初一数学第三次回家作业
脱口秀数学回家作业 教师版
脱口秀数学回家作业(一)1. 64-63+62+61-60+59+58-57+56+…+5+4-3+2+1【解析】原式=(64-63+62)+(61-60+59)+(58-57+56)+…+(4-3+2)+1= 63+60+57+…+3+1=(3+63)×21÷2+1= 693+1 =6942. 2009+2005+2001+…+1-2007-2003-1999-…-3【解析】原式=(2009-2007)+(2005-2003)+(2001-1999)+…+(5-3)+1= 2+2+2+…+2+1= 502×2+1 = 10053. 9999×7777+3333×6666【解析】原式= 9999×7777+3333×3×2222= 9999×7777+9999×2222= 9999×9999= 9999×10000-9999= 999800014. 201×891÷111+201×73÷37【解析】201×891÷111+201×73÷37= 201×(891÷111+73÷37)= 201×(297÷37+73÷37)= 201×[(297+73)÷37]= 201×(370÷37)= 201×10 = 20105. 17×47+47×19+19×6+6×34【解析】原式= 47×36+6×53= 47×30+47×6+6×53= 1410+600 = 20106. 389+387+383+385+384+386+388【解析】原式= 380×7+9+7+3+5+4+6+8= 2660+42= 27027. 如果a△b表示(a-2)×b,例如:3△4=(3-2)×4=4。
人教版七年级数学第二学期 第三次质量检测测试卷含答案
人教版七年级数学第二学期 第三次质量检测测试卷含答案一、选择题1.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩2.如图,两架天平保持平衡,且每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,则一块巧克力的质量是( )A .20gB .25gC .15gD .30g3.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( )A .5B .-5C .15D .254.已知方程组43235x y kx y -=⎧⎨+=⎩的解满足x y =,则k 的值为( )A .1B .2C .3D .45.某单位采购小李去商店买笔记本和笔,他先选定了笔记本和笔的种类,若买25本笔记本和30支笔,则他身上的钱缺30元;若买15本笔记本和40支笔,则他身上的钱多出30元.( )A .若他买55本笔记本,则会缺少120元B .若他买55支笔,则会缺少120元C .若他买55本笔记本,则会多出120元D .若他买55支笔,则会多出120元6.某工厂有工人35人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓16个或螺母24个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?设生产螺栓的有x 人,生产螺母的有y 人,则可以列方程组( )A .351624x y x y +=⎧⎨=⎩B .352416x y x y +=⎧⎨=⎩ C .35 16224x y x y +=⎧⎨=⨯⎩ D .3521624x y x y +=⎧⎨⨯=⎩7.已知实数a 、m 满足a >m ,若方程组325x y a x y a -=+⎧⎨+=⎩的解x 、y 满足x >y 时,有a >-3,则m 的取值范围是( ) A .m >-3 B .m≥-3 C .m≤-3 D .m <-38.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是( )A.48xy=⎧⎨=⎩B.912xy=⎧⎨=⎩C.1520xy=⎧⎨=⎩D.9585xy⎧=⎪⎪⎨⎪=⎪⎩9.为了节省空间,食堂里的饭碗一般是摆起来存放的,如果6只饭碗(注:饭碗的大小形状都一样,下同)摆起来的高度为15cm,9只饭碗摆起来的高度为21cm,食堂的碗橱每格的高度为35cm,则一摞碗最多只能放( )只.A.20B.18C.16D.1510.《九章算术》是我国东汉初年编订的一部数学经典著作在它的“方程”一章里,一次方程组是由算筹布置而成的《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2图中各行从左到右列出的算筹数分别表示未知数,x y的系数与相应的常数项把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是2+327214x yx y=⎧⎨+=⎩类似地,图2所示的算筹图我们可以表述为( )A.2+164322x yx y=⎧⎨+=⎩B.2+164327x yx y=⎧⎨+=⎩C.2+114322x yx y=⎧⎨+=⎩D.2+114327x yx y=⎧⎨+=⎩二、填空题11.甲乙两人共同解方程组515(1)42(2)ax yx by+=⎧⎨-=-⎩,由于甲看错了方程(1)中的a,得到方程组的解为31xy=-⎧⎨=-⎩;乙看错了方程(2)中的b,得到方程组的解为54xy=⎧⎨=⎩;计算20192018110a b⎛⎫+-=⎪⎝⎭________.12.