2015年全国高考理科数学试题及答案-安徽卷

合集下载

2015年安徽省高考数学试卷(理科)

2015年安徽省高考数学试卷(理科)

2015年安徽省高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=15.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.327.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<010.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2) C.f(﹣2)<f (0)<f(2)D.f(2)<f(0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)已知数列{an }是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前n项和等于.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)设n∈N*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{xn}的通项公式;(Ⅱ)记Tn =x12x32 (x)2n﹣12,证明:Tn≥.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣ax+b,求函数|f(sinx)﹣f(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b=0,求z=b﹣满足条件D≤1时的最大值.2015年安徽省高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先化简复数,再得出点的坐标,即可得出结论.【解答】解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.【点评】本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+1【分析】利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.【解答】解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选:A.【点评】本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f (﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.3.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用指数函数的单调性,结合充分必要条件的定义,即可判断.【解答】解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1【分析】对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.【解答】解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选:C.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【分析】利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选:D.【点评】本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.32【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.【解答】解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.【点评】本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2【分析】根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.【解答】解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥【分析】由题意,知道,,根据已知三角形为等边三角形解之.【解答】解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,∴的方向应该为的方向.所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选:D.【点评】本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<0【分析】分别根据函数的定义域,函数零点以及f(0)的取值进行判断即可.【解答】解:函数在P处无意义,由图象看P在y轴右边,所以﹣c>0,得c <0,由f(x)=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a<0,综上a<0,b>0,c<0,故选:C.【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及f(0)的符号是解决本题的关键.10.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2) C.f(﹣2)<f (0)<f(2)D.f(2)<f(0)<f(﹣2)【分析】依题意可求ω=2,又当x=时,函数f(x)取得最小值,可解得φ,从而可求解析式f(x)=Asin(2x+),利用正弦函数的图象和性质及诱导公式即可比较大小.【解答】解:依题意得,函数f(x)的周期为π,∵ω>0,∴ω==2.又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,∴f(x)=Asin(2x+2kπ+)=Asin(2x+).∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(0)=Asin=Asin>0,又∵>﹣4+2π>>,而f(x)=Asinx在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0).故选:A.【点评】本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是35 (用数字填写答案)【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为5求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,T==;r+1要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是 6 .【分析】圆ρ=8sinθ化为ρ2=8ρsinθ,把代入可得直角坐标方程,直线θ=(ρ∈R)化为y=x.利用点到直线的距离公式可得圆心C (0,4)到直线的距离d,可得圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r.【解答】解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为 4【分析】模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.【解答】解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的a,n 的值是解题的关键,属于基础题.14.(5分)已知数列{an }是递增的等比数列,a1+a4=9,a2a3=8,则数列{an}的前n项和等于2n﹣1 .【分析】利用等比数列的性质,求出数列的首项以及公比,即可求解数列{an}的前n项和.【解答】解:数列{an }是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{an}的前n项和为:=2n﹣1.故答案为:2n﹣1.【点评】本题考查等比数列的性质,数列{an}的前n项和求法,基本知识的考查.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.【分析】对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.【解答】解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f (﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.【点评】本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.【分析】由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.【解答】解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分【点评】本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)【分析】(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(Ⅱ)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.【解答】解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:EX=200×+300×+400×=350.【点评】本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.18.(12分)设n ∈N *,x n 是曲线y=x 2n+2+1在点(1,2)处的切线与x 轴交点的横坐标.(Ⅰ)求数列{x n }的通项公式; (Ⅱ)记T n =x 12x 32…x 2n ﹣12,证明:T n ≥.【分析】(1)利用导数求切线方程求得切线直线并求得横坐标; (2)利用放缩法缩小式子的值从而达到所需要的式子成立.【解答】解:(1)y'=(x 2n+2+1)'=(2n+2)x 2n+1,曲线y=x 2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y ﹣2=(2n+2)(x ﹣1) 令y=0,解得切线与x 轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知: T n =x 12x 32…x 2n ﹣12=,当n=1时,,当n ≥2时,因为x 2n ﹣12==>==,所以T n;综上所述,可得对任意的n ∈N +,均有. 【点评】本题主要考查切线方程的求法和放缩法的应用,属基础题型.19.(13分)如图所示,在多面体A 1B 1D 1DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (Ⅰ)证明:EF ∥B 1C ;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.【分析】(Ⅰ)通过四边形A1B1CD为平行四边形,可得B1C∥A1D,利用线面平行的判定定理即得结论;(Ⅱ)以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz,设边长为2,则所求值即为平面A1B1CD的一个法向量与平面A1EFD的一个法向量的夹角的余弦值的绝对值,计算即可.【解答】(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面B1CD1=EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos<,>==,∴二面角E﹣A1D﹣B1的余弦值为.【点评】本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.【分析】(I)由于点M在线段AB上,满足|BM|=2|MA|,即,可得.利用,可得.(II)由(I)可得直线AB的方程为:=1,利用中点坐标公式可得N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,可得b,解得即可.【解答】解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.【点评】本题考查了椭圆的标准方程及其性质、线段的垂直平分线性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣ax+b,求函数|f(sinx)﹣f(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a 0=b 0=0,求z=b ﹣满足条件D ≤1时的最大值.【分析】(Ⅰ)设t=sinx ,f (t )=t 2﹣at+b (﹣1<t <1),讨论对称轴和区间的关系,即可判断极值的存在; (Ⅱ)结合不等式的性质求得最大值; (Ⅲ)由(Ⅱ)结合不等式的性质求得z=b ﹣的最大值. 【解答】解:(Ⅰ)设t=sinx ,在x ∈(﹣,)递增,即有f (t )=t 2﹣at+b (﹣1<t <1),f′(t )=2t ﹣a , ①当a ≥2时,f′(t )≤0,f (t )递减,即f (sinx )递减; 当a ≤﹣2时,f′(t )≥0,f (t )递增,即f (sinx )递增. 即有a ≥2或a ≤﹣2时,不存在极值.②当﹣2<a <2时,﹣1<t <,f′(t )<0,f (sinx )递减;<t <1,f′(t )>0,f (sinx )递增. f (sinx )有极小值f ()=b ﹣;(Ⅱ)﹣≤x ≤时,|f (sinx )﹣f 0(sinx )|=|(a ﹣a 0)sinx+b ﹣b 0|≤|a ﹣a 0|+|b ﹣b 0|当(a ﹣a 0)(b ﹣b 0)≥0时,取x=,等号成立; 当(a ﹣a 0)(b ﹣b 0)≤0时,取x=﹣,等号成立.由此可知,|f (sinx )﹣f 0(sinx )|在[﹣,]上的最大值为D=|a ﹣a 0|+|b﹣b 0|.(Ⅲ)D ≤1即为|a|+|b|≤1,此时0≤a 2≤1,﹣1≤b ≤1,从而z=b ﹣≤1取a=0,b=1,则|a|+|b|≤1,并且z=b ﹣=1.由此可知,z=b﹣满足条件D≤1的最大值为1.【点评】本题考查函数的性质和运用,主要考查二次函数的单调性和极值、最值,考查分类讨论的思想方法和数形结合的思想,属于难题.。

2015年安徽省高考数学试卷(理科)

2015年安徽省高考数学试卷(理科)

2015年安徽省高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=15.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.327.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<010.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f (0)<f(2)D.f(2)<f(0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD 均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.2015年安徽省高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先化简复数,再得出点的坐标,即可得出结论.【解答】解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.【点评】本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+1【分析】利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.【解答】解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选:A.【点评】本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.3.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用指数函数的单调性,结合充分必要条件的定义,即可判断.【解答】解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1【分析】对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.【解答】解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选:C.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【分析】利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选:D.【点评】本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.32【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.【解答】解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.【点评】本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2【分析】根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.【解答】解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥【分析】由题意,知道,,根据已知三角形为等边三角形解之.【解答】解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,∴的方向应该为的方向.所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选:D.【点评】本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<0【分析】分别根据函数的定义域,函数零点以及f(0)的取值进行判断即可.【解答】解:函数在P处无意义,由图象看P在y轴右边,所以﹣c>0,得c<0,f(0)=,∴b>0,由f(x)=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a<0,综上a<0,b>0,c<0,故选:C.【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及f(0)的符号是解决本题的关键.10.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f (0)<f(2)D.f(2)<f(0)<f(﹣2)【分析】依题意可求ω=2,又当x=时,函数f(x)取得最小值,可解得φ,从而可求解析式f(x)=Asin(2x+),利用正弦函数的图象和性质及诱导公式即可比较大小.【解答】解:依题意得,函数f(x)的周期为π,∵ω>0,∴ω==2.又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,∴f(x)=Asin(2x+2kπ+)=Asin(2x+).∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(2)=Asin(4+)<0,f(0)=Asin=Asin>0,又∵>﹣4+2π>>,而f(x)=Asinx在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0).故选:A.【点评】本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是35(用数字填写答案)【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为5求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,T r+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是6.【分析】圆ρ=8sinθ化为ρ2=8ρsinθ,把代入可得直角坐标方程,直线θ=(ρ∈R)化为y=x.利用点到直线的距离公式可得圆心C(0,4)到直线的距离d,可得圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r.【解答】解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为4【分析】模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.【解答】解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的a,n 的值是解题的关键,属于基础题.14.(5分)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于2n﹣1.【分析】利用等比数列的性质,求出数列的首项以及公比,即可求解数列{a n}的前n项和.【解答】解:数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{a n}的前n项和为:=2n﹣1.故答案为:2n﹣1.【点评】本题考查等比数列的性质,数列{a n}的前n项和求法,基本知识的考查.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.【分析】对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.【解答】解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f(﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.【点评】本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.【分析】由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.【解答】解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分【点评】本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)【分析】(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(Ⅱ)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.【解答】解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:EX=200×+300×+400×=350.【点评】本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.18.(12分)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.【分析】(1)利用导数求切线方程求得切线直线并求得横坐标;(2)利用放缩法缩小式子的值从而达到所需要的式子成立.【解答】解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:T n=x12x32…x2n﹣12=,当n=1时,,2==>==,当n≥2时,因为x2n﹣1所以T n;,均有.综上所述,可得对任意的n∈N+【点评】本题主要考查切线方程的求法和放缩法的应用,属基础题型.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD 均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.【分析】(Ⅰ)通过四边形A1B1CD为平行四边形,可得B1C∥A1D,利用线面平行的判定定理即得结论;(Ⅱ)以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz,设边长为2,则所求值即为平面A1B1CD的一个法向量与平面A1EFD的一个法向量的夹角的余弦值的绝对值,计算即可.【解答】(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面B1CD1=EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos<,>==,∴二面角E﹣A1D﹣B1的余弦值为.【点评】本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.【分析】(I)由于点M在线段AB上,满足|BM|=2|MA|,即,可得.利用,可得.(II)由(I)可得直线AB的方程为:=1,利用中点坐标公式可得N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,可得b,解得即可.【解答】解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴椭圆E的方程为:.【点评】本题考查了椭圆的标准方程及其性质、线段的垂直平分线性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.【分析】(Ⅰ)设t=sinx,f(t)=t2﹣at+b(﹣1<t<1),讨论对称轴和区间的关系,即可判断极值的存在;(Ⅱ)结合不等式的性质求得最大值;(Ⅲ)由(Ⅱ)结合不等式的性质求得z=b﹣的最大值.【解答】解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a<2时,﹣1<t<,f′(t)<0,f(sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f()=b﹣;(Ⅱ)﹣≤x≤时,|f(sinx)﹣f0(sinx)|=|(a﹣a0)sinx+b﹣b0|≤|a﹣当(a﹣a0)(b﹣b0)≥0时,取x=,等号成立;当(a﹣a0)(b﹣b0)≤0时,取x=﹣,等号成立.由此可知,|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值为D=|a﹣a0|+|b ﹣b0|.(Ⅲ)D≤1即为|a|+|b|≤1,此时0≤a2≤1,﹣1≤b≤1,从而z=b﹣≤1取a=0,b=1,则|a|+|b|≤1,并且z=b﹣=1.由此可知,z=b﹣满足条件D≤1的最大值为1.【点评】本题考查函数的性质和运用,主要考查二次函数的单调性和极值、最值,考查分类讨论的思想方法和数形结合的思想,属于难题.。

