ∈Z |-1≤n ≤3},则M ∩N 等于( ) A.{0,1} B.{-1,0,1} C.{0,1,2} D.{-1,0,1,2} 答案 B解析 集合M ={-2,-1,0,1},集合N ={-1,0,1,2,3},M ∩N ={-1,0,1}. 6.若A ={x|x2∈Z },B ={y|y +12∈Z },则A ∪B 等于( )A.BB.AC.∅D.Z答案 D解析 A ={x|x =2n ,n ∈Z }为偶数集,B ={y|y =2n -1,n ∈Z }为奇数集,∴A ∪B =Z . 7.已知集合A ={-1,0,1},B ={x|-1≤x<1},则A ∩B =( )A.{0}B.{-1,0}C.{0,1}D.{-1,0,1}答案 B解析集合B含有整数-1,0,故A∩B={-1,0}.8.如果A={x|x=2n+1,n∈Z},B={x|x=k+3,k∈Z},那么A∩B=()A.∅B.AC.BD.Z答案 B9.满足条件M∪{1}={1,2,3}的集合M的个数是________.答案 2解析M={1,2,3}或M={2,3}.10.下列四个推理:①a∈(A∪B)⇒a∈A;②a∈(A∩B)⇒a∈(A∪B);③A⊆B⇒A∪B=B;④A∪B=A⇒A∩B=B.其中正确的为________.答案②③④解析①是错误的,a∈(A∪B)时可推出a∈A或a∈B,不一定能推出a∈A.11.已知集合P,Q与全集U,下列命题:①P∩Q=P,②P∪Q=Q,③P∪Q=U,其中与命题P⊆Q等价的命题有______个.答案 2解析①②都等价.12.已知A={x|x≤-1或x≥3},B={x|a<x<4},若A∪B=R,则实数a的取值范围是________.答案a≤-113.若集合P满足P∩{4,6}={4},P∩{8,10}={10},且P⊆{4,6,8,10},求集合P. 解析由条件知4∈P,6∉P,10∈P,8∉P,∴P={4,10}.14.已知集合A={x|x+3≤0},B={x|x-a<0}.(1)若A∪B=B,求a的取值范围;(2)若A∩B=B,求a的取值范围.解析(1)∵A∪B=B,∴A⊆B,∴a>-3.(2)∵A∩B=B,∴B⊆A,∴a≤-3.►重点班·选做题15.已知A={x|2a<x≤a+8},B={x|x<-1或x>5},若A∪B=R,求a的取值范围.解析∵B={x|x<-1或x>5},A∪B=R,∴⎩⎪⎨⎪⎧2a<-1,a +8≥5,解得-3≤a<-12.1.若A ={x|x 2-5x +6=0},B ={x|x 2-6x +8=0},则A ∪B =________,A ∩B =________. 答案 A ={2,3},B ={2,4}, ∴A ∪B ={2,3,4},A ∩B ={2}.2.设S ={x|2x +1>0},T ={x|3x -5<0},则S ∩T =( ) A.∅ B.{x|x<-12}C.{x|x>53}D.{x|-12<x<53}答案 D解析 S ={x|x>-12},T ={x|x<53},在数轴上表示出S 和T ,可知选D.3.设集合A ={x|-5≤x<1},B ={x|x ≤2},则A ∩B 等于( ) A.{x|-5≤x<1} B.{x|-5≤x ≤2} C.{x|x<1} D.{x|x ≤2} 答案 A4.设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =________. 答案 15.已知A ={|a +1|,3,5},B ={2a +1,a 2+2a ,a 2+2a -1},若A ∩B ={2,3},则A ∪B =________.答案 {2,3,5,-5}解析 由|a +1|=2,得a =1或-3,代入求出B ,注意B 中不能有5.6.已知M ={x|x ≤-1},N ={x|x>a -2},若M ∩N ≠∅,则a 的范围是________. 答案 a<1课时作业(六)1.1.3-2集合的基本运算(第2课时)1.已知U={1,3},A={1,3},则∁U A=()A.{1,3}B.{1}C.{3}D.∅答案 D2.设全集U={x∈N*|x<6},集合A={1,3},B={3,5},则∁U(A∪B)=()A.{1,4}B.{1,5}C.{2,4}D.{2,5}答案 C3.设全集U={1,2,3,4,5},集合A={1,2,3},集合B={3,4,5},则(∁U A)∪(∁U B)=()A.{1,2,3,4,5}B.{3}C.{1,2,4,5}D.{1,5}答案 C解析∵∁U A={4,5},∁U B={1,2},故选C.4.若集合A={x|-1≤x≤2},B={x|x<1},则A∩(∁R B)=()A.{x|x>1}B.{x|x≥1}C.{x|1<x≤2}D.{x|1≤x≤2}答案 D5.设P={x︱x<4},Q={x︱x2<4},则()A.P⊆QB.Q⊆PC.P⊆∁R QD.Q⊆∁R P答案 B6.已知全集U=Z,集合A={x|x=k3,k∈Z},B={x|x=k6,k∈Z},则()A.∁U A ∁U BB.A BC.A=BD.A与B中无公共元素答案 A解析∵A={x|x=26k,k∈Z},∴∁U A ∁U B,A B.7.设全集U={2,3,5},A={2,|a-5|},∁U A={5},则a的值为()A.2B.8C.2或8D.-2或8答案 C解析∁U A={5}包含两层意义,①5∉A;②U中除5以外的元素都在A中.∴|a-5|=3,解得a=2或8.8.设全集U=Z,A={x∈Z|x<5},B={x∈Z|x≤2},则∁U A与∁U B的关系是()A.∁U A ∁U BB.∁U A ∁U BC.∁U A=∁U BD.∁U A ∁U B答案 A解析∵∁U A={x∈Z|x≥5},∁U B={x∈Z|x>2}.故选A.9.设A={x||x|<2},B={x|x>a},全集U=R,若A⊆∁R B,则有()A.a=0B.a≤2C.a≥2D.a<2答案 C解析A={x|-2<x<2},∁R B={x|x≤a},在数轴上把A,B表示出来.10.已知全集U={1,2,3,4,5},S U,T U,若S∩T={2},(∁U S)∩T={4},(∁U S)∩(∁U T)={1,5},则有()A.3∈S∩TB.3∉S但3∈TC.3∈S∩(∁U T)D.3∈(∁U S)∩(∁U T)答案 C11.设全集U=Z,M={x|x=2k,k∈Z},P={x|x=2k+1,k∈Z},则下列关系式中正确的有________.①M⊆P;②∁U M=∁U P;③∁U M=P;④∁U P=M.答案③④12.设全集U=R,集合A={x|x≥0},B={y|y≥1},则∁U A与∁U B的包含关系是________. 答案∁U A ∁U B解析∵∁U A={x|x<0},∁U B={y|y<1},∴∁U A ∁U B.13.已知全集U,集合A={1,3,5,7,9},∁U A={2,4,6,8},∁U B={1,4,6,8,9},求集合B.解析 借助韦恩图,如右图所示, ∴U ={1,2,3,4,5,6,7,8,9}. ∵∁U B ={1,4,6,8,9}, ∴B ={2,3,5,7}.14.设集合U ={1,2,3,4},且A ={x ∈U|x 2-5x +m =0},若∁U A ={2,3},求m 的值. 解析 ∵∁U A ={2,3},U ={1,2,3,4}, ∴A ={1,4},即1,4是方程x 2-5x +m =0的两根. ∴m =1×4=4.15.已知全集U ={2,0,3-a 2},P ={2,a 2-a -2}且∁U P ={-1},求实数a. 解析 ∵U ={2,0,3-a 2},P ={2,a 2-a -2},∁U P ={-1},∴⎩⎪⎨⎪⎧3-a 2=-1,a 2-a -2=0,解得a =2.1.如果S ={1,2,3,4,5},A ={1,3,4},B ={2,4,5},那么(∁S A)∩(∁S B)等于( ) A.∅ B.{1,3} C.{4} D.{2,5}答案 A解析 ∵∁S A ={2,5},∁S B ={1,3}, ∴(∁S A)∩(∁S B)=∅.2.设全集U ={1,2,3,4,5,6,7},P ={1,2,3,4,5},Q ={3,4,5,6,7},则P ∩(∁U Q)等于()A.{1,2}B.{3,4,5}C.{1,2,6,7}D.{1,2,3,4,5}答案 A解析 ∵∁U Q ={1,2},∴P ∩(∁U Q)={1,2}.3.设全集U ={1,2,3,4,5,6,7},集合A ={1,3,5,7},B ={3,5},则正确的是( ) A.U =A ∪B B.U =(∁U A)∪B C.U =A ∪(∁U B) D.U =(∁U A)∪(∁U B)答案 C解析 ∵∁U B ={1,2,4,6,7}, ∴A ∪(∁U B)={1,2,3,4,5,6,7}=U.4.已知A ={x|x<3},B ={x|x<a}.若A ⊆B ,问∁R B ⊆∁R A 是否成立? 答案 成立5.某班共30人,其中15人喜爱篮球运动,10人喜爱乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为________.答案126.如果S={x∈N|x<6},A={1,2,3},B={2,4,5},那么(∁S A)∪(∁S B)=________.答案{0,1,3,4,5}解析∵S={x∈N|x<6}={0,1,2,3,4,5},∴∁S A={0,4,5},∁S B={0,1,3}.∴(∁S A)∪(∁S B)={0,1,3,4,5}.课时作业(七)1.1习题课含解析(第一次作业)1.(2015·广东,理)若集合M={x|(x+4)(x+1)=0},N={x|(x-4)(x-1)=0},则M∩N=() A.{1,4} B.{-1,-4}C.{0}D.∅答案 D2.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素的个数为()A.3B.4C.5D.6答案 A3.集合M={x|x=1+a2,a∈N*},P={x|x=a2-4a+5,a∈N*},则下列关系中正确的是() A.M P B.P MC.M=PD.M P且P M答案 A解析P={x|x=1+(a-2)2,a∈N*},当a=2时,x=1而M中无元素1,P比M多一个元素.4.设U=R,A={x|x>0},B={x|x>1},则A∩(∁U B)=()A.{x|0≤x≤1}B.{x|0<x≤1}C.{x|x<0}D.{x|x>1}答案 B5.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(∁N B)=()A.{1,5,7}B.{3,5,7}C.{1,3,9}D.{1,2,3}答案 A6.已知方程x2-px+15=0与x2-5x+q=0的解集分别为S与M,且S∩M={3},则p+q 的值是()A.2B.7C.11D.14答案 D解析 由交集定义可知,3既是集合S 中的元素,也是集合M 中的元素.亦即是方程x 2-px +15=0与x 2-5x +q =0的公共解,把3代入两方程,可知p =8,q =6,则p +q 的值为14.7.已知全集R ,集合A ={x|(x -1)(x +2)(x -2)=0},B ={y|y ≥0},则A ∩(∁R B)为( ) A.{1,2,-2} B.{1,2} C.{-2} D.{-1,-2}答案 C解析 A ={1,2,-2},而B 的补集是{y|y<0},故两集合的交集是{-2},选C. 8.集合P ={1,4,9,16,…},若a ∈P ,b ∈P ,则a ⊕b ∈P ,则运算⊕可能是( ) A.除法 B.加法 C.乘法 D.减法答案 C解析 当⊕为除法时,14∉P ,∴排除A ;当⊕为加法时,1+4=5∉P ,∴排除B ;当⊕为乘法时,m 2·n 2=(mn)2∈P ,故选C ; 当⊕为减法时,1-4∉P ,∴排除D.9.设全集U =Z ,集合P ={x|x =2n ,n ∈Z },Q ={x|x =4m ,m ∈Z },则U 等于( ) A.P ∪Q B.(∁U P)∪Q C.P ∪(∁U Q) D.(∁U P)∪(∁U Q)答案 C10.设S ,P 为两个非空集合,且S P ,P S ,令M =S ∩P ,给出下列4个集合:①S ;②P ;③∅;④S ∪P.其中与S ∪M 能够相等的集合的序号是( ) A.① B.①② C.②③ D.④答案 A11.设集合I ={1,2,3},A 是I 的子集,若把满足M ∪A =I 的集合M 叫做集合A 的“配集”,则当A ={1,2}时,A 的配集的个数是( ) A.1 B.2 C.3 D.4答案 D解析 A 的配集有{3},{1,3},{2,3},{1,2,3}共4个. 12.已知集合A ,B 与集合A@B 的对应关系如下表:________.答案 {2 012,2 013}13.已知A ={2,3},B ={-4,2},且A ∩M ≠∅,B ∩M =∅,则2________M ,3________M. 答案 ∉ ∈解析 ∵B ∩M =∅,∴-4∉M ,2∉M. 又A ∩M ≠∅且2∉M ,∴3∈M.14.若集合A ={1,3,x},B ={1,x 2},且A ∪B ={1,3,x},则x =________. 答案 ±3或0解析 由A ∪B ={1,3,x},B A , ∴x 2∈A.∴x 2=3或x 2=x. ∴x =±3或x =0,x =1(舍).15.已知S ={a ,b},A ⊆S ,则A 与∁S A 的所有有序组对共有________组. 答案 4解析 S 有4个子集,分别为∅,{a},{b},{a ,b}注意有序性.⎩⎪⎨⎪⎧A ={a},∁S A ={b}和⎩⎪⎨⎪⎧A ={b},∁S A ={a}是不同的.16.已知A ⊆M ={x|x 2-px +15=0,x ∈R },B ⊆N ={x|x 2-ax -b =0,x ∈R },又A ∪B ={2,3,5},A ∩B ={3},求p ,a 和b 的值.解析 由A ∩B ={3},知3∈M ,得p =8.由此得M ={3,5},从而N ={3,2},由此得a =5,b =-6.(第二次作业)1.(2014·北京,理)已知集合A={x|x2-2x=0},B={0,1,2},则A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}答案 C解析解x2-2x=0,得x=0或x=2,故A={0,2},所以A∩B={0,2},故选C.2.(高考真题·全国Ⅰ)已知集合M={0,1,2,3,4},N={1,3,5},P=M∩N,则P的子集共有()A.2个B.4个C.6个D.8个答案 B解析由题意得P=M∩N={1,3},∴P的子集为∅,{1},{3},{1,3},共4个,故选B.3.设集合A={x∈Z|0≤x≤5},B={x|x=k2,k∈A},则集合A∩B=()A.{0,1,2}B.{0,1,2,3}C.{0,1,3}D.B答案 A4.设M={1,2,m2-3m-1},P={1,3},且M∩P={1,3},则m的值为()A.4B.-1C.-4或1D.-1或4答案 D5.已知集合M={x|y=x2-1},N={y|y=x2-1},那么M∩N等于()A.∅B.NC.MD.R答案 B解析∵M=R,N={y|y≥-1},∴M∩N=N.6.若A∪B=∅,则()A.A=∅,B≠∅B.A≠∅,B=∅C.A=∅,B=∅D.A≠∅,B≠∅答案 C7.设集合A={x|x∈Z且-15≤x≤-2},B={x|x∈Z且|x|<5},则A∪B中的元素个数是() A.10 B.11C.20D.21答案 C解析 ∵A ∪B ={x|x ∈Z 且-15≤x<5}={-15,-14,-13,…,1,2,3,4},∴A ∪B 中共20个元素.8.已知全集U ={0,1,2}且∁U A ={2},则集合A 的真子集的个数为( ) A.3 B.4 C.5 D.6答案 A解析 ∵A ={0,1},∴真子集的个数为22-1=3.9.如果U ={x|x 是小于9的正整数},A ={1,2,3,4},B ={3,4,5,6},那么(∁U A)∩(∁U B)等于()A.{1,2}B.{3,4}C.{5,6}D.{7,8}答案 D解析 ∵∁U A ={5,6,7,8},∁U B ={1,2,7,8},∴(∁U A)∩(∁U B)={7,8}. 10.已知集合P ={x|-1≤x ≤1},M ={-a ,a},若P ∪M =P ,则a 的取值范围是( ) A.{a|-1≤a ≤1} B.{a|-1<a<1}C.{a|-1<a<1,且a ≠0}D.{a|-1≤a ≤1,且a ≠0}答案 D解析 由P ∪M =P ,得M ⊆P.所以⎩⎪⎨⎪⎧-1≤a ≤1,-1≤-a ≤1,即-1≤a ≤1.又由集合元素的互异性知-a ≠a ,即a ≠0, 所以a 的取值范围是{a|-1≤a ≤1,且a ≠0}.11.若A ,B ,C 为三个集合,且A ∪B =B ∩C ,则一定有( ) A.A ⊆C B.C ⊆A C.A ≠C D.A =∅答案 A12.已知集合A ={1,2,3},B ={2,m ,4},A ∩B ={2,3},则m =________. 答案 313.集合A 含有10个元素,集合B 含有8个元素,集合A ∩B 含有3个元素,则集合A ∪B 有________个元素. 答案 15解析 由A ∩B 含有3个元素知,仅有3个元素相同,根据集合元素的互异性,集合的元素个数为10+8-3=15,或直接利用韦恩图得出结果.14.已知集合A={-1,2},B={x|mx+1>0},若A∪B=B,求实数m的取值范围.思路首先根据题意判断出A与B的关系,再对m分类讨论化简集合B,根据A,B的关系求出m的范围.解析∵A∪B=B,∴A⊆B.①当m>0时,由mx+1>0,得x>-1m,此时B={x|x>-1m},由题意知-1m<-1,∴0<m<1.②当m=0时,B=R,此时A⊆B.③当m<0时,得B={x|x<-1m},由题意知-1m>2,∴-12<m<0.综上:-12<m<1.点评在解有关集合交、并集运算时,常会遇到A∩B=A,A∪B=B等这类问题.解答时应充分利用交集、并集的有关性质,准确转化条件,有时也借助数轴分析处理,另外还要注意“空集”这一隐含条件.已知全集U={a,1,3,b,x2-2=0},集合A={a,b},则∁U A=________.答案{1,3,x2-2=0}解析在全集U中除去A中的元素后所组成的集合即为∁U A,故∁U A={1,3,x2-2=0}.1.(2015·新课标全国Ⅰ,文)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4C.3D.2答案 D2.(2015·天津,理)已知全集U={1,2,3,4,5,6,7,8},集合A={2,3,5,6},集合B={1,3,4,6,7},则集合A∩(∁U B)=()A.{2,5}B.{3,6}C.{2,5,6}D.{2,3,5,6,8}答案 A3.(2016·天津)已知集合A={1,2,3,4},B={y|y=3x-2,x∈A},则A∩B=()A.{1}B.{4}C.{1,3}D.{1,4}答案 D解析由题意得,B={1,4,7,10},所以A∩B={1,4}.4.(2014·辽宁)已知全集U=R,A={x|x≤0},B={x|x≥1},则集合∁U(A∪B)=()A.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}答案 D解析∵A∪B={x|x≤0或x≥1},∴∁U(A∪B)={x|0<x<1},故选D.5.(2013·山东,文)已知集合A,B均为全集U={1,2,3,4}的子集,且∁U(A∪B)={4},B ={1,2},则A∩(∁U B)=()A.{3}B.{4}C.{3,4}D.∅答案 A解析由题意知A∪B={1,2,3},又B={1,2},所以A中必有元素3,没有元素4,∁U B ={3,4},故A∩(∁U B)={3}.6.(2013·课标全国)已知集合A={1,2,3,4},B={x|x=n2,n∈A},A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}答案 A7.(2013·山东)已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是() A.1 B.3C.5D.9答案 C解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x -y=1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.8.(2013·天津)已知集合A={x∈R||x|≤2},B={x∈R|x≤1},则A∩B=()A.(-∞,2]B.[1,2]C.[-2,2]D.[-2,1]答案 D解析解不等式|x|≤2,得-2≤x≤2,所以A=[-2,2],所以A∩B=[-2,1].9.(2012·福建)已知集合M={1,2,3,4},N={-2,2},下列结论成立的是()A.N⊆MB.M∪N=MC.M∩N=ND.M∩N={2}答案 D解析A项,M={1,2,3,4},N={-2,2},M与N显然无包含关系,故A错.B项同A项,故B项错.C项,M∩N={2},故C错,D对.10.(2012·湖北)已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},则满足条件A⊆C⊆B的集合C的个数为()A.1B.2C.3D.4答案 D解析A={1,2},B={1,2,3,4},A⊆C⊆B,则集合C的个数为24-2=22=4,即C={1,2},{1,2,3},{1,2,4},{1,2,3,4}.故选D.11.(2012·山东)已知集合U={0,1,2,3,4},集合A={1,2,3,4},B={2,4},则(∁U A)∪B 为()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}答案 C解析由题意知∁U A={0},又B={2,4},∴(∁U A)∪B={0,2,4},故选C.12.(2014·重庆,理)设全集U={n∈N|1≤n≤10},A={1,2,3,5,8},B={1,3,5,7,∁U A∩B=________.9},则()答案{7,9}解析由题意,得U={1,2,3,4,5,6,7,8,9,10},故∁U A={4,6,7,9,10},(∁U A)∩B ={7,9}.1.(2014·大纲全国理改编)设集合M={x|x2-3x-4<0},N={x|0≤x≤5},则M∩(∁R N)=() A.(0,4] B.[0,4)C.[-1,0)D.(-1,0)答案 D解析∵M={x|x2-3x-4<0}={x|-1<x<4},N={x|0≤x≤5},∴∁R N={x|x<0或x>5}.∴M∩(∁R N)={x|-1<x<0}.2.(2014·江西,文)设全集为R,集合A={x|x2-9<0},B={x|-1<x≤5},则A∩(∁R B)=() A.