冬季降至,贫困山区恶劣的地理环境加之其落后的交通条件,无疑将使得山区在漫长冬季里物资更加匮乏,“让冬天不冷让爱心永驻”,重庆市公益组织心驿家号召全市人民为贫困山区的孩子们捐赠过冬衣物,本次捐赠共收集了11600件棉衣、7500件羽绒服及防寒服若干,自愿者将所有衣物分成若干A、B、C类组合,由自愿者们分别送往交通极其不便利的各个山区,一个A类组合含有60件棉衣,80件防寒服和50件羽绒服;一个B类组合含有40件棉衣,40件防寒服;一个C类组合含有40件棉衣,60件防寒服,50件羽绒服;求防寒服一共捐赠了_____件.13.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A 、B 两种文学书籍若干本,用去6138元,已知A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.14.某商场在11月中旬对甲、乙、丙三种型号的电视机进行促销.其中,甲型号电视机直接按成本价1280元的基础上获利25%定价;乙型号电视机在原销售价2199元的基础上先让利199元,再按八五折优惠;丙型号电视机直接在原销售价2399元上减499元;活动结束后,三种型号电视机总销售额为20600元,若在此次促销活动中,甲、乙、丙三种型号的电视机至少卖出其中两种型号,则三种型号的电视机共______有种销售方案. 15.某科技公司推出一款新的电子产品,该产品有三种型号.通过市场调研后,按三种型号受消费者喜爱的程度分别对A 型、B 型、C 型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个季度的经营后,发现C 型产品的销量占总销量的37,且三种型号的总利润率为35%.第二个季度,公司决定对A 型产品进行升级,升级后A 产品的成本提高了25%,销量提高了20%;B 、C 产品的销量和成本均不变,且三种产品在二季度成本基础上分别加价20%,30%,45%出售,则第二个季度的总利润率为______. 16.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A 植树点植树,乙、丁两组到B 植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A 、B 两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.17.我校第二课堂开展后受到了学生的追捧,学期结束后对部分学生做了一次“我最喜爱的第二课堂”问卷调查(每名学生都填了调査表,且只选了一个项目),统计后趣味数学、演讲与口才、信息技术、手工制作榜上有名.其中选信息技术的人数比选手工制作的少8人;选趣味数学的人数不仅比选手工制作的人多,且为整数倍;选趣味数学与选手工制作的人数之和是选演讲与口才与选信息技术的人数之和的5倍;选趣味数学与选演讲与口才的人数之和比选信息技术与选手工制作的人数之和多24人.则参加调查问卷的学生有________人.18.a 与b 互为相反数,且4a b -=,那么211a ab a ab -+++=_______.19.若方程123x y -=的解中,x 、y 互为相反数,则32x y -=_________ 20.若是满足二元一次方程的非负整数,则的值为___________.三、解答题21.阅读下列文字,请仔细体会其中的数学思想. (1)解方程组321327x y x y -=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组()()()()3523135237m n m n ⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m +5,n +3看成一个整体,设m +5=x ,n +3=y ,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题: 若关于m ,n 的方程组722am bn m bn +=⎧⎨-=-⎩与351m n am bn +=⎧⎨-=-⎩有相同的解,求a 、b 的值.22.某商贸公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:体积(立方米/件) 质量(吨/件) A 型商品0.8 0.5 B 型商品21(1)已知一批商品有A 、B 两种型号,体积一共是20立方米,质量一共是10.5吨,求A 、B 两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元; ②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元? 23.如图,//CD EF ,AE 是CAB ∠的平分线,α∠和β∠的度数满足方程组2250(1)3100(2)αβαβ∠+∠=︒⎧⎨∠-∠=︒⎩,(1)求α∠和β∠的度数; (2)求证://AB CD . (3)求C ∠的度数.24.据永川区农业信息中心介绍,去年永川生态枇杷园喜获丰收,个体商贩张杰准备租车把枇杷运往外地去销售,经租车公司负责人介绍,用2辆甲型车和3辆乙型车装满枇杷一次可运货12吨;用3辆甲型车和4辆乙型车装满枇杷一次可运货17吨,现有21吨枇杷,计划同时租用甲型车m辆,乙型车n辆,一次运完,且恰好每辆车都装满枇杷,根据以上信息,解答下列问题:(1)1辆甲型车和1辆乙型车都装满枇杷一次可分别运货多少吨?(2)请你帮个体商贩张杰设计共有多少种租车方案?25.某小区为了绿化环境,计划分两次购进A、B两种花草,第一次分别购进A、B两种花草30棵和15棵,共花费675元;第二次分别购进A、B两种花草12棵和5棵.两次共花费940元(两次购进的A、B两种花草价格均分别相同).()1A、B两种花草每棵的价格分别是多少元?