2015年安徽省高考数学试卷理科
2015年高考理数真题试卷(安徽卷)【答案加解析】

2015年高考理数真题试卷(安徽卷)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(2015·安徽)设i是虚数单位,则复数在复平面内所对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.(2015·安徽)下列函数中,既是偶函数又存在零点的是A. y=COSxB. y=SINxC. y=lnxD. y=+13.(2015·安徽)设p:1x1,q:1,则p是q成立的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4.(2015·安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=2x的是()A. B. C. D.5.(2015·安徽)已知m,n是两条不同直线,,是两个不同平面,则下列命题正确的是A. 若,垂直于同一平面,则与平行B. 若m,n平行于同一平面,则m与n平行C. 若,不平行,则在内不存在与平行的直线D. 若m,n不平行,则m与n不可能垂直于同一平面6.(2015·安徽)若样本数据x1,x2,...,x10的标准差为8,则数据2x1-1,2x2-1,...,2x10-1的标准差为A. 8B. 15C. 16D. 327.(2015·安徽)一个四面体的三视图如图所示,则该四面体的表面积是A. B. C. D.8.(2015·安徽)是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是A. =1B.C. .=1D.9.(2015·安徽)函数f(x)=的图像如图所示,则下列结论成立的是A. a0,b0,c0B. a0,b0,c0C. a0,b0,c0D. a0,b0,c010.(2015·安徽)已知函数f(x)=Asin(+)(A,,均为正的常数)的最小正周期为,当x=时,函数f(x)取得最小值,则下列结论正确的是A. f(2)f(-2)f(0)B. f(0)f(2)f(-2)C. f(-2)f(0)f(2)D. f(2)f(0)f(-2)二.填空题:本大题5小题,每小题5分,共25分,把答案填在答题卡相应的位置11.(2015安徽)(x3+)的展开式中x5的系数是________12.(2015安徽)在极坐标中,圆P=8sin上的点到直线=(p R)距离最大值是________ 。
2015年高考理科数学安徽卷-答案

2015年普通高等学校招生全国统一考试(安徽卷) 数学(理科)答案解析
【解析】依题意,该几何体是地面为等腰直角的三棱锥,该四面体的直观图如下,
1
【解析】依题意,(2)2
=-=+-=,故||2
BC AC AB a b a b
b=,故
AB AC a a b a ab
2(2)4||222cos60
=+=+=⨯,所以1 2|2||2
a a
==,所以||1
a=,又2
a b=-,
,则2AB AC AD +=,且AD BC ⊥,所以(4)a b BC +⊥,故选【提示】由题意,知道BC AC AB b =-=,根据2AB AC AD +=且AD BC ⊥解之.
2314a a a ==
sin sin(π2)2sin AB B B =-的值,由正弦定理可求得
11DE
B CD =1AA AD AB AD ⊥⊥,,且为原点,分别以1AB AD AA , , 为x 轴,
的中点,所以E (0.5,0.5,1).
的法向量111(,,n r s =,而该面上向量(10.5,0.5,0A E =,(10,1,A D =由11n A E ⊥,11n A D ⊥得11,r s 11
0s t ⎨-=⎩)1,1,1-为其一组解,所以可取1(1,1,1)n =-的法向量22(,n r s =而该面上向量(110.5,0.5,0A B =,(10,1,A D =,由此同理可得2(0,1,1)n =1E B 的余弦值为
122|||||332
n n n =CD 为平行四边形,可得1B C ∥为坐标原点,分别以1AB AD AA , , 为x 轴,y 轴和1NS AB k =-,12
x b -。
【高考试卷】2015年安徽省高考数学试卷(理科)及答案

【高考试卷】2015年安徽省高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数2i1−i在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣y24=1 B.x24﹣y2=1 C.y24﹣x2=1 D.y2﹣x24=15.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.327.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A .1+√3B .2+√3C .1+2√2D .2√28.(5分)△ABC 是边长为2的等边三角形,已知向量a →,b →满足AB →=2a →,AC →=2a →+b →,则下列结论正确的是( )A .|b →|=1B .a →⊥b →C .a →•b →=1D .(4a →+b →)⊥BC → 9.(5分)函数f (x )=ax+b(x+c)的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <010.(5分)已知函数f (x )=Asin (ωx +φ)(A ,ω,φ均为正的常数)的最小正周期为π,当x=2π3时,函数f (x )取得最小值,则下列结论正确的是( )A .f (2)<f (﹣2)<f (0)B .f (0)<f (2)<f (﹣2)C .f (﹣2)<f (0)<f (2)D .f (2)<f (0)<f (﹣2)二.填空题(每小题5分,共25分)11.(5分)(x 3+1x )7的展开式中的x 5的系数是 (用数字填写答案) 12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=π3(ρ∈R )距离的最大值是 .13.(5分)执行如图所示的程序框图(算法流程图),输出的n 为14.(5分)已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于 .15.(5分)设x 3+ax +b=0,其中a ,b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 (写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b >2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)在△ABC 中,∠A=3π4,AB=6,AC=3√2,点D 在BC 边上,AD=BD ,求AD 的长.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望)18.(12分)设n ∈N *,x n 是曲线y=x 2n +2+1在点(1,2)处的切线与x 轴交点的横坐标.(Ⅰ)求数列{x n }的通项公式;(Ⅱ)记T n =x 12x 32…x 2n ﹣12,证明:T n ≥14n. 19.(13分)如图所示,在多面体A 1B 1D 1DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F .(Ⅰ)证明:EF ∥B 1C ;(Ⅱ)求二面角E ﹣A 1D ﹣B 1的余弦值.20.(13分)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a ,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为√510(Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为(0,﹣b ),N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程. 21.(13分)设函数f (x )=x 2﹣ax +b .(Ⅰ)讨论函数f (sinx )在(﹣π2,π2)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f 0(x )=x 2﹣a 0x +b 0,求函数|f (sinx )﹣f 0(sinx )|在[﹣π2,π2]上的最大值D ;a2 4满足条件D≤1时的最大值.(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣。
2015年高考理科数学安徽卷及答案

绝密★启用前2015年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷第1至第3页,第Ⅱ卷第4至第6页。
全卷满分150分,考试时间120分钟。
