专题10 推理与证明、算法、复数-河北衡水中学高三数学(文)模拟试卷分项版

合集下载

2020届河北省衡水中学高三一模数学(文)试题(解析版)

2020届河北省衡水中学高三一模数学(文)试题(解析版)
6.设 , .若p: 成等比数列;
q: ,则()
A.p是q的充分条件,但不是q的必要条件
B.p是q的必要条件,但不是q的充分条件
C.p是q的充分必要条件
D.p既不是q的充分条件,也不是q的必要条件
【答案】A
【解析】对命题p: 成等比数列,则公比 且 ;
对命题 ,①当 时, 成立;
②当 时,根据柯西不等式,等式 成立,
同理 ,切面 为菱形,
连 ,则 ,
过点 做 于 ,则 , ,
, ,

在 中, ,


所以切面 面积为 .
故选:A.
【点睛】
本题考查实际应用问题,考查正四棱柱的结构特征以及切面的面积,利用线面关系确定切面的形状特征是解题的关键,意在考查直观想象、逻辑推理能力,属于中档题.
12.设函数 ,若曲线 上存在点 , 使得 成立,则实数 的取值范围为()
【答案】
【解析】由题意,根据圆的对称性,可得当 时, 取最小值.
【详解】
在平面直角坐标系 中,以 为圆心的圆与 轴和 轴分别相切于 , 两点,
点 , 分别在线段 , 上, 与圆 相切,
根据圆的对称性,当 时, 取最小值,
如图, , ,
的最小值为 .
故答案为: .
【点睛】
本题考查线段长的最小值的求法,考查直线、圆等基础知识,考查运算求解能力,考查函数与方程思想,意在考查学生对这些知识的理解掌握水平.
试题解析:(1)由 ,得 ,
当 时, ,即 ,
所以 , ,
依题意, ,
解得 .
(2)有(2)知 ,
所以 ,又因为 ,
所以数列 是以2为首项,2为公比的等比数列,
所以 ,

2019届河北省衡水中学高三一摸考试数学(文)试卷含解析

2019届河北省衡水中学高三一摸考试数学(文)试卷含解析

2019届河北省衡水中学高三一摸考试数学(文)试卷★祝考试顺利★注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单选题1.已知集合2,3,,,则A. B. C. D.2.已知复数其中为虚数单位,则的共轭复数的虚部为A.1 B. C. D.3.已知曲线在点处的切线与直线垂直,则实数的值为A.5 B. C. D.4.如图的折线图是某农村小卖部2018年一月至五月份的营业额与支出数据,根据该折线图,下列说法正确的是A.该小卖部2018年前五个月中三月份的利润最高B.该小卖部2018年前五个月的利润一直呈增长趋势C.该小卖部2018年前五个月的利润的中位数为万元D.该小卖部2018年前五个月的总利润为万元5.如图是希腊著名数学家欧几里德在证明勾股定理时所绘制的一个图形,该图形由三个边长分别为的正方形和一个直角三角形围成现已知,,若从该图形中随机取一点,则该点取自其中的直角三角形区域的概率为A. B. C. D.6.已知椭圆的离心率为,且椭圆的长轴长与焦距之和为6,则椭圆的标准方程为A. B. C. D.7.在直三棱柱中,,且,点M是的中点,则异面直线与所成角的余弦值为A. B. C. D.8.设命题将函数的图象向右平移个单位得到函数的图象;命题若,则,则下列命题为真命题的是A. B. C. D.9.设函数,,若直线,分别是曲线与的对称轴,则A.2 B.0 C. D.10.某几何体的正视图和侧视图均为如图所示的等腰三角形,则该几何体的体积不可能是A. B.2 C.4 D.611.已知双曲线的离心率为2,左,右焦点分别为,,点在双曲线上,若的周长为,则1 / 9A. B. C. D.12.对于函数,若存在,使,则称点是曲线的“优美点”.已知,则曲线的“优美点”个数为A.1 B.2 C.4 D.6二、解答题13.已知数列满足,且.求证:数列为等差数列;求数列的通项公式;记,求数列的前2018项和.14.在如图所示的多面体中,,平面.(Ⅰ)证明:平面;(Ⅱ)若,,求三棱锥的体积.15.如今我们的互联网生活日益丰富,除了可以很方便地网购,网络外卖也开始成为不少人日常生活中不可或缺的一部分.某市一调查机构针对该市市场占有率最高的甲、乙两家网络外卖企业(以下简称外卖甲,外卖乙)的经营情况进行了调查,调查结果如表:(1)据统计表明,与之间具有线性相关关系.(ⅰ)请用相关系数加以说明:(若,则可认为与有较强的线性相关关系(值精确到0.001))(ⅱ)经计算求得与之间的回归方程为.假定每单外卖业务企业平均能获纯利润3元,试预测当外卖乙日接单量不低于2500单时,外卖甲所获取的日纯利润的大致范围:(值精确到0.01)(2)试根据表格中这五天的日接单量情况,从平均值和方差角度说明这两家外卖企业的经营状况.相关公式:相关系数,参考数据:.16.已知点是抛物线的焦点,若点在抛物线上,且求抛物线的方程;动直线与抛物线相交于两点,问:在轴上是否存在定点其中,使得向量与向量共线其中为坐标原点?若存在,求出点的坐标;若不存在,请说明理由.17.已知函数,其中为自然对数的底数.讨论函数的极值;若,证明:当,时,.18.在平面直角坐标系中,圆的参数方程为,为参数,以坐标原点为极点,轴正半轴为极轴建立极坐标系,圆的极坐标方程为求圆的普通方程和圆的直角坐标方程;若圆与圆相交于点,求弦的长.19.已知函数.求不等式的解集;若关于的方程存在实数解,求实数的取值范围.三、填空题20.已知向量,,若,则______.21.已知实数满足不等式组,则的最小值为______.22.在中,角所对的边分别为,且满足,若的面积为,则______.23.已知正方体的棱的中点为与交于点,平面过点,且与直线垂直,若,则平面截该正方体所得截面图形的面积为______.。

2016版《一点一练》高考数学(文科)专题演练:第十章 推理与证明、算法与复数(含两年高考一年模拟)

2016版《一点一练》高考数学(文科)专题演练:第十章 推理与证明、算法与复数(含两年高考一年模拟)