()2若再次购买A、B两种花草共12棵(A、B两种花草价格不变),且A种花草的数量不少于B种花草的数量的4倍,请你给出一种费用最省的方案,并求出该方案所需费用.26.(1)阅读下列材料并填空:对于二元一次方程组4354{336x yx y+=+=,我们可以将x,y的系数和相应的常数项排成一个数表4354()1336,求得的一次方程组的解{x ay b==,用数表可表示为10)01ab(.用数表可以简化表达解一次方程组的过程如下,请补全其中的空白:从而得到该方程组的解为x= ,y= .(2)仿照(1)中数表的书写格式写出解方程组236{2x yx y+=+=的过程.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】大房间有x个,小房间有y个,根据等量关系:大小共70个房间,共住480人,列方程组即可.【详解】大房间有x个,小房间有y个,由题意得:7086480x y x y +=⎧⎨+=⎩, 故选A.【点睛】本题考查了二元一次方程组的应用,弄清题意,找出等量关系列出方程组是解此类问题的关键.2.A解析:A 【分析】设每块巧克力的质量为x 克,每块果冻的质量为y 克,根据每块巧克力的质量相等,每个果冻的质量也相等,则一块巧克力的质量是也相等,列出方程组即可解答 【详解】设每块巧克力的质量为x 克,每块果冻的质量为y 克,由题意得3250x yx y =+=⎧⎨⎩ , 解得2030x y ==⎧⎨⎩ , 即一块巧克力的质量是20g. 故选A. 【点睛】此题考查二元一次方程组的应用,列出方程组是解题关键3.A解析:A 【分析】将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可. 【详解】解:2728x y x y +=⎧⎨+=⎩①② ①-②,得:x-y=-1,∴5x-5y+10=5(x-y)+10=5×(-1)+10=5. 故选A. 【点睛】本题考查了用加减法解二元一次方程组.4.A解析:A 【分析】把x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得到关于x 、k 的二元一次方程组,即可求解.【详解】x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得43235x x k x x -=⎧⎨+=⎩,即1x kx =⎧⎨=⎩,所以k=1, 故选:A 【点睛】此题考查了解二元一次方程组.把x=y 代入到方程组,消去y 是解答此题的关键.5.D解析:D 【分析】设笔记本的单价为x 元,笔的单价为y 元,根据小李身上的总额列出方程,然后变形即可求解. 【详解】设笔记本的单价为x 元,笔的单价为y 元,根据题意得: 25x+30y-30=15x+40y+30 整理得:10x-10y=60,即x-y=6∴()253063055210x x x +--=-,即买55个笔记本缺少210元()256303055120y y y ++-=+,即买55支笔多出120元故选D . 【点睛】本题考查了二元一次方程组,根据题意列出等量关系然后进行推导是本题的关键.6.D解析:D 【解析】 【分析】首先设x 人生产螺栓,y 人生产螺母刚好配套,利用工厂有工人35人,每人每天生产螺栓16个或螺母24个,进而得出等式求出答案. 【详解】设x 人生产螺栓,y 人生产螺母刚好配套, 据题意可得,3521624x y x y+=⎧⎨⨯=⎩.故选:D. 【点睛】此题主要考查了二元一次方程组的应用,根据题意正确得出等量关系是解题关键.7.C解析:C 【解析】解:325x y a x y a -=+⎧⎨+=⎩①②,①+②得,3x =6a +3,得到:x =2a +1③,把③代入①得,2a +1-y =a +3,解得y =a ﹣2,所以,方程组的解是212x a y a =+⎧⎨=-⎩,∵x >y ,∴2a +1>a ﹣2,解得a >﹣3.∵a >-3,a >m ,∴m ≤-3,故选C .点睛:本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.8.D解析:D 【解析】∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩ 的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:11122298559855a b c a b c ⎧+=⎪⎪⎨⎪+=⎪⎩, 对照方程组111222a xb yc a x b y c +=⎧⎨+=⎩可得,方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为9585x y ⎧=⎪⎪⎨⎪=⎪⎩,故选D .【点睛】本题主要考查了方程组的解法,正确观察已知方程的系数之间的关系是解题的关键.9.D解析:D 【解析】 【详解】试题分析:设1个碗的高度为xcm ,没加一个碗的高度增加的高度为ycm ,列方程组515{821x y x y +=+= ,解得52x y =⎧⎨=⎩, 设可摆k 个碗,则5+2k≤35,解得:k≤15, 故选D .【点睛】本题考查了二元一次方程组的应用,关键是根据题意,找出合适的等量关系,列方程组求解.10.D解析:D 【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x 的系数,第二个数是y 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式. 