考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致.务必在答题卡背面规定的地方填写姓名和座位号后两位.2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号所指示的答题区域作答,超出答题区域书写的答案无............效,在答题卷、草稿纸上答题无效................ 4. 考试结束,务必将试题卷和答题卡一并上交. 参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+标准差s =121()n x x x x n=++第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设i 是虚数单位,则复数2i1i-在复平面内所对应的点位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限2. 下列函数中,既是偶函数又存在零点的是( )A. cos y x =B. sin y x =C. ln y x =D. 21y x =+3. 设:12p x <<,:21x q >,则p 是q 成立的( )A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4. 下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )A. 2214yx -= B. 2214x y -=C. 2214y x -=D. 2214x y -=5. 已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是 ( )A. 若α,β垂直于同一平面,则α与β平行B. 若m ,n 平行于同一平面,则m 与n 平行C. 若α,β不平行,则在α内不存在与β平行的直线D. 若m ,n 不平行,则m 与n 不可能垂直于同一平面6. 若样本数据1x ,2x ,…,10x 的标准差为8,则数据121x -,221x -,…,1021x -的标准差为( )A. 8B. 15C. 16D. 327. 一个四面体的三视图如图所示,则该四面体的表面积是( )A. 1B. 2+C. 1+D. 8. ABC △是边长为2的等边三角形,已知向量a ,b 满足AB =2a ,AC =2a +b ,则下列结论正确的是( )A. |b |=1B. a ⊥bC. a b =1D. (4a +b )BC ⊥9. 函数2()()ax bf x x c +=+的图象如图所示,则下列结论成立的是( )A. 0a >,0b >,0c <B. 0a <,0b >,0c >C. 0a <,0b >,0c <D. 0a <,0b <,0c <10. 已知函数()sin()f x A x ωϕ=+(A ,ω,ϕ均为正的常数)的最小正周期为π,当2π3x =时,函数()f x 取得最小值,则下列结论正确的是( )A. (2)(2)(0)f f f <-<B. (0)(2)(2)f f f <<-C. (2)(0)(2)f f f -<<D. (2)(0)(2)f f f <<-第Ⅱ卷(非选择题 共100分)姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.11. 371()x x+的展开式中5x 的系数是_________(用数字填写答案).12. 在极坐标系中,圆8sin ρθ=上的点到直线()3πθρ=∈R 距离的最大值是_________.13. 执行如图所示的程序框图(算法流程图),输出的n 为_________.14. 已知数列{}n a 是递增的等比数列,149a a +=,328a a =,则数列{}n a 的前n 项和等于_________.15. 设30x ax b ++=,其中a ,b 均为实数.下列条件中,使得该三次方程仅有一个实根的是_________(写出所有正确条件的编号). ①3a =-,3b =-; ②3a =-,2b =;③3a =-,2b >;④0a =,2b =;⑤1a =,2b =.三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)在ABC △中,3π4A =,=6AB,AC =,点D 在BC 边上,AD BD =,求AD 的长.17.(本小题满分12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).18.(本小题满分12分)设*n ∈N ,n x 是曲线221n y x +=+在点(1,2)处的切线与x 轴交点的横坐标. (Ⅰ)求数列{}n x 的通项公式;(Ⅱ)记2221321n n T x x x -=,证明14n T n≥.19.(本小题满分13分)如图,在多面体111A B D DCBA 中,四边形11AA B B ,11ADD A ,ABCD 均为正方形,E 为11B D 的中点,过1A ,D ,E 的平面交1CD 于点F .(Ⅰ)证明:1EF B C ∥;(Ⅱ)求二面角11E A D B --余弦值.20.(本小题满分13分)设椭圆E 的方程为222210x y a b a b +=>>(),点O 为坐标原点,点A 的坐标为(0)a ,,点B 的坐标为(0)b ,,点M 在线段AB 上,满足||2||BM MA =,直线OM. (Ⅰ)求E 的离心率e ;(Ⅱ)设点C 的坐标为(0)b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.21.(本小题满分13分) 设函数2()f x x ax b =-+.(Ⅰ)讨论函数(sin )f x 在ππ22(-,)内的单调性并判断有无极值,有极值时求出极值; (Ⅱ)记2000()f x x a x b =-+,求函数0|(sin )(sin )|f x f x -在ππ22[-,]上的最大值D ;(Ⅲ)在(Ⅱ)中,取000a b ==,求24a zb =-满足条件1D ≤时的最小值.2015年普通高等学校招生全国统一考试(安徽卷)数学(理科)答案解析【解析】依题意,该几何体是地面为等腰直角的三棱锥,该四面体的直观图如下,1。
2015年安徽省高考数学试卷(理科)解析79858

2015年安徽省高考数学试卷(理科)一。
选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=15.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8B.15 C.16 D.7.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+ B.2+ C.1+2 D.28.(5分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥9.(5分)(2015•安徽)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c <0 B.a<0,b>0,c>0C.a<0,b>0,c<0 D.a<0,b<0,c<010.(5分)(2015•安徽)已知函数f(x)=Asin (ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f(2)D.f(2)<f(0)<f(﹣2)二.填空题(每小题5分,共25分) 11.(5分)(2015•安徽)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)(2015•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.15.(5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三。
2015年安徽省高考数学试卷(理科)及答案

2015年安徽省高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=15.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.327.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<010.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f (0)<f(2)D.f(2)<f(0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD 均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.2015年安徽省高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先化简复数,再得出点的坐标,即可得出结论.【解答】解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+1【分析】利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.【解答】解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选A.3.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用指数函数的单调性,结合充分必要条件的定义,即可判断.【解答】解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选A.4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x 的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1【分析】对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.【解答】解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选C.5.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【分析】利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选D.6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.32【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.