第二章整式的加减数学活动——探究规律
数学人教版七年级上册数学活动:找规律(学案)
七年级上册 第二章 整式的加减数学活动:找规律(学案)【学习目标】(1)应用整式和整式的加减运算表示实际问题中的数量关系;(2)掌握从特殊到一般,从个体到整体地观察、分析问题的方法.尝试从不同角度探究问题,培养应用意 识和创新意识;(3)积极参与数学活动,在数学活动过程中,合作交流、反思质疑,体验获得成功的乐趣,锻炼克服困难 的意志,建立学好数学的自信心.【学习重点】应用整式表示实际问题中的数量关系,掌握数学活动从特殊到一般的探究方法【学习过程】活动1 创设情境播放儿歌《数青蛙》,找找规律.活动2 合作探究如图,用火柴棒拼成一排由三角形组成的图形.(1)观察图形,并填表:(2)如果图形中含有n 个三角形,需要多少根火柴棒?(3)当图形中含有2016个三角形时,需要多少根火柴棒?变式训练:用火柴棒按如图方式搭小正方形,思考下列问题:(1)搭2个小正方形需要 根火柴棒,搭3个小正方形需要 根火柴棒;(2)如果用n 来表示所搭小正方形的个数,那么搭n 个这样的小正方形需要 根火柴棒;(3)100根火柴棒按照如图方式可以搭 个正方形.活动3 观察归纳观察下列各组数,写出第n 个数:(1)3,5,7,9,… , ;(2)4,7,10,13…, ;(3)8,14,20,26…, ;(4)2,4,8,16…, ;(1) (2)(3)活动4 巩固提高1. 观察下列图形,它们是按一定规律排列的,依照此规律,第6个图形有______个太阳.2. 用大小相等的小正方形拼大正方形,拼第1个正方形需要1个小正方形,拼第2个正方形需要4个小正方形……,拼一拼,想一想,按照如此操作:(1)拼第3个、4个、5个…第(n-1)个、第n个正方形各需要多少个小正方形?(2)第n个正方形比第(n-1)个正方形多几个小正方形?第1个第2个第3个第4个思考:结合你所探究的规律,能快速地计算出1+3+5+7+…+997+999的结果吗?活动5 课堂小结【课后练习】1.下列图形中都是由同样大小的小圆圈按一定规律组成的,其中第1个图形中一共有6个小圆圈,第2个图形中一共有9个小圆圈,第3个图形中一共有12个小圆圈,…,按此规律排列,则第7个图形中小圆圈的个数为()A.21 B.24 C.27 D.302.下图是用火柴棒搭成的一系列三角形图案.按这种方式摆下去,第n个图案需要的火柴棒总数为。
人教版七年级数学上册教案(RJ) 第二章 整式的加减
第二章 整式的加减 2.1 整式(2课时) 第1课时 单项式1.使学生理解单项式及单项系数、次数的概念,并会找出单项式的系数、次数. 2.初步培养学生的观察分析和归纳概括的能力,使学生初步认识特殊与一般的辩证关系.重点掌握单项式及单项式系数、次数的概念,并会找出单项式的系数、次数. 难点识别单项式的系数和次数.一、创设情境,导入新课师:出示图片. 青藏铁路线上,在格尔木到拉萨之间有段很长的冻土地段,列车在冻土地段的行驶速度是100千米/小时,在非冻土地段的行驶速度可以达到120千米/小时,请根据这些数据回答:(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?利用怎样的一个等量关系来解决?(2)t 小时呢? 二、推进新课(一)用含字母的式子表示数量关系. 师:出示第54页例1.生:解答例1后,讨论问题,用字母表示数有什么意义?学生经过讨论得出一定的答案,但可能不会太规范,教师总结.师:用字母表示数,在具有某些共性的问题上具有更广泛的意义,在形式上更简单,使用上更方便(可考虑补充:像这样的用运算符号把数或字母连接起来的式子叫做代数式.一个数或表示数的字母也是代数式).师生共同完成例2,进一步体会用字母表示数的意义.巩固练习:第56页练习. (二)单项式的概念. 师:出示问题.引言与例1中的式子100t ,0.8p ,mn ,a 2h ,-n 这些式子有什么特点? 生:通过观察、对比、讨论得出,各式都是数或字母的积.师:指出单项式的概念,特别地,单独的一个数或字母也是单项式. 巩固练习:下列各式是单项式的式子是____________. 0.7,-a ,-3+b ,2a 2b 7,0,1x .(三)单项式的系数,次数.师:提出问题,观察单项式,6a 2,2.5x ,-n ,2a 2b7,它们各由哪几个部分组成? 生:观察讨论得出结果.师:指出,单项式中的数字因数叫做这个单项式的系数.应当注意的是,单项式的系数包括它前面的性质符号.而如-n,a3这样的式子的系数分别是-1和1,不能说没有系数.师:进一步提出问题:以上各式中的字母部分,每个字母的指数是多少?每个单项式中所有字母的指数的和是多少?生:举手回答.师:指出,一个单项式中,所有字母的指数的和叫做这个单项式的次数.一般地,一个单项式的次数是几,我们就称它为几次单项式.如:6a2叫二次单项式,-n叫做一次单项式,你能举出一个三次单项式的例子吗?练习:第57页练习第1题.(四)例题讲解.例3:用单项式填空,并指出它们的系数和次数:(1)每包书有12册,n包书有________册.(2)底边长为a,高为h的三角形面积是________.(3)一个长方体的长和宽都是a,高是h,它的体积是________.(4)一台电视机原价是a元,现按原价的9折出售,现在的售价是________.(5)一个长方形的长是0.9,宽是a,这个长方形的面积是________.生:独立完成,然后举手回答.师:针对学生的问题,进行点拨和进一步的解释.师:进一步提出问题,观察(4),(5)两个题的答案,你有什么看法?生:自由发表意见.师总结:用字母表示数,相同的字母在同一个式子中表示的意义相同,在不同的式子中可以有不同的含义.请同学们大胆想一想,你还能赋予0.9a什么实际的意义.生:自由发言即可.(教师不必太苛求学生,对学生的回答只要符合题意,就一律给予鼓励)三、练习与小结练习:第57页练习第2题.小结:学习本节内容以后,(1)请你谈一谈你对用字母表示数的认识;(2)请你谈一谈你对单项式的认识.四、布置作业习题2.1第1题.教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.第2课时多项式1.掌握多项式的概念,进而理解整式的概念.2.掌握多项式的项数、次数的概念,并能熟练地说出多项式的项数和次数.重点多项式的概念及多项式的项数、次数的概念.难点多项式的次数.一、创设情境,导入新课师:出示问题(投影).观察一列数1,4,9,16,25,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?观察一列数2,5,10,17,26,…,第6个数是多少?第n 个数呢?你能用含n 的式子表示第n 个数吗?生:思考得出答案,第一列中第6个数是36,第n 个数是n 2,第二列中第6个数是37,第n 个数是n 2+1. 师:我们知道,n 2是一个单项式,而n 2+1不是单项式,那么,它属于哪一类代数式呢?这就是我们今天要解决的问题. 二、推进新课(一)多项式及多项式的项数、次数的概念师:引导学生回想课本55页例2的内容,进一步观察所列之式υ+2.5,υ-2.5,3x +5y +2z ,12ab -πr 2,x 2+2x +18,有何特点?生:思考讨论.师:进一步提出问题,以上各式显然不是单项式,它们和单项式有联系吗? 生:讨论,交流.自由发言回答上面的问题.师:指出多项式的概念及其相关的几个概念.每个单项式叫做多项式的项,不含字母的项叫做常数项.一个多项式有几个单项式组成,我们就把它叫做几项式,如2x -3可以叫做二项多项式,3x +5y +2x 可以叫做三项多项式.师:进一步引导学生探究多项式次数的概念. 生:可以发挥自己的想象去探究给多项式的次数命名的方法,教师不必苛求学生怎样想,让学生大胆发言,只要能发挥他们的想象力即可.师:在这一过程中教师可以引导,多项式的次数是不是也可以将所有字母的指数加在一块呢?如果字母多的话是不是有点太乱呢?如果这样的话我们是不是派个代表就行了,派谁当代表呢?引导学生说出,以次数最高的项的次数作为代表.师:多项式中次数最高的项的次数叫做多项式的次数.同单项式一样,一个多项式的次数是几,我们就称它为几次式.如2x -3可以叫做一次二项式,3x +5y +2z 可以叫做一次三项式.(二)整式的概念学生阅读教材,找出整式的概念.师:什么是整式?生:单项式和多项式统称为整式.师:进一步提问,你能说一说单项式、多项式和整式三者之间的关系吗? 生:讨论后回答.师:根据学生回答情况予以点拨、强调. (三)例题例4:如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积.(π取3.14)解析:圆环的面积是外部大圆的面积与内部小圆面积的差.生:写解答过程.师:巡回指导,发现问题,及时点拨.三、练习与小结练习:58~59页练习.小结:1.说一说单项式、多项式、整式各有什么特点?2.它们三者之间的关系是怎样的?四、布置作业习题2.1第2题.本课的知识点比较简单,属于概念介绍型的,先让学生自己阅读课本,了解相关的概念,然后完成自学检测.教师进行适当点评后,学生完成分层练习,巩固对概念的掌握.整节课基本以学生自学为主线,完成整个教学过程,意在培养学生的自学能力.2.2整式的加减(4课时)第1课时同类项1.理解同类项的概念,在具体情境中,认识同类项.2.理解合并同类项的概念,掌握合并同类项的法则.重点理解同类项的概念,掌握合并同类项的法则.难点根据同类项的概念在多项式中找同类项.活动1:创设情境,导入新课师出示图片引言中的问题2.在西宁到拉萨路段,如果列车通过冻土地段的时间是t小时,那么它通过非冻土地段的时间是2.1t小时,这段路的全长(单位:千米)是100t+120×2.1t,即100t+252t.怎样化简这个式子呢?活动2:探究同类项及合并同类项的方法教师出示教材第62页探究1;学生讨论完成,然后教师继续出示63页探究2内容,学生讨论交流完成.师生共同归纳特点,引出同类项的定义.像100t与252t,3ab2与-4ab2这样的式子,它们所含字母相同,并且相同字母的指数也相同的项叫做同类项.师进一步提出问题,在探究2中,你是如何化简的?学生观察、讨论、交流,然后归纳出合并同类项的法则.尝试运用:化简:4x2+2x+7+3x-8x2-2(找出多项式中的同类项)=(4x2-8x2)+(2x+3x)+(7-2)(运用运算律进行整理)=(4-8)x2+(2+3)x+(7-2)(运用分配律进行合并)=-4x2+5x+5一般结果按某个字母的升降幂排列.活动3:巩固运用法则教师出示例1.师生共同完成,教师要给学生示范,可以采用学生口述,教师板书的方法.过程中注意结合法则和方法.练习:教材第65页练习第1题.教师出示例3.学生尝试独立完成,然后同学交流.教师点拨:这里的结果用整式表示.练习:教材第65页练习2,3题.活动4:小结与作业小结:谈谈你对同类项及合并同类项的认识.作业:习题2.2第1题.本节课在概念的讲解时通过典型的例题让学生充分去感受概念的意义,启发学生,鼓励学生合作交流,让学生充分发表意见,使学生真正成为学习的主人.