华师大版八年级下全等三角形判定(角边角或角角边)
《三角形全等的判定 “角边角”、“角角边”》课件(3套)
\ DAOC DBOD (ASA)
2. 如图,点B、E、C、F在一条直线上,AB=DE,
AB∥DE,∠A=∠D.
求证:BE=CF.
AD
BE
CF
(2) (1)
小明踢球时不慎把一块 三角形玻璃打碎为两块,他是 否可以只带其中的一块碎片 到商店去,就能配一块于原来 一样的三角形玻璃呢?
如果可以,带哪块去合适 呢?为什么?
所以AB=A'B'(全等三角形对应边相等),
D′ C′
∠ABD=∠A'B'D'(全等三角形对应角相等).
因为AD⊥BC,A'D'⊥B'C',所以∠ADB=∠A'D'B'.
在△ABD和△A'B'D'中,
∠ADB=∠A'D'B'(已证), ∠ABD=∠A'B'D'(已证),
全等三角形对应边上 的高也相等.
画法:1、画A/B/=AB; 2、在 A/B/的同旁画∠DA/ B/ =∠A , ∠EB/A/ =∠B, A/ D,B/E交于点C/。
△A/B/C/就是所要画的三角形。
C
E
D
C’
A
B
通过实验你发现了什么规律?A’
B’
探究反映的规律是:
两角和它们的夹边对应相等的两个三角形全 等 (可以简写成“角边角”或“ASA”)。
第十二章 全等三角形
12.2三角形全等的判定
第3课时 “角边角”、“角角边”
学习目标
情境引入
1.探索并正确理解三角形全等的判定方法“ASA”
和“AAS”.
2.会用三角形全等的判定方法“ASA”和“AAS”
全等三角形判定二(ASA,AAS)(基础)知识讲解
全等三角形判定二(ASA ,AAS )(基础)【学习目标】1.理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】【高清课堂:379110 全等三角形判定二,知识点讲解】要点一、全等三角形判定3——“角边角”全等三角形判定3——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”). 要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .要点二、全等三角形判定4——“角角边”1.全等三角形判定4——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”) 要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点三、判定方法的选择已知条件可选择的判定方法 一边一角对应相等SAS AAS ASA 两角对应相等ASA AAS 两边对应相等 SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定3——“角边角”【高清课堂:379110 全等三角形判定二,例5】1、已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.。
初中数学《三角形全等的判定(角角边)》教学设计
教学设计、、、、四、课堂小结解析:由∠1=∠2得∠BAC=∠EAD,再结合其他两个已知条件,可由角角边得出两个三角形全等.证明:∵∠1=∠2,∴∠1+∠EAC=∠2+∠EAC,即∠BAC=∠EAD.在△ABC和△AED中,∠C=∠D,∠BAC=∠EAD,AB=AE,∴△ABC≌△AED(AAS).方法总结:两个相等的角或者两条相等的线段之间如果有公共部分,解题时往往需要加上这段公共部分得到新的相等的角或相等的线段.类型二:利用角角边进行计算如图,在△ABC中,∠C=2∠B,AD是△ABC的角平分线,∠1=∠B,AC=5,CD=3.求AB的长.解析:先根据AAS判定△ACD≌△AED,从而得出对应边相等,根据等量代换及AB=AE+BE即可求出AB的长.解:∵AD是△ABC的角平分线,∴∠CAD=∠EAD.∵∠1=∠B(已知),∴∠AED=∠1+∠B=2∠B(三角形外角的性质),DE=BE(等角对等边),又∵∠C=2∠B,∴∠C=∠AED(等量代换).在△ACD和△AED中,∠C=∠AED,∠CAD=∠EAD,AD=AD,∴△ACD≌△AED(AAS),∴AC=AE,CD=DE(对应边相等),∴CD=BE(等量代换),∴AB=AE+EB=AC+CD=5+3=8.方法总结:利用三角形全等求线段的长,可考虑所求线段与哪一条线段相等,或把要求的线段看成几条线段的和或差,再利用三角形全等及等量代换求解.、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、、至此,我们有五种判定三角形全等的方法:1.全等三角形的定义2.判定定理:边边边(SSS)边角边(SAS)角边角(ASA)角角边(AAS)推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径.对本堂及以前所学知识的拓展创新运用。
培养学生对知识的总结归纳建立知识体系。
初中数学《三角形全等判定定理—“角边角”“角角边”》教案
教学设计复习引入一、巩固旧知1、能够的两个三角形叫做全等三角形。
2、全等三角形的性质有哪些?全等三角形的对应边,对应角。
3、已学的判定两个三角形全等方法有哪些?边边边:对应相等的两个三角形全等。
符号语言:边角边:和它们的对应相等的两个三角形全等。
符号语言:二、自主学习1.在三角形中,已知三个元素的四种情况中,我们研究了三种,今天我们接着探究已知两角一边是否可以判断两三角形全等呢?三角形中已知两角一边又分成哪两种呢?2.现实情境一张教学用的三角板硬纸不小心被撕坏了,如图:你能制作一张与原来同样大小的新道具吗?能恢复原来三角形的原貌吗?(1)以①为模板,画一画,能还原吗?(2)以②为模板,画一画,能还原吗?(3)以③为模板,画一画,能还原吗?(4)第③块中,三角形的边角六个元素中,固定不变的元素是_____________.猜想:两角及夹边对应相等的两个三角形_______.根据学生完成情况,了解学生对已学知识的掌握程度。
通过学生自主学习与思考,初步发现结论,同时激发学生勇于探索的科学精神。
教学过程教学环节教学活动评估要点ABCF ED探究新知 探究点1:三角形全等的判定定理3--“角边角”活动:先任意画出一个△ABC ,再画一个△A ′B ′C ′,使A ′B ′=AB ,∠A ′=∠A ,∠B ′=∠B .把画好的△A ′B ′C ′剪下,放到△ABC 上,它们全等吗?你能得出什么结论?要点归纳: 相等的两个三角形全等(简称“角边角”或“ASA ”).几何语言:如图,在△ABC 和△DE F 中,∴△ABC ≌△DEF .典例精析例1:如图,已知:∠ABC =∠DCB ,∠ACB = ∠DBC .求证:△ABC ≌△DCB .例2:如图,点D 在AB 上,点E 在AC 上,AB =AC , ∠B =∠C .求证:AD=AE .方法总结:证明线段或角度相等,可先证两个三角形全等,利用对应边或对应角相等来解决.针对训练如图,AD ∥BC ,BE ∥DF ,AE =CF .求证:△ADF ≌△CBE .引导学生通过动手画图、剪下来等操作,观察所画的图与原图是否重合,进而得出“角边角”的判定条件,并会用几何语言表述。
三角形全等的判定:角边角、角角边
——洪水未到先筑堤,豺狼未来先磨刀. 一只野狼卧在草上勤奋地磨牙,狐狸看到了,就对它说:天气这么好,大 家在休息娱乐,你也加入我们队伍中吧!野狼没有说话,继续磨牙,把它的牙 齿磨得又尖又利.狐狸奇怪地问道:森林这么静,猎人和猎狗已经回家了,老 虎也不在近处徘徊,又没有任何危险,你何必那么用劲磨牙呢?野狼停下来回 答说:我磨牙并不是为了娱乐,你想想,如果有 一天我被猎人或老虎追逐,到 那时,我想磨牙也来不及了.而平时我就把牙磨好,到那时就可以保护自己了.
等。(可以简写成“边角边”或“SAS”)
用符号语言表达为:
A D
在△ABC与△DEF中 AC=DF
∠C=∠F BC=EF
B
C F E
∴△ABC≌△DEF(SAS)
知识回顾:
A
B SSA不能 判定全等
A
C A
B
D
C
B
D
1.若AB=AC,则添加一个什么条件可得 A △ABD≌ △ACD?
△ABD≌ △ACD
在△ABC和△DEF中 ∠B=∠E BC=EF ∠C=∠F ∴△ABC≌△DEF(ASA)
你能吗?
B A
AB=DE可以吗?