【解答】解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.7.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2【分析】根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.【解答】解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.8.(5分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥【分析】由题意,知道,,根据已知三角形为等边三角形解之.【解答】解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,∴的方向应该为的方向.所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选D.9.(5分)(2015•安徽)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<0【分析】分别根据函数的定义域,函数零点以及f(0)的取值进行判断即可.【解答】解:函数在P处无意义,由图象看P在y轴右边,所以﹣c>0,得c<0,f(0)=,∴b>0,由f(x)=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a<0,综上a<0,b>0,c<0,故选:C10.(5分)(2015•安徽)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f (0)<f(2)D.f(2)<f(0)<f(﹣2)【分析】依题意可求ω=2,又当x=时,函数f(x)取得最小值,可解得φ,从而可求解析式f(x)=Asin(2x+),利用正弦函数的图象和性质及诱导公式即可比较大小.【解答】解:依题意得,函数f(x)的周期为π,∵ω>0,∴ω==2.又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,∴f(x)=Asin(2x+2kπ+)=Asin(2x+).∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(2)=Asin(4+)<0,f(0)=Asin=Asin>0,又∵>﹣4+2π>>,而f(x)=Asinx在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0).故选:A.二.填空题(每小题5分,共25分)11.(5分)(2015•安徽)(x3+)7的展开式中的x5的系数是35(用数字填写答案)【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为5求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,T r+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是6.【分析】圆ρ=8sinθ化为ρ2=8ρsinθ,把代入可得直角坐标方程,直线θ=(ρ∈R)化为y=x.利用点到直线的距离公式可得圆心C(0,4)到直线的距离d,可得圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r.【解答】解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为4【分析】模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.【解答】解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.14.(5分)(2015•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于2n﹣1.【分析】利用等比数列的性质,求出数列的首项以及公比,即可求解数列{a n}的前n项和.【解答】解:数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{a n}的前n项和为:=2n﹣1.故答案为:2n﹣1.15.(5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.【分析】对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.【解答】解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f(﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.三.解答题(共6小题,75分)16.(12分)(2015•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.【分析】由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.【解答】解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)【分析】(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(Ⅱ)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.【解答】解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:X200300400PEX=200×+300×+400×=350.18.(12分)(2015•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.【分析】(1)利用导数求切线方程求得切线直线并求得横坐标;(2)利用放缩法缩小式子的值从而达到所需要的式子成立.【解答】解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:T n=x12x32…x2n﹣12=,当n=1时,,2==>==,当n≥2时,因为x2n﹣1所以T n,均有综上所述,可得对任意的n∈N+19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.【分析】(Ⅰ)通过四边形A1B1CD为平行四边形,可得B1C∥A1D,利用线面平行的判定定理即得结论;(Ⅱ)以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz,设边长为2,则所求值即为平面A1B1CD的一个法向量与平面A1EFD的一个法向量的夹角的余弦值的绝对值,计算即可.【解答】(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面B1CD1=EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos<,>==,∴二面角E﹣A1D﹣B1的余弦值为.20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.【分析】(I)由于点M在线段AB上,满足|BM|=2|MA|,即,可得.利用,可得.(II)由(I)可得直线AB的方程为:=1,利用中点坐标公式可得N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,可得b,解得即可.【解答】解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴a=3.∴椭圆E的方程为:.21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.【分析】(Ⅰ)设t=sinx,f(t)=t2﹣at+b(﹣1<t<1),讨论对称轴和区间的关系,即可判断极值的存在;(Ⅱ)结合不等式的性质求得最大值;(Ⅲ)由(Ⅱ)结合不等式的性质求得z=b﹣的最大值.【解答】解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a<2时,﹣1<t<,f′(t)<0,f(sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f()=b﹣;(Ⅱ)﹣≤x≤时,|f(sinx)﹣f0(sinx)|=|(a﹣a0)sinx+b﹣b0|≤|a﹣a0|+|b﹣b0|当(a﹣a0)(b﹣b0)≥0时,取x=,等号成立;当(a﹣a0)(b﹣b0)≤0时,取x=﹣,等号成立.由此可知,|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值为D=|a﹣a0|+|b ﹣b0|.(Ⅲ)D≤1即为|a|+|b|≤1,此时0≤a2≤1,﹣1≤b≤1,从而z=b﹣≤1取a=0,b=1,则|a|+|b|≤1,并且z=b﹣=1.由此可知,z=b﹣满足条件D≤1的最大值为1.。
2015年安徽省高考数学试卷(理科)解析