1.y ∈Z },B ={(x ,y )||x |≤2,|y |≤2,x ,y ∈Z },定义集合A ⊕B ={(x 1+x 2,y 1+y 2)|(x 1,y 1)∈A ,(x 2,y 2)∈B },则A ⊕B 中元素的个数为( )A .77B .49C .45D .302.(2015·广东)若集合E ={(p ,q ,r ,s )|0≤p <s ≤4,0≤q <s ≤4,0≤r <s ≤4且p ,q ,r ,s ∈N },F ={(t ,u ,v ,w )|0≤t <u ≤4,0≤v <w ≤4且t ,u ,v ,w ∈N },用card(X )表示集合X 中的元素个数,则card(E )+card(F )=( )A .200B .150C .100D .503.(2015·陕西)观察下列等式1-12=121-12+13-14=13+14 1-12+13-14+15-16=14+15+16……据此规律,第n 个等式可为________.4.(2014·陕西)已知f (x )=x 1+x,x ≥0,若f 1(x )=f (x ),f n +1(x )=f (f n (x )),n ∈N +则f 2 014(x )的表达式为______.5.(2014·北京)顾客请一位工艺师把A ,B 两件玉石原料各制成一件工艺品.工艺师带一位徒弟完成这项任务.每件原料先由徒弟完成粗加工,再由工艺师进行精加工完成制作,两件工艺品都完成后交付顾客.两件原料每道工序所需时间(单位:工作日)如下:6.(2015·江苏)设a 1,a 2,a 3,a 4是各项为正数且公差为d (d ≠0)的等差数列.(1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由;(3)是否存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k 3,a n +3k 4依次构成等比数列?并说明理由.1.(2015·吉林四校调研)设a 、b 、c 都是正数,则a +1b ,b +1c ,c +1a 三个数( )A .都大于2B .至少有一个大于2C .至少有一个不大于2D .至少有一个不小于22.(2015·河北保定模拟)定义A B ,B C ,C D ,D B 分别对应下列图形( )那么下列图形中,可以表示A D ,A C 的分别是( )A .(1)(2)B .(2)(3)C .(2)(4)D .(1)(4)3.(2015·宜昌调研)给出下列两种说法:①已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2;②已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1,用反证法证明时,可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下结论正确的是( )A .①与②的假设都错误B .①与②的假设都正确C .①的假设正确;②的假设错误D .①的假设错误;②的假设正确4.(2015·淮南模拟)从1开始的自然数按如图所示的规则排列,现有一个三角形框架在图中上下或左右移动,使每次恰有九个数在此三角形内,则这九个数的和可以为( )A .2 011B .2 012C .2 013D .2 0145.(2015·泉州模拟)设△ABC 的三边长分别为a ,b ,c ,△ABC的面积为S ,内切圆半径为r ,则r =2S a +b +c;类比这个结论可知,四面体ABCD 的四个面的面积分别为S 1,S 2,S 3,S 4,四面体ABCD 的体积为V ,内切球半径为R ,则R =________.6.(2015·黄山模拟)在矩形ABCD 中,对角线AC 与相邻两边所成的角为α,β,则有cos 2α+cos 2β=1.类比到空间中的一个正确命题是:在长方体ABCD -A 1B 1C 1D 1中,对角线AC 1与相邻三个面所成的角为α,β,γ,则________.7.(2015·莱芜模拟)如果函数f (x )在区间D 上是凸函数,那么对于区间D 内的任意x 1,x 2,…,x n ,都有f (x 1)+f (x 2)+…+f (x n )n≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n .若y =sin x 在区间(0,π)上是凸函数,那么在△ABC 中,sin A +sin B +sin C 的最大值是________.8.(2015·北京模拟)若f (a +b )=f (a )f (b )(a ,b ∈N *),且f (1)=2,则f (2)f (1)+f (4)f (3)+…+f (2 014)f (2 013)=________.9.(2015·昆明一中检测)甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,甲说:丙没有考满分;乙说:是我考的;丙说:甲说真话.事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是________.10.(2015·湖北八校一联)观察下列等式:12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,……,由以上等式推测出一个一般性的结论:对于n∈N*,12-22+32-42+…+(-1)n+1n2=________.11.(2015·宝鸡市质检)观察等式:①13×13+12×12+16×1=12,②13×23+12×22+16×2=12+22,③13×33+12×32+16×3=12+22+32,…,以上等式都是成立的,照此写下去,第2 015个成立的等式是________.12.(2015·武汉市调研)平面几何中有如下结论:如图1,设O是等腰Rt△ABC底边BC的中点,AB=1,过点O的动直线与两腰或其延长线的交点分别为Q,R,则有1AQ+1AR=2.类比此结论,将其拓展到空间有:如图2,设O是正三棱锥A-BCD底面BCD的中心,AB,AC,AD两两垂直,AB=1,过点O的动平面与三棱锥的三条侧棱或其延长线的交点分别为Q,R,P,则有________.1.(2015·输入x的值为1,则输出y的值为()A.2 B.7 C.8 D.128第1题图第2题图2.(2015·天津)阅读上边的程序框图,运行相应的程序,则输出i的值为()A.2 B.3 C.4 D.53.(2015·北京)执行如图所示的程序框图,输出的k值为() A.3 B.4 C.5 D.64.(2015·四川)执行如图所示的程序框图,输出S的值为()A.-32 B.32C.-12 D.12第3题图 第4题图 第5题图5.(2015·重庆)执行如图所示的程序框图,则输出s 的值为( ) A.34 B.56 C.1112 D.25246.(2014·新课标Ⅰ)执行下面的程序框图,若输入的a ,b ,k 分别为1,2,3,则输出的M =( )A.203B.165C.72D.158第6题图 第7题图 7.(2014·新课标Ⅱ)执行上面的程序框图,如果输入的x ,t 均为2,则输出的S =( )A .4B .5C .6D .78.(2015·新课标全国Ⅰ)已知复数z 满足(z -1)i =1+i ,则z =( )A .-2-iB .-2+iC .2-iD .2+i9.(2015·新课标全国Ⅱ)若a 为实数,且2+a i 1+i=3+i ,则a =( ) A .-4 B .-3 C .3 D .410.(2015·广东)已知i 是虚数单位,则复数(1+i)2=( )A .2iB .-2iC .2D .-211.(2015·山东)若复数z 满足z 1-i=i ,其中i 为虚数单位,则z =( )A .1-iB .1+iC .-1-iD .-1+i12.(2015·安徽)设i 是虚数单位,则复数(1-i)(1+2i)=( )A .3+3iB .-1+3iC .3+iD .-1+i13.(2014·重庆)实部为-2,虚部为1的复数所对应的点位于复平面的( )A .第一象限B .第二象限C .第三象限D .第四象限14.(2014·福建)复数z =(3-2i)i 的共轭复数z 等于( )A .-2-3iB .-2+3iC .2-3iD .2+3i1.(2015·x 的值为( )A .4B .5C .6D .7第1题图 第2题图 2.(2015·云南名校统考)执行如图所示的程序框图,输出的S 值为-4时,则输入的S 0的值为( ) A .7 B .8 C .9 D .103.(2015·湖北八校一联)如图给出的是计算12+14+16+…+12 014的值的程序框图,其中判断框内应填入的是( )A .i ≤2 013?B .i ≤2 015?C .i ≤2 017?D .i ≤2 019?第3题图 第4题图 4.(2015·宝鸡市质检)某程序框图如图所示,则该程序运行后输出的S 的值等于( )A .1 B.14 C.12 D.185.(2015·四川省统考)某程序框图如图所示,若输出的S =57,则判断框内应填( )A .k >4?B .k >5?C .k >6?D .k >7?第5题图 第6题图 6.(2015·晋冀豫三省调研)执行如图所示的程序框图,输出S 的值为( )A .3B .-6C .10D .127.(2015·贵阳市模拟)复数z =3-2i ,i 是虚数单位,则z 的虚部是( )A .2iB .-2iC .2D .-28.(2015·郑州一预)设i 是虚数单位,若复数m +103+i(m ∈R )是纯虚数,则m 的值为( )A .-3B .-1C .1D .39.(2015·邯郸市质检)已知i 是虚数单位,则复数z =4+3i 3-4i的虚部是( )A .0B .iC .-iD .110.(2015·汕头市监测)复数21-i的实部与虚部之和为( ) A .-1 B .2 C .1 D .011.(2015·唐山一期检测)若复数z =a +3i 1-2i(a ∈R ,i 是虚数单位)是纯虚数,则z 的值为( )A .2B .3C .3iD .2i12.(2015·唐山摸底)复数z =1-3i 1+2i,则( ) A .|z |=2 B .z 的实部为1C .z 的虚部为-iD .z 的共轭复数为-1+i13.(2015·福州市质检)在复平面内,两共轭复数所对应的点( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .关于直线y =x参考答案第十章推理与证明、算法与复数考点33推理与证明【两年高考真题演练】1.C[如图,集合A表示如图所示的所有圆点“”,集合B表示如图所示的所有圆点“”+所有圆点“”,集合A⊕B显然是集合{(x,y)||x|≤3,|y|≤3,x,y∈Z}中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A⊕B表示如图所示的所有圆点“”+所有“”圆点+所有圆点“”,共45个.故A⊕B中元素的个数为45.故选C.]2.A[当s=4时,p,q,r都可取0,1,2,3中的一个,有43=64种,当s=3时,p,q,r都可取0,1,2中的一个,有33=27种,当s=2时,p,q,r都可取0,1中的一个,有23=8种,当s=1时,p,q,r都可取0,有1种,∴card(E)=64+27+8+1=100.当t=0时,u可取1,2,3,4中的一个,有4种,当t=1时,u取2,3,4中的一个,有3种,当t=2时,u可取3,4中的一个,有2种,当t=3时,u可取4,有一种,∴t,u取值有1+2+3+4=10种,同样地,v,w的取值也有10种,则card(F)=10×10=100种,∴card(E)+card(F)=100+100=200种.]3.1-12+13-14+…+12n-1-12n=1n+1+1n+2+…+12n[等式左边的特征:第1个等式有2项,第2个有4项,第3个有6项,且正负交错,故第n 个等式左边有2n 项且正负交错,应为1-12+13-14+…+12n -1-12n;等式右边的特征:第1个有1项,第2个有2项,第3个有3项,故第n 个有n 项,且有前几个的规律不难发现第n 个等式右边应为1n +1+1n +2+…+12n .] 4.f 2 014(x )=x 1+2 014x [f 1(x )=x 1+x ,f 2(x )=x1+x 1+x 1+x=x 1+2x ,f 3(x )=x1+2x 1+x 1+2x=x 1+3x ,…,由数学归纳法得f 2 014(x )=x 1+2 014x .] 5.42 [为使交货期最短,需徒弟先对原料B 进行粗加工,用时6个工作日,再由工艺师对原料B 进行精加工,用时21个工作日,在此期间徒弟再对原料A 进行粗加工,不会影响工艺师加工完原料B 后直接对原料A 进行精加工,所以最短交货期为6+21+15=42(个)工作日.]6.(1)证明 因为2a n +12a n=2a n +1-a n =2d (n =1,2,3)是同一个常数,所以2a 1,2a 2,2a 3,2a 4依次构成等比数列,(2)解 令a 1+d =a ,则a 1,a 2,a 3,a 4分别为a -d ,a ,a +d ,a +2d (a >d ,a >-2d ,d ≠0).假设存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列,则a 4=(a -d )(a +d )3,且(a +d )6=a 2(a +2d )4.令t =d a ,则1=(1-t )(1+t )3,且(1+t )6=(1+2t )4⎝ ⎛⎭⎪⎫-12<t <1,t ≠0, 化简得t 3+2t 2-2=0(*),且t 2=t +1.将t 2=t +1代入(*)式,t (t +1)+2(t +1)-2=t 2+3t =t +1+3t =4t +1=0,则t =-14. 显然t =-14不是上面方程的解,矛盾,所以假设不成立.因此不存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列.(3)解 假设存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k 3,a n +3k 4依次构成等比数列,则a n 1(a 1+2d )n +2k =(a 1+d )2(n +k ),且(a 1+d )n +k (a 1+3d )n +3k =(a 1+2d )2(n +2k ).分别在两个等式的两边同除以a 2(n +k )1及a 2(n +2k )1, 并令t =d a 1⎝⎛⎭⎪⎫t >-13,t ≠0, 则(1+2t )n +2k =(1+t )2(n +k ),且(1+t )n +k (1+3t )n +3k =(1+2t )2(n +2k ).将上述两个等式两边取对数,得(n +2k )ln(1+2t )=2(n +k )ln(1+t ),且(n +k )ln(1+t )+(n +3k )ln(1+3t )=2(n +2k )ln(1+2t ).化简得2k [ln(1+2t )-ln(1+t )]=n [2ln(1+t )-ln(1+2t )],且3k [ln(1+3t )-ln(1+t )]=n [3ln(1+t )-ln(1+3t )].再将这两式相除,化简得ln(1+3t )ln(1+2t )+3ln(1+2t )ln(1+t )=4ln(1+3t )ln(1+t )(**). 令g (t )=4ln(1+3t )ln(1+t )-ln(1+3t )ln(1+2t )-3ln(1+2t )ln(1+t ),则g ′(t )=错误!.令φ(t )=(1+3t )2ln(1+3t )-3(1+2t )2ln(1+2t )+3(1+t )2ln(1+t ), 则φ′(t )=6[(1+3t )ln(1+3t )-2(1+2t )ln(1+2t )+(1+t )ln(1+t )]. 令φ1(t )=φ′(t ),则φ1′(t )=6[3ln(1+3t )-4ln(1+2t )+ln(1+t )].令φ2(t )=φ1′(t ),则φ2′(t )=12(1+t )(1+2t )(1+3t )>0. 由g (0)=φ(0)=φ1(0)=φ2(0)=0,φ′2(t )>0,知φ2(t ),φ1(t ),φ(t ),g (t )在⎝ ⎛⎭⎪⎫-13,0和(0,+∞)上均单调. 故g (t )只有唯一零点t =0,即方程(**)只有唯一解t =0,故假设不成立.所以不存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k 3,a n +3k 4依次构成等比数列.【一年模拟试题精练】1.D [利用反证法证明.假设三个数都小于2,则a +1b +b +1c +c +1a <6,而a +1b +b +1c +c +1a ≥2+2+2=6,与假设矛盾.故选D.]2.C [由A B ,B C 知,B 是大正方形,A 是|,C 是—,由C D 知,D 是小正方形,∴A D 为小正方形中有竖线,即(2)正确,A C 为+,即(4)正确.故选C.]3.D [反证法的实质是否定结论,对于①,其结论的反面是p +q >2,所以①错误;对于②,其假设正确.]4.B [设最小的数为x ,则其它8个数分别为x +7,x +8,x +9,x +14,x +15,x +16,x +17,x +18,故9个数之和为x +3(x +8)+5(x +16)=9x +104,当x =212时,9x +104=2 012.]5.3V S 1+S 2+S 3+S 4[V =13S 1·R +13S 2·R +13S 3·R +13S 4·R =13(S 1+S 2+S 3+S 4)R ,R =3V S 1+S 2+S 3+S 4.] 6.cos 2α+cos 2β+cos 2γ=2 [设α,β,γ是AC 1分别与面ABCD 1,面ABB 1A 1,面BCC 1B 1所成的角.cos α=AC AC 1,cos β=AB 1AC 1,cos γ=BC 1AC 1,cos 2α+cos 2β+cos 2γ=2(AB 2+BC 2+CC 21)AC 21=2.] 7.332 [f (x )=sin x ,f (A )+f (B )+f (C )3≤f ⎝ ⎛⎭⎪⎫A +B +C 3 即sin A +sin B +sin C ≤3sin A +B +C 3=3sin π3=332.故sin A +sin B +sin C 的最大值为332.]8.2 014 [令a =n ,b =1,则f (n +1)=f (n )·f (1),即:f (n +1)f (n )=f (1)=2,故:f (2)f (1)+f (4)f (3)+…+f (2 014)f (2 013)=2×1 007=2 014.] 9.甲 [假设甲说的是假话,即丙考满分,则乙也是假话,不成立;假设乙说的是假话,即乙没有考满分,又丙没有考满分,故甲考满分;故答案为:甲.]10.(-1)n +1·n (n +1)2 [12=1=(-1)21×22;12-22=-3=(-1)32×32;12-22+32=6=(-1)43×42;12-22+32-42=-10=(-1)54×52,…,12-22+32-42+…+(-1)n +1·n 2=(-1)n +1·n (n +1)2.]11.13×2 0153+12×2 0152+16×2 015=12+22+…+20152 [①:13×13+12×12+16×1=12;②:13×23+12×22+16×2=12+22;③:13×33+12×32+16×3=12+22+32,……;2 015:13×2 0153+12×2 0152+16×2 015=12+22+…+2 0152]12.1AQ +1AR +1AP =3 [设O 到各个平面的距离为d ,而V R -AQP =13S △AQP ·AR =13·12·AQ ·AP ·AR =16AQ ·AP ·AR ,又∵V R -AQP =V O -AQP +V O -ARP +V O -AQR=13S △AQP ·d +13S △ARP ·d +13S △AQR ·d=16(AQ ·AP +AR ·AP +AQ ·AR )d16AQ ·AP ·AR =16(AQ ·AP +AR ·AP +AQ ·AR )d , 即1AQ +1AR +1AP =d ,而V A -BDC =13S △BDC ·h=13·34·2·33=16,V O -ABD =13V A -BDC =118, 即13·S △ABD ·d =13·12·d =118⇒d =3, ∴1AQ +1AR +1AP =3.]考点34 算法与复数【两年高考真题演练】1.C [当x =1时,执行y =9-1=8.输出y 的值为8,故选C.]2.C [运行相应的程序.第1次循环:i =1,S =10-1=9;第2次循环:i =2,S =9-2=7;第3次循环:i =3,S =7-3=4;第4次循环:i =4,S =4-4=0;满足S =0≤1,结束循环,输出i =4.故选C.]3.B [第一次循环:a =3×12=32,k =1;第二次循环:a =32×12=34,k =2;第三次循环:a =34×12=38,k =3;第四次循环:a =38×12=316<14,k =4.故输出k =4.]4.D [每次循环的结果为k =2,k =3,k =4,k =5>4,∴S =sin 5π6=12.]5.D [s =12+14+16+18=2524,即输出s 的值为2524.]6.D [当n =1时,M =1+12=32,a =2,b =32;当n =2时,M =2+23=83,a =32,b =83;当n =3时,M =32+38=158,a =83,b =158;n =4时,终止循环.输出M =158.]7.D [k =1,M =11×2=2,S =2+3=5;k =2,M =22×2=2,S =2+5=7;k =3,3>t ,∴输出S =7,故选D.]8.C [由(z -1)i =1+i ,两边同乘以-i ,则有z -1=1-i ,所以z =2-i.]9.D [由2+a i 1+i=3+i ,得2+a i =(3+i)(1+i)=2+4i ,即a i =4i ,因为a 为实数,所以a =4.故选D.]10.A [(1+i)2=1+2i +i 2=1+2i -1=2i.]11.A [∵z 1-i=i ,∴z =i(1-i)=i -i 2=1+i ,∴z =1-i.] 12.C [(1-i)(1+2i)=1+2i -i -2i 2=1+i +2=3+i ,故选C.]13.B [实部为-2,虚部为1的复数为-2+i ,所对应的点位于复平面的第二象限,选B.]14.C [因为复数z =(3-2i)i =2+3i ,所以z =2-3i ,故选C. ]【一年模拟试题精练】1.C [x =3,y =23=8<10+3+3=33;x =3+1=4.y =24=16<10×4+3=43;x =4+1=5,y =25=32<10×5+3=53;x =5+1=6,y =26=64>10×6+3=63,故输出的x 值为6.]2.D [由题意知S 0应为偶数,排除选项A 、C.当S 0=8时,i =1<4,S =8-2=6;i =2<4,S =6-22=2;i =3<4,S =2-23=-6;i =4=4,输出S =-6,排除B ,故选D.]3.B [i =2,S =0;S =0+12,i =4;S =12+14,i =6;…,S =12+14+…+12012,i =2 014;要计算S =12+14+…+12 012+12 014,应满足i ≤2 015.]4.C [S =1=1,k =1<2 015;S =18<1,k =2<2 015;s =2×12=14<1,k =3<2 015;S =14×2=12<1,k =4<2015;S =12×2=1,k =5<2 015 循环周期为4,2 015=4×503+3,S =1=1,k =2 013<2 015;S =18,k =2 014<2 015;S =18×2=14<1,k =2 015=2 015, S =14×2=12<1,k =2 016>2 015,输出S =12.]5.A [k =1,S =1;k =2,S =2×1+2=4;k =3,S =2×4+3=11;k =4,S =2×11+4=26;k =5,S =2×26+5=57要输出S =57,需k >4.]6.C [当i =1时,1<5为奇数,S =-1,i =2; 当i =2时,2<5为偶数,S =-1+4=3,i =3; 当i =3时,3<5为奇数,S =3-33=-5,i =4; 当i =4时,4<5为偶数,S =-6+42=10,i =5; 当i =5时,5≥5,输出S =10.]7.D [z =3-2i 的虚部为-2.]8.A [∵m +103+i =m +3-i 为纯虚数,∴m +3=0,即m =-3.]9.D [∵z =4+3i 3-4i =i ,∴z 的虚部为1.]10.B[21-i=1+i,故其实部与虚部之和为1+1=2.]11.C[∵z=a+3i1-2i=a-65+2a+35i为纯虚数,∴a-65=0,即a=6,∴z=3i.]12.D[∵z=1-3i1+2i=-1-i,∴|z|=2,z的实部为-1,虚部为-1,z的共轭复数为-1+i,故选D.]13.A[∵z=a+b i的共轭复数z=a-b i,∴z和z关于x轴对称.]。

2020届衡水中学高三高考模拟试卷-文科数学(含答案解析)

2020届衡水中学高三高考模拟试卷-文科数学(含答案解析)