×
C
F
1、如图∠ACB=∠DFE, BC=EF,那么应补充一个条 件 ------------------------- ,才 能使△ABC≌△DEF (写出 一个即可)。 ∠B=∠E AB ∥DE (ASA)
E
F
在△ABC和△DEF中 ∠B=∠E BC=EF ∠C=∠F ∴△ABC≌△DEF(ASA)
两角及一角的对边对应相等的 你能从上题中得到什么结论? 两个三角形全等(AAS)。
如 何 用 符 号 语 言 来 表 达 呢
《三角形全等的判定--角边角-角角边》说课稿-ppt (2)
(四)例题讲解:
如右图,已知∠ ABC= ∠ DCB, ∠ ACB= ∠ DBC, 求证:△ABC≌△DCB。 证明:在△ABC和△DCB中, ∠ABC=∠ DCB(已知), BC=CB (公共边), ∠ACB=∠ DBC(已知) ∴△ABC≌△DCB(A.S.A)。 注意:公共边的利用
证明的书写步骤:
①准备条件:证全等时要用的间接 条件要先证好。 ②三角形全等书写三步骤:
写出在哪两个三角形中; 摆出三个条件用大括号括起来; 写出全等结论。
(六)课堂练习: 1、某同学把一块三角形的玻璃打碎成了三块, 现在要到玻璃店去配一块完全一样的玻璃,那 么最省事的办法是( ) A.带①去 B.带②去 C.带③去 D.带①和②去
一、教材分析 二、教学目标 三、重点难点
【重点】 (1)探究“角边角”公理 (2)利用“角边角”推导出“AAS” (2)理解应用“角边角”公理及其推 论,并能利用它们判定两个三角形全等 【难点】 (1)如何引导学生探究发现“ASA”公理 (2)培养学生严密的逻辑思维力, (3)规范学生证明三角形全等书写格式。
教具准备:一张三角形纸片,教学用三角板, 量角器,多媒体课件
学具准备:三角板,量角器,剪刀或小刀, 铅笔
教学流程
一、教材分析 教学目标 重点难点 二 教法 三 学情学法 四 教学过程
(一)回顾 (二)创设情境,孕育新知 1、生活情境设疑,激发学生兴趣
现在老师手上有一个三角形的教具,但是破弄坏了,你们能 不能用所学过的知识重新做出一个与原来完全一样的教具呢? 大家一起来帮老师想想办法吧
二、教学目标
一、教材分析 二、探究的过程中得出A.S.A推导出 A.A.S定,掌握”角边角“这一三角形全等的判定方法,并 解决实际问题。 2 发展学生有条理的数学语言的表表达能力 【过程与方法】 经历探索三角形全等条件的过程,体会如何探索、 研究问题,培养学生合作精神,让学生初步体会数学中 的类比思想。 【情感态度与价值观】 通过画图、比较、验证,培养学生注重观察、善于 思考、不断总结的良好思维习惯。
第15讲 三角形全等的判定2021年新八年级数学暑假课程(华师大版)(解析版)
第15讲 三角形全等的判定【学习目标】认识全等三角形全等三角形的性质【基础知识】考点一、三角形的内角和三角形内角和定理:三角形的内角和为180°.考点诠释:应用三角形内角和定理可以解决以下三类问题:①在三角形中已知任意两个角的度数可以求出第三个角的度数;②已知三角形三个内角的关系,可以求出其内角的度数;③求一个三角形中各角之间的关系.考点二、三角形的分类1.按角分类:⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形 锐角三角形斜三角形 钝角三角形 考点诠释:①锐角三角形:三个内角都是锐角的三角形;②钝角三角形:有一个内角为钝角的三角形.2.按边分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形 考点诠释:①不等边三角形:三边都不相等的三角形;②等腰三角形:有两条边相等的三角形叫做等腰三角形,相等的两边都叫做腰,另外一边叫做底边,两腰的夹角叫顶角,腰与底边夹角叫做底角;③等边三角形:三边都相等的三角形.考点三、三角形的三边关系1.定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.考点诠释:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.(3)证明线段之间的不等关系.2.三角形的重要线段:一个三角形有三条中线,它们交于三角形内一点,这点称为三角形的重心.一个三角形有三条角平分线,它们交于三角形内一点.三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.考点四、全等三角形的性质与判定1.全等三角形的性质全等三角形对应边相等,对应角相等.2.全等三角形的判定定理全等三角形判定1——“边边边”:三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS”). “全等三角形判定2——“角边角”:两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA”).全等三角形判定3——“角角边”:两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS”)全等三角形判定4——“边角边”:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).考点诠释:(1)如何选择三角形证全等,可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【考点剖析】考点一:三角形的三边关系及分类例1.一个若三角形的两边长分别是2和7,则第三边长c的取值范围是_______.【思路】三角形的两边a、b,那么第三边c的取值范围是│a-b│<c<a+b.【答案】三角形的两边长分别是2和7, 则第三边长c的取值范围是│2-7│<c<2+7,即5<c<9.【总结】三角形任意两边之差小于第三边,若这两边之差是负数时需加绝对值.举一反三【变式】已知△ABC中,AB=6,BC=4,那么边AC的长可能是下列哪个值()A.11 B.5 C.2 D.1【答案】B.解:根据三角形的三边关系,6﹣4<AC<6+4,即2<AC<10,符合条件的只有5.考点二:三角形的重要线段例2.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .【思路】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【答案】70°.【解析】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.【总结】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.考点三:全等三角形的性质和判定例3.两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC⊥BE .【思路】△ABE与△ACD中,已经有两边,夹角可以通过等量代换找到,从而证明△ABE≌△ACD;通过全等三角形的性质,通过倒角可证垂直.【答案】解:(1)△ABE≌△ACD证明:∠BAC=∠EAD=90°∠BAC +∠CAE=∠EAD +∠CAE即∠BAE=∠CAD又AB=AC,AE=AD,△ABE≌△ACD(SAS)(2)由(1)得∠BEA=∠CDA,又∠COE=∠AOD∠BEA+∠COE =∠CDA+∠AOD=90°则有∠DCE=180°- 90°=90°,所以DC ⊥BE.【总结】我们可以试着从变换的角度看待△ABE 与△ACD ,后一个三角形是前一个三角形绕着A 点逆时针旋转90°得到的,对应边的夹角等于旋转的角度90°,即DC ⊥BE.考点四:全等三角形判定的实际应用例4.如图,小叶和小丽两家分别位于A 、B 两处隔河相望,要测得两家之间的距离,请你设计出测量方案.【答案】本题的测量方案实际上是利用三角形全等的知识构造两个全等三角形,是一个三角形在河岸的同一边,通过测量这个三角形中与AB 相等的线段的长,从而得知两家的距离.解:在点B 所在的河岸上取点C ,连结BC ,使CD=CB ,利用测角仪器使得∠B=∠D ,且A 、C 、E 三点在同一直线上,测量出DE 的长,就是AB 的长.在△ABC 和△ECD 中B D CD CB ACB ECD ∠=∠=∠=∠⎧⎪⎨⎪⎩∴△ABC ≌△ECD (ASA )∴AB=DE .【总结】对于实际应用问题,首先要能将它化成数学模型,再根据数学知识去解决. 由已知易证△ABC ≌△ECD ,可得AB=DE ,所以测得DE 的长也就知道两家的距离是多少【真题演练】一.选择题1.下列图形中具有稳定性的是()A.正三角形B.正方形C.正五边形D.正六边形【答案】A2.已知三角形两边长分别为4 cm和9 cm,则下列长度的四条线段中能作为第三边的是 ( )A.13 cm B.6 cm C.5 cm D.4 cm【答案】B;【解析】根据三角形的三边关系进行判定.3.下列说法不正确的是()A.三角形的中线在三角形的内部B.三角形的角平分线在三角形的内部C.三角形的高在三角形的内部D.三角形必有一高线在三角形的内部【答案】C;【解析】解:A、三角形的中线在三角形的内部正确,故本选项错误;B、三角形的角平分线在三角形的内部正确,故本选项错误;C、只有锐角三角形的三条高在三角形的内部,故本选项正确;D、三角形必有一高线在三角形的内部正确,故本选项错误.故选C.4. 在下列结论中, 正确的是( )A.全等三角形的高相等B.顶角相等的两个等腰三角形全等C. 一角对应相等的两个直角三角形全等D.一边对应相等的两个等边三角形全等【答案】D;【解析】A项应为全等三角形对应边上的高相等;B项如果腰不相等不能证明全等;C项直角三角形至少要有一边相等.5.如图,AC=AD,BC=BD,则有()A. AB垂直平分CDB. CD垂直平分ABC. AB与CD互相垂直平分D. CD平分∠ACB【答案】A;【解析】∵AC=AD,BC=BD,∴点A,B在线段CD的垂直平分线上.∴AB垂直平分CD.故选A.6. 如图,△ABC中∠ACB=90°,CD是AB边上的高,∠BAC的角平分线AF交CD于E,则△CEF必为()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【答案】A;【解析】∠CFA=∠B+∠BAF,∠CEF=∠ECA+∠EAC,而∠B=∠ECA,∠BAF=∠EAC,故△CEF为等腰三角形.7. 若△ABC的∠A=60°,且∠B:∠C=2:1,那么∠B的度数为 ( )A.40° B.80° C.60° D.120°【答案】B;【解析】根据三角形内角和180°,以及已知条件可以计算得出∠B的度数为120°.二.填空题8.如图,在▱ABCD中,E、F为对角线AC上两点,且BE∥DF,请从图中找出一对全等三角形:.【答案】△ADF≌△BEC.【解析】∵四边形ABCD是平行四边形,∴AD=BC,∠DAC=∠BCA,∵BE∥DF,∴∠DFC=∠BEA ,∴∠AFD=∠BEC ,在△ADF 与△CEB 中,,∴△ADF ≌△BEC (AAS ).9. △ABC 和△ADC 中,下列三个论断:①AB =AD ;②∠BAC =∠DAC ;③BC =DC .将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:__________. 【答案】①②③;10. 如图,在△ABC 中, ED 垂直平分BC ,EB=3.则CE 长为 .【答案】3;【解析】∵ED 垂直平分BC ,∴可得△BED ≌△CED (SAS )∴CE=BE=3.11. 若三角形三个外角的度数比为2∶3∶4,则此三角形内角分别为____ ____.【答案】100°,60°,20°.12. 