(-3,0) B.(-3,-1)C.(-3,-1]D.(-3,3)答案 C解析由题意知,A={x|x2-9<0}={x|-3<x<3},∵B={x|-1<x≤5},∴∁R B={x|x≤-1或x>5}.∴A ∩(∁R B)={x|-3<x<3}∩{x|x ≤-1或x>5}={x|-3<x ≤-1}.3.(2010·北京)集合P ={x ∈Z |0≤x<3},M ={x ∈R |x 2≤9},则P ∩M =( ) A.{1,2} B.{0,1,2} C.{x|0≤x<3} D.{x|0≤x ≤3}答案 B4.(2016·浙江)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(∁R Q)=( ) A.[2,3] B.(-2,3]C.[1,2)D.(-∞,-2]∪[1,+∞) 答案 B解析 由于Q ={x|x ≤-2或x ≥2},∁R Q ={x|-2<x<2},故得P ∪(∁R Q)={x|-2<x ≤3}.选B.5.(2014·四川,文)已知集合A ={x|(x +1)(x -2)≤0},集合B 为整数集,则A ∩B =( ) A.{-1,0} B.{0,1}C.{-2,-1,0,1}D.{-1,0,1,2} 答案 D解析 由二次函数y =(x +1)(x -2)的图像可以得到不等式(x +1)(x -2)≤0的解集A =[-1,2],属于A 的整数只有-1,0,1,2,所以A ∩B ={-1,0,1,2},故选D.6.(2012·北京)已知集合A ={x ∈R |3x +2>0},B ={x ∈R |(x +1)(x -3)>0},则A ∩B =( ) A.(-∞,-1) B.(-1,-23)C.(-23,3)D.(3,+∞)答案 D解析 A ={x|x>-23},B ={x|x>3或x<-1},则A ∩B ={x|x>3},故选D.课时作业(八) 1.2.1函数及其表示含解析1.下列集合A 到集合B 的对应f 是函数的是( ) A.A ={-1,0,1},B ={0,1},f :A 中的数平方 B.A ={0,1},B ={-1,0,1},f :A 中的数开方 C.A =Z ,B =Q ,f :A 中的数取倒数D.A =R ,B ={正实数},f :A 中的数取绝对值 答案 A2.设集合M ={x|0≤x ≤2},N ={y|0≤y ≤2},下图所示4个图形中能表示集合M 到集合N 的函数关系的个数是( )A.0B.1C.2D.3答案 B3.函数f(x)=1+x +x1-x的定义域( ) A.[-1,+∞) B.(-∞,-1] C.R D.[-1,1)∪(1,+∞)答案 D解析 由⎩⎪⎨⎪⎧1+x ≥0,1-x ≠0,解得⎩⎪⎨⎪⎧x ≥-1,x ≠1.故定义域为[-1,1)∪(1,+∞),故选D. 4.设函数f(x)=3x 2-1,则f(a)-f(-a)的值是( ) A.0 B.3a 2-1 C.6a 2-2 D.6a 2答案 A解析 f(a)-f(-a)=3a 2-1-[3(-a)2-1]=0.5.四个函数:①y=x+1;②y=x3;③y=x2-1;④y=1x.其中定义域相同的函数有()A.①②和③B.①和②C.②和③D.②③和④答案 A6.函数f(x)=11+x2(x∈R)的值域是()A.[0,1]B.[0,1)C.(0,1]D.(0,1) 答案 C7.已知f(x)=π(x∈R),则f(π2)等于()A.π2B.πC.πD.不确定答案 B解析因为π2∈R,所以f(π2)=π.8.函数y=21-1-x的定义域为()A.(-∞,1)B.(-∞,0)∪(0,1]C.(-∞,0)∪(0,1)D.[1,+∞)答案 B9.将下列集合用区间表示出来.(1){x|x≥1}=________;(2){x|2≤x≤8}=________;(3){y|y=1x}=________.答案(1)[1,+∞)(2)[2,8] (3)(-∞,0)∪(0,+∞)10.若f(x)=5xx2+1,且f(a)=2,则a=________.答案12或211.已知f(x)=x2+x-1,x∈{0,1,2,3},则f(x)的值域为________.答案{-1,1,5,11}12.设函数f(n)=k(n∈N*),k是π的小数点后的第n位数字,π=3.141 592 653 5…,则f(3)=________.答案 113.若函数y =1x -2的定义域为A ,函数y =2x +6的值域是B ,则A ∩B =________. 答案 [0,2)∪(2,+∞)解析 由题意知A ={x|x ≠2},B ={y|y ≥0},则A ∩B =[0,2)∪(2,+∞). 14.已知函数f(x)=x +3+1x +2.(1)求函数的定义域; (2)求f(-3),f(23)的值;(3)当a>0时,求f(a),f(a -1)的值.解析 (1)使根式x +3有意义的实数x 的集合是{x|x ≥-3},使分式1x +2有意义的实数x 的集合是{x|x ≠-2},所以这个函数的定义域是{x|x ≥-3}∩{x|x ≠-2}={x|x ≥-3,且x ≠-2}. (2)f(-3)=-3+3+1-3+2=-1; f(23)=23+3+123+2=113+38=38+333. (3)因为a>0,故f(a),f(a -1)有意义. f(a)=a +3+1a +2;f(a -1)=a -1+3+1(a -1)+2=a +2+1a +1.15.已知f(x)=13-x 的定义域为A ,g(x)=1a -x的定义域是B. (1)若B A ,求a 的取值范围; (2)若A B ,求a 的取值范围. 解析 A ={x|x<3},B ={x|x<a}.(1)若B A ,则a<3,∴a 的取值范围是{a|a<3}; (2)若A B ,则a>3,∴a 的取值范围是{a|a>3}.1.下列函数f(x)和g(x)中,表示同一函数的是( ) A.y =f(x)与y =f(x +1) B.y =f(x),x ∈R 与y =f(t),t ∈R C.f(x)=x 2,g(x)=x 3xD.f(x)=2x +1与g(x)=4x 2+4x +1答案 B2.下列式子中不能表示函数y =f(x)的是( ) A.x =2yB.3x +2y =1C.x =2y 2+1D.x =y答案 C3.已知函数f(x)=2x -1,则f(x +1)等于( ) A.2x -1 B.x +1 C.2x +1 D.1答案 C4.若f(x)=x 2-1x ,则f(x)的定义域为________.答案 {x|x ≤-1或x ≥1}5.下列每对函数是否表示相同函数? (1)f(x)=(x -1)0,g(x)=1; (2)f(x)=x ,g(x)=x 2; (3)f(t)=t 2t ,g(x)=|x|x .答案 (1)不是 (2)不是 (3)是6.已知A =B =R ,x ∈A ,y ∈B 对任意x ∈A ,x →y =ax +b 是从A 到B 的函数,若输出值1和8分别对应的输入值为3和10,求输入值5对应的输出值.解析 由题意可得⎩⎪⎨⎪⎧3a +b =1,10a +b =8,解得⎩⎪⎨⎪⎧a =1,b =-2,所以对应关系f :x →y =x -2,故输入值5对应的输出值为3.7.已知f(x)=11+x ,求[f(2)+f(3)+…+f(2 016)]+[f(12)+f(13)+…+f(12 016)].答案 2 015解析 f(x)+f(1x )=11+x+11+1x=11+x +x1+x =1,则原式=⎣⎡⎦⎤f (2)+f (12)+⎣⎡⎦⎤f (3)+f (13)+…+⎣⎡⎦⎤f (2 016)+f (12 016)=2 015.8.已知函数g(x)=x +2x -6,(1)点(3,14)在函数的图像上吗? (2)当x =4时,求g(x)的值; (3)当g(x)=2时,求x 的值.答案(1)不在(2)-3(3)14课时作业(九)1.2.2-1函数的表示法(第1课时)1.下列结论正确的是( )A.任意一个函数都可以用解析式表示B.函数y =x ,x ∈{1,2,3,4}的图像是一条直线C.表格可以表示y 是x 的函数D.图像可表示函数y =f(x)的图像答案 C2.某同学在一学期的5次大型考试中的数学成绩(总分120分)如下表所示:A.成绩y 不是考试次数x 的函数B.成绩y 是考试次数x 的函数C.考试次数x 是成绩y 的函数D.成绩y 不一定是考试次数x 的函数答案 B3.函数f(x)=x +|x|x的图像是下图中的( )答案 C4.从甲城市到乙城市t min 的电话费由函数g(t)=1.06×(0.75[t]+1)给出,其中t>0,[t]为t 的整数部分,则从甲城市到乙城市5.5 min 的电话费为( ) A.5.04元 B.5.56元 C.5.84元 D.5.38元答案 A解析 g(5.5)=1.06(0.75×5+1)=5.035≈5.04.。
人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习
【新教材】人教统编版高中数学必修一A版第二章教案教学设计2.1《等式性质与不等式性质》教案教材分析:等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.教学目标与核心素养:课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小.3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。
数学学科素养1.数学抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。
教学重难点:重点:掌握不等式性质及其应用.难点:不等式性质的应用.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:一、情景导入在现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、轻与重、不超过或不少于等.举例说明生活中的相等关系和不等关系.要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本37-42页,思考并完成以下问题 1.不等式的基本性质是?2.比较两个多项式(实数)大小的方法有哪些?3.重要不等式是?4.等式的基本性质?5.类比等式的基本性质猜测不等式的基本性质?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1、 两个实数比较大小的方法 作差法 {a −b >0⟺a >ba −b =0⟺a =b a −b <0⟺a <b作商法{ ab >1⟺a >b ab =1⟺a =b ab <1⟺a <b2.不等式的基本性质3.重要不等式四、典例分析、举一反三 题型一 不等式性质应用 例1 判断下列命题是否正确:(1)c a b c b a >⇒>>,( ) (2)22bc ac b a >⇒> ( ) (3)bd ac d c b a >⇒>>,( ) (4)b a cb c a >⇒>22 ( ) (5) 22b a b a >⇒> ( ) (6)22b a b a >⇒> ( ) (7) dbc ad c b a >⇒>>>>0,0 ( ) 【答案】(1)× (2) × (3)× (4)√ (5)× (6) √ (7 )×解题技巧:(不等式性质应用)可用特殊值代入验证,也可用不等式的性质推证. 跟踪训练一1、用不等号“>”或“<”填空:(1)如果a>b ,c<d ,那么a-c ______ b-d ; (2)如果a>b>0,c<d<0,那么ac______bd ; (3)如果a>b>0,那么1a 2 ______1b 2 (4)如果a>b>c>0,那么ca _______ cb【答案】(1) > (2) < (3) < (4) < 题型二 比较大小例2 (1).比较(x+2)(x+3)和(x+1)(x+4)的大小 (2).已知a >b >0,c >0,求ca >cb 。
2018版高中数学人教版A版必修一学案:第二单元 §2.3 幂函数 Word版含答案 (11)
§3.1 函数与方程3.1.1 方程的根与函数的零点学习目标 1.理解函数零点的定义,会求某些函数的零点(重点).2.掌握函数零点的判定方法(重、难点).3.了解函数的零点与方程的根的联系(重点).预习教材P86-P88,完成下面问题: 知识点1 函数的零点(1)概念:函数f (x )的零点是使f (x )=0的实数x .(2)函数的零点与函数的图象与x 轴的交点、对应方程的根的关系:【预习评价】(1)函数f (x )=x 2-4x 的零点是________.(2)若2是函数f (x )=a ·2x -log 2x 的零点,则a =________.解析 (1)令f (x )=0,即x 2-4x =0,解得x =0或x =4,所以f (x )的零点是0和4. (2)由f (2)=4a -1=0得a =14.答案 (1)0和4 (2)14知识点2 函数零点的判断(1)条件:①函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线;②f (a )·f (b )<0. (2)结论:函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 也就是方程f (x )=0的根.【预习评价】 (正确的打“√”,错误的打“×”)(1)设f (x )=1x ,由于f (-1)f (1)<0,所以f (x )=1x 在(-1,1)内有零点( )(2)若函数f (x )在(a ,b )内有零点,则f (a )f (b )<0.( )(3)若函数f (x )的图象在区间[a ,b ]上是一条连续不断的曲线,且f (a )·f (b )<0,则f (x )在(a ,b )内只有一个零点.( )提示 (1)× 由于f (x )=1x 的图象在[-1,1]上不是连续不断的曲线,所以不能得出其有零的结论.(2)× 反例:f (x )=x 2-2x ,区间为(-1,3),则f (-1)·f (3)>0.(3)× 反例:f (x )=x (x -1)(x -2),区间为(-1,3),满足条件,但f (x )在(-1,3)内有0,1,2三个零点.题型一 函数零点的概念及求法【例1】 (1)函数y =1+1x 的零点是( )A .(-1,0)B .x =-1C .x =1D .x =0(2)设函数f (x )=21-x -4,g (x )=1-log 2(x +3),则函数f (x )的零点与g (x )的零点之和为________.(3)若3是函数f (x )=x 2-mx 的一个零点,则m =________. 解析 (1)令1+1x =0,解得x =-1,故选B .(2)令f (x )=21-x -4=0解得x =-1,即f (x )的零点为-1,令g (x )=1-log 2(x +3)=0,解得x =-1,所以函数f (x )的零点与g (x )的零点之和为-2.(3)由f (3)=32-3m =0解得m =3. 答案 (1)B (2)-2 (3)3 规律方法 函数零点的两种求法(1)代数法:求方程f (x )=0的实数根,若存在实数根,则函数存在零点,否则函数不存在零点.(2)几何法:与函数y =f (x )的图象联系起来,图象与x 轴的交点的横坐标即为函数的零点.【训练1】 函数f (x )=ax +b 有一个零点是2,那么函数g (x )=bx 2-ax 的零点是________. 解析 ∵函数f (x )=ax +b 有一个零点是2,∴2a +b =0⇒b =-2a ,∴g (x )=bx 2-ax =-2ax 2-ax =-ax (2x +1),∵-ax (2x +1)=0⇒x =0,x =-12,∴函数g (x )=bx 2-ax 的零点是0,-12. 答案 0,-12题型二 确定函数零点的个数 【例2】 判断下列函数零点的个数. (1)f (x )=x 2-34x +58;(2)f (x )=ln x +x 2-3.解 (1)由f (x )=0,即x 2-34x +58=0,得Δ=⎝⎛⎭⎫-342-4×58=-3116<0, 所以方程x 2-34x +58=0没有实数根,即f (x )零点的个数为0.(2)法一 函数对应的方程为ln x +x 2-3=0,所以原函数零点的个数即为函数y =ln x 与y =3-x 2的图象交点个数.在同一直角坐标系下,作出两函数的图象(如图).由图象知,函数y =3-x 2与y =ln x 的图象只有一个交点.从而方程ln x +x 2-3=0有一个根,即函数y =ln x +x 2-3有一个零点. 法二 由于f (1)=ln 1+12-3=-2<0, f (2)=ln 2+22-3=ln 2+1>0, 所以f (1)·f (2)<0,又f (x )=ln x +x 2-3的图象在(1,2)上是不间断的, 所以f (x )在(1,2)上必有零点,又f (x )在(0,+∞)上是递增的,所以零点只有一个.规律方法 判断函数零点个数的四种常用方法(1)利用方程根,转化为解方程,有几个不同的实数根就有几个零点.(2)画出函数y =f (x )的图象,判定它与x 轴的交点个数,从而判定零点的个数. (3)结合单调性,利用零点存在性定理,可判定y =f (x )在(a ,b )上零点的个数. (4)转化成两个函数图象的交点问题.【训练2】 函数f (x )=ln x -1x -1的零点的个数是( )A .0B .1C .2D .3解析 如图画出y =ln x 与y =1x -1的图象,由图知y =ln x 与y =1x -1(x >0,且x ≠1)的图象有两个交点.故函数f (x )=ln x -1x -1的零点有2个.答案 C题型三 判断函数零点所在的区间【例3】 (1)二次函数f (x )=ax 2+bx +c 的部分对应值如下表:不求a ,A .(-3,-1)和(2,4) B .(-3,-1)和(-1,1) C .(-1,1)和(1,2)D .(-∞,-3)和(4,+∞)(2)已知函数f (x )=6x -log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)解析 (1)易知f (x )=ax 2+bx +c 的图象是一条连续不断的曲线,又f (-3)f (-1)=6×(-4)=-24<0,所以f (x )在(-3,-1)内有零点,即方程ax 2+bx +c =0在(-3,-1)内有根,同理方程ax 2+bx +c =0在(2,4)内有根.故选A .(2)∵f (x )=6x-log 2x ,∴f (x )为(0,+∞)上的减函数,且f (1)=6>0,f (2)=3-log 22=2>0,f (4)=32-2=-12<0,由零点存在性定理,可知包含f (x )零点的区间是(2,4).答案 (1)A (2)C规律方法 确定函数f (x )零点所在区间的常用方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,再看求得的根是否落在给定区间上.(2)利用函数零点存在性定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断. 【训练3】 (1)函数f (x )=e x +x -2的零点所在的一个区间是( ) A .(-2,-1) B .(-1,0)C .(0,1)D .(1,2)(2)若方程x lg(x +2)=1的实根在区间(k ,k +1)(k ∈Z )上,则k 等于( ) A .-2B .1C .-2或1D .0解析 (1)∵f (0)=e 0+0-2=-1<0, f (1)=e 1+1-2=e -1>0,∴f (0)·f (1)<0, ∴f (x )在(0,1)内有零点.(2)由题意知,x ≠0,则原方程即为lg(x +2)=1x ,在同一平面直角坐标系中作出函数y =lg(x+2)与y =1x 的图象,如图所示,由图象可知,原方程有两个根,一个在区间(-2,-1)上,一个在区间(1,2)上,所以k =-2或k =1.故选C .答案 (1)C (2)C课堂达标1.函数f (x )=2x 2-4x -3的零点有( ) A .0个B .1个C .2个D .不能确定解析 由f (x )=0,即2x 2-4x -3=0,因为Δ=(-4)2-4×2×(-3)=40>0.所以方程2x 2-4x -3=0有两个根,即f (x )有两个零点.答案 C2.函数f (x )=4x -2x -2的零点是( ) A .(1,0)B .1C .12D .-1解析 由f (x )=4x -2x -2=(2x -2)(2x +1)=0得2x =2,解得x =1. 答案 B3.函数f (x )=2x -1x 的零点所在的区间是( )A .(1,+∞)B .⎝⎛⎭⎫12,1C .⎝⎛⎭⎫13,12 D .⎝⎛⎭⎫14,13解析 f (1)=2-1=1,f ⎝⎛⎭⎫12=212-2=2-2<0,即f ⎝⎛⎭⎫12f (1)<0,且f (x )的图象在⎝⎛⎭⎫12,1内是一条连续不断的曲线,故f (x )的零点所在的区间是⎝⎛⎭⎫12,1.答案 B4.函数f (x )=x 2-2x 在R 上的零点个数是________.解析 由题意可知,函数f (x )=x 2-2x 的零点个数,等价于函数y =2x ,y =x 2的图象交点个数.如图,画出函数y =2x ,y =x 2的大致图象.由图象可知有3个交点,即f (x )=x 2-2x 有3个零点. 答案 35.若32是函数f (x )=2x 2-ax +3的一个零点,求f (x )的零点.解 由f ⎝⎛⎭⎫32=2×94-32a +3=0得a =5,则f (x )=2x 2-5x +3,令f (x )=0,即2x 2-5x +3=0,解得x 1=32,x 2=1,所以f (x )的零点是32和1.课堂小结1.在函数零点存在性定理中,要注意三点:(1)函数是连续的;(2)定理不可逆;(3)至少存在一个零点.2.方程f (x )=g (x )的根是函数f (x )与g (x )的图象交点的横坐标,也是函数y =f (x )-g (x )的图象与x轴交点的横坐标.3.函数与方程有着密切的联系,有些方程问题可以转化为函数问题求解,同样,函数问题有时可以转化为方程问题,这正是函数与方程思想的基础.。
高中数学(人教版A版必修一)配套课件:第二章 章末复习课
超级记忆法--故事法
• 鲁迅本名:周树人
• 主要作品:《阿Q正传》、《药》
什么是学习力
什么是学习力-你遇到这些问题了 吗
总是
比别人
学得慢
一看就懂 一做就错 看得懂,但不会做
总是 比别人学得差 不会举一反三
什么是学习力-含义
管理知识的能力 (利用现有知识
解决问题)
学习知识的能力 (学习新知识
速度、质量等)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学习方 式
案例式
(3)logaMn=nlogaM(n∈R).