2020届衡水中学高三高考模拟试卷-文科数学一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合P={}0,1,M={}|x x P ⊆,则集合M 的子集个数为( )A.32B.16C.31D.642. 已知,,a b R i ∈是虚数单位. 若a i +=2bi -,则2()a bi +=A.34i -B. 34i +C. 43i -D. 43i +3. 若将一个质点随机投入如图所示的长方形ABCD 中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是( ) A .2π B .4π C .6π D .8π4. 已知如图所示的正方体ABCD ﹣A 1B 1C 1D 1,点P 、Q 分别在棱BB 1、DD 1上,且=,过点A 、P 、Q 作截面截去该正方体的含点A 1的部分,则下列图形中不可能是截去后剩下几何体的主视图的是( )5.已知等比数列{}n a 的公比为q ,则’’01q <<”是.{}n a 为递减数列的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 6.已知()21f x -定义域为[]0,3则 ()21f x -的定义域为( )A.(0,92) B.902⎡⎤⎢⎥⎣⎦, C.(9,2-∞) D.(9,2⎤-∞⎥⎦7.在平行四边形ABCD 中,AB=8,AD=5,3CP PD =,2APBP =, AB AD ⋅=( )A,22 B.23 C.24 D.258. sin cos y x a x =+中有一条对称轴是53x π=,则 ()sin cos g x a x x =+最大值为( )A.333 B.233 C.332 D.2329. 如图所示,程序框图(算法流程图)的输出结果是( )A.34B.55C.78D.89x=1 y=1z=x+y50?z ≤x=y开始输出z是否10. 如图,一几何体正视图,俯视图是腰长为1的等腰三角形,俯视图是一个圆及其圆心,当这个几何体的体积最大时圆的半径是( )11. 设,a b 是关于t 的方程2cos sin 0t t θθ+=的两个不等实根,则过2(,)A a a ,2(,)B b b 两点的直线与双曲线22221cos sin x y θθ-=的公共点的个数为 A .0B .1C .2D .312. ()f x 与()1f x +事定义在R 上的偶函数,若[]0,1x ∈时()f x =sin x x -,则32f ⎛⎫- ⎪⎝⎭-2f π⎛⎫⎪⎝⎭为( ) A.正数 B.负数 C.零 D.不能确定二、填空题(本大题共4小题,每小题5分,共20分.)13. 在ABC ∆中,AB=2,AC=3,1AB BC ⋅=,则 BC=___________________14. x,y 自变量满足x ≥0y ≥24y x +≤x y S +≤当35S ≤≤时,则32x y Z =+的最大值的变化范围为___________________15. 函数ay x =为偶函数且为减函数在()0,+∞上,则a 的范围为___________________16. 已知函数()f x =()lg ,0x x -<264,0x x x -+≥,若关于x 的方程()()210fx bf x -+=有8个不同根,则实数b 的取值范围是___________________三、解答题(本大题共6小题,共70分.解答须写出文字说明、证明过程和演算步骤.)17. cos cos 1αβ=-,求()sin αβ+正侧俯18. 某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”; (2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.()()2211221221212120.1000.0500.010,2.7063.841 6.635p x k n n n n n x n n n n k ++++-=≥19. 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE ,BD 上各有一点P ,Q ,且AP=DQ , 求证PQ 面BCE20. 已知椭圆中()222210x y a b a b +=>>长轴为4离心率为12,点P 为椭圆上异于顶点的任意一点,过点P 作椭圆的切线l 交y 轴于点A ,直线l'过点P 且垂直于l 交y 轴于B ,试判断以AB 为直径的圆能否经过定点,若能求出定点坐标,若不能说出理由21. 设函数()()()21xf x x e kxk R =--∈当1,12k ⎛⎫∈⎪⎝⎭时, 求函数()f x 在[]0,k 上的最大值M请在22、23、24三题中任选一题作答,如果多做,则按所做的第一题计分.作答时用2B 铅笔在答题卡上把所选题目的题号后的方框涂黑.22. 选修4-1几何证明选讲已知,ABC AB AC ∆=中,D ABC ∆为外接圆劣弧AC 上的点(不与点A C 、重合),延长BD 至E ,延长AD 交BC 的延长线于F . (Ⅰ)求证:CDF EDF ∠=∠;(Ⅱ)求证:AB AC DF AD FC FB ⋅⋅=⋅⋅.23. 选修4-4:坐标系与参数方程将圆221x y +=上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C. (1)写出C 的参数方程;(2)设直线:220l x y +-=与C 的交点为12,P P ,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求过线段12P P 的中点且与l 垂直的直线的极坐标方程.24. 选修4-5:不等式选讲已知函数f (x )=|2x -a |+a.(Ⅰ)若不等式f (x )≤6的解集为{x |-2≤x≤3},求实数a 的值;(Ⅱ)在(Ⅰ)的条件下,若存在实数n 使f (n )≤m-f (-n )成立,求实数m 的取值范围参考答案1. B考点:集合的子集问题 设有限集合A ,card ()A =n ()*n N ∈子集个数2n ,真子集21n -,非空真子集22n - 解析:M={}|x x P ⊆ P={}0,1则x 有如下情况:{}{}{},0,1,0,1φ 则有子集为42216n== 注意点:该类型常错在空集φ 2. A【解析】3. B 【解析】4. A【解析】试题分析:当P 、B 1重合时,主视图为选项B ;当P 到B 点的距离比B 1近时,主视图为选项C ;当P 到B 点的距离比B 1远时,主视图为选项D ,因此答案为A. 考点:组合体的三视图 5.D考点:充分条件与必要条件的判定解析:若111,2a q =-=,则数列前n 项依次为-1,-11,24-,显然不是递减数列 若等比数列为-1,-2,-4,-8显然为递减数列,但其公比q=2,不满足01q综上01q 是{}n a 为递减数列的既不充分也不必要条件注意点:对于等比数列,递减数列的概念理解,做题突破点;概念,反例 6.B考点:关于定义域的考察解析:[][][]220,30,911,8x x x ∈∈-∈-所以[][]9211,8210,90,2x x x ⎡⎤-∈--∈∈⎢⎥⎣⎦所以定义域为90,2⎡⎤⎢⎥⎣⎦注意;一般题目中的定义域一般都是指x 的范围类似的题目:已知()f x 定义域为[]()()0,4,11f x f x ++-的定义域是? 考点;对定义域的问题考察的综合应用解析:[][][]0,411,511,3x x x ∈+∈-∈-所以综合在一起的定义域是[]1,3 注意;定义域在一定题目中指的是x 范围,但每个题目中的x 的取值是一样的 所以在这些关系中取这三个范围中都包括的范围 7.A考点;利用不同方法求解 解析:法一:坐标法 设A坐标原点B()8,0 设DAB θ∠=所以()5cos ,5sin D θθ所以()5cos 2,5sin P θθ=+AB AD ⋅=()8,0()5cos ,5sin θθ=40cos θAP BP ⋅=()5cos 2,5sin θθ+()5cos 6,5sin 2θθ-=因为0,2πθ⎛⎫∈ ⎪⎝⎭所以AB AD ⋅=22法二;AP BP ⋅=13244AD AB BC AB ⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭所以AP BP ⋅=1344AD AB AD AB ⎛⎫⎛⎫+- ⎪⎪⎝⎭⎝⎭=223134416AD AD AB AB AD AB -⋅+⋅-=25-13*642216AD AB ⋅-= 所以AB AD ⋅=22 注意;巧妙运用题目关系并且记住题目中条件不是白给的,一定要用 8.B考点:函数最值方面的考察解析:方法一;sin cos y x a x =+=当53x π=时,122y a =-+=平方得:22311424a a a -+=+ 求得3a =- 3= 方法二:因为对称轴为53π 所以可知此时的导函数值为0 'cos sin y x a x =-555'cos sin 0333y a πππ⎛⎫=-= ⎪⎝⎭所以12= 所以a = =注意;给三角函数求导也是一种办法,将三角函数求导后原三角函数的对称轴处的导函数都为09. B【解析】10.B解析:由三视图可得1hr所以22r h +=1 ()()223111113333V sh r h h h h h πππ===-=- 将V 看成函数 ()21'133V h π=- 所以当213h =时取得最值 22213h r h -== 所以63r =注意:可以将几何和函数相结合11. A 【解析】12.A 解析:32f ⎛⎫-⎪⎝⎭=31222f f ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭ 2f π⎛⎫⎪⎝⎭=222f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭则3122222f f f f ππ⎛⎫⎛⎫⎛⎫⎛⎫--=-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ()sin f x x x =- ()'1cos 0f x x =->恒成立∴()f x是单调递增1222π>-∴12022f fπ⎛⎫⎛⎫-->⎪ ⎪⎝⎭⎝⎭∴原式>0恒成立注意点:若关于轴x a=对称,T=2a ()()2f x f a x=-若关于点(),0a对称,T=2a ()()2f x f a x=-若关于(),a a对称,T=4a ()()22f x a f a x=--考点:在利用余弦转化时符号的正确利用解析:c=2 b=3 ()cos1a c B AB BCπ⋅⋅-=⋅=22225cos24a cb aBac a+--==()cos2cos1ac B B aπ-=-⋅=1cos2a B=-∴25142aaa-⋅=-∴252a-=∴23a=a=注意;()cos cosB Bπ-=-注意正负号AB BC⋅夹角是cos B-BA BC⋅夹角是cos B AB CB⋅夹角是cos B14. []7,8考点:线形规划中范围的判断解析:(1)当x+y=S与y+2x=4有交点时,最大值在两直线交点处取得,最小范围是此时S=3时代入Z=7(2)当x+y=S与y+2x=4没有交点时最大值在B()0,4处取得∴代入248Z=⨯=∴综上范围是[]7,815. a 0<且a 为偶数考点:偶函数的定义,幂函数定义的考察 解析:为减函数 ∴a 0< 为偶函数 ∴a 为偶数类似的,若ay x =为奇函数,减函数在(),a +∞上,求范围解析:为减函数 ∴0a <为奇函数 ∴a 为奇数注意;幂函数ay x =的定义性质必须弄懂 16. 172,4⎛⎤⎥⎦⎝ 解析:()226435x x x -+=--∴()()210f x bf x -+=在[]0,4上有2个根令()t f x = 210t bt -+=在[]0,4上有2个根>()0,42b∈()00f >()40f≥所以解得b ∈172,4⎛⎤⎥⎦⎝ 思路点拨;运用图像画出圆然后利用二次函数两个根 最后利用根分布求范围 17. 考点:对特殊函数值的理解 解析:cos 1α≤ cos 1β≤∴cos ,cos αβ中肯定一个为1,一个为-1若cos 1α=,则cos 1β=- 则2,2k k απβππ==+∴()41k αβπ+=+ ∴()sin 0αβ+= 反之也成立注意:cos α,cos β,sin ,sin αβ取值范围可利用取特值法进行分析 18. 【答案】 (1) 有95%的把握认为有关(2) 107【解析】(1)22100(60102010)1004.762 3.8418020703073x -==≈>所以,有95%的把握认为“南方和北方的学生在甜品饮食方面有差异”(2)10776116111035==+p 所以,所求事件的概率种人喜欢甜品的情况有种,所以至多有学生喜欢甜品的情况有个种,只有欢甜品的情况有种;其中,没有学生喜人,共有人中选从19. 解析:证明: 证法一:如图作PMAB 交BE 于M ,作QN AB 交BC 于N 连接MN正方形ABCD 和正方形ABEF 有公共边AB ∴AE=BD 又AP=DQ ∴PE=QB又PM AB QN ,PM PE QB QN BQAB AE BD DC BD∴===PM QNAB DC∴=PM ∴QN 且PM=QN 即四边形PMNQ 为平行四边形 PQ MN ∴又MC ⊂面BCE PQ ⊄面BCE∴PQ 面BCE证法二:如图连接AQ 并延长交BC 的延长线于K ,连接EKAE BD = AP DQ = PE BQ ∴= AP DQPE BQ∴= 又AD BK DQ AQ BQ QK ∴= AP AQPE QK∴= PQ EK ∴ 又PQ ⊄面BCE EK ⊂面BCEPQ ∴面BCE证法三:如图,在平面ABEF 内,过点P 作PMBE ,交AB 于M ,连接QMPM 面BCE ,且AP AMPE MB=又AE BD = AP DQ = PE BQ ∴=AP DQ PE BQ ∴= AM DQMB QB∴= MQ AD ∴ 又AD BC MQ BC ∴ MQ ∴面BCE又PM MQ M ⋂= ∴面PMQ 面BCE 又PQ ⊂面PMQ PQ ∴面BCE注意:把线面平行转化为线线平行时必须说清经过已知直线的平面与已知平面相交,则直线与交线平行20.解析:22143x y += 设P 为()00,x y ,P 为切点且P 在椭圆上 设l 为00143x x y y += l ’与l 是垂直的∴'l 为0034x x x ym -=直线l 过P ()00,x y 点代入 000034x y x y m ∴-= 0012x ym ∴= ∴'l 为00034y x x ym --= 在l 中令0x =得030,A y ⎛⎫ ⎪⎝⎭ 在'l 中令0x =得00,3yB ⎛⎫- ⎪⎝⎭AP BP ⊥ 0PA PB ∴⋅= 200303y x y y y ⎛⎫⎛⎫∴+-+= ⎪ ⎪⎝⎭⎝⎭22003103y x y y y ⎛⎫∴++--= ⎪⎝⎭过定点与P ()00,x y 无关 0y ∴= 21x ∴= 1x =±∴定点为()1,0或()1,0-思路点拨;本题技巧已知两线垂直的那以x 与y 前的系数好互例 体现在l ’与l 是垂直的∴0034x x x ym -=21.解析:解析:()()21x f x x e kx =--()()'20x f x x e k =-=可得120,ln 2x x k ==]1,12k ⎛∈ ⎝则](21,2k ∈ ](ln 20,ln 2k ∴∈ 令21x x >ln2k()()0ln 2k ln 2k,k ∴↓↑在,图像为ln2kk由图像可知最大值在0处或k 处取得()()()k 3f k f 0k 1e k 1∴-=--+()()()()()k 2k 2k 1e k 1k k 1k 1e k k 1=---++=----令()k 2h k e k k 1=--- ()k h'k e 2k 1=-- ()k h''k e 20=-= k=ln2∴ln2121在]112,⎛⎝上先减后增()h'1e 30=-< 1h 'e 202⎛⎫=-< ⎪⎝⎭ ()max h'k 0∴< 即()h k 单调递减()max 1137h k h e e 2424⎛⎫∴==--=- ⎪⎝⎭又()()49e 0f k f 0016-<∴-> ()()()()k 3k 3max f x f k k 1e k k 1e k ∴==--=--思路点拨:本题的精华点在于导函数与原函数的穿插运用,注意图像中导函数与原函数的图像可知 解:(Ⅰ)证明:A 、B 、C 、D 四点共圆∴CDF ABC ∠=∠.………………2分 AB AC =ABC ACB ∴∠=∠ 且ADB ACB ∠=∠,ABC ACB ADB EDF ∠=∠=∠=∠…………4分 ∴CDF EDF ∠=∠.………………5分(Ⅱ)由(Ⅰ)得ADB ABF ∠=∠,又BAD FAB ∠=∠, 所以BAD ∆与FAB ∆相似,AB ADAF AB∴=2AB AD AF ∴=⋅,…………7分 又AB AC =, AB AC AD AF ∴⋅=⋅,∴AB AC DF AD AF DF ⋅⋅=⋅⋅ 根据割线定理得DF AF FC FB ⋅=⋅,……………9分 AB AC DF AD FC FB ⋅⋅=⋅⋅.……………10分23. (Ⅰ)设11(,)x y 为圆上的点,经变换为C 上点(x ,y ),依题意,得112x x y y =⎧⎨=⎩ 由22111x y += 得22()12y x +=,即曲线C 的方程为2214y x +=.,故C 得参数方程为 cos 2sin x t y t⎧⎨⎩== (t 为参数). (Ⅱ)由2214220y x x y ⎧+=⎪⎨⎪+-=⎩解得:10x y =⎧⎨=⎩,或02x y =⎧⎨=⎩. 不妨设12(1,0),(0,2)P P ,则线段12PP 的中点坐标为1(,1)2,所求直线的斜率为12k =,于是所求直线方程为111()22y x -=-,化为极坐标方程,并整理得2cos 4sin 3ρθρθ-=-,即34sin 2cos ρθθ=-.24. 解:(Ⅰ)由26x a a -+≤得26x a a -≤-,∴626a x a a -≤-≤-,即33a x -≤≤,∴32a -=-,∴1a =。

【精品高考数学】高三数学百所名校好题解析衡水中学专版(2020版)专题10 推理与证明、算法、复数+答案

【精品高考数学】高三数学百所名校好题解析衡水中学专版(2020版)专题10 推理与证明、算法、复数+答案

高三数学百所名校好题分项解析汇编之衡水中学专版(2020版)专题10 推理与证明、算法、复数一、选择题1. 【2020届河北省衡水中学高三上学期五调考试】数学老师给出一个函数()f x ,甲、乙、丙、丁四个同学各说出了这个函数的一条性质:甲:在(]0-∞, 上函数单调递减;乙:在[)0+∞,上函数单调递增;丙:在定义域R 上函数的图象关于直线1x =对称;丁:()0f 不是函数的最小值.老师说:你们四个同学中恰好有三个人说的正确.那么,你认为____说的是错误的.2. 【2020届河北省衡水中学全国高三期末大联考】已知复数z 满足1z i i ⋅=-,则复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3. 【2020届河北省衡水中学全国高三期末大联考】执行如图所示的程序框图,则输出的结果为( )A .-2B .-6C .-8D .-124. 【河北省衡水市2019届高三下学期第三次质量检测】已知i 为虚数单位,若1i(,)1ia b a b =+∈-R ,则b a =( ) A .1B 2C .22D .25. 【河北省衡水市全国普通高中2019届高三四月大联考】已知复数z 满足(2)1z i i -=+,其中i 为虚数单位,则z =( ) A .45B .35C.10D.56.【河北省衡水中学2019-2020学年高三第一次联合考试】已知复数z满足z(1+i)=1+3i,其中i是虚数单位,设z是z的共轭复数,则z的虚部是()A.i B.1 C.﹣i D.﹣17.【河北省衡水中学2019-2020学年高三第一次联合考试】某校高一组织五个班的学生参加学农活动,每班从“农耕”“采摘““酿酒”野炊”“饲养”五项活动中选择一项进行实践,且各班的选择互不相同.已知1班不选“农耕”“采摘”;2班不选“农耕”“酿酒”;如果1班不选“酿酒”,那么4班不选“农耕”;3班既不选“野炊”,也不选“农耕”;5班选择“采摘”或“酿酒”则选择“饲养”的班级是()A.2班B.3班C.4班D.5班8.【河北省衡水中学2018届高三毕业班模拟演练一】已知,为虚数单位,若复数为纯虚数,则的值为()A.B.2 C.-2 D.09.【河北省衡水中学2018届高三毕业班模拟演练一】若运行如图所示的程序框图,输出的的值为127,则输入的正整数的所有可能取值的个数为()A.8 B.3 C.2 D.110.【河北省衡水中学2018届高三第十次模拟考试数学(理)试题】在复平面内,复数2332izi-++对应的点的坐标为()2,2-,则z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限11.【河北省衡水中学2018届高三第十次模拟考试数学(理)试题】执行如下程序框图,则输出结果为( )A .20200B .5268.5-C .5050D .5151-12 【河北省衡水中学2018届高三第十六次模拟考试数学(理)试题】 已知是虚数单位,则复数的实部和虚部分别是( ) A .,B .,C ., D .,13. 【河北省衡水中学2018届高三第十六次模拟考试数学(理)试题】我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与我国古老的算法—“辗转相除法”实质一样。