2015年安徽省高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A .y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A .充分不必要条件B.必要不充分条件C .充分必要条件D.既不充分也不必要条件4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=15.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A .若α,β垂直于同一平面,则α与β平行B .若m,n平行于同一平面,则m 与n平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m,n不平行,则m与n不可能垂直于同一平面6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A .8 B.15 C.16 D.327.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A .1+B.2+C.1+2D.28.(5分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A .||=1 B.⊥C.•=1 D.(4+)⊥9.(5分)(2015•安徽)函数f(x)=的图象如图所示,则下列结论成立的是()A .a>0,b>0,c<0B.a<0,b>0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<010.(5分)(2015•安徽)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A .f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f(0)<f(2)D.f(2)<f(0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(2015•安徽)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)(2015•安徽)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)(2015•安徽)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)(2015•安徽)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.15.(5分)(2015•安徽)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)(2015•安徽)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.17.(12分)(2015•安徽)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)(2015•安徽)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.19.(13分)(2015•安徽)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣AD﹣B1的余弦值.20.(13分)(2015•安徽)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)(2015•安徽)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f n(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D2(Ⅲ)在(Ⅱ)中,取a n=b n=0,求s=b﹣满足条件D≤1时的最大值.2015年安徽省高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)(2015•安徽)设i是虚数单位,则复数在复平面内对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限考点:复数的代数表示法及其几何意义.专题:计算题;数系的扩充和复数.分析:先化简复数,再得出点的坐标,即可得出结论.解答:解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.点评:本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)(2015•安徽)下列函数中,既是偶函数又存在零点的是()A .y=cosx B.y=sinx C.y=lnx D.y=x2+1考点:函数的零点;函数奇偶性的判断.专题:函数的性质及应用.分析:利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.解答:解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选A.点评:本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.3.(5分)(2015•安徽)设p:1<x<2,q:2x>1,则p是q成立的()A .充分不必要条件B.必要不充分条件C .充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:运用指数函数的单调性,结合充分必要条件的定义,即可判断.解答:解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选A.点评:本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)(2015•安徽)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1C.﹣x2=1D.y2﹣=1考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.解答:解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选C.点评:本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)(2015•安徽)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A .若α,β垂直于同一平面,则α与β平行B .若m,n平行于同一平面,则m 与n平行C .若α,β不平行,则在α内不存在与β平行的直线D .若m,n不平行,则m与n不可能垂直于同一平面考点:空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.解答:解:对于A,若α,β垂直于同一平面,则α与β不一定平行,如果墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选D.点评:本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)(2015•安徽)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A .8 B.15 C.16 D.32考点:极差、方差与标准差.专题:概率与统计.分析:根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.解答:解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.点评:本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)(2015•安徽)一个四面体的三视图如图所示,则该四面体的表面积是()A .1+B.2+C.1+2D.2考点:由三视图求面积、体积.专题:计算题;空间位置关系与距离.分析:根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.解答:解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.点评:本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)(2015•安徽)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A .||=1 B.⊥C.•=1 D.(4+)⊥。
2015年高考安徽理科数学试题及答案(word解析)

2015年普通高等学校招生全国统一考试(安徽卷)数学(理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项符合题目要求.(1)【2015年安徽,理1,5分】i 为虚数单位,则复数2i1i-在复平面内所对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】B【解析】由题意()()()2i 1i 2i 22i1i 1i 1i 1i 2+-+===-+--+,其对应的点坐标为()1,1-,位于第二象限,故选B .【点评】本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.(2)【2015年安徽,理2,5分】下列函数中,既是偶函数又存在零点的是( )(A )cos y x = (B )sin y x = (C )ln y x = (D )21y x =+ 【答案】A【解析】由选项可知,B 、C 项均不是偶函数,故排除B 、C ,A 、D 项是偶函数,但D 项与x 轴没有交点,即D项不存在零点,故选A .【点评】本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断()f x -与()f x 的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x 轴的交点以及与对应方程的解的个数是一致的.