2015年高考理科数学安徽卷及答案

2015年高考理科数学安徽卷及答案

绝密★启用前2015年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1至第3页,第Ⅱ卷第4至第6页。

全卷满分150分,考试时间120分钟。

考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无............效,在答题卷、草稿纸上答题无效................ 4. 考试结束,务必将试题卷和答题卡一并上交. 参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+标准差s =121()n x x x x n=++第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设i 是虚数单位,则复数2i1i-在复平面内所对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 下列函数中,既是偶函数又存在零点的是( )A. cos y x =B. sin y x =C. ln y x =D. 21y x =+3. 设:12p x <<,:21x q >,则p 是q 成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4. 下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )A. 2214yx -= B. 2214x y -=C. 2214y x -=D. 2214x y -=5. 已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是 ( )A. 若α,β垂直于同一平面,则α与β平行B. 若m ,n 平行于同一平面,则m 与n 平行C. 若α,β不平行,则在α内不存在与β平行的直线D. 若m ,n 不平行,则m 与n 不可能垂直于同一平面6. 若样本数据1x ,2x ,…,10x 的标准差为8,则数据121x -,221x -,…,1021x -的标准差为( )A. 8B. 15C. 16D. 327. 一个四面体的三视图如图所示,则该四面体的表面积是( )A. 1B. 2+C. 1+D. 8. ABC △是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是( )A. |b |=1B. a ⊥bC. a b =1D. (4a +b )BC ⊥9. 函数2()()ax bf x x c +=+的图象如图所示,则下列结论成立的是( )A. 0a >,0b >,0c <B. 0a <,0b >,0c >C. 0a <,0b >,0c <D. 0a <,0b <,0c <10. 已知函数()sin()f x A x ωϕ=+(A ,ω,ϕ均为正的常数)的最小正周期为π,当2π3x =时,函数()f x 取得最小值,则下列结论正确的是( )A. (2)(2)(0)f f f <-<B. (0)(2)(2)f f f <<-C. (2)(0)(2)f f f -<<D. (2)(0)(2)f f f <<-第Ⅱ卷(非选择题 共100分)姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.11. 371()x x+的展开式中5x 的系数是_________(用数字填写答案).12. 在极坐标系中,圆8sin ρθ=上的点到直线()3πθρ=∈R 距离的最大值是_________.13. 执行如图所示的程序框图(算法流程图),输出的n 为_________.14. 已知数列{}n a 是递增的等比数列,149a a +=,328a a =,则数列{}n a 的前n 项和等于_________.15. 设30x ax b ++=,其中a ,b 均为实数.下列条件中,使得该三次方程仅有一个实根的是_________(写出所有正确条件的编号). ①3a =-,3b =-; ②3a =-,2b =;③3a =-,2b >;④0a =,2b =;⑤1a =,2b =.三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)在ABC △中,3π4A =,=6AB,AC =,点D 在BC 边上,AD BD =,求AD 的长.17.(本小题满分12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).18.(本小题满分12分)设*n ∈N ,n x 是曲线221n y x +=+在点(1,2)处的切线与x 轴交点的横坐标. (Ⅰ)求数列{}n x 的通项公式;(Ⅱ)记2221321n n T x x x -=,证明14n T n≥.19.(本小题满分13分)如图,在多面体111A B D DCBA 中,四边形11AA B B ,11ADD A ,ABCD 均为正方形,E 为11B D 的中点,过1A ,D ,E 的平面交1CD 于点F .(Ⅰ)证明:1EF B C ∥;(Ⅱ)求二面角11E A D B --余弦值.20.(本小题满分13分)设椭圆E 的方程为222210x y a b a b +=>>(),点O 为坐标原点,点A 的坐标为(0)a ,,点B 的坐标为(0)b ,,点M 在线段AB 上,满足||2||BM MA =,直线OM. (Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为(0)b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.21.(本小题满分13分) 设函数2()f x x ax b =-+.(Ⅰ)讨论函数(sin )f x 在ππ22(-,)内的单调性并判断有无极值,有极值时求出极值; (Ⅱ)记2000()f x x a x b =-+,求函数0|(sin )(sin )|f x f x -在ππ22[-,]上的最大值D ;(Ⅲ)在(Ⅱ)中,取000a b ==,求24a zb =-满足条件1D ≤时的最小值.2015年普通高等学校招生全国统一考试(安徽卷)数学(理科)答案解析【解析】依题意,该几何体是地面为等腰直角的三棱锥,该四面体的直观图如下,1。

2015年安徽省高考数学试卷(理科)及答案

2015年安徽省高考数学试卷(理科)及答案

2015年安徽省高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=15.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.327.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<010.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f (0)<f(2)D.f(2)<f(0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD 均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.2015年安徽省高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先化简复数,再得出点的坐标,即可得出结论.【解答】解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+1【分析】利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.【解答】解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选A.3.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用指数函数的单调性,结合充分必要条件的定义,即可判断.【解答】解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选A.4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x 的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1【分析】对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.【解答】解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选C.5.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【分析】利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选D.6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.32【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.【解答】解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.7.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2【分析】根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.【解答】解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.8.(5分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥【分析】由题意,知道,,根据已知三角形为等边三角形解之.【解答】解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,∴的方向应该为的方向.所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.9.(5分)(2015•安徽)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<0【分析】分别根据函数的定义域,函数零点以及f(0)的取值进行判断即可.【解答】解:函数在P处无意义,由图象看P在y轴右边,所以﹣c>0,得c<0,f(0)=,∴b>0,由f(x)=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a<0,综上a<0,b>0,c<0,故选:C10.(5分)(2015•安徽)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f (0)<f(2)D.f(2)<f(0)<f(﹣2)【分析】依题意可求ω=2,又当x=时,函数f(x)取得最小值,可解得φ,从而可求解析式f(x)=Asin(2x+),利用正弦函数的图象和性质及诱导公式即可比较大小.【解答】解:依题意得,函数f(x)的周期为π,∵ω>0,∴ω==2.又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,∴f(x)=Asin(2x+2kπ+)=Asin(2x+).∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(2)=Asin(4+)<0,f(0)=Asin=Asin>0,又∵>﹣4+2π>>,而f(x)=Asinx在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0).故选:A.二.填空题(每小题5分,共25分)11.(5分)(2015•安徽)(x3+)7的展开式中的x5的系数是35(用数字填写答案)【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为5求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,T r+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是6.【分析】圆ρ=8sinθ化为ρ2=8ρsinθ,把代入可得直角坐标方程,直线θ=(ρ∈R)化为y=x.利用点到直线的距离公式可得圆心C(0,4)到直线的距离d,可得圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r.【解答】解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为4【分析】模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.【解答】解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.14.(5分)(2015•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于2n﹣1.【分析】利用等比数列的性质,求出数列的首项以及公比,即可求解数列{a n}的前n项和.【解答】解:数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{a n}的前n项和为:=2n﹣1.故答案为:2n﹣1.15.(5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.【分析】对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.【解答】解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f(﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.三.解答题(共6小题,75分)16.(12分)(2015•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.【分析】由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.【解答】解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)【分析】(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(Ⅱ)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.【解答】解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:X200300400PEX=200×+300×+400×=350.18.(12分)(2015•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.【分析】(1)利用导数求切线方程求得切线直线并求得横坐标;(2)利用放缩法缩小式子的值从而达到所需要的式子成立.【解答】解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:T n=x12x32…x2n﹣12=,当n=1时,,2==>==,当n≥2时,因为x2n﹣1所以T n,均有综上所述,可得对任意的n∈N+19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.【分析】(Ⅰ)通过四边形A1B1CD为平行四边形,可得B1C∥A1D,利用线面平行的判定定理即得结论;(Ⅱ)以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz,设边长为2,则所求值即为平面A1B1CD的一个法向量与平面A1EFD的一个法向量的夹角的余弦值的绝对值,计算即可.【解答】(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面B1CD1=EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos<,>==,∴二面角E﹣A1D﹣B1的余弦值为.20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.【分析】(I)由于点M在线段AB上,满足|BM|=2|MA|,即,可得.利用,可得.(II)由(I)可得直线AB的方程为:=1,利用中点坐标公式可得N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,可得b,解得即可.【解答】解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.【分析】(Ⅰ)设t=sinx,f(t)=t2﹣at+b(﹣1<t<1),讨论对称轴和区间的关系,即可判断极值的存在;(Ⅱ)结合不等式的性质求得最大值;(Ⅲ)由(Ⅱ)结合不等式的性质求得z=b﹣的最大值.【解答】解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a<2时,﹣1<t<,f′(t)<0,f(sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f()=b﹣;(Ⅱ)﹣≤x≤时,|f(sinx)﹣f0(sinx)|=|(a﹣a0)sinx+b﹣b0|≤|a﹣a0|+|b﹣b0|当(a﹣a0)(b﹣b0)≥0时,取x=,等号成立;当(a﹣a0)(b﹣b0)≤0时,取x=﹣,等号成立.由此可知,|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值为D=|a﹣a0|+|b ﹣b0|.(Ⅲ)D≤1即为|a|+|b|≤1,此时0≤a2≤1,﹣1≤b≤1,从而z=b﹣≤1取a=0,b=1,则|a|+|b|≤1,并且z=b﹣=1.由此可知,z=b﹣满足条件D≤1的最大值为1.。

2015年安徽省高考数学试卷(理科)解析

2015年安徽省高考数学试卷(理科)解析

2015年安徽省高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A .y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A .充分不必要条件B.必要不充分条件C .充分必要条件D.既不充分也不必要条件4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=15.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A .若α,β垂直于同一平面,则α与β平行B .若m,n平行于同一平面,则m 与n平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m,n不平行,则m与n不可能垂直于同一平面6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A .8 B.15 C.16 D.327.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A .1+B.2+C.1+2D.28.(5分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A .||=1 B.⊥C.•=1 D.(4+)⊥9.(5分)(2015•安徽)函数f(x)=的图象如图所示,则下列结论成立的是()A .a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<010.(5分)(2015•安徽)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A .f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f(2)D.f(2)<f(0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(2015•安徽)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)(2015•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.15.(5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)(2015•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)(2015•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.2015年安徽省高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限考点:复数的代数表示法及其几何意义.专题:计算题;数系的扩充和复数.分析:先化简复数,再得出点的坐标,即可得出结论.解答:解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.点评:本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A .y=cosx B.y=sinx C.y=lnx D.y=x2+1考点:函数的零点;函数奇偶性的判断.专题:函数的性质及应用.分析:利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.解答:解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选A.点评:本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.3.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A .充分不必要条件B.必要不充分条件C .充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:运用指数函数的单调性,结合充分必要条件的定义,即可判断.解答:解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选A.点评:本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=1考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.解答:解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选C.点评:本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A .若α,β垂直于同一平面,则α与β平行B .若m,n平行于同一平面,则m 与n平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m,n不平行,则m与n不可能垂直于同一平面考点:空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.解答:解:对于A,若α,β垂直于同一平面,则α与β不一定平行,如果墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选D.点评:本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A .8 B.15 C.16 D.32考点:极差、方差与标准差.专题:概率与统计.分析:根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.解答:解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.点评:本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A .1+B.2+C.1+2D.2考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.解答:解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.点评:本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A .||=1 B.⊥C.•=1 D.(4+)⊥。