返回
题型探究
类型一 指数、对数的运算
提炼化简方向:根式化分数指数幂,异底化同底.
化简技巧:分与合.
注意事项:变形过程中字母范围的变化.
例1
化简:1 (
2
8) 3
(3
102
9
)2
105;
解
3
原式=(22
-2
)3
29
(103 )2
5
10 2
=2-1
103
10-52=2-1
2
<120=1,
所以 y∈12,1.
1 2345
解析答案
规律与方法
1.函数是高中数学极为重要的内容,函数思想和函数方法贯穿整个高 中数学的过程,对本章的考查是以基本函数形式出现的综合题和应用 题,一直是常考不衰的热点问题. 2.从考查角度看,指数函数、对数函数概念的考查以基本概念与基本 计算为主;对图象的考查重在考查平移变换、对称变换以及利用数形 结合的思想方法解决数学问题的能力;对幂函数的考查将会从概念、 图象、性质等方面来考查.
跟踪训练3 函数f(x)=loga(1-x)+loga(x+3)(0<a<1). (1)求函数f(x)的定义域; 解 要使函数有意义,则有1x+-3x>>00, , 解得-3<x<1,∴定义域为(-3,1).
人教A版高中数学选择性必修第一册第2章 章末复习课时练习题
章末复习一、两直线的平行与垂直1.判断两直线平行、垂直的方法(1)若不重合的直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1=k 2⇔l 1∥l 2.(2) 若直线l 1与l 2的斜率都存在,且分别为k 1,k 2,则k 1·k 2=-1⇔l 1⊥l 2.(讨论两直线平行、垂直不要遗漏直线斜率不存在的情况)2.讨论两直线的平行、垂直关系,可以提升学生的逻辑推理素养.例1(1)已知A ⎝⎛⎭⎫1,-a +13,B ⎝⎛⎭⎫0,-13,C (2-2a ,1),D (-a ,0)四点,若直线AB 与直线CD 平行,则a =________.答案3解析k AB =-13+a +130-1=-a 3, 当2-2a =-a ,即a =2时,k AB =-23,CD 的斜率不存在. ∴AB 和CD 不平行;当a ≠2时,k CD =0-1-a -2+2a =12-a. 由k AB =k CD ,得-a 3=12-a,即a 2-2a -3=0. ∴a =3或a =-1.当a =3时,k AB =-1,k BD =0+13-3=-19≠k AB , ∴AB 与CD 平行.当a =-1时,k AB =13,k BC =1+134=13,k CD =1-04-1=13, ∴AB 与CD 重合.∴当a =3时,直线AB 和直线CD 平行.(2)若点A (4,-1)在直线l 1:ax -y +1=0上,则l 1与l 2:2x -y -3=0的位置关系是________. 答案垂直解析将点A (4,-1)的坐标代入ax -y +1=0,得a =-12,则12·l l k k =-12×2=-1,∴l 1⊥l 2. 反思感悟一般式方程下两直线的平行与垂直:已知两直线的方程为l 1:A 1x +B 1y +C 1=0(A 1,B 1不同时为0),l 2:A 2x +B 2y +C 2=0(A 2,B 2不同时为0),则l 1∥l 2⇔A 1B 2-A 2B 1=0且C 1B 2-C 2B 1≠0,l 1⊥l 2⇔A 1A 2+B 1B 2=0. 跟踪训练1(1)已知直线l 1:ax -3y +1=0,l 2:2x +(a +1)y +1=0.若l 1⊥l 2,则实数a 的值为________.答案-3(2)已知两直线l 1:x +my +6=0,l 2:(m -2)x +3y +2m =0,若l 1∥l 2,则m =________. 答案-1解析因为直线x +my +6=0与(m -2)x +3y +2m =0平行,所以⎩⎪⎨⎪⎧1×3-m (m -2)=0,2m ≠6(m -2),解得m =-1. 二、两直线的交点与距离问题1.两条直线的位置关系的研究以两直线的交点为基础,通过交点与距离涵盖直线的所有问题.2.两直线的交点与距离问题,培养学生的数学运算的核心素养.例2(1)若点(1,a )到直线y =x +1的距离是322,则实数a 的值为() A .-1B .5C .-1或5D .-3或3答案C解析∵点(1,a )到直线y =x +1的距离是322, ∴|1-a +1|2=322,即|a -2|=3, 解得a =-1或a =5,∴实数a 的值为-1或5.(2)过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,求直线l 的方程.解设l 1与l 的交点为A (a ,8-2a ),则由题意知,点A 关于点P 的对称点B (-a ,2a -6)在l 2上,代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上,所以直线l 的方程为x +4y -4=0.反思感悟跟踪训练2(1)设两条直线的方程分别为x +y +a =0,x +y +b =0,已知a ,b 是关于x 的方程x 2+x -2=0的两个实数根,则这两条直线之间的距离为()A .23B.2C .22D.322答案D解析根据a ,b 是关于x 的方程x 2+x -2=0的两个实数根,可得a +b =-1,ab =-2,∴a =1,b =-2或a =-2,b =1,∴|a -b |=3,故两条直线之间的距离d =|a -b |2=32=322. (2)已知直线l 过直线l 1:x -2y +3=0与直线l 2:2x +3y -8=0的交点,且点P (0,4)到直线l 的距离为2,则这样的直线l 的条数为()A .0B .1C .2D .3答案C解析方法一由⎩⎪⎨⎪⎧ x -2y +3=0,2x +3y -8=0,得⎩⎪⎨⎪⎧ x =1,y =2,即直线l 过点(1,2).设点Q (1,2),因为|PQ |=(1-0)2+(2-4)2=5>2, 所以满足条件的直线l 有2条.故选C.方法二依题意,设经过直线l 1与l 2交点的直线l 的方程为2x +3y -8+λ(x -2y +3)=0(λ∈R ),即(2+λ)x +(3-2λ)y +3λ-8=0.由题意得|12-8λ+3λ-8|(2+λ)2+(3-2λ)2=2,化简得5λ2-8λ-36=0, 解得λ=-2或185,代入得直线l 的方程为y =2或4x -3y +2=0,故选C. 三、直线与圆的位置关系1.直线与圆位置关系的判断方法(1)几何法:设圆心到直线的距离为d ,圆的半径长为r .若d <r ,则直线和圆相交;若d =r ,则直线和圆相切;若d >r ,则直线和圆相离.(2)代数法:联立直线方程与圆的方程组成方程组,消元后得到一个一元二次方程,其判别式为Δ.Δ=0⇔直线与圆相切;Δ>0⇔直线与圆相交;Δ<0⇔直线与圆相离.2.研究直线与圆的位置关系,集中体现了直观想象和数学运算的核心素养.例3已知直线l :2mx -y -8m -3=0和圆C :x 2+y 2-6x +12y +20=0.(1)m ∈R 时,证明l 与C 总相交;(2)m 取何值时,l 被C 截得的弦长最短?求此弦长.(1)证明直线的方程可化为y +3=2m (x -4),由点斜式可知,直线恒过点P (4,-3).由于42+(-3)2-6×4+12×(-3)+20=-15<0,所以点P 在圆内,故直线l 与圆C 总相交.(2)解圆的方程可化为(x-3)2+(y+6)2=25.如图,当圆心C(3,-6)到直线l的距离最大时,线段AB的长度最短.此时PC⊥l,又k PC=-3-(-6)4-3=3,所以直线l的斜率为-13,则2m=-13,所以m=-16.在Rt△APC中,|PC|=10,|AC|=r=5.所以|AB|=2|AC|2-|PC|2=215.故当m=-16时,l被C截得的弦长最短,最短弦长为215.反思感悟直线与圆问题的类型(1)求切线方程:可以利用待定系数法结合图形或代数法求得.(2)弦长问题:常用几何法(垂径定理),也可用代数法结合弦长公式求解.跟踪训练3已知圆C关于直线x+y+2=0对称,且过点P(-2, 2)和原点O.(1)求圆C的方程;(2)相互垂直的两条直线l1,l2都过点A(-1, 0),若l1,l2被圆C所截得的弦长相等,求此时直线l1的方程.解(1)由题意知,直线x+y+2=0过圆C的圆心,设圆心C(a,-a-2).由题意,得(a+2)2+(-a-2-2)2=a2+(-a-2)2,解得a=-2.因为圆心C(-2,0),半径r=2,所以圆C的方程为(x+2)2+y2=4.(2)由题意知,直线l1,l2的斜率存在且不为0,设l1的斜率为k,则l2的斜率为-1k,所以l 1:y =k (x +1),即kx -y +k =0,l 2:y =-1k(x +1),即x +ky +1=0. 由题意,得圆心C 到直线l 1,l 2的距离相等, 所以|-2k +k |k 2+1=|-2+1|k 2+1,解得k =±1, 所以直线l 1的方程为x -y +1=0或x +y +1=0.四、圆与圆的位置关系1.圆与圆的位置关系:一般利用圆心间距离与两半径和与差的大小关系判断两圆的位置关系.2.圆与圆的位置关系的转化,体现直观想象、逻辑推理的数学核心素养.例4已知圆C 1:x 2+y 2+4x -4y -5=0与圆C 2:x 2+y 2-8x +4y +7=0.(1)证明圆C 1与圆C 2相切,并求过切点的两圆公切线的方程;(2)求过点(2, 3)且与两圆相切于(1)中切点的圆的方程.解(1)把圆C 1与圆C 2都化为标准方程形式,得(x +2)2+(y -2)2=13,(x -4)2+(y +2)2=13. 圆心与半径长分别为C 1(-2,2),r 1=13;C 2(4,-2),r 2=13.因为|C 1C 2|=(-2-4)2+(2+2)2=213=r 1+r 2,所以圆C 1与圆C 2相切.由⎩⎪⎨⎪⎧x 2+y 2+4x -4y -5=0,x 2+y 2-8x +4y +7=0,得12x -8y -12=0, 即3x -2y -3=0,就是过切点的两圆公切线的方程.(2)由圆系方程,可设所求圆的方程为x 2+y 2+4x -4y -5+λ(3x -2y -3)=0.点(2, 3)在此圆上,将点坐标代入方程解得λ=43. 所以所求圆的方程为x 2+y 2+4x -4y -5+43(3x -2y -3)=0,即x 2+y 2+8x -203y -9=0. 反思感悟两圆的公共弦问题(1)若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在直线的方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0.(2)公共弦长的求法①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长.②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.跟踪训练4(1)已知圆C 1:x 2+y 2-6x -7=0与圆C 2:x 2+y 2-6y -27=0相交于A ,B 两点,则线段AB 的中垂线方程为________.答案x +y -3=0解析AB 的中垂线即为圆C 1、圆C 2的连心线C 1C 2.又C 1(3,0),C 2(0,3),所以C 1C 2所在直线的方程为x +y -3=0.(2)已知圆C 1:x 2+y 2-4x +2y =0与圆C 2:x 2+y 2-2y -4=0.①求证:两圆相交;②求两圆公共弦所在直线的方程.①证明圆C 1的方程可化为(x -2)2+(y +1)2=5,圆C 2的方程可化为x 2+(y -1)2=5, ∴C 1(2,-1),C 2(0,1),两圆的半径均为5, ∵|C 1C 2|=(2-0)2+(-1-1)2=22∈(0,25),∴两圆相交.②解将两圆的方程相减即可得到两圆公共弦所在直线的方程,(x 2+y 2-4x +2y )-(x 2+y 2-2y -4)=0,即x -y -1=0.1.(2019·天津改编)设a ∈R ,直线ax -y +2=0和圆x 2+y 2-4x -2y +1=0相切,则a 的值为________.答案34解析由已知条件可得圆的标准方程为(x -2)2+(y -1)2=4,其圆心为(2,1),半径为2,由直线和圆相切可得|2a -1+2|a 2+1=2,解得a =34. 2.(2017·北京改编)在平面直角坐标系中,点A 在圆C :x 2+y 2-2x -4y +4=0上,点P 的坐标为(1,0),则||AP 的最小值为________.答案1解析x2+y2-2x-4y+4=0,即(x-1)2+(y-2)2=1,圆心坐标为C(1,2),半径长为1.∵点P的坐标为(1,0),∴点P在圆C外.又∵点A在圆C上,∴|AP|min=|PC|-1=2-1=1.3.(2017·天津改编)已知点C在直线l:x=-1上,点F(1,0),以C为圆心的圆与y轴的正半轴相切于点A.若∠F AC=120°,则圆的方程为________________.答案(x+1)2+(y-3)2=1解析由圆心C在l上,且圆C与y轴正半轴相切,可得点C的横坐标为-1,圆的半径为1,∠CAO=90°.又因为∠F AC=120°,所以∠OAF=30°,所以|OA|=3,所以点C的纵坐标为 3.所以圆的方程为(x+1)2+(y-3)2=1.4.(2019·江苏改编)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l上选两个点P,Q,并修建两段直线型道路PB,QA.规划要求:线段PB,QA上的所有点到点O的距离均不小于圆O的半径.已知点A,B 到直线l的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由.解(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立如图所示的平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,-3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (-4,-3),直线AB 的斜率为34. 因为PB ⊥AB ,所以直线PB 的斜率为-43, 直线PB 的方程为y =-43x -253. 所以P (-13,9),|PB |=(-13+4)2+(9+3)2=15.所以道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (-4,0),则EO =4<5, 所以P 选在D 处不满足规划要求.②若Q 在D 处,连接AD ,由(1)知D (-4,9),又A (4,3),所以线段AD :y =-34x +6(-4≤x ≤4). 在线段AD 上取点M ⎝⎛⎭⎫3,154, 因为|OM |=32+⎝⎛⎭⎫1542<32+42=5,所以线段AD 上存在点到点O 的距离小于圆O 的半径.因此Q 选在D 处也不满足规划要求.综上,P 和Q 均不能选在D 处.。
2018版高中数学人教版A版必修一学案:第二单元 §2.3 幂函数 Word版含答案 (3)
2.1.2 指数函数及其性质第1课时 指数函数的图象及性质学习目标 1.了解指数函数的概念(易错点).2.会画出指数函数图象(重点).3.掌握并能应用指数函数的性质(重、难点).预习教材P54-P56,完成下面问题: 知识点1 指数函数的概念一般地,函数y =a x (a >0,且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域是R . 【预习评价】 (正确的打“√”,错误的打“×”) (1)函数y =-2x 是指数函数.( ) (2)函数y =2x +1是指数函数.( ) (3)函数y =(-3)x 是指数函数.( )提示 (1)× 因为指数幂2x 的系数为-1,所以函数y =-2x 不是指数函数; (2)× 因为指数不是x ,所以函数y =2x +1不是指数函数; (3)× 因为底数小于0,所以函数y =(-3)x 不是指数函数. 知识点2 指数函数的图象及性质(1)函数y =2-x 的图象是( )(2)函数f (x )=a x +1-2(a >0且a ≠1)的图象恒过定点________. 解析 (1)y =2-x =⎝⎛⎭⎫12x 是(-∞,+∞)上的单减函数,故选B .(2)令x +1=0,则x =-1,f (-1)=a 0-2=-1,则f (x )的图象恒过点(-1,-1). 答案 (1)B (2)(-1,-1)题型一 指数函数的概念及应用 【例1】 (1)给出下列函数:①y =2·3x ;②y =3x +1;③y =3x ;④y =x 3;⑤y =(-2)x .其中,指数函数的个数是( )A .0B .1C .2D .4(2)已知函数f (x )是指数函数,且f ⎝⎛⎭⎫-32=525,则f (3)=________. 解析 (1)①中,3x 的系数是2,故①不是指数函数;②中,y =3x +1的指数是x +1,不是自变量x ,故②不是指数函数;③中,3x 的系数是1,幂的指数是自变量x ,且只有3x 一项,故③是指数函数;④中,y =x 3的底为自变量,指数为常数,故④不是指数函数.⑤中,底数-2<0,不是指数函数.(2)设f (x )=a x (a >0且a ≠1),由f ⎝⎛⎭⎫-32=a -32 =5-32 ,故a =5,故f (x )=5x ,所以f (3)=53=125.答案 (1)B (2)125规律方法 判断一个函数是指数函数的方法(1)看形式:只需判断其解析式是否符合y =a x (a >0,且a ≠1)这一结构特征.(2)明特征:看是否具备指数函数解析式具有的三个特征.只要有一个特征不具备,则该函数不是指数函数.【训练1】 若函数y =a 2(2-a )x 是指数函数,则( ) A .a =1或-1B .a =1C .a =-1D .a >0且a ≠1解析 由条件知⎩⎪⎨⎪⎧a 2=1,2-a >0,2-a ≠1,解得a =-1.答案 C题型二 指数函数图象的应用【例2】 (1)函数f (x )=2a x +1-3(a >0,且a ≠1)的图象恒过的定点是________.(2)已知函数y =3x 的图象,怎样变换得到y =⎝⎛⎭⎫13x +1+2的图象?并画出相应图象. (1)解析 因为y =a x 的图象过定点(0,1),所以令x +1=0,即x =-1,则f (x )=-1,故f (x )=2a x +1-3的图象过定点(-1,-1).答案 (-1,-1)(2)解 y =⎝⎛⎭⎫13x +1+2=3-(x +1)+2. 作函数y =3x 的图象关于y 轴的对称图象得函数y =3-x 的图象,再向左平移1个单位长度就得到函数y =3-(x +1)的图象,最后再向上平移2个单位长度就得到函数y =3-(x +1)+2=⎝⎛⎭⎫13x +1+2的图象,如图所示.规律方法 处理函数图象问题的策略(1)抓住特殊点:指数函数的图象过定点(0,1),求指数型函数图象所过的定点时,只要令指数为0,求出对应的y 的值,即可得函数图象所过的定点.(2)巧用图象变换:函数图象的平移变换(左右平移、上下平移). (3)利用函数的性质:奇偶性与单调性. 【训练2】 (1)函数y =2|x |的图象是( )(2)函数f (x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A .a >1,b <0B .a >1,b >0C .0<a <1,b >0D .0<a <1,b <0解析 (1)y =2|x |=⎩⎪⎨⎪⎧2x,x ≥0,⎝⎛⎭⎫12x ,x <0,故选B .(2)从曲线的变化趋势,可以得到函数f (x )为减函数,从而有0<a <1;从曲线位置看,是由函数y =a x (0<a <1)的图象向左平移|-b |个单位长度得到,所以-b >0,即b <0.答案 (1)B (2)D题型三 指数型函数的定义域、值域问题 【例3】 (1)函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0]B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1](2)函数f (x )=⎝⎛⎭⎫13x-1,x ∈[-1,2]的值域为________. (3)函数y =4x +2x +1+1的值域为________.解析 (1)由题意得自变量x 应满足⎩⎪⎨⎪⎧1-2x ≥0,x +3>0,解得-3<x ≤0.(2)∵-1≤x ≤2,∴19≤⎝⎛⎭⎫13x ≤3,∴-89≤⎝⎛⎭⎫13x -1≤2,∴值域为⎣⎡⎦⎤-89,2. (3)函数的定义域为R ,又y =4x +2x +1+1=(2x )2+2·2x +1=(2x +1)2,易知2x >0,故y >1,即函数的值域为(1,+∞).答案 (1)A (2)⎣⎡⎦⎤-89,2 (3)(1,+∞) 规律方法 指数型函数y =a f (x )定义域、值域的求法 (1)定义域:函数y =a f (x )的定义域与y =f (x )的定义域相同. (2)值域:①换元,t =f (x ). ②求t =f (x )的定义域为x ∈D . ③求t =f (x )的值域为t ∈M .④利用y =a t 的单调性求y =a t ,t ∈M 的值域. 【训练3】 求函数y =512x -4的定义域和值域. 解 由2x -4>0,得x >2,故函数的定义域为{x |x >2}, 因为12x -4>0,所以y =512x -4>1,故函数的值域为{y |y >1}.课堂达标1.若函数f (x )是指数函数,且f (2)=2,则f (x )=( ) A .(2)x B .2xC .⎝⎛⎭⎫12xD .⎝⎛⎭⎫22x解析 由题意,设f (x )=a x (a >0且a ≠1),则由f (2)=a 2=2,得a =2,所以f (x )=(2)x . 答案 A2.当x ∈[-2,2)时,y =3-x -1的值域是( )A .⎝⎛⎦⎤-89,8B .⎣⎡⎦⎤-89,8C .⎝⎛⎭⎫19,9 D .⎣⎡⎦⎤19,9解析 y =3-x -1,x ∈[-2,2)上是减函数,∴3-2-1<y ≤32-1,即-89<y ≤8.答案 A3.已知函数f (x )=2x ,则f (1-x )的图象为( )解析 f (1-x )=21-x =⎝⎛⎭⎫12x -1是减函数,故排除选项C ,D ,又当x =0时,⎝⎛⎭⎫120-1=2,排除A ,故选B .答案 B4.函数f (x )=2·a x -1+1的图象恒过定点________.解析 令x -1=0,得x =1,f (1)=2×1+1=3,所以f (x )的图象恒过定点(1,3). 答案 (1,3)5.函数f (x )=a x -1(a >0,且a ≠1)的定义域是(-∞,0],求实数a 的取值范围.解由题意,当x≤0时,a x≥1,所以0<a<1,故实数a的取值范围是0<a<1.课堂小结1.判断一个函数是不是指数函数,关键是看解析式是否符合y=a x(a>0且a≠1)这一结构形式,即a x的系数是1,指数是x且系数为1.2.指数函数y=a x(a>0且a≠1)的性质分底数a>1,0<a<1两种情况,但不论哪种情况,指数函数都是单调的.3.由于指数函数y=a x(a>0且a≠1)的定义域为R,即x∈R,所以函数y=a f(x)(a>0且a≠1)与函数f(x)的定义域相同.4.求函数y=a f(x)(a>0且a≠1)的值域的关键是求f(x)的值域.。