如右图,在△ABC 中,∠C =90°,BD 平分∠CBA 交AC 于点D .若AB =a ,CD =b ,则△ADB 的面积为______________ .【答案】ab 21;【解析】由三角形全等知D 点到AB 的距离等于CD =b ,所以△ADB 的面积为ab 21. 13.在△ABC 中,∠B=60°,∠C=40°,AD 、AE 分别是△ABC 的高线和角平分线, 则∠DAE 的度数为_________.【答案】10°.14. 如图,△ABC 中,H 是高AD 、BE 的交点,且BH =AC ,则∠ABC =________.【答案】45°; 【解析】Rt △BDH ≌Rt △ADC ,BD =AD.15. 如图,△ABC 中,BO 、CO 分别平分∠ABC 、∠ACB ,OM ∥AB ,ON ∥AC ,BC =10cm ,则ΔOMN 的周长=______cm .【答案】10;【解析】OM =BM ,ON =CN ,∴△OMN 的周长等于BC.三.解答题16.如图,∠1=∠2,∠3=∠4,求证:AC=AD .【解析】证明:∵∠3=∠4,∴∠ABC=∠ABD ,在△ABC 和△ABD 中,,∴△ABC ≌△ABD (ASA ),∴AC=AD .17.有一座小山,现要在小山A 、B 的两端开一条隧道,施工队要知道A 、B 两端的距离,于是先在平地上取一个可以直接到达A 和B 的点C ,连接AC 并延长到D ,使CD=CA ,连接BC 并延长到E ,使CE=CB ,连接DE ,那么量出DE 的长,就是A 、B 的距离,你能说说其中的道理吗?【解析】解:在△ABC 和△CED 中,AC=CD ,∠ACB=∠ECD (对顶角),EC=BC ,∴△ABC ≌△DEC ,∴AB=ED ,即量出DE 的长,就是A 、B 的距离.18.已知:如图,ABC △中,45ACB ∠=︒,AD ⊥BC 于D ,CF 交AD 于点F ,连接BF并延长交AC 于点E ,BAD FCD ∠=∠.求证:(1)△ABD ≌△CFD ;(2)BE ⊥AC .【解析】E B AD CF证明:(1) ∵ AD ⊥BC ,∴ ∠ADC =∠FDB =90°.∵ 45ACB ∠=︒,∴ 45ACB DAC ∠=∠=︒ ∴ AD =CD ∵ BAD FCD ∠=∠,∴ △ABD ≌△CFD (2)∵△ABD ≌△CFD ∴ BD =FD.∵ ∠FDB =90°,∴ 45FBD BFD ∠=∠=︒.∵ 45ACB ∠=︒,∴ 90BEC ∠=︒.∴ BE ⊥AC .【过关检测】一.选择题1.三角形三条中线的交点叫做三角形的( )A .内心B . 外心C . 中心D . 重心【答案】D2. 如图, 在∠AOB 的两边上截取AO = BO, CO = DO, 连结AD 、BC 交于点P. 则下列结论正确的是( ) ① △AOD ≌△BOC ; ② △APC ≌△BPD ; ③ 点P 在∠AOB 的平分线上A. 只有①B. 只有②C. 只有①②D. ①②③【答案】D ;【解析】可由SAS 证①,由①和AAS 证②,SSS 证③.3. 如图,三角形的角平分线、中线、高的画法错误的个数是( )A.0B.1C.2D.3【答案】D;【解析】三角形的中线是三角形的一个顶点与对边中点连接的线段;三角形的角平分线是指三角形内角的平分线与对边交点连接的线段;三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段4.已知如图,AD∥BC,AB⊥BC,CD⊥DE,CD=ED,AD=2,BC=3,则△ADE的面积为()A. 1B. 2C. 5D. 无法确定【答案】A;【解析】因为知道AD的长,所以只要求出AD边上的高,就可以求出△ADE的面积.过D作BC的垂线交BC 于G,过E作AD的垂线交AD的延长线于F,构造出Rt△EDF≌Rt△CDG,求出GC的长,即为EF的长,然后利用三角形的面积公式解答即可5. 利用尺规作图不能唯一作出三角形的是()A. 已知三边B. 已知两边及夹角C. 已知两角及夹边D. 已知两边及其中一边的对角【答案】D;【解析】A、边边边(SSS);B、两边夹一角(SAS);C、两角夹一边(ASA)都是成立的.只有D是错误的,故选D.6. 如图,AB⊥BC于B,BE⊥AC于E,∠1=∠2,D为AC上一点,AD=AB,则().A.∠1=∠EFD B. FD∥BC C.BF=DF=CD D.BE=EC【答案】B ;【解析】证△ADF≌△ABF,则∠ABF=∠ADF=∠ACB,所以FD∥BC.7. 如图,已知AB=AC,PB=PC,且点A、P、D、E在同一条直线上.下面的结论:①EB=EC;②AD⊥BC;③EA平分∠BEC;④∠PBC=∠PCB.其中正确的有()A.1个B. 2个C.3个D. 4个【答案】D8. 如图所示的4×4正方形网格中,∠1+∠2+∠3+∠4+∠5+∠6+∠7=()A.330° B.315° C.310° D.320°【答案】B;【解析】由图中可知:①∠4=×90°=45°,②∠1和∠7的余角所在的三角形全等∴∠1+∠7=90°同理∠2+∠6=90°,∠3+∠5=90°∠4=45°∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=3×90°+45°=315°.二.填空题9.各边长度都是整数、最大边长为8的三角形共有个.【答案】20.【解析】∵各边长度都是整数、最大边长为8,∴三边长可以为:1,8,8;2,7,8;2,8,8;3,6,8;3,7,8;3,8,8;4,5,8;4,6,8;4,7,8;4,8,8;5,5,8;5,6,8;5,7,8;5,8,8;6,6,8;6,7,8;6,8,8;7,7,8;7,8,8;8,8,8;故各边长度都是整数、最大边长为8的三角形共有20个.10. 如图,已知点C是∠AOB平分线上的点,点P、P′分别在OA、OB上,如果要得到OP=OP′,需要添加以下条件中的某一个即可:①∠OCP=∠OCP′;②∠OPC=∠OP′C;③PC=P′C;④PP′⊥OC.请你写出所有可能的结果的序号:.【答案】①②④;【解析】①OCP=∠OCP′,符合ASA,可得二三角形全等,从而得到 OP=OP′;②∠OPC=∠OP′C;符合AAS,可得二三角形全等,从而得到 OP=OP′;④PP′⊥OC,符合ASA,可得二三角形全等,从而得到 OP=OP′;③中给的条件是边边角,全等三角形判定中没有这个定理.故填①②④11. 如图,已知△ABC是等边三角形,点O是BC上任意一点,OE、OF分别与两边垂直,等边三角形的高为1,则OE+OF的值为.【答案】1;【解析】连接AO,△ABO的面积+△ACO的面积=△ABC的面积,所以OE+OF=等边三角形的高.12.如图,在△ABC中,∠ABC、∠ACB的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC= .【答案】120°;【解析】解:∵∠ABC=42°,∠A=60°,∠ABC+∠A+∠ACB=180°.∴∠ACB=180°﹣42°﹣60°=78°.又∵∠ABC、∠ACB的平分线分别为BE、CD.∴∠FBC=,∠FCB=.又∵∠FBC+∠FCB+∠BFC=180°.∴∠BFC=180°﹣21°﹣39°=120°.故答案为:120°.13. 一个三角形的两边长分别为3和7,且第三边长为整数,这样的三角形的周长最小值是_________.【答案】15;【解析】提示:由三角形三边关系知x可以取5,6,7,8,9,所以三角形的周长最小值为15.14. 如图所示,AD,AE是三角形ABC的高和角平分线,∠B=36°,∠C=76°,则∠DAE的度数.【答案】20°;【解析】解:∵∠B=36°,∠C=76°,∴∠BAC=180°﹣∠B﹣∠C=68°,∵AE是角平分线,∴∠EAC=∠BAC=34°.∵AD是高,∠C=76°,∴∠DAC=90°﹣∠C=14°,∴∠DAE=∠EAC﹣∠DAC=34°﹣14°=20°.15.如图,在△ABC中,AD是∠A的外角平分线,P是AD上异于A的任意一点,设PB=m,PC=n,AB=c,AC=b,则(m+n)与(b+c)的大小关系是 .【答案】m+n>b+c;【解析】在BA的延长线上取点E,使AE=AC,连接ED,EP,∵AD是∠A的外角平分线,∴∠CAD=∠EAD,在△ACP和△AEP中,,∴△ACP≌△AEP(SAS),∴PE=PC,在△PBE中,PB+PE>AB+AE,∵PB=m,PC=n,AB=c,AC=b,∴m+n>b+c.16. 如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为2、3、4、6,且相邻两木条的夹角均可调整。
三角形全等的判定方法(5种)例题+练习(全面)
三角形全等的判定方法(5种)例题+练习(全面)本文讲述了全等三角形的判定方法,重点是边角边和角边角。
边角边指两边及其夹角分别相等的两个三角形全等,可以简写成“SAS”。
需要注意的是,必须是两边及其夹角,不能是两边和其中一边的对角。
例如,在图中的△ABC和△ABD中,虽然有一个角和两边相等,但是这两个三角形不全等。
但是在例1中,如果AC=AD,且∠CAB=∠DAB,则可以证明△ACB≌△ADB。
在例2中,如果AD∥BC,且∠ABC=∠DCB,AB=DC,AE=DF,则可以证明BF=CE。
角边角是指两角及其夹边分别相等的两个三角形全等,可以简写成“ASA”。
例如,在例2中,如果AD平分∠BAC,且∠ABD=∠ACD,则可以直接判定△ABD≌△ACD。
在例3中,如果在Rt△ABC中,BC=2cm,CD⊥AB,且EC=BC,EF=5cm,则可以求出AE的长度。
除了边角边和角边角外,还有三种判定全等三角形的条件。
在例5中,如果在△ABC和△DEF中,AB=DE,BC=EF,且有一个角相等,则可以证明△ABC≌△DEF。
在例6中,如果AB∥DE,AB=DE,BF=CE,则可以证明△ABC≌△DEF。
在例7和例8中,分别是通过角平分线和垂线的判定方法来证明两个三角形全等。
总之,掌握全等三角形的判定方法对于解决几何问题非常重要。
1.如图所示,在三角形ABC中,已知AB=DC,∠ABC=∠DCB。
根据角角边相等可知,∠ACB=∠DCB。
又因为AB=DC,所以BC=AC。
因此,根据SSS(边边边)相等可知,△ABC≌△DCB。
同时,∠ACB=∠DCB,AC=BC=DC。
2.如图所示,在三角形ABD和ABF中,已知AD=AE,∠1=∠2,BD=CE。
根据角角边相等可知,∠ABD=∠BCE。
又因为AD=CE,所以BD=BE。
因此,根据SAS(边角边)相等可知,△ABD≌△BCE。
同时,∠ABD=∠BCE,AD=CE=BE。
三角形全等的判定:角边角和角角边_课件
结论
两角和其中一角对边对应相等的两个三角形全等 简写为“角角边”或“AAS”.
书写规范
如何书写三角形全等的证明过程呢?
在△ABC与△DEF 中
∠B =∠E ∠A =∠D
一定要按“角,角, 边”的顺序列举条件
AC =DF
已知:点E 是正方形ABCD 的边CD上一点,点F 是CB 的延长 线上一点,且EA⊥AF,求证:DE=BF.
提示:证明△ABF ≌△ADE.
已知△ABC 中,BE ⊥AD 于E,CF⊥AD 于F,且BE =CF, 那么BD与DC 相等吗?
提示:证明△BDE ≌△CDF.
补充题 如图,AB∥CD,AD∥BC,那么 AB =CD 吗?为什么 ?AD 与BC 呢?
2.如图,要测量池塘两岸相对的两点A,B 的距离,可以在 池塘外取AB 的垂线BF上的两点C,D,使BC=CD,再画BF 的 垂线DE,使E与A,C在一条直线上,这时测得DE 的长就是 AB 的长.为什么?