2015年安徽省高考数学试卷(理科)解析

2015年安徽省高考数学试卷(理科)解析

2015年安徽省高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=15.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8B.15 C.16 D.327.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A . 1+B . 2+C . 1+2D . 28.(5分)(2015•安徽)△ABC 是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是( ) A . ||=1 B .⊥C .•=1D .(4+)⊥9.(5分)(2015•安徽)函数f (x )=的图象如图所示,则下列结论成立的是( )A . a >0,b >0,c <0B . a <0,b >0,c >0C . a <0,b >0,c <0D . a <0,b <0,c <0 10.(5分)(2015•安徽)已知函数f (x )=Asin (ωx+φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f (x )取得最小值,则下列结论正确的是( )A . f (2)<f (﹣2)<f (0)B . f (0)<f (2)<f (﹣2)C . f (﹣2)<f (0)<f (2)D . f (2)<f (0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(2015•安徽)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)(2015•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.15.(5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)(2015•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)(2015•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.2015年安徽省高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限考点:复数的代数表示法及其几何意义.专题:计算题;数系的扩充和复数.分析:先化简复数,再得出点的坐标,即可得出结论.解答:解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.点评:本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+1考点:函数的零点;函数奇偶性的判断.专题:函数的性质及应用.分析:利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.解答:解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选A.点评:本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.3.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:运用指数函数的单调性,结合充分必要条件的定义,即可判断.解答:解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选A.点评:本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=1考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.解答:解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选C.点评:本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面考点:空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.解答:解:对于A,若α,β垂直于同一平面,则α与β不一定平行,如果墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选D.点评:本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8B.15 C.16 D.32考点:极差、方差与标准差.专题:概率与统计.分析:根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.解答:解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.点评:本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.解答:解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.点评:本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1D.(4+)⊥考点:平面向量数量积的运算.专题:平面向量及应用.分析:由题意,知道,,根据已知三角形为等边三角形解之.解答:解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.点评:本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.9.(5分)(2015•安徽)函数f(x)=的图象如图所示,则下列结论成立的是()A . a >0,b >0,c <0B . a <0,b >0,c >0C . a <0,b >0,c <0D . a <0,b <0,c <0考点: 函数的图象. 专题: 函数的性质及应用. 分析: 分别根据函数的定义域,函数零点以及f (0)的取值进行判断即可. 解答:解:函数在P 处无意义,即﹣c >0,则c <0, f (0)=,∴b >0,由f (x )=0得ax+b=0,即x=﹣, 即函数的零点x=﹣>0,∴a <0,综上a <0,b >0,c <0, 故选:C 点评:本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及f (0)的符号是解决本题的关键. 10.(5分)(2015•安徽)已知函数f (x )=Asin (ωx+φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f (x )取得最小值,则下列结论正确的是( )A . f (2)<f (﹣2)<f (0)B . f (0)<f (2)<f (﹣2)C . f (﹣2)<f (0)<f (2)D . f (2)<f (0)<f(﹣2)考点: 三角函数的周期性及其求法. 专题: 三角函数的图像与性质. 分析:依题意可求ω=2,又当x=时,函数f (x )取得最小值,可解得φ,从而可求解析式f (x )=Asin (2x+),利用正弦函数的图象和性质及诱导公式即可比较大小.解答:解:依题意得,函数f (x )的周期为π, ∵ω>0,∴ω==2.(3分)又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,(5分)∴f(x)=Asin(2x+2kπ+)=Asin(2x+).(6分)∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(2)=Asin(4+)<0f(0)=Asin=Asin>0又∵>﹣4+2π>>,而f(x)=Asin(2x+)在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0)故选:A.点评:本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.二.填空题(每小题5分,共25分)11.(5分)(2015•安徽)(x3+)7的展开式中的x5的系数是35(用数字填写答案)考点:二项式定理的应用.专题:二项式定理.分析:根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为5求得r,再代入系数求出结果.解答:解:根据所给的二项式写出展开式的通项,T r+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.点评:本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是6.考点:简单曲线的极坐标方程.专题:坐标系和参数方程.分析:圆ρ=8sinθ化为ρ2=8ρsinθ,把代入可得直角坐标方程,直线θ=(ρ∈R)化为y=x.利用点到直线的距离公式可得圆心C(0,4)到直线的距离d,可得圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r.解答:解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.点评:本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为4考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.解答:解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的a,n的值是解题的关键,属于基础题.14.(5分)(2015•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于2n﹣1.考点:等比数列的性质;等比数列的前n项和.专题:等差数列与等比数列.分析:利用等比数列的性质,求出数列的首项以及公比,即可求解数列{a n}的前n项和.解答:解:数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{a n}的前n项和为:=2n﹣1.故答案为:2n﹣1.点评:本题考查等比数列的性质,数列{a n}的前n项和求法,基本知识的考查.15.(5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.解答:解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f(﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.点评:本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三.解答题(共6小题,75分)16.(12分)(2015•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.考点:正弦定理;三角形中的几何计算.专题:解三角形.分析:由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D 作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.解答:解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分点评:本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查.17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(Ⅱ)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.解答:解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:X 200 300 400PEX=200×+300×+400×=350.点评:本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.18.(12分)(2015•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.考点:利用导数研究曲线上某点切线方程;数列的求和.专题:导数的概念及应用;点列、递归数列与数学归纳法.分析:(1)利用导数求切线方程求得切线直线并求得横坐标;(2)利用放缩法缩小式子的值从而达到所需要的式子成立.解答:解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:T n=x12x32…x2n﹣12=,当n=1时,,当n≥2时,因为=所以T n综上所述,可得对任意的n∈N+,均有点评:本题主要考查切线方程的求法和放缩法的应用,属基础题型.19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.考点:二面角的平面角及求法;直线与平面平行的性质.专题:空间位置关系与距离;空间角.分析:(Ⅰ)通过四边形A1B1CD为平行四边形,可得B1C∥A1D,利用线面平行的判定定理即得结论;(Ⅱ)以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz,设边长为2,则所求值即为平面A1B1CD的一个法向量与平面A1EFD 的一个法向量的夹角的余弦值的绝对值,计算即可.解答:(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵A1D⊥平面A1B1CD,∴=(0,1,1)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos(,)==,∴二面角E﹣AD﹣B1的余弦值为.点评:本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.考点:直线与圆锥曲线的综合问题;椭圆的简单性质.专题:圆锥曲线中的最值与范围问题.分析:(I)由于点M在线段AB上,满足|BM|=2|MA|,即,可得.利用,可得.(II)由(I)可得直线AB的方程为:=1,利用中点坐标公式可得N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,可得b,解得即可.解答:解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.点评:本题考查了椭圆的标准方程及其性质、线段的垂直平分线性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.考点:二次函数的性质.专题:函数的性质及应用;导数的综合应用.分析:(Ⅰ)设t=sinx,f(t)=t2﹣at+b(﹣1<t<1),讨论对称轴和区间的关系,即可判断极值的存在;(Ⅱ)设t=sinx,t∈[﹣1,1],求得|f(t)﹣f0(t)|,设g(t)=|﹣t(a﹣a0)+(b﹣b0)|,讨论g(1),g(﹣1)取得最大值;(Ⅲ)由(Ⅱ)讨论ab≥0时,ab≤0时,D的取值,求得点(a,b)所在区域,求得s=b﹣的最大值.解答:解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a<2时,﹣1<t<,f′(t)<0,f(sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f()=b﹣;(Ⅱ)设t=sinx,t∈[﹣1,1],|f(t)﹣f0(t)|=|﹣t(a﹣a0)+(b﹣b0)|,易知t=±1时,取得最大值,设g(t)=|﹣t(a﹣a0)+(b﹣b0)|,而g(1)=|﹣(a﹣a0)+(b﹣b0)|,g(﹣1)=|(a﹣a0)+(b﹣b0)|,则当(a﹣a0)(b﹣b0)≥0时,D=g(t)max=g(﹣1)=|(a﹣a0)+(b﹣b0)|;当(a﹣a0)(b﹣b0)≤0时,D=g(t)max=g(1)=|﹣(a﹣a0)+(b﹣b0)|.(Ⅲ)由(Ⅱ)得ab≥0时,D=|a+b|,当ab≤0时,D=|a﹣b|.即有或,点(a,b)在如图所示的区域内,则有s=b﹣,当b取最大值1时,取最小值0时,s max=1.点评:本题考查函数的性质和运用,主要考查二次函数的单调性和极值、最值,考查分类讨论的思想方法和数形结合的思想,属于难题.参与本试卷答题和审题的老师有:刘长柏;changq;双曲线;maths;742048;w3239003;qiss;孙佑中;雪狼王;cst(排名不分先后)菁优网2015年6月13日。

2015年安徽省高考数学试卷(理科)解析

2015年安徽省高考数学试卷(理科)解析

2015年安徽省高考数学试卷(理科)一。

选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的) 1.(5分)(2015•安徽)设i 是虚数单位,则复数在复平面内对应的点位于( ) A . 第一象限 B . 第二象限 C . 第三象限 D . 第四象限 2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是( ) A . y =cosx B . y =sinx C . y =lnx D . y =x 2+1 3.(5分)(2015•安徽)设p:1<x <2,q :2x >1,则p 是q 成立的( ) A . 充分不必要条件 B . 必要不充分条件 C . 充分必要条件 D . 既不充分也不必要条件 4.(5分)(2015•安徽)下列双曲线中,焦点在y 轴上且渐近线方程为y=±2x 的是( ) A . x 2﹣=1 B . ﹣y 2=1 C . ﹣x 2=1 D . y 2﹣=1 5.(5分)(2015•安徽)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) A . 若α,β垂直于同一平面,则α与β平行 B . 若m,n 平行于同一平面,则m 与n 平行 C . 若α,β不平行,则在α内不存在与β平行的直线 D . 若m ,n 不平行,则m 与n 不可能垂直于同一平面 6.(5分)(2015•安徽)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1﹣1,2x 2﹣1,…,2x 10﹣1的标准差为( ) A . 8 B . 15 C . 16 D . 32 7.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是( ) A . 1+ B . 2+ C . 1+2 D . 2 8.(5分)(2015•安徽)△ABC 是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是( )A . ||=1B . ⊥C . •=1D . (4+)⊥9.(5分)(2015•安徽)函数f (x)=的图象如图所示,则下列结论成立的是( ) A . a >0,b >0,c <0 B . a <0,b >0,c >0 C . a <0,b >0,c <0 D . a <0,b <0,c <0 10.(5分)(2015•安徽)已知函数f (x )=Asin(ωx+φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f (x )取得最小值,则下列结论正确的是( ) A . f (2)<f (﹣2)<f(0) B . f (0)<f (2)<f(﹣2) C . f (﹣2)<f (0)<f(2) D . f (2)<f (0)<f (﹣2) 二。

2015安徽高考数学理科真题及解析

2015安徽高考数学理科真题及解析

2015年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间120分钟。

第Ⅰ卷(选择题 共50分)一、选择题:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的。

(1)设i 是虚数单位,则复数21ii-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限(C )第三象限(D )第四象限 【答案】B 【解析】由22(1)2211(1)(1)2i i i i i i i i +-+===-+--+ 其对应点的坐标为(1,1)-在第二象限,故选B.(2)下列函数中,既是偶函数又存在零点的是( )(A )y cos x = (B )y sin x = (C )x y ln = (D )21y x =+ 【答案】A【解析】选项中A,D 都是偶函数,排除B,C. 而D 选项与x 轴没有交点,故选A.(3)设21:<<x p ,12:,>x q 则p 是q 成立的( )(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件 【答案】A【解析】由q 解得0x >,可知由p 能推出q ,但q 不能推出p ,故p 是q 成立的充分不必要条件, 故选A.(4)下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -= 【答案】C【解析】选项A 和B 中的双曲线的交点都在x 上,可排除。

D 选项中的双曲线的1,2,a b == 其 渐近线方程为12y x =±,故也可排除。

因此答案选C. (5)已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) (A )若α,β垂直于同一平面,则α与β平行(B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行...,则在α内不存在...与β平行的直线 (D )若m ,n 不平行...,则m 与n 不可能...垂直于同一平面 【答案】D【解析】选项A 中,αβ垂直于同一平面,,αβ关系可能相交,故排除。

2015年高考安徽省理科数学真题(带解析)

2015年高考安徽省理科数学真题(带解析)

2015年高考安徽省理科数学真题(带解析)满分:班级:_________ 姓名:_________ 考号:_________ 一、单选题(共10小题)1.设i是虚数单位,则复数在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.下列函数中,既是偶函数又存在零点的是()A.B .C.D.3.设,则是成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.下列双曲线中,焦点在轴上且渐近线方程为的是()A.B.C.D.5.已知是两条不同直线,是两个不同平面,则下列命题正确的是()A.若垂直于同一平面,则与平行B.若平行于同一平面,则与平行C.若不平行,则在内不存在与平行的直线D.若不平行,则与不可能垂直于同一平面6.若样本数据的标准差为8,则数据的标准差为()A.8B.15C.16D.327.一个四面体的三视图如图所示,则该四面体的表面积是()B.A.C.D.8.是边长为2的等边三角形,已知向量,满足,则下列结论正确的是()A.B.C.D.9.函数=的图像如图所示,则下列结论成立的是()B.A.C.D.10.已知函数=A(A,,均为正的常数)的最小正周期为,当时,函数取得最小值,则下列结论正确的是()A.B.C.D.二、填空题(共5小题)11.的展开式中的系数是________.(用数字填写答案)。

