统计学贾俊平第四版
统计学第四版答案(贾俊平)知识分享
统计学第四版答案(贾俊平)请举出统计应用的几个例子:1、用统计识别作者:对于存在争议的论文,通过统计量推出作者2、用统计量得到一个重要发现:在不同海域鳗鱼脊椎骨数量变化不大,推断所有各个不同海域内的鳗鱼是由海洋中某公共场所繁殖的3、挑战者航天飞机失事预测请举出应用统计的几个领域:1、在企业发展战略中的应用2、在产品质量管理中的应用3、在市场研究中的应用④在财务分析中的应用⑤在经济预测中的应用你怎么理解统计的研究内容:1、统计学研究的基本内容包括统计对象、统计方法和统计规律。
2、统计对象就是统计研究的课题,称谓统计总体。
3、统计研究方法主要有大量观察法、数量分析法、抽样推断法、实验法等。
④统计规律就是通过大量观察和综合分析所揭示的用数量指标反映的客观现象的本质特征和发展规律。
举例说明分类变量、顺序变量和数值变量:分类变量:表现为不同类别的变量称为分类变量,如“性别”表现为“男”或“女”,“企业所属的行业”表现为“制造业”、“零售业”、“旅游业”等,“学生所在的学院”可能是“商学院”、“法学院”等顺序变量:如果类别有一定的顺序,这样的分类变量称为顺序变量,如考试成绩按等级分为优、良、中、及格、不及格,一个人对事物的态度分为赞成、中立、反对。
这里的“考试成绩等级”、“态度”等就是顺序变量。
数值变量:可以用数字记录其观察结果,这样的变量称为数值变量,如“企业销售额”、“生活费支出”、“掷一枚骰子出现的点数”。
定性数据和定量数据的图示方法各有哪些:1、定性数据的图示:条形图、帕累托图、饼图、环形图2、定量数据的图示:a、分组数据看分布:直方图b、未分组数据看分布:茎叶图、箱线图、垂线图、误差图c、两个变量间的关系:散点图d、比较多个样本的相似性:雷达图和轮廓图直方图与条形图有何区别:1、条形图中的每一个矩形表示一个类别,其宽度没有意义,而直方图的宽度则表示各组的组距。
2、由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。
统计学贾俊平第四版课后习题答案
3.3 某百货公司连续40天的商品销售额如下:单位:万元41 25 29 47 38 34 30 38 43 40 46 36 45 37 37 36 45 43 33 44 35 28 46 34 30 37 44 26 38 44 42363737493942323635要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
1、确定组数: ()lg 40lg() 1.60206111 6.32lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(49-25)÷6=4,取54.8 一项关于大学生体重状况的研究发现.男生的平均体重为60kg ,标准差为5kg ;女生的平均体重为50kg ,标准差为5kg 。
请回答下面的问题: (1)是男生的体重差异大还是女生的体重差异大?为什么?女生,因为标准差一样,而均值男生大,所以,离散系数是男生的小,离散程度是男生的小。
(2)以磅为单位(1ks=2.2lb),求体重的平均数和标准差。
都是各乘以2.21,男生的平均体重为60kg×2.21=132.6磅,标准差为5kg ×2.21=11.05磅;女生的平均体重为50kg×2.21=110.5磅,标准差为5kg×2.21=11.05磅。
(3)粗略地估计一下,男生中有百分之几的人体重在55kg一65kg之间?计算标准分数:Z1=x xs-=55605-=-1;Z2=x xs-=65605-=1,根据经验规则,男生大约有68%的人体重在55kg一65kg之间。
(4)粗略地估计一下,女生中有百分之几的人体重在40kg~60kg之间?计算标准分数:Z1=x xs-=40505-=-2;Z2=x xs-=60505-=2,根据经验规则,女生大约有95%的人体重在40kg一60kg之间。
最新统计学第四版答案(贾俊平)
请举出统计应用的几个例子:1、用统计识别作者:对于存在争议的论文,通过统计量推出作者2、用统计量得到一个重要发现:在不同海域鳗鱼脊椎骨数量变化不大,推断所有各个不同海域内的鳗鱼是由海洋中某公共场所繁殖的3、挑战者航天飞机失事预测请举出应用统计的几个领域:1、在企业发展战略中的应用2、在产品质量管理中的应用3、在市场研究中的应用④在财务分析中的应用⑤在经济预测中的应用你怎么理解统计的研究内容:1、统计学研究的基本内容包括统计对象、统计方法和统计规律。
2、统计对象就是统计研究的课题,称谓统计总体。
3、统计研究方法主要有大量观察法、数量分析法、抽样推断法、实验法等。
④统计规律就是通过大量观察和综合分析所揭示的用数量指标反映的客观现象的本质特征和发展规律。
举例说明分类变量、顺序变量和数值变量:分类变量:表现为不同类别的变量称为分类变量,如“性别”表现为“男”或“女”,“企业所属的行业”表现为“制造业”、“零售业”、“旅游业”等,“学生所在的学院”可能是“商学院”、“法学院”等顺序变量:如果类别有一定的顺序,这样的分类变量称为顺序变量,如考试成绩按等级分为优、良、中、及格、不及格,一个人对事物的态度分为赞成、中立、反对。
这里的“考试成绩等级”、“态度”等就是顺序变量。
数值变量:可以用数字记录其观察结果,这样的变量称为数值变量,如“企业销售额”、“生活费支出”、“掷一枚骰子出现的点数”。
定性数据和定量数据的图示方法各有哪些:1、定性数据的图示:条形图、帕累托图、饼图、环形图2、定量数据的图示:a、分组数据看分布:直方图b、未分组数据看分布:茎叶图、箱线图、垂线图、误差图c、两个变量间的关系:散点图d、比较多个样本的相似性:雷达图和轮廓图直方图与条形图有何区别:1、条形图中的每一个矩形表示一个类别,其宽度没有意义,而直方图的宽度则表示各组的组距。
2、由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。
统计学(第四版)贾俊平复习资料名词解释概念课后思考题答案
统计学(第四版)贾俊平复习资料名词解释概念课后思考题答案l.获得数据的概率抽样方法有哪些?(1)简单随机抽样简单随机抽样又称纯随机抽样,是指在特定总体的所有单位中直接抽取n个组成样本。
它最直观地体现了抽样的基本原理,是最基本的概率抽样。
<2)系统抽样系统抽样也称等距抽样或机械抽样,是按一定的间隔距离抽取样本的方法。
(3)分层抽样分层抽样也叫分类抽样,就是先将总体的所有单位依照一种或几种特征分为若干个子总体,每一个子总体即为一类,然后从每一类中按简单随机抽样或系统随机抽样的办法抽取一个子样本,称为分类样本,它们的集合即为总体样本。
(4)整群抽样整群抽样又称聚类抽样或集体抽样,是将总体按照某种标准划分为一些群体,每一个群体为一个抽样单位,再用随机的方法从这些群体中抽取若干群体,并将所抽出群体中的所有个体集合为总体的样本。
(5)多阶段抽样多阶段抽样又称多级抽样或分段抽样,就是把从总体中抽取样本的过程分成两个或多个阶段进行的抽样方法。
2.茎叶图与直方图相比有什么优点?它们的应用场合是什么?茎叶图与直方图相比,茎叶图既能给出数据的分布状况,又能给出每一个原始数值,即保留了原始数据的信息。
而直方图虽然能很好地显示数据的分布,但不能保留原始的数值。
在应用方面,直方图通常适用于大批量数据,茎叶图通常适用于小批量数据。
3鉴别图标优劣的准则1精心设计,有助于洞察问题的实质。
2使复杂的观点得到简明、确切、高效的阐述。
3能在最短的时间内以最少的笔墨给读者提供最大量的信息。
4是多维的。
5表述数据的真实情况。
4.一组数据的分布特征可以从哪几个方面进行测量?答:数据分布的特征可以从三个方面进行测度和描述:一是分布的集中趋势,反映各数据向其中心值靠拢或聚集的程度;二是分布的离散程度,反映各数据远离其中心值的趋势;三是分布的形状,反映数据分布的偏态和峰态。
这三个方面分别反映了数据分布特征的不同侧面。
5. 标准分数有哪些用途?标准分数给出了一组数据中各数值的相对位置。
统计学贾俊平-第四版课后习题答案