人教A版必修一高中数学单元测试卷第二章章末检测B(含答案)
章末检测(B)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.已知函数f (x )=lg(4-x )的定义域为M ,函数g (x )=0.5x -4的值域为N ,则M ∩N 等于()A .MB .NC .[0,4)D .[0,+∞)2.函数y =3|x |-1的定义域为[-1,2],则函数的值域为()A .[2,8]B .[0,8]C .[1,8]D .[-1,8]3.已知f (3x )=log 29x +12,则f (1)的值为()A .1B .2C .-1 D.124.21log 52 等于()A .7B .10C .6 D.925.若100a =5,10b =2,则2a +b 等于()A .0B .1C .2D .36.比较13.11.5、23.1、13.12的大小关系是()A .23.1<13.12<13.11.5B .13.11.5<23.1<13.12C .13.11.5<13.12<23.1D .13.12<13.11.5<23.17.式子log 89log 23的值为()A.23B.32C .2D .38.已知ab >0,下面四个等式中:①lg(ab )=lg a +lg b ;②lg a b =lg a -lg b ;③12lg(ab )2=lg a b;④lg(ab )=1log ab 10.其中正确命题的个数为()A .0B .1C .2D .39.为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点()A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度10.函数y =2x 与y =x 2的图象的交点个数是()A .0B .1C .2D .311.设偶函数f (x )满足f (x )=2x -4(x ≥0),则{x |f (x -2)>0}等于()A .{x |x <-2或x >4}B .{x |x <0或x >4}C .{x |x <0或x >6}D .{x |x <-2或x >2}12.函数f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),则f (-4)与f (1)的关系是()A .f (-4)>f (1)B .f (-4)=f (1)C .f (-4)<f (1)D .不能确定二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f (x )x ,x ≥41),x <4,则f (2+log 23)的值为______.14.函数f (x )=log a 3-x 3+x(a >0且a ≠1),f (2)=3,则f (-2)的值为________.15.函数y =212log (32)x x -+的单调递增区间为______________.16.设0≤x ≤2,则函数y =124x --3·2x +5的最大值是________,最小值是________.三、解答题(本大题共6小题,共70分)17.(10分)已知指数函数f (x )=a x (a >0且a ≠1).(1)求f (x )的反函数g (x )的解析式;(2)解不等式:g (x )≤log a (2-3x ).18.(12分)已知函数f (x )=2a ·4x -2x -1.(1)当a =1时,求函数f (x )在x ∈[-3,0]的值域;(2)若关于x 的方程f (x )=0有解,求a 的取值范围.19.(12分)已知x>1且x≠43,f(x)=1+log x3,g(x)=2log x2,试比较f(x)与g(x)的大小.20.(12分)设函数f(x)=log2(4x)·log2(2x),14≤x≤4,(1)若t=log2x,求t的取值范围;(2)求f(x)的最值,并写出最值时对应的x的值.21.(12分)已知f(x)=log a1+x1-x (a>0,a≠1).(1)求f(x)的定义域;(2)判断f(x)的奇偶性并予以证明;(3)求使f(x)>0的x的取值范围.22.(12分)已知定义域为R 的函数f (x )=-2x +b 2x +1+2是奇函数.(1)求b 的值;(2)判断函数f (x )的单调性;(3)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.章末检测(B)1.C [由题意,得M ={x |x <4},N ={y |y ≥0},∴M ∩N ={x |0≤x <4}.]2.B [当x =0时,y min =30-1=0,当x =2时,y max =32-1=8,故值域为[0,8].]3.D [由f (3x )=log 29x +12,得f (x )=log 23x +12,f (1)=log 22=12.]4.B [21log 52 =2·2log 52=2×5=10.]5.B [由100a =5,得2a =lg 5,由10b =2,得b =lg 2,∴2a +b =lg 5+lg 2=1.]6.D[∵13.11.5=1.5-3.1=(11.5)3.1,13.12=2-3.1=(12)3.1,又幂函数y =x 3.1在(0,+∞)上是增函数,12<11.5<2,∴(12)3.1<(11.5)3.1<23.1,故选D.]7.A [∵log 89=log 232log 223=23log 23,∴原式=23.]8.B [∵ab >0,∴a 、b 同号.当a 、b 同小于0时①②不成立;当ab =1时④不成立,故只有③对.]9.C [y =lg x +310=lg(x +3)-1,即y +1=lg(x +3).故选C.]10.D [分别作出y =2x 与y =x 2的图象.知有一个x <0的交点,另外,x =2,x =4时也相交,故选D.]11.B [∵f (x )=2x -4(x ≥0),∴令f (x )>0,得x >2.又f (x )为偶函数且f (x -2)>0,∴f (|x -2|)>0,∴|x -2|>2,解得x >4或x <0.]12.A [由f (x )=a |x +1|(a >0,a ≠1)的值域为[1,+∞),可知a >1,而f (-4)=a |-4+1|=a 3,f (1)=a |1+1|=a 2,∵a 3>a 2,∴f (-4)>f (1).]13.124解析∵log 23∈(1,2),∴3<2+log 23<4,则f (2+log 23)=f (3+log 23)=23log 312+⎛⎫ ⎪⎝⎭=(12)3·12log 32-=18×13=124.14.-3解析∵3-x 3+x>0,∴-3<x <3∴f (x )的定义域关于原点对称.∵f (-x )=log a 3+x 3-x =-log a 3-x 3+x=-f (x ),∴函数f (x )为奇函数.∴f (-2)=-f (2)=-3.15.(-∞,1)解析函数的定义域为{x |x 2-3x +2>0}={x |x >2或x <1},令u =x 2-3x +2,则y =12log u 是减函数,所以u =x 2-3x +2的减区间为函数y =()212log 32x x -+的增区间,由于二次函数u =x 2-3x +2图象的对称轴为x =32,所以(-∞,1)为函数y 的递增区间.16.5212解析y =124x --3·2x +5=12(2x )2-3·2x +5.令t =2x ,x ∈[0,2],则1≤t ≤4,于是y =12t 2-3t +5=12(t -3)2+12,1≤t ≤4.当t =3时,y min =12;当t =1时,y max =12×(1-3)2+12=52.17.解(1)指数函数f (x )=a x (a >0且a ≠1),则f (x )的反函数g (x )=log a x (a >0且a ≠1).(2)∵g (x )≤log a (2-3x ),∴log a x ≤log a (2-3x )若a >1>0-3x >0≤2-3x ,解得0<x ≤12,若0<a <1>0-3x >0≥2-3x ,解得12≤x <23,综上所述,a >1时,不等式解集为(0,12];0<a <1时,不等式解集为[12,23).18.解(1)当a =1时,f (x )=2·4x -2x -1=2(2x )2-2x -1,令t =2x ,x ∈[-3,0],则t ∈[18,1],故y =2t 2-t -1=2(t -14)2-98,t ∈[18,1],故值域为[-98,0].(2)关于x 的方程2a (2x )2-2x -1=0有解,等价于方程2ax 2-x -1=0在(0,+∞)上有解.记g (x )=2ax 2-x -1,当a =0时,解为x =-1<0,不成立;当a <0时,开口向下,对称轴x =14a<0,过点(0,-1),不成立;当a >0时,开口向上,对称轴x =14a>0,过点(0,-1),必有一个根为正,符合要求.故a 的取值范围为(0,+∞).19.解f (x )-g (x )=1+log x 3-2log x 2=1+log x 34=log x 34x ,当1<x <43时,34x <1,∴log x 34x <0;当x >43时,34x >1,∴log x 34x >0.即当1<x <43时,f (x )<g (x );当x >43时,f (x )>g (x ).20.解(1)∵t =log 2x ,14x ≤4,∴log 214≤t ≤log 24,即-2≤t ≤2.(2)f (x )=(log 24+log 2x )(log 22+log 2x )=(log 2x )2+3log 2x +2,∴令t =log 2x ,则y =t 2+3t +2=(t +32)2-14,∴当t =-32即log 2x =-32,x =322 时,f (x )min =-14.当t =2即x =4时,f (x )max =12.21.解(1)由对数函数的定义知1+x 1-x>0,故f (x )的定义域为(-1,1).(2)∵f (-x )=log a 1-x 1+x =-log a 1+x 1-x=-f (x ),∴f (x )为奇函数.(3)(ⅰ)对a >1,log a 1+x 1-x >0等价于1+x 1-x>1,①而从(1)知1-x >0,故①等价于1+x >1-x 又等价于x >0.故对a >1,当x ∈(0,1)时有f (x )>0.(ⅱ)对0<a <1,log a 1+x 1-x >0等价于0<1+x 1-x<1,②而从(1)知1-x >0,故②等价于-1<x <0.故对0<a <1,当x ∈(-1,0)时有f (x )>0.综上,a >1时,x 的取值范围为(0,1);0<a <1时,x 的取值范围为(-1,0).22.解(1)因为f (x )是奇函数,所以f (0)=0,即b -12+2=0⇒b =1.∴f (x )=1-2x 2+2x +1.(2)由(1)知f (x )=1-2x 2+2x +1=-12+12x +1,设x 1<x 2则f (x 1)-f (x 2)=12112121x x -++=()()2112222121x x x x -++.因为函数y =2x 在R 上是增函数且x 1<x 2,∴22x -12x >0.又(12x +1)(22x +1)>0,∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2).∴f (x )在(-∞,+∞)上为减函数.(3)因为f (x )是奇函数,从而不等式:f (t 2-2t )+f (2t 2-k )<0.等价于f (t 2-2t )<-f (2t 2-k )=f (k -2t 2),因f (x )为减函数,由上式推得:t 2-2t >k -2t 2.即对一切t ∈R 有:3t 2-2t -k >0,从而判别式Δ=4+12k <0⇒k <-13.。
【K12教育学习资料】2018-2019学年高中数学人教版A版必修一学案:第二单元 2.2.2 第2
第2课时对数函数及其性质的应用学习目标 1.进一步理解对数函数的性质(重点).2.能运用对数函数的性质解决相关问题(重、难点).题型一比较对数值的大小【例1】(1)若a=log23,b=log32,c=log46,则下列结论正确的是()A.b<a<c B.a<b<c C.c<b<a D.b<c<a(2)下列不等式成立的是(其中a>0且a≠1)()A.log a5.1<log a5.9B.log122.1>log122.2C.log1.1(a+1)<log1.1a D.log32.9<log0.52.2解析(1)因为函数y=log4x在(0,+∞)上是增函数,a=log23=log49>log46>1,log32<1,所以b<c<a.(2)对于选项A,因为a和1大小的关系不确定,无法确定指数函数和对数函数的单调性,故A不成立;对于选项B,因为以12为底的对数函数是减函数,所以成立;对于选项C,因为以1.1为底的对数函数是增函数,所以不成立;对于选项D,log32.9>0,log0.52.2<0,故不成立,故选B.答案(1)D(2)B规律方法比较对数值大小时常用的四种方法(1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化.(3)底数和真数都不同,找中间量.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论.【训练1】比较下列各组中两个值的大小:(1)log31.9,log32;(2)log23,log0.32;(3)log aπ,log a3.14(a>0,a≠1).解(1)因为y=log3x在(0,+∞)上是增函数,所以log31.9<log32.(2)因为log23>log21=0,log0.32<log0.31=0,所以log23>log0.32.(3)当a>1时,函数y=log a x在(0,+∞)上是增函数,则有log aπ>log a3.14;当0<a<1时,函数y=log a x在(0,+∞)上是减函数,则有log a π<log a 3.14.综上所得,当a >1时,log a π>log a 3.14;当0<a <1时, log a π<log a 3.14.题型二 与对数函数有关的值域和最值问题【例2】 (1)函数f (x )=log 12(x 2+2x +3)的值域是________.(2)若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值等于________.(3)求y =(log 12x )2-12log 12x +5在区间[2,4]上的最大值和最小值.解析 (1)f (x )=log 12(x 2+2x +3)=log 12[(x +1)2+2],因为(x +1)2+2≥2,所以log 12[(x+1)2+2]≤log 122=-1,所以函数f (x )的值域是(-∞,-1].(2)当a >1时,f (x )在[0,1]上单调递增,则最大值和最小值之和为f (1)+f (0)=a +log a 2+1=a ,解得a =12,不满足a >1,舍去;当0<a <1时,f (x )在[0,1]上单调递减,则最大值和最小值之和为f (0)+f (1)=1+a +log a 2=a 解得a =12,符合题意.答案 (1)(-∞,-1] (2)12(3)解 因为2≤x ≤4,所以log 122≥log 12x ≥log 124,即-1≥log 12x ≥-2.设t =log 12x ,则-2≤t ≤-1, 所以y =t 2-12t +5,其图象的对称轴为直线t =14,所以当t =-2时,y max =10;当t =-1时,y min =132. 规律方法 求函数值域或最大(小)值的常用方法(1)直接法:根据函数解析式的特征,从函数自变量的变化范围出发,通过对函数定义域、性质的观察,结合解析式,直接得出函数值域.(2)配方法:当所给的函数是可化为二次函数形式的(形如y =a ·[f (log a x )]2+bf (log a x )+c ,求函数值域问题时,可以用配方法.(3)单调性法:根据在定义域(或定义域的某个子集)上的单调性,求出函数的值域. (4)换元法:求形如y =log a f (x )型函数值域的步骤:①换元,令u =f (x ),利用函数图象和性质求出u 的范围;②利用y =log a u 的单调性、图象求出y 的取值范围.【训练2】 函数f (x )=log 12(3+2x -x 2)的值域为________.解析 设u =3+2x -x 2=-(x -1)2+4≤4,因为u >0,所以0<u ≤4,又y =log 12u 在(0,+∞)上为减函数,所以log 12u ≥log 124=-2,所以函数f (x )的值域为[-2,+∞).答案 [-2,+∞)【例3-1】 已知log 0.3(3x )<log 0.3(x +1),则x 的取值范围为( ) A .⎝⎛⎭⎫12,+∞ B .⎝⎛⎭⎫-∞,12 C .⎝⎛⎭⎫-12,12 D .⎝⎛⎭⎫0,12 解析 因为函数y =log 0.3x 是(0,+∞)上的减函数, 所以原不等式等价于⎩⎪⎨⎪⎧3x >0,x +1>0,3x >x +1,解得x >12.答案 A方向2 与对数函数有关的奇偶性问题【例3-2】 已知函数f (x )=log a x +1x -1(a >0,且a ≠1).(1)求f (x )的定义域;(2)判断函数f (x )的奇偶性,并求函数的单调区间.解 (1)要使此函数有意义,则有⎩⎪⎨⎪⎧ x +1>0,x -1>0或⎩⎪⎨⎪⎧x +1<0,x -1<0,解得x >1或x <-1,故此函数的定义域为(-∞,-1)∪(1,+∞). (2)由(1)可得f (x )的定义域关于原点对称.