12.在极坐标系中,圆上的点到直线距离的最大值是_________。

13.执行如图所示的程序框图(算法流程图),输出的为__________。

14.已知数列是递增的等比数列,则数列的前n项和等于__________。

15.设,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是_________。

(写出所有正确条件的编号)①②③④⑤三、解答题(共6小题)16.在中,,AB=6,AC=,点D在BC边上,AD=BD,求AD的长。

17.已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束。

2015年安徽高考理科数学真题及答案

2015年安徽高考理科数学真题及答案

2015年安徽高考理科数学真题及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1. 答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2. 答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3. 答第II 卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在答题卷、草稿纸上答题无效...........................。

4. 考试结束,务必将试卷和答题卡一并上交。

参考公式:第Ⅰ卷(选择题 共50分)一、选择题:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的。

(1)设i 是虚数单位,则复数21i i-在复平面内所对应的点位于 (A )第一象限 (B )第二象限(C )第三象限(D )第四象限(2)下列函数中,既是偶函数又存在零点的是(A )y cos x = (B )y sin x = (C )y n l x = (D )21y x =+(3)设 ,则p 是q 成立的(A )充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件4、下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( ) (A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -=5、已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )(A )若α,β垂直于同一平面,则α与β平行(B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线(D )若m ,n 不平行,则m 与n 不可能垂直于同一平面6、若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为( )(A )8 (B )15 (C )16 (D )327、一个四面体的三视图如图所示,则该四面体的表面积是( )(A )13+ (B )23+(C )122+ (D )228、C ∆AB 是边长为2的等边三角形,已知向量a r ,b r 满足2a AB =u u u r r ,C 2a b A =+u u u r r r ,则下列结论正确的是( )(A )1b =r (B )a b ⊥r r (C )1a b ⋅=r r (D )()4C a b -⊥B u u u r r r9、函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c >(C )0a <,0b >,0c < (D )0a <,0b <,0c <10、已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( )(A )()()()220f f f <-< (B )()()()022f f f <<-(C )()()()202f f f -<< (D )()()()202f f f <<-第二卷二.填空题11.371()x x +的展开式中3x 的系数是 (用数字填写答案)12.在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是13.执行如图所示的程序框图(算法流程图),输出的a 为14.已知数列{}n a 是递增的等比数列,24239,8a a a a +==,则数列{}n a 的前n 项和等于15. 设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 (写出所有正确条件的编号) (1)3,3a b =-=-;(2)3,2a b =-=;(3)3,2a b =->;(4)0,2a b ==;(5)1,2a b ==.三.解答题16.在ABC ∆中,,6,324A AB AC π===,点D 在BC 边上,AD BD =,求AD 的长。

2015高考真题——数学理(安徽卷)Word版含解析

2015高考真题——数学理(安徽卷)Word版含解析

本试卷分第I卷(选择题)和第II卷(非选择题)两部分,第I卷第1至第2页,第II 卷第3至第4页.全卷满分150分,考试时间120分钟.
考生注意事项:
1.答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.
2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.
3.答第II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在答题卷、草稿纸上答题无效.
4.考试结束,务必将试卷和答题卡一并上交.
参考公式:
如果事件与互斥,那么.
标准差,其中.
第Ⅰ卷(选择题共50分)
一、选择题:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.
(1)设i是虚数单位,则复数在复平面内所对应的点位于()
(A)第一象限(B)第二象限(C)第三象限(D)第四象限
【答案】B
【解析】
试题分析:由题意,其对应的点坐标为,位于第二象限,故选B.
考点:1.复数的运算;2.复数的几何意义.。

2015年安徽省高考数学试题及答案(理科)【解析版】

2015年安徽省高考数学试题及答案(理科)【解析版】

2015年安徽省高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A .y=cosx B.y=sinx C.y=lnx D.y=x2+1【答案】A【解析】对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;3.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=1【答案】C【解析】由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.5.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【答案】D【解析】对于A,若α,β垂直于同一平面,则α与β不一定平行,如果墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A .8 B.15 C.16 D.32【答案】C【解析】∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,7.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A .1+B.2+C.1+2D.2【答案】B【解析】根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.8.(5分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A .||=1 B.⊥C.•=1D.(4+)⊥【答案】D【解析】因为已知三角形ABC的等边三角形,,满足=2,=2+,又,所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;9.(5分)(2015•安徽)函数f(x)=的图象如图所示,则下列结论成立的是()A .a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<0【答案】C【解析】函数在P处无意义,由图象看P在y轴右边,所以﹣c>0,得c<0,f(0)=,∴b>0,由f(x)=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a<0,综上a<0,b>0,c<0,10.(5分)(2015•安徽)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A .f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f(2)D.f(2)<f(0)<f(﹣2)【答案】A【解析】依题意得,函数f(x)的周期为π,∵ω>0,∴ω==2.(3分)又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,(5分)∴f(x)=Asin(2x+2kπ+)=Asin(2x+).(6分)∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(2)=Asin(4+)<0f(0)=Asin=Asin>0又∵>﹣4+2π>>,而f(x)=Asin(2x+)在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0)二.填空题(每小题5分,共25分)11.(5分)(2015•安徽)(x3+)7的展开式中的x5的系数是35(用数字填写答案)【答案】35【解析】根据所给的二项式写出展开式的通项,T r+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.【答案】6【解析】圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为【答案】4【解析】模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.14.(5分)(2015•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.【答案】2n﹣1.【解析】数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{a n}的前n项和为:=2n﹣1.15.(5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.【答案】①③④⑤【解析】设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f(﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤三.解答题(共6小题,75分)16.(12分)(2015•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.【解析】∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)【解析】(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:X 200 300 400PEX=200×+300×+400×=350.18.(12分)(2015•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.【解析】(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:T n=x12x32…x2n﹣12=,当n=1时,,当n≥2时,因为x2n﹣12==>==,所以T n综上所述,可得对任意的n∈N+,均有19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面B1CD1=EF,∴EF∥B1C;(Ⅱ)【解析】以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos<,>==,∴二面角E﹣A1D﹣B1的余弦值为.20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.【解析】(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.【解析】(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a<2时,﹣1<t<,f′(t)<0,f(sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f()=b﹣;(Ⅱ)﹣≤x≤时,|f(sinx)﹣f0(sinx)|=|(a﹣a0)sinx+b﹣b0|≤|a﹣a0|+|b﹣b0|当(a﹣a0)(b﹣b0)≥0时,取x=,等号成立;当(a﹣a0)(b﹣b0)≤0时,取x=﹣,等号成立.由此可知,|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值为D=|a﹣a0|+|b﹣b0|.(Ⅲ)D≤1即为|a|+|b|≤1,此时0≤a2≤1,﹣1≤b≤1,从而z=b﹣≤1取a=0,b=1,则|a|+|b|≤1,并且z=b﹣=1.由此可知,z=b﹣满足条件D≤1的最大值为1.2015年安徽省高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=15.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8B.15 C.16 D.327.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)(2015•安徽)△ABC 是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是( ) A . ||=1B . ⊥C . •=1D . (4+)⊥9.(5分)(2015•安徽)函数f (x )=的图象如图所示,则下列结论成立的是( )A . a >0,b >0,c <0B . a <0,b >0,c >0C . a <0,b >0,c <0D . a <0,b <0,c<010.(5分)(2015•安徽)已知函数f (x )=Asin (ωx+φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f (x )取得最小值,则下列结论正确的是( ) A . f (2)<f (﹣2)<f (0) B . f (0)<f (2)<f (﹣2) C . f (﹣2)<f (0)<f (2) D . f (2)<f (0)<f (﹣2)二.填空题(每小题5分,共25分)11.(5分)(2015•安徽)(x 3+)7的展开式中的x 5的系数是 (用数字填写答案)12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sin θ上的点到直线θ=(ρ∈R )距离的最大值是 .13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n 为14.(5分)(2015•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.15.(5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)(2015•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)(2015•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.。