3.3 某百货公司连续40天的商品销售额如下:单位:万元41 25 29 47 38 34 30 38 43 40 46 36 45 37 37 36 45 43 33 44 35 28 46 34 30 37 44 26 38 44 42363737493942323635要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图. 1、确定组数:()lg 40lg() 1.60206111 6.32lg(2)lg 20.30103n K =+=+=+=,取k=62、确定组距:组距=< 最大值 - 最小值>÷ 组数=〔49-25〕÷6=4,取5(1) 对这个年龄分布作直方图;(2) 从直方图分析成人自学考试人员年龄分布的特点. 解:〔1〕制作直方图:将上表复制到Excel 表中,点击:图表向导→柱形图→选择子图表类型→完成.即得到如下的直方图:<见Excel 练习题2.6>〔2〕年龄分布的特点:自学考试人员年龄的分布为右偏. 解:3.12 甲乙两个班各有40名学生,期末统计学考试成绩的分布如下:要求:<1>根据上面的数据,画出两个班考试成绩的对比条形图和环形图.3.14 已知1995—20##我国的国内生产总值数据如下<按当年价格计算>:<2>绘制第一、二、三产业国内生产总值的线图.4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量<单位:台>排序后如下:2 4 7 10 10 10 12 12 14 15要求:〔1〕计算汽车销售量的众数、中位数和平均数.<2>根据定义公式计算四分位数.<3>计算销售量的标准差.<4>说明汽车销售量分布的特征.解:Statistics汽车销售数量N Valid 10Missing 0Mean 9.60Median 10.00Mode 10Std. Deviation 4.169Percentiles 25 6.2550 10.0075 12.504.3 某银行为缩短顾客到银行办理业务等待的时间.准备采用两种排队方式进行试验:一种是所有颐客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待.为比较哪种排队方式使顾客等待的时间更短.两种排队方式各随机抽取9名顾客.得到第一种排队方式的平均等待时间为7.2分钟,标准差为1.97分钟.第二种排队方式的等待时间<单位:分钟>如下:5.5 6.6 6.7 6.8 7.1 7.3 7.4 7.8 7.8要求:<1>画出第二种排队方式等待时间的茎叶图.第二种排队方式的等待时间<单位:分钟> Stem-and-Leaf PlotFrequency Stem & Leaf1.00 Extremes <=<5.5>3.00 6 . 6783.00 7 . 1342.00 7 . 88Stem width: 1.00Each leaf: 1 case<s><2>计算第二种排队时间的平均数和标准差.Mean7Std. Deviation0.714143Variance0.51<3>比较两种排队方式等待时间的离散程度.第二种排队方式的离散程度小.<4>如果让你选择一种排队方式,你会选择哪—种?试说明理由.选择第二种,均值小,离散程度小.要求:<1>计算120家企业利润额的平均数和标准差.<2>计算分布的偏态系数和峰态系数.解:Statistics企业利润组中值Mi〔万元〕N Valid 120Missing 0Mean 426.6667Std. Deviation 116.48445Skewness 0.208Std. Error of Skewness 0.221Kurtosis -0.625Std. Error of Kurtosis 0.4384.7 为研究少年儿童的成长发育状况,某研究所的一位调查人员在某城市抽取100名7~17岁的少年儿童作为样本,另一位调查人员则抽取了1 000名7~17岁的少年儿童作为样本.请回答下面的问题,并解释其原因.<1>两位调查人员所得到的样本的平均身高是否相同?如果不同,哪组样本的平均身高较大?<2>两位调查人员所得到的样本的标准差是否相同?如果不同,哪组样本的标准差较大?<3>两位调查人员得到这l 100名少年儿童身高的最高者或最低者的机会是否相同?如果不同,哪位调查研究人员的机会较大?解:〔1〕不一定相同,无法判断哪一个更高,但可以判断,样本量大的更接近于总体平均身高.〔2〕不一定相同,样本量少的标准差大的可能性大.〔3〕机会不相同,样本量大的得到最高者和最低者的身高的机会大.4.8 一项关于大学生体重状况的研究发现.男生的平均体重为60kg,标准差为5kg;女生的平均体重为50kg,标准差为5kg.请回答下面的问题:<1>是男生的体重差异大还是女生的体重差异大?为什么?女生,因为标准差一样,而均值男生大,所以,离散系数是男生的小,离散程度是男生的小.<2>以磅为单位<1ks=2.2lb>,求体重的平均数和标准差.都是各乘以2.21,男生的平均体重为60kg×2.21=132.6磅,标准差为5kg×2.21=11.05磅;女生的平均体重为50kg×2.21=110.5磅,标准差为5kg×2.21=11.05磅.<3>粗略地估计一下,男生中有百分之几的人体重在55kg一65kg之间?计算标准分数:Z1=x xs-=55605-=-1;Z2=x xs-=65605-=1,根据经验规则,男生大约有68%的人体重在55kg一65kg之间.<4>粗略地估计一下,女生中有百分之几的人体重在40kg~60kg之间?计算标准分数:Z1=x xs-=40505-=-2;Z2=x xs-=60505-=2,根据经验规则,女生大约有95%的人体重在40kg一60kg之间.4.9 一家公司在招收职员时,首先要通过两项能力测试.在A项测试中,其平均分数是100分,标准差是15分;在B项测试中,其平均分数是400分,标准差是50分.一位应试者在A项测试中得了115分,在B项测试中得了425分.与平均分数相比,该应试者哪一项测试更为理想?解:应用标准分数来考虑问题,该应试者标准分数高的测试理想.Z A=x xs-=11510015-=1;Z B=x xs-=42540050-=0.5因此,A项测试结果理想.4.10 一条产品生产线平均每天的产量为3 700件,标准差为50件.如果某一天的产量低于或高于平均产量,并落人士2个标准差的X围之外,就认为该生产线"失去控制〞.下面是4.13 在金融证券领域,一项投资的预期收益率的变化通常用该项投资的风险来衡量.预期收益率的变化越小,投资风险越低;预期收益率的变化越大,投资风险就越高.下面的两个直方图,分别反映了200种商业类股票和200种高科技类股票的收益率分布.在股票市场上,高收益率往往伴随着高风险.但投资于哪类股票,往往与投资者的类型有一定关系.<1>你认为该用什么样的统计量来反映投资的风险? 标准差或者离散系数.<2>如果选择风险小的股票进行投资,应该选择商业类股票还是高科技类股票? 选择离散系数小的股票,则选择商业股票.<3>如果进行股票投资,你会选择商业类股票还是高科技类股票? 考虑高收益,则选择高科技股票;考虑风险,则选择商业股票. 解:〔1〕方差或标准差;〔2〕商业类股票;〔3〕〔略〕.7.1 从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25.(1) 样本均值的抽样标准差x σ等于多少?(2) 在95%的置信水平下,允许误差是多少?解:已知总体标准差σ=5,样本容量n =40,为大样本,样本均值x =25, 〔1〕样本均值的抽样标准差x σσ5=0.7906 〔2〕已知置信水平1-α=95%,得 α/2Z =1.96,于是,允许误差是E =α/2σZ =1.96×0.7906=1.5496. 7.2 某快餐店想要估计每位顾客午餐的平均花费金额.在为期3周的时间里选取49名顾客组成了一个简单随机样本.<1>假定总体标准差为15元,求样本均值的抽样标准误差.x σ===2.143 <2>在95%的置信水平下,求边际误差.x x t σ∆=⋅,由于是大样本抽样,因此样本均值服从正态分布,因此概率度t=2z α因此,x x t σ∆=⋅2x z ασ=⋅0.025x z σ=⋅=1.96×2.143=4.2 <3>如果样本均值为120元,求总体均值 的95%的置信区间. 置信区间为:(),x x x x -∆+∆=()120 4.2,120 4.2-+=〔115.8,124.2〕7.107.11 某企业生产的袋装食品采用自动打包机包装,每袋标准重量为l00g.现从某天生产的一每包重量〔g 〕 包数 96~98 98~100 100~102 102~104 104~106 2 3 34 7 4 合计50<1>确定该种食品平均重量的95%的置信区间. 