因而,人人都开动脑筋,积极发言,积极参与,掌握知识效果较好.第2课时去括号法则能运用运算律探究去括号法则,并且利用去括号法则将整式化简.重点去括号法则,准确应用法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:创设情境,导入新课师:数学爱好者发现了一个非常有趣的现象,将一个两位数的个位和十位对调得到一个新的两位数以后,这两个数的差能被9整除,和能被11整除,这是为什么呢?提示:如果设这个两位数的个位数字是a,十位数字是b,如何表示这个两位数?学生讨论以后师生共同得出以下结果:原数10b+a,新数10a+b差是10b+a-(10a+b),和是10b+a+(10a+b).将10b,a,10a,b看做几个数,类似小学中的计算,你能化简这两个式子吗?学生讨论交流,然后尝试完成.10b+a+(10a+b)=10b+a+10a+b==11a+11b10b+a-(10a+b)=10b+a-10a-b=9b-9a现在你能说明为什么一个能被9,另一个能被11整除了吗?再看下面的问题,你能化简这两个式子吗?你的依据是什么?100u+120(u-0.5)100u-120(u-0.5)学生交流讨论,然后尝试完成.活动2:归纳去括号法则师:观察以上各式,在去括号的过程中,你发现有什么规律?学生讨论交流.归纳:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,对于形如+(10a+b),-(10a+b)的式子,可以将因数看做1或者-1.活动3:运用法则教材展示教材例4.教师提示:先观察判断是哪种类型的去括号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.易犯错误:①括号前是“-”时,去括号以后,只是第一项改变了符号,而其他各项未变号.②括号前面的系数不为1或者-1时,容易漏乘除第一项以外的项.师生共同完成,学生口述,教师板书.教师展示例5.问题:船在水中航行时它的速度都与哪些量有关,它们之间的关系如何?学生思考、小组交流.然后学生完成,同学间交流.活动4:练习与小结练习:教材第67页练习.小结:1.谈谈你对去括号法则的认识.2.去括号的依据是什么?活动5:作业布置习题2.2第2,5,8题.通过回顾小学学过的去括号方法,运用类比方法,得到了整式的去括号法则,这样的设计起点低,学生学起来更自然,对新知识更容易接受.第3课时去括号法则的深入1.使学生进一步掌握去括号法则,并能熟练运用去括号法则解决问题.2.培养学生分析解决问题的能力.重点准确应用去括号法则将整式化简.难点括号前面是“-”号去括号时,括号内各项变号容易产生错误.活动1:复习提问,导入新课师提出问题:①合并同类项法则的内容是什么?②去括号法则的内容是什么?活动2:熟练运用合并同类项,去括号法则师:刚才我们回忆了合并同类项,去括号法则,它们是进行整式加减运算的基础.师:出示教材例6.计算:(1)(2x-3y)+(5x+4y);(2)(8a-7b)-(4a-5b).分析:根据法则,应如何进行计算?学生讨论后,教师归纳:先去括号,然后合并同类项.师生共同完成,边讲解边叙述法则.解:(1)(2x-3y)+(5x+4y)=2x-3y+5x+4y………………………………去括号=(2x+5x)+(-3y+4y)……………………找同类项=7x+y ……………………………………合并同类项(2)略教师出示教材例7.教师引导学生从不同的角度去列算式,①小明花________元,小红花________元,二人共花________元.②买笔记本花________元,买圆珠笔花________元,共花________元.学生独立完成,然后交流.教师出示教材例2.(这里将教材内容做了一个调整,没有完全按照教材次序,一来是出于对第一课时时间过紧的考虑,二是为下一节课的化简求值作准备)学生独立完成,教师告诉学生一般这种类型题目先化简再求值.活动3:练习与小结练习:教材第69页练习1,2题.小结:谈谈你这节课的收获.活动4:布置作业习题2.2第3,6题.本节课采用去括号法则与实例相结合的方式导入,经历对同一问题的数量关系的不同表示方法,让学生更形象更具体地体会去括号法则的合理性,整个过程以学生为主,让学生观察思考、合作交流来发现并亲身体会去括号法则的过程和数与式之间的关系,收到效果较好.但在教学中还应给予学生较多的思考反思总结的时间效果会更好些.第4课时整式的加减让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.重点整式的加减.难点总结出整式的加减的一般步骤.一、创设情境,复习引入练习:化简:(1)(x+y)-(2x-3y);(2)2(a2-2b2)-3(2a2+b2).提问:以上化简实际上进行了哪些运算?怎样进行整式的加减运算?二、推进新课师:出示投影.例8:做两个长方体纸盒,尺寸如下(单位:cm)(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?分析:做一个纸盒用料多少,实际上是在求什么?学生回答.大盒用料多少,小盒用料多少?请列式表示.解:略教师讲解后归纳:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项.教师出示教材例9.教师点拨:求代数式的值的问题,一般地,先对多项式进行化简,然后再代入求值.三、练习与小结练习:教材第69页练习第3题.小结:如何进行整式的加减,你能谈谈你学完本节的收获吗?四、布置作业习题2.2第4,7题.其实整式的加减本质上就是合并同类项的问题,重点是让学生较好的记住法则,依据法则去解决问题.只是学生的基本计算能力有待加强,计算出现的错误比较多,说明学生计算的基本功有待加强.有理数的学习不够优秀是本章学习的一大难题.。
人教版七年级上册数学 第二章 整式的加减 教案
第二章 整式的加减2.1 整式第1课时 用字母表示数01 教学目标1.通过分析实际问题中的数量关系以及列式表示这些数量关系的活动过程,会用含有字母的式子表示数量关系. 2.通过例题学习和习题训练,会用字母表示几何图形的周长、面积和体积. 02 预习反馈阅读教材P54~56,完成下列内容.1.我们常用字母t 表示行驶的时间,在小学列方程解应用题时,用字母x 表示未知数. 2.用字母表示:(1)有理数减法法则:a -b =a +(-b); (2)有理数除法法则:a÷b =a·1b(b ≠0).3.客车每小时行v 千米,t 小时行的路程为vt 千米.4.衬衫原价每件x 元,若按6折出售,则现在的售价为每件0.6x 元. 03 名校讲坛例1 (1)苹果原价是每千克p 元,按8折优惠出售,用式子表示现价;(2)某产品前年产量是n 件,去年的产量是前年产量的m 倍,用式子表示去年的产量; (3)一个长方体包装盒的长和宽都是a cm ,高是h cm ,用式子表示它的体积; (4)用式子表示数n 的相反数.解:(1)现价是每千克0.8p 元. (2)去年的产量是mn 件.(3)由长方体的体积=长×宽×高,得这个长方体包装盒的体积是a·a·h cm 3,即a 2h cm 3. (4)数n 的相反数是-n.【点拨】 用字母表示数书写时“四注意”:(1)数和字母相乘或字母和字母相乘时,通常将乘号写作“·”或省略不写,数与数相乘时,乘号不能省略;数和字母相乘,在省略乘号时,要把数字写在字母的前面;带分数与字母相乘时,带分数要写成假分数的形式. (2)数和字母相除或字母和字母相除时,写成分数形式.(3)有单位时,若最后结果是积或商的形式,则式子后面直接写单位;若最后结果是和或差的形式,则把式子用括号括起来后再写单位名称.(4)±1乘字母时,1可以省略不写.【跟踪训练】1.今天中午气温为18 ℃,晚上下降了a ℃,则晚上气温为(18-a)℃. 2.一个两位数,十位数为m ,个位数为2,则这个两位数为10m +2. 例2 (教材P55例2补充例题)求下列图形中阴影部分即房间的建筑面积.解:房间的建筑面积等于四个长方形面积的和.根据图中标出的尺寸,可得出这所住宅的建筑面积是6x +2y +18. 【点拨】 用字母表示图形的面积的要点:把图形的面积转化为规则图形面积的和或差.【跟踪训练】3.如图,将长和宽分别是a ,b 的长方形纸片的四个角都剪去一个边长为x 的正方形.用含a ,b ,x 的代数式表示纸片剩余部分的面积为ab -4x 2.04 巩固训练1.下列式子中,符合书写格式的是(C)A .x +12克B .117×m 2n C.xy3D .s÷t2.某省参加课改实验区初中毕业学业考试的学生约有15万人,其中男生约有a 万人,则女生约有(B) A .(15+a)万人 B .(15-a)万人 C .15a 万人 D .(a -15)万人3.笔记本每本m 元,圆珠笔每支n 元,买x 本笔记本和y 支圆珠笔,共需(A) A .(mx +ny)元 B .(m +n)(x +y)元 C .(nx +my)元 D .mn(x +y)元 4.边长为x 的正方形的周长为4x .5.仓库里有一批水泥,运走5车,每车n 吨,还剩m 吨,这批水泥有(5n +m)吨. 6.用字母表示两个图形中阴影部分的面积.图1 图2解:(1)阴影部分的面积为ab -bx. (2)阴影部分的面积为R 2-14πR 2.05 课堂小结用字母表示数量关系:用一个(几个)字母表示问题中的某个(某些)量,然后用这个(这些)字母表示问题中的其他量.第2课时 单项式01 教学目标1.经历观察、思考、归纳一类式子的共性的过程,理解单项式的概念,能准确识别单项式.2.通过阅读教材,理解单项式的系数和次数的概念,能确定单项式的系数和次数. 02 预习反馈阅读教材P56~57,完成下列内容.1.由数与字母或字母与字母相乘组成的式子叫单项式.如:在式子1,a 2,a -b ,y ,15x ,1x 中,是单项式的有1,a 2,y ,15x .2.单项式中的数字因数叫单项式的系数.单项式中所有字母的指数的和叫单项式的次数. 如:(1)-a 的系数是-1,次数是1; (2)单项式-3x 2的系数是-3,次数是2; (3)2ab 3c 3的系数是23,次数是5.03 名校讲坛 知识点1 识别单项式例1 (教材补充例题)下列各式中,哪些是单项式? 25x ,-85a 3,3x 2y m ,a ,0.4x +3,a 2+b +7,x +y 2. 解:单项式有:25x ,-85a 3,a.【点拨】 识别单项式的要点:(1)单项式中不能含有加减运算,不能含有表示大小关系的符号,如=,≠,>等; (2)单项式的分母中不能含有字母.【跟踪训练1】 在式子3a ,x +1,-2,-b 3,0.72xy ,2π,3x -14中,单项式有(C)A .2个B .3个C .4个D .5个 知识点2 确定单项式的系数和次数 例2 写出下列各单项式的系数和次数:【点拨】 确定单项式的系数和次数的注意点:(1)单项式的系数:若一个单项式只含有字母因数,则它的系数是1或-1;若单项式是一个常数,则它的系数就是它本身.