2015年安徽省高考数学试卷(理科)解析

2015年安徽省高考数学试卷(理科)解析

2015 年安徽省高考数学试卷(理科)一 .选择题(每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一个是正确的). 行,则在 α内不存在与 β平行的直线D 若 m , n 不平. 行,则 m 与 n不可能垂直于同一平面1.( 5 分)( 2015?安徽)设 i 是虚数单位, 6.( 5 分)( 2015?安徽)若样本数据 x 1,x 2,⋯, 则复数在复平面内对应的点位于x 10 的标准差为 8,则数据 2x 1﹣ 1,2x 2﹣ 1,⋯,2x 10﹣ 1 的标准差为()()A 8B 15C 16 DA 第一象限B 第二象限C 第三象.限D 第四象.限 .....7.( 5 分)( 2015?安徽)一个四面体的三视2.( 5 分)( 2015?安徽)下列函数中,既是 图如图所示, 则该四面体的表面积是 ()偶函数又存在零点的是()2A y=cosxB y=sinxC y=lnxD y=x +1 ... .3.( 5 分)( 2015?安徽)设 p : 1< x < 2,q :x> 1,则 p 是 q 成立的() 2A 充分不必要B 必要不充分. 条件 . 条件C 充分必要条D 既不充分也. 件 . 不必要条件4.( 5 分)( 2015?安徽)下列双曲线中,焦点在 y 轴上且渐近线方程为 y= ±2x 的是A1+ B 2+ C 1+2 D 2 ( ).. . .AB 2 CD 2 =1.2.﹣ y =1.﹣ x 2 . y ﹣x ﹣ =18.(5 =1分)(2015?安徽) △ ABC 是边长为 2的等边三角形, 已知向量, 满足=2 , 5.( 5 分)( 2015?安徽)已知 m ,n 是两条=2 + ,则下列结论正确的是()不同直线, α, β是两个不同平面,则下列命题正确的是()A ||=1B C ? =1D A 若 α,β垂直.⊥.( 4 +... 于同一平面,)⊥则 α与 β平行B 若 m , n 平行. 于同一平面,则 m 与 n 平行9(. 5 分)( 2015?安徽)函数 (f x )=的图象如图所示,则下列结论成立的是 ()A a > 0,b > 0,B a < 0,b > 0,. c < 0 . c > 010.( 5 分)( 2015?安徽)已知函数 f ( x )=Asin ( ωx+ φ)( A , ω,φ均为正的常数)C a < 0, b > 0,D a < 0, b < 0, . c <140.( 5 .分)( 2015?c 安<徽0)已知数列 {a n } 是递增的等比数列, a 1 +a 4=9 ,a 2a 3=8,则数列 {a n } 的前 n 项和等于 .3的最小正周期为 π,当 x=时,函数 f (x )15.( 5 分)( 2015?安徽)设 x +ax+b=0 ,其中 a , b 均为实数,下列条件中,使得该三取得最小值,则下列结论正确的是( ) 次方程仅有一个实根的是(写A f ( 2)< f (﹣B f ( 0)< f ( 2)C f (出﹣所2有)正<确f 条件D 的编f (号)2)<f (0).2)< f (0) . < f (﹣ 2) . ( 0)< f ( 2) . < f (﹣ 2)① a=﹣ 3,b=﹣ 3.② a=﹣ 3, b=2. ③ a=﹣ 3, b > 2. ④ a=0, b=2 . ⑤ a=1, b=2 . 二 .填空题(每小题 5 分,共 25 分)11.(5 分)( 2015?安徽)( x 3 + )7的展开三 .解答题(共 6 小题, 75 分)式中的 x 5的系数是16.( 12 分)( 2015?安徽)在 △ ABC 中,(用数字∠ A=, AB=6 ,AC=3,点 D 在BC填写答案)边上, AD=BD ,求 AD 的长.12.( 5 分)( 2015?安徽)在极坐标系中, 圆ρ=8sin θ上的点到直线θ= ( ρ∈R )距离的 17.( 12 分)( 2015?安徽)已知 2 件次品和3 件正品混放在一起,现需要通过检测将其最大值是.区分,每次随机一件产品,检测后不放回,直到检测出 2 件次品或者检测出 3 件正品时13.(5 分)( 2015?安徽) 执行如图所示的程 检测结束.序框图(算法流程图) ,输出的 n 为(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100 元,设 X 表示直到检测出 2 件次品或者检测出 3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望)18.( 12 分)( 2015?安徽)设n∈N *,x n 是曲线 y=x 2n+2在点( 1, 2)处的切线与 x +1轴交点的横坐标(Ⅰ)求数列 {x n} 的通项公式;222,证明: T n≥ .(Ⅱ)记 T n=x 1 x3⋯x2n﹣119.( 13 分)( 2015?安徽)如图所示,在多面体 A 1B 1D1DCBA 中,四边形 AA 1B 1B,ADD 1A 1, ABCD 均为正方形, E 为 B 1D1的中点,过 A 1,D ,E 的平面交 CD1于 F.(Ⅰ)证明: EF∥ B1C;(Ⅱ)求二面角E﹣ AD ﹣ B1的余弦值.(Ⅰ)讨论函数 f (sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记 f ( x)=x2﹣ a,求函数 |f(sinx )n0x+b0﹣ f 0( sinx) |在 [﹣,] 上的最大值 D 2(Ⅲ)在(Ⅱ)中,取 a n=b n=0,求 s=b﹣满足条件 D ≤1 时的最大值.20.( 13 分)( 2015?安徽)设椭圆 E 的方程为+ =1( a>b> 0),点 O 为坐标原点,点 A 的坐标为( a, 0),点 B 的坐标为( 0,b),点 M 在线段 AB 上,满足 |BM|=2|MA| ,直线 OM 的斜率为(Ⅰ)求 E 的离心率e;(Ⅱ)设点 C 的坐标为( 0,﹣ b),N 为线段 AC 的中点,点 N 关于直线AB 的对称点的纵坐标为,求 E 的方程.2 21.( 13 分)( 2015?安徽)设函数f( x)=x ﹣a x+b .A y=cosxB y=sinx..2015 年安徽省高考数学试C y=lnx D .考点:卷(理科)参考答案与试题解析专题:一.选择题(每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一个是正确的)分析:1.( 5 分)( 2015?安徽)设i 是虚数单位,则复数在复平面内对应的点位于()A第一象限B第二象限C第三象限...解答:考点:复数的代数表示法及其几何意义.专题:计算题;数系的扩充和复数.分析:先化简复数,再得出点的坐标,即可得出结论.解答:解:=i函数的零点;函数奇偶性的判断.函数的性质及应用.利用函数奇偶性的判断方法以及零点的判断方法对选项分D别第分四析象选限择..解:对于 A,定义域为 R,并且 cos(﹣x)=cosx,是偶函数并且有无数个零点;对于 B , sin(﹣ x) =﹣sinx,是奇函数,由无数个零点;对于 C,定义域为( 0,(1+i ) =﹣+∞),所以是1+i ,对应复非奇非偶的平面上的点函数,有一个为(﹣ 1,1),零点;在第二象限,对于 D ,定义故选: B.域为 R,为偶点评:本题考查复函数,都是没数的运算,考有零点;查复数的几故选 A.何意义,考查点评:本题考查了学生的计算函数的奇偶能力,比较基性和零点的础.判断.① 求函数的定义域;2.( 5 分)( 2015?安徽)下列函数中,既是② 如果定义偶函数又存在零点的是()域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣ x)与 f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与 x轴的交点以及与对应方程的解的个数是一致的.3.( 5 分)( 2015?安徽)设 p: 1< x< 2,q:x> 1,则 p 是 q 成立的()2A充分不必要B必要不充分.条件.条件C充分必要条D既不充分也.件.不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:运用指数函数的单调性,结合充分必要条件的定义,即可判断.解答:解:由 1< x<2 可得 2<x2 < 4,则由 p推得 q 成立,若 2x> 1 可得x>0,推不出1<x< 2.由充分必要条件的定义可得 p 是 q 成立的充分不必要条件.故选 A.点评:本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.( 5 分)( 2015?安徽)下列双曲线中,焦点在 y 轴上且渐近线方程为 y= ±2x 的是()A B2. x2﹣ =1.﹣ y =1考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.解答:解:由 A 可得焦点在 x 轴上,不符合条件;由B可得焦点在 x 轴上,不符合条件;由 C可得焦点在 y 轴上,渐近线方程为 y=±2x,符合条件;由D可得焦点在 y 轴上,渐近线方程C D.﹣ x2=1为 y=x,的性质定理和判定定理不符合条件.对选项分别故选 C.分析解答.点评:本题考查双解答:解:对于 A ,曲线的方程若α,β垂直和性质,主要于同一平面,考查双曲线则α与β不一的焦点和渐定平行,如果近线方程的墙角的三个求法,属于基平面;故 A 错础题.误;对于 B,若 m,5.( 5 分)( 2015?安徽)已知 m,n 是两条n 平行于同一不同直线,α,β是两个不同平面,则下列平面,则 m 与命题正确的是()n 平行.相交A若α,β垂直或者异面;故.于同一平面, B 错误;则α与β平行对于 C,若α,B若 m, n 平行β不平行,则.于同一平面,在α内存在无则 m 与 n 平行数条与β平行C若α,β不平的直线;故 C .行,则在α内错误;不存在与β平对于 D,若 m,行的直线n 不平行,则D若 m, n 不平m 与 n 不可能.行,则 m 与 n垂直于同一不可能垂直平面;假设两于同一平面条直线同时垂直同一个考点:空间中直线平面,则这两与平面之间条在平行;故的位置关系; D 正确;空间中直线故选 D.与直线之间点评:本题考查了的位置关系;空间线面关平面与平面系的判断;用之间的位置到了面面垂关系.直、线面平行专题:空间位置关的性质定理系与距离.和判定定理.分析:利用面面垂直、线面平行6.(5 分)( 2015?安徽)若样本数据x1,x2,⋯,7.( 5 分)( 2015?安徽)一个四面体的三视x10的标准差为8,则数据 2x1﹣1,2x2﹣ 1,⋯,图如图所示,则该四面体的表面积是(2x10﹣ 1 的标准差为()A 8B15C16 D 32....考点:极差、方差与标准差.专题:概率与统计.分析:根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的A1+ B 2+方差关系进..行求解即可.解答:解:∵样本数考点:由三视图求据 x1,x2,⋯,面积、体积.x10的标准差为 8,专题:计算题;空间∴=8,即位置关系与DX=64 ,距离.数据 2x1﹣ 1,分析:根据几何体2x2﹣ 1,⋯,的三视图,得2x10﹣1 的方出该几何体差为 D (2X是底面为等﹣1)腰直角三角=4DX=4 ×64,形的三棱锥,则对应的标结合题意画准差为出图形,利用图中数据求出它的表面==1积.6,解答:解:根据几何故选: C.体的三视图,点评:本题主要考得;查方差和标该几何体是准差的计算,底面为等腰根据条件先直角三角形求出对应的的三棱锥,如方差是解决图所示;本题的关键.∴该几何体的表面积为)C 1+2D .S 表面积=S △ PAC +2S △ 分析:PAB +S △ ABC= ×2×1+2 ××+解答:×2×1=2+ .故选: B .点评: 本题考查了 空间几何体 的三视图的 应用问题, 解 题的关键是 由三视图得 出几何体的 结构特征, 是 基础题目.8.( 5 分)( 2015?安徽) △ ABC 是边长为 2的等边三角形, 已知向量, 满足 =2 ,=2 + ,则下列结论正确的是( )A| |=1B C ? =1.⊥ ..考点: 平面向量数量积的运算.专题:平面向量及应用.由题意, 知道,,根据已知三角形 为等边三角 形解之. 解:因为已知 三角形 ABC的等边三角形, , 满足=2 ,=2 + ,又,所以,,所以=2 ,=1×2×cos120°=﹣ 1,4=4×1×2×cos120°=﹣4, =4,所D( 4 + ). 以⊥ =0,即(4)=0,即=0,所以;故选 D.点评:本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.9(. 5 分)( 2015?安徽)函数(f x)=的图象如图所示,则下列结论成立的是()A a> 0,b> 0,B a< 0,b> 0,.c< 0.c> 0考点:函数的图象.专题:函数的性质及应用.分析:分别根据函数的定义域,函数零点以及 f( 0)的取值进行判断即可.解答:解:函数在P处无意义,即﹣c> 0,则 c<0,f( 0)=,∴ b>0,由f( x)=0得ax+b=0 ,即x= ﹣,即函数的零点 x=﹣>0,∴ a< 0,综上 a< 0, b> 0, c< 0,故选: C点评:本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及 f( 0)的符号是解决本题的关键.C a<100.,(b5>分0),(2015?Da<安徽0,)b已<知0,函数 f (x). c<=Asin0 (ωx+φ).( Ac,<ω0,φ均为正的常数)的最小正周期为π,当 x=时,函数 f( x)取得最小值,则下列结论正确的是()Af( 2)<f(﹣B f( 0)< f(2) C f (﹣ 2)< f D. 2)< f( 0).< f(﹣ 2).( 0)< f ( 2)考点:三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:依题意可求ω=2,又当x=时,函数 f( x)取得最小值,可解得φ,从而可求解析式f(x) =Asin(2x+),利用正弦函数的图象和性质及诱导公式即可比较大小.解答:解:依题意得,函数(f x)的周期为π,∵ω> 0,4+ ) =Asin (﹣4+2π)> 0.f( 2) =Asin (4+ )<0f( 0)=Asin=Asi n> 0又∵>﹣4+2 π>>,而∴ω==2 .f( x) =Asin (3 分)( 2x+)在又∵当区间(,x=时,函数 f( x)取得)是单调最小值,递减的,∴2×+φ=∴ f( 2)< f(﹣ 2)< f2kπ+,( 0)故选: A.k∈Z ,可解得:点评:本题主要考φ=2kπ+,查了三角函数的周期性k∈Z ,( 5 分)及其求法,三∴f( x)=Asin角函数的图(2x+2k π+象与性质,用) =Asin诱导公式将函数值转化(2x+).到一个单调区间是比较(6 分)大小的关键,∴f (﹣ 2)属于中档题.=Asin (﹣二 .