【详解】第一个方程x 的系数为2,y 的系数为1,相加的结果为11;第二个方程x 的系数为4,y 的系数为3,相加的结果为27,所以可列方程组为:2114327x y x y +=⎧⎨+=⎩.故选D . 【点睛】此题主要考查了由实际问题列二元一次方程组,关键是读懂图意,得到所给未知数的系数及相加结果.二、填空题 11.0 【分析】根据题意,将代入方程(2)可得出b 的值,代入方程(1)可得出a 的值,将a 与b 的值代入所求式子即可得出结果. 【详解】解:根据题意,将代入方程组中的4x-by=-2得:-12+b=-2解析:0 【分析】 根据题意,将31x y =-⎧⎨=-⎩代入方程(2)可得出b 的值,54x y =⎧⎨=⎩代入方程(1)可得出a 的值,将a 与b 的值代入所求式子即可得出结果. 【详解】解:根据题意,将31x y =-⎧⎨=-⎩代入方程组中的4x-by=-2得:-12+b=-2,即b=10;将54x y =⎧⎨=⎩代入方程组中的ax+5y=15得:5a+20=15,即a=-1,∴20192018110ab ⎛⎫+- ⎪⎝⎭=1-1=0.故答案为:0. 【点睛】此题考查了二元一次方程组的解,方程组的解为能使方程组中两方程成立的未知数的值.12.14600 【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决. 【详解析:14600 【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决. 【详解】解:设A 类组合x 个,B 类组合y 个,C 类组合z 个,6040401160050507500x y z x ++=⎧⎨+=⎩, 化简,得 28022130x yz y =-⎧⎨=-⎩, ∴需要的防寒服为:80x +40y +60z =80(280﹣2y )+40y +60(2y ﹣130)=22400﹣160y +40y +120y ﹣7800=14600, 故答案为:14600. 【点睛】本题考查三元一次方程组的应用,解答本题的关键是明确题意,列出相应的三元一次方程组,利用方程的知识解答.13.777 【分析】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a解析:777 【分析】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a 的值.【详解】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,设甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,由题意得:()()()()76991761382a x bx ax b x ⎧++=⎪⎨++=⎪⎩()()21-得775439-=b a∴777-=b a故答案为:777.【点睛】本题考查方程组的应用,熟练掌握单价乘以数量等于总价,建立方程组是解题的关键.14.五【分析】设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号解析:五【分析】设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据题意得:1280×(1+25%)x +(2199-199)×0.85y +(2399-499)z =20600整理得:16x +17y +19z =206∴16(x +y +z )+y +3z =16×12+14∵x 、y 、z 为非负整数,且x 、y 、z 最多一个为0,∴0≤x ≤12,0≤y ≤12,0≤z ≤10,∴14≤y +3z ≤42.设x +y +z =12-k ,y +3z =14+16k ,其中k 为非负整数.∴14≤14+16k ≤42,∴0≤k <2.∵k 为整数,∴k =0或1.(1)当k =0时,x +y +z =12,y +3z =14,∴0≤z≤4.①当z=0时,y=14>12,舍去;②当z=1时,y=14-3z=11,x=12-y-z=12-11-1=0,符合题意;③当z=2时,y=14-3z=8,x=12-y-z=12-8-2=2,符合题意;④当z=3时,y=14-3z=5,x=12-y-z=12-5-3=4,符合题意;⑤当z=4时,y=14-3z=2,x=12-y-z=12-2-4=6,符合题意.(2)当k=1时,x+y+z=11,y+3z=30∵y=30-3z,∴0≤30-3z≤12,解得:6≤z≤10,当z=6时,y=30-3z=12,x=11-y-z=11-12-6=-7<0,舍去;当z=7时,y=30-3z=9,x=11-y-z=11-9-7=-5<0,舍去;当z=8时,y=30-3z=6,x=11-y-z=11-6-8=-3<0,舍去;当z=9时,y=30-3z=3,x=11-y-z=11-3-9=-1<0,舍去;当z=10时,y=30-3z=0,x=11-y-z=11-10-0=1,符合题意.综上所述:共有111xyz=⎧⎪=⎨⎪=⎩,282xyz=⎧⎪=⎨⎪=⎩,453xyz=⎧⎪=⎨⎪=⎩,624xyz=⎧⎪=⎨⎪=⎩,110xyz=⎧⎪=⎨⎪=⎩五种方案.故答案为:五.【点睛】本题考查了三元一次方程的应用.