解:大样本,总体方差未知,用z 统计量样本均值=101.4,样本标准差s=1.829 置信区间:1α-=0.95,z α=0.025z =1.96=101.4 1.96 1.965050⎛-+ ⎝=〔100.89,101.91〕 <2>如果规定食品重量低于l00g 属于不合格,确定该批食品合格率的95%的置信区间.解:总体比率的估计大样本,总体方差未知,用z 统计量 样本比率=〔50-5〕/50=0.9 置信区间:1α-=0.95,z α=0.025z =1.96=()()0.910.90.910.90.9 1.96,0.9 1.965050⎛-- -+ ⎝=〔0.8168,0.9832〕 7.13 一家研究机构想估计在网络公司工作的员工每周加班的平均时间,为此随机抽取了18个员工.得到他们每周加班的时间数据如下<单位:小时>: 6 321 817 1220 117 90 218 2516 1529 16置信区间.解:小样本,总体方差未知,用t 统计量均值=13.56,样本标准差s=7.801 置信区间:1α-=0.90,n=18,()21t n α-=()0.0517t =1.7369=13.56 1.7369 1.7369⎛-+ ⎝=〔10.36,16.75〕 7.15 在一项家电市场调查中.随机抽取了200个居民户,调查他们是否拥有某一品牌的电视机.其中拥有该品牌电视机的家庭占23%.求总体比例的置信区间,置信水平分别为90%和95%.解:总体比率的估计大样本,总体方差未知,用z 统计量 样本比率=0.23 置信区间:1α-=0.90,z α=0.025z =1.645=0.23 1.645 1.645⎛ -+ ⎝ =〔0.1811,0.2789〕1α-=0.95,z α=0.025z =1.96=0.23 1.96 1.96⎛ -+ ⎝=〔0.1717,0.2883〕7.28 某超市想要估计每个顾客平均每次购物花费的金额.根据过去的经验,标准差大约为120元,现要求以95%的置信水平估计每个顾客平均购物金额的置信区间,并要求边际误差不超过20元,应抽取多少个顾客作为样本? 解:2222xz n ασ⋅=∆,1α-=0.95,2z α=0.025z =1.96,2222xz n ασ⋅=∆2221.9612020⨯==138.3,取n=139或者140,或者150.8. 18.2 一种元件,要求其使用寿命不得低于700小时.现从一批这种元件中随机抽取36件,测得其平均寿命为680小时.已知该元件寿命服从正态分布,σ=60小时,试在显著性水平0.05下确定这批元件是否合格. 解:H 0:μ≥700;H 1:μ<700已知:x =680 σ=60由于n=36>30,大样本,因此检验统计量:x z==-2 当α=0.05,查表得z α=1.645.因为z <-z α,故拒绝原假设,接受备择假设,说明这批产品不合格.8.4 糖厂用自动打包机打包,每包标准重量是100千克.每天开工后需要检验一次打包机工作是否正常.某日开工后测得9包重量<单位:千克>如下:99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.1 100.5已知包重服从正态分布,试检验该日打包机工作是否正常<a =0.05>? 解:H 0:μ=100;H 1:μ≠100经计算得:x =99.9778 S =1.21221 检验统计量:x t =-0.055 当α=0.05,自由度n -1=9时,查表得()9t α=2.262.因为t <2t α,样本统计量落在接受区域,故接受原假设,拒绝备择假设,说明打包机工作正常.8.5 某种大量生产的袋装食品,按规定不得少于250克.今从一批该食品中任意抽取50袋,发现有6袋低于250克.若规定不符合标准的比例超过5%就不得出厂,问该批食品能否出厂<a =0.05>?解:解:H 0:π≤0.05;H 1:π>0.05已知: p =6/50=0.12 检验统计量:Z ==2.271当α=0.05,查表得z α=1.645.因为z >z α,样本统计量落在拒绝区域,故拒绝原假设,接受备择假设,说明该批食品不能出厂.8.7 某种电子元件的寿命x<单位:小时>服从正态分布.现测得16只元件的寿命如下: 159 280 101 212 224 379 179 264 222 362 168 250 149 260 485 170问是否有理由认为元件的平均寿命显著地大于225小时<a =0.05>? 解:H 0:μ≤225;H 1:μ>225经计算知:x =241.5 s =98.726 检验统计量:x t=0.669 当α=0.05,自由度n -1=15时,查表得()15t α=1.753.因为t <t α,样本统计量落在接受区域,故接受原假设,拒绝备择假设,说明元件寿命没有显著大于225小时. 9.19.2 9.3 9.410.210.410.7 某企业准备用三种方法组装一种新的产品,为确定哪种方法每小时生产的产品数量最多,随机抽取了30名工人,并指定每个人使用其中的一种方法.通过对每个工人生产的产品数进行方差分析得到下面的结果;<1>完成上面的方差分析表.<2>若显著性水平a=0.05,检验三种方法组装的产品数量之间是否有显著差异?解:〔2〕P=0.025>a=0.05,没有显著差异.11.311.411.9 某汽车生产商欲了解广告费用<x>对销售量<y>的影响,收集了过去12年的有关数据.通过计算得到下面的有关结果:方差分析表要求:<1>完成上面的方差分析表.<2>汽车销售量的变差中有多少是由于广告费用的变动引起的?<3>销售量与广告费用之间的相关系数是多少?<4>写出估计的回归方程并解释回归系数的实际意义.<5>检验线性关系的显著性<a=0.05>.解:〔2〕R2=0.9756,汽车销售量的变差中有97.56%是由于广告费用的变动引起的.〔3〕r=0.9877.〔4〕回归系数的意义:广告费用每增加一个单位,汽车销量就增加1.42个单位.〔5〕回归系数的检验:p=2.17E—09<α,回归系数不等于0,显著.回归直线的检验:p=2.17E—09<α,回归直线显著.11.1013.1 下表是1981年—1999年国家财政用于农业的支出额数据年份支出额〔亿元〕年份支出额〔亿元〕1981 110.21 1991 347.571982 120.49 1992 376.021983 132.87 1993 440.451984 141.29 1994 532.981985 153.62 1995 574.931986 184.2 1996 700.431987 195.72 1997 766.391988 214.07 1998 1154.761989 265.94 1999 1085.761990 307.84〔1〕绘制时间序列图描述其形态.〔2〕计算年平均增长率.〔3〕根据年平均增长率预测20##的支出额.详细答案:〔1〕时间序列图如下:从时间序列图可以看出,国家财政用于农业的支出额大体上呈指数上升趋势.〔2〕年平均增长率为:.〔3〕.13.2 下表是1981年—20##我国油彩油菜籽单位面积产量数据〔单位:kg / hm2〕年份单位面积产量年份单位面积产量1981 1451 1991 12151982 1372 1992 12811983 1168 1993 13091984 1232 1994 12961985 1245 1995 14161986 1200 1996 13671987 1260 1997 14791988 1020 1998 12721989 1095 1999 14691990 1260 2000 1519〔1〕绘制时间序列图描述其形态.〔2〕用5期移动平均法预测20##的单位面积产量.〔3〕采用指数平滑法,分别用平滑系数a=0.3和a=0.5预测20##的单位面积产量,分析预测误差,说明用哪一个平滑系数预测更合适?