一点一练高考数学 第十章 推理证明、算法、复数专题演练 理(含两年高考一年模拟)-人教版高三全册数学

一点一练高考数学 第十章 推理证明、算法、复数专题演练 理(含两年高考一年模拟)-人教版高三全册数学

第十章 推理证明、算法、复数考点35 推理与证明、数学归纳法两年高考真题演练1.(2014·某某)用反证法证明命题“设a ,b 为实数,则方程x 3+ax +b =0至少有一个实根”时,要做的假设是( )A .方程x 3+ax +b =0没有实根B .方程x 3+ax +b =0至多有一个实根C .方程x 3+ax +b =0至多有两个实根D .方程x 3+ax +b =0恰好有两个实根 2.(2015·某某)观察下列各式: C 01=40; C 03+C 13=41; C 05+C 15+C 25=42; C 07+C 17+C 27+C 37=43; ……照此规律,当n ∈N *时,C 02n -1+C 12n -1+ C 22n -1+…+ C n -12n -1=________.3.(2015·某某)一个二元码是由0和1组成的数字串x 1x 2…x n (n ∈N *),其中x k (k =1,2,…,n )称为第k 位码元.二元码是通信中常用的码,但在通信过程中有时会发生码元错误(即码元由0变为1,或者由1变为0).已知某种二元码x 1x 2…x 7的码元满足如下校验方程组:⎩⎪⎨⎪⎧x 4⊕x 5⊕x 6⊕x 7=0,x 2⊕x 3⊕x 6⊕x 7=0,x 1⊕x 3⊕x 5⊕x 7=0,其中运算⊕定义为0⊕0=0,0⊕1=1,1⊕0=1,1⊕1=0.现已知一个这种二元码在通信过程中仅在第k 位发生码元错误后变成了1101101,那么利用上述校验方程组可判定k 等于________.4.(2014·某某)如图,在等腰直角三角形ABC 中,斜边BC =22,过点A 作BC 的垂线,垂足为A 1;过点A 1作AC 的垂线,垂足为A 2;过点A 2作A 1C 的垂线,垂足为A 3;…,依此类推,设BA =a 1,AA 1=a 2,A 1A 2=a 3,…,A 5A 6=a 7,则a 7=________.5.(2014·某某)若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d )的个数是________.6多面体 面数(F ) 顶点数(V )棱数(E ) 三棱柱 5 6 9 五棱锥 6 6 10 立方体6 812猜想一般凸多面体中F ,V ,E 所满足的等式是________.7.(2014·某某)设a 1=1,a n +1=a 2n -2a n +2+b (n ∈N *). (1)若b =1,求a 2,a 3及数列{a n }的通项公式;(2)若b =-1,问:是否存在实数c 使得a 2n <c <a 2n +1对所有n ∈N *成立?证明你的结论.考点35 推理与证明、数学归纳法一年模拟试题精练1.(2015·某某师大附中模拟)观察下列等式:13+23=1,73+83+103+113=12,163+173+193+203+223+233=39,…,则当n <m 且m ,n ∈N 时,3n +13+3n +23+…+3m -23+3m -13=________.(最后结果用m ,n 表示)2.(2015·某某黄冈模拟)对于集合N ={1,2,3,…,n }和它的每一个非空子集,定义一种求和称之为“交替和”如下:如集合{1,2,3,4,5}的交替和是5-4+3-2+1=3,集合{3}的交替和为3. 当集合N 中的n =2时,集合N ={1,2}的所有非空子集为{1},{2},{1,2},则它的“交替和”的总和S 2=1+2+(2-1)=4,请你尝试对n =3,n =4的情况,计算它的“交替和”的总和S 3, S 4,并根据计算结果猜测集合N ={1,2,3,…,n }的每一个非空子集的“交替和”的总和S n =________ (不必给出证明).3.(2015·某某威海模拟)对大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”23⎩⎪⎨⎪⎧35,33⎩⎪⎨⎪⎧7911,43⎩⎪⎨⎪⎧13151719,…仿此,若m 3的“分裂”数中有一个是2 015,则m 的值为________.4.(2015·某某七市模拟)将长度为l (l ≥4,l ∈N *)的线段分成n (n ≥3)段,每段长度均为正整数,并要求这n 段中的任意三段都不能构成三角形.例如,当l =4时,只可以分为长度分别为1,1,2的三段,此时n 的最大值为3;当l =7时,可以分为长度分别为1,2,4的三段或长度分别为1,1,1,3的四段,此时n 的最大值为4.则:(1)当l =12时,n 的最大值为________; (2)当l =100时,n 的最大值为________.5.(2015·某某模拟)已知n ,k ∈N * ,且k ≤n ,k C k n =n C k -1n -1,则可推出C 1n +2C 2n +3C 3n +…+k C k n +…+n C n n =n (C 0n -1+C 1n -1+…C k -1n -1+…C n -1n -1)=n ·2n -1,由此,可推出C 1n +22C 2n +32C 3n +…+k 2C k n +…+n 2C nn =________.6.(2015·某某日照模拟)已知2+23=223,3+38=338,4+415=4415,…,若7+a b =7ab,(a 、b 均为正实数),则类比以上等式,可推测a 、b 的值,进而可得a +b =________.7.(2015·某某某某模拟)已知函数f 1(x )=2x +1,f n +1(x )=f 1(f n (x )),且a n =f n (0)-1f n (0)+2.(1)求证:{a n }为等比数列,并求其通项公式; (2)设b n =(-1)n -12a n ,g (n )=1+12+13+…+1n (n ∈N *),求证:g (b n )≥n +22.考点36 算法与程序框图两年高考真题演练1.(2015·某某)阅读如图所示的程序框图,运行相应的程序,则输出的结果为( )A .2B .1C .0D .-12.(2015·)执行如图所示的程序框图,输出的结果为( )A .(-2,2)B .(-4,0)C .(-4,-4)D .(0,-8) 3.(2015·某某)执行如图所示的程序框图,若输出k 的值为8,则判断框内可填入的条件是( ) A .s ≤34B .s ≤56C .s ≤1112D .s ≤25244.(2015·新课标全国Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .145.(2014·某某)执行如图所示的程序框图,若输出k 的值为6,则判断框内可填入的条件是( )A .s >12B .s >35C .s >710D .s >456.(2014·某某)执行如图的程序框图,如果输入的x ,y ∈R ,那么输出的S 的最大值为( )A .0B .1C .2D .3考点36 算法与程序框图一年模拟试题精练1.(2015·某某某某模拟)执行如图所示的程序框图,若输入n的值为22,则输出的S 的值为( )A.232 B.211 C.210 D.1912.(2015·乌鲁木齐模拟)执行如图程序在平面直角坐标系上打印一系列点,则打出的点在圆x2+y2=10内的个数是( )A.2 B.3 C.4 D.53.(2015·某某模拟)在区间[-2,3]上随机选取一个数M,不断执行如图所示的程序框图,且输入x的值为1,然后输出n的值为N,则M≤N-2的概率为( )A.15B.25C.35D.454.(2015·某某一模)已知如图1所示是某学生的14次数学考试成绩的茎叶图,第1次到第14次的考试成绩依次记为A 1,A 2,…A 14,图2是统计茎叶图中成绩在一定X 围内考试次数的一个程序框图,则输出的n 的值是( )A .8B .9C .10D .115.(2015·某某一模)如图,给出的是计算12+14+16+…+12 016的值的程序框图,其中判断框内应填入的是( )A .i ≤2 021B .i ≤2 019C .i ≤2 017D .i ≤2 0156.(2015·某某枣庄模拟)某算法的程序框图如图所示,如果输出的结果为26,则判断框内的条件应为( )A .k ≤5?B .k >4?C .k >3?D .k ≤4?考点37 复 数 两年高考真题演练1.(2015·某某)设i 是虚数单位,则复数2i1-i 在复平面内所对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限2.(2015·某某)若复数z =i(3-2i)(i 是虚数单位),则z =( ) A .3-2i B .3+2i C .2+3i D .2-3i3.(2015·新课标全国Ⅱ)若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1 D .24.(2015·某某)设复数z =(x -1)+y i(x ,y ∈R ),若|z |≤1,则y ≥x 的概率为( ) A.34+12π B.14-12π C.12-1π D.12+1π5.(2015·新课标全国Ⅰ)设复数z 满足1+z 1-z =i ,则|z |=( )A .1 B. 2 C. 3 D .26.(2015·某某)设i 是虚数单位,则复数i 3-2i=( )A .-iB .-3iC .iD .3i7.(2015·)复数i(2-i)=( ) A .1+2i B .1-2i C .-1+2i D .-1-2i8.(2015·某某)若集合A ={i ,i 2,i 3,i 4}(i 是虚数单位),B ={1,-1},则A ∩B 等于( )A .{-1}B .{1}C .{1,-1}D .∅9.(2015·某某)已知(1-i )2z=1+i(i 为虚数单位),则复数z =( )A .1+iB .1-iC .-1+iD .-1-i10.(2015·某某)若复数z 满足z1-i =i ,其中i 为虚数单位,则z =( )A .1-iB .1+iC .-1-iD .-1+i11.(2014·某某)复平面内表示复数i(1-2i)的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限12.(2014·某某)已知i 是虚数单位,a ,b ∈R ,则“a =b =1”是“(a +b i)2=2i ”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件13.(2014·某某)已知a ,b ∈R ,i 是虚数单位,若a -i 与2+b i 互为共轭复数,则(a +b i)2=( )A .5-4iB .5+4iC .3-4iD .3+4i 14.(2015·某某)设复数a +b i(a ,b ∈R )的模为3,则(a +b i)(a -b i)=________. 15.(2015·某某)i 是虚数单位,若复数(1-2i)(a +i)是纯虚数,则实数a 的值为________.1.(2015·某某江南十校模拟)若复数6+a i3-i (其中a ∈R ,i 为虚数单位)的实部与虚部相等,则a =( )A .3B .6C .9D .122.(2015·某某某某模拟)已知i 为虚数单位,复数z =(1+2i)i 对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限3.(2015·万州区模拟)设复数z =a +i1-i(a ∈R ,i 为虚数单位),若z 为纯虚数,则a =( )A .-1B .0C .1D .24.(2015·乌鲁木齐模拟)在复平面内,复数1+2i1-i对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限 5.(2015·某某模拟)已知复数z 满足:z i =2+i(i 是虚数单位),则z 的虚部为( ) A .2i B .-2i C .2 D .-26.(2015·某某一模)已知i 为虚数单位,复数z 满足i z =1+i ,则z =( ) A .1+i B .1-i C .-1+i D .-1-i7.(2015·某某一模)设i 为虚数单位,复数2i1+i等于( )A .-1+iB .-1-iC .1-iD .1+i8.(2015·某某一模)已知复数z 1=2+i ,z 2=1-2i ,若z =z 1z 2,则z -=( )A.45+iB.45-i C .i D .-i 9.(2015·德阳模拟)复数2i 2-i =( )A .-25+45i B.25-45iC.25+45i D .-25-45i 10.(2015·某某枣庄模拟)i 是虚数单位,若z =1i -1,则|z |=( )A.12B.22C. 2 D .2 11.(2015·某某某某模拟)已知i 是虚数单位, 若⎝ ⎛⎭⎪⎫2+i 1+m i 2<0(m ∈R ),则m 的值为( )A.12 B .-2 C .2 D .-1212.(2015·某某某某模拟)设a ∈R ,i 是虚数单位,则“a =1”是“a +ia -i为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件13.(2015·某某模拟)复数z =m -2i1+2i(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限14.(2015·某某河西五地模拟)下面是关于复数z =21-i的四个命题: p 1:|z |=2, p 2:z 2=2i ,p 3:z 的共轭复数为-1+i, p 4:z 的虚部为1.其中真命题为( ) A .p 2,p 3 B .p 1,p 2 C .p 2,p 4 D .p 3,p 415.(2015·某某马某某模拟)若复数z =(a 2-4)+(a +2)i 为纯虚数,则a +i 2 0151+2i的值为( )A .1B .-1C .iD .-i第十章 推理证明、算法、复数考点35 推理与证明、数学归纳法 【两年高考真题演练】1.A [因为至少有一个的反面为一个也没有,所以要做的假设是方程x 3+ax +b =0没有实根.]2.4n -1[观察等式,第1个等式右边为40=41-1,第2个等式右边为41=42-1,第3个等式右边为42=43-1, 第4个等式右边为43=44-1,所以第n 个等式右边为4n -1.]3.5 [(ⅰ)x 4⊕x 5⊕x 6⊕x 7=1⊕1⊕0⊕1=1,(ⅱ)x 2⊕x 3⊕x 6⊕x 7=1⊕0⊕0⊕1=0;(ⅲ)x 1⊕x 3⊕x 5⊕x 7=1⊕0⊕1⊕1=1.由(ⅰ)(ⅲ)知x 5,x 7有一个错误,(ⅱ)中没有错误,∴x 5错误,故k 等于5.]4.14 [由题意知数列{a n }是以首项a 1=2,公比q =22的等比数列,∴a 7=a 1·q 6=2×⎝ ⎛⎭⎪⎫226=14.] 5.6 [根据题意可分四种情况:(1)若①正确,则a =1,b =1,c ≠2,d =4,符合条件的有序数组有0个;(2)若②正确,则a ≠1,b ≠1,c ≠2,d =4,符合条件的有序数组为(2,3,1,4)和(3,2,1,4);(3)若③正确,则a ≠1,b =1,c =2,d =4,符合条件的有序数组为(3,1,2,4); (4)若④正确,则a ≠1,b =1,c ≠2,d ≠4,符合条件的有序数组为(2,1,4,3),(4,1,3,2),(3,1,4,2).所以共有6个.故答案为6.]6.F +V -E =2 [因为5+6-9=2,6+6-10=2,6+8-12=2,故可猜想F +V -E =2.]7. 解 (1)法一 a 2=2,a 3=2+1. 再由题设条件知(a n +1-1)2=(a n -1)2+1. 从而{(a n -1)2}是首项为0公差为1的等差数列, 故(a n -1)2=n -1,即a n =n -1+1 (n ∈N *).法二 a 2=2,a 3=2+1.可写为a 1=1-1+1,a 2=2-1+1,a 3=3-1+1. 因此猜想a n =n -1+1. 下面用数学归纳法证明上式: 当n =1时结论显然成立.假设n =k 时结论成立,即a k =k -1+1,则a k +1=(a k -1)2+1+1=(k -1)+1+1=(k +1)-1+1.这就是说,当n =k +1时结论成立. 所以a n =n -1+1(n ∈N *). (2)设f (x )=(x -1)2+1-1, 则a n +1=f (a n ).令c =f (c ),即c =(c -1)2+1-1,解得c =14.下用数学归纳法证明加强命题a 2n <c <a 2n +1<1. 当n =1时,a 2=f (1)=0,a 3=f (0)=2-1, 所以a 2<14<a 3<1,结论成立.假设n =k 时结论成立,即a 2k <c <a 2k +1<1. 易知f (x )在(-∞,1]上为减函数, 从而c =f (c )>f (a 2k +1)>f (1)=a 2, 即1>c >a 2k +2>a 2.再由f (x )在(-∞,1]上为减函数得c =f (c )<f (a 2k +2)<f (a 2)=a 3<1. 故c <a 2k +3<1,因此a 2(k +1)<c <a 2(k +1)+1<1. 这就是说,当n =k +1时结论成立.综上,符合条件的c 存在,其中一个值为c =14.【一年模拟试题精练】1. m 2-n 2 [当n =0,m =1时,为第一个式子13+23=1此时1=12-0=m 2-n 2,当n =2,m =4时,为第二个式子73+83+103+113=12;此时12=42-22=m 2-n 2,当n =5,m =8时,为第三个式子163+173+193+203+223+233=39此时39=82-52=m 2-n 2,由归纳推理可知等式:3n +13+3n +23+…+3m -23+3m -13=m 2-n 2.故答案为:m 2-n 2]2.n ·2n -1[S 1=1,S 2=4,当n =3时,S 3=1+2+3+(2-1)+(3-1)+(3-2)+(3-2+1)=12,S 4=1+2+3+4+(2-1)+(3-1)+(4-1)+(3-2)+(4-2)+(4-3)+(3-2+1)+(4-2+1)+(4-3+1)+(4-3+2)+(4-3+2-1)=32,∴根据前4项猜测集合N ={1,2,3,…,n }的每一个非空子集的“交替和”的总和S n=n ·2n -1,故答案为:n ·2n -1.]3.45 [由题意,从23到m 3,正好用去从3开始的连续奇数共2+3+4+…+m =(m +2)(m -1)2个,2 015是从3开始的第1 007个奇数,当m =44时,从23到443,用去从3开始的连续奇数共46×432=989个. 当m =45时,从23到453,用去从3开始的连续奇数共47×442=1 034个.] 4.(1)5 (2)9 [当l =12时,为使n 最大,先考虑截下的线段最短,第1段和第2段长度为1、1,由于任意三段都不能构成三角形,∴第3段的长度为1+1=2,第4段和第5段长度为3、5,恰好分成了5段;(2)当l =100时,依次截下的长度为1、1、2、3、5、8、13、21、34的线段,长度和为88,还余下长为12的线段,因此最后一条线段长度取为34+12=46,故n 的最大值是9.]5.n (n +1)·2n -2[C 1n +22C 2n +32C 3n +…+k 2C k n +…+n 2C n n =n (C 0n -1+2C 1n -1+…+k C k -1n -1+…+n C n -1n -1)=n [(C 0n -1+C 1n -1+…+C k -1n -1+…+C n -1n -1)+(C 1n -1+2C 2n -1+…+(k -1)C k -1n -1+…+(n -1)C n -1n -1)].]6.55 [观察下列等式2+23=223,3+38=338,4+415=4415,…, 照此规律,第7个等式中:a =7,b =72-1=48,∴a +b =55,故答案为:55.] 7.(1)证明 由题设知a 1=f 1(0)-1f 1(0)+2=14,∴a n +1a n =f n +1(0)-1f n +1(0)+2f n (0)-1f n (0)+2=2f n (0)+1-12f n (0)+1+2f n (0)-1f n (0)+2=1-f n (0)2f n (0)+4f n (0)-1f n (0)+2=-12,∴数列{a n }为等比数列,项通次公式为a n =⎝ ⎛⎭⎪⎫-12n +1. (2)解 由(1)知b n =2n,g (b n )=1+12+13+…+12n ,只要证:1+12+13+…+12n ≥n +22,下面用数学归纳证明:n =1时,1+12=1+22,结论成立,假设n =k 时成立,即1+12+13+…+12k >k +22,那么:n =k +1时,1+12+13+…+12k +12k +1+…+12k +1>k +22+12k +1+…+12k +1>k +22+12k +1+12k +1+…+12k +1>k +22+12k +12k =k +32,即n =k +1时,结论也成立, 所以n ∈N ,结论成立.考点36 算法与程序框图【两年高考真题演练】1.C [当i =1,S =0进入循环体运算时,S =0,i =2;S =0+(-1)=-1,i =3;S=-1+0=-1,i =4;∴S =-1+1=0,i =5;S =0+0=0,i =6>5,故选C.]2.B [第一次循环:S =1-1=0,t =1+1=2;x =0,y =2,k =1; 第二次循环:S =0-2=-2,t =0+2=2,x =-2,y =2,k =2;第三次循环:S =-2-2=-4,t =-2+2=0,x =-4,y =0,k =3.输出(-4,0).] 3.C [由程序框图,k 的值依次为0,2,4,6,8,因此S =12+14+16=1112(此时k =6)还必须计算一次,因此可填S ≤1112,选C.]4.B [由题知,若输入a =14,b =18,则第一次执行循环结构时,由a <b 知,a =14,b =b -a =18-14=4; 第二次执行循环结构时,由a >b 知,a =a -b =14-4=10,b =4; 第三次执行循环结构时,由a >b 知,a =a -b =10-4=6,b =4; 第四次执行循环结构时,由a >b 知,a =a -b =6-4=2,b =4; 第五次执行循环结构时,由a <b 知,a =2,b =b -a =4-2=2; 第六次执行循环结构时,由a =b 知,输出a =2,结束,故选B.]5.C [程序框图的执行过程如下:s =1,k =9,s =910,k =8;s =910×89=810,k =7;s =810×78=710,k =6,循环结束.故可填入的条件为s >710.故选C.]6.C [先画出x ,y 满足的约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≤1,对应的可行域如图中的阴影部分:移动直线l 0:y =-2x .当直线经过点A (1,0)时,y =-2x +S 中截距S 最大,此时S max =2×1+0=2. 再与x ≥0,y ≥0,x +y ≤1不成立时S =1进行比较,可得S max =2.] 【一年模拟试题精练】1.B [由循环程序框图可转化为数列{S n }为1,2,4,…并求S 21,观察规律得S 2-S 1=1,S 3-S 2=2,S 4-S 3=3,……,S 21-S 20=20,把等式相加:S 21-S 1=1+2+…+20=20×1+202=210,所以S 21=211.故选B.]2.B [根据流程图所示的顺序,该程序的作用是打印如下点:(1,1)、⎝ ⎛⎭⎪⎫2,12、⎝ ⎛⎭⎪⎫3,13、⎝ ⎛⎭⎪⎫4,14、⎝ ⎛⎭⎪⎫5,15、⎝ ⎛⎭⎪⎫6,16 其中(1,1)、⎝ ⎛⎭⎪⎫2,12、⎝ ⎛⎭⎪⎫3,13满足x 2+y 2<10,即在圆x 2+y 2=10内,故打印的点在圆x 2+y 2=10内的共有3个,故选:B.]3.C [ 循环前输入的x 的值为1, 第1次循环,x 2-4x +3=0≤0,满足判断框条件,x =2,n =1,x 2-4x +3=-1≤0,满足判断框条件,x =3,n =2,x 2-4x +3=0≤0,满足判断框条件,x =4,n =3,x 2-4x +3=3>0,不满足判断框条件,输出n :N =3.在区间[-2,3]上随机选取一个数M ,长度为5,M ≤1,长度为3,所以所求概率为35,故选C.]4.C [由程序框图知:算法的功能是计算学生在14次数学考试成绩中,成绩大于等于90的次数,由茎叶图得,在14次测试中,成绩大于等于90的有:93、99、98、98、94、91、95、103、101、114共10次,∴输出n 的值为10.故选C.] 5.C [根据流程图,可知第1次循环:i =2,S =12;第2次循环:i =4,S =12+14;第3次循环:i =6,S =12+14+16…,第1 008次循环:i =2 016, S =12+14+16+…+12 016; 此时,设置条件退出循环,输出S 的值.故判断框内可填入i ≤2 016.对比选项,故选C.]6.C[分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环计算S 值并输出,模拟程序的运行过程,即可得到答案,程序在运行过程中,各变量的值变化如下所示:S 条件? k循环前 0 / 1 第1圈 1 否 2 第2圈 4 否 3 第3圈 11 否 4 第4圈 26 是得,当k =4时,S =26,此时应该结束循环体并输出S 的值为26,所以判断框应该填入的条件为:k >3?,故选C.]考点37 复 数【两年高考真题演练】1.B [2i 1-i =2i (1+i )(1-i )(1+i )=2i (1+i )2=i -1=-1+i ,其对应点坐标为(-1,1),位于第二象限,故选B.]2.D [因为z =i(3-2i)=2+3i ,所以z =2-3i ,故选D.]3.B [因为a 为实数,且(2+a i)(a -2i)=4a +(a 2-4)i =-4i ,得4a =0且a 2-4=-4,解得a =0,故选B.]4.B [由|z|≤1可得(x -1)2+y 2≤1,表示以(1,0)为圆心,半径为1的圆及其内部,满足y ≥x 的部分为如图阴影所示,由几何概型概率公式可得所求概率为: P =14π×12-12×12π×12=π4-12π =14-12π.] 5.A [由1+z 1-z =i ,得1+z =i -z i ,z =-1+i1+i =i ,∴|z |=|i|=1.]6.C [i 3-2i =-i -2i i 2=-i +2i =i.选C.]7.A [i(2-i)=2i -i 2=1+2i.]8.C [集合A ={i -1,1,-i},B ={1,-1},A ∩B ={1,-1},故选C.]9.D [由(1-i )2z =1+i ,知z =(1-i )21+i =-2i1+i =-1-i ,故选D.]10.A [∵z1-i=i ,∴z =i(1-i)=i -i 2=1+i ,∴z =1-i.] 11.A [复数i(1-2i)=2+i ,在复平面内对应的点的坐标是(2,1),位于第一象限.] 12.A [当a =b =1时,(a +b i)2=(1+i)2=2i ,反之,若(a +b i)2=2i ,则有a =b =-1或a =b =1,因此选A.]13.D [根据已知得a =2,b =1,所以(a +b i)2=(2+i)2=3+4i.]14.3 [由|a +b i|=3得a 2+b 2=3,即a 2+b 2=3,所以(a +b i)(a -b i)=a 2+b 2=3.]15.-2 [(1-2i)(a +i)=a +2+(1-2a )i ,由已知,得a +2=0,1-2a ≠0,∴a =-2.]【一年模拟试题精练】 1.A [z =(6+a i )(3+i )(3-i )(3+i )=18-a +(3a +6)i10.由条件得,18-a =3a +6,∴a=3.]2.B [因为z =(1+2i)i =i +2i 2=-2+i ,所以z 对应的点的坐标是(-2,1),所以在第二象限,故选B.]3.C [z =a +i 1-i =(a +i )(1+i )(1-i )(1+i )=a -1+(1+a )i 2=a -12+1+a2i ,若z 为纯虚数,则a -12=0且1+a2≠0,解a =1,故选:C.] 4.B [∵复数 1+2i 1-i =(1+2i )(1+i )(1+i )(1-i )=-1+3i 2=-12+32i ,∴复数对应的点的坐标是⎝ ⎛⎭⎪⎫-12,32,∴复数1+2i 1-i 在复平面内对应的点位于第二象限,故选B.]5.D [由z i =2+i ,得z =2+i i =-i (2+i )-i2=1-2i ,∴z 的虚部是-2.] 6.A [∵i z =1+i ,∴-i ·i z =-i(1+i),化为z =1-i ,∴z -=1+i.] 7.D [2i 1+i =2i (1-i )(1+i )(1-i )=2+2i2=1+i.]8.D [∵复数z 1=2+i ,z 2=1-2i ,∴z =z 1z 2=2+i 1-2i =(2+i )(1+2i )(1-2i )(1+2i )=5i5=i ,则z =-i.]9.A [2i 2-i =2i (2+i )(2-i )(2+i )=-2+4i 5=-25+45i.]10.B [由题根据所给复数化简求解即可;∵z =1i -1=1+i -2,∴|z |=22.]11.B [由⎝ ⎛⎭⎪⎫2+i 1+m i 2<0,知2+i 1+m i 为纯虚数,∴2+i 1+m i =2+m +(1-2m )i 1+m 2为纯虚数,∴m =-2,故选B.]12.A [∵a +i a -i =a 2-1+2a i a 2+1,∴“a +ia -i为纯虚数”⇔“a =±1”, 故“a =1”是“a +ia -i为纯虚数”的充分不必要条件.] 13.A [由已知z =m -2i 1+2i =(m -2i )(1-2i )(1+2i )(1-2i )=15[(m -4)-2(m +1)i]; 在复平面对应点如果在第一象限,则⎩⎪⎨⎪⎧m -4>0,m +1<0而此不等式组无解.即在复平面上对应的点不可能位于第一象限.故选A.]14.C [p 1:|z |=⎪⎪⎪⎪⎪⎪21-i =2,故命题为假;p 2:z 2=⎝ ⎛⎭⎪⎫21-i 2=41-2i -1=2i ,故命题为真; z =21-i=1+i ,∴z 的共轭复数为1-i ,故命题p 3为假; ∵z =21-i =1+i ,∴p 4:z 的虚部为1,故命题为真.故真命题为p 2,p 4故选C.]15.D [∵z =(a 2-4)+(a +2)i 为纯虚数,∴⎩⎪⎨⎪⎧a 2-4=0,a +2≠0,即⎩⎪⎨⎪⎧a =2或a =-2,a ≠-2,解得a =2,则a +i 2 0151+2i =2+i 31+2i =2-i 1+2i =-i.]。