(2)单项式的次数是所有字母的指数的和,与系数的指数无关,如24x 2y 3的次数是5,而不是9. 【跟踪训练2】 若关于x ,y 的单项式23mx n y 2的系数是6,次数是5,则m =9,n =3.04 巩固训练1.下列代数式中,不是单项式的是(A)A .1xB .-12 C .t D .3a 2b 2.(《名校课堂》2.1第2课时习题)单项式2xy 3的次数是(D)A .1B .2C .3D .4 2.下列说法中,正确的是(D)A .0不是单项式B .-3abc 2的系数是-3C .-23x 2y 23的系数是-13 D.πab 2的次数是24.用单项式填空:(1)一辆汽车的速度是v 千米/时,行驶t 小时所走过的路程为vt 千米; (2)王洁同学买2本练习本花了n 元,那么买m 本练习本要mn2元;(3)边长为a 的正方体的表面积为6a 2,正方体的体积为a 3. 5.说出下列单项式的系数和次数: (1)a; (2)-6m 3n; (3)-35πx 2y.解:(1)a 的系数是1,次数是1. (2)-6m 3n 的系数是-6,次数是4.(3)-35πx 2y 的系数是-35π,次数是3.6.列代数式,如果是单项式,请分别指出它们的系数和次数:(1)某中学组织七年级学生春游,有m 名师生租用45座的大客车若干辆,且刚好坐满,那么租用大客车的辆数是多少?(2)一个长方体的长和宽都是a ,高是h ,它的体积是多少? 解:(1)m 45,它是单项式,系数是145,次数是1.(2)a 2h ,它是单项式,系数是1,次数是3. 05 课堂小结 1.字母表示数. 2.单项式的概念.3.单项式的系数及次数的概念.第3课时 多项式及整式01 教学目标1.经历观察、思考、归纳一类式子的共性的过程,理解多项式、整式的概念,能准确识别多项式、整式. 2.通过阅读教材,交流讨论,理解多项式的项、常数项和次数. 02 预习反馈阅读教材P57~58,完成下列内容.1.几个单项式的和叫做多项式,每个单项式叫做多项式的项,次数最高项的次数叫做多项式的次数,不含字母的项叫做多项式的常数项.如:多项式3x 2y -4xy -1由单项式3x 2y ,-4xy ,-1组成,它是三次三项式,其中二次项是-4xy ,最高次项的系数为3,常数项是-1. 2.单项式和多项式统称为整式. 03 名校讲坛知识点1 识别整式、单项式及多项式例1 (教材补充例题)下列式子中,哪些是整式?哪些是单项式?哪些是多项式? a ,ax 2+bx +c ,-5,π,x -y 2,2xx -1.解:单项式:a ,-5,π. 多项式:ax 2+bx +c ,x -y2.整式:a ,ax 2+bx +c ,-5,π,x -y2.【点拨】 (1)单项式不含加减运算,多项式必含加减运算.(2)多项式是几个单项式的和,单项式和多项式都是整式.【跟踪训练】1.把下列各式填在相应的集合里.①0.②x 2;③-x 2-2x +5;④94;⑤xy.⑥8+b7;⑦-5;⑧x +y 5.整式:{①②③④⑤⑥⑦⑧,…} 多项式:{③⑥⑧,…} 单项式:{①②④⑤⑦,…} 知识点2 确定多项式的项和次数例2 (教材补充例题)指出下列多项式的次数与项: (1)23xy -14; (2)a 2+2a 2b +ab 2-b 2; (3)2m 3n 3-3m 2n 2+53mn.解:(1)2次,23xy ,-14.(2)3次,a 2,2a 2b ,ab 2,-b 2. (3)6次,2m 3n 3,-3m 2n 2,53mn.【点拨】 确定多项式的项和次数“六注意”: (1)多项式的各项应包括它前面的符号;(2)多项式没有“系数”这一概念,但每一项均有系数,每一项的系数应包括它前面的符号; (3)次数最高项的次数就是多项式的次数; (4)一个多项式的最高次项可以不唯一;(5)区分多项式的次数与单项式的次数,不能误认为多项式的次数是各个单项式的次数之和;(6)多项式的“项”与“项数”是不同的概念,“项”是指组成多项式的单项式,包括它前面的符号,“项数”是指项的个数.例3 (教材补充例题)若多项式-72x 2y 2n +1z +34x 2y +4是八次三项式,则n =2.【思路点拨】 由题意可知,多项式的最高次项为-72x 2y 2n +1z ,所以2+2n +1+1=8.解得n =2.【跟踪训练】2.指出下列多项式的项和次数. (1)a 3-a 2b +ab 2-b 3; (2)3n 4-2n 2+1.解:(1)a 3,-a 2b ,ab 2,-b 3,3次.(2)3n 4,-2n 2,1,4次. 3.指出下列多项式是几次几项式: (1)x 3-x +1; (2)x 3-2x 2y 2+3y 2.解:(1)三次三项式.(2)四次三项式. 知识点3 多项式的应用例4 如图,用式子表示圆环的面积,当R =15 cm ,r =10 cm 时,求圆环的面积(π取3.14).解:外圆的面积减去内圆的面积就是圆环的面积,所以圆环的面积是πR 2-πr 2. 当R =15 cm ,r =10 cm 时,圆环的面积(单位:cm)是 πR 2-πr 2=3.14×152-3.14×102 =392.5.答:这个圆环的面积是392.5 cm 2. 【跟踪训练】4.a ,b 分别表示梯形的上底和下底,h 表示梯形的高,则梯形的面积S =12(a +b)h ,当a =2 cm ,b =4 cm ,h =5 cm时,S =15__cm 2. 04 巩固训练1.下列各式中,不属于整式的是(D)A .abB .x 3-2yC .-a 3 D.a b2.(《名校课堂》2.1第3课时习题)多项式3x 2-2x -1的各项分别是(D)A .3x 2,2x ,1B .3x 2,-2x ,1C .-3x 2,2x ,-1D .3x 2,-2x ,-1 3.多项式2a 2b -ab 2-ab 的项数及次数分别是(A)A .3,3B .3,2C .2,3D .2,2 4.如果x n +x 2-1是五次多项式,那么n 的值是(C)A .3B .4C .5D .65.多项式3x 4+5x 3y +8-2x 2y 4-10xy ,次数最高的项是-2x 2y 4;常数项是8;它的次数是6.6.一个关于x 的多项式,它的一次项系数是1,二次项系数和常数项都是-13,则这个多项式是-13x 2+x -13.7.如图,用式子表示图中阴影部分的面积.当x =4时,求阴影部分的面积(π取3.14).解:图中阴影部分的面积为x 2-π4x 2. 当x =4时,π取3.14,阴影部分的面积为3.44.05 课堂小结 1.多项式的概念.2.项、常数项、多项式的次数.2.2 整式的加减 第1课时 合并同类项01 教学目标1.了解同类项、合并同类项的概念,掌握合并同类项法则,能正确合并同类项. 2.能先合并同类项化简后求值. 02 预习反馈阅读教材P62~65,完成下列内容.1.把多项式中的同类项合并成一项叫做合并同类项. 如:判断下列各题中的两个项是否是同类项. (1)4与-12;(是)(2)32与a 2;(不是) (3)2x 与2x ;(不是)(4)3mn 与3mnp ;(不是) (5)2πr 与-3x ;(不是) (6)3a 2b 与3ab 2.(不是)2.合并同类项的法则:系数相加,字母和字母指数不变. 如:合并同类项:-3a +2ab -4ab +2a =-a -2ab . 03 名校讲坛 知识点1 同类项的概念例1 (教材补充例题)下列各组中的两个单项式是同类型的是(C) A .3x 2y 与2xy 2 B .a 2b 与12a 2c C.13x 4y 与12yx 4 D .a 2与b 2【点拨】 识别同类项的方法:一看字母是否相同,二看相同字母的指数是否相同,只有这两者都相同时,它们才是同类项,特别是,几个常数也是同类项.【跟踪训练1】 若2x 2y n 与-3x m y 4是同类项,则m =2,n =4. 知识点2 合并同类项例2 合并同类项:(1)4a 2+3b 2+2ab -4a 2-3b 2; (2)3x -2x 2+5+3x 2-2x -5; (3)a 3+a 2b +ab 2-a 2b -ab 2-b 3; (4)6a 2-5b 2+2ab +5b 2-6a 2. 解:(1)2ab.(2)x 2+x.(3)a 3-b 3.(4)2ab. 【点拨】 合并同类项的“三注意”: (1)合并同类项时,不要漏掉系数的符号;(2)若一个多项式中含有若干个不同的同类项,则可用交换律、结合律和分配律将同类项进行合并; (3)不是同类项的不能合并,不能合并的项在运算的每一步中都要写上,直至化简的最后结果. 【跟踪训练2】 合并同类项: (1)3x 2-2xy +y 2-x 2+2xy ; (2)2a 2b -3a 2b +12a 2b ;(3)a 3-a 2b +ab 2+a 2b -ab 2+b 3; (4)4x 2-8x +5-3x 2+6x -2.解:(1)2x 2+y 2.(2)-12a 2b.(3)a 3+b 3.(4)x 2-2x +3.知识点3 化简求值例3 求多项式5x 2+4x -6x 2-x +2x 2-3x -1的值,其中x =-3. 解:原式=x 2-1.当x =-3时,原式=8. 【点拨】 多项式化简求值的“三个步骤”:“一化、二代、三求值”,即(1)化简所给多项式,使其不再含有同类项;(2)将所给的值代入化简后的式子,若是负数,则需添加括号;(3)计算第(2)步所得的算式.【跟踪训练3】 求多项式3a +abc -13c 2-3a +13c 2的值,其中a =-16,b =2,c =-3.解:3a +abc -13c 2-3a +13c 2=(3-3)a +abc +(-13+13)c 2=abc.当a =-16,b =2,c =-3时,原式=(-16)×2×(-3)=1.知识点4 合并同类项的应用例4 (1)水库水位第一天连续下降了a h ,每小时平均下降2 cm ;第二天连续上升了a h ,每小时平均上升0.5 cm ,这两天水位总的变化情况如何?(2)某商店原有5袋大米,每袋大米为x kg.上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?解:(1)把下降的水位变化量记为负,上升的水位变化量记为正.第一天水位的变化量是-2a cm ,第二天水位的变化量是0.5a cm.两天水位的总变化量(单位:cm)是 -2a +0.5a =(-2+0.5)a =-1.5a.这两天水位总的变化情况为下降了1.5a cm. (2)把进货的数量记为正,售出的数量记为负. 进货后这个商店共有大米(单位:kg) 5x -3x +4x =(5-3+4)x =6x.【跟踪训练4】 国家规定初中每班的标准人数为a 人,某中学七年级共有六个班,各班人数情况如下表用含a 的代数式表示该中学七年级学生总人数为(6a +5)人.04 巩固训练1.在下列单项式中,与2xy 是同类项的是(C)A .2x 2y 2B .3yC .xyD .4x 3.计算2m 2n -3m 2n 的结果为(C)A .-1B .-5m 2nC .-m 2nD .不能合并 3.