分类讨论是解答本题的关键.15.34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A 型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意解析:34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B 型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意列出方程组,解得13x zy z⎧=⎪⎨⎪=⎩;第二个季度A产品成本为(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,则第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=34%.【详解】解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意得:20%ax30%ay45%az35%a(x y z)3(x y z)z7++=++⎧⎪⎨++=⎪⎩,解得:13x zy z⎧=⎪⎨⎪=⎩,第二个季度A产品的成本提高了25%,成本为:(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,∴第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=0.30.30.451.5x y zx y z++++=10.30.30.45311.53z z zz z z⨯++⨯++=34%,故答案为:34%.【点睛】本题考查了利用二元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.16.320【解析】【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵解析:320【解析】【分析】设甲组分得a人,则乙组为(50-a)人,丙组为b人,则丁组为(36-b)人;再设全部人均种树x棵,则甲组人均种x÷(1+25%)=0.8x棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵,根据题意列出方程,整理后可得a=140-13x,再根据a和x的取值范围确定a和x的值,从而得到植树的数量。
人教版七年级数学第二学期第三次质量检测测试卷含解析
人教版七年级数学第二学期第三次质量检测测试卷含解析一、选择题1.在“幻方拓展课程”探索中,小明在如图的3×3方格内填入了一些表示数的代数式,若图中各行、各列及对角线上的三个数之和都相等,则x ﹣y =( )A .2B .4C .6D .82.六(2)班学生进行小组合作学习,老师给他们分组:如果每组6人,那么会多出3人;如果每组7人,那么有一组少4人.如果六(2)班学生数为x 人,分成y 组,那么可得方程组为( ) A .6374y x y x =-⎧⎨=+⎩B .6374y x y x =+⎧⎨=+⎩C .6374x yx y+=⎧⎨-=⎩D .6374y x y x=+⎧⎨+=⎩3.同时适合方程2x+y=5和3x+2y=8的解是( )A .12x y =⎧⎨=⎩B .21x y =⎧⎨=⎩C .31x y =⎧⎨=⎩D .31x y ==-⎧⎨⎩4.已知559375a b a b +=⎧⎨+=⎩,则-a b 等于( )A .8B .83C .2D .15.若|321|20x y x y --++-=,则x ,y 的值为( ) A .14x y =⎧⎨=⎩B .2x y =⎧⎨=⎩C .02x y =⎧⎨=⎩D .11x y =⎧⎨=⎩ 6.下列各组数是二元一次方程371x y y x +=⎧⎨-=⎩的解是( )A .12x y =⎧⎨=⎩B .01x y =⎧⎨=⎩C .7x y =⎧⎨=⎩D .12x y =⎧⎨=-⎩7.甲、乙两人共同解关于x ,y 的方程组,甲正确地解得乙看错了方程②中的系数c ,解得,则的值为( ) A .16B .25C .36D .498.若二元一次方程组 的解为x=a ,y=b ,则a+b 的值 ( )A .B .C .D .9.若关于x 、y 的方程组2{44x y ax y a+=-=的解是方程3x 2y 10+=的一个解,则a 的值为( ) A .2 B .-2C .1D .-110.如图,宽为25cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积是( )A .2200cmB .2150cmC .2100cmD .275cm二、填空题11.方程组251036238x y z x z ⎧+-=⎪⎨⎪-=⎩__________________三元一次方程组(填“是”或“不是”).12.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了20%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_____. 13.小明今年五一节去三峡广场逛水果超市,他分两次购进了A 、B 两种不同单价的水果.第一次购买A 种水果的数量比B 种水果的数量多50%,第二次购买A 种水果的数量比第一次购买A 种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A 、B 水果的总费用比第一次购买A 、B 水果的总费用少10%(两次购买中A 、B 两种水果的单价不变),则B 种水果的单价与A 种水果的单价的比值是______.14. 已知21x y =⎧⎨=⎩,是二元一次方程组81mx ny nx my +=⎧⎨-=⎩的解,则m+3n 的平方根为______.15.在某次数学竞赛中每解出一道难题得3分,每解出一道普通题得2分,此外,对于每道未解出的普通题要扣去1分.某人解出了10道题,共得了14分,则该次数学竞赛中一共有____道普通题. 16.