(3)【2015年安徽,理3,5分】设:12p x <<,:21x q >,则p 是q 成立的( )(A )充分不必要条件 (B )必要不充分条件 (C )充分必要条件 (D )既不充分也不必要条件【答案】A【解析】由0:22x q >,解得0x >,易知,p 能推出q ,但q 不能推出p ,故p 是q 成立的充分不必要条件,故选A .【点评】本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题. (4)【2015年安徽,理4,5分】下列双曲线中,焦点在y 轴上且渐近线方程为2y x =±的是( )(A )2214y x -= (B )2214x y -= (C )2214y x -= (D )2214x y -=【答案】C【解析】由题意,选项A ,B 的焦点在x 轴,故排除A ,B ,C 项渐近线方程为2214y x -=,即2y x =±,故选C .【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题. (5)【2015年安徽,理5,5分】已知m ,n 是两条不同直线,α,β是两个不同平面,则下列命题正确的是( )(A )若α,β垂直于同一平面,则α与β平行 (B )若m ,n 平行于同一平面,则m 与n 平行(C )若α,β不平行,则在α内不存在与β平行的直线 (D )若m ,n 不平行,则m 与n 不可能垂直于同一平面 【答案】D【解析】对于A ,若α,β垂直于同一平面,则α,β不一定平行,如果墙角的三个平面;故A 错误;对于B ,若m ,n 平行于同一平面,则m 与n 平行.相交或者异面;故B 错误; 对于C ,若α,β不平行,则在α内存在无数条与β平行的直线;故C 错误;对于D ,若m ,n 不平行,则m 与n 不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这 两条在平行;故选D .【点评】空间中直线与平面之间的位置关系;空间中直线与直线之间的位置关系;平面与平面之间的位置关系. (6)【2015年安徽,理6,5分】若样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为8,则数据121x -,221x -,⋅⋅⋅,1021x -的标准差为( )(A )8 (B )15 (C )16 (D )32 【答案】C 【解析】设样本数据1x ,2x ,⋅⋅⋅,10x 的标准差为DX ,则8DX =,即方差64DX =,而数据121x -,221x -,⋅⋅⋅,1021x -的方差()22212264D X DX -==⨯,所以其标准差为226416⨯=,故选C . 【点评】本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键 (7)【2015年安徽,理7,5分】一个四面体的三视图如图所示,则该四面体的表面积是( ) (A )13+ (B )23+ (C )122+ (D )22 【答案】B【解析】由题意,该四面体的直观图如下,ABD ∆,ACD ∆时直角三角形,ABC ∆,ACD ∆是等边三角形,则12212BCD ABD S S ∆∆==⨯⨯=,1322sin 6022ABC ACD S S ∆∆==⨯⨯︒=,所以四面体的表面积3212232BCD ABD ABC ACD S S S S S ∆∆∆∆=+++=⨯+⨯=+,故选B . 【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.(8)【2015年安徽,理8,5分】ABC ∆是边长为2的等边三角形,已知向量a ,b 满足2AB a =, 2AC a b =+,则下列结论正确的是( )(A )1b = (B )a b ⊥ (C )1a b ⋅= (D )()4a b BC -⊥【答案】D【解析】依题意,()22BC AC AB a b a b =-=+-=,故2b =,故A 错误,222a a ==,所以1a =,又()2224222cos602AB AC a a b a ab ⋅=⋅+=+=⨯︒=,所以1a b ⋅=-,故B ,C 错误;设BC 中点为D ,则2AB AC AD +=,且AD BC ⊥,所以()4a b BC +⊥,故选D .【点评】本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.(9)【2015年安徽,理9,5分】函数()()2ax bf x x c +=+的图象如图所示,则下列结论成立的是( )(A )0a >,0b >,0c < (B )0a <,0b >,0c > (C )0a <,0b >,0c < (D )0a <,0b <,0c < 【答案】C【解析】由()()2ax b f x x c +=+及图像可知,x c ≠-,0c ->;当0x =时,()200bf c =>,所以0b >;当0y =,0ax b +=, 所以0bx a=->,所以0a <.故0a <,0b >,0c <,故选C . 【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及()0f 的符号是解决本题的关键.(10)【2015年安徽,理10,5分】已知函数()()sin f x x ωϕ=A +(A ,ω,ϕ均为正的常数)的最小正周期为π,当23x π=时,函数()f x 取得最小值,则下列结论正确的是( ) (A )()()()220f f f <-< (B )()()()022f f f <<- (C )()()()202f f f -<< (D )()()()202f f f <<-【答案】A【解析】由题意,()()sin f x x ωϕ=A +()0,0,0A ωϕ>>>,22T πππωω===,所以2ω=,则()()sin f x x ωϕ=A +,而当23x π=时,2322,32k k Z ππϕπ⨯+=+∈,解得2,6k k Z πϕπ=+∈,所以()()sin 206f x x A π⎛⎫=A +> ⎪⎝⎭,则当2262x k πππ+=+,即6x k ππ=+时,()f x 取得最大值.要比较()()()2,2,0f f f -的大小,只需判断2,-2,0与最近的最高点处对称轴的距离大小,距离越大,值越小,易知0,2与6π比较近,-2与56π-比较近,所以当0k =时,6x π=,此时00.526π-=,2 1.476π-=,当1k =-时,56x π=-,此时520.66π⎛⎫---= ⎪⎝⎭,所以()()()220f f f <-<,故选A .【点评】本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置.(11)【2015年安徽,理11,5分】731x x ⎛⎫+ ⎪⎝⎭的展开式中3x 的系数是 (用数字填写答案).【答案】35【解析】由题意()732141771rrr r r r T C x C x x --+⎛⎫== ⎪⎝⎭,令2145r -=,得4r =,则5x 的系数是4735C =.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.(12)【2015年安徽,理12,5分】在极坐标中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是 .【答案】6【解析】由题意2sin ρρθ=,转化为直角坐标方程为228x y y +=,即()22416x y +-=;直线()3R πθρ=∈转化为直角坐标方程为3y x =,则圆上到直线的距离最大值是通过圆心的直线,设圆心到直线的距离为d ,圆心的半径为r ,则圆到直线距离的最大值()2204424613D d r -=+=+=+=+-.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.(13)【2015年安徽,理13,5分】执行如图所示的程序框图(算法流程图),输出的n 为 . 【答案】4【解析】由题意,程序框图循环如下:①1a =,;1n =②131112a =+=+,2n =;③1713512a =+=+,3n =;④117171215a =+=+,4n =,此时, 171.4140.0030.00512-≈<,所以输出4n =. 【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的a ,n 的值是解题的关键,属于基础题. (14)【2015年安徽,理14,5分】已知数列{}n a 是递增的等比数列,249a a +=,238a a =,则数列{}n a 的前n 项和等于 . 【答案】21n -【解析】由题意,14231498a a a a a a +=⎧⎨⋅==⎩,解得11a =,48a =或者18a =,41a =,而数列{}n a 是递增的等比数列,所以11a =,48a =,即3418a q a ==,所以2q =,因而数列{}n a 的前n 项和()111221112n n n n a q S q --===---. 【点评】本题考查等比数列的性质,数列{}n a 的前n 项和求法,基本知识的考查.(15)【2015年安徽,理15,5分】设30x ax b ++=,其中,a b 均为实数,下列条件中,使得该三次方程仅有一个实根的是 __.①3,3a b =-=-;②3,2a b =-=;③3,2a b =->;④0,2a b ==;⑤1,2a b ==. 【答案】①③④⑤【解析】令()3f x x ax b =++,求导得()23f x x a '=+,当0a ≥时,()0f x '≥,所以()f x 单调递增,且至少存在一个数使()0f x <,至少存在一个数使()0f x >,所以()3f x x ax b =++必有一个零点,即方程30x ax b ++=仅有一根,故④⑤正确;当0a <时,若3a =-,则()()()233311f x x x x '=-=+-,易知,()f x 在(),1-∞-,()1,+∞上单调递增,在[]1,1-上单调递减,所以()()1132f x f b b =-=-++=+极大,()()11320f x f b b ==-+=->极小,解得2b <-或2b >,故①③正确.