下列各组中的两个单项式能合并的是(D) A .4和4x B .3x 2y 3和-y 2x 3 C .2ab 2和100ab 2c D .m 和m24.当a =-5时,多项式a 2+2a -2a 2-a +a 2-1的值为(B)A .29B .-6C .14D .24 5.已知3x 5y 2和-2x 3m y n 是同类项,则m =53,n =2.6.合并下列各式的同类项:(1)15x +4x -10x; (2)-p 2-p 2-p 2;(3)2a+6b-7a-b; (4)5x2-7xy+3x2+6xy-4x2.解:(1)原式=9x.(2)原式=-3p2.(3)原式=-5a+5b.(4)原式=4x2-xy.7.求多项式7a2b-4a2b+5ab2-4a2b+6ab2的值,其中a=-1,b=2.解:原式=-a2b+11ab2.当a=-1,b=2时,原式=-46.05课堂小结1.同类项:(1)所含字母相同;(2)相同字母的指数也相同.2.合并同类项:把多项式中的同类项合并成一项.3.合并同类项法则.第2课时去括号01教学目标1.探究去括号法则,并且利用去括号法则将整式化简.2.发现去括号时的符号变化的规律,归纳出去括号法则.02预习反馈阅读教材P65~67,完成下列内容.1.去括号时,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.2.下列去括号过程是否正确?若不正确,请改正.(1)a-(-b+c-d)=a+b+c-d;(不正确)a+b-c+d;(2)a+(b-c-d)=a+b+c+d;(不正确)a+b-c-d;(3)-(a-b)+(c-d)=-a-b+c-d.(不正确)-a+b+c-d.03名校讲坛知识点1先去括号,再合并同类项例1去括号,再合并同类项:(1)x-(3x-2)+(2x+3);(2)(3a2+a-5)-(4-a+7a2);(3)(2m-3)+m-(3m-2);(4)3(4x-2y)-3(-y+8x).解:(1) 5.(2)-4a2+2a-9.(3)-1.(4)-12x-3y.【点拨】去括号的三种不同情况:1.+():括号前是正号时,去掉括号及正号后,括号里面各项的符号均不变.(2)-():括号前面是负号时,去掉括号及负号后,括号里面各项的符号都要改变.注意:“都”即每一项的符号都要改变.(3)-n():括号前面有因数时,根据分配律去括号,即将括号前面的数与括号里面各项系数分别相乘.注意:每项系数都包括其前面的符号.【跟踪训练1】去括号,并合并同类项:(1)-(5m+n)-7(m-3n);(2)-2(xy-3y2)-[2y2-(5xy+x2)+2xy].解:(1)-12m+20n.(2)xy+4y2+x2.知识点2利用去括号解决实际问题例2两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h,水流速度是a km/h.(1)2 h后两船相距多远?(2)2 h后甲船比乙船多航行多少千米?解:顺水航速=船速+水速=(50+a)km/h,逆水航速=船速-水速=(50-a)km/h.(1)2 h后两船相距(单位:km)2(50+a)+2(50-a)=100+2a+100-2a=200.(2)2 h后甲船比乙船多航行(单位:km)2(50+a)-2(50-a)=100+2a-100+2a=4a.【跟踪训练2】船在静水中的速度为a km/h,水速为10 km/h,船顺流航行5 h的行程比逆流航行3 h的行程多(80+2a)__km.04巩固训练1.-(x-2y+3z)去括号后的结果为(B)A.x-2y+3z B.-x+2y-3zC.x+2y-3z D.-x+2y+3z2.化简5(2x-3)+4(3-2x)的结果为(A)A.2x-3 B.2x+9 C.8x-3 D.18x-33.下列各式中,去括号正确的是(D)A.x2-(x-y+2z)=x2-x+y+2zB .x -(-2x +3y -1)=x +2x +3y +1C .3x +2(x -2y +1)=3x -2x -2y -2D .-(x -2)-2(x 2+2)=-x +2-2x 2-44.三个小队植树,第一队种x 棵,第二队种的树比第一队种的树的2倍还多8棵,第三队种的树比第二队种的树的一半少6棵,三队共种树(4x +6)棵.5.化简:(1)5a -(2a -4b); (2)2x 2+3(2x -x 2);(3)6a 2-4ab -4(2a 2+12ab); (4)-3(2x 2-xy)+4(x 2+xy -6).解:(1)原式=3a +4b.(2)原式=-x 2+6x.(3)原式=-2a 2-6ab.(4)原式=-2x 2+7xy -24.6.先化简,再求值:(4a 2-3a)-(2a 2+a -1)+(2-a 2)+4a ,其中a =-2.解:原式=a 2+3.当a =-2时,原式=(-2)2+3=7.05 课堂小结去括号法则.第3课时 整式的加减01 教学目标1.经历列式、去括号、合并同类项,代入求值等解题过程,能熟练地进行整式的加减运算.2.经历用整式的加减解决简单实际问题的过程,掌握整式加减运算的应用.02 预习反馈阅读教材P67~69,完成下列内容.1.整式加减混合运算法则:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.2.化简下列各题:(1)-3(2x -y)-2(4x +12y)+2 018; (2)-[2m -3(m -n +1)-2]-1.解:(1)-14x +2y +2 018.(2)m -3n +4.03 名校讲坛知识点1 整式的加减与化简求值例1 (教材补充例题)求多项式-x 3-2x 2+3x -1与-2x 2+3x -2的差.解:-x 3-2x 2+3x -1-(-2x 2+3x -2)=-x 3-2x 2+3x -1+2x 2-3x +2=-x 3+1.【点拨】 整式加减运算的注意点:(1)计算多项式的和与差是整个多项式参与和差运算,所以要用括号将多项式括起来,然后再去括号、合并同类项;(2)去括号时,若括号前面是“-”号,把括号和前面的“-”号去掉,括号里的各项要改变符号.例2 (教材补充例题)已知A =12x ,B =x -13y 2,C =-32x +13y 2,(x -2)2+|y -23|=0,求2A -B +C 的值. 解:2A -B +C =2·12x -(x -13y 2)-32x +13y 2=x -x +13y 2-32x +13y 2=-32x +23y 2. 因为(x -2)2+|y -23|=0, 所以x =2,y =23. 所以原式=-32×2+23×(23)2 =-3+827=-21927. 【点拨】 整式化简求值的“三个步骤”:一化:去括号,合并同类项;二代:将字母的值代入化简后的式子;三计算:按指定的运算顺序进行计算.【跟踪训练1】 在解“当x =-2,y =23时,求12x -2(x -13y 2)+(-32x +13y 2)的值”时,甲同学不小心把“y =23”写成“y =-23”,但计算结果也是正确的,这是为什么? 解:原式=12x -2x +23y 2-32x +13y 2=-3x +y 2. 因为数的平方的结果是相同的,所以代入互为相反数的结果值相等.知识点2 整式加减的应用【例3】 做大小两个长方体的纸盒,尺寸如下(单位:cm):(1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比做小纸盒多用料多少平方厘米?解:小纸盒的表面积是(2ab +2bc +2ca)cm 2,大纸盒的表面积是(6ab +8bc +6ca)cm 2.(1)做这两个纸盒共用料(单位:cm 2)(2ab+2bc+2ca)+(6ab+8bc+6ca)=2ab+2bc+2ca+6ab+8bc+6ca=8ab+10bc+8ca.(2)做大纸盒比做小纸盒多用料(单位:cm2)(6ab+8bc+6ca)-(2ab+2bc+2ca)=6ab+8bc+6ca-2ab-2bc-2ca=4ab+6bc+4ca.【点拨】解决整式加减运算应用题的“三步法”:列式→根据实际问题的题意列出算式↓计算→运用整式的加减法则进行计算↓结论→计算出最后需要的结果【跟踪训练2】某校有A,B,C三个课外活动小组,A小组有学生(x+2y)名,B小组学生人数是A小组学生人数的3倍,C小组比A小组多3名学生,问A,B,C三个课外活动小组共有多少名学生?解:B小组学生人数为3(x+2y)名,C小组学生人数为[(x+2y)+3]名.所以A,B,C三个课外活动小组人数共有(x+2y)+3(x+2y)+(x+2y)+3=5(x+2y)+3=5x+10y+3(名).答:A,B,C三个课外活动小组共有(5x+10y+3)名学生.04巩固训练1.设M=2a-3b,N=-2a-3b,则M-N等于(B)A.4a-6b B.4aC.-6b D.4a+6b2.当x=2时,(x2-x)-2(x2-x-1)的值等于(D)A.4 B.-4 C.1 D.03.减去-2x等于-3x2+2x+1的多项式是(C)A.-3x2+4x+1 B.3x2-4x-1C.-3x2+1 D.3x2-14.一个长方形的一边长是2a+3b,另一边的长是a+b,则这个长方形的周长是(B)A.12a+16b B.6a+8b C.3a+8b D.6a+4b5.一个十位数字是a,个位数字是b的两位数可表示为10a+b,交换这个两位数的十位数字和个位数字,又得一个新的两位数,新数与原数的差是9b-9a.6.计算:(1)3a+2-(-4a);(2)2(x2+3)-(5-x2);(3)(ab-3a2)-2b2-5ab-(a2-2ab);(4)2(3b2-a3b)-3(2b2-a2b-a3b)-4a2b.解:(1)原式=7a+2.(2)原式=3x2+1.(3)原式=-4a2-2b2-2ab.(4)原式=a3b-a2b. 05课堂小结通过本节课的学习,你有哪些收获?。
初中数学. 整式加减规律探索
内容基本要求略高要求较高要求代数式了解代数式的值概念 会求代数式的值,能根据代数式的值或特征,推断这些代数式反映的规律能根据特定的问题所提供的资料,合理 选用知识和方法,通过代数式的适当变形求代数式的值. 整式有关概念了解整式及其有关概念整式的加减运算 理解整式加减运算法则 会进行简单的整式加减运算能用整式的加减运算对多项式进行变型,进一步解决有关问题.1. 能根据图,表,数,式中的排列特征,探究期中蕴藏的数式规律德国著名大科学家高斯(1777~1855)出生在一个贫穷的家庭.高斯在还不会讲话就自己学计算,在三岁时有一天晚上他看着父亲在算工钱时,还纠正父亲计算的错误.长大后他成为当代最杰出的天文学家、数学家。
他在物理的电磁学方面有一些贡献,现在电磁学的一个单位就是用他的名字命名。
数学家们则称呼他为“数学王子”.他八岁时进入乡村小学读书。
教数学的老师是一个从城里来的人,觉得在一个穷乡僻壤教几个小猢狲读书,真是大材小用。
而他又有些偏见:穷人的孩子天生都是笨蛋,教这些蠢笨的孩子念书不必认真,如果有机会还应该处罚他们,使自己在这枯燥的生活里添一些乐趣.这一天正是数学教师情绪低落的一天。