解三元一次方程组经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是________.17.定义一种新运算“※”,规定x ※y =2ax by +,其中a 、b 为常数,且1※2=5,2※1=3,则2※3=____________. 18.若是满足二元一次方程的非负整数,则的值为___________.19.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.20.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有____个苹果.三、解答题21.如图,在平面直角坐标系xOy 中,点(,)A a b ,(,)B m n 分别是第三象限与第二象限内的点,将A ,B 两点先向右平移h 个单位,再向下平移1个单位得到C ,D 两点(点A 对应点C ).(1)写出C ,D 两点的坐标;(用含相关字母的代数式表示)(2)连接AD ,过点B 作AD 的垂线l ,E 是直线l 上一点,连接DE ,且DE 的最小值为1.①若1b n =-,求证:直线l x ⊥轴;②在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,这条直线上有无数个点,每一个点的坐标(,)x y 都是这个方程的一个解.在①的条件下,若关于x ,y 的二元一次方程px qy k +=(0pq ≠)的图象经过点B ,D 及点(,)s t ,判断s t +与m n +是否相等,并说明理由.22.对x ,y 定义一种新运算T ,规定()22,ax byT x y a y+=+(其中a ,b 是非零常数且0x y +≠),这里等式右边是通常的四则运算.如:()223193,1314a b a b T ⨯+⨯+==+,()24,22am bT m m +-=-. (1)填空:()4,1T =_____(用含a ,b 的代数式表示); (2)若()2,02T -=-且()5,16T -=. ①求a 与b 的值;②若()()310,33,310T m m T m m --=--,求m 的值.23.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答: 自来水销售价格 每户每月用水量 单位:元/吨15吨及以下a超过15吨但不超过25吨的部分 b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.24.在平面直角坐标系中,如图1,将线段AB 平移至线段CD ,连接AC 、BD .(1)已知A (﹣3,0)、B (﹣2,﹣2),点C 在y 轴的正半轴上,点D 在第一象限内,且三角形ACO 的面积是6,求点C 、D 的坐标;(2)如图2,在平面直角坐标系中,已知一定点M (1,0),两个动点E (a ,2a +1)、F (b ,﹣2b +3).①请你探索是否存在以两个动点E 、F 为端点的线段EF 平行于线段OM 且等于线段OM ,若存在,求出点E 、F 两点的坐标;若不存在,请说明理由;②当点E 、F 重合时,将该重合点记为点P ,另当过点E 、F 的直线平行于x 轴时,是否存在△PEF 的面积为2?若存在,求出点E 、F 两点的坐标;若不存在,请说明理由.25.已知关于x 、y 的二元一次方程组23221x y k x y k -=-⎧⎨+=-⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示); (2)若方程组的解x 、y 满足+x y >5,求k 的取值范围; (3)若1k ≤,设23m x y =-,且m 为正整数,求m 的值.26.在今年“六•一”期间,扬州市某中学计划组织初一学生到上海研学,如果租用甲种客车2辆,乙种客车3辆,则可载180人,如果租用甲种客车3辆,乙种客车1辆,则可载165人.(1)请问甲、乙两种客车每辆分别能载客多少人?(2)若该学校初一年级参加研学活动的师生共有303名,旅行社承诺每辆车安排一名导游,导游也需一个座位.旅行前,旅行社的一名导游由于有特殊情况,旅行社只能安排7名导游,为保证所租的每辆车均有一名导游,租车方案调整为:同时租65座、甲种客车和乙种客车的大小三种客车,出发时,所租的三种客车的座位恰好坐满,请问旅行社的租车方案应如何安排?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由图中各行、各列及对角线上的三个数之和都相等,即可得出关于x ,y 的二元一次方程组,解之即可得出x ,y 的值,再将其代入(x-y )中即可求出结论. 【详解】依题意得:22226x y yx y -=+⎧⎨-=-+⎩,解得:82x y =⎧⎨=⎩,∴x ﹣y =8﹣2=6. 故选:C . 【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.2.A解析:A 【分析】设学生数为x 人,分成y 组,根据组数和总人数的数量关系建立方程组求解即可. 【详解】设学生数为x 人,分成y 组,由题意知如果每组6人,那么多出3人,可得出:63y x =-, 如果每组7人,组数固定,那么有一组少4人,可得出:74y x =+, 故有:6374y x y x =-⎧⎨=+⎩.故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.3.B解析:B 【分析】根据题意列出方程组,先用加减消元法,再用代入消元法求出方程组的解即可或把四个选项的答案依次代入方程组,运用排除法进行选择. 