2024届河北省衡水十三中高考模拟最后十套:数学试题(一)考前提分仿真卷

2024届河北省衡水十三中高考模拟最后十套:数学试题(一)考前提分仿真卷

2024届河北省衡水十三中高考模拟最后十套:数学试题(一)考前提分仿真卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.将一张边长为12cm 的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )A .33263cm B .36463cm C .33223cm D .36423cm 2.如图,将两个全等等腰直角三角形拼成一个平行四边形ABCD ,将平行四边形ABCD 沿对角线BD 折起,使平面ABD ⊥平面BCD ,则直线AC 与BD 所成角余弦值为( )A .23B 6C 3D .133.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向右平移5π6个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向左平移5π12个长度单位4.已知函数()2943,02log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数()()y f f x =的零点所在区间为( ) A .73,2⎛⎫ ⎪⎝⎭B .()1,0-C .7,42⎛⎫ ⎪⎝⎭D .()4,55.一个几何体的三视图如图所示,则该几何体的表面积为( )A .48122+B .60122+C .72122+D .846.若x ,y 满足约束条件103020x y x y x +-≤⎧⎪-+≤⎨⎪+≥⎩,则22x y +的最大值是( )A .92B .322C .13D .137.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为 ( )A .B .C .D .8.已知m ∈R ,复数113z i =+,22z m i =+,且12z z ⋅为实数,则m =( ) A .23-B .23C .3D .-39.某歌手大赛进行电视直播,比赛现场有6名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如下表,场内外共有数万名观众参与了评分,组织方将观众评分按照[)70,80,[)80,90,[]90,100分组,绘成频率分布直方图如下: 嘉宾 A BC D EF评分969596 89 9798嘉宾评分的平均数为1x ,场内外的观众评分的平均数为2x ,所有嘉宾与场内外的观众评分的平均数为x ,则下列选项正确的是( ) A .122x x x +=B .122x x x +>C .122x x x +<D .12122x x x x x +>>>10.已知(cos ,sin )a αα=,()cos(),sin()b αα=--,那么0a b =是()4k k Z παπ=+∈的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.要得到函数312y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数323y x π⎛⎫=- ⎪⎝⎭图象上所有点的横坐标( )A .伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移4π个单位长度 B .伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移4π个单位长度 C .缩短到原来的12倍(纵坐标不变),再将得到的图象向左平移524π个单位长度 D .缩短到原来的12倍(纵坐标不变),再将得到的图象向右平移1124π个单位长度12.已知双曲线()2222:10,0x y C a b a b-=>>的实轴长为2,离心率为2,1F 、2F 分别为双曲线C 的左、右焦点,点P 在双曲线C 上运动,若12F PF △为锐角三角形,则12PF PF +的取值范围是( )A .()27,8B .()25,7C .()25,8D .()27,7二、填空题:本题共4小题,每小题5分,共20分。

2025届河北衡水中学高三数学第一学期期末考试模拟试题含解析

2025届河北衡水中学高三数学第一学期期末考试模拟试题含解析

2025届河北衡水中学高三数学第一学期期末考试模拟试题请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在ABC ∆中,0OA OB OC ++=,2AE EB =,AB AC λ=,若9AB AC AO EC ⋅=⋅,则实数λ=( ) A .33B .32C .63D .622.我国古代数学名著《九章算术》有一问题:“今有鳖臑(biē naò),下广五尺,无袤;上袤四尺,无广;高七尺.问积几何?”该几何体的三视图如图所示,则此几何体外接球的表面积为( )A .90π平方尺B .180π平方尺C .360π平方尺D .13510π平方尺3.公比为2的等比数列{}n a 中存在两项m a ,n a ,满足2132m n a a a =,则14m n+的最小值为( ) A .97B .53C .43D .13104.已知函数()2331x x f x x ++=+,()2g x x m =-++,若对任意[]11,3x ∈,总存在[]21,3x ∈,使得()()12f x g x =成立,则实数m 的取值范围为( ) A .17,92⎡⎤⎢⎥⎣⎦B .[)17,9,2⎛⎤-∞+∞ ⎥⎝⎦C .179,42⎡⎤⎢⎥⎣⎦ D .4179,,2⎛⎤⎡⎫-∞+∞ ⎪⎥⎢⎝⎦⎣⎭5.已知过点(1,1)P 且与曲线3y x =相切的直线的条数有( ). A .0B .1C .2D .36.关于函数11()4sin 4cos 2323f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,有下述三个结论:①函数()f x 的一个周期为2π; ②函数()f x 在423,ππ⎡⎤⎢⎥⎣⎦上单调递增; ③函数()f x 的值域为[4,42]. 其中所有正确结论的编号是( ) A .①②B .②C .②③D .③7.已知锐角α满足2sin21cos2 ,αα=-则tan α=( ) A .12B .1C .2D .48.下列几何体的三视图中,恰好有两个视图相同的几何体是( ) A .正方体 B .球体C .圆锥D .长宽高互不相等的长方体9.已知函数()()()2ln 14f x ax x ax =-+-,若0x >时,()0f x ≥恒成立,则实数a 的值为( )A .2eB .4eC .2ee - D .4ee- 10.双曲线的渐近线与圆(x -3)2+y 2=r 2(r >0)相切,则r 等于( )A .B .2C .3D .611.已知()3,0A -,)3,0B,P 为圆221x y +=上的动点,AP PQ =,过点P 作与AP 垂直的直线l 交直线QB于点M ,若点M 的横坐标为x ,则x 的取值范围是( ) A .1x ≥B .1x >C .2x ≥D .2x ≥12.函数f(x)=sin(wx +φ)(w >0,φ<2π)的最小正周期是π,若将该函数的图象向右平移6π个单位后得到的函数图象关于直线x =2π对称,则函数f(x)的解析式为( ) A .f(x)=sin(2x +3π) B .f(x)=sin(2x -3π) C .f(x)=sin(2x +6π) D .f(x)=sin(2x -6π) 二、填空题:本题共4小题,每小题5分,共20分。

2020高考数学百所名校推理证明算法复数分项汇编之衡水中学专版(7页)

2020高考数学百所名校推理证明算法复数分项汇编之衡水中学专版(7页)

2020高考数学百所名校推理证明算法复数分项汇编之衡水中学专版推理与证明、算法、复数一、选择题1. 【2020届河北省衡水中学高三上学期五调考试】数学老师给出一个函数,甲、乙、丙、丁四个同学各说出了这个函数的一条性质:甲:在 上函数单调递减;乙:在上函数单调递增;丙:在定义域R 上函数的图象关于直线对称;丁:不是函数的最小值.老师说:你们四个同学中恰好有三个人说的正确.那么,你认为____说的是错误的.2. 【2020届河北省衡水中学全国高三期末大联考】已知复数z 满足,则复数z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3. 【2020届河北省衡水中学全国高三期末大联考】执行如图所示的程序框图,则输出的结果为( )A .-2B .-6C .-8D .-124. 【河北省衡水市2019届高三下学期第三次质量检测】已知为虚数单位,若,则( ) A .1BC .D .25. 【河北省衡水市全国普通高中2019届高三四月大联考】已知复数满足,其中为虚数单位,则( )()f x (]0-∞,[)0+∞,1x =()0f 1z i i ⋅=-i 1i(,)1ia b a b =+∈-R b a =2z (2)1z i i -=+i z =A .B .C . D6. 【河北省衡水中学2019-2020学年高三第一次联合考试】已知复数z 满足z (1+i )=1+3i ,其中i 是虚数单位,设是z 的共轭复数,则的虚部是( ) A .iB .1C .﹣iD .﹣17. 【河北省衡水中学2019-2020学年高三第一次联合考试】某校高一组织五个班的学生参加学农活动,每班从“农耕”“采摘““酿酒”野炊”“饲养”五项活动中选择一项进行实践,且各班的选择互不相同.已知1班不选“农耕”“采摘”;2班不选“农耕”“酿酒”;如果1班不选“酿酒”,那么4班不选“农耕”;3班既不选“野炊”,也不选“农耕”;5班选择“采摘”或“酿酒”则选择“饲养”的班级是( ) A .2班B .3班C .4班D .5班8.【河北省衡水中学2018届高三毕业班模拟演练一】已知,为虚数单位,若复数为纯虚数,则的值为( )A .B .2C .-2D .09. 【河北省衡水中学2018届高三毕业班模拟演练一】若运行如图所示的程序框图,输出的的值为127,则输入的正整数的所有可能取值的个数为( )A .8B .3C .2D .110.【河北省衡水中学2018届高三第十次模拟考试数学(理)试题】45355z z在复平面内,复数2332iz i-++对应的点的坐标为()2,2-,则z 在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 11. 【河北省衡水中学2018届高三第十次模拟考试数学(理)试题】 执行如下程序框图,则输出结果为( )A .20200B .5268.5-C .5050D .5151-12 【河北省衡水中学2018届高三第十六次模拟考试数学(理)试题】 已知是虚数单位,则复数的实部和虚部分别是( )A .,B .,C ., D .,13. 【河北省衡水中学2018届高三第十六次模拟考试数学(理)试题】我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与我国古老的算法—“辗转相除法”实质一样。