详细答案:〔1〕时间序列图如下:〔2〕20##的预测值为:| 〔3〕由Excel输出的指数平滑预测值如下表:年份单位面积产量指数平滑预测a=0.3 误差平方指数平滑预测a=0.5误差平方1981 14511982 1372 1451.0 6241.0 1451.0 6241.0 1983 1168 1427.3 67236.5 1411.5 59292.3 1984 1232 1349.5 13808.6 1289.8 3335.1 1985 1245 1314.3 4796.5 1260.9 252.0 1986 1200 1293.5 8738.5 1252.9 2802.4 1987 1260 1265.4 29.5 1226.5 1124.3 1988 1020 1263.8 59441.0 1243.2 49833.6 1989 1095 1190.7 9151.5 1131.6 1340.8 1990 1260 1162.0 9611.0 1113.3 21518.4 1991 1215 1191.4 558.1 1186.7 803.51992 1281 1198.5 6812.4 1200.8 6427.7 1993 1309 1223.2 7357.6 1240.9 4635.8 1994 1296 1249.0 2213.1 1275.0 442.8 1995 1416 1263.1 23387.7 1285.5 17035.9 1996 1367 1308.9 3369.9 1350.7 264.4 1997 1479 1326.4 23297.7 1358.9 14431.3 1998 1272 1372.2 10031.0 1418.9 21589.8 1999 1469 1342.1 16101.5 1345.5 15260.3 2000 1519 1380.2 19272.1 1407.2 12491.7 合计——291455.2 —239123.0 20##a=0.3时的预测值为:a=0.5时的预测值为:比较误差平方可知,a=0.5更合适.13.3 下面是一家旅馆过去18个月的营业额数据月份营业额〔万元〕月份营业额〔万元〕1 295 10 4732 283 11 4703 322 12 4814 355 13 4495 286 14 5446 379 15 6017 381 16 5878 431 17 6449 424 18 660〔1〕用3期移动平均法预测第19个月的营业额.〔2〕采用指数平滑法,分别用平滑系数a=0.3、a=0.4和a=0.5预测各月的营业额,分析预测误差,说明用哪一个平滑系数预测更合适?〔3〕建立一个趋势方程预测各月的营业额,计算出估计标准误差.详细答案:〔1〕第19个月的3期移动平均预测值为:〔2〕月份营业额预测a=0.3误差平方预测a=0.4误差平方预测a=0.5误差平方1 2952 283 295.0 144.0 295.0 144.0 295.0 144.03 322 291.4 936.4 290.2 1011.2 289.0 1089.04 355 300.6 2961.5 302.9 2712.3 305.5 2450.35 286 316.9 955.2 323.8 1425.2 330.3 1958.16 379 307.6 5093.1 308.7 4949.0 308.1 5023.37 381 329.0 2699.4 336.8 1954.5 343.6 1401.68 431 344.6 7459.6 354.5 5856.2 362.3 4722.39 424 370.5 2857.8 385.1 1514.4 396.6 748.510 473 386.6 7468.6 400.7 5234.4 410.3 3928.711 470 412.5 3305.6 429.6 1632.9 441.7 803.112 481 429.8 2626.2 445.8 1242.3 455.8 633.513 449 445.1 15.0 459.9 117.8 468.4 376.914 544 446.3 9547.4 455.5 7830.2 458.7 7274.815 601 475.6 15724.5 490.9 12120.5 501.4 9929.416 587 513.2 5443.2 534.9 2709.8 551.2 1283.317 644 535.4 11803.7 555.8 7785.2 569.1 5611.718 660 567.9 8473.4 591.1 4752.7 606.5 2857.5 合计——87514.7—62992.5—50236由Excel输出的指数平滑预测值如下表:a=0.3时的预测值:,误差均方=87514.7.a=0.4时的预测值:,误差均方=62992.5..a=0.5时的预测值:,误差均方=50236.比较各误差平方可知,a=0.5更合适.〔3〕根据最小二乘法,利用Excel输出的回归结果如下:回归统计Multiple R 0.9673R Square 0.9356Adjusted R Square 0.9316标准误差31.6628观测值18方差分析df SS MS F Significance F回归分析 1 232982.5 232982.5 232.3944 5.99E-11残差16 16040.49 1002.53总计17 249022.9Coefficients 标准误差t Stat P-value Lower 95% Upper 95% Intercept 239.73203 15.57055 15.3965 5.16E-11 206.7239 272.7401 X Variable 1 21.928793 1.438474 15.24449 5.99E-11 18.87936 24.97822.估计标准误差.14.114.2。
统计学课后习题答案_(第四版)_贾俊平
《统计学》第四版 第四章练习题答案4.1 (1)众数:M 0=10; 中位数:中位数位置=n+1/2=5.5,M e =10;平均数:6.91096===∑nxx i(2)Q L 位置=n/4=2.5, Q L =4+7/2=5.5;Q U 位置=3n/4=7.5,Q U =12 (3)2.494.1561)(2==-=∑-n i s x x (4)由于平均数小于中位数和众数,所以汽车销售量为左偏分布。
4.2 (1)从表中数据可以看出,年龄出现频数最多的是19和23,故有个众数,即M 0=19和M 0=23。
将原始数据排序后,计算中位数的位置为:中位数位置= n+1/2=13,第13个位置上的数值为23,所以中位数为M e =23(2)Q L 位置=n/4=6.25, Q L ==19;Q U 位置=3n/4=18.75,Q U =26.5(3)平均数==∑nx x i600/25=24,标准差65.612510621)(2=-=-=∑-n i s x x(4)偏态系数SK=1.08,峰态系数K=0.77(5)分析:从众数、中位数和平均数来看,网民年龄在23-24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大差异。
从偏态系数来看,年龄分布为右偏,由于偏态系数大于1,所以,偏斜程度很大。
由于峰态系数为正值,所以为尖峰分布。
4.3 (1(2)==∑nxx i63/9=7,714.0808.41)(2==-=∑-n i s x x (3)由于两种排队方式的平均数不同,所以用离散系数进行比较。
第一种排队方式:v 1=1.97/7.2=0.274;v 2=0.714/7=0.102.由于v 1>v 2,表明第一种排队方式的离散程度大于第二种排队方式。
(4)选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方式。
4.4 (1)==∑nx x i8223/30=274.1中位数位置=n+1/2=15.5,M e =272+273/2=272.5(2)Q L 位置=n/4=7.5, Q L ==(258+261)/2=259.5;Q U 位置=3n/4=22.5,Q U =(284+291)/2=287.5(3) 17.211307.130021)(2=-=-=∑-n i s x x4.5 (1)甲企业的平均成本=总成本/总产量=41.193406600301500203000152100150030002100==++++乙企业的平均成本=总成本/总产量=29.183426255301500201500153255150015003255==++++原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
最新统计学第四版答案(贾俊平)资料
请举出统计应用的几个例子:1、用统计识别作者:对于存在争议的论文,通过统计量推出作者2、用统计量得到一个重要发现:在不同海域鳗鱼脊椎骨数量变化不大,推断所有各个不同海域内的鳗鱼是由海洋中某公共场所繁殖的3、挑战者航天飞机失事预测请举出应用统计的几个领域:1、在企业发展战略中的应用2、在产品质量管理中的应用3、在市场研究中的应用④在财务分析中的应用⑤在经济预测中的应用你怎么理解统计的研究内容:1、统计学研究的基本内容包括统计对象、统计方法和统计规律。