所以使得三次方程仅有一个实根的是①③④⑤.【点评】本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三、解答题:本大题共6题,共75分.解答应写出文字说明,演算步骤或证明过程.解答写在答题卡上的指定区域内. (16)【2015年安徽,理16,12分】在ABC ∆中,4A π=,6AB =,AC =D 在BC 边上,AD BD =,求AD 的长.解:设ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,由余弦定理得2222cos a b c bc BAC =+-∠223626cos 4π=+-⨯⨯1836(36)=+--90=,所以a =.又由正弦定理得sin sin b BAC B a ∠===, 由题设知04B π<<,所以cos B = 在ABD ∆中,由正弦定理得sin 6sin 3sin(2)2sin cos cos AB B B AD B B B Bπ===-【点评】本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查. (17)【2015年安徽,理17,12分】已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结果. (1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).解:(1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,1123253()10A A P A A ==.(2)χ的可能取值为200,300,400,22251(200)10A P A χ===;31123232353(300)10A C C A P A χ+===; 136(400)1(200)(300)1101010P P P χχχ==-=-==--=. 故χ的分布列为13200300400350101010E χ=⨯+⨯+⨯=. 【点评】本题考查离散型随机变量的分布列以及期望的求法,考查计算能力. (18)【2015年安徽,理18,12分】设*n N ∈,n x 是曲线231n y x +=+在点(12),处的切线与x 轴交点的横坐标.(1)求数列{}n x 的通项公式;(2)记2221221n n T x x x -=,证明14n T n≥. 解:(1)2221(1)(22)n n y x n x ++''=+=+,曲线221n y x +=+在点(12),处的切线斜率为22n +,从而切线方程为2(22)(1)y n x -=+-,令0y =,解得切线与x 轴交点的横坐标1111n nx n n =-=++. (2)由题设和(1)中的计算结果知22222213211321...()()...()242n n n T x x x n--==, 当1n =时,114T =;当2n ≥时,因为2222212221(21)(21)1221()2(2)(2)2n n n n n n x n n n n n -------==>==; 所以211211()...2234n n T n n ->⨯⨯⨯⨯=,综上可得对任意的*n N ∈,均有14n T n≥. 【点评】本题主要考查切线方程的求法和放缩法的应用,属基础题型. (19)【2015年安徽,理19,13分】如图所示,在多面体111A B D DCBA ,四边形11AA B B ,11,ADD A ABCD 均为正方形,E 为11B D 的中点,过1,,A D E 的平面交1CD 于F .(1)证明:11//EF B C ;(2)求二面角11E A D B --余弦值.解:(1)由正方形的性质可知11////A B AB DC ,且11A B AB DC ==,所以四边形11A B CD 为平行四边形,从而11//B C A D ,又1A D ⊂面1A DE ,1B C ⊄面1A DE ,于是1//B C 面1A DE , 又1B C ⊂面11B CD ,面1A DE面11B CD EF =,所以1//EF B C .(2)11,,AA AB AA AD AB AD ⊥⊥⊥,且1AA AB AD ==,以A 为原点,分别以1,,AB AD AA 为x 轴,y 轴和z轴单位正向量建立如图所示的空间直角坐标系,可得点的坐标(0,0,0)A ,(1,0,0)B ,(0,1,0)D ,111(0,0,1),(1,0,1),(0,1,1)A B D ,而E 点为11B D 的中点,所以E 点的坐标为()0.5,0.5,1.设面1A DE 的法向量1111(,,)n r s t =,而该面上向量()10.5,0.5,0A E =,()10,1,1A D =-,由11n A E ⊥,11n A D ⊥得111,,r s t 应满足的方程组11110.50.500r s s t +=⎧⎨-=⎩,()1,1,1-为其一组解,所以可取()11,1,1n =-,设面11A B CD 的法向量2222(,,)n r s t =,而该面上向量()110.5,0.5,0A B =,()10,1,1A D =-,由此同理可得2(0,1,1)n =所以结合图形知二面角11E A D B --的余弦值为1212||26||||332n n n n ==⨯.【点评】本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.(20)【2015年安徽,理20,13分】设椭圆E 的方程为()222210x y a b a b+=>>,点O 为坐标原点,点A 的坐标为()0a ,,点B 的坐标为()0b ,,点M 在线段AB 上,满足2BM MA =,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为()0b -,,N 为线段AC 的中点,点N 关于直线AB 的对称点的纵坐标为72,求E 的方程.解:(1)由题设条件知,点M 的坐标为21(,)33a b ,又510OM k =,从而5210b a =,进而得225,2a b c a b b ==-=,、故255c e a ==.(2)由题设条件和(1)的计算结果可得,直线AB 的方程为15x y bb +=,点N 的坐标为51(,)22b b -,设点N 关于直线AB 的对称点S 的坐标为17(,)2x ,则线段NS 的中点T的坐标为117,)244x b +-+,又点T 在直线AB 上,且1NS AB k k =-,从而有117441,71x b b b +-++=⎨+⎪=解得3b =,所以a =E 的方程为221459x y +=.【点评】本题考查了椭圆的标准方程及其性质、线段的垂直平分线性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.(21)【2015年安徽,理21,13分】设函数2()f x x ax b =-+.(1)讨论函数(sin )f x 在22ππ(-,)内的单调性并判断有无极值,有极值时求出极值;(2)记2000()f x x a x b =-+,求函数0(sin )(sin )f x f x -在22ππ(-,)上的最大值D ;(3)在(2)中,取000a b ==,求24az b =-满足1D ≤时的最大值.解:(1)2(sin )sin sin sin (sin )f x x a x b x x a b =-+=-+,22x ππ-<<,[(sin )](2sin )cos ,22f x x a x x ππ'=--<<,因为22x ππ-<<,所以cos 0x >,22sin 2x -<<,①2,a b R ≤-∈时,函数(sin )f x 单调递增,无极值; ②2,a b R ≥∈时,函数(sin )f x 单调递减,无极值;③对于22a -<<,在(,)22ππ-内存在唯一的0x ,使得02sin x a =,02x x π-<≤时,函数(sin )f x 单调递减;02x x π≤<时,函数(sin )f x 单调递增.因此22a -<<,b R ∈时,函数(sin )f x 在0x 处有极小值20(sin )()24a a f x fb ==-.(2)22x ππ-≤≤时,00000|(sin )(sin )||()sin |||||f x f x a a x b b a a b b -=-+-≤-+-,当00()()0a a b b --≥时,取2x π=,等号成立,当00()()0a a b b --<时,取2x π=-,等号成立.由此可知,0|(sin )(sin )|f x f x -在[,]22ππ-上的最大值为00||||D a a b b =-+-.(3)1D ≤即为||||1a b +≤,此时201,11a b ≤≤-≤≤,从而214a zb =-≤.取0,1a b ==,则||||1a b +≤,并且214a z b =-=,由此可知,24a zb =-满足条件1D ≤的最大值为1.【点评】本题考查函数的性质和运用,主要考查二次函数的单调性和极值、最值,考查分类讨论的思想方法和数形结合的思想,属于难题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015年安徽省高考数学试卷(理科)一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+13.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=15.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.327.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.28.