高考专题10 推理与证明算法复数-三年河北衡水中学高三数学(文)---精校解析Word版

高考专题10 推理与证明算法复数-三年河北衡水中学高三数学(文)---精校解析Word版

一、选择题1.【2018衡水11月联考】已知为虚数单位,则下列各式计算错误的是()A. B. C. D.【答案】C【解析】,,,故选:C2. 【2018衡水11月联考】阅读如图所示的程序框图,运行相应的程序,则输出的值为()A. 15B. 14C. 7D. 6【答案】A..................考点:算法、程序框图以及考生的逻辑推理能力。

3. 【2018河北衡水中学高三上学期分科综合测试】已知为虚数单位,,且的共轭算数为,则在复平面内对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】,则在复平面内对应的点为,在第一象限,故选A.4. 【2018河北衡水中学高三上学期分科综合测试】若表示不超过的最大整数,则如图所示的程序框图运行之后输出的结果为( )A. 48920B. 49660C. 49800D. 51867【答案】C5.【2018河北衡水中学高三八模】若,则()A. 1B. -1C.D.【答案】C【解析】试题分析:,故选C.【考点】复数的运算、共轭复数.【举一反三】复数的加、减法运算中,可以从形式上理解为关于虚数单位“”的多项式合并同类项,复数的乘法与多项式的乘法相类似,只是在结果中把换成−1.复数除法可类比实数运算的分母有理化.复数加、减法的几何意义可依照平面向量的加、减法的几何意义进行理解.6. 【2018河北衡水中学高三八模】规定:对任意的各位数字不全相同的三位数,若将各位数字按照从大到小、从左到右的顺序排列得到的三位数,称为原三位数的“和谐数”;若将各位数字按照从小到大、从左到右的顺序排列得到的三位数,称为原三位数的“新时代数”.如图,若输入的,则输出的为()A. 2B. 3C. 4D. 5【答案】C7. 【2018河北衡水九月联考】执行如图所示的程序框图,则输出的值为()A. B. C. D. 【答案】B【解析】由框图可知,.故选B.8. 【2017河北衡水中学高三上学期二调】设复数2z i =+,则复数()1z z ⋅-的共轭复数为( ) A .13i -- B .13i -+ C . 13i + D .13i - 【答案】B 【解析】试题分析:()113z z i ⋅-=--,其共轭复数为13i -+. 考点:复数概念及运算.9. 【2017河北衡水中学高三上学期二调】执行如图所示的程序框图,则输出n 的值是( )A . 5B .15 C .23 D .31 【答案】D 【解析】考点:算法与程序框图.10. 【2017河北衡水中学高三上学期三调】阅读如图所示的程序框图,则该算法的功能是( )A .计算数列{}12n -前5项的和B .计算数列{}21n-前5项的和 C .计算数列{}21n -前6项的和 D .计算数列{}12n -前6项的和【答案】D 【解析】考点:循环结构流程图.【易错点睛】应用循环结构应注意的三个问题分别为:(1)确定循环变量和初始值;(2)确定算法中反复执行的部分,即循环体;(3)确定循环的终止条件.同时依次计算出每次的循环结果,直到不满足循环条件为止是解答此类问题的常用方法.11. 【2017河北衡水中学高三上学期四调】阅读下列程序框图,运行相应程序,则输出的S 值为( )A .18-B .18 C.116 D .132【答案】A考点:1.程序框图;2.二倍角公式与诱导公式.12. 【2017河北衡水中学高三上学期五调】执行如图所示的程序框图,输出的结果是()A.13 B. 11 C. 9 D.7【答案】C【解析】考点:程序框图.13. 【2017河北衡水中学高三上学期六调】执行如图所示的程序框图,则输出的结果为()A. 错误!未找到引用源。

河北省衡水市高考数学各类考试分项汇编专题10推理与证明、算法、复数文(最新整理)

河北省衡水市高考数学各类考试分项汇编专题10推理与证明、算法、复数文(最新整理)

专题10 推理与证明、算法、复数一、选择题1.【河北衡水金卷2019届高三12月第三次联合质量测评】已知复数z满足,则复数z在复平面内对应的点所在象限为A.第一象限 B.第二象限C.第三象限 D.第四象限【答案】D2。

【河北省衡水市武邑中学2018年高三高考三模】已知i是虚数单位,,则复数z的共轭复数为A. B. C. D.【答案】A【解析】,故选A。

又由第1个数是1;第2个数比第1个数大1即1+1=2;第3个数比第2个数大2即2+2=4;第4个数比第3个数大3即4+3=7;…故②中应填写p=p+i6. 【河北省衡水中学2019届高三上学期六调】已知复数满足,则对应点所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】D7。

【河北省衡水中学2018届高三第十六次模拟考试】已知复数的共轭复数为,若,则()A. B. C. D.【答案】A【解析】设,则,,,故选A.10。

【【衡水金卷】2018届四省名校高三第三次大联考】复数满足(为虚数单位),则的虚部为()A. B. C. D.【答案】B11。

【【衡水金卷】2018届四省名校高三第三次大联考】阅读如图所示的程序,若运行结果为35,则程序中的取值范围是( )A. B. C. D.【答案】A12。

【河北省衡水中学2019届高三上学期四调】已知复数,若,则()A. B.3 C. D.4【答案】C【解析】由复数相等的充分必要条件有:,即,则,.本题选择C选项.16. 【河北省衡水中学2018年高考押题(一)】已知为虚数单位,若复数在复平面内对应的点在第四象限,则的取值范围为( )A. B. C. D.【答案】B【解析】由题.又对应复平面的点在第四象限,可知,解得.故本题答案选.17。

【河北省衡水中学2018年高考押题(一)】执行如图的程序框图,则输出的S值为( )A.1009 B.1009- D.1008- C.1007【答案】B18. 【河北省衡水中学2018年高考押题(三)】已知i是虚数单位,,且z的共轭复数为z,则z在复平面内对应的点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】A【解析】,则在复平面内对应的点为39,55⎛⎫⎪⎝⎭,在第一象限,故选A.22. 【河北省衡水中学2018届高三十五模试题】已知复数z满足21ziz=-(i为虚数单位),则复数z的共轭复数z在复平面内对应的点在( )A.第一象限 B.第二象限 C.第三象限 D.第四象限【答案】D【解析】∵21ziz=-,∴∴1255 z i =-∴复数z的共轭复数z在复平面内对应的点在第四象限故选:D23. 【河北省衡水中学2018届高三十六模】已知复数的共轭复数为,若,则( )A. B. C. D.【答案】A24. 【河北省衡水中学2018届高三上学期七调考试】若复数z满足(i为虚数单位),则z的虚部是()A.—2 B.4 C.4i D.—4【答案】B【解析】24iz=-+,虚部为4,故选B。

河北省衡水中学2019-2020高三第十七次模拟考试数学(文)试题(解析版)

河北省衡水中学2019-2020高三第十七次模拟考试数学(文)试题(解析版)

2019~2020学年度高三年级十七模考试数学试卷(文)第Ⅰ卷(共60分)一、选择题:(每小题5分,共60分.下列每小题所给选项只有一个项符合题意,请将正确答案的序号填涂在答题卡上)1. 设集合,集合,则集合()A. B. C. D.2. 已知复数 (为虚数单位),若复数的共轭复数的虚部为, 则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 若,,,的平均数为3,方差为4,且,,则新数据,的平均数和标准差分别为()A. -4 -4B. -4 16C. 2 8D. -2 44. 已知双曲线的左焦点为抛物线的焦点,双曲线的渐近线方程为,则实数()A. 3B.C.D.5. 运行如图所示程序,则输出的的值为()A. B. C. 45 D.6. 已知,,则的值为()A. B. C. D.7. 如图是某几何体的三视图,则该几何体的体积为()A. 6B. 9C. 12D. 188. 已知,点在线段上,且的最小值为1,则 ()的最小值为()A. B. C. 2 D.9. 函数的图像大致是()A. B.C. D.10. 若抛物线的焦点是,准线是,点是抛物线上一点,则经过点、且与相切的圆共()A. 0个B. 1个C. 2个D. 4个11. 设函数.若,且,则的取值范围为()A. B. C. D.12. 对于函数和,设;,若所有的,,都有,则称和互为“零点相邻函数”.与互为“零点相邻函数”,则实数的取值范围是()A. B. C. D.第Ⅱ卷(非选择题90分)二、填空题(每题5分,共20分,把每小题的答案填在答卷纸的相应位置)13. 若数列是等差数列,对于,则数列也是等差数列.类比上述性质,若数列是各项都为正数的等比数列,对于时,数列也是等比数列,则14. 函数的图象在点处的切线方程是,则__________.15. 已知是区间上的任意实数,直线与不等式组表示的平面区域总有公共点,则直线的倾斜角的取值范围为__________.16. 设锐角三个内角所对的边分别为,若,则的取值范围为__________.三、解答题(共6个小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知数列为公差不为0的等差数列,,且,,成等差数列(1)求数列的通项公式;(2)若数列满足,求数列的前项和.18. 在测试中,客观题难题的计算公式为,其中为第题的难度,为答对该题的人数,为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):(1)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;(2)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;(3)定义统计量,其中为第题的实测难度,为第题的预估难度().规定:若,则称该次测试的难度预估合理,否则为不合理.判断本次测试的难度预估是否合理.19. 四棱锥中,面,底面是菱形,且,,过点作直线,为直线上一动点.(1)求证:;(2)当面面时,求三棱锥的体积.20. 设点、的坐标分别为,直线相交于点,且它们的斜率之积是.(1)求点的轨迹的方程;(2)直线与曲线相交于两点,若是否存在实数,使得的面积为?若存在,请求出的值;若不存在,请说明理由.21. 已知函数.(1)求函数的单调区间;(2)当时,函数的图象恒不在轴的上方,求实数的取值范围.请考生在22、23两题中任选一题作答,并在相应题号前的方框中涂黑.选修4-4:坐标系与参数方程22. 在平面直角坐标系中,已知曲线的参数方程为 (为参数,).(1)当时,若曲线上存在两点关于点成中心对称,求直线的斜率;(2)在以原点为极点,轴正半轴为极轴的极坐标系中,极坐标方程为的直线与曲线相交于两点,若,求实数的值.选修4-5:不等式选讲23. 已知函数,.(1)解不等式;(2)设,求证:.2019~2020学年度高三年级十七模考试数学试卷(文)解析版第Ⅰ卷(共60分)一、选择题:(每小题5分,共60分.下列每小题所给选项只有一个项符合题意,请将正确答案的序号填涂在答题卡上)1. 设集合,集合,则集合()A. B. C. D.【答案】C【解析】分析:解指数不等式可得集合A,求出函数的定义域可得集合B,然后再求出即可.详解:由题意得,,∴,∴.故选C.点睛:本题考查指数函数单调性的应用,对数函数的定义域及集合的运算,考查学生的运算能力及应用所学知识解决问题的能力,属基础题.2. 已知复数 (为虚数单位),若复数的共轭复数的虚部为, 则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】A【解析】分析:先化简复数,根据的共轭复数的虚部为求出复数,再根据复数的几何意义确定复数在复平面内对应的点的位置.详解:由题意得,∴,又复数的共轭复数的虚部为,∴,解得.∴,∴复数在复平面内对应的点位于第一象限.故选A.点睛:本题以复数的运算为基础,考查复数的基本概念和复数的几何意义,解题的关键是根据复数的共轭复数的虚部为求得实数,由此得到复数,然后再根据复数对应的点的坐标确定其所在的象限.3. 若,,,的平均数为3,方差为4,且,,则新数据,的平均数和标准差分别为()A. -4 -4B. -4 16C. 2 8D. -2 4【答案】D【解析】分析:根据样本的平均数、方差的定义计算即可.详解:∵,,,的平均数为3,方差为4,∴,.又,∴,,∴新数据,的平均数和标准差分别为.故选D.点睛:与平均数和方差有关的结论(1)若x1,x2,…,x n的平均数为,那么mx1+a,mx2+a,…,mx n+a的平均数为;(2)数据x1,x2,…,x n与数据x′1=x1+a,x′2=x2+a,…,x′n=x n+a的方差相等,即数据经过平移后方差不变;(3)若x1,x2,…,x n的方差为s2,那么ax1+b,ax2+b,…,ax n+b的方差为a2s2.4. 已知双曲线的左焦点为抛物线的焦点,双曲线的渐近线方程为,则实数()A. 3B.C.D.【答案】C【解析】抛物线的焦点坐标为,则双曲线中,由双曲线的标准方程可得其渐近线方程为,则:,求解关于实数a,b的方程可得:.本题选择C选项.5. 运行如图所示程序,则输出的的值为()A. B. C. 45 D.【答案】B【解析】程序是计算,记,,两式相加得.故,故选.6. 已知,,则的值为()A. B. C. D.【答案】A【解析】分析:根据同角三角函数关系由求得,于是可得,然后再根据两角和的余弦公式求解即可.详解:∵,,∴,∴,.∴.故选A.点睛:本题属于给值求值的问题,考查同角三角函数关系、倍角公式、两角和的余弦公式的运用,考查学生的计算能力和公式变形能力.7. 如图是某几何体的三视图,则该几何体的体积为()A. 6B. 9C. 12D. 18【答案】B【解析】由题设中提供的三视图可以看出这是一个底面边长为2的正方形高为1的四棱柱与一个底面是边长为4的等腰直角三角形高为1的三棱柱的组合体,其体积,应选答案C 。