2、统计对象就是统计研究的课题,称谓统计总体。
3、统计研究方法主要有大量观察法、数量分析法、抽样推断法、实验法等。
④统计规律就是通过大量观察和综合分析所揭示的用数量指标反映的客观现象的本质特征和发展规律。
举例说明分类变量、顺序变量和数值变量:分类变量:表现为不同类别的变量称为分类变量,如“性别”表现为“男”或“女”,“企业所属的行业”表现为“制造业”、“零售业”、“旅游业”等,“学生所在的学院”可能是“商学院”、“法学院”等顺序变量:如果类别有一定的顺序,这样的分类变量称为顺序变量,如考试成绩按等级分为优、良、中、及格、不及格,一个人对事物的态度分为赞成、中立、反对。
这里的“考试成绩等级”、“态度”等就是顺序变量。
数值变量:可以用数字记录其观察结果,这样的变量称为数值变量,如“企业销售额”、“生活费支出”、“掷一枚骰子出现的点数”。
定性数据和定量数据的图示方法各有哪些:1、定性数据的图示:条形图、帕累托图、饼图、环形图2、定量数据的图示:a、分组数据看分布:直方图b、未分组数据看分布:茎叶图、箱线图、垂线图、误差图c、两个变量间的关系:散点图d、比较多个样本的相似性:雷达图和轮廓图直方图与条形图有何区别:1、条形图中的每一个矩形表示一个类别,其宽度没有意义,而直方图的宽度则表示各组的组距。
2、由于分组数据具有连续性,直方图的各矩形通常是连续排列,而条形图则是分开排列。
统计学贾俊平_第四版课后习题答案第七章
7.11 (1) 解:已知n=50,1a -=0.9522,ss x z xz nn a aæö-×+×ç÷èø=81.822981.8229101.491.966,101.491.9665050æö-´+´ç÷èø= (100.89,101.91)(2)解:已知n=50,1a -=0.95,2z a =00.0225z =1.96,样本比率p=(50-5)/50=0.9 则食品合格率的95%的置信区间:()()2211,p p p p p zp z nna aæö--ç÷-×+×ç÷èø=()()0.910.90.910.90.9 1.91.966,0.9 1.91.9665050æö---´+´ç÷èø=(0.8168,0.9832)7.22 (1)由题知,该题为大样本,方差已知,则有21m m -的95%的置信区间为:176.12100201001696.1)2325()(2221212/21±=+´±-=+±-n s n s z x x a即(0.824,3.176)(2m m -的95%的置信区间为:()()64.42112212212/21±=÷÷øöççèæ+-+±-n n s n ntxxpa 即(—2.64,6.64) (3)由题知,该题为小样本,方差不同, 则有21m m -的95%的置信区间为:()()64.42112212212/21±=÷÷øöççèæ+-+±-n n s n n tx x p a 即(—2.64,6.64) (4)由题知,该题为小样本,样本量不等,方差相等,则合并估计量为()()713128524211212222112==-+-+-=n n s n s n s p 则有21m m -的95%的置信区间为:()()02.42112212212/21±=÷÷øöççèæ+-+±-n n s n n tx x p a 即(—2.02,6.02) ,2z a =00.0225z =1.96。
统计学第四版贾俊平人大_回归与时间序列stata
回归分析与时间序列一、一元线性回归11.1 (1)编辑数据集,命名为linehuigui1.dat输入命令scatter cost product,xlabel(#10, grid) ylabel(#10, grid),得到如下散点图,可以看到,产量和生产费用是正线性相关的关系。
(2)输入命令reg cost product,得到如下图:可得线性函数(product为自变量,cost为因变量):y=0.4206832x+124.15,即β0=124.15,β1=0.4206832(3)对相关系数的显著性进行检验,可输入命令pwcorr cost product, sig star(.05) print(.05),得到下图:可见,在α=0.05的显著性水平下,P=0.0000<α=0.05,故拒绝原假设,即产量和生产费用之间存在显著的正相关性。
11.2 (1)编辑数据集,命名为linehuigui2.dat输入命令scatter fenshu time,xlabel(#4, grid) ylabel(#4, grid),得到如下散点图,可以看到,分数和复习时间是正线性相关的关系。
2)输入命令cor fenshu time计算相关系数,得下图:可见,r=0.8621,可见分数和复习时间之间存在高度的正相关性。
11.3 (1)(2)对于线性回归方程y=10-0.5x,其中β0=10,表示回归直线的截距为10;β1=-0.5,表示x变化一单位引起y的变化为-0.5。
(3)x=6时,E(y)=10-0.5*6=7。
11.4 (1) ,判定系数 测度了回归直线对观测数据的拟合程度,即在分数的变差中,有90%可以由分数与复习时间之间的线性关系解释,或者说,在分数取值的变动中,有90%由复习时间决定。
可见,两者之间有很强的线性关系。
(2)估计标准误差 分,即根据复习时间来估计分数时,平均的估计误差为0.25分。
2019年贾俊平_统计学_第四版_习题答案.doc
第1章绪论1.什么是统计学?怎样理解统计学与统计数据的关系?2.试举出日常生活或工作中统计数据及其规律性的例子。
3..一家大型油漆零售商收到了客户关于油漆罐分量不足的许多抱怨。
因此,他们开始检查供货商的集装箱,有问题的将其退回。
最近的一个集装箱装的是2 440加仑的油漆罐。
这家零售商抽查了50罐油漆,每一罐的质量精确到4位小数。
装满的油漆罐应为4.536 kg。
要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)描述推断。
答:(1)总体:最近的一个集装箱内的全部油漆;(2)研究变量:装满的油漆罐的质量;(3)样本:最近的一个集装箱内的50罐油漆;(4)推断:50罐油漆的质量应为4.536×50=226.8 kg。
4.“可乐战”是描述市场上“可口可乐”与“百事可乐”激烈竞争的一个流行术语。
这场战役因影视明星、运动员的参与以及消费者对品尝试验优先权的抱怨而颇具特色。
假定作为百事可乐营销战役的一部分,选择了1000名消费者进行匿名性质的品尝试验(即在品尝试验中,两个品牌不做外观标记),请每一名被测试者说出A品牌或B品牌中哪个口味更好。
要求:(1)描述总体;(2)描述研究变量;(3)描述样本;(4)一描述推断。
答:(1)总体:市场上的“可口可乐”与“百事可乐”(2)研究变量:更好口味的品牌名称;(3)样本:1000名消费者品尝的两个品牌(4)推断:两个品牌中哪个口味更好。
第2章统计数据的描述——练习题●1.为评价家电行业售后服务的质量,随机抽取了由100家庭构成的一个样本。
服务质量的等级分别表示为:A.好;B.较好;C.一般;D.差;E.较差。
调查结果如下:B EC C AD C B A ED A C B C DE C E EA DBC C A ED C BB ACDE A B D D CC B C ED B C C B CD A C B C DE C E BB EC C AD C B A EB ACDE A B D D CA DBC C A ED C BC B C ED B C C B C(1) 指出上面的数据属于什么类型;(2)用Excel制作一张频数分布表;(3) 绘制一张条形图,反映评价等级的分布。
统计学第四版(贾俊平著)中国人民大学出版社第四章课后答案PPT课件
4.3 求标准正态分布的概率:
(1)P ( 0 ≤ Z ≤ 1.2) ; (2)P ( -0.48 ≤ Z ≤ 0); (3)P (Z > 1.33)。
解:
(1)P ( 0 ≤ Z ≤ 1.2) = P ( 1.2) -P ( 0 )= 0.3849 (2)P ( -0.48 ≤ Z ≤ 0 ) = P ( 0) -P (-0.48)= 0.1844 (3)P (Z > 1.33) = P ( -1.33) = 0.0918
统计学第四章课后习题