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<010.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f (0)<f(2)D.f(2)<f(0)<f(﹣2)二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是(用数字填写答案)12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为14.(5分)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)18.(12分)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD 均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.2015年安徽省高考数学试卷(理科)参考答案与试题解析一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一个是正确的)1.(5分)设i是虚数单位,则复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先化简复数,再得出点的坐标,即可得出结论.【解答】解:=i(1+i)=﹣1+i,对应复平面上的点为(﹣1,1),在第二象限,故选:B.【点评】本题考查复数的运算,考查复数的几何意义,考查学生的计算能力,比较基础.2.(5分)下列函数中,既是偶函数又存在零点的是()A.y=cosx B.y=sinx C.y=lnx D.y=x2+1【分析】利用函数奇偶性的判断方法以及零点的判断方法对选项分别分析选择.【解答】解:对于A,定义域为R,并且cos(﹣x)=cosx,是偶函数并且有无数个零点;对于B,sin(﹣x)=﹣sinx,是奇函数,由无数个零点;对于C,定义域为(0,+∞),所以是非奇非偶的函数,有一个零点;对于D,定义域为R,为偶函数,都是没有零点;故选:A.【点评】本题考查了函数的奇偶性和零点的判断.①求函数的定义域;②如果定义域关于原点不对称,函数是非奇非偶的函数;如果关于原点对称,再判断f(﹣x)与f(x)的关系;相等是偶函数,相反是奇函数;函数的零点与函数图象与x轴的交点以及与对应方程的解的个数是一致的.3.(5分)设p:1<x<2,q:2x>1,则p是q成立的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】运用指数函数的单调性,结合充分必要条件的定义,即可判断.【解答】解:由1<x<2可得2<2x<4,则由p推得q成立,若2x>1可得x>0,推不出1<x<2.由充分必要条件的定义可得p是q成立的充分不必要条件.故选:A.【点评】本题考查充分必要条件的判断,同时考查指数函数的单调性的运用,属于基础题.4.(5分)下列双曲线中,焦点在y轴上且渐近线方程为y=±2x的是()A.x2﹣=1 B.﹣y2=1 C.﹣x2=1 D.y2﹣=1【分析】对选项首先判定焦点的位置,再求渐近线方程,即可得到答案.【解答】解:由A可得焦点在x轴上,不符合条件;由B可得焦点在x轴上,不符合条件;由C可得焦点在y轴上,渐近线方程为y=±2x,符合条件;由D可得焦点在y轴上,渐近线方程为y=x,不符合条件.故选:C.【点评】本题考查双曲线的方程和性质,主要考查双曲线的焦点和渐近线方程的求法,属于基础题.5.(5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面【分析】利用面面垂直、线面平行的性质定理和判定定理对选项分别分析解答.【解答】解:对于A,若α,β垂直于同一平面,则α与β不一定平行,例如墙角的三个平面;故A错误;对于B,若m,n平行于同一平面,则m与n平行.相交或者异面;故B错误;对于C,若α,β不平行,则在α内存在无数条与β平行的直线;故C错误;对于D,若m,n不平行,则m与n不可能垂直于同一平面;假设两条直线同时垂直同一个平面,则这两条在平行;故D正确;故选:D.【点评】本题考查了空间线面关系的判断;用到了面面垂直、线面平行的性质定理和判定定理.6.(5分)若样本数据x1,x2,…,x10的标准差为8,则数据2x1﹣1,2x2﹣1,…,2x10﹣1的标准差为()A.8 B.15 C.16 D.32【分析】根据标准差和方差之间的关系先求出对应的方差,然后结合变量之间的方差关系进行求解即可.【解答】解:∵样本数据x1,x2,…,x10的标准差为8,∴=8,即DX=64,数据2x1﹣1,2x2﹣1,…,2x10﹣1的方差为D(2X﹣1)=4DX=4×64,则对应的标准差为==16,故选:C.【点评】本题主要考查方差和标准差的计算,根据条件先求出对应的方差是解决本题的关键.7.(5分)一个四面体的三视图如图所示,则该四面体的表面积是()A.1+B.2+C.1+2D.2【分析】根据几何体的三视图,得出该几何体是底面为等腰直角三角形的三棱锥,结合题意画出图形,利用图中数据求出它的表面积.【解答】解:根据几何体的三视图,得;该几何体是底面为等腰直角三角形的三棱锥,如图所示;∴该几何体的表面积为S表面积=S△PAC+2S△PAB+S△ABC=×2×1+2××+×2×1=2+.故选:B.【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是由三视图得出几何体的结构特征,是基础题目.8.(5分)△ABC是边长为2的等边三角形,已知向量,满足=2,=2+,则下列结论正确的是()A.||=1 B.⊥C.•=1 D.(4+)⊥【分析】由题意,知道,,根据已知三角形为等边三角形解之.【解答】解:因为已知三角形ABC的等边三角形,,满足=2,=2+,又,∴的方向应该为的方向.所以,,所以=2,=1×2×cos120°=﹣1,4=4×1×2×cos120°=﹣4,=4,所以=0,即(4)=0,即=0,所以;故选:D.【点评】本题考查了向量的数量积公式的运用;注意:三角形的内角与向量的夹角的关系.9.(5分)函数f(x)=的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<0【分析】分别根据函数的定义域,函数零点以及f(0)的取值进行判断即可.【解答】解:函数在P处无意义,由图象看P在y轴右边,所以﹣c>0,得c<0,f(0)=,∴b>0,由f(x)=0得ax+b=0,即x=﹣,即函数的零点x=﹣>0,∴a<0,综上a<0,b>0,c<0,故选:C.【点评】本题主要考查函数图象的识别和判断,根据函数图象的信息,结合定义域,零点以及f(0)的符号是解决本题的关键.10.(5分)已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=时,函数f(x)取得最小值,则下列结论正确的是()A.f(2)<f(﹣2)<f(0)B.f(0)<f(2)<f(﹣2)C.f(﹣2)<f (0)<f(2)D.f(2)<f(0)<f(﹣2)【分析】依题意可求ω=2,又当x=时,函数f(x)取得最小值,可解得φ,从而可求解析式f(x)=Asin(2x+),利用正弦函数的图象和性质及诱导公式即可比较大小.【解答】解:依题意得,函数f(x)的周期为π,∵ω>0,∴ω==2.又∵当x=时,函数f(x)取得最小值,∴2×+φ=2kπ+,k∈Z,可解得:φ=2kπ+,k∈Z,∴f(x)=Asin(2x+2kπ+)=Asin(2x+).∴f(﹣2)=Asin(﹣4+)=Asin(﹣4+2π)>0.f(2)=Asin(4+)<0,f(0)=Asin=Asin>0,又∵>﹣4+2π>>,而f(x)=Asinx在区间(,)是单调递减的,∴f(2)<f(﹣2)<f(0).故选:A.【点评】本题主要考查了三角函数的周期性及其求法,三角函数的图象与性质,用诱导公式将函数值转化到一个单调区间是比较大小的关键,属于中档题.二.填空题(每小题5分,共25分)11.(5分)(x3+)7的展开式中的x5的系数是35(用数字填写答案)【分析】根据所给的二项式,利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为5求得r,再代入系数求出结果.【解答】解:根据所给的二项式写出展开式的通项,T r+1==;要求展开式中含x5的项的系数,∴21﹣4r=5,∴r=4,可得:=35.故答案为:35.【点评】本题考查二项式定理的应用,本题解题的关键是正确写出二项展开式的通项,在这种题目中通项是解决二项展开式的特定项问题的工具.12.(5分)在极坐标系中,圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值是6.【分析】圆ρ=8sinθ化为ρ2=8ρsinθ,把代入可得直角坐标方程,直线θ=(ρ∈R)化为y=x.利用点到直线的距离公式可得圆心C(0,4)到直线的距离d,可得圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r.【解答】解:圆ρ=8sinθ化为ρ2=8ρsinθ,∴x2+y2=8y,化为x2+(y﹣4)2=16.直线θ=(ρ∈R)化为y=x.∴圆心C(0,4)到直线的距离d==2,∴圆ρ=8sinθ上的点到直线θ=(ρ∈R)距离的最大值=d+r=2+4=6.故答案为:6.【点评】本题考查了极坐标化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.13.(5分)执行如图所示的程序框图(算法流程图),输出的n为4【分析】模拟执行程序框图,依次写出每次循环得到的a,n的值,当a=时不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.