如图,小明、小强一起踢球,不小心把一块三角形的装饰玻 璃踢碎了,摔成了3 块,两人决定赔偿.你能告诉他们只带其 中哪一块去玻璃店,就可以买到一块完全一样的玻璃吗?
结论
两角及夹边对应相等的两个三角形全等 简写为“角边角”或“ASA”.
结论 一张教学用的三角形硬纸板不小心被撕坏了,如图,你能 制作一张与原来同样大小的新教具吗?能恢复原来三角形 的原貌吗?
这利用的是什么原理呢?
ASA可以判定三角形全等.
书写规范
如何书写三角形全等的证明过程呢?
在△ABC 与△DEF 中
八年级数学
精品 课件
第十二章 全等三角形:三角形全等的判定
全等三角形的判定-角边角-角角边(最新)知识讲解
(1)AC∥BD,CE=DF, AC=BD
(SAS)
( 2) AC=BD, AC∥BD ∠A=∠B (ASA)
( 3) CE=DF,∠AEC=∠BFD ∠C=∠D (ASA)
( 4)∠ C= ∠D,AC=BD ∠A=∠B A
(ASA)
C
F E
D
B
思考:如果两个三角形有两个角 和其中一个角的对边分别对应相 等,那么这两个三角形是否全等?
用符号语言表达为: AB=DE B C
在△ABC与△DEF中 ∠B=∠E
D
BC=EF
E
F
∴△ABC≌△DEF(SAS)
已知:如图,要得到△ABC≌ △ABD,已经隐含 有条件是__A_B_=__A_B__根据所给的判定方法,在下 列横线上写出还需要的两个条件
(1)_A__C_=_A_D__∠__C_A_B_=__∠_D_A_B (SAS)
如果知道两个三角形的两个角及一条边分别对 应相等,这两个三角形一定全等吗?
这时应该有两种不同的情况: (1)两个角及两角的夹边; (2)两个角及其中一角的对边
图24.2.8
探究1 先任意画出一个△ABC,
再画一个△A'B'C',使A'B'=AB, ∠A'=∠A, ∠B' =∠B 。把画好
的△A'B'C'剪下,放到△ABC上, 它们全等吗?
( 2 ) __B_C_=_B__D__A__C_=_A_D____
(SSS)
C
A
B
D
如图,小明不慎将一块 三角形模具打碎为两 块,他是否可以只带其 中的一块碎片到商店 去,就能配一块与原来 一样的三角形模具吗? 如果可以,带哪块去合 适? 你能说明其中理由吗?
三角形全等的判定“角边角与角角边”(6种题型)-2023年新八年级数学题型(人教版)(解析版)
三角形全等的判定“角边角与角角边”(6种题型)【知识梳理】一、全等三角形判定——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .二、全等三角形判定——“角角边” 1.全等三角形判定——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.【考点剖析】题型一:用“角边角”直接证明三角形全等例1.如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O .求证:△AEC ≌△BED ;【详解】∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中,∠A=∠B ,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩===∴△AEC ≌△BED (ASA ).【变式1】如图,AB =AD ,∠1,DA 平分∠BDE .求证:△ABC ≌△ADE .【解答】证明:∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,∴∠BAC =∠DAE ,∵AB =AD ,∴∠ADB =∠B ,∵DA 平分∠BDE .∴∠ADE =∠ADB ,∴∠ADE =∠B ,在△ABC和△ADE中,{∠ADE=∠B AB=AD∠BAC=∠DAE,∴△ABC≌△ADE(ASA).【变式2】如图,已知∠1=∠2,∠3=∠4,要证BC=CD,证明中判定两个三角形全等的依据是()A.角角角B.角边角C.边角边D.角角边【分析】已知两角对应相等,且有一公共边,利用全等三角形的判定定理进行推理即可.【解答】解:在△ABC与△ADC中,{∠1=∠2 AC=AC∠3=∠4,则△ABC≌△ADC(ASA).∴BC=CD.故选:B.【变式3】(2022•长安区一模)已知:点B、E、C、F在一条直线上,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF,∵AC∥DF,∴∠ACB=∠F,∵BE=CF,∴BE+EC=CF+EC,即BC =EF ,在△ABC 和△DEF 中,{∠B =∠DEFBC =EF ∠ACB =∠F,∴△ABC ≌△DEF (ASA ). 题型二:用“角边角”间接证明三角形全等例2.如图,已知AB ∥CD ,AB =CD ,∠A =∠D .求证:AF =DE .【详解】证明:∵AB //CD ,∴∠B =∠C ,在△ABF 和△DCE 中,A D AB CD BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF ≌△DCE (ASA ),∴AF =DE .【变式1】已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【变式2】如图,AB =AC ,AB ⊥AC ,AD ⊥AE ,且∠ABD =∠ACE .求证:BD =CE .【详解】∵AB ⊥AC ,AD ⊥AE ,∴∠BAE +∠CAE =90°,∠BAE +∠BAD =90°,∴∠CAE =∠BAD .又AB =AC ,∠ABD =∠ACE ,∴△ABD ≌△ACE (ASA ).∴BD =CE .【变式3】如图,要测量河两岸相对两点A 、B 间的距离,在河岸BM 上截取BC =CD ,作ED ⊥BD 交AC 的延长线于点E ,垂足为点D .(DE ≠CD )(1)线段 的长度就是A 、B 两点间的距离(2)请说明(1)成立的理由.【解答】解:(1)线段DE 的长度就是A 、B 两点间的距离;故答案为:DE ;(2)∵AB ⊥BC ,DE ⊥BD∴∠ABC =∠EDC =90°又∵∠ACB =∠DCE ,BC =CD∴△ABC ≌△CDE (ASA )∴AB =DE .【变式4】如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.【答案与解析】证明: ∵AD∥BC,∴∠DAC=∠C∵BF 平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA )∴DE=BF【变式5】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA )∴PM =HN【变式6】如图,已知224m ABC S =△,AD 平分BAC ∠,且AD BD ⊥于点D ,则ADC S =△________2m .【答案】12【详解】解:如图,延长BD 交AC 于点E ,∵AD 平分BAC ∠,AD BD ⊥,∴BAD EAD ∠=∠,90ADB ADE ∠=∠=︒.∵AD AD =,∴()ADB ADE ASA ≌.∴BD DE =.∴ABD AED S S =△△,BCD ECD S S =. ∴12ABD BCD AED ECD ABC S S S S S =++=△△△△△.即12ADC ABC S S =.∵224m ABC S =△,∴212m ADC S =△.故答案为:12.【变式7】(2022秋•苏州期中)如图,△ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE ∥CF .(1)求证:△BDE ≌△CDF ;(2)若AE =13,AF =7,试求DE 的长.【解答】(1)证明:∵AD 是BC 边上的中线,∴BD =CD ,∵BE ∥CF ,∴∠DBE =∠DCF ,在△BDE 和△CDF 中,,∴△BDE ≌△CDF (ASA );(2)解:∵AE =13,AF =7,∴EF =AE ﹣AF =13﹣7=6,∵△BDE ≌△CDF ,∴DE =DF ,∵DE +DF =EF =6,∴DE =3.题型三:用“角角边”直接证明三角形全等例3.如图,在四边形ABCD中,E是对角线AC上一点,AD∥BC,∠ADC=∠ACD,∠CED+∠B=180°.求证:△ADE≌△CAB.【解答】证明:∵∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠DAE=∠ACB,∵∠CED+∠B=180°,∠CED+∠AED=180°,∴∠AED=∠B,在△ADE与△CAB中,{∠DAE=∠ACB ∠AED=∠BAD=AC,∴△ADE≌△CAB(AAS).【变式】(202210块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC 和△CEB 中,∴△ADC ≌△CEB (AAS ); (2)解:由题意得:AD =2×3=6(cm ),BE =7×2=14(cm ),∵△ADC ≌△CEB ,∴EC =AD =6cm ,DC =BE =14cm ,∴DE =DC +CE =20(cm ),答:两堵木墙之间的距离为20cm .题型四:用“角角边”间接证明三角形全等例4、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【变式】已知:如图,90ACB ∠=︒,AC BC =,CD 是经过点C 的一条直线,过点A 、B 分别作AE CD ⊥、 BF CD ⊥,垂足为E 、F ,求证:CE BF =.【答案与解析】证明:∵ CD AE ⊥,CD BF ⊥∴︒=∠=∠90BFC AEC∴︒=∠+∠90B BCF∵,90︒=∠ACB∴︒=∠+∠90ACF BCF∴B ACF ∠=∠在BCF ∆和CAE ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠BC AC B ACE BFC AEC∴BCF ∆≌CAE ∆(AAS )∴BF CE =【总结升华】要证BF CE =,只需证含有这两个线段的BCF ∆≌CAE ∆.同角的余角相等是找角等的好方法.题型五:“边角边”与“角角边”综合应用例5.如图,120CAB ABD ∠+∠=AD 、BC 分别平分CAB ∠、ABD ∠,AD 与BC 交于点O .(1)求AOB ∠的度数;(2)说明AB AC BD =+的理由.【答案】(1)120°;(2)见解析【详解】解:(1)∵AD ,BC 分别平分∠CAB 和∠ABD ,∠CAB +∠ABD =120°,∴∠OAB +∠OBA =60°,∴∠AOB =180°-60°=120°;(2)在AB 上截取AE =AC ,∵∠CAO=∠EAO,AO=AO,∴△AOC≌△AOE(SAS),∴∠C=∠AEO,∵∠C+∠D=(180°-∠CAB-∠ABC)+(180°-∠ABD-∠BAD)=180°,∴∠AEO+∠D=180°,∵∠AEO+∠BEO=180°,∴∠BEO=∠D,又∠EBO=∠DBO,BO=BO,∴△OBE≌△OBD(AAS),∴BD=BE,又AC=AE,∴AC+BD=AE+BE=A B.【变式】如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.【答案】(1)①证明见解析;②证明见解析;(2)DE=AD-BE,证明见解析.【详解】解:(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC 和△CEB 中,CDA BEC DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS ).②证明:由(1)知:△ADC ≌△CEB ,∴AD =CE ,CD =BE ,∵DC +CE =DE ,∴AD +BE =DE .(2)成立.证明:∵BE ⊥EC ,AD ⊥CE ,∴∠ADC =∠BEC =90°,∴∠EBC +∠ECB =90°,∵∠ACB =90°,∴∠ECB +∠ACE =90°,∴∠ACD =∠EBC ,在△ADC 和△CEB 中,ACD CBE ADC BEC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴AD =CE ,CD =BE ,∴DE =EC -CD =AD -BE .题型六:尺规作图——利用角边角或角角边做三角形例6、已知三角形的两角及其夹边,求作这个三角形已知:∠α,∠β和线段c ,如图4-4-21所示.图4-4-21求作:△ABC ,使∠A =∠α,∠B =∠β,AB =c .作法:(1)作∠DAF =∠α;图4-4-224-4-23(2)在射线AF 上截取线段AB =c ;图4-4-24(3)以B 为顶点,以BA 为一边,在AB 的同侧作∠ABE =∠β,BE 交AD 于点C .△ABC 就是所求作的三角形.[点析] 我们这样作出的三角形是唯一的,依据是两角及其夹边分别相等的两个三角形全等. 例7.已知:角α,β和线段a ,如图4-4-29所示,求作:△ABC ,使∠A =∠α,∠B =∠β,BC =a .图4-4-29[解析] 本题所给条件是两角及其中一角的对边,可利用三角形内角和定理求出∠C ,再利用两角夹边作图. 解: 如图4-4-30所示:(1)作∠γ=180°-∠α-∠β;(2)作线段BC =a ;(3)分别以B ,C 为顶点,以BC 为一边作∠CBM =∠β,∠BCN =∠γ;(4)射线BM ,CN 交于点A .△ABC 就是所求作的三角形.图4-4-30【变式】(2022春·陕西·七年级陕西师大附中校考期中)尺规作图已知:α∠,∠β和线段a ,求作ABC ,使A α∠=∠,2B β∠=∠,AB a =.要求:不写作法,保留作图痕迹,标明字母.【详解】解:如图,△ABC即为所求..【过关检测】一、单选题A.带①去B.带②去C.带③去D.①②③都带去【答案】A【分析】根据全等三角形的判定可进行求解【详解】解:第①块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:A.【点睛】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.≌过程中,先作2.(2023春·广东佛山·七年级校考期中)如图,在用尺规作图得到DBC ABCDBC ABC ∠=∠,再作DCB ACB ∠=∠,从而得到DBC ABC ≌,其中运用的三角形全等的判定方法是( )A .SASB .ASAC .AASD .SSS【答案】B 【分析】根据题意分析可得DBC ABC ∠=∠,DCB ACB ∠=∠,再加上公共边BC BC =,根据AAS ,即可判断DBC ABC ≌.【详解】解:∵得DBC ABC ∠=∠, BC BC =,DCB ACB ∠=∠,∴DBC ABC≌()ASA , 故选:B .【点睛】本题考查了作一个角等于已知角,全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3.(2023春·重庆沙坪坝·七年级重庆一中校考期末)如图,OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥于点M ,点N 是射线OA 上的一个动点,连接PN ,若6PM =,则PN 的长度不可能是( )【答案】D 【分析】如图所示,过点P 作PH OA ⊥于H ,证明POH POM △≌△得到6PH PM ==,由垂线段最短可知PN PH ≥,由此即可得到答案.【详解】解:如图所示,过点P 作PH OA ⊥于H ,∵PM OB ⊥,∴90PHO PMO ==︒∠∠,∵OC 平分AOB ∠,∴POH POM ∠=∠,又∵OP OP =,∴()AAS POH POM △≌△,∴6PH PM ==,由垂线段最短可知PN PH ≥,∵(264036=>,∴6,∴四个选项中,只有D 选项符合题意,故选:D .【点睛】本题主要考查了全等三角形的性质与判定,垂线段最短,实数比较大小,正确作出辅助线构造全等三角形是解题的关键. 4.(2023春·陕西咸阳·七年级统考期末)如图,AD BC ∥,ABC ∠的平分线BP 与BAD ∠的平分线AP 相交于点P ,作PE AB ⊥于点E ,若4PE =,则点P 到AD 与BC 的距离之和为( )A .4B .6C .8D .10【答案】C【分析】如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,先证明AD FG ⊥,由角平分线的定义得到EBP GBP =∠∠,进而证明EBP GBP △≌△得到4PG PE ==,同理可得4PF PE ==,则8FG PF PG =+=,由此即可得到答案.【详解】解:如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,∵AD BC ∥,∴AD FG ⊥,∵PE AB ⊥,∴90PFA PEA PEB PGB ====︒∠∠∠∠,∵BP 平分ABC ∠,∴EBP GBP =∠∠,又∵BP BP =,∴()AAS EBP GBP △≌△,∴4PG PE ==,同理可得4PF PE ==,∴8FG PF PG =+=,∴点P 到AD 与BC 的距离之和为8,故选C .【点睛】本题主要考查了平行线的性质,全等三角形的性质与判定,角平分线的定义,平行线间的距离等等,正确作出辅助线构造全等三角形是解题的关键. 5.(2023春·福建福州·七年级福建省福州第十六中学校考期末)如图,90C ∠=︒,点M 是BC 的中点,DM 平分ADC ∠,且8CB =,则点M 到线段AD 的最小距离为( )A .2B .3C .4D .5【答案】C 【分析】如图所示,过点M 作ME AD ⊥于E ,证明MDE MDC △≌△,得到ME MC =,再根据线段中点的定义得到142ME MC BC ===,根据垂线段最短可知点M 到线段AD 的最小距离为4.【详解】解:如图所示,过点M 作ME AD ⊥于E ,∴90MED C ==︒∠∠,∵DM 平分ADC ∠,∴MDE MDC =∠∠,又∵MD MD =,∴()AAS MDE MDC △≌△,∴ME MC =,∵点M 是BC 的中点,8CB =,∴142ME MC BC ===,∴点M 到线段AD 的最小距离为4,故选:C .【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,垂线段最短等等,正确作出辅助线构造全等三角形是解题的关键.6.(2023·全国·八年级假期作业)如图,点E 在ABC 外部,点D 在ABC 的BC 边上,DE 交AC 于F ,若123∠=∠=∠,AE AC =,则( ).A .ABD AFE △≌△B .AFE ADC ≌△△ C .AFE DFC ≌△△D .ABC ADE △≌△ 【答案】D 【分析】首先根据题意得到BAC DAE ∠=∠,E C ∠=∠,然后根据ASA 证明ABC ADE △≌△.【详解】解:∵12∠=∠,∴12DAC DAC ∠+∠=∠+∠,∴BAC DAE ∠=∠,∵23∠∠=,AFE DFC ∠=∠,∴E C ∠=∠,∴在ABC 和ADE V 中,BAC DAE AC AEC E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABC ADE ≌△△, 故选:D .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.7.(2023·浙江·八年级假期作业)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块)你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带( )A .带①去B .带②去C .带③去D .①②③都带去【答案】B 【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:①、③、④块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去, 只有第②块有完整的两角及夹边,符合ASA ,满足题目要求的条件,是符合题意的.故选:B .【点睛】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS . 8.(2023春·浙江宁波·七年级校考期末)如图,ABC 的两条高AD 和BF 相交于点E ,8AD BD ==,10AC =,2AE =,则BF 的长为( )A .11.2B .11.5C .12.5D .13【答案】A 【分析】先证明BDE ADC △≌△,可得 6DE DC ==,14BC =,而10AC =,再由等面积法可得答案.【详解】解:∵ABC 的两条高AD 和BF 相交于点E ,∴90ADB ADC BFA ∠=∠=︒=∠,∵AEF BED ∠=∠,∴DBE DAC ∠=∠,∵8AD BD ==,2AE =,∴BDE ADC △≌△,6DE =,∴6DE DC ==,∴14BC =,而10AC =,由等面积法可得:111481022BF ⨯⨯=⨯⨯,解得:11.2BF =;故选A【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,等面积法的应用,证明BDE ADC △≌△是解本题的关键. 9.(2023春·辽宁沈阳·七年级沈阳市第一二六中学校考阶段练习)如图,抗日战争期间,为了炸毁敌人的碉堡,需要测出我军阵地与敌人碉堡的距离.我军战士想到一个办法,他先面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部点B ;然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上;最后,他用步测的办法量出自己与E 点的距离,从而推算出我军阵地与敌人碉堡的距离,这里判定ABC DEF ≌△△的理由可以是( )A . SSSB . SASC . ASAD . AAA【答案】C 【分析】根据垂直的定义和全等三角形的判定定理即可得到结论.【详解】解:∵士兵的视线通过帽檐正好落在碉堡的底部点B ,然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上,∴A D ∠=∠,∵AC BC ⊥,DF EF ^,∴90ACB DFE ∠=∠=︒,∵AC DF =,∴判定ABC DEF ≌△△的理由是ASA . 故选C .【点睛】本题主要考查了全等三角形的应用,分析题意找到相等的角和边判定三角形的全等是解题的关键.10.(2023春·四川达州·八年级统考期末)如图,已知BP 是ABC ∠的平分线,AP BP ⊥,若212cm BPC S =△,则ABC 的面积( )A .224cmB .230cmC .236cmD .不能确定【答案】A【分析】延长AP 交BC 于点C ,根据题意,易证()ASA ABP DBP ≌,因为APC △和DPC △同高等底,所以面积相等,根据等量代换便可得出2224cm ABC BPC S S ==.