4.1 消费者协会经过调查发现,某品牌空调有重大缺陷产品出现的概率分布 如下:
根据表格数据分别计算: (1)有2~5个(包括2与5个在内)空调出现重大缺陷的 概率 (2)只有不到2个空调出现重大缺陷的概率
(3)有超过5个空调出现重大缺陷的概率
解:
(1) 设有2~5个空调出现重大缺陷的事件为A 则P(A)=P(2)+P(3)+P(4)+P(5)=0.209+0.223+0.178+0.114=0.754 (2) 设不到2个空调出现重大缺陷的事件为B 则P(B)=P(0)+P(1)=0.041+0.130=0.171 (3) 设有超过5个空调出现重大缺陷的事件为C 则 P(C)=P(6)+P(7)+P(8)+P(9)+P(10)=0.061+0.028+0.011+0.004+0.001= 0.105
用样本均值 X 估计总体均值
(1)X 的期望是多少? (2)X 的标准差是多少? (3)X 的概率分布是什么?
解:
(1) E(x) 200
(2)
x
统计学课件(贾俊平)第四版 ppt
(二)现实经济生活中,依同样资料计算的拉氏指数一般大于帕氏 指数。 P 1 ri i Vi Vi 因为,可证明 p q q p L
ri
i pq
q p
质量指标个体指数与数量指标个体指数的相关系数 两种个体指数的标准差系数
Vi , Vi
由于在现实经济生活中,质量指标与数量指标(例如价格与 销售量)的变化之间通常存在着负相关关系,即下面三种情况之 一:1.质量指标的水平绝对上升,而数量指标的水平绝对下降, 或相反,数量指标的水平绝对上升,而质量指标的水平绝对下降; 2.质量指标和数量指标的水平都上升,但在其中一个的上升速率 加快的同时,另一个的上升速率则在减缓;3.质量指标和数量指 标的水平都下降,但在其中一个的下降速率加快的同时,另一个 的下降速率则在减缓。 商学院 2018/10/5 17
全部商品的价格指数
360 20 130 2000 p1 300 18 100 2500 p0 2600 95000 23000 612 q1 2400 84000 24000 510 q0
全部商品的销售量指数
复杂现象总体:不能直接加总或不能直接综合对比的现象。 总指数:反映复杂现象总体综合变动状况的指数。 商学院
拓广:用于空间上的比较(空间指数)和反映计划完成情况(计 划完成指数)。
2018/10/5
例:空间比价指数
商学院
4
商品 大米 猪肉 服装 冰箱
单位 百公斤 公斤 件 台
商品价格(元) 基期 报告期
销售量 基期 报告期
p0
300 18 100 2500
p1
360 20 130 2000
统计学第四版(贾俊平)重要公式
统计学第四版(贾俊平) 重要公式()()1S (2) 1 .4Q .3NX .2X .12222D --=-=-====∑∑∑∑n X NXQ Q IQR nX iiL U μμσμ样本方差:)总体方差:(方差:四分位差:总体平均数:样本平均数:()1S 分组数据样本方差.12X 分组数据样本平均数.11X 加权平均数.1022--===∑∑∑∑∑n X X F F X F W X W i i ii i ii inp p n p p N n N p p E P nn N n N X E PPX X )1()1(1,)(:.311 ,)(:X .30-=⎪⎪⎭⎫⎝⎛---===⎪⎭⎫⎝⎛--==σσσσσσμ无限总体时有限总体时的数学期望和标准差比例无限总体时有限总体时的数学期望和标准差2222222:.34,,)4(,,,)3(,:)2(,:)1(.33:.32∆=±±±±-σμσσμμαααααZ n nS t X n Z X nS Z X n Z X X 时所需的样本容量估计方差未知小样本总体正态方差已知小样本总体正态大样本且方差未知大样本且方差已知总体均值的区间估计时的抽样误差估计np p p p Z n df nS X t nS X Z n X Z p p Z n p np p Z p P )1(:.391,/:.38/:,/::.37)1(.36)1(.350002222--=-=-=-=-=∆-⋅=-±总体比率检验统计量统计量小样本总体均值的检验方差未知方差已知统计量大样本总体均值的检验本容量的区间估计时所需的样的区间估计总体比率μμσμαα()()()222121212121212102221,)(::,.41,:.40n n X X E X X X X Z Z Z Z n X X σσσμμμμσααβα+=-=-----=-的期望值与标准差估计量两个总体均值之差的点独立样本时即为双侧检验的公式代替用所需样本容量总体均值的单侧检验中()()()()()()()()()()21212121212122121222212121222122121222121212121,)3()11(, ,,)2(:,),30,()1(:.42X X X X X X X X X XS t X Xn n n n X X S Z X X n S n S S Z X Xn n ------±-+=+=-=±-+=±-≥ααασσσσσσσσσσσσ正态小样本的标准差时未知大样本的点估计量为已知大样本间估计两个总体均值之差的区()()()()()2221112221112221112121212121221212221212121)1()1(:)1()1()1()1(:.44)3(,11X )2(,X Z )1(.43212121n p p n p p S n p p n p p n p p n p p p p p p E p p p p nS d t n n S X t n n X p p p p p p d dp-+-=-+-=-+-=-=----=⎪⎪⎭⎫ ⎝⎛+---=+---=---的点估计量的期望值与标准差量两个比率之差的点估计相关样本小样本大样本设检验统计量两个总体均值之差的假σσμμμσσμμ()()()()()()⎪⎪⎭⎫⎝⎛+-==++=---=±-≥------212121221121212212222111111)1(:::.46,5)1(,),1(,:.4521212121n n p p S p p n n p n p n p p p p p Z S Z p p p n p n p n p n p p p p pp p p的点估计量时总体比率合并估计验统计量两个总体比率之差的检时大样本间估计两个总体比率之差的区σσα()()()22212222)2/1(2222/2:计量两个总体方差的检验统.491:计量一个总体方差的检验统.4811:计一个总体方差的区间估.47S S F S n S n S n=-=-≤≤--σχχσχαα()()()()xb y b nx xny x y x b y y xb b y xy E x y i iiii i i 102212101010,:min ::::.57-=--=-+=+=++=∑∑∑∑∑∑和截距估计的回归方程的斜率最小二乘法程估计的简单线性回归方简单线性回归方程简单线性回归模型ββεββ()()()()()()()()()2:2:)(::)(::::222112222222222222-==-======-⎥⎦⎤⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡-=-=-=-=-=+=∑∑∑∑∑∑∑∑∑∑∑∑n SSEMSE S n SSE MSE S r b b r SSTSSR r R n XX n Y X Y X n X X b y y SSR n y y y y SST y y SSE SSESSR SST xy ii i i i i iiiiiii i 估计量的标准误差的估计量均方误差的符号判定系数的符号样本相关系数决定系数判定系数回归平方和总平方和误差平方和平方和分解σ()()()ib ia i i pp p p S bt t MSE MSRF F p n SSEMSE p SSR MSR p n n R R SSTSSR R SSE SSR SST SSE SSR SST y y x x x y E x x x y ==--==---⋅--==+=-+⋅⋅⋅+++=++⋅⋅⋅+++=∑::1::1111:::,,min ::::.5822222211022110检验统计量检验统计量误差均方回归均方修正的多元决定系数多元决定系数之间的关系最小二乘法估计的多元回归方程多元回归方程多元线性回归模型 ββββεββββ。
统计学_贾俊平_第4版_课后答案(优选.)