【解答】解:模拟执行程序框图,可得a=1,n=1满足条件|a﹣1.414|>0.005,a=,n=2满足条件|a﹣1.414|>0.005,a=,n=3满足条件|a﹣1.414|>0.005,a=,n=4不满足条件|a﹣1.414|=0.00267>0.005,退出循环,输出n的值为4.故答案为:4.【点评】本题主要考查了循环结构的程序框图,正确写出每次循环得到的a,n 的值是解题的关键,属于基础题.14.(5分)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于2n﹣1.【分析】利用等比数列的性质,求出数列的首项以及公比,即可求解数列{a n}的前n项和.【解答】解:数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,可得a1a4=8,解得a1=1,a4=8,∴8=1×q3,q=2,数列{a n}的前n项和为:=2n﹣1.故答案为:2n﹣1.【点评】本题考查等比数列的性质,数列{a n}的前n项和求法,基本知识的考查.15.(5分)设x3+ax+b=0,其中a,b均为实数,下列条件中,使得该三次方程仅有一个实根的是①③④⑤(写出所有正确条件的编号)①a=﹣3,b=﹣3.②a=﹣3,b=2.③a=﹣3,b>2.④a=0,b=2.⑤a=1,b=2.【分析】对五个条件分别分析解答;利用数形结合以及导数,判断单调区间以及极值.【解答】解:设f(x)=x3+ax+b,f'(x)=3x2+a,①a=﹣3,b=﹣3时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=﹣5,f(﹣1)=﹣1;并且x>1或者x<﹣1时f'(x)>0,所以f(x)在(﹣∞,﹣1)和(1,+∞)都是增函数,所以函数图象与x轴只有一个交点,故x3+ax+b=0仅有一个实根;如图②a=﹣3,b=2时,令f'(x)=3x2﹣3=0,解得x=±1,x=1时f(1)=0,f(﹣1)=4;如图③a=﹣3,b>2时,函数f(x)=x3﹣3x+b,f(1)=﹣2+b>0,函数图象形状如图②,所以方程x3+ax+b=0只有一个根;④a=0,b=2时,函数f(x)=x3+2,f'(x)=3x2≥0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;⑤a=1,b=2时,函数f(x)=x3+x+2,f'(x)=3x2+1>0恒成立,故原函数在R上是增函数;故方程方程x3+ax+b=0只有一个根;综上满足使得该三次方程仅有一个实根的是①③④⑤.故答案为:①③④⑤.【点评】本题考查了函数的零点与方程的根的关系;关键是数形结合、利用导数解之.三.解答题(共6小题,75分)16.(12分)在△ABC中,∠A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.【分析】由已知及余弦定理可解得BC的值,由正弦定理可求得sinB,从而可求cosB,过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,即可求得AD的长.【解答】解:∵∠A=,AB=6,AC=3,∴在△ABC中,由余弦定理可得:BC2=AB2+AC2﹣2AB•ACcos∠BAC=90.∴BC=3…4分∵在△ABC中,由正弦定理可得:,∴sinB=,∴cosB=…8分∵过点D作AB的垂线DE,垂足为E,由AD=BD得:cos∠DAE=cosB,∴Rt△ADE中,AD===…12分【点评】本题主要考查了正弦定理,余弦定理在解三角形中的应用,属于基本知识的考查.17.(12分)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X的分布列和均值(数学期望)【分析】(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,利用古典概型的概率求解即可.(Ⅱ)X的可能取值为:200,300,400.求出概率,得到分布列,然后求解期望即可.【解答】解:(Ⅰ)记“第一次检测出的是次品且第二次检测出的是正品”为事件A,则P(A)==.(Ⅱ)X的可能取值为:200,300,400P(X=200)==.P(X=300)==.P(X=400)=1﹣P(X=200)﹣P(X=300)=.X的分布列为:X200300400PEX=200×+300×+400×=350.【点评】本题考查离散型随机变量的分布列以及期望的求法,考查计算能力.18.(12分)设n∈N*,x n是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标.(Ⅰ)求数列{x n}的通项公式;(Ⅱ)记T n=x12x32…x2n﹣12,证明:T n≥.【分析】(1)利用导数求切线方程求得切线直线并求得横坐标;(2)利用放缩法缩小式子的值从而达到所需要的式子成立.【解答】解:(1)y'=(x2n+2+1)'=(2n+2)x2n+1,曲线y=x2n+2+1在点(1,2)处的切线斜率为2n+2,从而切线方程为y﹣2=(2n+2)(x﹣1)令y=0,解得切线与x轴的交点的横坐标为,(2)证明:由题设和(1)中的计算结果可知:T n=x12x32…x2n﹣12=,当n=1时,,2==>==,当n≥2时,因为x2n﹣1所以T n;,均有.综上所述,可得对任意的n∈N+【点评】本题主要考查切线方程的求法和放缩法的应用,属基础题型.19.(13分)如图所示,在多面体A1B1D1DCBA中,四边形AA1B1B,ADD1A1,ABCD 均为正方形,E为B1D1的中点,过A1,D,E的平面交CD1于F.(Ⅰ)证明:EF∥B1C;(Ⅱ)求二面角E﹣A1D﹣B1的余弦值.【分析】(Ⅰ)通过四边形A1B1CD为平行四边形,可得B1C∥A1D,利用线面平行的判定定理即得结论;(Ⅱ)以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz,设边长为2,则所求值即为平面A1B1CD的一个法向量与平面A1EFD的一个法向量的夹角的余弦值的绝对值,计算即可.【解答】(Ⅰ)证明:∵B1C=A1D且A1B1=CD,∴四边形A1B1CD为平行四边形,∴B1C∥A1D,又∵B1C⊄平面A1EFD,∴B1C∥平面A1EFD,又∵平面A1EFD∩平面B1CD1=EF,∴EF∥B1C;(Ⅱ)解:以A为坐标原点,以AB、AD、AA1所在直线分别为x、y、z轴建立空间直角坐标系A﹣xyz如图,设边长为2,∵AD1⊥平面A1B1CD,∴=(0,2,2)为平面A1B1CD的一个法向量,设平面A1EFD的一个法向量为=(x,y,z),又∵=(0,2,﹣2),=(1,1,0),∴,,取y=1,得=(﹣1,1,1),∴cos<,>==,∴二面角E﹣A1D﹣B1的余弦值为.【点评】本题考查空间中线线平行的判定,求二面角的三角函数值,注意解题方法的积累,属于中档题.20.(13分)设椭圆E的方程为+=1(a>b>0),点O为坐标原点,点A 的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,满足|BM|=2|MA|,直线OM的斜率为(Ⅰ)求E的离心率e;(Ⅱ)设点C的坐标为(0,﹣b),N为线段AC的中点,点N关于直线AB的对称点的纵坐标为,求E的方程.【分析】(I)由于点M在线段AB上,满足|BM|=2|MA|,即,可得.利用,可得.(II)由(I)可得直线AB的方程为:=1,利用中点坐标公式可得N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,可得b,解得即可.【解答】解:(I)∵点M在线段AB上,满足|BM|=2|MA|,∴,∵A(a,0),B(0,b),∴=.∵,∴,a=b.∴=.(II)由(I)可得直线AB的方程为:=1,N.设点N关于直线AB的对称点为S,线段NS的中点T,又AB垂直平分线段NS,∴,解得b=3,∴椭圆E的方程为:.【点评】本题考查了椭圆的标准方程及其性质、线段的垂直平分线性质、中点坐标公式、相互垂直的直线斜率之间的关系,考查了推理能力与计算能力,属于难题.21.(13分)设函数f(x)=x2﹣ax+b.(Ⅰ)讨论函数f(sinx)在(﹣,)内的单调性并判断有无极值,有极值时求出最值;(Ⅱ)记f0(x)=x2﹣a0x+b0,求函数|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值D;(Ⅲ)在(Ⅱ)中,取a0=b0=0,求z=b﹣满足条件D≤1时的最大值.【分析】(Ⅰ)设t=sinx,f(t)=t2﹣at+b(﹣1<t<1),讨论对称轴和区间的关系,即可判断极值的存在;(Ⅱ)结合不等式的性质求得最大值;(Ⅲ)由(Ⅱ)结合不等式的性质求得z=b﹣的最大值.【解答】解:(Ⅰ)设t=sinx,在x∈(﹣,)递增,即有f(t)=t2﹣at+b(﹣1<t<1),f′(t)=2t﹣a,①当a≥2时,f′(t)≤0,f(t)递减,即f(sinx)递减;当a≤﹣2时,f′(t)≥0,f(t)递增,即f(sinx)递增.即有a≥2或a≤﹣2时,不存在极值.②当﹣2<a<2时,﹣1<t<,f′(t)<0,f(sinx)递减;<t<1,f′(t)>0,f(sinx)递增.f(sinx)有极小值f()=b﹣;(Ⅱ)﹣≤x≤时,|f(sinx)﹣f0(sinx)|=|(a﹣a0)sinx+b﹣b0|≤|a﹣当(a﹣a0)(b﹣b0)≥0时,取x=,等号成立;当(a﹣a0)(b﹣b0)≤0时,取x=﹣,等号成立.由此可知,|f(sinx)﹣f0(sinx)|在[﹣,]上的最大值为D=|a﹣a0|+|b ﹣b0|.(Ⅲ)D≤1即为|a|+|b|≤1,此时0≤a2≤1,﹣1≤b≤1,从而z=b﹣≤1取a=0,b=1,则|a|+|b|≤1,并且z=b﹣=1.由此可知,z=b﹣满足条件D≤1的最大值为1.【点评】本题考查函数的性质和运用,主要考查二次函数的单调性和极值、最值,考查分类讨论的思想方法和数形结合的思想,属于难题.。