同学们看到老师那抑郁的脸孔,心里畏缩起来,知道老师又会在今天捉这些学生处罚了.中考要求重难点课前预习整式之规律探索“你们今天替我算从1加2加3一直到100的和.谁算不出来就罚他不能回家吃午饭。
”老师讲了这句话后就一言不发的拿起一本小说坐在椅子上看去了.教室里的小朋友们拿起石板开始计算:“1加2等于3,3加3等于6,6加4等于10……”一些小朋友加到一个数后就擦掉石板上的结果,再加下去,数越来越大,很不好.。
有些孩子的小脸孔涨红了,有些手心、额上渗出了汗来.还不到半个小时,小高斯拿起了他的石板走上前去.“老师,答案是不是这样?”老师头也不抬,挥着那肥厚的手,说:“去,回去再算!错了。
”他想不可能这么快就会有答案了. 可是高斯却站着不动,把石板伸向老师面前:“老师!我想这个答案是对的.”数学老师本来想怒吼起来,可是一看石板上整整齐齐写了这样的数:5050,他惊奇起来,因为他自己曾经算过,得到的数也是5050,这个8岁的小鬼怎么这样快就得到了这个数值呢?高斯解释他发现的一个方法,这个方法就是古时希腊人和中国人用来计算级数1+2+3+…+n 的方法。
整式的加减教案(最新8篇)
整式的加减教案(最新8篇)整式的加减教案篇一一、教学目标:【知识与技能目标】会用代数式表示简单问题中的数量关系,并能利用去括号、合并同类项等法则验证所探索的规律。
【过程与方法目标】通过观察、分析、总结等一系列过程,经历探索数量关系、运用符号表示规律、运算验证规律的过程,进一步培养学生的数学逻辑思维。
【情感态度与价值观目标】通过学生动手操作、观察、思考、猜想等过程,体验数学活动是充满着探索性和创造性的过程,通过合作交流,体会在解决问题的过程中与他人合作的重要性。
二、教学重点与难点:重点:学会探索数量关系,运用符号表示规律。
难点:学会从不同角度探索数量关系表示规律。
三、教学方法:教师引导式与学生探究、合作交流式相结合的方法。
四、教学用具:日历、粉笔、黑板、多媒体等。
五、教学过程:1、新课引入小时侯我们都玩过搭积木的游戏,今天我们不妨重拾童年趣事,利用手中的火柴棒搭建一些常见的图形,探索规律。
2、合作交流,探索规律:活动一:探索常见图形的规律,用火柴棒按下图的方式搭三角形⑴填写下表:⑴照这样的规律搭建下去,搭n个这样的三角形需要多少根火柴棒?⑴注意引导学生概括探索规律的一般步骤:寻找数量关系;用代数式表示规律验证规律。
⑴练习:四棱柱有几个顶点、几条棱、几个面?五棱柱呢?十棱柱呢?n棱柱呢?活动二:探索具体情景下事物的规律问题1.若有两张长方形的桌子,把它们拼成一张大的长方形桌子,有几种拼法?问题2.若按图2方式摆放桌子和椅子⑴一张桌子可坐6人,2张桌子可坐人。
⑴按照上图方式继续排列桌子,完成下表:问题3.如果按图3的方式将桌子拼在一起⑴2张桌子拼在一起可坐多少人?3张呢?n张呢?⑴教室有40张这样的桌子,按上图方式每5张拼成1张大桌子,则40张桌子可拼成8张大桌子,共可坐人。
⑴在⑴中,改成每8张桌子拼成1张大桌子,则共可坐人。
活动三:探索图表的规律下面是20xx年五月份的日历:1.日历图彩色方框中九个数之和与方框正中间的数有什么关系?通过计算找出这个关系。
人教版七年级数学上册第二章《整式的加减》教学设计
人教版七年级数学上册第二章《整式的加减》教学设计一. 教材分析人教版七年级数学上册第二章《整式的加减》是学生在初中阶段首次接触整式运算的内容。
本章主要介绍整式的加减运算,包括同类项的定义、合并同类项的方法以及整式的加减法则。
通过本章的学习,学生能够掌握整式加减的基本运算方法,并为后续的代数学习打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对基本的数学运算有一定的了解。
但是,对于整式的加减运算,学生可能还存在一定的困难,特别是在理解同类项的定义和运用整式加减法则方面。
因此,在教学过程中,需要注重引导学生理解同类项的概念,并通过大量的例子让学生熟悉并掌握整式的加减运算方法。
三. 教学目标1.知识与技能目标:学生能够理解同类项的概念,掌握合并同类项的方法,能够运用整式加减法则进行简单的整式运算。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的问题解决能力和合作能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,培养学生的耐心和细心。
四. 教学重难点1.教学重点:同类项的定义,合并同类项的方法,整式加减法则的应用。
2.教学难点:同类项的判断,整式加减运算的灵活运用。
五. 教学方法1.情境教学法:通过生活实例引入同类项的概念,激发学生的学习兴趣。
2.启发式教学法:通过提问引导学生思考,培养学生的问题解决能力。
3.合作学习法:通过小组讨论和合作,培养学生的合作能力和交流能力。
六. 教学准备1.教学PPT:制作精美的PPT,展示同类项的定义和整式加减运算的例子。
2.练习题:准备一些练习题,用于巩固学生的学习效果。
七. 教学过程1.导入(5分钟)利用生活实例,如购物时计算总价,引入同类项的概念,激发学生的学习兴趣。
2.呈现(10分钟)通过PPT展示同类项的定义和合并同类项的方法,让学生直观地理解同类项的概念,并学会如何合并同类项。
3.操练(10分钟)让学生通过小组合作,解决一些同类项的合并问题,巩固学生对同类项的理解和合并同类项的方法。
人教版初一七年级数学 第二章 整式的加减--整式的加减
一、教学目标:(一)知识目标1.会用字母表示数量关系;2.会进行整式加减运算,并能说明其中的算理;3.熟练掌握整式加减运算;(二)能力目标1.在进行整式加减运算的过程中,发展有条理的思考及语言表达能力;(三)情感目标1.在解决问题的过程中了解数学的价值,发展“用数学”的信心;2.在解决问题的过程中,获得成就感,培养学习数学的兴趣.二、教学重难点:(一)教学重点3.经历“由特例归纳、建立猜想、用符号表示,并给出证明”这一重要的数学探索过程.(二)教学难点1.灵活地列出算式和去括号.2.利用整式的加减运算,解决简单的实际问题.三、教学方法:活动——讨论法;探究——交流法.四、教具准备:投影片五、教学安排:2课时.六、教学过程:第一课时:在开始课堂之前,让学生先来看一个数学小幽默:参看课件——整式的加减_数学小幽默.Ⅰ.提出问题,引入新课[师]下面我们先来做一个游戏:(1)任意写一个两位数;(2)交换这个两位数的十位数字和个位数字,又得到一个数;(3)求这个两位数的和.[生]我取了一个两位数12;交换这个两位数的十位数字和个位数字,又得到数21;求得这两个数的和是33.我又取了一个两位数29;交换个位和十位上的数字得到92;求得这两个数的和是121.最后,我取了一个两位数31;交换个位和十位上的数字得到13;求得这两个数的和是44.观察可以发现这些和都是11的倍数.例如33是11的3倍,121是11的11倍,44是11的4倍.[师]这个规律是不是对任意的两位数都成立呢?为什么?(鼓励同伴之间互相讨论,相互启发)[生]对于任意一个两位数,我们可以用字母表示数的形式表示出来,设a、b分别表示两位数十位上的数字和个位上的数字,那么这个两位数可以表示为:10a+b.交换这个两位数的十位数字和个位数字,就得到一个新的两位数是:10b+a.这两个数相加:(10a+b)+(10b+a)=10a+b+10b+a=(10a+a)+(b+10b)=11a+11b 根据运算的结果,可知一个两位数,交换它十位和个位上数字,得到一个新两位数,这两数的和是11的倍数.[师]很棒!(10a+b)+(10b+a)是什么样的运算呢?10a+b与10b+a都是什么样的代数式?[生]10a+b与10b+a是多项式,也就是整式,因此(10a+b)+(10b+a)是整式的加法.[师]如果要是求这两个数的差,又如何列出计算的式子呢?[生](10a+b)-(10b+a).[师]这就是整式的减法.你能发现它们的差有何规律吗?[生](10a+b)-(10b+a)=10a+b-10b-a=(10a-a)+(b-10b)=9a-9b由此可知,这两个数的差是9的倍数.[师]我们借助于整式的加减法将实际问题中的数量关系用字母表示出来,并发现了其中的规律.在说明(10a+b)+(10b+a)是11的倍数时,每一步的依据的法则是什么呢?(10a+b)-(10b+a)是9的倍数呢?[生]第一步的依据是去括号法则;第二步是合并同类项法则.[师]从上面的例子中可以发现整式的加减法可以帮我们解决实际情景中的问题.因此,我们这节课就来学习整式的加减.Ⅱ.合作讨论新课,学会运算整式的加减1.做一做图1-6两个数相减后,结果有什么规律?这个规律对任意一个三位数都成立吗?为什么?[师]同学们先来按照上面所示的框图的步骤来讨论一下两个数相减后,结果有什么规律?[生]任取一个三位数,经过上述程序后结果一定是99的倍数.[师]是不是任意的三位数都有这样的规律呢?首先我们先要设出一个任意的三位数.如何设呢?[生]可以设百位、十位、个位上的数字分别为a,b,c,则这个三位数为100a+10b+c.[师]任意的一个三位数为100a+10b+c,接下来我们按照框图所示的步骤可得:交换百位和个位上的数字就得到一个新数,是什么呢?[生]100c+10b+a.[师]两个数相减,可得到一个算式为什么呢?[生](100a+10b+c)-(100c+10b+a).[师]为什么在上面的算式中要加上括号呢?[生]“两个数相减”,而这两个三位数,我们都是用多项式表示出来的,每一个多项式,它都是一个整体,因此需加括号.[师]这一点很重要,如何说明这个差就是99的倍数呢?[生]化简可得,即(100a +10b +c )-(100c +10b +a )=100a +10b +c -100c -10b -a =(100a -a )+(10b -10b )+(c -100c )=99a -99c也就是说任意一个三位数,经过上述程序后结果一定是99的倍数. 2.议一议[师]在上面的问题中,涉及到整式的什么运算?说一说你计算的每一步依据?[生]在上面的问题中,我们涉及到整式的加减法.在进行整式的加减时,我们先去括号,再合并同类项.[师]在去括号和合并同类项时应注意什么呢?[生]我们上学期已学习过去括号和合并同类项.去括号时,特别要注意括号前面是“-”号的情况,去掉“-”号和括号时,里面的各项都需要变号;合并同类项时,先判断哪些项是同类项,利用加法结合律和合并同类项的法则即可完成.3.例题讲解 [例1]计算(1)2x 2-3x +1与-3x 2+5x -7的和(2)(-x 2+3xy -y 2)-(-x 2+4xy -y 2)(这样的题目,我们已经训练过,因此可让学生自己完成,叫两个同学板演,同时教师深入到学生之中进行观察,对于发现的问题,可以通过让学生表达算理即去括号法则和合并同类项法则,自纠自改)解:(1)(2x 2-3x +1)+(-3x 2+5x -7) =2x 2-3x +1-3x 2+5x -7 =2x 2-3x 2-3x +5x +1-7 =-x 2+2x -6212123(2)(-x2+3xy -y2)-(-x 2+4xy -y 2)=-x2+3xy -y2+x 2-4xy +y 2=-x 2+x 2+3xy -4xy -y 2+y 2=-x 2-xy +y 2注:1.