填空题(每小题 5 分,共 25 分)11.(5 分)( 2015?安徽)( x 3+ ) 7 的展开式中的 x 5的系数是 35 (用数字填写答案)考点: 二项式定理的应用.专题: 二项式定理.分析:根据所给的 二项式, 利用 二项展开式 的通项公式 写出第 r+1 项,整理成最 简形式,令 x 的指数为 5 求 得 r ,再代入 系数求出结 果.解答: 解:根据所给 的二项式写 出展开式的 通项, T r+1 == ;要求展开式中含 x 5的项 的系数,∴21﹣ 4r=5 , ∴r=4,可得:=35 . 故答案为: 35.点评:本题考查二 项式定理的 应用,本题解 题的关键是项展开式的 通项,在这种 题目中通项 是解决二项 展开式的特 定项问题的 工具.12.( 5 分)( 2015?安徽) 在极坐标系中, 圆ρ=8sin θ上的点到直线 θ= ( ρ∈R )距离的最大值是6 .考点 :简单曲线的极坐标方程. 专题 :坐标系和参数方程.分析:圆 ρ=8sin θ化2为 ρ=8ρsin θ,把代入可得直 角坐标方程,直线 θ=( ρ∈R )化为y= x .利用点到直线的 距离公式可 得圆心 C ( 0, 4)到直线的 距离 d ,可得 圆 ρ=8sin θ上的点到直线θ=( ρ∈R )距离的最大值 =d+r .解答:解:圆ρ=8sin θ化为 2ρ=8ρsin θ,∴ x 2+y 2=8y ,2化为 x +( y2﹣4)=16. 直线 θ=(ρ∈R )化为y= x .∴圆心 C ( 0, 4)到直线的 距离 d==2,∴圆 ρ=8sin θ上的点到直 考点 : 程序框图.线 θ=专题 :图表型; 算法和程序框图.(ρ∈R )距离 分析: 模拟执行程 的最大值序框图, 依次=d+r=2+4=6 . 写出每次循故答案为: 6.环得到的 a ,n点评:本题考查了 的值,当极坐标化为a= 时不满直角坐标方程、点到直线 足条件 |a ﹣的距离公式, 1.414|=0.0026考查了推理 7> 0.005,退 能力与计算 出循环, 输出能力,属于中n 的值为 4. 档题.解答:解:模拟执行程序框图, 可13.(5 分)( 2015?安徽) 执行如图所示的程 得序框图(算法流程图) ,输出的 n 为4a=1, n=1 满足条件 |a ﹣ 1.414|>0.005, a= ,n=2满足条件 |a ﹣ 1.414|>0.005, a= ,n=3满足条件 |a﹣1.414|>0.005,a=,n=4不满足条件 |a﹣1.414|=0.00267>0.005,退出循环,输出n 的值为 4.故答案为: 4.点评:本题主要考查了循环结构的程序框图,正确写出每次循环得到的 a, n 的值是解题的关键,属于基础题.14.( 5 分)(2015?安徽)已知数列 {a n} 是递增的等比数列, a1+a4=9 ,a2a3=8,则数列 {a n}的前 n 项和等于2n﹣1 .考点:等比数列的性质;等比数列的前 n 项和.专题:等差数列与等比数列.分析:利用等比数列的性质,求出数列的首项以及公比,即可求解数列{a n} 的前 n项和.解答:解:数列 {a n}是递增的等比数列,a1+a4=9,a2a3=8 ,可得 a1a4=8,解得 a1=1,a4=8,∴8=1×q3,q=2,数列 {a n} 的前n项和为:n=2 ﹣1.故答案为: 2n﹣ 1.点评:本题考查等比数列的性质,数列 {a n}的前 n 项和求法,基本知识的考查.315.( 5 分)( 2015?安徽)设 x +ax+b=0 ,其中 a, b 均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣ 3,b=﹣ 3.② a=﹣ 3, b=2.③ a=﹣3, b> 2.④ a=0, b=2 .⑤ a=1, b=2 .考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.解答:解:设 f ( x)3=x +ax+b, f'( x)=3x2+a,① a=﹣ 3,b=﹣ 3 时,令 f'(x ) =3x 2﹣ 3=0,解得 x= ±1,x=1 时 f ( 1)=﹣ 5,(f ﹣ 1)=﹣ 1;并且 x > 1 或 者 x <﹣ 1 时 f'(x )> 0, 所以 f ( x )在(﹣ ∞,﹣ 1)和( 1, +∞) 都是增函数, 所以函数图 象与 x 轴只有一个交点, 故3x +ax+b=0 仅 有一个实根; 如图② a=﹣ 3, b=2 时,令 f'( x ) =3x 2﹣ 3=0,解得 x= ±1,x=1 时 f ( 1)=0, f (﹣ 1) =4;如图③ a=﹣ 3, b> 2 时,函数f( x ) =x 3﹣3x+b ,f (1) =﹣ 2+b > 0,函数图象形状如图 ② ,所以方程3x +ax+b=0 只有一个根;④ a=0,b=2时,函数 (f x )3=x +2,f'( x ) 2=3x ≥0 恒成立,故原函数在 R 上是增函数;故方程方程3x +ax+b=0 只有一个根;⑤ a=1,b=2时,函数 (f x )3=x +x+2 , f'( x )=3x 2+1> 0 恒成立,故原函数在 R上是增函数;故方程方程 3x +ax+b=0 只有一个根;综上满足使 得该三次方 程仅有一个 实根的是①③④⑤.故答案为:①③④⑤.点评:本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三 .解答题(共 6 小题, 75 分)16.( 12 分)( 2015?安徽)在△ABC 中,∠A=,AB=6,AC=3,点D在BC 边上, AD=BD ,求 AD 的长.考点:正弦定理;三角形中的几何计算.专题:解三角形.分析:由已知及余弦定理可解得BC 的值,由正弦定理可求得 sinB ,从而可求cosB,过点 D作 AB 的垂线DE,垂足为E,由 AD=BD得:cos∠DAE=cosB,即可求得AD 的长.解答:解:∵∠A=,C2﹣2AB ?ACcos ∠BAC=90 .∴ BC=3⋯4 分∵在△ABC 中,由正弦定理可得:,∴sinB=,∴cosB=⋯8 分∵过点 D作AB 的垂线DE,垂足为E,由 AD=BD 得:cos∠ DAE=c osB,∴Rt△ADE 中,AD===⋯12分AB=6 ,点评:本题主要考AC=3,查了正弦定∴在△ ABC理,余弦定理中,由余弦定在解三角形理可得:中的应用,属22于基本知识BC =AB +A的考查.17.( 12 分)( 2015?安徽)已知 2 件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出 2 件次品或者检测出 3 件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用 100 元,设X 表示直到检测出 2 件次品或者检测出 3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望)考点:离散型随机变量的期望与方差;离散型随机变量及其分布列.专题:概率与统计.分析:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件 A ,利用古典概型的概率求解即可.(Ⅱ) X 的可能取值为:200, 300,==.(Ⅱ) X 的可能取值为:200,300,400 P(X=200 )== .P(X=300 )==.P(X=400 )=1﹣ P(X=200 )﹣P(X=300 )=.X的分布列为:XPEX=200 ×+300×+400400.求出概× =350.率,得到分布列,然后求解点评:本题考查离期望即可.散型随机变解答:解:(Ⅰ)记量的分布列“第一次检测以及期望的出的是次品求法,考查计且第二次检算能力.测出的是正品”为事件 A ,则 P(A)18.( 12 分)( 2015?安徽)设n ∈N *,x n 是曲线 y=x 2n+2在点( 1, 2)处的切线与 x+1轴交点的横坐标 ,(Ⅰ)求数列 {x n } 的通项公式;( 2)证明: (Ⅱ)记 T n =x 1 2 2 2由题设和 ( 1)x 3⋯x 2n ﹣ 1 ,证明: T n ≥ .中的计算结 果可知:考点:利用导数研究曲线上某点切线方程;数列的求和.专题:导数的概念及应用;点列、递归数列与数学归纳法.分析:(1)利用导数求切线方程求得切线直线并求得横坐标;(2)利用放缩法缩小式子的值从而达到所需要的式子成立.解答:解:( 1) y'=(x 2n+2+1 )'=(2n+2)x 2n+1,曲线y=x2n+2+1 在点( 1,2)处的切线斜率 为 2n+2 , 从而切线方 程为 y ﹣ 2= (2n+2)( x ﹣ 1)令 y=0 ,解得 切线与 x 轴的 交点的横坐标为2 2T n =x 1 x 3 ⋯x 2n ﹣21 =,当 n=1 时,,当 n ≥2 时,因为=所以T n综上所述, 可 得对任意的 n ∈N +,均有点评: 本题主要考 查切线方程 的求法和放 缩法的应用, 属基础题型.19.( 13 分)( 2015?安徽)如图所示,在多面体 A 1B 1D 1DCBA 中,四边形 AA 1B 1B , ADD 1A 1,ABCD 均为正方形, E 为 B 1D 1 的中点,过 A 1, D , E 的平面交 CD 1 于 F .(Ⅰ)证明: EF ∥ B 1C ;(Ⅱ)求二面角E﹣ AD ﹣ B1的余弦值.计算即可.解答:(Ⅰ)证明:∵ B1C=A 1D且 A 1B1=CD ,∴四边形A1B 1CD 为平行四边形,∴ B1C∥A 1D,又∵ B1C? 平面 A1EFD,考点:二面角的平∴ B1C∥平面面角及求法;A1EFD ,直线与平面又∵平面平行的性质.A1EFD ∩平面EF,专题:空间位置关∴ EF∥ B1C;系与距离;空(Ⅱ)解:以间角. A 为坐标原分析:(Ⅰ)通过四点,以 AB 、边形 A 1B1CD AD、AA 1所为平行四边在直线分别形,可得为 x、y、z 轴B1C∥ A 1D,建立空间直利用线面平角坐标系 A行的判定定﹣ xyz 如图,理即得结论;设边长为 2,(Ⅱ)以 A 为∵A1D⊥平面坐标原点,以A1B 1CD ,AB 、AD 、AA 1∴=( 0,所在直线分别为 x、 y、 z1,1)为平面轴建立空间A1B 1CD 的一直角坐标系个法向量,A ﹣ xyz,设边设平面长为 2,则所A1EFD 的一求值即为平个法向量为面A1B1CD 的一个法向量=( x,y,z),与平面又∵=A EFD 的一1个法向量的( 0,2,﹣ 2),夹角的余弦=( 1,1,值的绝对值,0),∴,,取 y=1 ,得=(﹣ 1,1,1),∴cos(,)==,∴二面角 E﹣AD﹣B1的余弦值为.点评:本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.20.( 13 分)( 2015?安徽)设椭圆 E 的方程为+ =1( a> b> 0),点 O 为坐标原点,点 A 的坐标为( a,0),点 B 的坐标为( 0,b),点 M 在线段 AB 上,满足 |BM|=2|MA| ,直线 OM 的斜率为(Ⅰ)求 E 的离心率e;(Ⅱ)设点 C 的坐标为( 0,﹣ b), N 为线段 AC 的中点,点 N 关于直线 AB 的对称点的纵坐标为,求 E 的方程.考点:直线与圆锥曲线的综合问题;椭圆的简单性质.专题:圆锥曲线中的最值与范围问题.分析:( I)由于点M 在线段 AB上,满足|BM|=2|MA| ,即,可得.利用,可得.(II)由( I)可得直线 AB的方程为:=1,利用中点坐标公式可得N.设点 N 关于直线 AB 的对称点为S 的方程为:=1,N.设点N关于直线 AB 的对称点为,线段 NS 的中点 T,又AB 垂直平分线段 NS,可得 b,解得即可.解答:解:( I)∵点M 在线段 AB上,满足|BM|=2|MA| ,∴,∵A ( a, 0),B( 0, b),∴=.∵,∴,a=b.S,线段 NS 的中点T,又AB 垂直平分线段 NS,∴,解得 b=3 ,∴ a=3.∴椭圆 E的方程为:.∴点评:本题考查了椭圆的标准方程及其性质、线段的垂=.直平分线性质、中点坐标(II )由( I)公式、相互垂可得直线 AB直的直线斜率之间的关ab≤0 时,D 的系,考查了推取值,求得点理能力与计( a,b)所在算能力,属于区域,求得难题.s=b﹣的最2大值.21.( 13 分)( 2015?安徽)设函数 f( x)=x﹣ax+b .解答:解:(Ⅰ)设(Ⅰ)讨论函数f( sinx)在(﹣,)t=sinx ,在 x∈内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记 f n(x)=x 2﹣ a0x+b 0,求函数 |f( sinx)﹣f 0(sinx )|在 [﹣,] 上的最大值D2(Ⅲ)在(Ⅱ)中,取 a n=b n=0,求 s=b﹣满足条件 D ≤1 时的最大值.考点:二次函数的性质.专题:函数的性质及应用;导数的综合应用.分析:(Ⅰ)设t=sinx , f( t)=t 2﹣ at+b(﹣1<t < 1),讨论对称轴和区间的关系,即可判断极值的存在;(Ⅱ)设t=sinx , t∈[ ﹣1,1],求得 |f (t)﹣ f0( t)|,设 g( t) =|﹣t( a﹣ a0)+(b﹣ b0) |,讨论 g(1),g (﹣ 1)取得最大值;(Ⅲ)由(Ⅱ)讨论 ab≥0 时,(﹣,)递增,即有 f( t)=t2﹣at+b(﹣ 1< t< 1),f(′t)=2t﹣ a,①当 a≥2 时,f′(t )≤0, f( t)递减,即(f sinx)递减;当 a≤﹣2 时,f′(t )≥0, f( t)递增,即(f sinx)递增.即有 a≥2 或 a≤﹣2 时,不存在极值.②当﹣ 2< a<2时,﹣1<t<,f(′t )<0,f( sinx)递减;<t< 1, f′(t)> 0,f(sinx)递增.f( sinx)有极小值 f ()=b﹣;(Ⅱ)设t=sinx , t∈[﹣第 21 页(共 23 页)1,1] , |f( t),当 b 取﹣f 0( t) |=|﹣t( a﹣ a0)+最大值 1 时,(b﹣ b0) |,取最小值易知 t=±1 时,取得最大值,0 时,设 g( t)=|﹣ t s max=1.(a﹣ a0)+( b﹣b0) |,而 g( 1) =|﹣( a﹣ a0) +(b﹣ b0)|,g(﹣ 1) =|( a﹣a0)+( b﹣b0) |,点评:本题考查函则当( a﹣ a0)数的性质和(b﹣ b0)≥0运用,主要考时, D=g ( t )查二次函数max=g(﹣1)的单调性和=|(a﹣ a0) +极值、最值,(b﹣ b0) |;考查分类讨当( a﹣ a0)( b论的思想方﹣b0)≤0 时,法和数形结D=g( t)max=g合的思想,属(1) =|﹣( a于难题.﹣a0)+( b﹣b0) |.(Ⅲ)由(Ⅱ)得 ab≥0 时,D=|a+b|,当ab≤0 时,D=|a﹣b|.即有或,点( a,b)在如图所示的区域内,则有 s=b﹣第 22 页(共 23 页)参与本试卷答题和审题的老师有:刘长柏;changq;双曲线; maths;742048;w3239003 ;qiss;孙佑中;雪狼王;cst(排名不分先后)菁优网2015年6月13日第 23 页(共 23 页)。