3.1 为评价家电行业售后服务的质量,随机抽取了由100个家庭构成的一个样本。
服务质量的等级分别表示为:A.好;B.较好;C一般;D.较差;E.差。
调查结果如下:B EC C AD C B A ED A C B C DE C E EA DBC C A ED C BB ACDE A B D D CC B C ED B C C B CD A C B C DE C E BB EC C AD C B A EB AC E E A BD D CA DBC C A ED C BC B C ED B C C B C要求:(1)指出上面的数据属于什么类型。
顺序数据(2)用Excel制作一张频数分布表。
用数据分析——直方图制作:接收频率E16D17C32B21A14(3)绘制一张条形图,反映评价等级的分布。
用数据分析——直方图制作:(4)绘制评价等级的帕累托图。
逆序排序后,制作累计频数分布表:接收频数频率(%)累计频率(%)C 32 32 32B 21 21 53D 17 17 70E 16 16 86A 14 14 1005101520253035CDBAE204060801001203.2 某行业管理局所属40个企业2002年的产品销售收入数据如下: 152 124 129 116 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 108 9788123115119138112146113126要求:(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。
1、确定组数:()lg 40lg() 1.60206111 6.32lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(152-87)÷6=10.83,取10 3(2)按规定,销售收入在125万元以上为先进企业,115~125万元为良好企业,105~115 万元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。
统计学课后习题答案第四版贾俊平
统计学课后习题答案-(第四版)-贾俊平《统计学》第四版 第四章练习题答案4.1 (1)众数:M 0=10; 中位数:中位数位置=n+1/2=5.5,M e =10;平均数:6.91096===∑n x x i(2)Q L 位置=n/4=2.5, Q L =4+7/2=5.5;Q U 位置=3n/4=7.5,Q U =12(3)2.494.1561)(2==-=∑-n i s x x(4)由于平均数小于中位数和众数,所以汽车销售量为左偏分布。
4.2 (1)从表中数据可以看出,年龄出现频数最多的是19和23,故有个众数,即M 0=19和M 0=23。
将原始数据排序后,计算中位数的位置为:中位数位置= n+1/2=13,第13个位置上的数值为23,所以中位数为M e =23(2)Q L 位置=n/4=6.25, Q L ==19;Q U 位置=3n/4=18.75,Q U =26.5(3)平均数==∑nx x i600/25=24,标准差65.612510621)(2=-=-=∑-n i s x x(4)偏态系数SK=1.08,峰态系数K=0.77 (5)分析:从众数、中位数和平均数来看,网民年龄在23-24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大差异。
从偏态系数来看,年龄分布为右偏,由于偏态系数大于1,所以,偏斜程度很大。
由于峰态系数为正值,所以为尖峰分布。
4.3 (1)茎叶图如下:(2)==∑n x x i63/9=7,714.0808.41)(2==-=∑-n i s x x(3)由于两种排队方式的平均数不同,所以用离散系数进行比较。
第一种排队方式:v 1=1.97/7.2=0.274;v 21>v 2,表明第一种排队方式的离散程度大于第二种排队方式。
(4)选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方式。
4.4 (1)==∑n x x i8223/30=274.1中位数位置=n+1/2=15.5,M e =272+273/2=272.5 (2)Q L 位置=n/4=7.5, Q L ==(258+261)/2=259.5;Q U 位置=3n/4=22.5,Q U =(284+291)/2=287.5 (3)17.211307.130021)(2=-=-=∑-n i s x x4.5 (1)甲企业的平均成本=总成本/总产量=41.193406600301500203000152100150030002100==++++乙企业的平均成本=总成本/总产量=29.183426255301500201500153255150015003255==++++原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
统计学第四版问题详解(贾俊平)
第1章统计和统计数据1.1 指出下面的变量类型。
(1)年龄。
(2)性别。
(3)汽车产量。
(4)员工对企业某项改革措施的态度(赞成、中立、反对)。
(5)购买商品时的支付方式(现金、信用卡、支票)。
详细答案:(1)数值变量。
(2)分类变量。
(3)数值变量。
(4)顺序变量。
(5)分类变量。
1.2 一家研究机构从IT从业者中随机抽取1000人作为样本进行调查,其中60%回答他们的月收入在5000元以上,50%的人回答他们的消费支付方式是用信用卡。
(1)这一研究的总体是什么?样本是什么?样本量是多少?(2)“月收入”是分类变量、顺序变量还是数值变量?(3)“消费支付方式”是分类变量、顺序变量还是数值变量?详细答案:(1)总体是“所有IT从业者”,样本是“所抽取的1000名IT从业者”,样本量是1000。
(2)数值变量。
(3)分类变量。
1.3 一项调查表明,消费者每月在网上购物的平均花费是200元,他们选择在网上购物的主要原因是“价格便宜”。
(1)这一研究的总体是什么?(2)“消费者在网上购物的原因”是分类变量、顺序变量还是数值变量?详细答案:(1)总体是“所有的网上购物者”。
(2)分类变量。
1.4 某大学的商学院为了解毕业生的就业倾向,分别在会计专业抽取50人、市场营销专业抽取30、企业管理20人进行调查。
(1)这种抽样方式是分层抽样、系统抽样还是整群抽样?(2)样本量是多少?详细答案:(1)分层抽样。
(2)100。
第3章用统计量描述数据););=426.67;,,第五章1.23.4.5.6.7.5.8 (1)(3.02%,16.98%)。
(2)(1.68%,18.32%)。
5.9 详细答案:(4.06,24.35)。
5.10详细答案: 139。
5.11 详细答案: 57。
5.12 769。
第6章假设检验平看电,绝平,,绝,,绝在,,=100 =50=14.8 =10.4=0.8 =0.6对,,绝。
对设,。
统计学贾俊平_第四版课后习题答案
统计学贾俊平_第四版课后习题答案3.3 某百货公司连续40天的商品销售额如下:单位:万元41 25 29 47 38 34 30 38 43 40 46 36 45 37 37 36 45 43 33 44 35 28 46 34 30 37 44 26 38 44 42 36 37 37 49 39 42 32 36 35 要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