∵f (-x )=log a -x +1-x -1=log a x -1x +1=-log a x +1x -1=-f (x ),∴f (x )为奇函数.f (x )=log a x +1x -1=log a ⎝⎛⎭⎫1+2x -1,函数u =1+2x -1在区间(-∞,-1)和区间(1,+∞)上单调递减, 所以当a >1时,f (x )=log a x +1x -1在(-∞,-1),(1,+∞)上单调递减;当0<a <1时,f (x )=log a x +1x -1在(-∞,-1),(1,+∞)上单调递增.方向3 与对数函数有关的复合函数的单调性【例3-3】 (1)求函数y =log 0.3(3-2x )的单调区间;(2)函数f (x )=log 13(3x 2-ax +7)在[-1,+∞)上是减函数,求实数a 的取值范围.解 (1)由3-2x >0,解得x <32,设t =3-2x ,x ∈⎝⎛⎭⎫-∞,32,∵函数y =log 0.3t 是减函数,且函数t =3-2x 是减函数,∴函数y =log 0.3(3-2x )在⎝⎛⎭⎫-∞,32上是增函数,即函数y =log 0.3(3-2x )的单增区间是⎝⎛⎫-∞,32,没有单减区间. (2)解 令t =3x 2-ax +7,则y =log 13t 单调递减,故t =3x 2-ax +7在[-1,+∞)上单调递增且t >0.因为t =3x 2-ax +7的对称轴为x =a6,所以⎩⎪⎨⎪⎧a 6≤-1,10+a >0,解得-10<a ≤-6,故a 的取值范围为(-10,-6]. 规律方法 1.两类对数不等式的解法 (1)形如log a f (x )<log a g (x )的不等式. ①当0<a <1时,可转化为f (x )>g (x )>0; ②当a >1时,可转化为0<f (x )<g (x ).(2)形如log a f (x )<b 的不等式可变形为log a f (x )<b =log a a b . ①当0<a <1时,可转化为f (x )>a b ; ②当a >1时,可转化为0<f (x )<a b . 2.形如y =log a f (x )的函数的单调性 首先要确保f (x )>0,当a >1时,y =log a f (x )的单调性在f (x )>0的前提下与y =f (x )的单调性一致. 当0<a <1时,y =log a f (x )的单调性在f (x )>0的前提下与y =f (x )的单调性相反. 【训练3】 若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. 解析 由于f (x )是偶函数,所以f (-x )=f (x ), 即-x ln(-x +a +x 2)=x ln(x +a +x 2), 即x ln(x +x 2+a )+x ln(-x +a +x 2)=0, ∴x ln a =0,又∵x 不恒为0,∴ln a =0,a =1. 答案 1课堂达标1.不等式log 12(2x +3)< log 12(5x -6)的解集为( )A .(-∞,3)B .⎝⎛⎭⎫-32,3 C .⎝⎛⎭⎫-32,65 D .⎝⎛⎭⎫65,3解析 由题意可得⎩⎪⎨⎪⎧2x +3>0,5x -6>0,2x +3>5x -6,解得65<x <3.答案 D2.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <aC .a <b <cD .b <a <c解析 ∵1=log 55>log 54>log 53>log 51=0, ∴1>a =log 54>log 53>b =(log 53)2. 又∵c =log 45>log 44=1.∴c >a >b . 答案 D3.函数y =log 12(x 2-6x +11)的值域为________.解析 ∵x 2-6x +11=(x -3)2+2≥2,∴log 12(x 2-6x +11)≤log 122=-1,故所求函数的值域为(-∞,-1]. 答案 (-∞,-1]4.函数f (x )=log 2x 2的单调递增区间是________.解析 令t =x 2,易知t =x 2在(0,+∞)单调递增,而y =log 2t 在(0,+∞)上单增,故f (x )的单调递增区间是(0,+∞).答案 (0,+∞)5.判断函数f (x )=log 2(x 2+1+x )的奇偶性.解 易知f (x )的定义域为(-∞,+∞),f (-x )+f (x )=log 2(x 2+1-x )+log 2(x 2+1+x )=log 2(x 2+1-x 2)=log 21=0,即f (-x )=-f (x ),所以f (x )是奇函数.课堂小结1.比较两个对数值的大小及解对数不等式问题,其依据是对数函数的单调性.若对数的底数是字母且范围不明确,一般要分a >1和0<a <1两类分别求解.2.解决与对数函数相关的问题时要树立“定义域优先”的原则,同时注意数形结合思想和分类讨论思想在解决问题中的应用.。
2018版高中数学人教版A版必修一学案:第一单元 章末复习课 Word版含答案 (6)
§1.3 函数的基本性质1.3.1 单调性与最大(小值)第1课时 函数的单调性学习目标 1.理解单调区间、单调性等概念,会用定义证明函数的单调性(重点、难点).2.会求函数的单调区间,判断单调性(重点).预习教材P27-P28,完成下面问题: 知识点1 增函数与减函数设函数f (x )的定义域为I ,D ⊆I ,对任意x 1,x 2∈D【预习评价】 (正确的打“√”,错误的打“×”)(1)已知f (x )=1x,因为f (-1)<f (2),所以函数f (x )是增函数.( )(2)增减函数定义中的“任意两个自变量的值x 1,x 2”可以改为“存在两个自变量的值x 1,x 2”.( )(3)若函数f (x )在区间(1,2]和(2,3)上均为增函数,则函数f (x )在区间(1,3)上为增函数.( ) 提示 (1)× 由函数单调性的定义可知,要证明一个函数是增函数,需对定义域内的任意的自变量都满足自变量越大,函数值也越大,而不是个别的自变量.(2)× 不能改为“存在两个自变量的值x 1、x 2”.(3)× 反例:f (x )=⎩⎪⎨⎪⎧x ,x ∈(1,2],x -4,x ∈(2,3).知识点2 函数的单调区间如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.【预习评价】(1)函数f (x )=x 2+2x -3的单调减区间是________. (2)函数y =|x |在区间[-2,-1]上( ) A .递减B .递增C .先减后增D .先增后减解析 (1)二次函数f (x )的图象开口向上,对称轴为x =-1,故其单调减区间是(-∞,-1).(2)函数y =|x |的单减区间是(-∞,0),又[-2,-1]⊆(-∞,0),所以函数y =|x |在区间[-2,-1]上递减.答案 (1)(-∞,-1) (2)A题型一 求函数的单调区间【例1】 (1)如图所示的是定义在区间[-5,5]上的函数y =f (x )的图象,则函数的单调递减区间是________、________,在区间________、________上是增函数.(2)画出函数y =-x 2+2|x |+1的图象并写出函数的单调区间.(1)解析 观察图象可知,y =f (x )的单调区间有[-5,-2],[-2,1],[1,3],[3,5].其中y =f (x )在区间[-5,-2],[1,3]上是增函数,在区间[-2,1],[3,5]上是减函数.答案 [-2,1] [3,5] [-5,-2] [1,3](2)解 y =⎩⎪⎨⎪⎧-x 2+2x +1,x ≥0,-x 2-2x +1,x <0,即y =⎩⎪⎨⎪⎧-(x -1)2+2,x ≥0,-(x +1)2+2,x <0.函数的大致图象如图所示,单调增区间为(-∞,-1],[0,1],单调减区间为[-1,0],[1,+∞).规律方法 根据函数的图象求函数单调区间的方法 (1)作出函数图象;(2)把函数图象向x 轴作正投影;(3)图象上升对应增区间,图象下降对应减区间. 【训练1】 函数y =1x -1的单调减区间是________.解析 y =1x -1的图象可由函数y =1x 的图象向右平移一个单位得到,如图所示,其单调递减区间是(-∞,1)和(1,+∞).答案 (-∞,1),(1,+∞) 题型二 证明函数的单调性【例2】 证明函数f (x )=x +4x 在区间(2,+∞)上是增函数.证明 任取x 1,x 2∈(2,+∞),且x 1<x 2,则f (x 1)-f (x 2)=x 1+4x 1-x 2-4x 2=(x 1-x 2)+4(x 2-x 1)x 1x 2=(x 1-x 2)x 1x 2-4x 1x 2.因为2<x 1<x 2,所以x 1-x 2<0,x 1x 2>4,x 1x 2-4>0, 所以f (x 1)-f (x 2)<0, 即f (x 1)<f (x 2).所以函数f (x )=x +4x 在(2,+∞)上是增函数.规律方法 利用定义证明函数单调性的步骤【训练2】 证明函数f (x )=1x 2在(-∞,0)上是增函数.证明 设x 1,x 2是区间(-∞,0)上任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=1x 21-1x 22=x 22-x 21x 21x 22=(x 2-x 1)(x 2+x 1)x 21x 22. 因为x 1<x 2<0,所以x 2-x 1>0,x 1+x 2<0,x 21x 22>0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 所以函数f (x )=1x 2在(-∞,0)上是增函数.题型三 用单调性解不等式【例3】 已知函数y =f (x )在定义域(-1,1)上是减函数,且f (1-a )<f (2a -1),求实数a 的取值范围.解 由题知⎩⎪⎨⎪⎧-1<1-a <1,-1<2a -1<1,1-a >2a -1,解得0<a <23,即所求a 的取值范围是⎝⎛⎭⎫0,23. 规律方法 利用函数的单调性解不等式的方法当函数f (x )的解析式未知时,欲求解不等式,可以依据函数单调性的定义和性质,将符号“f ”脱掉,列出关于未知量的不等式(组),然后求解,此时注意函数的定义域.【训练3】 已知函数f (x )为定义在区间[-1,1]上的增函数,则满足f (x )<f ⎝⎛⎭⎫12的实数x 的取值范围是________.解析 由题意得⎩⎪⎨⎪⎧-1≤x ≤1,x <12,解得-1≤x <12.答案 ⎣⎡⎭⎫-1,12.答案 (-∞,0)【探究2】 已知函数y =x 2+2ax +3在区间(-∞,1]上是减函数,则实数a 的取值范围是________.解析 函数y =x 2+2ax +3的图象开口向上,对称轴为x =-a ,要使其在区间(-∞,1]上是减函数,则-a ≥1,即a ≤-1.答案 (-∞,-1]【探究3】 分别作出函数f (x )=⎩⎪⎨⎪⎧ -2x +5,x ≤1,-2x +3,x >1和g (x )=⎩⎪⎨⎪⎧-2x +5,x ≤1,-2x +7,x >1的图象,并根据其图象的变化趋势判断它们在(-∞,+∞)上的单调性.解 函数f (x )的图象如图(1)所示,由其图象可知f (x )在(-∞,+∞)上是减函数; 函数g (x )的图象如图(2)所示,由其图象可知g (x )在(-∞,+∞)上既不是增函数,也不是减函数.【探究4】 已知函数f (x )=⎩⎪⎨⎪⎧-2x +5,x ≤1,-2x +a ,x >1是减函数,求实数a 的取值范围.解 由题意得,要使f (x )是减函数,需-2×1+5≥-2×1+a ,即a ≤5.【探究5】 若函数f (x )=⎩⎪⎨⎪⎧x 2+2ax +3,x ≤1,ax +1,x >1是减函数,求实数a 的取值范围.解 由题意可得⎩⎪⎨⎪⎧-a ≥1,a <0,12+2a ×1+3≥a ×1+1,解得-3≤a ≤-1,则实数a 的取值范围是[-3,-1].规律方法 已知函数的单调性求参数的关注点(1)视参数为已知数,依据基本初等函数的单调性、函数的图象或函数的单调性的定义,确定函数的单调区间,与已知的单调区间比较求参数;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的函数值的大小关系.课堂达标1.下列函数在区间(0,+∞)上不是增函数的是( ) A .y =2x +1 B .y =x 2+1 C .y =3-xD .y =x 2+2x +1解析 函数y =3-x 在区间(0,+∞)上是减函数. 答案 C2.函数f (x )=-x 2+2x +3的单调减区间是( )A .(-∞,1)B .(1,+∞)C .(-∞,2)D .(2,+∞)解析 易知函数f (x )=-x 2+2x +3是图象开口向下的二次函数,其对称轴为x =1,所以其单调减区间是(1,+∞).答案 B3.若f (x )=(2k -3)x +2是R 上的增函数,则实数k 的取值范围是________. 解析 由题意得2k -3>0,即k >32,故k 的取值范围是⎝⎛⎭⎫32,+∞. 答案 ⎝⎛⎭⎫32,+∞ 4.若函数f (x )是R 上的减函数,且f (a -1)>f (2a ),则a 的取值范围是________. 解析 由条件可知a -1<2a ,解得a >-1. 答案 (-1,+∞)5.证明f (x )=x 2+x 在(0,+∞)上是增函数.证明 设x 1>x 2>0,则f (x 1)-f (x 2)=x 21+x 1-x 22-x 2=(x 1-x 2)(x 1+x 2)+(x 1-x 2)=(x 1-x 2)(x 1+x 2+1),因为x 1>x 2>0,所以x 1-x 2>0,x 1+x 2+1>0,所以f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2),所以f (x )=x 2+x 在(0,+∞)上是增函数.课堂小结1.对函数单调性的理解(1)单调性是与“区间”紧密相关的概念,一个函数在定义域的不同的区间上可以有不同的单调性.(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x 1,x 2有以下几个特征:一是任意性,即任意取x 1,x 2,“任意”二字绝不能丢掉,证明单调性时更不可随意以两个特殊值替换;二是有大小,通常规定x 1<x 2;三是属于同一个单调区间.(3)单调性能使自变量取值之间的不等关系和函数值的不等关系正逆互推,即由f(x)是增(减)函数且f(x1)<f(x2)⇔x1<x2(x1>x2).(4)并不是所有函数都具有单调性.若一个函数在定义区间上既有增区间又有减区间,则此函数在这个区间上不存在单调性.2.单调性的证明方法证明f(x)在区间D上的单调性应按以下步骤:(1)设元:设x1,x2∈D且x1<x2;(2)作差:将函数值f(x1)与f(x2)作差;(3)变形:将上述差式(因式分解、配方等)变形;(4)判号:对上述变形的结果的正、负加以判断;(5)定论:对f(x)的单调性作出结论.其中变形为难点,变形一定要到位,即变形到能简单明了的判断符号的形式为止,切忌变形不到位就定号.。
2018版高中数学人教版A版必修一学案:第二单元章末复习课Word版含答案
2018版高中数学人教版A版必修一学案:第二单元章末复习课Word版含答案章末复习课网络构建核心归纳1.指数函数的图象和性质一般地,指数函数y =a x (a >0且a ≠1)的图象与性质如下表所示.(2)a >1时,a 值越大,图象向上越靠近y 轴,递增速度越快;0<=""><="">(3)在同一坐标系中有多个指数函数图象时,图象的相对位置与底数大小有如下关系:在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小.即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x =1时,y =a 去理解,如图.<=""><=""><="">2.对数函数的图象和性质对数函数y =log a x (a >0且a ≠1)与指数函数y =a x (a >0且a ≠1)互为反函数,其图象关于直线y =x 对称.(如图)4.幂函数的性质(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1).(2)如果α>0,则幂函数的图象过原点,并且在区间[0,+∞)上为增函数.(3)如果α<0,则幂函数的图象在区间(0,+∞)上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 从原点趋向于+∞时,图象在x 轴上方无限地逼近x 轴.(4)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.要点一指数、对数的运算指数式的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算,其次若出现分式则要注意分子、分母因式分解以达到约分的目的.对数运算首先注意公式应用过程中范围的变化,前后要等价,熟练地运用对数的三个运算性质并结合对数恒等式,换底公式是对数计算、化简、证明常用的技巧.【例1】 (1)化简:a 43 -8a 13 b 4b 23 +23ab +a 23÷? ?1-23b a ×3ab ; (2)求值:12lg 3249-43lg 8+lg 245.解 (1)原式=a 13 (a -8b )(2b 13 )2+2a 13 b 13 +(a 13 )2×a 13 a 13 -2b 13×a 13 b 13=a 13 (a -8b )a -8b×a 13 ×a 13 b 13 =a 3b .(2)法一 12lg 3249-43lg 8+lg 245=lg427-lg 4+lg 7 5 =lg ??427×14×75 =lg 10=12lg 10=12.法二原式=12(5lg 2-2lg 7)-43·32lg 2+12(2lg 7+lg 5)=52lg 2-lg 7-2lg 2+lg 7+12lg 5=12lg 2+12lg 5=12(lg 2+lg 5) =12lg 10=12. 【训练1】 (1)化简:(8)-23 ×(3102)92 ÷105;(2)计算:2log 32-log 3329+log 38-25log 53.解 (1)原式=232-23 ×??1023 92 ÷1052 =2-1×103×10-52 =2-1×1012 =102.(2)原式=log 34-log 3329+log 38-5log 59=log 34×932×8-9=-7. 要点二指数函数、对数函数、幂函数的图象问题函数图象的画法4解析法一当x =0时,y =0,故可排除选项A ,由1-x >0,得x <1,即函数的定义域为(-∞,1),排除选项B ,又易知函数在其定义域上是减函数,故选C .法二函数y =2log 4(1-x )的图象可认为是由y =log 4x 的图象经过如下步骤变换得到的:(1)函数y =log 4x 的图象上所有点的横坐标不变.纵坐标变为原来的2倍,得到函数y =2log 4x 的图象;(2)把函数y =2log 4x 关于y 轴对称得到函数y =2log 4(-x )的图象;(3)把函数y =2log 4(-x )的图象向右平移1个单位,即可得到y =2log 4(1-x )的图象,故选C .答案 C【训练2】在同一直角坐标系中,函数f (x )=x a (x ≥0),g (x )=log a x 的图象可能是( )解析法一当a>1时,y=x a与y=log a x均为增函数,但y=x a 递增较快,排除C;当0<a<="" bdsfid="169" p="" x为减函数,排除a.由于y=x=""></a法二幂函数f(x)=x a的图象不过(0,1)点,故A错;B项中由对数函数f(x)=log a x的图象知0<a1,而此时幂函数f(x)=x a的图象应是增长越来越快的变化趋势,故C错.</a答案 D要点三大小比较问题数的大小比较常用方法:(1)比较两数(式)或几个数(式)大小问题是本章的一个重要题型,主要考查数、指数函数、对数函数幂函数图象与性质的应用及差值比较法与商值比较法的应用.常用的方法有单调性法、图象法、中间搭桥法、作差法、作商法.(2)当需要比较大小的两个实数均是指数幂或对数式时,可将其看成某个指数函数、对数函数或幂函数的函数值,然后利用该函数的单调性比较.(3)比较多个数的大小时,先利用“0”和“1”作为分界点,即把它们分为“小于0”,“大于等于0小于等于1”,“大于1”三部分,再在各部分内利用函数的性质比较大小.【例3】设a=log2π,b=log12π,c=π-2,则()A.a>b>c B.b>a>c C.a>c>b D.c>b>a解析因为π>2,所以a=log2π>1,所以b=log12π<0.因为π>1,所以0<π-2<1,即0<cc>b.</c答案 C【训练3】设a=log123,b=130.2,c=213,则()。