2015年安徽省高考数学试卷(理科)

2015年安徽省高考数学试卷(理科)

2015年安徽省高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=15.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.327.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<010.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f (0)<f(2)D.f(2)<f(0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD 均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.2015年安徽省高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先化简复数,再得出点的坐标,即可得出结论.【解答】解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.【点评】本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+1【分析】利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.【解答】解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选:A.【点评】本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.3.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用指数函数的单调性,结合充分必要条件的定义,即可判断.【解答】解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1【分析】对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.【解答】解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选:C.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【分析】利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选:D.【点评】本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.32【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.【解答】解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.【点评】本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2【分析】根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.【解答】解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥【分析】由题意,知道,,根据已知三角形为等边三角形解之.【解答】解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,∴的方向应该为的方向.所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选:D.【点评】本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<0【分析】分别根据函数的定义域,函数零点以及f(0)的取值进行判断即可.【解答】解:函数在P处无意义,由图象看P在y轴右边,所以﹣c>0,得c<0,f(0)=,∴b>0,由f(x)=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a<0,综上a<0,b>0,c<0,故选:C.【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及f(0)的符号是解决本题的关键.10.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f (0)<f(2)D.f(2)<f(0)<f(﹣2)【分析】依题意可求ω=2,又当x=时,函数f(x)取得最小值,可解得φ,从而可求解析式f(x)=Asin(2x+),利用正弦函数的图象和性质及诱导公式即可比较大小.【解答】解:依题意得,函数f(x)的周期为π,∵ω>0,∴ω==2.又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,∴f(x)=Asin(2x+2kπ+)=Asin(2x+).∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(2)=Asin(4+)<0,f(0)=Asin=Asin>0,又∵>﹣4+2π>>,而f(x)=Asinx在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0).故选:A.【点评】本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是35(用数字填写答案)【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为5求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,T r+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是6.【分析】圆ρ=8sinθ化为ρ2=8ρsinθ,把代入可得直角坐标方程,直线θ=(ρ∈R)化为y=x.利用点到直线的距离公式可得圆心C(0,4)到直线的距离d,可得圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r.【解答】解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为4【分析】模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.【解答】解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的a,n 的值是解题的关键,属于基础题.14.(5分)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于2n﹣1.【分析】利用等比数列的性质,求出数列的首项以及公比,即可求解数列{a n}的前n项和.【解答】解:数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{a n}的前n项和为:=2n﹣1.故答案为:2n﹣1.【点评】本题考查等比数列的性质,数列{a n}的前n项和求法,基本知识的考查.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.【分析】对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.【解答】解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f(﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.【点评】本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.【分析】由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.【解答】解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分【点评】本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)【分析】(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(Ⅱ)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.【解答】解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:EX=200×+300×+400×=350.【点评】本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.18.(12分)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.【分析】(1)利用导数求切线方程求得切线直线并求得横坐标;(2)利用放缩法缩小式子的值从而达到所需要的式子成立.【解答】解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:T n=x12x32…x2n﹣12=,当n=1时,,2==>==,当n≥2时,因为x2n﹣1所以T n;,均有.综上所述,可得对任意的n∈N+【点评】本题主要考查切线方程的求法和放缩法的应用,属基础题型.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD 均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.【分析】(Ⅰ)通过四边形A1B1CD为平行四边形,可得B1C∥A1D,利用线面平行的判定定理即得结论;(Ⅱ)以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz,设边长为2,则所求值即为平面A1B1CD的一个法向量与平面A1EFD的一个法向量的夹角的余弦值的绝对值,计算即可.【解答】(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面B1CD1=EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos<,>==,∴二面角E﹣A1D﹣B1的余弦值为.【点评】本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.【分析】(I)由于点M在线段AB上,满足|BM|=2|MA|,即,可得.利用,可得.(II)由(I)可得直线AB的方程为:=1,利用中点坐标公式可得N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,可得b,解得即可.【解答】解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.【点评】本题考查了椭圆的标准方程及其性质、线段的垂直平分线性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.【分析】(Ⅰ)设t=sinx,f(t)=t2﹣at+b(﹣1<t<1),讨论对称轴和区间的关系,即可判断极值的存在;(Ⅱ)结合不等式的性质求得最大值;(Ⅲ)由(Ⅱ)结合不等式的性质求得z=b﹣的最大值.【解答】解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a<2时,﹣1<t<,f′(t)<0,f(sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f()=b﹣;(Ⅱ)﹣≤x≤时,|f(sinx)﹣f0(sinx)|=|(a﹣a0)sinx+b﹣b0|≤|a﹣a0|+|b﹣b0|当(a﹣a0)(b﹣b0)≥0时,取x=,等号成立;当(a﹣a0)(b﹣b0)≤0时,取x=﹣,等号成立.由此可知,|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值为D=|a﹣a0|+|b ﹣b0|.(Ⅲ)D≤1即为|a|+|b|≤1,此时0≤a2≤1,﹣1≤b≤1,从而z=b﹣≤1取a=0,b=1,则|a|+|b|≤1,并且z=b﹣=1.由此可知,z=b﹣满足条件D≤1的最大值为1.【点评】本题考查函数的性质和运用,主要考查二次函数的单调性和极值、最值,考查分类讨论的思想方法和数形结合的思想,属于难题.。

2015年安徽高考理科数学试卷及答案

2015年安徽高考理科数学试卷及答案

2015年普通高等学校招生全国统一考试(安徽卷)数学(理科)参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+; 标准差:s =,其中121()n x x x x n=+++.一、选择题:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的。

1.设i 是虚数单位,则复数21ii-在复平面内所对应的点位于( ) (A )第一象限 (B )第二象限(C )第三象限(D )第四象限 【答案】B2.下列函数中,既是偶函数又存在零点的是( )(A )y cos x = (B )y sin x = (C )y ln x = (D )21y x =+ 【答案】A.3.设:12p x <<,:21xq >,则p 是q 成立的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件 【答案】A.4.下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -= 【答案】C5.已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )(A )若α,β垂直于同一平面,则α与β平行 (B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线 (D )若m ,n 不平行,则m 与n 不可能垂直于同一平面 【答案】D6.若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为( )(A )8 (B )15 (C )16 (D )32【答案】C7.一个四面体的三视图如图所示,则该四面体的表面积是( ) (A)1+ (B)2+ (C)1+ (D)【答案】B.8.C ∆AB 是边长为2的等边三角形,已知向量a ,b 满足2a AB =,C 2a b A =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅= (D )()4C a b -⊥B 【答案】D.侧(左)视图俯视图9.函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c > (C )0a <,0b >,0c < (D )0a <,0b <,0c < 【答案】C10.已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) (A )()()()220f f f <-< (B )()()()022f f f <<- (C )()()()202f f f -<< (D )()()()202f f f <<-【答案】A二、填空题:本大题共5小题.每小题5分,共25分.把答案填在答题卡的相应位置11.371()x x+的展开式中5x 的系数是 (用数字填写答案)【答案】3512.在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是【答案】613.执行如图所示的程序框图(算法流程图),输出的n 为 【答案】414.已知数列{}n a 是递增的等比数列,14239,8a a a a +==,则数列{}n a 的前n 项和等于【答案】21n-.15. 设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 (写出所有正确条件的编号)(1)3,3a b =-=-;(2)3,2a b =-=;(3)3,2a b =->;(4)0,2a b ==;(5)1,2a b ==. 【答案】(1)(3)(4)(5)三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程及演算步骤.解答写在答题卡上的指定区域内16. (本小题满分12分)在ABC ∆中,3,6,4A AB AC π∠===点D 在BC 边上,AD BD =,求AD 的长. 解:在ABC ∆中,2222cos 183626(90BC AC AB AC AB A =+-⋅∠=+-⨯⨯=,即BC =从而2222cos AC BC AB BC AB B =+-⋅∠,cos 10B ∠=;又AD BD =,所以cos 3BD B BD ⋅∠==,所以AD BD ==17.(本小题满分12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或3件正品时检测结束. (1)求第一次检测出的是次品且第二次检测出是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或3件正品时所需要的检测费用(单位:元),求X 的分布列和均值.解:(1)233)5410(P ⨯==⨯第一次检测出的是次品且第二次检测出是正品; (2)X 的可能取值为200,300,400200X =表示前2次取出的是次品;300X =表示前2次取出的是1件次品和1件正品,第三次取出的是次品;或前3次取出的都是正品;400X =表示前3次取出的是1件次品和2件正品,第四次取出的是1件次品;前3次取出的是1件次品和2件正品,第四次取出的是1件正品.22251(200)10A P X A ===,1132333523(300)10C C A P X A +===;3123234526(400)10A C C P X A ===.136()200300400350101010E X =⨯+⨯+⨯=.18.(本小题满分12分)设*n N ∈,n x 是曲线221n y x +=+在点(1,2)处的切线与x 轴交点的横坐标. (1)求数列{}n x 的通项公式;(2)记2221321n n T x x x -=⋅⋅⋅,证明:14n T n≥. 解:(1) 21(22)n y n x+'=+,当1x =时,22y n '=+,所以曲线221n y x +=+在点(1,2)处的切线为2(22)(1y n x -=+-;因此曲线221n y x +=+在点(1,2)处的切线与x 轴交点的横坐标1n nx n =+; (2)由(1)知21222221(21)()24n n n x n n---==,令2221321()44n n f n nT nx x x -==⋅⋅⋅,则()0f n >; 因为222222132121222213214(1)(1)121441()1()42244n n n n x x x x f n n n n n f n nx x x n n n n-+-+⋅⋅⋅⋅+++++==⋅=>⋅⋅⋅++ 所以()f n 在*n N ∈单调递增的,因此2211()(1)44()12f n f x ≥==⨯=,所以()1f n ≥,即14n T n≥.19.(本小题满分13分)如图所示,在多面体111A B D DCBA 中,四边形11AA B B , 11,ADD A ABCD 均为正方形,E 为11B D 的中点,过1A ,,D E 的平面交1CD 于F .(1)证明:1EF B C <;(2)求二面角11E A D B --的余弦值.(1)证明:因为11AA B B ,ABCD 均为正方形,所以11A B CD ∥,因此四边形11A B CD 是,所以11A D B C <;而11B C A DE ⊄面,11A D A DE ⊂面,所以11B C A DE 面<,又因为过11,,B C D 平面交1A DE 面于EF ,所以1EF B C <.(2) 取1B C 中点M ,取1A D 中点H ,连HM ,1HD ,则HM CD <,由四边形11AA B B ,11,ADD A ABCD 均为正方形知1CD A D ⊥,11HD A D ⊥,因此11A D MHD ⊥面,设1MHD 面交EF 于N .连HN ,则11,A D HN A D HM ⊥⊥,所以MHN ∠为二面角11E A D B --的平面角.由(1)知1EF B C <,又E 为11B D 的中点,所以N 为1MD 的中点. 设四边形11AA B B ,11,ADD A ABCD 的边长为2,在1Rt MHD 中,1112,2MH HD HN MN MD =====. 在MHN 中,222cos 22HN MH MN MH MHN HN MH HN +-∠===⋅. 所以二面角11E A D B --20.(本小题满分13分)设椭圆E 的方程为22221(0)x y a b a b+=>>,点O 为坐标原点,点A 的坐标为(,0)a ,点BB D 1D 1B DBB 的坐标为(0,)b ,点M 在线段AB 上,满足||2||BM MA =,直线OM的斜率为10. (1)求E 的离心率e ;(2)设点C 坐标为(0,)b -,N 为线段AC 中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程. 解:(1)由点A 的坐标为(,0)a ,点B 的坐标为(0,)b ,点M 在线段AB 上,满足||2||BM MA =,知2BM MA =,即点M 分线段BA 的比为2,所以点2(,)33a bM ;又直线OM,所以2b a =,即a =,由222a b c =+得245e =,e =.(2)因为N 为线段AC 中点,所以(,)22a b N -即)2b N -,而直线AB 的方程为1x yab+=,即x +=;而点N 关于直线AB的对称点纵坐标为)722266b b --=;又点N 关于直线AB 的对称点的纵坐标为72,所以2b =,因此, a ==所以221204x y +=为所求. 21. (本小题满分13分)设函数2()f x x ax b =-+.(1)讨论函数(sin )f x 在(,)22ππ-内的单调性并判断有无极值,有极值时求出极值; (2)记2000()f x x a x b =-+,求函数0|(sin )(sin )|f x f x -在[,]22ππ-上的最大值D; (3)在(2)中.取000a b ==,求24a zb =-满足条件1D ≤时的最大值.解: (1)令sin ,(,),(1,1)22t x x t ππ=∈-∈-, 2()f x x ax b =-+开口向上,对称轴为2ax =;1)当12a ≤-,即2a ≤-时, (sin )f x 在(,)22ππ-内是单调递增的; 2)当12a -<<,即22a -<<时,函数(sin )f x 在2at =处取得极小值, 2(sin )4a f x b =-+极小; 3)当12a ≤,即2a ≥ 时, (sin )f x 在(,)22ππ-内是单调递减的;另:2(sin )sin sin f x x a x b =-+,(sin )2sin cos cos cos (2sin )f x x x a x x x a '=-=-,因为(,)22x ππ∈-,所以cos 0x >,由(sin )cos (2sin )0f x x x a '=-≤得sin 2a x ≤. 1)当12a -<<,即22a -<<时,函数(sin )f x 在sin 2ax =处取得极小值, 2(sin )4a f x b =-+极小; 2)当2a ≤-时,(sin )f x 在(,)22ππ-内是单调递增的;3)当2a ≥时,(sin )f x 在(,)22ππ-内是单调递减的;(2) 令sin ,[,],[1,1]22t x x t ππ=∈-∈-, 000000|(sin )(sin )||()()||()||()()|f x f x f t f t a a t b b a a t b b -=-=--+-=---,所以0|(sin )(sin )|f x f x -在[,]22ππ-上的最大值0000max{|()()|,|()()()|}22D a a b b a a b b ππ=-------因为22000000|()()||()()()|2()()22a a b b a a b b a a b b πππ--------=---所以当00a a b b ≥⎧⎨≥⎩或00a a b b <⎧⎨<⎩时,00|()()|2D a a b b π=-+-;(3)在(2)中,000a b ==时, max{||,|()22D a b a ππ=--22||||222a a b b ab πππ--+=-;所以当00a b ≥⎧⎨≥⎩或00a b <⎧⎨<⎩因此,当00a b ≥⎧⎨≥⎩或00a b <⎧⎨<⎩时, 由||12a D b π=-≤;当a b <⎧⎨≥⎩如图,当24a z b =-与直线12a b π-=-或12a b π+=把12a b π+=代入24a z b =-得22440a a z π-+-=,244(44)0z π--=得244z π+=,因此24a z b =-最大值为244π+.。