【最新】河北省衡水高三下册第二学期第二次摸底考试数学(文)试题含答案

【最新】河北省衡水高三下册第二学期第二次摸底考试数学(文)试题含答案

河北省衡水中学 高三下学期第二次摸底考试数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{A k =∈N }N ,{|2B x x n ==或3,x n n =∈}N ,则A B =I ( )A .{}6,9B .{}3,6,9C .{}1,6,9,10D .{}6,9,10 2. 若复数z 满足()2z 12i 13i (i -+=+为虚数单位),则复数z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知命题:p一组数据的平均数一定比中位数小;命题:1,1,log 2log a b q a b b a ∀>>+≥ ( )A . p q ∧B .()p q ⌝∧ C. ()p q ∧⌝ D .()p q ∨⌝4. 设函数()4,12,1x x a x f x x +<⎧=⎨≥⎩,若243f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,则实数a =( ) A .23-B .43- C. 43-或 23- D .2-或 23- 5. 若实数,x y 满足条件21022030x y x y x -+≥⎧⎪+-≥⎨⎪-≤⎩,则432z x y =-+的最大值为( )A .14-B .4- C.419- D .423- 6. 运行如图所示的程序框图,输出的结果S 等于( )A .9B .13 C. 15 D .257. 若以2为公比的等比数列{}n b 满足2221log log 23n n b b n n +⋅-=+,则数列{}n b 的首项为( ) A .12B .1 C.2 D .4 8.已知函数()g x 的图象向左平移13个单位所得的奇函数()()()cos 0,0,0f x A x A ωϕωϕπ=+>><<的部分图象如图所示,且MNE ∆是边长为1的正三角形,则()g x 在下列区间递减的是 ( )A .53,22⎡⎤--⎢⎥⎣⎦ B .94,2⎡⎤⎢⎥⎣⎦ C. 11,33⎡⎤-⎢⎥⎣⎦D .11,26⎡⎤--⎢⎥⎣⎦ 9. 已知12,F F 分别是双曲线()2222:10,0x y C a b a b-=>>的左、右焦点,,M N 分别是双曲线C 的左、右支上关于y 轴对称的两点,且1222F F ON MN ==,则双曲线C 的两条渐近线的斜率之积为( )A .4-B .423--323--D .422--10. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为( )A .2843122+.3643122+C. 3642123+.44122+11.椭圆()222101y x b b+=<<的左焦点为F ,上顶点为A ,右顶点为B ,若FAB ∆的外接圆圆心(),P m n 在直线y x =-的左下方,则该椭圆离心率的取值范围为 ( ) A .22⎛⎫⎪⎝⎭ B .1,12⎛⎫ ⎪⎝⎭ C.20,2⎛⎫ ⎪⎝⎭D .10,2⎛⎫⎪⎝⎭ 12. 设函数()3(xg x e x a a =+-∈R,e 为自然对数的底数),定义在R 上的连续函数()f x 满足:()()2f x f x x -+=,且当0x <时,()'f x x <,若存在()(){}0|222x x f x f x x ∈+≥-+,使得()()00g g x x =,则实数a 的取值范围为( ) A .12e ⎛⎤-∞ ⎥⎝⎦ B .(],2e -∞+ C. 1,2e ⎛⎤-∞+ ⎥⎝⎦D .(2e ⎤-∞⎦第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 某校为了解学生学习的情况,采用分层抽样的方法从高一2400人、高二 2000人、高三n 人中,抽取90人进行问卷调查.已知高一被抽取的人数为36,那么高三被抽取的人数为 . 14.Rt ∆ABC 中,,4,5,(,2A AB AC AM AB AC πλμλμ=====+∈u u u r u u u r u u u u r u u u r u u u rR)),若AM BC ⊥,则λμ= . 15. 《九章算术》是我国古代一部重要的数学著作,书中给出了如下问题:“今有良马与驽马发长安,至齐,齐去长安一千一百二十五里.良马初日行一百零三里,日增一十三里,驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,问几何日相逢?”其大意“现有良马和驽马同时从长安出发到齐去,已知长安和齐的距离是1125里.良马第一天走103里,之后每天比前一天多走13里.驽马笫一天走97里,之后每天比前一天少走0.5里.良马到齐后,立刻返回去迎驽马,多少天后两马相遇?”在这个问题中驽马从出发到相遇行走的路程为 里.16.点M 是棱长为32的正方体1111ABCD A B C D -的内切球O 球面上的动点,点N 为11B C 上一点,112,NB NC DM BN =⊥,则动点M 的轨迹的长度为 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知24cos 4sin sin 32B CB C --=. (1)求A ;(2)若()2243cos cos bc A a B a b -+=-,求ABC ∆面积.18. 如图是某市3月1日至16日的空气质量指数趋势图,空气质量指数()AQI 小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.(1)若该人随机选择3月1日至3月14日中的某一天到达该市,到达后停留3天(到达当日算1天),求此人停留期间空气重度污染的天数为1天的概率;(2)若该人随机选择3月7日至3月12日中的2天到达该市,求这2天中空气质量恰有1天是重度污染的概率.19. 如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,底面ABCD 为梯形,//,223,AB CD AB DC AC BD F ===I ,且PAD ∆与ABD ∆均为正三角形,G 为PAD ∆的重心.(1)求证://GF 平面PDC ; (2)求点G 到平面PCD 的距离.20. 已知抛物线()2:20C y px p =>的焦点为,F A 为C 上位于第一象限的任意一点,过点A 的直线l 交C 于另一点B ,交x 轴的正半轴于点D .(1)若当点A 的横坐标为3,且ADF ∆为等腰三角形,求C 的方程; (2)对于(1)中求出的抛物线C ,若点()001,02D x x ⎛⎫≥⎪⎝⎭,记点B 关于x 轴的对称点为,E AE 交x 轴于点P ,且AP BP ⊥,求证:点P 的坐标为()0,0x -,并求点P 到直线AB的距离d 的取值范围. 21. 函数()21ln (2f x x x ax a =++∈R),()232=+x g x e x . (1)讨论()f x 的极值点的个数; (2)若()()0,x f x g x ∀>≤. ①求实数a 的取值范围;②求证:0x ∀>,不等式()212x ee x e x x+-++>成立. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程在直角坐标系中xOy 中,曲线C 的参数方程为cos (2sin x a tt y t=⎧⎨=⎩为参数,0a >). 以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为cos 4πρθ⎛⎫+=- ⎪⎝⎭(1)设P 是曲线C 上的一个动点,当a =P 到直线l 的距离的最大值; (2)若曲线C 上所有的点均在直线l 的右下方,求a 的取值范围. 23.选修4-5:不等式选讲已知定义在R 上的函数()2,f x x m x m =--∈N *,且()4f x <恒成立. (1)求实数m 的值;(2)若()()()()0,1,0,1,3f f αβαβ∈∈+=,求证:4118αβ+≥.河北省衡水中学 高三下学期第二次摸底考试数学(文)试题参考答案一、选择题1-5 DCBAD 6-10 CDBCB 11-12:AB二、填空题13. 24 14.251615. 855 三、解答题17. 解:(1)()()1cos 44sin sin 22cos cos 2sin sin 22cos 2B C B C B C B C B C +-⨯-=+-=++122cos 3,cos 2A A =-==-,20,3A A ππ<<∴=Q .(2)(2222222222b c a a c b bc ac a b bc ac +-+--⋅+⋅=-Q ,22222222222222b c a b c a a c b a b bc +-+-+-∴-+=-,2222222222430,,023b c a b c a A b c a bc π+-∴+--⋅==∴+-≠Q ,43113310,23,sin 23222ABC bc S bc A ∆∴-====⨯⨯=. 18. 解:(1)设i A 表示事件“此人于3月i 日到达该市”()1,2,...,14i =.依题意知,()114i P A =,且()i j A A i j =∅≠I . 设B 为事件“此人停留期间空气重度污染的天数为1天” ,则356710B A A A A A =U U U U ,所以()()()()()()356710514P B P A P A P A P A P A ==U U U U ,即此人停留期间空气重度污染的天数为1天的概率为514. (2) 记3月7日至3月12日中重度污染的2天为,E F ,另外4天记为,,,a b c d ,则6天中选2天到达的基本事件如下:()()()()()()()()()()()(),,,,,,,,,,,,,,,,,,,,,,,a b a c a d a E a F b c b d b E b F c d c E c F , ()()(),,,,,d E d F E F 共15种,其中2天恰有1天是空气质量重度污染包含()()()()()()()(),,,,,,,,,,,,,,,a E a F b E b F c E c F d E d F 这8个基本事件,故所求事件的概率为815. 19. 解:(1)连接AG 并延长交PD 于H ,连接CH .由梯形,//ABCD AB CD 且2AB DC =,知21AF FC =,又G 为PAD ∆的重心,21AG GH ∴=,在AHC ∆中,21AG AF GH FC ==,故//GF HC .又HC ⊂平面,PCD GF ⊄平面,//PCD GF ∴平面PDC .(2)连接PG 并延长交AD 于E ,连接BE ,因为平面PAD ⊥平面,ABCD PAD ∆与ABD ∆均为正三角形,E ∴为AD 的中点,,,PE AD BE AD PE ∴⊥⊥∴⊥平面ABCD ,且3PE =.由(1)知//GF 平面1,3G PCD F PCD P CDF CDF PDC V V V PE S ---∆∴===⨯⨯.又由梯形,//ABCD AB CD,且2AB DC ==13DF BD ==又ABD ∆为正三角形,得160,sin 22CDF CDF ABD S CD DF BDC ∆∠=∠=∴=⨯⨯⨯∠=o,得132P CDF CDF V PE S -∆=⨯⨯=,所以三棱锥G PCD -.又2,3,3CD DE CDE CE PC π==∠=∴===Q 在PCD ∆中,3121811cos ,sin 22342PDC PDC PDC S ∆+-∠==-∠===⨯⨯故点G 到平面PCD==. 20. 解:(1) 由题知,0,322p p F FA ⎛⎫=+⎪⎝⎭,则()3,0,D p FD +的中点坐标为33,024p ⎛⎫+⎪⎝⎭,则33324p +=,解得2p =,故C 的方程为24y x =. (2) 依题可设直线AB 的方程为()()()011220,,,,x my x m A x y B x y =+≠,则()22,E x y -,由204y x x my x ⎧=⎨=+⎩消去x ,得220001440,.161602y my x x m x --=≥∴∆=+>Q ,121204,4y y m y y x +==-,设P 的坐标为(),0P x ,则()()2211,,,P P PE x x y PA x x y =--=-u u u r u u u r,由题知//PE PA u u u r u u u r ,所以()()21210P P x x y y x x -+-=,即()()221212211221211244P y y y y y y y y x y y x y y x +++=+==,显然1240y y m +=≠,所以1204P y y x x ==-,即证()0,0P x x -,由题知EPB ∆为等腰直角三角形,所以1AP k =,即12121y y x x +=-,也即()122212114y y y y +=-,所以()21212124,416y y y y y y -=∴+-=,即22000161616,1,1m x m x x +==-<,又因为012x ≥,所以011,2x d ≤<===,令()220224,2,2t t x t d t t t ⎛-=∈=-==- ⎝⎦,易知()42f t t t =-在⎛ ⎝⎦上是减函数,所以2d ⎫∈⎪⎪⎣⎭. 21. 解:(1)()()[)1',0,'2,f x x a x f x a x=++>∴∈++∞Q . ① 当20a +≥,即[)2,a ∈-+∞时,()'0f x ≥对0x ∀>恒成立,()f x 在()0,+∞ 上单调递增,()f x 没有极值点. ②当20a +<,即(),2a ∈-∞-时,方程210x ax ++=有两个不等正数解12,x x ,()()()()21211'0x x x x x ax f x x a x x x x--++=++==>,不妨设120x x <<,则当()10,x x ∈时,()()'0,f x f x >递增,当()12,x x x ∈时,()()'0,f x f x <递减,当()2,x x ∈+∞时,()()'0,f x f x >递增,所以12,x x 分别为()f x 的极大值点和极小值点. ()f x 有两个极值点.综上所述,当[)2,a ∈-+∞时,()f x 没有极值点,当(),2a ∈-∞-时,()f x 有两个极值点.(2) (i )()()2ln xf xg x e x x ax ≤⇔-+≥,由0x >,即2ln x e x xa x+-≤对于0x ∀>恒成立,设()()()22212ln ln (0),'xx x e x x e x x e x x x x x x x x ϕϕ⎛⎫+--+- ⎪+-⎝⎭=>=()()()21ln 11x e x x x x x-+++-=,0,x >∴Q 当()0,1x ∈时,()()'0,x x ϕϕ<递减,当()1,x ∈+∞时,()()'0,x x ϕϕ>递增,()()11,1x e a e ϕϕ∴≥=+∴≤+.(ii )由(i )知,当1a e =+时,有()()f x g x ≤,即()()22231ln 11ln 22x x e x x x e x e x e x x +≥+++⇔+-+≥, ① 当且仅当1x =时取等号.以下证明ln 2e x x +≥,设()()221ln ,'e e x ex x x x x x xθθ-=+=-=,所以当()0,x e ∈时,()()'0,x x θθ<递减,当(),x e ∈+∞时,()()'0,x x θθ>递增,()()2,ln 2ex e x xθθ∴≥=∴+≥, ② 当且仅当x e =时取等号. 由于①②等号不同时成立,故有()212x ee x e x x+-++>. 22. 解:(1)由cos 4πρθ⎛⎫+=- ⎪⎝⎭)cos sin ρθρθ-=-化成直角坐标方程,得)2x y -=-,即直线l 的方程为40x y -+=,依题意,设(),2sin P t t ,则P 到直线l的距离6d t π⎛⎫===+ ⎪⎝⎭,当26t k ππ+=,即2,6t k k Z ππ=-∈时,max d ==P 到直线l 的距离的最大值为(2)因为曲线C 上的所有点均在直线l 的右下方,t ∴∀∈R ,cos 2sin 40-+>a t t 恒成立,即()4t ϕ+-(其中2tan aϕ=)恒成立,4<,又0a >,解得0a <<a取值范围为(.23. 解:(1)222x m x x m x m --≤--=Q ,要使24x m x --<恒成立,则2m <,解得22m -<<.又m ∈Q N *,1∴=m .(2)()()()()0,1,0,1,22223f f αβαβαβ∈∈∴+=-+-=Q ,即()141414,22525182βααβαβαβαβαβ⎛⎛⎫⎛⎫+=∴+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭⎝,当且仅当4βααβ=,即11,36αβ==时取等号,故4118αβ+≥.。