人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习
人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习本文没有明显的格式错误和问题段落。
以下是小幅度改写后的文章:本教案旨在帮助学生掌握高中数学中重要的等式性质与不等式性质,这是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应用。
同时,等式性质与不等式性质也为学生以后顺利研究基本不等式起到重要的铺垫。
教学目标包括掌握等式性质与不等式性质及其推论,能够运用其解决简单的问题,进一步掌握比较法比较实数的大小,以及通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。
教学重点是掌握不等式性质及其应用,难点则是不等式性质的应用。
为此,我们采用以学生为主体的诱思探究式教学,精讲多练的教学方法,借助多媒体等教学工具,引导学生独立思考、小组讨论,充分发挥学生的主动性和创造性。
在教学过程中,我们通过情景导入,引导学生观察和思考现实生活中的相等关系和不等关系;通过预课本,引入新课,让学生自主思考和探究不等式的基本性质、比较多项式大小的方法以及重要不等式等内容;通过典例分析和举一反三,帮助学生更好地应用不等式性质解决实际问题。
最后,我们希望通过本教案的教学,能够培养学生的数学抽象、逻辑推理、数学运算、数据分析和数学建模等方面的素养,提高学生的数学思维水平和解决实际问题的能力。
已知2<a<3,-2<b<-1,要求2a+b的取值范围。
首先,可以将2a+b拆开,得到2a+b<6-2=4,即2a+b的上界为4.然后,将2a+b拆开,得到2a+b>2×2+(-1)=3,即2a+b的下界为3.因此,2a+b的取值范围为3<2a+b<4.基本不等式”是必修1的重要内容。
它是在研究不等关系和不等式性质,掌握不等式性质的基础上对不等式的进一步研究。
同时,它也是为了以后研究选修教材中关于不等式及其证明方法等内容作铺垫,起着承上启下的作用。
人教A版高中数学必修1课后习题及答案(全部三章)
高中数学必修1课后习题答案 第一章 集合与函数概念1.1集合1.1.1集合的含义与表示练习(第5页)1.用符号“∈”或“∉”填空:(1)设A 为所有亚洲国家组成的集合,则:中国_______A ,美国_______A ,印度_______A ,英国_______A ; (2)若2{|}A x x x ==,则1-_______A ; (3)若2{|60}B x x x =+-=,则3_______B ;(4)若{|110}C x N x =∈≤≤,则8_______C ,9.1_______C . 1.(1)中国∈A ,美国∉A ,印度∈A ,英国∉A ;中国和印度是属于亚洲的国家,美国在北美洲,英国在欧洲.(2)1-∉A 2{|}{0,1}A x x x ===.(3)3∉B 2{|60}{3,2}B x x x =+-==-. (4)8∈C ,9.1∉C 9.1N ∉.2.试选择适当的方法表示下列集合:(1)由方程290x -=的所有实数根组成的集合; (2)由小于8的所有素数组成的集合;(3)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (4)不等式453x -<的解集.2.解:(1)因为方程290x -=的实数根为123,3x x =-=,所以由方程290x -=的所有实数根组成的集合为{3,3}-; (2)因为小于8的素数为2,3,5,7,所以由小于8的所有素数组成的集合为{2,3,5,7};(3)由326y x y x =+⎧⎨=-+⎩,得14x y =⎧⎨=⎩,即一次函数3y x =+与26y x =-+的图象的交点为(1,4),所以一次函数3y x =+与26y x =-+的图象的交点组成的集合为{(1,4)};(4)由453x -<,得2x <,所以不等式453x -<的解集为{|2}x x <.1.1.2集合间的基本关系练习(第7页)1.写出集合{,,}a b c 的所有子集.1.解:按子集元素个数来分类,不取任何元素,得∅;取一个元素,得{},{},{}a b c ; 取两个元素,得{,},{,},{,}a b a c b c ; 取三个元素,得{,,}a b c ,即集合{,,}a b c 的所有子集为,{},{},{},{,},{,},{,},{,,}a b c a b a c b c a b c ∅.2.用适当的符号填空:(1)a ______{,,}a b c ; (2)0______2{|0}x x =; (3)∅______2{|10}x R x ∈+=; (4){0,1}______N ;(5){0}______2{|}x x x =; (6){2,1}______2{|320}x x x -+=. 2.(1){,,}a a b c ∈ a 是集合{,,}a b c 中的一个元素;(2)20{|0}x x ∈= 2{|0}{0}x x ==;(3)2{|10}x R x ∅=∈+= 方程210x +=无实数根,2{|10}x R x ∈+==∅; (4){0,1}N (或{0,1}N ⊆) {0,1}是自然数集合N 的子集,也是真子集; (5){0}2{|}x x x = (或2{0}{|}x x x ⊆=) 2{|}{0,1}x x x ==;(6)2{2,1}{|320}x x x =-+= 方程2320x x -+=两根为121,2x x ==.3.判断下列两个集合之间的关系:(1){1,2,4}A =,{|8}B x x =是的约数;(2){|3,}A x x k k N ==∈,{|6,}B x x z z N ==∈;(3){|410}A x x x N +=∈是与的公倍数,,{|20,}B x x m m N +==∈. 3.解:(1)因为{|8}{1,2,4,8}B x x ==是的约数,所以AB ;(2)当2k z =时,36k z =;当21k z =+时,363k z =+,即B 是A 的真子集,B A ;(3)因为4与10的最小公倍数是20,所以A B =.1.1.3集合的基本运算练习(第11页)1.设{3,5,6,8},{4,5,7,8}A B ==,求,A B A B .1.解:{3,5,6,8}{4,5,7,8}{5,8}A B ==,{3,5,6,8}{4,5,7,8}{3,4,5,6,7,8}AB ==.2.设22{|450},{|1}A x x x B x x =--===,求,A B A B .2.解:方程2450x x --=的两根为121,5x x =-=, 方程210x -=的两根为121,1x x =-=, 得{1,5},{1,1}A B =-=-, 即{1},{1,1,5}AB A B =-=-.3.已知{|}A x x =是等腰三角形,{|}B x x =是直角三角形,求,A B A B .3.解:{|}A B x x =是等腰直角三角形,{|}AB x x =是等腰三角形或直角三角形.4.已知全集{1,2,3,4,5,6,7}U =,{2,4,5},{1,3,5,7}A B ==, 求(),()()U U U AB A B 痧?. 4.解:显然{2,4,6}U B =ð,{1,3,6,7}U A =ð, 则(){2,4}U AB =ð,()(){6}U U A B =痧. 1.1集合习题1.1 (第11页) A 组1.用符号“∈”或“∉”填空:(1)237_______Q ; (2)23______N ; (3)π_______Q ;(4_______R ; (5Z ; (6)2_______N .1.(1)237Q ∈ 237是有理数; (2)23N ∈ 239=是个自然数;(3)Q π∉ π是个无理数,不是有理数; (4R 是实数;(5Z3=是个整数; (6)2N ∈ 2)5=是个自然数.2.已知{|31,}A x x k k Z ==-∈,用 “∈”或“∉” 符号填空: (1)5_______A ; (2)7_______A ; (3)10-_______A .2.(1)5A ∈; (2)7A ∉; (3)10A -∈.当2k =时,315k -=;当3k =-时,3110k -=-; 3.用列举法表示下列给定的集合: (1)大于1且小于6的整数; (2){|(1)(2)0}A x x x =-+=; (3){|3213}B x Z x =∈-<-≤.3.解:(1)大于1且小于6的整数为2,3,4,5,即{2,3,4,5}为所求;(2)方程(1)(2)0x x -+=的两个实根为122,1x x =-=,即{2,1}-为所求; (3)由不等式3213x -<-≤,得12x -<≤,且x Z ∈,即{0,1,2}为所求. 4.试选择适当的方法表示下列集合:(1)二次函数24y x =-的函数值组成的集合;(2)反比例函数2y x=的自变量的值组成的集合; (3)不等式342x x ≥-的解集.4.解:(1)显然有20x ≥,得244x -≥-,即4y ≥-,得二次函数24y x =-的函数值组成的集合为{|4}y y ≥-;(2)显然有0x ≠,得反比例函数2y x =的自变量的值组成的集合为{|0}x x ≠; (3)由不等式342x x ≥-,得45x ≥,即不等式342x x ≥-的解集为4{|}5x x ≥.5.选用适当的符号填空:(1)已知集合{|233},{|2}A x x x B x x =-<=≥,则有:4-_______B ; 3-_______A ; {2}_______B ; B _______A ; (2)已知集合2{|10}A x x =-=,则有:1_______A ; {1}-_______A ; ∅_______A ; {1,1}-_______A ; (3){|}x x 是菱形_______{|}x x 是平行四边形;{|}x x 是等腰三角形_______{|}x x 是等边三角形. 5.(1)4B -∉; 3A -∉; {2}B ; BA ;2333x x x -<⇒>-,即{|3},{|2}A x x B x x =>-=≥; (2)1A ∈; {1}-A ; ∅A ; {1,1}-=A ; 2{|10}{1,1}A x x =-==-; (3){|}x x 是菱形{|}x x 是平行四边形;菱形一定是平行四边形,是特殊的平行四边形,但是平行四边形不一定是菱形;{|}x x 是等边三角形{|}x x 是等腰三角形.等边三角形一定是等腰三角形,但是等腰三角形不一定是等边三角形.6.设集合{|24},{|3782}A x x B x x x =≤<=-≥-,求,AB A B .6.解:3782x x -≥-,即3x ≥,得{|24},{|3}A x x B x x =≤<=≥, 则{|2}AB x x =≥,{|34}A B x x =≤<.7.设集合{|9}A x x =是小于的正整数,{1,2,3},{3,4,5,6}B C ==,求A B ,AC ,()A B C ,()A B C .7.解:{|9}{1,2,3,4,5,6,7,8}A x x ==是小于的正整数, 则{1,2,3}AB =,{3,4,5,6}AC =, 而{1,2,3,4,5,6}B C =,{3}B C =, 则(){1,2,3,4,5,6}AB C =,(){1,2,3,4,5,6,7,8}A B C =.8.学校里开运动会,设{|}A x x =是参加一百米跑的同学,{|}B x x =是参加二百米跑的同学,{|}C x x =是参加四百米跑的同学,学校规定,每个参加上述的同学最多只能参加两项,请你用集合的语言说明这项规定, 并解释以下集合运算的含义:(1)A B ;(2)A C . 8.解:用集合的语言说明这项规定:每个参加上述的同学最多只能参加两项, 即为()A B C =∅.(1){|}AB x x =是参加一百米跑或参加二百米跑的同学;(2){|}A C x x =是既参加一百米跑又参加四百米跑的同学.9.设{|}S x x =是平行四边形或梯形,{|}A x x =是平行四边形,{|}B x x =是菱形,{|}C x x =是矩形,求BC ,A B ð,S A ð.9.解:同时满足菱形和矩形特征的是正方形,即{|}B C x x =是正方形,平行四边形按照邻边是否相等可以分为两类,而邻边相等的平行四边形就是菱形, 即{|}A B x x =是邻边不相等的平行四边形ð, {|}S A x x =是梯形ð.10.已知集合{|37},{|210}A x x B x x =≤<=<<,求()R AB ð,()R A B ð,()R A B ð,()R A B ð.10.解:{|210}AB x x =<<,{|37}A B x x =≤<,{|3,7}R A x x x =<≥或ð,{|2,10}R B x x x =≤≥或ð, 得(){|2,10}R A B x x x =≤≥或ð, (){|3,7}R A B x x x =<≥或ð, (){|23,710}R A B x x x =<<≤<或ð,(){|2,3710}R AB x x x x =≤≤<≥或或ð.B 组1.已知集合{1,2}A =,集合B 满足{1,2}A B =,则集合B 有 个.1.4 集合B 满足AB A =,则B A ⊆,即集合B 是集合A 的子集,得4个子集.2.在平面直角坐标系中,集合{(,)|}C x y y x ==表示直线y x =,从这个角度看, 集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示什么?集合,C D 之间有什么关系?2.解:集合21(,)|45x y D x y x y ⎧-=⎫⎧=⎨⎨⎬+=⎩⎩⎭表示两条直线21,45x y x y -=+=的交点的集合,即21(,)|{(1,1)}45x y D x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,点(1,1)D 显然在直线y x =上,得D C .3.设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求,A B A B .3.解:显然有集合{|(4)(1)0}{1,4}B x x x =--==, 当3a =时,集合{3}A =,则{1,3,4},A B A B ==∅; 当1a =时,集合{1,3}A =,则{1,3,4},{1}A B A B ==; 当4a =时,集合{3,4}A =,则{1,3,4},{4}AB A B ==;当1a ≠,且3a ≠,且4a ≠时,集合{3,}A a =,则{1,3,4,},AB a A B ==∅.4.已知全集{|010}U AB x N x ==∈≤≤,(){1,3,5,7}U A B =ð,试求集合B . 4.解:显然{0,1,2,3,4,5,6,7,8,9,10}U =,由U AB =,得U B A ⊆ð,即()U UAB B =痧,而(){1,3,5,7}U A B =ð, 得{1,3,5,7}U B =ð,而()U UB B =痧,即{0,2,4,6,8.9,10}B =.第一章 集合与函数概念1.2函数及其表示1.2.1函数的概念练习(第19页)1.求下列函数的定义域:(1)1()47f x x =+; (2)()1f x =.1.解:(1)要使原式有意义,则470x +≠,即74x ≠-,得该函数的定义域为7{|}4x x ≠-;(2)要使原式有意义,则1030x x -≥⎧⎨+≥⎩,即31x -≤≤,得该函数的定义域为{|31}x x -≤≤. 2.已知函数2()32f x x x =+,(1)求(2),(2),(2)(2)f f f f -+-的值;(2)求(),(),()()f a f a f a f a -+-的值.2.解:(1)由2()32f x x x =+,得2(2)322218f =⨯+⨯=, 同理得2(2)3(2)2(2)8f -=⨯-+⨯-=,则(2)(2)18826f f +-=+=,即(2)18,(2)8,(2)(2)26f f f f =-=+-=;(2)由2()32f x x x =+,得22()3232f a a a a a =⨯+⨯=+, 同理得22()3()2()32f a a a a a -=⨯-+⨯-=-, 则222()()(32)(32)6f a f a a a a a a +-=++-=,即222()32,()32,()()6f a a a f a a a f a f a a =+-=-+-=.3.判断下列各组中的函数是否相等,并说明理由:(1)表示炮弹飞行高度h 与时间t 关系的函数21305h t t =-和二次函数21305y x x =-; (2)()1f x =和0()g x x =.3.解:(1)不相等,因为定义域不同,时间0t >; (2)不相等,因为定义域不同,0()(0)g x x x =≠. 1.2.2函数的表示法练习(第23页)1.如图,把截面半径为25cm 的圆形木头锯成矩形木料,如果矩形的一边长为xcm , 面积为2ycm ,把y 表示为x 的函数.1,y ==050x <<,即(050)y x =<<.2.下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个图象写出一件事. (1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了作业本再上学;(2)我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3)我出发后,心情轻松,缓缓行进,后来为了赶时间开始加速.2.解:图象(A )对应事件(2),在途中遇到一次交通堵塞表示离开家的距离不发生变化; 图象(B )对应事件(3),刚刚开始缓缓行进,后来为了赶时间开始加速; 图象(D )对应事件(1),返回家里的时刻,离开家的距离又为零;图象(C )我出发后,以为要迟到,赶时间开始加速,后来心情轻松,缓缓行进. 3.画出函数|2|y x =-的图象.3.解:2,2|2|2,2x x y x x x -≥⎧=-=⎨-+<⎩,图象如下所示.4.设{|},{0,1}A x x B ==是锐角,从A 到B 的映射是“求正弦”,与A 中元素60相对应的B 中的元素是什么?与B中的元素2相对应的A 中元素是什么? 4.解:因为3sin 60=,所以与A 中元素60相对应的B因为2sin 45=,所以与B相对应的A 中元素是45. 1.2函数及其表示 习题1.2(第23页)1.求下列函数的定义域: (1)3()4xf x x =-; (2)()f x = (3)26()32f x x x =-+; (4)()1f x x =-. 1.解:(1)要使原式有意义,则40x -≠,即4x ≠, 得该函数的定义域为{|4}x x ≠; (2)x R∈,()f x =即该函数的定义域为R ;(3)要使原式有意义,则2320x x -+≠,即1x ≠且2x ≠,得该函数的定义域为{|12}x x x ≠≠且;(A )(B )(C )(D )(4)要使原式有意义,则4010x x -≥⎧⎨-≠⎩,即4x ≤且1x ≠,得该函数的定义域为{|41}x x x ≤≠且. 2.下列哪一组中的函数()f x 与()g x 相等?(1)2()1,()1x f x x g x x=-=-; (2)24(),()f x x g x ==;(3)2(),()f x x g x =.2.解:(1)()1f x x =-的定义域为R ,而2()1x g x x=-的定义域为{|0}x x ≠, 即两函数的定义域不同,得函数()f x 与()g x 不相等;(2)2()f x x =的定义域为R ,而4()g x =的定义域为{|0}x x ≥,即两函数的定义域不同,得函数()f x 与()g x 不相等;(32x =,即这两函数的定义域相同,切对应法则相同,得函数()f x 与()g x 相等.3.