2015年安徽省高考数学试卷(理科)解析

2015年安徽省高考数学试卷(理科)解析

2015年安徽省高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的) 1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=15.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8B.15 C.16 D.327.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A . 1+B . 2+C . 1+2D . 28.(5分)(2015•安徽)△ABC 是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是( )A . ||=1B .⊥ C .•=1D .(4+)⊥9.(5分)(2015•安徽)函数f (x )=的图象如图所示,则下列结论成立的是( )A . a >0,b >0,c <0B . a <0,b >0,c >0C . a <0,b >0,c <0D . a <0,b <0,c <0 10.(5分)(2015•安徽)已知函数f (x)=Asin (ωx+φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x )取得最小值,则下列结论正确的是( )A . f (2)<f (﹣2)<f (0)B . f (0)<f(2)<f (﹣2)C . f (﹣2)<f (0)<f (2)D . f (2)<f (0)<f(﹣2)二。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年普通高等学校全国统一考试(安徽卷)数学(理科)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,第I 卷第1至第2页,第II 卷第3至第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1. 答题前,务必在试卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2. 答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

3. 答第II 卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰。

作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在答题.................卷、草稿纸上答题无效..........。

4. 考试结束,务必将试卷和答题卡一并上交。

第Ⅰ卷(选择题 共50分)一、选择题:本大题共10个小题;每小题5分,共50分.在每小题给出的四个选项中,有且只有一项是符合题目要求的。

(1)设i 是虚数单位,则复数21ii-在复平面内所对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 (2)下列函数中,既是偶函数又存在零点的是(A )y cos x = (B )y sin x = (C )y n l x = (D )21y x =+ 3设:12,:21xp x q <<>,则p 是q 成立的 (A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件4、下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -= 5、已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( ) (A )若α,β垂直于同一平面,则α与β平行 (B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线 (D )若m ,n 不平行,则m 与n 不可能垂直于同一平面6、若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为( )(A )8 (B )15 (C )16 (D )32 7、一个四面体的三视图如图所示,则该四面体的表面积是( )(A )1 (B )2+(C )1+ (D )8、C ∆AB 是边长为2的等边三角形,已知向量a ,b 满足2a AB = ,C 2a b A =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅=(D )(4)a b BC +⊥9、函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c > (C )0a <,0b >,0c < (D )0a <,0b <,0c <10、已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( )(A )()()()220f f f <-< (B )()()()022f f f <<- (C )()()()202f f f -<< (D )()()()202f f f <<-第二卷(非选择题 共100分)二.填空题:本大题共5小题,每小题5分,共25分。

11.371()x x+的展开式中3x 的系数是 (用数字填写答案) 12.在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是13.执行如图所示的程序框图(算法流程图),输出的n 为14.已知数列{}n a 是递增的等比数列,24239,8a a a a +==,则数列{}n a 的前n 项和等于15. 设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 (写出所有正确条件的编号)(1)3,3a b =-=-;(2)3,2a b =-=;(3)3,2a b =->;(4)0,2a b ==;(5)1,2a b ==.三.解答题:本大题共6小题,共75分。

解答应写出文字说明、证明过程或演算步骤。

16.(本小题满分12分)在ABC ∆中,3,6,4A AB AC π∠===D 在BC 边上,AD BD =,求AD 的长。

17.(本小题满分12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束。

(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望) (18)(本小题满分12分)设*n N ∈,n x 是曲线221n y x+=+在点(12),处的切线与x 轴交点的横坐标,(1)求数列{}n x 的通项公式;(2)记2221321n n T x x x -= ,证明14nT n≥. 19.(本小题满分13分)如图所示,在多面体111A B D DCBA 中,四边形11AA B B ,11,ADD A ABCD 均为正方形,E 为11B D 的中点,过1,,A D E 的平面交1CD 于F(1)证明:1//EF B C(2)求二面角11E A D B --余弦值.(20)(本小题满分13分)设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为10. (I )求E 的离心率e ;(II )设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.21.(本小题满分13分)设函数2()f x x ax b =-+.(1)讨论函数(sin )22f x ππ在(-,)内的单调性并判断有无极值,有极值时求出极值; (2)记20000(),(sin )(sin )f x x a x b f x f x =-+-求函数在[,]22ππ-上的最大值D ; (3)在(2)中,取2000,D 14a a b z b ===-≤求满足时的最大值。

参考答案一.选择题:本题考查基本知识和基本运算。

每小题5分,满分50分。

(1)B (2)A (3)A (4)C (5)D (6)C(7)B(8)D(9)C(10)A二.填空题:本题考查基本知识和基本运算。

每小题5分,共25分。

(11)35(12)6(13)4(14)21n-(15)①③④⑤三.解答题:本大题共6小题,共75分。

解答应写出文字说明、证明过程或演算步骤。

解答写在答题卡上的指定区域内。

(16)(本小题满分12分)解:设ABC 的内角,,A B C 所对边的长分别是,,a b c由余弦定理得2222cos a b c bc BAC =+-∠223626cos4π=+-⨯⨯ 1836(36)=+-- 90=所以a =又由正弦定理得sin sin 10b BAC B a ∠===由题设知04B π<<,所以cos B ===在ABD中,由正弦定理得sin 6sin 3sin(2)2sin cos cos AB B B AD B B B Bπ====-(17)(本小题满分12分)解:(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,1123253()10A A P A A ==(2)χ的可能取值为200,300,40022251(200)10A P A χ===31123232353(300)10A C C A P A χ+=== 136(400)1(200)(300)1101010P P P χχχ==-=-==--= 故χ的分布列为200300400350101010E χ=⨯+⨯+⨯=(18)(本小题满分12分)(1)解:2221(1)(22)n n y xn x ++''=+=+,曲线221n y x +=+在点(1,2)处的切线斜率为22n +, 从而切线方程为2(22)(1)y n x -=+- 令0y =,解得切线与x 轴交点的横坐标1111n nx n n =-=++ (2)证:由题设和(1)中的计算结果知22222213211321...()()...()242n n n T x x x n --== 当1n =时,114T =当2n ≥时,因为2222212221(21)(21)1221()2(2)(2)2n n n n n n xn n n n n-------==>==所以211211() (223)4n n T n n->⨯⨯⨯⨯= 综上可得对任意的*n N ∈,均有14n T n≥(19)(本小题满分13分)(1)证:由正方形的性质可知11////A B AB DC ,且11A B AB DC ==,所以四边形11AB CD 为平行四边形,从而11//BC AD ,又1A D ⊂面1A DE ,1B C ⊄面1A DE ,于是1//B C 面1A DE ,又1B C ⊂面11B CD ,面1A DE ⋂面11B CD EF =,所以1//EF B C(2)解:因为四边形1111,,AA B B ADD A ABCD 均为正方形,所以11,,AA AB AA AD AB AD ⊥⊥⊥,且1AA AB AD ==,以A 为原点,分别以1,,AB AD AA为x 轴,y 轴和z 轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,111(0,0,1),(1,0,1),(0,1,1)A B D ,而E 点为11B D 的中点,所以E 点的坐标为(0.5,0.5,1)设面1A DE 的法向量1111(,,)n r s t =,而该面上向量1A E =(0.5,0.5,0),1A D=(0,1,-1),由11n A E ⊥ ,11n A D ⊥ 得111,,rs t 应满足的方程组 11110.50.50,0,r s s t +=⎧⎨-=⎩ (-1,1,1)为其一组解,所以可取1n =(-1,1,1)设面11A B CD 的法向量2222(,,)n r s t =,而该面上向量11A B =(0.5,0.5,0),1A D =(0,1,-1),由此同理可得2(0,1,1)n =所以结合图形知二面角11E A D B --的余弦值为1212||||||n n n n ==(20)(本小题满分13分) 解:(1)由题设条件知,点M 的坐标为21(,)33a b,又OM k =,从而2b a =,进而得,2a c b ===,故c e a ==(2)由题设条件和(1)的计算结果可得,直线AB1y b=,点N的坐标为1,)2b -,设点N关于直线AB的对称点S的坐标为17(,)2 x,则线段NS的中点T的坐标为117,)244xb+-+,又点T在直线AB上,且1NS ABk k=-,从而有117441,71xbbb+-++=⎨+⎪=解得3b=所以a=E的方程为221459x y+=(21)(本小题满分13分)解:(1)2(sin)sin sin sin(sin),22f x x a x b x x a b xππ=-+=-+-<<[(sin)](2sin)cos,22f x x a x xππ'=--<<因为22xππ-<<,所以cos0,22sin2x x>-<<①2,a b R≤-∈时,函数(sin)f x单调递增,无极值②2,a b R≥∈时,函数(sin)f x单调递减,无极值③对于22a-<<,在(,)22ππ-内存在唯一的x,使得2sin x a=,2x xπ-<≤时,函数(sin)f x单调递减;02x xπ≤<时,函数(sin)f x单调递增因此22a-<<,b R∈时,函数(sin)f x在x处有极小值2(sin)()24a af x f b==-(2)22xππ-≤≤时,00000|(sin)(sin)||()sin|||||f x f x a a x b b a a b b-=-+-≤-+-,当00()()0a a b b --≥时,取2x π=,等号成立,当00()()0a a b b --<时,取2x π=-,等号成立。

相关文档
最新文档