【详解】解:方法一:把各个选项的答案依次代入,只有B 答案适合方程组;方法二:由题意,得25,328x y x y +=⎧⎨+⎩①=,②①×2-②得,x=2, 代入①得,2×2+y=5,y=1故原方程组的解为2,1.x y =⎧⎨=⎩故选:B . 【点睛】本题比较简单,考查的是方程组的解的定义以及解二元一次方程组的代入消元法和加减消元法.4.C解析:C 【分析】把两个方程的左右两边分别相减,求出a-b 的值是多少即可. 【详解】解:559375a b a b +⎧⎨+⎩=①=②①-②,可得 2(a-b )=4, ∴a-b=2. 故选:C . 【点睛】此题主要考查了解二元一次方程组,关键是注意观察,找出解决问题的简便方法.5.D解析:D 【解析】分析:先根据非负数的性质列出关于x 、y 的二元一次方程组,再利用加减消元法求出x 的值,利用代入消元法求出y 的值即可.详解:∵3210x y --=,∴321020x y x y --⎧⎨+-⎩==将方程组变形为32=1=2x y x y -⎧⎨+⎩①②,①+②×2得,5x=5,解得x=1, 把x=1代入①得,3-2y=1,解得y=1, ∴方程组的解为11x y =⎧⎨=⎩. 故选D .点睛:本题考查的是解二元一次方程组,熟知解二元一次方程组的加减消元法和代入消元法是解答此题的关键.6.A解析:A 【解析】分析:所谓“方程组”的解,指的是该数值满足方程组中的每一方程.此题直接解方程组或运用代入排除法作出选择. 详解:∵y ﹣x =1,∴y =1+x . 代入方程x +3y =7,得:x +3(1+x )=7,即4x =4,∴x =1,∴y =1+x =1+1=2. ∴解为12x y =⎧⎨=⎩. 故选A .点睛:本题要注意方程组的解的定义.7.B解析:B 【解析】 【分析】将x =2,y =﹣1代入方程组中,得到关于a 与b 的二元一次方程与c 的值,将x =3,y =1代入方程组中的第一个方程中得到关于a 与b 的二元一次方程,联立组成关于a 与b 的方程组,求出方程组的解得到a 与b 的值,即可确定出a ,b 及c 的值. 【详解】 把代入得:,解得:c =4,把代入得:3a +b =5,联立得:,解得:,则(a +b +c )2=(2﹣1+4)2=25.故选B . 【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.8.A解析:A 【解析】 【分析】首先解方程组求得x 、y 的值,即可得到a 、b 的值,进而求得a+b 的值. 【详解】解:解方程组得:则 则故选:A . 【点睛】此题主要考查了二元一次方程组解法,解方程组的基本思想是消元,正确解方程组是关键.9.A解析:A 【解析】(1)−(2)得:6y=−3a , ∴y=−2a ,代入(1)得:x=2a ,把y=−2a,x=2a 代入方程3x+2y=10, 得:6a −a=10, 即a=2. 故选A.10.C解析:C 【分析】根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽=25,小长方形的长×2=小长方形的长+小长方形的宽×4,根据这两个等量关系,可列出方程组,再求解. 【详解】设一个小长方形的长为xcm ,宽为ycm ,由图形可知,2524x y x x y +=⎧⎨=+⎩,解得:205x y =⎧⎨=⎩,所以一个小长方形的面积为205100⨯=(cm 2) . 故选:C . 【点睛】本题考查了二元一次方程的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小正方形的长与宽的关系.二、填空题 11.是 【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可. 【详解】解:如果方程组中含有三解析:是 【分析】根据三元一次方程组的定义可知,由两个或两个以上方程组成,该如果方程组内含有三个未知数,且未知数的次数都是一次的,就是三元一次方程组,由此判断作答即可. 【详解】解:如果方程组中含有三个未知数,每个方程中含有未知数的项的次数都是一,并且方程组中一共有两个或两个以上的方程,这样的方程组叫做三元一次方程组.所以251036238x y z x z ⎧+-=⎪⎨⎪-=⎩是三元一次方程组; 故填:是. 【点睛】本题主要考查三元一次方程组的定义.12.15% 【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可. 【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻解析:15% 【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可. 【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(120%)a b c a b c c a a b x c a b c ++=++⎧⎪=⋅⎨⎪+++++=+++⎩, 化简得30(1)2(2)501542(3)a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩,把(2)代入(1)得,b =6a (4),把(2)和(4)都代入(3)得,300ax =15a +24a +6a , ∴x =15%, 故答案为15%. 【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.13.