河北省衡水中学高三摸底联考(全国卷)数学(文)试题

河北省衡水中学高三摸底联考(全国卷)数学(文)试题

数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知集合{}{}2|30,|13A x x x B x x =-≥=<≤,则如图所示阴影部分表示的集合为( )A . [)0,1B . (]0,3C .()1,3D .[]1,3 2. 已知向量()(),2,1,1m a n a ==-,且m n ⊥,则实数a 的值为( ) A .0 B .2 C .2-或1 D .2-3. 设复数z 满足()3112(i z i i +=-为虚数单位),则复数z 对应的点位于复平面内( )A .第一象限B .第二象限C .第三象限D .第四象限 4. 已知4张卡片上分别写着数字1,2,3,4,甲、乙两人等可能地从这4张卡片中选择1张,则他们选择同一张卡片的概率为( ) A . 1 B .116 C . 14 D .125. 若直线:4l mx ny +=和圆22:4O x y +=没有交点,则过点(),m n 的直线与椭圆22194x y +=的交点个数为( ) A . 0 B . 至多有一个 C .1 D .26. 在四面体S ABC -中,,2,AB BC AB BC SA SC SB ⊥======体外接球的表面积是( )A .BC .24πD . 6π7. 已知{}n a 为等差数列,n S 为其前n 项和,公差为d ,若201717100201717S S -=,则d 的值为( ) A .120 B . 110C .10D .20 8. 若函数()()()sin 0f x A x A ωϕ=+>的部分图象如图所示,则关于()f x 的描述中正确的是( )A .()f x 在5,1212ππ⎛⎫-⎪⎝⎭上是减函数 B .()f x 在5,36ππ⎛⎫⎪⎝⎭上是减函数 C .()f x 在5,1212ππ⎛⎫-⎪⎝⎭上是增函数 D .()f x 在5,36ππ⎛⎫⎪⎝⎭上是增减函数 9. 某程序框图如图所示,若该程序运行后输出的值是2312,则( )A .13a =B .12a =C .11a =D .10a = 10. 函数()321122132f x ax ax ax a =+-++的图象经过四个象限的一个充分必要条件是( )A . 4133a -<<- B .112a -<<- C .20a -<< D .63516a -<<-11. 已知某几何体的三视图如图所示,则该几何体的体积为( )A .1133B .35C .1043D .107412. 已知函数()()()()()52log 11221x x f x x x -<⎧⎪=⎨--+≥⎪⎩,则关于x 的方程12f x a x ⎛⎫+-= ⎪⎝⎭,当12a <<时实根个数为( )A . 5 个B .6个C . 7个D . 8个第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 中心在原点,焦点在x 轴上的双曲线的一条渐近线经过点()2,1-,则它的离心率为 .14. 曲线()232ln f x x x x =-+在1x =处的切线方程为 .15. 某大型家电商场为了使每月销售A 和B 两种产品获得的总利润达到最大,对某月即将出售的A 和B进行了相关调査,得出下表:如果该商场根据调查得来的数据,月总利润的最大值为 元.16. 如图是网络工作者经常用来解释网络运作的蛇形模型:数字1出现在第1行;数字2,3出现在第2行;数字6,5,4(从左至右)出现在第3行;数字7,8,9,10出现在第4行,依此类推,則第20行从左至右的第4个数字应是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)已知顶点在单位圆上的ABC ∆中,角A 、B 、C 所对的边分别为a 、b 、c ,且222b c a bc +=+.(1)求角A 的大小;(2)若224b c +=,求ABC ∆的面积.18. (本小题满分12分)如图,三棱住111ABC A B C -中,11,,60CA CB AB AA BAA ==∠=. (1)证明:1AB A C ⊥;(2)若12,AB CB AC ===求三棱住111ABC A B C -的体积.19. (本小题满分12分)某大学生在开学季准备销售一种文具套盒进行试创业,在一个开学季内,每售出1盒该产品获利润50元;未售出的产品,每盒亏损30元.根据历史资料,得到开学季市场需求量的频率分布直方图,如图所示,该同学为这个开学季购进了 160盒该产品,以x (单位:盒,100200x ≤≤)表示这个开学季内的市场需求量,(单位:元)表示这个开学季内经销该产品的利润.(1)根据直方图估计这个开学季内市场需求量x 的中位数; (2)将y 表示为x 的函数;(3)根据直方图估计利润不少于4800元的概率.20. (本小题满分12分)在平面直角坐标系xOy 中, 过点()2,0C 的直线与抛物线24y x=相交于,A B 两点,()()1122,,,A x y B x y . (1)求证:12y y 为定值;(2)是否存在平行于y 轴的定直线被以AC 为直径的圆截得的弦长为定值?如果存在,求该直线方程和弦长;如果不存在,说明理由.21. (本小题满分12分)已知函数()()2ln ,f x ax bx x a b R =+-∈.(1)当1,3a b =-=时, 求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值;(2)设0a >,且对于任意的()()0,1x f x f >≥,试比较ln a 与2b -的大小.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,,,,A B C D 四点在同一个圆上,BC 与AD 的延长线交于点E ,点F 在BA 的延长线上. (1)若11,32EC ED EB EA ==,求DCAB的值; (2)若2EF FA FB =,证明:EF CD .23. (本小题满分10分)选修4-4:坐标系与参数方程已知极坐标系的极点在直角坐标系的原点处,极轴与x 轴非负半轴重合,直线l 的参数方程为:1(12x t y t ⎧=-⎪⎪⎨⎪=⎪⎩为参数), 曲线C 的极坐标方程为:4cos ρθ=. (1)写出曲线C 的直角坐标方程和直线l 的普通方程; (2)设直线l 与曲线C 相交于,P Q 两点, 求PQ 的值. 24. (本小题满分10分)选修4-5:不等式选讲 已知函数()()223,12f x x a x g x x =-++=-+. (1)解不等式()5g x <;(2)若对任意1x R ∈,都有2x R ∈,使得()()12f x g x =成立, 求实数a 的取值范围.河北省衡水中学2017届高三摸底联考(全国卷)数学(文)试题参考答案一、选择题(每小题5分,共60分)1-5.CBACD 6-10. DBCCD 11-12. CB二、填空题(每小题5分,共20分)13.2514. 03-y -x = 15. 960 16. 194 三、解答题(2)由2sin aA=得2sin a A == 由余弦定理得2222cos a b c bc A =+-即22212cos603422b c bc bc =+-︒=-⨯,即∴1bc =∴11sin 1sin 6024ABC S bc A ∆==⨯⨯︒= .18、解: (Ⅰ)证明:如图,取 AB 的中点O ,连结OC ,11,OA A B .因为CA CB = ,所以OC AB ⊥ .由于1AB AA = ,160BAA ∠= ,故1AA B ∆为等边三角形,所以1OA AB ⊥. 因为10OCOA = ,所以AB ⊥ 平面1OA C .又1AC ⊂平面1OA C ,故1AB AC ⊥. (Ⅱ)由题设知ABC ∆与1AA B ∆ 都是边长为2的等边三角形,所以1OC OA ==.又1AC ,则21221AC OC OA =+,故1OA OC ⊥. 因为0OCAB = ,所以1OA ⊥ 平面1,ABC OA 为三棱柱111ABC A B C - 的高.又 ABC ∆的面积ABC S ∆=A1C故三棱柱111ABC A B C - 的体积13ABC V S OA ∆=⨯==.19、解:(1)由频率直方图得:需求量为[)100,120的频率=0.05200.1⨯=,需求量为[)120,140的频率= 0.01200.2⨯=,需求量为[140,160)的频率=0.015200.3⨯=,则中位数34602032140=⨯+=x (2)因为每售出1盒该产品获利润50元,未售出的产品,每盒亏损 30元, 所以当 100160x ≤≤时,()5030160804800y x x x =-⨯-=- , 当160200x <≤ 时, 160508000y =⨯=所以 804800,1001608000,160200x x y x -≤≤⎧=⎨<≤≤⎩. (3)因为利润不少于4800 元,所以8048004800x -≥ ,解得 120x ≥, 所以由(1)知利润不少于 4800元的概率10.10.9p =-= .20、解:(Ⅰ)(解法1)当直线AB 垂直于x 轴时,22,2221-==y y , 因此821-=y y (定值) ,当直线 AB 不垂直于x 轴时,设直线AB 的方程为)2(-=x k y由⎩⎨⎧=-=xy x k y 4)2(2得0842=--k y ky 821-=∴y y 因此有821-=y y 为定值(解法2)设直线AB 的方程为2-=x my由⎩⎨⎧=-=xy x my 422得0842=--my y 821-=∴y y 因此有821-=y y 为定值 . (Ⅱ)设存在直线l :a x =满足条件,则AC 的中点)2,22(11y x E +,2121)2(y x AC +-= 因此以AC 为直径的圆的半径421)2(2121212121+=+-==x y x AC r又E 点到直线a x =的距离|22|1a x d -+= 所以所截弦长为212122)22()4(4122a x x dr -+-+=- 2121)22(4a x x -+-+=2148)1(4a a x a -+--=当01=-a 即1=a 时,弦长为定值2,这时直线方程为1=x . 21.【解析】(1)当1,3a b =-=时,()23ln f x x x x =-+-,且1,22x ⎡⎤∈⎢⎥⎣⎦,()()()2211123123x x x x f x x x x x---+'=-+-=-=-. 由()0f x '>,得112x <<;由()0f x '<,得12x <<, 所以函数()f x 在1(,1)2上单调递增;,函数()f x 在(1,2)上单调递减,所以函数()f x 在区间1,22⎡⎤⎢⎥⎣⎦仅有极大值点1x =,故这个极大值点也是最大值点, 故函数在1,22⎡⎤⎢⎥⎣⎦上的最大值是()12f =,又()()153322ln 2ln 22ln 2ln 402444f f ⎛⎫⎛⎫-=--+=-=-<⎪ ⎪⎝⎭⎝⎭, 故()122f f ⎛⎫<⎪⎝⎭,故函数在1,22⎡⎤⎢⎥⎣⎦上的最小值为()22ln 2f =-. (Ⅱ)由题意,函数f (x )在x=1处取到最小值,又xbx ax x b ax x f 1212)(2'-+=-+=设0)('=x f 的两个根为21,x x ,则02121<-=ax x 不妨设0,021><x x ,则)(x f 在),0(2x 单调递减,在),(2+∞x 单调递增,故)()(2x f x f ≥, 又()(1)f x f ≥,所以12=x ,即21a b += 2 ,即12b a =- 令()24ln g x x x =-+ ,则()14'x g x x -=令()'0g x = ,得14x = ,当104x <<时,()()'0,g x g x > 在10,4⎛⎫⎪⎝⎭上单调递增; 当 x14x <时, ()()'0,g x g x <在(∞+,41)上单调递减;因为()11ln 404g x g ⎛⎫≤=-<⎪⎝⎭故()0g a < ,即24ln 2ln 0a a b a -+=+< ,即ln 2a b <- . 22.本题满分10分 (1)解:因为,,,A B C D 四点共圆;EDC BEF ∴∠=∠,又,,EC ED DCDEC BEA ECD EAB EA EB AB∠=∠∴∆∆∴==,又11,,32EC ED CD EB EA AB ===. (2)2,EF FBEF FA FB FA EF=∴=,又,EFA BFE FAE FEB FEA FBE ∠=∠∴∆∆∴∠=∠,又因为,,,A BC D 四点共圆;EDC EBF FEA EDC EF CD ∴∠=∠∴∠=∠∴.23.本题满分10分 解:(1) .24cos ,4cos ρθρθ=∴=, 由222,cos x y x ρρθ=+=,得224x y x +=,所以曲线C 的直角坐标方程为()2224x y -+=,由112x y t ⎧=-+⎪⎪⎨⎪=⎪⎩,消去t 解得:+10x =.所以直线l 的普通方程为+10x =.(2)把112x y t ⎧=-⎪⎪⎨⎪=⎪⎩ 代入224x y x +=,整理得250t -+= , 设其两根分别为 12,t t ,则11221213,47t t t t t t t +=-=+- . 24、本题满分10分解析: (1)由125x -+<得5125x -<-+< ,13x ∴-<,解得24x -<< . 所以原不等式的解集为{}|24x x -<<.(2)因为对任意 1x R ∈,都有 2x R ∈,使得()()12f x g x = 成立所以 (){}(){}||y y f x y y g x =⊆=, 有()()()2232233f x x a x x a x a =-++≥--+=+,()122g x x =-+≥,所以23≥+a 从而 1-≥a 或5-≤a . 所以 实数a 的取值范围(][),51,-∞--+∞.。

河北省衡水市衡水中学近年届高三数学下学期一模考试试题文(含解析)(最新整理)

河北省衡水市衡水中学近年届高三数学下学期一模考试试题文(含解析)(最新整理)

2018—2019学年度第二学期高三年级一模考试数学(文科)试卷第I卷(选择题共60分)一、选择题(每小题5分,共60分.下列每小题所给选项只有一项符合题意,请将正确答案的序号填涂在答题卡上)1。

设集合,,则的元素个数为( )A. 6B. 5C. 3D. 2【答案】C【解析】分析:首先求得集合B,然后结合交集的定义即可求得最终结果.详解:由题意可得,则,即的元素个数为3.本题选择C选项。

点睛:本题主要考查集合的表示方法,交集的运算法则等知识,意在考查学生的转化能力和计算求解能力.2。

设为虚数单位,,则复数的模为( )A. 1B.C. 2D.【答案】B【解析】分析:利用复数的除法运算法则化简,然后求的模.详解:故选B.点睛:本题考查复数的代数形式的混合运算,复数的模的求法,考查计算能力.3.已知双曲线的渐近线为,则等于()A. B. C. 6 D。

9【答案】D【解析】分析:求出双曲线的渐近线方程为可得的方程,解方程可得的值.的详解:双曲线渐近线方程为由渐近线方程为,可得,可得,故选D.点睛:本题考查双曲线的方程和性质,主要是渐近线方程的运用,考查运算能力,属于基础题.4.为了弘扬我国优秀传统文化,某中学广播站在中国传统节日:春节,元宵节,清明节,端午节,中秋节五个节日中随机选取两个节日来讲解其文化内涵,那么春节和端午节至少有一个被选中的概率是( )A. 0。

3B. 0。

4C. 0.6D. 0.7【答案】D【解析】【分析】先求出从五个节日中随机选取两个节日的所有基本事件数,再求出春节和端午节至少有一个被选中的基本事件数,然后根据古典概型概率公式求解即可.【详解】由题意得,从五个节日中随机选取两个节日的所有情况有种,设“春节和端午节至少有一个被选中”为事件A,则事件A包含的基本事件的个数为.由古典概型概率公式可得.故选D.【点睛】解答本题的关键有两个:一是判断出所求概率的类型,本题中结合题意可得属于古典概型;二是正确求出所有的基本事件数和所求概率的事件包含的基本事件数.求事件的个数时可根据排列组合的知识求解,本题考查分析判断能力和计算能力,属于基础题.5。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.
B.
C. -1 D. 2
【答案】D
【解析】模拟执行程序,可得
,满足条件

;满足条件
;满足条件 ,从而有:满足条件 输出 的值为 .
…观察规律可知, 的取值以 为周期,由
;不满足条件
,退出循环,
14.【2018 河北衡水高三上学期五调】已知 a,b R,i 是虚数单位,若 a i与2 bi 互为共轭复数,则
考点:算法与程序框图. 10. 【2017 河北衡水中学高三上学期三调】阅读如图所示的程序框图,则该算法的功能是( )
A.计算数列 2n1 前 5 项的和
B.计算数列 2n 1 前 5 项的和
C.计算数列 2n 1 前 6 项的和 D.计算数列 2n1 前 6 项的和
【答案】D 【解析】
A. 1 8
【答案】A
B. 1 8
C. 1 16
D. 1 32
考点:1.程序框图;2.二倍角公式与诱导公式. 12. 【2017 河北衡水中学高三上学期五调】执行如图所示的程序框图,输出的结果是( )
A.13
B. 11
C. 9
D.7
【答案】C
【解析】
考点:程序框图. 13. 【2017 河北衡水中学高三上学期六调】执行如图所示的程序框图,则输出的结果为 ( )
3. 【2018 河北衡水中学高三上学期分科综合测试】已知 为虚数单位,
则 在复平面内对应的点在( ) A. 第一象限 B. 第二象限 C. 第三象限
D. 第四象限
,且 的共轭算数为 ,
【答案】A
【解析】
,则
在复平面内对应的点为 ,在第一象限,故选 A.
4. 【2018 河北衡水中学高三上学期分科综合测试】若 表示不超过 的最大整数,则如图所示的程序框图 运行之后输出的结果为( )
A. 1009 B. -1009 【答案】B
C. -1007
D. 1008
【易错点睛】本题主要考查程序框图中的循环结构.循环结构中都有一个累计变量和计数变量,累计变量用
于输出结果,计算变量用于记录循环次数,累计变量用于输出结果,计数变量和累计变量一般是同步执行的, 累加一次计数一次,哪一步终止循环或不能准确地识别表示累计的变量,都会出现错误.计算程序框图的有 关的问题要注意判断框中的条件,同时要注意循环结构中的处理框的位置的先后顺序,顺序不一样,输出的 结果一般不会相同. 20. 【2017 河北衡水高三押题卷Ⅱ】执行下图的程序框图,若输入的 , , 的值分别为 0,1,1,则输 出的 的值为( )
到右的顺序排列得到的三位数,称为原三位数的“新时代数”.如图,若输入的
,则输出的 为( )
A. 2 B. 38 河北衡水九月联考】执行如图所示的程序框图,则输出的 值为( )
A.
B.
C.
D.
【答案】B
【解析】由框图可知,
.
故选 B.
8. 【2017 河北衡水中学高三上学期二调】设复数 z 2 i ,则复数 z 1 z 的共轭复数为( )
A. 48920 B. 49660 【答案】C
C. 49800
D. 51867
5.【2018 河北衡水中学高三八模】若
,则
()
A. 1 B. -1 C.
D.
【答案】C
【解析】试题分析:
,故选 C.
【考点】复数的运算、共轭复数.
【举一反三】复数的加、减法运算中,可以从形式上理解为关于虚数单位“ ”的多项式合并同类项,复数
一、选择题 1.【2018 衡水 11 月联考】已知 为虚数单位,则下列各式计算错误的是( )
A.
B.
C.
D.
【答案】C
【解析】



故选:C 2. 【2018 衡水 11 月联考】阅读如图所示的程序框图,运行相应的程序,则输出的 值为( )
A. 15 B. 14 【答案】A
C. 7
D. 6
.................. 考点:算法、程序框图以及考生的逻辑推理能力。
的乘法与多项式的乘法相类似,只是在结果中把 换成−1.复数除法可类比实数运算的分母有理化.复数加、
减法的几何意义可依照平面向量的加、减法的几何意义进行理解.
6. 【2018 河北衡水中学高三八模】规定:对任意的各位数字不全相同的三位数,若将各位数字按照从大到
小、从左到右的顺序排列得到的三位数,称为原三位数的“和谐数”;若将各位数字按照从小到大、从左
a bi2
A. 3 4i
【答案】C
B.5+4i
C.3+4i
D.5-4i
15. 【2017 河北衡水中学高三猜题卷一】设 为虚数单位,若复数 在复平面内对应的点为 ,则 ( )
A.
B.
C.
D.
【答案】B
【解析】由复数 在复平面内对应的点为 ,得
,即
,故选 B.
16. 【2017 河北衡水中学高三猜题卷三】已知 是虚数单位,
,且 的共轭复数为 ,则 在复
平面内对应的点在( ) A. 第一象限 B. 第二象限 【答案】A
C. 第三象限
D. 第四象限
【解析】
故 在复平面内对应的点在第一象限
17. 【2017 河北衡水中学猜题卷三】 若 表示不超过 的最大整数,则图中的程序框图运行之后输出的结 果为( ) A. 48920 B. 49660 C. 49800 D. 51867 【答案】C
...
18. 【2017 河北衡水高三押题卷 I】已知 为虚数单位,若复数
在复平面内对应的点在第四象限,
则 的取值范围为( )
A.
B.
C.
D.
【答案】B
【解析】由题
.又对应复平面的点在第四象限,可知
,解得
.故本题答案选 .
19. 【2017 河北衡水高三押题卷 I】执行如图所示的程序框图,则输出的 值为( )
考点:循环结构流程图. 【易错点睛】应用循环结构应注意的三个问题分别为:(1)确定循环变量和初始值;(2)确定算法中反复 执行的部分,即循环体;(3)确定循环的终止条件.同时依次计算出每次的循环结果,直到不满足循环条 件为止是解答此类问题的常用方法.
11. 【2017 河北衡水中学高三上学期四调】阅读下列程序框图,运行相应程序,则输出的 S 值为( )
A. 1 3i
【答案】B 【解析】
B.1 3i
C. 1 3i
D.1 3i
试题分析: z 1 z 1 3i ,其共轭复数为 1 3i .
考点:复数概念及运算.
9. 【2017 河北衡水中学高三上学期二调】执行如图所示的程序框图,则输出 n 的值是( )
A. 5
【答案】D 【解析】
B.15
C.23
D.31
相关文档
最新文档