【详解】如图所示,延长AP ,交BC 于点D ,,∵AP BP ⊥,∴90APB DPB ∠=∠=︒,∵BP 是ABC ∠的角平分线,∴ABP DBP ∠=∠,在ABP 和DBP 中,ABP DBP BP BP APB DPB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABP DBP ≌,∴AP DP =,∴ABP DBP S S =△△,∵APC △和DPC △同底等高,∴APC DPC S S =△,∴PBC DPB DPC ABP APC S S S S S =+=+△△△△,∴2224ABC BPC S S cm ==,故选:C .【点睛】本题考查了三角形的角平分线和全等三角形的判定,解题的关键是熟练运用三角形的角平分线和全等三角形的判定.二、填空题 11.(2023·浙江·八年级假期作业)如图,D 在AB 上,E 在AC 上,且B C ∠=∠,补充一个条件______后,可用“AAS ”判断ABE ACD ≌.【答案】BE CD =或AE AD =【分析】由于两个三角形已经具备B C ∠=∠,A A ∠=∠,故要找边的条件,只要不是这两对角的夹边即可.【详解】解:∵B C ∠=∠,A A ∠=∠,∴若用“AAS ”判断ABE ACD ≌,可补充的条件是BE CD =或AE AD =;故答案为:BE CD =或AE AD =.【点睛】本题考查了全等三角形的判定,熟知掌握判定三角形全等的条件是解题的关键.七年级期末)如图,在ABC 中, 【答案】ASA【分析】由AD BC ⊥、AD 平分BAC ∠、AD AD =可得出两个三角形对应的两个角及其夹边相等,于是可以利用ASA 判定这两个三角形全等.【详解】∵AD BC ⊥,∴90BDA CDA ︒=∠=∠.∵AD 平分BAC ∠,∴BAD ∠CAD =∠.在ABD △与ACD 中,BDA CDA AD AD BAD CAD ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABD ACD ≌.故答案为:ASA【点睛】本题考查了三角形全等的判定条件,解题的关键是找到两个三角形对应的边角相等. 13.(2023春·陕西榆林·七年级统考期末)如图,AB CD ⊥,且AB CD =,连接AD ,CE AD ⊥于点E ,BF AD ⊥于点F .若8CE =,5BF =,4EF =,则AD 的长为________.【答案】9【分析】只要证明(AAS)ABF CDE ≌,可得8AF CE ==,5BF DE ==,推出AD AF DF =+即可得出答案.【详解】解:∵AB CD ⊥,CE AD ⊥,BF AD ⊥,∴90AFB CED ∠=∠=︒,90A D ∠+∠=︒,90C D ∠=∠=︒,∴A C ∠=∠,∵AB CD =,∴(AAS)ABF CDE ≌,∴8AF CE ==,5BF DE ==,∵4EF =,∴()8549AD AF DF =+=+−=,故答案为:9.【点睛】本题考查全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 14.(2023春·山东枣庄·七年级统考期末)如图,A ,B 两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF ,且使BF AB ⊥,在BF 上截取BC CD =,过D 点作DE BF ⊥,使E C A ,,在一条直线上,测得16DE =米,则A ,B 之间的距离为______米.【答案】16【分析】根据已知条件可得ABC EDC △≌△,从而得到DE AB =,从而得解.【详解】∵BF AB DE BF ⊥⊥,,∴90B EDC ∠=∠=°,∵90B EDC ∠=∠=,BC CD BCA DCE =∠=∠,,∴()ASA ABC EDC ≌△△,∴DE AB =.又∵16DE =米,∴16AB =米,即A B ,之间的距离为16米.【点睛】此题主要考查全等三角形的应用,解题的关键是熟知全等三角形的判定方法.15.(2023·广东茂名·统考一模)如图,点A 、D 、C 、F 在同一直线上,AB DE ∥,AD CF =,添加一个条件,使ABC DEF ≌△△,这个条件可以是______.(只需写一种情况)【答案】BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =(答案不唯一)【分析】先证明A EDF ∠=∠及AC DF =,然后利用全等三角形的判定定理分析即可得解.【详解】解∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =,理由是∶∵AB DE ∥,∴A EDF ∠=∠,∵AD CF =,∴AD CD CF CD +=+即AC DF =,当BC EF ∥时,有BCA EFD ∠=∠,则() ASA ABC DEF ≌, 当BCA EFD ∠=∠时,则() ASA ABC DEF ≌, 当B E ∠=∠时,则() AAS ABC DEF ≌, 当AB DE =时,则() SAS ABC DEF ≌,故答案为∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =.【点睛】本题考查了对全等三角形的判定定理的应用,掌握全等三角形的判定定理有SAS , ASA , AAS , SSS 是解题的关键. 16.(2023春·上海虹口·七年级上外附中校考期末)如图,有一种简易的测距工具,为了测量地面上的点M 与点O 的距离(两点之间有障碍无法直接测量),在点O 处立竖杆PO ,并将顶端的活动杆PQ 对准点M ,固定活动杆与竖杆的角度后,转动工具至空旷处,标记活动杆的延长线与地面的交点N ,测量点N 与点O 的距离,该距离即为点M 与点O 的距离.此种工具用到了全等三角形的判定,其判定理由是______.【答案】两个角及其夹边对应相等的两个三角形全等【分析】根据全等三角形的判定方法进行分析,即可得到答案.【详解】解:在POM 和PON △中,90OP OPPOM PON ⎪=⎨⎪∠=∠=︒⎩, ()ASA POM PON ∴≌,∴判定理由是两个角及其夹边对应相等的两个三角形全等,故答案为:两个角及其夹边对应相等的两个三角形全等.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题关键.【答案】 = 180BCA α∠+∠=︒【分析】①求出90BEC AFC ∠=∠=︒,CBE ACF ∠=∠,根据AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果;②求出CBE ACF ∠=∠,由AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果.【详解】解:①90BCA ∠=︒,90α∠=︒,90BCE CBE ∴∠+∠=︒,90BCE ACF ∠+∠=︒,CBE ACF ∴∠=∠,在BCE 和CAF V 中,BEC CFACB CA ⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△,BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,②α∠与BCA ∠应满足180BCA α∠+∠=︒,在BCE 中,180180CBE BCE BEC α∠+∠=︒−∠=︒−∠,180BCA α∠=︒−∠,BCA CBE BCE ∴∠=∠+∠,ACF BCE BCA ∠+∠=∠,CBE ACF ∴∠=∠,在BCE 和CAF V 中,CBE ACF BEC CFACB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△, BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,故答案为:=,180BCA α∠+∠=︒.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质、三角形的面积计算、三角形的外角性质等知识;解题的关键是判断出BCE CAF ≌△△. ABC 的角平分线,过点【答案】4【分析】延长CE 与BA 的延长线相交于点F ,利用ASA 证明ABD △和ACF △全等,进而利用全等三角形的性质解答即可.【详解】解:如图,延长CE 与BA 的延长线相交于点F ,90EBF F ∠+∠=︒,90ACF F ∠+∠=︒,EBF ACF ∴∠=∠,在ABD △和ACF △中,EBF ACF AB ACBAC CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ABD ACF ∴≌, BD CF ∴=,BD Q 是ABC ∠的平分线,EBC EBF ∴∠=∠.在BCE 和BFE △中,BE BECEB FEB ⎪=⎨⎪∠=∠⎩,()ASA BCE BFE ∴≌, CE EF ∴=,2CF CE ∴=,24BD CF CE ∴===.故答案为:4.【点睛】本题主要考查了全等三角形的性质和判定,理解题意、灵活运用全等三角形的判定与性质是解题的关键.三、解答题【答案】(1)见解析(2)5【分析】(1)首先根据垂直判定AB EF ∥,得到ABC F ∠=∠,再利用AAS 证明即可;(2)根据全等三角形的性质可得9AB CF ==,4BC EF ==,再利用线段的和差计算即可.【详解】(1)解:∵CD AB ⊥,EF CE ⊥,∴AB EF ∥,∴ABC F ∠=∠,在ABC 和CFE 中,ACB EAC CE ⎪∠=∠⎨⎪=⎩, ∴()AAS ABC CFE △△≌; (2)∵ABC CFE △△≌, ∴9AB CF ==,4BC EF ==,∴5BF CF BC =−=.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,解题的关键是找准条件,证明三角形全等. 20.(2023春·陕西西安·七年级西安市铁一中学校考期末)如图,A ,C ,D 三点共线,ABC 和CDE 落在AD 的同侧,AB CE ∥,BC DE =,B D ∠=∠.求证:AB CE AD +=.【答案】见解析【分析】证明()AAS ABC CDE ≌,得出AB CD =,BC CE =,即可证明结论.【详解】解:∵AB CE ∥,∴A DCE ∠=∠,∵B D ∠=∠,BC DE =,∴()AAS ABC CDE ≌,∴AB CD =,BC CE =,∴AB CE CD AC AD +=+=.【点睛】本题主要考查了平行线的性质,三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法证明ABC CDE △≌△.21.(2022秋·八年级课时练习)已知αβ∠∠,和线段a (下图),用直尺和圆规作ABC ,使A B AB a αβ∠=∠∠=∠=,,.【答案】见解析 【分析】先作出线段AB a =,再根据作与已知角相等的角的尺规作图方法作DAB EBA αβ∠=∠∠=∠,即可得到答案.【详解】解:作法如下图.1.作一条线段AB a =.2.分别以A ,B 为顶点,在AB 的同侧作DAB EBA αβ∠=∠∠=∠,,DA 与EB 相交于点C .ABC 就是所求作的三角形.【点睛】本题主要考查了三角形的尺规作图,熟知相关作图方法是解题的关键.22.(2023春·全国·七年级专题练习)如图,已知ABC ,请根据“ASA”作出DEF ,使DEF ABC ≌.【答案】见解析【分析】先作MEN B ∠=∠,再在EM 上截取ED BA =,在EN 上截取EF BC =,从而得到DEF ABC ≌.【详解】解:如图,DEF 为所作.