1、确定组数:()lg 40lg() 1.60206111 6.32lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(49-25)÷6=4,取54.8 一项关于大学生体重状况的研究发现.男生的平均体重为60kg,标准差为5kg;女生的平均体重为50kg,标准差为5kg。
请回答下面的问题:(1)是男生的体重差异大还是女生的体重差异大?为什么?女生,因为标准差一样,而均值男生大,所以,离散系数是男生的小,离散程度是男生的小。
(2)以磅为单位(1ks=2.2lb),求体重的平均数和标准差。
都是各乘以2.21,男生的平均体重为60kg×2.21=132.6磅,标准差为5kg ×2.21=11.05磅;女生的平均体重为50kg×2.21=110.5磅,标准差为5kg×2.21=11.05磅。
(3)粗略地估计一下,男生中有百分之几的人体重在55kg一65kg之间?计算标准分数:Z1=x xs-=55605-=-1;Z2=x xs-=65605-=1,根据经验规则,男生大约有68%的人体重在55kg一65kg之间。
(4)粗略地估计一下,女生中有百分之几的人体重在40kg~60kg之间?计算标准分数:Z1=x xs-=40505-=-2;Z2=x xs-=60505-=2,根据经验规则,女生大约有95%的人体重在40kg一60kg之间。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例:计算(1)各种商品的价格指数和销售量指数。 (2)全部商品的价格指数和销售量指数。
全部商品的价格指数
360 20 130 2000 300 18 100 2500
p1 p0
全部商品的销售量指数
2600 95000 23000 612 2400 84000 24000 510
2020/5/25
报告期销售额 商基学期院 销售额
p1q1 p0q0
8
三、统计指数的作用
可以分析复杂经济现象总体的变动方向和程度。
运用统计指数,可以分析复杂经济现象总体变动中各 个构成要素的变动,以及它们的变动对总体变动的 影响程度。
在对现象的总平均数进行动态分析时,利用指数法, 可以测定各组平均水平的变动和各组在总量中所占 比重的变动,以及它们对总平均水平变动的影响程 度。
销售额 销售量价格
销售量指数Iq
q1 q0
pq pq
同度量因素
价格指数I
p
p1q p0q
销售量指数Iq
q1 q0
p p
p1q1 p0q0 q1 p1 q0 p0
p1q0 p0q0 q1 p0 q0 p0
p1q1 p0q1 q1 p1 q0 p1
原理:1.引入一个媒介因素——同度量因素,解决不能直接加总 的问题。
利用连续编制的指数数列,对复杂现象长时间发展变 化趋势进行分析。
2020/5/25
商学院
9
如何反映复杂现象总体的数量变动?
如何编制总指数?
通过综合的方法
通过平均的方法
综合指数
平均指数
2020/5/25
商学院
10
第二节 综合指数
一、综合指数的编制原理: 先综合,后对比。
价格指数I p
p1 p0
510
2600 95000 23000
612
例:计算(1)各种商品的价格指数和销售量指数。 (2)全部商品的价格指数和销售量指数。
大米的价格指数
p1 p0
360 300
120%
大米的销售量指数
q1 q0
2600 2400
108.33%
猪肉的价格指数
p1 p0
20 18
111.11%
猪肉的销售量指数
q1 q0
2020/5/25
商学院
13
商品
大米 猪肉 服装 冰箱
单位
百公斤 公斤 件 台
商品价格(元) 销售量
基期 报告期 基期 报告期
p0
p1
q0
q1
300 18 100 2500
360 20 130 2000
2400 84000 24000
拓广:用于空间上的比较(空间指数)和反映计划完成情况(计 划完成指数)。
2020例/5:/2空5 间比价指数商学院
4
商品 单位
大米 猪肉 服装 冰箱
百公斤 公斤 件 台
商品价格(元)
基期 报告期
p0
p1
300 18 100 2500
360 20 130 2000
销售量
基期 报告期
q0
q1
2400 84000 24000
2.将同度量因素固定于某一时期。
2020/5/25
商学院
11
指数化因素
指数化指标
Iq
q1 p0 q0 p0
Ip
p1 q1 p0 q1
同度量因素
指数化指标
指在指数分析中被研究的指标
同度量因素
指把不同度量的现象过渡成可以同度量的媒
介因素,同时起到同度量 和权数 的作用
2020/5/25
商学院
12
数量指标指数:销售量指数,产量指数等。
质量指标指数:价格指数,产品成本指数等。
“总值指数”:表现为价值总额,可以分解为一个数
量因子与一个质量因子的乘积。比如销售额指数,产
值指数等。
2020/5/25
商学院
7
统计指数的分类
3. 按所反映的对象范围和计算方法的不同, 分为个体指数、类指数(组指数)和总
商学院
3
第一节 统计指数及其种类
一、统计指数概述
1. 指数:又称统计指数(index)、经济指数。 1. 广义上说:是对有关现象进行比较分析的的一种相对比 率。 2. 通常:经济领域用以表明所研究现象在时间上发展变化 程度的相对数。
例:某年全国的零售物价指数为105%。
某现象的指数
某现象的报告期(计算期)水平 基期水平
q1 q0
复杂现象总体:不能直接加总或不能直接综合对比的现象。
总20指20数/5:/2反5 映复杂现象商总学体院综合变动状况的指数。
6
二、统计指数的分类
1.按指数反映的时间状态的不同,分为动态指数和静态 指数。
动态指数:时间指数。
静态指数:又分为“空间指数”和“计划完成指数”。
2.按指数所反映的现象特征不同,分为数量指标指数与质 量指标指数。
统计学
statistics
李欣先 Email:lixinxian2005@
tongjxxx@
2020/5/25
商学院
1
第15章 统计指数
第一节 统计指数及其种类 第二节 综合指数 第三节 平均指数 第四节 指数体系和因素分析 第五节 统计指数的应用 第六节 综合评价指数
二、 拉氏指数
同度量因素固定在基期(基期加权综合指数)
Lp
p1 p0
qq00
66840 59070
113.15%
绝对数分析
p1q0 p0q0
Lq
q1 q0
pp00
63200 59070
106.99%
q1 p0 q0 p0
66840 59070 7770(百元 ) 63200 59070 4130(百元 )
95000 00
113.10%
2020/5/25 个体指数商学院
5
商品 单位
大米 猪肉 服装 冰箱
百公斤 公斤 件 台
商品价格(元)
基期 报告期
p0
p1
300 18 100 2500
360 20 130 2000
销售量
基期 报告期
q0
q1
2400 84000 24000
510
2600 95000 23000
2020/5/25
商学院
2
最早的指数起源于18世纪欧洲关于物价波动的研 究。后来,逐渐扩大到产量、成本、劳动生 产率等指数的计算。由最初计算一种商品的 价格变动,逐渐扩展到计算多种商品价格的 综合变动。
至今,已被广泛应用于社会经济生活各方面;一 些重要的指数已成为社会经济发展的晴雨表。
2020/5/25
总值指数属指于数个。体指数还是总指数 ?
个体指数:反映总体中个别项目的数量 对比关系的指数。
全部商品的销总售指额指数数 : 36反0 映2600复 2杂0 9现500象0 1总30 体230综00 合20变00 动612状 况的指数。 300 2400 18 84000 100 24000 2500 510