列算式时,每一个多项式表示的是一个整体,因此必须加括号. 2.在第(2)小题中,去括号要注意符号问题.[例2](1)已知A=a 2+b 2-c 2,B=-4a 2+2b 2+3c 2,且A +B +C =0,求C . (2)已知xy =-2,x +y =3,求代数式 (3xy +10y )+[5x -(2xy +2y -3x )]的值. 分析:(1)可用逆运算来代入求解;(2)求代数式的值,一般是先化简,再求值,这个地方应注意整体代入. 解:(1)根据A +B +C =0,可得C =-A -B 即C =-(a 2+b 2-c 2)-(-4a 2+2b 2+3c 2) =-a 2-b 2+c 2+4a 2-2b 2-3c 2 =-a 2+4a 2-b 2-2b 2+c 2-3c 2 =3a 2-3b 2-2c 2(2)原式=3xy +10y +[5x -2xy -2y +3x ] =3xy +10y +5x +3x -2xy -2y =3xy -2xy +10y -2y +5x +3x =xy +8x +8y =xy +8(x +y )21212321212321212321当xy =-2,x +y =3时 原式=xy +8(x +y )=-2+8×3 =-2+24=22. Ⅲ.随堂练习1.计算:(1)(4k 2+7k )+(-k 2+3k -1) (2)(5y +3x -15z 2)-(12y -7x +z 2)2.解下列各题(1)-5ax 2与-4x 2a 的差是 ; (2) 与4x 2+2x +1的差为4x 2; (3)-5xy 2+y 2-3与 的和是xy -y 2; (4)已知A =x 2-x +1,B =x -2,则2A -3B = ;(5)比5a 2-3a +2多a 2-4的数是 . 1.解:(1)原式=4k 2+7k -k 2+3k -1 =4k 2-k 2+7k +3k -1 =3k 2+10k -1(2)原式=5y +3x -15z 2-12y +7x -z 2 =5y -12y +3x +7x -15z 2-z 2 =-7y +10x -16z 22.解:(1)-5ax 2-(-4x 2a ) =-5ax 2+4ax 2 =-ax 2;(2)设所求整式为A ,则32A -(4x 2+2x +1)=4x 2 A =4x 2+4x 2+2x +1=8x 2+2x +1;也可根据:被减式=差+减式,列式求解. (3)(xy -y 2)-(-5xy 2+y 2-3) =xy -y 2+5xy 2-y 2+3 =xy +5xy 2-2y 2+3(4)2A -3B =2(x 2-x +1)-3(x -2) =2x 2-2x +2-3x +6 =2x 2-5x +8(5)设这个数为A ,则A -(5a 2-3a +2)=a 2-4A =(a 2-4)+(5a 2-3a +2)=a 2-3a -2注:在上述求解的过程中,可利用逆运算来求解. Ⅳ.课时小结[师]这节课我们学习了整式的加减,你有何收获和体会呢?[生]在实际情景中,利用整式的加减发现了一般规律,使我们认识到学习整式加减的重要性.[生]整式加减运算的步骤是遇到括号先去括号,再合并同类项. [生]在去括号时,特别注意括号前是“-”号的情况. …… Ⅴ.课后作业1.课本P 8、习题1.2,第1、2、3题;32323172.自己设计一个数字游戏,并用整式加减运算说明其中的规律. Ⅵ.活动与探究已知(a +12)2+|b +4|=0,求代数式(a -b )+(a +b )+-的值.[过程]由已知条件可得,两个非负数的和为零的两个非负数都为零,列出方程求出a 、b 的值;在化简代数式时,观察可发现在这个题中遇到括号若先去括号会较繁,如果将(a +b )、(a -b )当成一个整体,计算起来反而简便.[结果]由(a +12)2+|b +4|=0,得a +12=0,b +4=0,即a =-12,b =-4; 当a +b =-16,a -b =-8时(a -b )+(a +b )+-=(-)(a -b )+(+)(a +b )=(a -b )+(a +b )=×(-8)+×(-16)=-12. 七、板书设计§1.2.1 整式的加减(一)一、做一做,议一议21413b a +6b a -21413b a +6b a -216141313112731127第二课时:Ⅰ.创设问题情景,引入新课出示投影片:1.为什么总是1089?用不同的三位数再做几次,结果都是1089吗?你能发现其中的原因吗?图1-8[师]我们来做上面的数字游戏,取满足条件的一个三位数,按图示所给定的程序运算,结果是1089吗?然后用不同的满足条件的三位数再做几次,结果一样吗?请同学们独立完成然后回答.[生]我试了几个数,结果都是1089.[师]你能解释其中的原因吗?[生]根据题意,可设个位上的数字是a,十位上的数字是b,百位上的数字则为(a+2),所以这个三位数为100(a+2)+10b+a.交换百位上的数字与个位上的数字,可得到一个较小的三位数即100a+10b+(a+2).按图示所给定程序,得[100(a+2)+10b+a]-[100a+10b+(a+2)]=100a+200+10b+a-100a-10b-(a+2)=100a-100a+10b-10b+200+a-a-2=200-2=198即按照给定的程序的前三步,运算结果都为198,这样,继续程序的后两步可得到1089.也就是任何一个满足条件的三位数,按照题目给定的顺序,结果总是1089.[师]真棒!我们已学会了用整式的加减运算解释这一实际情景,用整式的加减运算还能解释哪些现象呢?这一节课,我们继续来学习整式的加减运算及它的应用.Ⅱ.探索规律,体会整式运算的必要性下面是用棋子摆成的“小屋子”.摆第1个“小屋子”需要5枚棋子,摆第2个需要枚棋子,摆第3个需要枚棋子.图1-9按照这样的方式继续摆下去.(1)摆第10个这样的“小屋子”需要多少枚棋子?(2)摆第n个这样的“小屋子”需要多少枚棋子?你是如何得到的?你能用不同的方法解决这个问题吗?与同伴进行交流.(教师教学中要鼓励学生独立思考的基础上探索出规律.鼓励学生算法多样化,并可实际操作探索规律)[生]实际操作可以发现摆后面一个“小屋子”,总比它前面一个多用6枚棋子.摆第2个“小屋子”需要(5+6)枚即11枚棋子,摆第3个需要(5+6×2)枚即17枚棋子,……摆第10个这样的“小屋子”需要(5+6×9)枚即59枚棋子.进而可以概括出摆第n个“小屋子”需用5+6(n-1)=6n-1枚棋子.[师]很好.这位同学能抓住图形变化的规律.有没有别的方法呢?[生]通过观察还可以发现,摆前几个“小屋子”分别用的棋子数5,11,17,23,从而也概括出规律来,即摆第n个这样的“小屋子”需要(6n-1)枚棋子.[生]老师,我也有一种方法,将图1-9的“小屋子”拆成上下两部分,上面部分是一个“三角形”(第一个为一个点),下面部分可以看成一个“正方形”,摆第n个“小屋子”分别需要2n-1和4n枚棋子(如图1-10).图1-10这样摆第n个“小屋子”共用的棋子数为(2n-1)+4n=6n-1.[师]很好!有的同学对数敏感,通过数棋子数发现了规律;有的同学对图形的组成比较敏感,将图分成两部分(上面部分是“三角形”,下面部分是“正方形”)发现了规律.最后都推出第n个这样的“小屋子”需(6n-1)枚棋子.我相信同学们一定还有其他的办法.下面同学们可相互交流各自的想法,或许你会有新的发现.(教师鼓励学生充分交流,并引导学生认真倾听他人的想法)Ⅲ.例题讲解 [例1]计算:(1)(3a 2b +ab 2)-(ab 2+a 2b )(2)7(p 3+p 2-p -1)-2(p 3+p )(3)-(+m 2n +m 3)-(-m 2n -m 3)[师]该例题是整式加减的运算,我们该如何进行整式的加减呢? [生]如果遇到有括号,应先去括号,然后再合并同类项.[师]下面我们就请三位同学到黑板上解答.其余同学来对他们的解答作出评价.[生]解:(1)(3a2b +ab 2)-(ab 2+a 2b )=3a2b +ab 2-ab 2-a 2b =2a2b -ab 2;(2)7(p 3+p 2-p -1)-2(p 3+p ) =7p 3+7p 2-7p -7-2p 3-2p =5p 3+7p 2-9p -7;(3)-(+m 2n +m 3)-(-m 2n -m 3)=--m 2n -m 3-+m 2n +m 3=-1[生]这三个同学做得都很好.特别是括号前是“-”号,容易出现变号问题.但这三个同学步骤清楚,符号处理准确无误.41433132414341432131323132[师]祝贺他们!大家知道我们学习数的加法运算,除可列算式外,还可以列竖式.整式的加减法可不可以列竖式.Ⅳ.试一试(课本P 11)求多项式2a +3b -5c 与-4a -11b +8c 的和时,可以利用竖式的方法:利用这种方法计算下列各题.计算过程中需要注意什么? (1)(5x 2+2x -7)-(6x 2-5x -23) (2)(a 3-b 3)+(2a 3-b 2+b 3)[师]同学们先阅读用竖式求两个整式的和的方法,然后试着回答在计算过程中需要注意什么?[生]列竖式时要注意每个整式中的同类项要对齐. [师]下面我们就用竖式的方法求出上面两个小题. [生]解:(1)列成竖式为: (2)列成竖式为:Ⅴ.练一练(P10、随堂练习)1.火车站和飞机场都为旅客提供“打包”服务.如果长、宽、高分别为x 、y 、z 米的箱子按如图1-11所示的方式“打包”,至少需要多少米的“打包”带?(其中灰色线为“打包”带)图1-11c b a c b a cb a 382532 8114)+---+--++2.某花店一枝黄色康乃馨的价格是x元,一枝红色玫瑰的价格是y元,一枝白色百合的价格是z元,下面这三束鲜花的价格各是多少?这三束鲜花的总价是多少元?图1-12解:1.由图可知:至少需要(2x+4y+6z)米的打包带.2.第(1)束鲜花的价格为(3x+2y+z)元;第(2)束鲜花的价格为(2x+2y+3z)元;第(3)束鲜花的价格为(4x+3y+2z)元.这三束花的总价钱为:(3x+2y+z)+(2x+2y+3z)+(4x+3y+2z)=3x+2y+z+2x+2y+3z+4x+3y+2z=9x+7y+6 z(元)Ⅵ.课时小结[师生共同总结]这节课我们主要学习了如下内容:(1)在探索规律的问题中进一步体会符号表示的意义,发展符号感;(2)经历了“由特例进行归纳、建立猜想、用符号表示,并给出证明”这一重要的数学探索过程,发展了推理能力;(3)体会整式加减运算的必要性,并运用整式加减比较不同的算法.Ⅶ.课后作业课本习题1.3,第1、2题Ⅷ.活动与探究用砖砌成如图1-13所示的墙,已知每块砖长一定,宽为b cm,则图中留出方孔(图中阴影部分)的面积之和是多少?图1-13[过程]求图中阴影部分的面积有两种方法:一种直接求,只要求出三个阴影部分小正方形的边长就可,其边长恰为每块砖的长与宽的差;另一种是间接求,三个阴影部分的面积等于墙的面积减去22块砖的面积,但也需求出砖的长才可求出.[结果]方法一(直接法):设砖的长为x cm,根据题意,列方程得 5x =3x +3b 2x =3bx =b所以阴影部分每个小正方形的边长为b -b =b (cm ),阴影部分的面积为3×(b )2=b 2(cm 2).方法二(间接法):同方法一求出砖的长为b cm,整个墙的面积为S墙=(5×b )×(3b +b )=33b 2(cm 2)22块砖的面积为S砖=22×b ×b =33b 2(cm 2)所以图中留出方孔的面积S 阴=33b 2-33b 2=b 2(cm 2)六、板书设计232321214323232343234343§1.2.2 整式的加减(二)一、数字游戏解:设百位数字为a+2,十位数字为b,个位数字为a,根据图示程序,得:[100(a+2)+10b+a]-[100a+10b+(a+2)]=100a+200+10b+a-100a-10b-a-2=200-2=198最后两步程序,得198+891=1089因此满足条件的三位数按图示程序最后总能得到1089.二、探索规律方法一:第1个共5个棋子;第2个共(5+6)个棋子;第3个共(5+2×6)个棋子;……第n个共5+6(n-1)个棋子,即(6n-1)个棋子.方法二:由5、11、17……可归纳出第n个共有(6n-1)个棋子.方法三:将“小屋子”分成两部分,也可推出第n个“小屋子”共有(2n-1)+4n=(6n-1)个棋子.三、例题(学生板演)四、练一练五、课时小结。