画出下列函数的图象,并说出函数的定义域和值域. (1)3y x =; (2)8y x=; (3)45y x =-+; (4)267y x x =-+. 3.解:(1)义域是(,)-∞+∞,值域是(,)-∞+∞;定 (2)义域是(,0)(0,)-∞+∞,值域是(,0)(0,)-∞+∞;定(3)义域是(,)-∞+∞,值域是(,)-∞+∞; 定(4)义域是(,)-∞+∞,值域是[2,)-+∞.定2()352f x x x =-+,求(f ,()f a -,(3)f a +,4.已知函数()(3)f a f +.2()352f x x x =-+,所以4.解:因为2(3(5(28f =⨯-⨯+=+即(8f =+同理,22()3()5()2352f a a a a a -=⨯--⨯-+=++,即2()352f a a a -=++;22(3)3(3)5(3)231314f a a a a a +=⨯+-⨯++=++,即2(3)31314f a a a +=++;22()(3)352(3)3516f a f a a f a a +=-++=-+,即2()(3)3516f a f a a +=-+.5.已知函数2()6x f x x +=-, (1)点(3,14)在()f x 的图象上吗?(2)当4x =时,求()f x 的值;(3)当()2f x =时,求x 的值.5.解:(1)当3x =时,325(3)14363f +==-≠-, 即点(3,14)不在()f x 的图象上;(2)当4x =时,42(4)346f +==--, 即当4x =时,求()f x 的值为3-;(3)2()26x f x x +==-,得22(6)x x +=-, 即14x =. 6.若2()f x x bx c =++,且(1)0,(3)0f f ==,求(1)f -的值.6.解:由(1)0,(3)0f f ==,得1,3是方程20x bx c ++=的两个实数根, 即13,13b c +=-⨯=,得4,3b c =-=,即2()43f x x x =-+,得2(1)(1)4(1)38f -=--⨯-+=,即(1)f -的值为8.7.画出下列函数的图象:(1)0,0()1,0x F x x ≤⎧=⎨>⎩; (2)()31,{1,2,3}G n n n =+∈. 7.图象如下:8.如图,矩形的面积为10,如果矩形的长为x ,宽为y ,对角线为d ,周长为l ,那么你能获得关于这些量的哪些函数? 8.解:由矩形的面积为10,即10xy =,得10(0)y x x=>,10(0)x y y =>, 由对角线为d,即d =(0)d x =>, 由周长为l ,即22l x y =+,得202(0)l x x x =+>, 另外2()l x y =+,而22210,xy d x y ==+,得(0)l d ===>,即(0)l d =>.9.一个圆柱形容器的底部直径是dcm ,高是hcm ,现在以3/vcm s 的速度向容器内注入某种溶液.求溶液内溶液的高度xcm 关于注入溶液的时间ts 的函数解析式,并写出函数的定义域和值域.9.解:依题意,有2()2dx vt π=,即24v x t dπ=, 显然0x h ≤≤,即240v t h dπ≤≤,得204h d t v π≤≤, 得函数的定义域为2[0,]4h d vπ和值域为[0,]h . 10.设集合{,,},{0,1}A a b c B ==,试问:从A 到B 的映射共有几个?并将它们分别表示出来.10.解:从A 到B 的映射共有8个.分别是()0()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()0()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()0()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩,()1()1()0f a f b f c =⎧⎪=⎨⎪=⎩,()1()0()1f a f b f c =⎧⎪=⎨⎪=⎩.B组1.函数()r f p =的图象如图所示.(1)函数()r f p =的定义域是什么?(2)函数()r f p =的值域是什么?(3)r 取何值时,只有唯一的p 值与之对应?1.解:(1)函数()r f p =的定义域是[5,0][2,6)-;(2)函数()r f p =的值域是[0,)+∞;(3)当5r >,或02r ≤<时,只有唯一的p 值与之对应.2.画出定义域为{|38,5}x x x -≤≤≠且,值域为{|12,0}y y y -≤≤≠的一个函数的图象.(1)如果平面直角坐标系中点(,)P x y 的坐标满足38x -≤≤,12y -≤≤,那么其中哪些点不能在图象上?(2)将你的图象和其他同学的相比较,有什么差别吗?2.解:图象如下,(1)点(,0)x 和点(5,)y 不能在图象上;(2)省略.3.函数()[]f x x =的函数值表示不超过x 的最大整数,例如,[ 3.5]4-=-,[2.1]2=.当( 2.5,3]x ∈-时,写出函数()f x 的解析式,并作出函数的图象.3.解:3, 2.522,211,10()[]0,011,122,233,3x x x f x x x x x x --<<-⎧⎪--≤<-⎪⎪--≤<⎪==≤<⎨⎪≤<⎪≤<⎪⎪=⎩图象如下4.如图所示,一座小岛距离海岸线上最近的点P 的距离是2km ,从点P 沿海岸正东12km 处有一个城镇.(1)假设一个人驾驶的小船的平均速度为3/km h ,步行的速度是5/km h ,t (单位:h)表示他从小岛到城镇的时间,x (单位:km )表示此人将船停在海岸处距P 点的距离.请将t 表示为x 的函数.(2)如果将船停在距点P 4km 处,那么从小岛到城镇要多长时间(精确到1h )?4.解:(112x -,得1235x t -=+,(012)x ≤≤,即125x t -=+,(012)x ≤≤.(2)当4x =时,12483()55t h -==+≈. 第一章 集合与函数概念1.3函数的基本性质1.3.1单调性与最大(小)值练习(第32页)1.请根据下图描述某装配线的生产效率与生产线上工人数量间的关系.1.答:在一定的范围内,生产效率随着工人数量的增加而提高,当工人数量达到某个数量时,生产效率达到最大值,而超过这个数量时,生产效率随着工人数量的增加而降低.由此可见,并非是工人越多,生产效率就越高.2.整个上午(8:0012:00)天气越来越暖,中午时分(12:0013:00)一场暴风雨使天气骤然凉爽了许多.暴风雨过后,天气转暖,直到太阳落山(18:00)才又开始转凉.画出这一天8:0020:00期间气温作为时间函数的一个可能的图象,并说出所画函数的单调区间.2.解:图象如下 [8,12]是递增区间,[12,13]是递减区间,[13,18]是递增区间,[18,20]是递减区间.3.根据下图说出函数的单调区间,以及在每一单调区间上,函数是增函数还是减函数.3.解:该函数在[1,0]-上是减函数,在[0,2]上是增函数,在[2,4]上是减函数,在[4,5]上是增函数.4.证明函数()21f x x =-+在R 上是减函数.4.证明:设12,x x R ∈,且12x x <,因为121221()()2()2()0f x f x x x x x -=--=->,即12()()f x f x >,所以函数()21f x x =-+在R 上是减函数.5.设()f x 是定义在区间[6,11]-上的函数.如果()f x 在区间[6,2]--上递减,在区间[2,11]-上递增,画出()f x 的一个大致的图象,从图象上可以发现(2)f -是函数()f x 的一个 .5.最小值.1.3.2单调性与最大(小)值练习(第36页)1.判断下列函数的奇偶性:(1)42()23f x x x =+; (2)3()2f x x x =- (3)21()x f x x+=; (4)2()1f x x =+. 1.解:(1)对于函数42()23f x x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有4242()2()3()23()f x x x x x f x -=-+-=+=,所以函数42()23f x x x =+为偶函数;(2)对于函数3()2f x x x =-,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有33()()2()(2)()f x x x x x f x -=---=--=-,所以函数3()2f x x x =-为奇函数; (3)对于函数21()x f x x+=,其定义域为(,0)(0,)-∞+∞,因为对定义域内 每一个x 都有22()11()()x x f x f x x x-++-==-=--, 所以函数21()x f x x+=为奇函数; (4)对于函数2()1f x x =+,其定义域为(,)-∞+∞,因为对定义域内每一个x 都有22()()11()f x x x f x -=-+=+=,所以函数2()1f x x =+为偶函数.2.已知()f x 是偶函数,()g x 是奇函数,试将下图补充完整.2.解:()f x 是偶函数,其图象是关于y 轴对称的;()g x 是奇函数,其图象是关于原点对称的.习题1.3A 组1.画出下列函数的图象,并根据图象说出函数()y f x =的单调区间,以及在各单调区间上函数()y f x =是增函数还是减函数.(1)256y x x =--; (2)29y x =-.1.解:(1)5(,)2-∞上递减;函数在5[,)2+∞上递 函数在增;(2)(,0)-∞上递增;函数在[0,)+∞上递 函数在减.2.证明:(1)函数2()1f x x =+在(,0)-∞上是减函数; (2)函数1()1f x x =-在(,0)-∞上是增函数.2.证明:(1)设120x x <<,而2212121212()()()()f x f x x x x x x x -=-=+-,由12120,0x x x x +<-<,得12()()0f x f x ->,即12()()f x f x >,所以函数2()1f x x =+在(,0)-∞上是减函数;(2)设120x x <<,而1212211211()()x x f x f x x x x x --=-=, 由12120,0x x x x >-<,得12()()0f x f x -<,即12()()f x f x <,所以函数1()1f x x=-在(,0)-∞上是增函数. 3.探究一次函数()y mx b x R =+∈的单调性,并证明你的结论.3.解:当0m >时,一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,一次函数y mx b =+在(,)-∞+∞上是减函数,令()f x mx b =+,设12x x <,而1212()()()f x f x m x x -=-,当0m >时,12()0m x x -<,即12()()f x f x <,得一次函数y mx b =+在(,)-∞+∞上是增函数;当0m <时,12()0m x x ->,即12()()f x f x >,得一次函数y mx b =+在(,)-∞+∞上是减函数.4.一名心率过速患者服用某种药物后心率立刻明显减慢,之后随着药力的减退,心率再次慢慢升高.画出自服药那一刻起,心率关于时间的一个可能的图象(示意图).4.解:自服药那一刻起,心率关于时间的一个可能的图象为5.某汽车租赁公司的月收益y 元与每辆车的月租金x 元间的关系为21622100050x y x =-+-,那么,每辆车的月租金多少元时,租赁公司的月收益最大?最大月收益是多少?5.解:对于函数21622100050x y x =-+-, 当162405012()50x =-=⨯-时,max 307050y =(元), 即每辆车的月租金为4050元时,租赁公司最大月收益为307050元.6.已知函数()f x 是定义在R 上的奇函数,当0x ≥时,()(1)f x x x =+.画出函数()f x的图象,并求出函数的解析式.6.解:当0x <时,0x ->,而当0x ≥时,()(1)f x x x =+,即()(1)f x x x -=--,而由已知函数是奇函数,得()()f x f x -=-,得()(1)f x x x -=--,即()(1)f x x x =-,所以函数的解析式为(1),0()(1),0x x x f x x x x +≥⎧=⎨-<⎩.B 组1.已知函数2()2f x x x =-,2()2([2,4])g x x x x =-∈.(1)求()f x ,()g x 的单调区间; (2)求()f x ,()g x 的最小值.1.解:(1)二次函数2()2f x x x =-的对称轴为1x =,则函数()f x 的单调区间为(,1),[1,)-∞+∞,且函数()f x 在(,1)-∞上为减函数,在[1,)+∞上为增函数,函数()g x 的单调区间为[2,4],且函数()g x 在[2,4]上为增函数;(2)当1x =时,min ()1f x =-,因为函数()g x 在[2,4]上为增函数,所以2min ()(2)2220g x g ==-⨯=.2.如图所示,动物园要建造一面靠墙的2间面积相同的矩形熊猫居室,如果可供建造围墙的材料总长是30m ,那么宽x (单位:m )为多少才能使建造的每间熊猫居室面积最大?每间熊猫居室的最大面积是多少?2.解:由矩形的宽为x m ,得矩形的长为3032x m -,设矩形的面积为S , 则23033(10)22x x x S x --==-, 当5x =时,2max 37.5S m =,即宽5x =m 才能使建造的每间熊猫居室面积最大,且每间熊猫居室的最大面积是237.5m .3.已知函数()f x 是偶函数,而且在(0,)+∞上是减函数,判断()f x 在(,0)-∞上是增函数还是减函数,并证明你的判断.3.判断()f x 在(,0)-∞上是增函数,证明如下:设120x x <<,则120x x ->->,因为函数()f x 在(0,)+∞上是减函数,得12()()f x f x -<-,又因为函数()f x 是偶函数,得12()()f x f x <,所以()f x 在(,0)-∞上是增函数. 复习参考题A 组1.用列举法表示下列集合:(1)2{|9}A x x ==;(2){|12}B x N x =∈≤≤;(3)2{|320}C x x x =-+=.1.解:(1)方程29x =的解为123,3x x =-=,即集合{3,3}A =-;(2)12x ≤≤,且x N ∈,则1,2x =,即集合{1,2}B =;(3)方程2320x x -+=的解为121,2x x ==,即集合{1,2}C =.2.设P 表示平面内的动点,属于下列集合的点组成什么图形?(1){|}P PA PB =(,)A B 是两个定点;(2){|3}P PO cm =()O 是定点.2.解:(1)由PA PB =,得点P 到线段AB 的两个端点的距离相等,即{|}P PA PB =表示的点组成线段AB 的垂直平分线;(2){|3}P PO cm =表示的点组成以定点O 为圆心,半径为3cm 的圆.3.设平面内有ABC ∆,且P 表示这个平面内的动点,指出属于集合 {|}{|}P PA PB P PA PC ==的点是什么.3.解:集合{|}P PA PB =表示的点组成线段AB 的垂直平分线,集合{|}P PA PC =表示的点组成线段AC 的垂直平分线,得{|}{|}P PA PB P PA PC ==的点是线段AB 的垂直平分线与线段AC 的垂直平分线的交点,即ABC ∆的外心.4.已知集合2{|1}A x x ==,{|1}B x ax ==.若B A ⊆,求实数a 的值.4.解:显然集合{1,1}A =-,对于集合{|1}B x ax ==,当0a =时,集合B =∅,满足B A ⊆,即0a =;当0a ≠时,集合1{}B a =,而B A ⊆,则11a =-,或11a =, 得1a =-,或1a =,综上得:实数a 的值为1,0-,或1.5.已知集合{(,)|20}A x y x y =-=,{(,)|30}B x y x y =+=,{(,)|23}C x y x y =-=,求A B ,A C ,()()A B B C .5.解:集合20(,)|{(0,0)}30x y A B x y x y ⎧-=⎫⎧==⎨⎨⎬+=⎩⎩⎭,即{(0,0)}A B =; 集合20(,)|23x y A C x y x y ⎧-=⎫⎧==∅⎨⎨⎬-=⎩⎩⎭,即A C =∅;集合3039(,)|{(,)}2355x y B C x y x y ⎧+=⎫⎧==-⎨⎨⎬-=⎩⎩⎭; 则39()(){(0,0),(,)}55A B B C =-. 6.求下列函数的定义域:(1)y =(2)||5y x =-. 6.解:(1)要使原式有意义,则2050x x -≥⎧⎨+≥⎩,即2x ≥,得函数的定义域为[2,)+∞;(2)要使原式有意义,则40||50x x -≥⎧⎨-≠⎩,即4x ≥,且5x ≠,得函数的定义域为[4,5)(5,)+∞. 7.已知函数1()1x f x x-=+,求: (1)()1(1)f a a +≠-; (2)(1)(2)f a a +≠-.7.解:(1)因为1()1x f x x-=+, 所以1()1a f a a -=+,得12()1111a f a a a-+=+=++, 即2()11f a a+=+; (2)因为1()1x f x x-=+, 所以1(1)(1)112a a f a a a -++==-+++, 即(1)2a f a a +=-+. 8.设221()1x f x x +=-,求证:(1)()()f x f x -=; (2)1()()f f x x=-.8.证明:(1)因为221()1x f x x +=-,所以22221()1()()1()1x x f x f x x x+-+-===---, 即()()f x f x -=;(2)因为221()1x f x x +=-,所以222211()11()()111()x x f f x x x x++===---, 即1()()f f x x=-.9.已知函数2()48f x x kx =--在[5,20]上具有单调性,求实数k 的取值范围. 9.解:该二次函数的对称轴为8k x =, 函数2()48f x x kx =--在[5,20]上具有单调性,则208k ≥,或58k≤,得160k ≥,或40k ≤, 即实数k 的取值范围为160k ≥,或40k ≤.10.已知函数2y x -=,(1)它是奇函数还是偶函数? (2)它的图象具有怎样的对称性? (3)它在(0,)+∞上是增函数还是减函数? (4)它在(,0)-∞上是增函数还是减函数? 10.解:(1)令2()f x x -=,而22()()()f x x x f x ---=-==,即函数2y x -=是偶函数;(2)函数2y x -=的图象关于y 轴对称; (3)函数2y x -=在(0,)+∞上是减函数; (4)函数2y x -=在(,0)-∞上是增函数.B 组1.学校举办运动会时,高一(1)班共有28名同学参加比赛,有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,同时参加游泳比赛和田径比赛的有3人,同时参加游泳比赛和球类比赛的有3人,没有人同时参加三项比赛.问同时参加田径和球类比赛的有多少人?只参加游泳一项比赛的有多少人? 1.解:设同时参加田径和球类比赛的有x 人, 则158143328x ++---=,得3x =, 只参加游泳一项比赛的有15339--=(人),即同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人. 2.已知非空集合2{|}A x R x a =∈=,试求实数a 的取值范围. 2.解:因为集合A ≠∅,且20x ≥,所以0a ≥. 3.设全集{1,2,3,4,5,6,7,8,9}U =,(){1,3}U A B =ð,(){2,4}U A B =ð,求集合B .3.解:由(){1,3}U A B =ð,得{2,4,5,6,7,8,9}A B =,集合AB 里除去()U A B ð,得集合B ,所以集合{5,6,7,8,9}B =.4.已知函数(4),0()(4),0x x x f x x x x +≥⎧=⎨-<⎩.求(1)f ,(3)f -,(1)f a +的值.4.