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定. 23.(2023春·山西太原·七年级校考阶段练习)如图,点B 、F 、C 、E 在同一条直线上,已知FB CE =,AB DE ∥,ACB DFE ∠=∠,试说明:AC DF =.【答案】见解析【分析】利用ASA 定理证明三角形全等,然后利用全等三角形的性质分析求解.【详解】解:∵FB CE =,∴FB FC CE FC +=+,即BC EF =,∵AB DE ∥,∴B E ∠=∠,在ABC 和DEF 中B E BC EF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABC DEF ≌△△, ∴AC DF =.【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法:SSS 、SAS 、ASA 、AAS 、HL .三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.(2020秋·广东广州·八年级海珠外国语实验中学校考阶段练习)如图,已知:EC AC =,BCE DCA ∠=∠,A E ∠=∠.求证:AB ED =.【答案】见解析【分析】先求出ACB ECD ∠=∠,再利用“角边角”证明ABC 和EDC △全等,然后根据全等三角形对应边相等证明即可.【详解】证明:∵BCE DCA ∠=∠,∴BCE ACE DCA ACE ∠+∠=∠+∠,即ACB ECD ∠=∠.在ABC 和EDC △中,∵ACB ECD AC ECA E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABC EDC ≌△△.∴AB ED =.【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.25.(2023春·福建宁德·七年级校考阶段练习)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△; (2)若10BE =,3BF =,求FC 的长度.【答案】(1)见解析(2)4【分析】(1)由AB DE ∥,得ABC DEF ∠=∠,而AB DE =,A D ∠=∠,即可根据全等三角形的判定定理“ASA ”证明ABC DEF ≌△△; (2)根据全等三角形的性质得BC EF =,则3BF CE ==,即可求得FC 的长度.【详解】(1)解:证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 和DEF 中,A D AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABC DEF ≌△△; (2)解:由(1)知()ASA ABC DEF ≌△△,∴BC EF =, ∴BF FC CE FC +=+,∴3BF CE ==,∵10BE =,∴10334FC BE BF CE =−−=−−=,∴FC 的长度是4.【点睛】此题重点考查全等三角形的判定与性质、平行线的性质等知识,根据平行线的性质证明ABC DEF ∠=∠是解题的关键. 26.(2023·浙江·八年级假期作业)如图,ABC 中,BD CD =,连接BE ,CF ,且BE CF ∥.(1)求证:BDE CDF ≌;(2)若15AE =,8AF =,试求DE 的长.【答案】(1)证明见解析(2)72【分析】(1)根据平行线的性质可得BED CFD Ð=Ð,根据全等三角形的判定即可证明;(2)根据全等三角形的性质可得DE DF =,即可求得.【详解】(1)证明:∵BE CF ∥,∴BED CFD Ð=Ð,∵BDE CDF ∠=∠,BD CD =,∴()AAS BDE CDF ≌;(2)由(1)结论可得DE DF =,∵1587EF AE AF =−=−=,∴72DE =.【点睛】全等三角形的判定和性质,熟练掌握平行线的性质,全等三角形的判定和性质是解题的关键. 27.(2023春·江西鹰潭·七年级校考阶段练习)将两个三角形纸板ABC 和DBE 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=︒,求BED ∠的度数.【答案】(1)见解析(2)36BED ∠=︒【分析】(1)利用AAS 证明三角形全等即可;(2)全等三角形的性质,得到BED BCA ∠=∠,证明()SSS DBC ABC ≌,得到1362BCD BCA ACD ∠=∠=∠=︒,即可得解.【详解】(1)解:因为DBA CBE ∠=∠,所以DBA ABE CBE ABE ∠+∠=∠+∠,即DBE ABC ∠=∠.在ABC 和DBE 中,ABC DBE BAC BDEAC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, 所以()AAS ABC DBE ≌. (2)因为ABC DBE ≌△△, 所以BD BA =,BCA BED ∠=∠.在DBC △和ABC 中,DC AC CB CBBD BA =⎧⎪=⎨⎪=⎩, 所以()SSS DBC ABC ≌, 所以1362BCD BCA ACD ∠=∠=∠=︒,所以36BED BCA ∠=∠=︒.【点睛】本题考查全等三角形的判定和性质.解题的关键是证明三角形全等. 28.(2023春·河南驻马店·七年级统考期末)如图,线段AD 是ABC 的中线,分别过点B 、C 作AD 所在直线的垂线,垂足分别为E 、F .(1)请问BDE 与CDF 全等吗?说明理由;(2)若ACF △的面积为10,CDF 的面积为6,求ABE 的面积.【答案】(1)BDE CDF ≌△△,见解析 (2)22【分析】(1)利用AAS 证明三角形全等即可.(2)根据中线性质,得到,ABD ACD ACF CDF CDF ==+=△△△△△BDE △S S S S S S ,结合ABEABD BDE S S S =+△△△计算即可. 【详解】(1)BDE CDF ≌△△,理由如下: ∵AD 是ABC 的中线,∴BD CD =,∵BE AE ⊥,CF AE ⊥,∴90BED CFD ∠=∠=︒,在BDE 和CDF 中,BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS BDE CDF ≌.(2)∵10ACF S =△,6CDF S =△,BDE CDF ≌,∴10616ACD ACF CDF S S S =+=+=△△△,6BDE CDF S S ==,∵BD CD =∴ABD △和ACD 是等底同高的三角形∴16ABD ACD S S ==△△∴16622ABE ABD BDE S S S =+=+=△△△.【点睛】本题考查了三角形全等的判定和性质,中线的性质,三角形面积的计算,熟练掌握三角形全等的判定和性质,中线的性质是解题的关键. 29.(2019·七年级单元测试)(1)求证:等边三角形内的任意一点到两腰的距离之和等于定长.(提示:添加辅助线证明)(2)如图所示,在三角形ABC 中,点D 是三角形内一点,连接DA 、DB 、DC ,若,=∠=∠AB AC ADB ADC ,求证:AD 平分BAC ∠.【答案】(1)详见解析;(2)详见解析.【分析】(1)已知点P 是等边三角形ABC 内的任意一点,过点P 分别作三边的垂线,分别交三边于点D 、点E 、点F .求证PD PE PF ++为定长,即可完成证明;(2)(面积法)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.因为ADB ADC ∠=∠,所以ADE ADF ∠=∠,因此(AAS)ADF ADE ≅,得到AF AE =.进而AFC AEB ≅,得到ABD ACD ∠=∠,因此BAD CAD ∠=∠,即AD 平分BAC ∠.【详解】(1) 已知:等边如图三角形ABC ,P 为三角形ABC 内任意一点,PD ⊥AB, PF ⊥AC, PE ⊥BC, 求证:PD+PE+PF 为定值.证明:如图:过点A 作AG BC ⊥,垂足为点G ,分别连接AP 、BP 、CP .∵ABC ABP BCP CAP S S S S =++, ∴11112222BC AG BC PE AC PF AB PD =++又∵BC=AB=AC∴AG=PE+PF+PD,即PD PE PF AG ++=定长.∴等边三角形内的任意一点到两腰的距离之和等于定长.(2)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.∵ADB ADC ∠=∠,∴ADE ADF ∠=∠,又∵AD=AD∴(AAS)ADF ADE ≅,∴AF AE =∴AFC AEB ≅,∴ABD ACD ∠=∠,∴BAD CAD ∠=∠,即AD 平分BAC ∠.【点睛】本题考查了等边三角形的性质和全等三角形的性质和判定,其中做出辅助线是解答本题的关键.。
《角边角》教学设计
<<角边角>>教学设计一、教学内容和地位《角边角》是华东师大版八年级下册第19章“三角形全等判定”的第二课时,它是同学们在学习了三角形有关要素、全等图形的概念的学习以及学习第一种识别方法“SAS”基础上,进一步学习三角形全等的判定方法,为后续学习内容奠定了基础,是初中数学的重要内容。
二、学情分析其内容本身有一定难度,班级学生的智力水平参差不齐,基础和发展均不平衡,但八年级的学生却又已经具备了一定的学习能力。
三、教法与学法本节课我采用“创设问题情境,提出猜想→验证猜想→归纳总结→运用与拓展”来展开,并用多媒体辅助演示和训练,在探索三角形全等判别方法的过程中,不是简单地让学生去发现课本上给出的判别方法而是让学生通过动手操作经历知识形成,从而调动、引导学生发现三角形全等的判别方法,给学生创设自主探索、合作交流、独立获取知识的机会,进而让学生更好地理解和掌握三角形全等的判定方法,且教师给于充分肯定。
通过本节课的教学,让学生学会自己探索知识,发现掌握、主动获取知识的能力,逐步养成通过合作交流形成勇于探索的意识,从而养成尊重客观事实和形成质疑的习惯。
四、教学目标(一)知识与能力:1.让学生在探究的过程中得出“ASA”公理和“AAS”推论。
2.使学生会运用”角边角定理”解决实际问题。
(二)过程与方法1.初步渗透综合法和分析法的思想方法,提高学生演绎推理的条理性和逻辑性。
2.在探究的过程中提高学生观察、分析归纳能力,体会利用数学建模解决实际问题的方法。
(三)情感与态度:1.让学生经历数学活动,体验主动探究问题的乐趣与成功的快乐,感受数学活动充满探索与创新的机遇;2.培养学生总结知识内容,使之条理化的良好学习习惯。
五、教学重点和难点1.教学重点:理解“角边角公理”及其推论,并能利用它们判定两个三角形全等。
2.教学难点:如何引导学生发现“ASA”和“AAS”和它们灵活运用。
六、整合点整合点1:视频引入,提出猜想。
全等三角形的判定-角边角和角角边
在选择时,可以根据已知条件的多少和问题的具体要求来决定使用哪种判定法。例如,如果 已知条件更符合角边角(ASA)判定法的条件,那么选择角边角(ASA)判定法可能更为简 便和直接。
PART 05
全等三角形的应用
两种方法的应用范围
角边角(ASA)判定法
01
适用于已知两个角和它们之间
的边的情况。
02
在几何证明和实际问题中广泛
应用,如建筑设计、地图制作
等。
03
角角边(AAS)判定法
04
适用于已知两个角和一个非夹
角的边的情况。
05
在解决一些特定问题时更为方
便,如测量问题、航海问题等
。
06
两种方法的选择原则
选择原则
角边角判定法的应用
在证明两个三角形全等时,如果已知条件符合角边角判定法 ,可以直接应用该判定法得出结论。