七年级数学上册第二章整式的加减2.2整式的加减(第四课时)整式的加减(2)教案(新版)新人教版
七年级数学上册第二章整式的加减2. 2整式的加减(第四课时)整式的加减(2)教案(新版)新人教版一、教学目标(-)学习目标1 .熟练掌握整式的加减运算法则,并能准确化简求值.2 .体会整体代入法的作用.3 .准确的运用去括号法则、合并同类项法则进行整式的化简求值.(二)学习重点熟练掌握整式的加减运算法则,并能化简求值.(三)学习难点准确的运用整体代入的方法化简求值.体会整体的代入方法的作用.二、教学设计(-)课前设计1 .预习任务整式的化简求值一般先一化简,再求值 .2 .预习自测(1)化简:-(a -h)2+\ 3(a - b)2 - 8(« - b)2 + 7(a - b)2. 2【知识点】合并同类项.【数学思想】整体思想.1 25【解题过程】解:原式=(一 + 13-8 + 7)(0-。
)2 二一(々一。
)2. 2 2【思路点拨】根据同类项,把同类项结合到一起,根据合并同类项,可得答案.9S【答案】—(a-b)2. 2(2)化简:6x2y + 2xy^-3x2y2 -7x-5yx-4y2x2 -6x2y .【知识点】合并同类项.【解题过程】解:原式二—7/),2—3邛—7-【思路点拨】根据合并同类项的法则求解即可.【答案】-7x2r-3^-7x.(3)化简求值:(7〃?。
-4〃?〃 -4,/)一(2"/ 一+ 2/J);其中/7? = ■!■ ; // =-- 22【知识点】去括号、合并同类项.【解题过程】解:原式=7〃/一4〃〃?一4/一2〃72+〃〃?一2万=5m2 -3//Z/Z-6/?2当〃2 =—, 〃 = 一工时,5m2 -36〃-6/ =5x(—)2 - 3x — x(--)-6x(--)2 =— 2 2 2 2 22 2【思路点拨】先化简再代入求值,可以简化计算.【答案】2(4)化简求值:(1〃2_2〃-6)-1(!〃2-4a-7),其中〃=2.3 2 2【知识点】化简求值【解题过程】解:(L『-2«-6)--(—i/2-4a-7) =-a2 -2a-6- — a2+2a + — = — a2-- 3 2 2 3 4 2 12 2i 5 i Q当a = 2时,原式二上x2?—二二一上.12 2 6【思路点拨】先化简再代入求值,可以简化计算.13【答案】—上6(二)课堂设计1 .知识回顾(1)去括号法则是.注意:①去括号,看符号,是“+”不变号,是“一”全变号.②括号前的因数分配到括号内不要漏乘项.③去括号前后项数一致.(2)合并同类项的法则:系数相加,字母和字母的指数不变.(3)整式加减运算实际是,2 .问题探究探究一•活动①(整合旧知,探究整式的化简求值)化简求值:4x?),一[6个一3(4\y-2)-x1] + l,其中x = 2,2学生独立自主的解决,老师巡视,发现学生在解题过程中的不同方法.抽两个不同方法的学生板书(一个是直接代入求值,另一个先化简再求值)师问:比较两解法,哪种方法更简单?生答:先化简再求值更简单一些.师问:你们能总结整式的化简求值的方法步骤吗?生答:先化简,再求值【设计意图】使学生进一步理解掌握整式的加减法则,熟练进行整式的化简求值,掌握化简求值的格式要求.探究二•活动①(大胆操作,探究整体思想代入求值)已知代数式2/+3y + l的值是2,求6r+9)、-7的值.师问:题目没有直接告知x和y的值,如何求值呢?引导学生观察与思考.【设计意图】让学生初步认识整体思想的作用.・活动②(集思广益,证明整体代入的方法)师问:注意观察条件和结论中含字母的部分的系数有何特征?生答:成倍数关系师问:这类型的题目用什么方法求值呢?法一、由条件向结果转化V 2x2+3y + \ = 2,则3(2x2+3y + l) = 3x2,则6』+9y + 3 = 6, A 6x2+9y = 3. ・•.把6/ + 9 y作为整体带入6/ + 9 y - 7得值是-4法二、由结果向条件转化6/+9),一7:3(2/+3乃一7,再由2丁+3y + l = 2得2/+3y = 1,・••原式二—4 【设计意图】让学生认识到整体带入的数学思想使运算化简更简便.探究三运用整式的加减化简求值・活动①i i 3 1 ?例L 求Lx — 2(x —:y2) +(—, x + =),2)的值,其中工=—2,),=二.2 3 2 3 3【知识点】整式的化简求值.1 1 3 1【解题过程】解:ix-2(x-ir)+(--x+ir)2 3 2 31 个2)3 1 ,=—x-2x + — ~ — x + - y2 3, 2 3.= -3x+y2当x = -2, y = g时,原式二(一3)乂(一2) + ($2=6 + [=62.【思路点拨】先化简,再求值.4【答案】6-.9练习:先化简,再求值:12(。
人教版第二章 《整式的加减》单元教学设计
人教版第二章《整式的加减》单元教学设计掌握单项式、多项式、整式的概念及其加减法则,能够运用化归思想合并同类项、去括号等方法解决实际问题。
2.过程与方法:培养学生的逻辑思维和分析问题的能力,提高学生的数学素养和解决问题的能力。
3.情感态度:通过合作研究、探究式研究等方式,激发学生的研究兴趣,培养学生的自主研究能力和团队合作精神。
二)本章重难点:1.单项式、多项式、整式的概念及其区别。
2.同类项的概念及合并同类项的方法。
3.去括号法则及其应用。
4.整式的加减法则及应用。
三)关键环节:1.问题导入环节:通过生活中的实际问题引入本章知识,激发学生的研究兴趣。
2.合作探究环节:通过小组合作探究同类项的概念及合并方法,培养学生的团队合作精神和分析问题的能力。
3.巩固提高环节:通过练、讨论、演示等方式巩固本章知识,提高学生的数学素养和解决问题的能力。
改写:本单元教学设计采用PowerPoint软件为制作平台,利用多媒体手段,以问题为主线,活动为载体,根据课标要求,从学生已有的生活经验和认知基础出发,让学生积极参与研究。
通过“设计问题化,问题活动化,活动练化,练要点化,要点目标化,目标课标化”的要求,将教学过程设计为有一定梯次的递进式活动序列。
本章内容属于《全日制义务教育数学课程标准(实验稿)》中的“数与代数”领域,是在学生研究了有理数的基础上,引入了用字母表示有理数,实现了从具体的数到比较抽象的整式的过渡。
本章将单项式、多项式和整式及相关概念引入,并以“所含字母及相同字母指数”是否相同为标准建构同类项的概念,类比小学已有的“同单位量相加减单位不变”和前一章研究“相反数的概念”知识经验探究合并同类项、去括号法则等。
最后将这些知识应用于本章的重点——整式的加减,知识体系井然有序、层层深入、结构分明、重点突出。
材把整式的乘除运算,后移到八年级的上册的第15章中去阐述,这样处理比较符合初一学生的年龄特征和心理特点,达到了有效地降低教学难度这一目的,这样既有利于学生接受和掌握知识,又不失整个知识结构体系的完整性。
第二章“整式的加减”简介.doc
第二章整式的加减”简介本章“整式的加减”属于代数学,是《数学课程标准》中“数与代数”领域的重要内容.从《数学课程标准》看,关于式的内容主要研究整式、分式和二次根式等内容。
关于整式,主要研究整式的加、减、乘、除运算,对于整式的这四种运算,本套教科书分为两章安排,本章是整式运算的第一章,主要研究整式的加减运算,关于整式的乘除运算,安排在八年级上册的“第15章整式的乘除及因式分解”一章中。
课时安排:本章教学时间约需8课时,具体分配如下(仅供参考)2. 1 整式2. 2 整式的加减数学活动小结本章知识结构框图:通过本章学习,应使学生达到以下学习目标:1.理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。
2.理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。
在准确判断、正确合并同类项的基础上,进行整式的加减运算。
3.理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。
约2课时约4课时约2课时4 •能够分析实际问题中的数量关系,并用还有字母的式子表示出来。
一、内容安排本章的主要内容是单项式、多项式、整式的概念,合并同类项、去括号以及整式加减运算等。
本章内容属于《全日制义务教育数学课程标准(实验稿)》中的“数与代数”领域,本章内容的编写是在学生已有的用字母表示数以及有理数运算的基础上展开的。
整式的加减运算是学习下一章“一元一次方程”的直接基础,也是以后学习分式和根式运算、方程以及函数等知识的基础,同时也是学习物理、化学等学科及其他科学技术不可缺少的数学工具。
全章包括两节内容。
这两节内容都是由章前引言中的问题引出的。
在章前引言中,教科书以2006年正式通车的青藏铁路为背景,根据路程、速度和时间的关系设计了几个问题,解决这些问题要用到用字母表示数、用式子表示数量关系以及对式子进行化简等,为引出单项式、合并同类项及去括号等概念和法则提供实际背景,使学生感到学习这些概念和运算是实际的需要。
第二章整式的加减2.4课题活动课件(找规律)
活动3 做一做
7 14 21 28
1 8 15 22
29
2 9 16 23
30
3 10 17 24
31
4 11 18 25
5 12 19 26
6 13 20 27
(1)浅色方框中的9个数之和与方框正中心的数 有什么关系? 带阴影的方框中9个数之和是99,99=11×9 是正中心数11的9倍.