解:当0x ≥时,()(4)f x x x =+,得(1)1(14)5f =⨯+=; 当0x <时,()(4)f x x x =-,得(3)3(34)21f -=-⨯--=; (1)(5),1(1)(1)(3),1a a a f a a a a ++≥-⎧+=⎨+-<-⎩.5.证明:(1)若()f x ax b =+,则1212()()()22x x f x f x f ++=; (2)若2()g x x ax b =++,则1212()()()22x x g x g x g ++≤. 5.证明:(1)因为()f x ax b =+,得121212()()222x x x x af a b x x b ++=+=++,121212()()()222f x f x ax b ax b ax x b ++++==++,所以1212()()()22x x f x f x f ++=; (2)因为2()g x x ax b =++,得22121212121()(2)()242x x x x g x x x x a b ++=++++,2212121()()22x x x x a b +=+++, 因为2222212121212111(2)()()0424x x x x x x x x ++-+=--≤,即222212121211(2)()42x x x x x x ++≤+, 所以1212()()()22x x g x g x g ++≤. 6.(1)已知奇函数()f x 在[,]a b 上是减函数,试问:它在[,]b a --上是增函数还是减函数?(2)已知偶函数()g x 在[,]a b 上是增函数,试问:[,]b a --上是增函数还是减函数?它在(1)函数()f x 在[,]b a --上也是减函数,证明如6.下:设12b x x a -<<<-,则21a x x b <-<-<,因为函数()f x 在[,]a b 上是减函数,则21()()f x f x ->-,又因为函数()f x 是奇函数,则21()()f x f x ->-,即12()()f x f x >, 所以函数()f x 在[,]b a --上也是减函数; (2)函数()g x 在[,]b a --上是减函数,证明如下: 设12b x x a -<<<-,则21a x x b <-<-<,因为函数()g x 在[,]a b 上是增函数,则21()()g x g x -<-, 又因为函数()g x 是偶函数,则21()()g x g x <,即12()()g x g x >, 所以函数()g x 在[,]b a --上是减函数.7.《中华人民共和国个人所得税》规定,公民全月工资、薪金所得不超过2000元的部分不必纳税,超过2000元的部分为全月应纳税所得额.此项税款按下表分段累计计算: 某人一月份应交纳此项税款为26.78元,那么他当月的工资、薪金所得是多少? 7.解:设某人的全月工资、薪金所得为x 元,应纳此项税款为y 元,则 由该人一月份应交纳此项税款为26.78元,得25004000x <≤, 25(2500)10%26.78x +-⨯=,得2517.8x =, 所以该人当月的工资、薪金所得是2517.8元.新课程标准数学必修1第二章课后习题解答第二章 基本初等函数(I )2.1指数函数 练习(P54)1. a 21=a ,a 43=43a ,a53-=531a,a32-=321a.2. (1)32x =x 32, (2)43)(b a +=(a +b )43, (3)32n)-(m =(m -n )32,(4)4n)-(m =(m -n )2,(5)56q p =p 3q 25,(6)mm 3=m213-=m 25.3. (1)(4936)23=[(76)2]23=(76)3=343216;(2)23×35.1×612=2×321×(23)31×(3×22)61=231311--×3613121++=2×3=6;(3)a 21a 41a 81-=a814121-+=a 85; (4)2x31-(21x 31-2x 32-)=x 3131+--4x 3221--=1-4x -1=1x4-. 练习(P58)1.如图图2-1-2-142.(1)要使函数有意义,需x -2≥0,即x ≥2,所以函数y =32-x 的定义域为{x |x ≥2};(2)要使函数有意义,需x ≠0,即函数y =(21)x 1的定义域是{x ∣x ≠0}.3.y =2x (x ∈N *)习题2.1 A 组(P59)1.(1)100;(2)-0.1;(3)4-π;(4)x -y .2解:(1)623ba ab=212162122123)(⨯⨯⨯b a a b =23232121--⨯b a =a 0b 0=1. (2)a aa2121=212121a a a⨯=2121a a ⨯=a 21.(3)415643)(mm m m m ∙∙∙=4165413121mm m m m ∙∙=4165413121+++mm=m 0=1.点评:遇到多重根号的式子,可以由里向外依次去掉根号,也可根据幂的运算性质来进行. 3.解:对于(1),可先按底数5,再按键,再按12,最后按,即可求得它的值.答案:1.710 0; 对于(2),先按底数8.31,再按键,再按12,最后按即可. 答案:2.881 0; 对于(3)这种无理指数幂,先按底数3,再按键,再按键,再按2,最后按即可.答案:4.728 8;对于(4)这种无理指数幂,可先按底数2,其次按键,再按π键,最后按即可.答案:8.825 0.4.解:(1)a 31a 43a127=a 1274331++=a 35; (2)a 32a 43÷a 65=a654332-+=a 127;(3)(x 31y43-)12=12431231⨯-⨯yx =x 4y -9;(4)4a 32b 31-÷(32-a 31-b 31-)=(32-×4)31313132+-+b a =-6ab 0=-6a ;(5))2516(462rts -23-=)23(4)23(2)23(6)23(2)23(452-⨯-⨯-⨯--⨯-⨯rts=6393652----rt s =36964125s r r ; (6)(-2x 41y31-)(3x21-y 32)(-4x 41y 32)=[-2×3×(-4)]x 323231412141++-+-yx=24y ;(7)(2x 21+3y41-)(2x 21-3y41-)=(2x 21)2-(3y 41-)2=4x -9y21-;(8)4x 41 (-3x 41y31-)÷(-6x21-y32-)=3231214141643+-++-⨯-y x =2xy 31. 点评:进行有理数指数幂的运算时,要严格按法则和运算顺序,同时注意运算结果的形式,但结果不能既有分数指数又有根式,也不能既有分母又有负指数.5.(1)要使函数有意义,需3-x ∈R ,即x ∈R ,所以函数y =23-x 的定义域为R . (2)要使函数有意义,需2x +1∈R ,即x ∈R ,所以函数y =32x +1的定义域为R . (3)要使函数有意义,需5x ∈R,即x ∈R,所以函数y =(21)5x的定义域为R . (4)要使函数有意义,需x ≠0,所以函数y =0.7x1的定义域为{x |x ≠0}.点评:求函数的定义域一是分式的分母不为零,二是偶次根号的被开方数大于零,0的0次幂没有意义.6.解:设经过x 年的产量为y ,一年内的产量是a (1+100p ),两年内产量是a (1+100p )2,…,x 年内的产量是a (1+100p )x ,则y =a (1+100p )x(x ∈N *,x ≤m ). 点评:根据实际问题,归纳是关键,注意x 的取值范围.7.(1)30.8与30.7的底数都是3,它们可以看成函数y =3x ,当x =0.8和0.7时的函数值;因为3>1,所以函数y =3x 在R 上是增函数.而0.7<0.8,所以30.7<30.8.(2)0.75-0.1与0.750.1的底数都是0.75,它们可以看成函数y =0.75x ,当x =-0.1和0.1时的函数值; 因为1>0.75,所以函数y =0.75x 在R 上是减函数.而-0.1<0.1,所以0.750.1<0.75-0.1.(3)1.012.7与1.013.5的底数都是1.01,它们可以看成函数y =1.01x ,当x =2.7和3.5时的函数值; 因为1.01>1,所以函数y =1.01x 在R 上是增函数.而2.7<3.5,所以1.012.7<1.013.5. (4)0.993.3与0.994.5的底数都是0.99,它们可以看成函数y =0.99x ,当x =3.3和4.5时的函数值; 因为0.99<1,所以函数y =0.99x 在R 上是减函数.而3.3<4.5,所以0.994.5<0.993.3.8.(1)2m ,2n 可以看成函数y =2x ,当x =m 和n 时的函数值;因为2>1,所以函数y =2x 在R 上是增函数.因为2m <2n ,所以m <n . (2)0.2m ,0.2n 可以看成函数y =0.2x ,当x =m 和n 时的函数值;因为0.2<1, 所以函数y =0.2x 在R 上是减函数.因为0.2m <0.2n ,所以m >n . (3)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为0<a <1, 所以函数y =a x 在R 上是减函数.因为a m <a n ,所以m >n . (4)a m ,a n 可以看成函数y =a x ,当x =m 和n 时的函数值;因为a >1, 所以函数y =a x 在R 上是增函数.因为a m >a n ,所以m >n . 点评:利用指数函数的单调性是解题的关键.9.(1)死亡生物组织内碳14的剩余量P 与时间t 的函数解析式为P=(21)57301.当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量为P=(21)573057309⨯=(21)9≈0.002. 答:当时间经过九个“半衰期”后,死亡生物组织内的碳14的含量约为死亡前含量的2‰, 因此,还能用一般的放射性探测器测到碳14的存在.(2)设大约经过t 万年后,用一般的放射性探测器测不到碳14,那么(21)537010000t <0.001,解得t >5.7.答:大约经过6万年后,用一般的放射性探测器是测不到碳14的. B 组1. 当0<a <1时,a 2x -7>a 4x -12⇒x -7<4x -1⇒x >-3;当a >1时,a 2x -7>a 4x -1⇒2x -7>4x -1⇒x <-3. 综上,当0<a <1时,不等式的解集是{x |x >-3};当a >1时,不等式的解集是{x |x <-3}.2.分析:像这种条件求值,一般考虑整体的思想,同时观察指数的特点,要注重完全平方公式的运用. 解:(1)设y =x 21+x21-,那么y 2=(x 21+x21-)2=x +x -1+2.由于x +x -1=3,所以y =5.(2)设y =x 2+x -2,那么y =(x +x -1)2-2.由于x +x -1=3,所以y =7.(3)设y =x 2-x -2,那么y =(x +x -1)(x -x -1),而(x -x -1)2=x 2-2+x -2=5,所以y =±35.点评:整体代入和平方差,完全平方公式的灵活运用是解题的突破口. 3.解:已知本金为a 元.1期后的本利和为y 1=a +a ×r =a (1+r ), 2期后的本利和为y 2=a (1+r )+a (1+r )×r =a (1+r )2, 3期后的本利和为y 3=a (1+r )3, …x 期后的本利和为y =a (1+r )x .将a =1 000,r =0.022 5,x =5代入上式得y =a (1+r )x =1 000×(1+0.022 5)5=1 000×1.02255≈1118.答:本利和y 随存期x 变化的函数关系式为y =a (1+r )x ,5期后的本利和约为1 118元. 4.解:(1)因为y 1=y 2,所以a 3x +1=a -2x .所以3x +1=-2x .所以x =51-. (2)因为y 1>y 2,所以a 3x +1>a -2x . 所以当a >1时,3x +1>-2x .所以x >51-. 当0<a <1时,3x +1<-2x .所以x <51-.2.2对数函数 练习(P64)1.(1)2log 83=; (2)2log 325=; (3)21log 12=-; (4)2711log 33=-2.(1)239=; (2)35125=; (3)2124-=; (4)41381-=3.(1)设5log 25x =,则25255x ==,所以2x =; (2)设21log 16x =,则412216x -==,所以4x =-; (3)设lg1000x =,则310100010x ==,所以3x =; (4)设lg 0.001x =,则3100.00110x -==,所以3x =-;4.(1)1; (2)0; (3)2; (4)2; (5)3; (6)5.练习(P68)1.(1)lg()lg lg lg xyz x y z =++;(2)222lg lg()lg lg lg lg lg 2lg lg xy xy z x y z x y z z=-=++=++;(3)33311lg()lg lg lg lg 3lg lg22xy x y z x y z =-=+-=+-;(4)2211lg()lg (lg lg )lg 2lg lg 22y z x y z x y z ==-+=--. 2.(1)223433333log (279)log 27log 9log 3log 3347⨯=+=+=+=;(2)22lg1002lg1002lg104lg104====;(3)5lg 0.00001lg105lg105-==-=-; (4)11ln 22e ==3. (1)22226log 6log 3log log 213-===; (2)lg5lg 2lg101+==; (3)555511log 3log log (3)log 1033+=⨯==;(4)13333351log 5log 15log log log 31153--====-. 4.(1)1; (2)1; (3)54练习(P73)1.函数3log y x =及13log y x =的图象如右图所示.相同点:图象都在y 轴的右侧,都过点(1,0) 不同点:3log y x =的图象是上升的,13log y x =的图象是下降的关系:3log y x =和13log y x =的图象是关于x 轴对称的.2. (1)(,1)-∞; (2)(0,1)(1,)+∞; (3)1(,)3-∞; (4)[1,)+∞3. (1)1010log 6log 8< (2)0.50.5log 6log 4< (3)2233log 0.5log 0.6> (4) 1.5 1.5log 1.6log 1.4>习题2.2 A 组(P74) 1. (1)3log 1x =; (2)41log 6x =; (3)4log 2x =; (4)2log 0.5x = (5) lg 25x = (6)5log 6x =2. (1)527x = (2) 87x = (3) 43x = (4)173x =(5) 100.3x = (6) xe =3. (1)0; (2) 2; (3) 2-; (4)2; (5) 14-; (6) 2. 4. (1)lg6lg 2lg3a b =+=+; (2) 3lg 42lg 22log 4lg3lg3ab===; (3) 2lg122lg 2lg3lg3log 1222lg 2lg 2lg 2b a +===+=+; (4)3lg lg3lg 22b a =-=-5. (1)x ab =; (2) mx n=; (3) 3n x m =; (4)x =.6. 设x 年后我国的GDP 在1999年的GDP 的基础上翻两番,则(10.073)4x+=解得 1.073log 420x =≈. 答:设20年后我国的GDP 在1999年的GDP 的基础上翻两番.7. (1)(0,)+∞; (2) 3(,1]4.8. (1)m n <; (2) m n <; (3) m n >; (4)m n >. 9. 若火箭的最大速度12000v =,那么62000ln 112000ln(1)61402M M M M e mm m m ⎛⎫+=⇒+=⇒+=⇒≈ ⎪⎝⎭答:当燃料质量约为火箭质量的402倍时,火箭的最大速度可达12km/s.10. (1)当底数全大于1时,在1x =的右侧,底数越大的图象越在下方.所以,①对应函数lg y x =,②对应函数5log y x =,③对应函数2log y x =. (2)略. (3)与原函数关于x 轴对称. 11. (1)235lg 25lg 4lg92lg52lg 22lg3log 25log 4log 98lg 2lg3lg5lg 2lg3lg5⋅⋅=⨯⨯=⨯⨯= (2)lg lg lg log log log 1lg lg lg a b c b c a b c a a b c⋅⋅=⨯⨯= 12. (1)令2700O =,则312700log 2100v =,解得 1.5v =. 答:鲑鱼的游速为1.5米/秒. (2)令0v =,则31log 02100O=,解得100O =. 答:一条鱼静止时的耗氧量为100个单位.B 组1. 由3log 41x =得:143,43x x -==,于是11044333x x -+=+= 2. ①当1a >时,3log 14a<恒成立; ②当01a <<时,由3log 1log 4a a a <=,得34a <,所以304a <<.综上所述:实数a 的取值范围是3{04a a <<或1}a >3. (1)当1I = W/m 2时,112110lg 12010L -==;(2)当1210I -= W/m 2时,121121010lg 010L --==答:常人听觉的声强级范围为0120dB .4. (1)由10x +>,10x ->得11x -<<,∴函数()()f x g x +的定义域为(1,1)- (2)根据(1)知:函数()()f x g x +的定义域为(1,1)-∴ 函数()()f x g x +的定义域关于原点对称又∵ ()()l o g (1)l o g (1)()a a f x g x x x f x g x -+-=-++=+ ∴()()f x g x +是(1,1)-上的偶函数.5. (1)2log y x =,0.3log y x =; (2)3xy =,0.1x y =.习题2.3 A 组(P79)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
章末复习课
网络构建
核心归纳
1.指数函数的图象和性质
一般地,指数函数y =a x (a>0且a ≠1)的图象与性质如下表所示.
注意 (1)对于
a>1与0<a<1,函数值的变化是不同的,因而利用性质时,一定要注意底数的范围,通常要用分类讨论思想.
(2)a>1时,a 值越大,图象向上越靠近y 轴,递增速度越快;0<a<1时,a 值越小,图象向上越靠近y 轴,递减速度越快.
(3)在同一坐标系中有多个指数函数图象时,图象的相对位置与底数大小有如下关系:在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小.即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x =1时,y =a 去理解,如图.
2.对数函数的图象和性质
3.指数函数与对数函数的关系 对数函数y =log a x(a>0且a ≠1)与指数函数y =a x (a>0且a ≠1)互为反函数,其图象关于直线y =x 对称.(如图)
4.幂函数的性质
(1)所有的幂函数在
(0,+∞)上都有定义,并且图象都过点(1,1).
(2)如果α>0,则幂函数的图象过原点,并且在区间[0,+∞)上为增函数.
(3)如果α<0,则幂函数的图象在区间(0,+∞)上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 从原点趋向于+∞时,图象在x 轴上方无限地逼近x 轴.
(4)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.
要点一 指数、对数的运算
指数式的运算首先注意化简顺序,一般负指数先转化成正指数,根式化为分数指数幂运算,其次若出现分式则要注意分子、分母因式分解以达到约分的目的.对数运算首先注意公式应用过程中范围的变化,前后要等价,熟练地运用对数的三个运算性质并结合对数恒等式,换底公式是对数计算、化简、证明常用的技巧.。