角边角判定法也可以用于解决一些实际问题,例如测量、绘 图等。
角边角判定法的证明
根据三角形的内角和性质,两个三角形的两组对应角相等,则它们的第三组对应角 也相等。
由于夹边相等,根据三角形的边角边全等判定,这两个三角形全等。
因此,角边角判定法得证。
PART 03
角角边判定法
REPORTING
WENKU DESIGN
角角边判定法的定义
两个三角形中,如果两个角分别相等,且这两个角所夹的一边也相等,则这两个 三角形全等。
简称"AAS"或"角角边"判定法。
角角边判定法的应用
在证明两个三角形全等时,如果已知条件符合角角边判定 法,可以直接应用此判定法证明三角形全等。
[初中数学]三角形全等的判定说课稿 华东师大版
《三角形全等的判定》说课稿广东顺德陈村镇初级中学数学科组姚丹雯各位评委,各位嘉宾,各位老师,大家好!我是顺德区陈村镇中学数学科组的姚丹雯老师。
今天我说课的内容是《三角形全等判定二》。
下面,就是我本节课的设计意图。
一、教材分析。
(一)、教材的地位与作用:本节课采用的版本是华东师大版八年级下册,是学生了解全等图形和全等三角形的基础上进行学习的,而且在此之前已经学习了全等三角形的判定“边角边”,后面还要学习几种新的判定方法,它既是前面所学知识的延伸与拓展,又是后面探索相似形的条件的基础。
因此,本节课的知识具有承上启下的作用。
(二)、教学目标的确定1、知识目标(1)用动点交轨的角度让学生探索全等三角形的条件。
(2)学生探索出全等三角形的条件“角边角”、“角角边”,结合图形能准确表述三角形全等。
(3)学生能运用“角边角”、“角角边”的方法进行三角形全等的判定。
2、能力目标(1)通过动手画图、实验,理解和掌握“角边角”判定方法。
(2)通过“角边角”、“角角边”的判定方法的运用,提高学生的逻辑思维能力、分析问题和解决问题的能力。
(3)通过对几何图形的观察,培养学生的识图能力。
3、情感目标(1)学生通过观察实际生活问题,感受三角形全等在现实中的应用价值。
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.(三)、教学重难点教学重点、难点:掌握三角形全等的条件“ASA”、“AAS”的应用和推理过程的规范表达。
二、教学原则、方法考虑到班里学生成绩的差异,尽可能让每个学生都学有所得,都能在原基础上得到最大限度的发展,因材施教是最基本的教学原则。
基于本节课的特点,我在教学中采用引导发现教学法、实践探索法、讲练结合法。
三、教学手段通过实验,动手操作,辅之以多媒体教学,演示动画图形变化,一方面便于学生直观地理解、形象地领悟,另一方面可以活跃课堂气氛。
四、学法指导采用“自主探究式”教学模式,以学生为主体,教师为主导,通过教师的引导,组织学生参与“猜想—实践---观察---归纳---应用”的活动。
全等三角形判定基础知识讲解
全等三角形判定(基础)【学习目标】1.理解和掌握全等三角形判定方法“边角边”、“角边角”、“角角边”、“边边边”定理.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.【要点梳理】要点一、全等三角形判定1——“边角边”1. 全等三角形判定1——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”). 要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等. 要点二、全等三角形判定2——“角边角”全等三角形判定2——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C . 要点三、全等三角形判定3——“角角边”1.全等三角形判定3——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE ∥BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.要点四、全等三角形判定4——“边边边”全等三角形判定4——“边边边”三边对应相等的两个三角形全等.(可以简写成“边边边”或“SSS ”).要点诠释:如图,如果''A B =AB ,''A C =AC ,''B C =BC ,则△ABC ≌△'''A B C . 要点五、判定方法的选择1.选择哪种判定方法,要根据具体的已知条件而定,见下表:已知条件可选择的判定方法SAS AAS ASA一边一角对应相等两角对应相等ASA AAS两边对应相等SAS SSS2.如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等;(2)可以从已知出发,看已知条件确定证哪两个三角形全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,就添加辅助线,构造全等三角形.【典型例题】类型一、全等三角形的判定1——“边角边”1、已知:如图,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.【思路点拨】由条件AB=AD,AC=AE,需要找夹角∠BAC与∠DAE,夹角可由等量代换证得相等.【答案与解析】证明:∵∠1=∠2∴∠1+∠CAD=∠2+∠CAD,即∠BAC=∠DAE在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴BC=DE(全等三角形对应边相等)【总结升华】证明角等的方法之一:利用等式的性质,等量加等量,还是等量.举一反三:【变式】如图,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.【答案】AE=CD,并且AE⊥CD证明:延长AE交CD于F,∵△ABC和△DBE是等腰直角三角形∴AB=BC,BD=BE在△ABE和△CBD中∴△ABE≌△CBD(SAS)∴AE=CD,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC=90°∴AE⊥CD类型二、全等三角形的判定2——“角边角”2、已知:如图,E,F在AC上,AD∥CB且AD=CB,∠D=∠B.求证:AE=CF.【答案与解析】证明:∵AD∥CB∴∠A=∠C在△ADF与△CBE中∴△ADF≌△CBE (ASA)∴AF =CE ,AF+EF=CE+EF故得:AE=CF【总结升华】利用全等三角形证明线段(角)相等的一般方法和步骤如下:(1)找到以待证角(线段)为内角(边)的两个三角形;(2)证明这两个三角形全等;(3)由全等三角形的性质得出所要证的角(线段)相等.举一反三:【变式】如图,AB∥CD,AF∥DE,BE=CF.求证:AB=CD.【答案】证明:∵AB∥CD,∴∠B=∠C.∵AF∥DE,,∴∠AFB=∠DEC.又∵BE=CF,∴BE+EF=CF+EF,即BF=CE.在△ABF和△DCE中,∴△ABF≌△DCE(ASA)∴AB=CD(全等三角形对应边相等).类型三、全等三角形的判定3——“角角边”3、已知:如图,AB⊥AE,AD⊥AC,∠E=∠B,DE=CB.求证:AD=AC.【思路点拨】要证AC=AD,就是证含有这两个线段的三角形△BAC≌△EAD.【答案与解析】证明:∵AB⊥AE,AD⊥AC,∴∠CAD=∠BAE=90°∴∠CAD+∠DAB=∠BAE+∠DAB ,即∠BAC=∠EAD在△BAC和△EAD中∴△BAC≌△EAD(AAS)∴AC =AD【总结升华】我们要善于把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.类型四、全等三角形的判定4——“边边边”4、已知:如图,△RPQ中,RP=RQ,M为PQ的中点.求证:RM平分∠PRQ.【思路点拨】由中点的定义得PM=QM,RM为公共边,则可由SSS定理证明全等.【答案与解析】证明:∵M为PQ的中点(已知),∴PM=QM在△RPM和△RQM中,∴△RPM≌△RQM(SSS).∴∠PRM=∠QRM(全等三角形对应角相等).即RM平分∠PRQ.【总结升华】在寻找三角形全等的条件时有的可以从图中直接找到,如:公共边、公共角、对顶角等条件隐含在题目或图形之中. 把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等,综合应用全等三角形的性质和判定.举一反三:【变式】已知:如图,AD=BC,AC=BD.试证明:∠CAD=∠DBC.【答案】证明:连接DC,在△ACD与△BDC中∴△ACD≌△BDC(SSS)∴∠CAD=∠DBC(全等三角形对应角相等)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
3 4
C
∴ △ABE≌△ACD(ASA)
∴ AC=AB(全等三角形对应角相等)
探究2
在△ABC和△DEF中,∠A=∠D,∠B=∠E ,BC=EF, △ABC与△DEF全等吗?能利用角边角条件证明你的 结论吗?
A D
C E B
F
探究反映的规律是:
有两角和其中一个角的对边分别对应相等的两 个三角形全等(简写成“角角边”或“AAS”)。 用数学符号表示
蓬溪县任隆镇中
李华
复习
1.什么是全等三角形? 2.判定两个三角形全等要具备什 么条件?
边角边(SAS)
有两边和它们夹角对应相等的 两个三角形全等。
试一试
一张教学用的三角形硬纸板不小心被撕坏了,
如图,你能制作一张与原来同样大小的新教具吗?
能恢复原来三角形的原貌吗?
A
D
C
E
B
探究1
先任意画出一个△ABC,再画一个 △A/B/C/,使A/B/=AB,∠A/ =∠A,∠B/ =∠B 把画好的△A/B/C/剪下,放到 △ABC上,它们全等吗?
(3)会根据已知两角画三角形
(4)进一步学会用推理证明。
作法: 1、作A/B/=AB; 2、在 A/B/的同旁作∠DA/ B/ =∠A ,
∠EB/A/ =∠B, A/ D与B/E交于点C/。
E C C′ D
A
B
A′
B′
通过实验你发现了什么结论?
探究反映的规律是: 有两角和它们夹边分别对应相等的两个三角形全等 (简写成“角边角”或“ASA”)。
用数学符号表示
在△ABC和△A`B`C`中 ∠A=∠A`
∵
A
B
∠B=∠B` BC=B`C` B`
C A`
∴ △ABC≌△A`B`C`(AAS)
C`
例3、如图,应填什么就有 △AOC≌ △BOD
∠A=∠B(已知) (已知) ∠C=∠D (已知) )
B C O D
∴△ADC≌△BOD(
A
例4.如图,∠1=∠2,∠B=∠C
在△ABC和△A`B`C`中 ∠A=∠A`
∵
A
B
AB=A`B`
C A`
∠B=∠B`
∴ △ABC≌△A`B`C`(ASA) B` C`
例1、已知:点D在AB上,点E在AC上,BE和 CD相交于点O,AB=AC,∠B=∠C。 求证: △ABE≌△ACD A
证明:在△ABE和△ACD中 ∠A=∠A(公共角) ∵ AB=AC(已知)
D
O B C E
∠B=∠C(已知)
∴ △ABE≌△ACD(ASA)
例2.如图,∠1=∠2,∠3=∠4 求证:AC=AB 证明:∵ ∠3=∠4(已知)
B
∴ ∠ADB=∠ADC(等角的补 A 角相等) 在△ABD和△ACD中
∠1=∠2(已知) ∵ AD=AD(公共边) ∠ADB=∠ADC(已证)
1 2
B
求证:AC=AB
证明:在△ABD和△ACD中 ∠1=∠2(已知)
A 1 2 D
∵
AD=AD(公共边)
∠B=∠C(已证)
C
∴ △ABE≌△ACD(AAS)
∴AC=AB(全等三角形对应角相等)
考考你自己
如图,AB⊥BC, AD⊥DC, ∠1=∠2.求证AB=AD
小结
(1)学习了角边角、角角边
(2)注意角角边、角边角中两 角与边的区别。