做一做
规律拼成一副图案, 第n个图案有白纸片共___张.
n=1
n=2
n=3
解决问题 巩固提高
用黑白两种颜色的正方形纸片,按黑色纸片逐渐加1的
( 3n+1 ) 规律拼成一副图案, 第n个图案有白纸片共_______ 张.
n=1
n=2
n=3
如图所示,用大小相等的小正方形拼 大正方形,拼第1个正方形需要4个小正方 形,拼第2个正方形需要9个小正方形…, 按照这样的方法拼下去,第n个大正方形比 第(n-1)个大正方形( )几个小正 方形?
小组进行讨论 说出你的答案 思路点拨: 当n≤100时, n本笔记本所需钱数为2.3n元, 当n >100时, n本笔记本需要2.2n元. 观察这两个整式: 当n=100时, 需花钱230元, 而当n=101时, 只需花钱2.2×101=222.2元 出现多买比少买反而付钱少的情况, 所以如果需要100本笔记本, 应该购买101本能省钱 。
下面是由数排列成的三角形叫杨辉三 角形,根据前五行中的规律在○ 填出合适 的数。
第一行 第二行 第三行 第四行 第五行 第六行 1
1
1 + 1 1 + 2 + 1 1+ 3 + 3 + 1 1 + 4 + 6 + 4 +
第二章数学活动教学设计
第二章《数学活动》教学设计教材分析:本节课教材选自义务教育教科书《数学》(人教版)七年级上册。
《数学活动》是第二章《正式加减》的数学活动内容。
本活动不是“纯粹”的数学知识学习,而是特意为学生提供一个创新思维的空间,让学生经历“探索规律”的活动课学习。
学生通过生活中用火柴棍摆三角形,对日历的观察与分析,从不同角度进行思考,用本章学过的字母表示数、整式的加减等知识去探索日历中数与数之间的变化规律。
再用去括号、合并同类项等知识去验证规律。
整个学习过程,就是学生经历创新思维的学习过程,是学生探索日历中数学规律的学习过程,是学生学会用语言、用符号、用字母表示数和表示规律的学习过程,也是学生体会字母表示数的意义及获得初步数学建模思想的学习过程。
学情分析:本课前,学生已经学习了字母表示数及整式的加减运算,有一定的代数意识。
在前面的部分习题里,学生已经有涉及探索规律的一些题目,积累了一定的数学活动经验。
七年级的学生具有较强的好奇心和求知欲,思维的形象性和发散性明显,而抽象性不足,符号意识和代数意识还未形成,需要教师提供可以激发兴趣的一些问题,同时设计有序的问题加以引导和启发,使学生的思维可以较好的聚焦在数学学习的核心内容上。
教学目标:知识技能1通过活动,能够数形结合思考并解决问题。
2会用整式表达所发现的规律。
3会用整式表示数量关系及简单的用字母表示不等关系。
数学思考1经历从直观思维到理性思维,从而发展抽象思维。
2通过探究活动,进一步体会分类、对应思想,以及数形结合思想。
3通过观察、类比、归纳等活动,积累数学活动经验,感受数学思考过程的条理性。
问题解决1在经历从具体情境抽象出整式的过程中,发展抽象、概括思维,并能利用整式解决实际问题.2通过活动,体会数形结合的思想方法。
体会整式比数字更具有一般性,进一步认识事物之间的联系性与规律性。
情感态度1通过拼图等数学探究活动,提高学生对数学学习的好奇心与求知欲。
2通过交流、研讨活动,培养学生主动与他人合作交流的意识。
探索规律ppt8(说课) 北师大版
拼一拼
解决方案1
n个2根 •••
火柴根数:2n+1
拼一拼
解决方案2
n-1个2根
•••
火柴根数:3+2( n-1 )
拼一拼
解决方案3
n-1根重复
•••
火柴根数:3n-(n-1)
拼一拼
方法一:
2n+1
方法二: 3+2( n-1 )=2n+1
方法三:
3n-(n-1) =2n+1
做一做
1、如图,是2007年12月份的日 历表,如图那样,用一个 圈竖 着圈住3个数,当你任意圈出一 竖列上相邻的三个数时,发现这 三个数的和不可能是( ) (A)72 (B)60 (C)27 (D)40
三、教法和学法
1、自主探究、讨论交流的学习方法
2、启发式教学法
四、活动过程
玩一玩 算一算 拼一拼 做一做
议一议
玩一玩
和60,您知道这 三天分别是几号 吗?
圈出一个竖列上相邻的 三个日期,把它们的和告 诉我,我能马上知道这三 天分别是几号
算一算
探究: 观察大家手中的日历,思考问题:
(1)横行三个相邻的日期间有何关系?若设横行中三 个相邻的日期中间的数为a,则三个数的和是多少? (2)竖列三个相邻的日期有何关系?你能在日历中圈 出一个竖列上相邻的3个数,使得它们的和是40吗?为 什么? (3)用一个3×3的正方形方框在日历上任意框住9个 数,9个数之和与方框正中心的数有什么关系?不改变 方框的大小,将方框移动几个位置试一试,你能得出什 么结论?你能证明这个结论吗?
18 25
a-1 a
19
26
a+1
设中间的数为a,则三个数之和是: a-7+a+a+7=3a 因为是3的倍数,所以和不可能是40.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究二
请各小组用火柴棒拼成一排由三角形组 成的图形(如下图).
能否说说构成这排三角形的一般规律?
搭 n 个三角形要用 2n+1 根火柴棒 搭100个三角形要用 201 根火柴棒
刚才的探究方形)
(第2个正方形)
(第3个正方形)
(第1个正方形)
(第2个正方形)
(第3个正方形)
第1个正方形比原始正方形多( 3 )个小正方形 第2个正方形比第1个正方形多( 5 )个小正方形 第3个正方形比第2个正方形多( 7 )个小正方形 第n个正方形比第(n-1)个正方形多( 2n+1 )个小正方形
因此,提升我们探究规律的能力能够
帮助我们加深对世界的认识,更好地指导 我们的生活.
人教版七年级上册
探究一
如图,用火柴棒拼成一排由三角形组成的图形.
拼1个三角形要用 3
拼2个三角形要用 6 拼3个三角形要用 9 拼n个三角形要用 3n
根火柴棒 根火柴棒 根火柴棒 根火柴棒
探究二
请各小组用火柴棒拼成一排由三角形组成 的图形(如下图).
课堂小结
请同学们谈谈这节课有什么 收获?
找规律,两条路; 一从形,二从数; 形中找数数有律; 数形结合更容易 .
课后作业
1. 用黑白两颜色的正六边形地面砖按如图所示
规律,第n个图案中有白色地面砖
块.
……
第一个
第二个
第三个
2. 寻找自己周围的具有规律的一些图形,记录 下来,并尝试用含n的式子表示出一般规律.
归纳
1. 途径:
(1)数 (2)形
2.思想方法:
特殊 一般 特殊
3.重点关注:
图形变化与火柴棒根数之间的对应关系
人人争当设计师
请每个小组用火柴棒设计一些有 一定规律的图形,并探索拼接成n个 这样的图形需要多少根火柴棒.
探究三
如下图所示,用大小相等的小正方形拼 大正方形,拼第1个正方形需要4个小正方形, 拼第2个正方形需要9个小正方形,……拼一 拼,想一想,按照这样的方法拼成的第n个 正方形比第(n-1)个正方形多几个正方形?
随堂练习
1. 用同样大小的黑色棋子按图所示的方式摆
图形,按照这样的规律摆下去,则第n个图形
需棋子
3n+1 枚(用含n的式子表
示).
…
第1个图 第2个图
第3个图
四、应用推广
1.下图是小明用火柴搭的1条、2条、3条“鱼”…,
则搭100条“金鱼”需要火柴602 根,搭n条
“金鱼”需要6n火+2柴
根.
1条
2条
6+2
6×2+2
……
3条 6×3+2
探究二
请各小组用火柴棒拼成一排由三角形组 成的图形(如下图).
搭10个三角形要用 21 根火柴棒
说说你们的做法.
人教版七年级上册