【分析】根据水果数量的等量关系,可设第一次购买种水果数量为个,用分别表示第一次购买种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为元和元,根据两次购买价钱的等量关系列方程,所列方解析:12【分析】根据水果数量的等量关系,可设第一次购买B 种水果数量为x 个,用x 分别表示第一次购买A 种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为a 元和b 元,根据两次购买价钱的等量关系列方程,所列方程中x 是可以约去的,化简即得到a 与b 的数量关系.【详解】解:设第一次购买B 种水果数量为x ,∴第一次购买A 种水果的数量为:3(150%)2x x +=, ∴第二次购买A 种水果数量为:3323(160%)2255x x x -==, ∴第二次购买水果的总数量为:356()(120%)3225x x xx ++==, ∴第二次购买B 种水果个数为:312355x x x -=, 设A 种水果单价为a 元,B 种水果单价为b 元,依题意得:3312()(110%)255a x bx a xb x +-=+, 化简得:2a b = ∴12b a =, B ∴水果的单价与A 水果的单价的比值是12,故答案为:12. 【点睛】本题考查了一次方程的应用,在缺少确切数值的情况下,可先假设等量关系中的关键量为未知数,再列方程化简求值. 14.±3【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把21xy=⎧⎨=⎩代入方程组得:2821m nn m+=⎧⎨-=⎩①②,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.15.16【解析】【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解. 【详解】解:设普通题一共有x道,其中解出a道,难题一共解出b道,依题意得:3b+2a-(x-a)=1解析:16【解析】【分析】根据题意进行解设,列出三元一次方程组,再用加减消元的方法即可求解.【详解】解:设普通题一共有x道,其中解出a道,难题一共解出b道,依题意得:(2)×3-(1)得x=16,∴该次数学竞赛中一共有16道普通题.【点睛】本题考查了三元一次方程组的实际应用,中等难度,正确对方程组进行化简是解题关键. 16.4x+3y=27x+5y=3.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是4解析:.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z 后,得到的二元一次方程组是.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉加减消元的方法是解题关键.17.11【解析】分析:1※2=5,2※1=3的含义是当x=1,y=2时,ax+by2=5,当x=2,y =1时,ax+by2=3,由此列二元一次方程组求a,b的值后,再求解.详解:根据题意得,解得.解析:11【解析】分析:1※2=5,2※1=3的含义是当x=1,y=2时,ax+by2=5,当x=2,y=1时,ax +by2=3,由此列二元一次方程组求a,b的值后,再求解.详解:根据题意得4523a ba b⎧⎨⎩+=+=,解得11ab⎧⎨⎩==.当a=1,b=1时,x※y=x+y2.所以2※3=2+32=11.故答案为11.点睛:本题考查了二元一次方程组的解法和新定义,当方程组中有未知数的系数为1时,可考虑用代入消元法求解,对于新定义,要理解它所规定的运算规则,再根据这个规则去运算.18.0或6【解析】由2x+3y=12得y=12-2x3,因为x、y都是非负整数,所以x=0,y=4或x=3,y=2或x=6,y=0,所以xy为0或6.解析:0或6【解析】由2x+3y=12得y=,因为x、y都是非负整数,所以x=0,y=4或x=3,y=2或x=6,y=0,所以xy为0或6.19.【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增解析:1 8【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增加的营业额为m,则7月份摆摊增加的营业额为25m,设7月份外卖还需增加的营业额为x.∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5,∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a,5a,7a,由题意可知:3385552275k m x ak x am k a⎧+-=⎪⎪+=⎨⎪⎪+=⎩,解得:125215k ax am a⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,∴512 857208axa a a a==++,故答案为:18.【点睛】本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.20.【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙解析:【分析】可设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,根据等量关系:甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,列出方程即可求解.【详解】解:设甲堆原来有x 个苹果,乙堆原来有y 个苹果,丙堆原来有z 个苹果,依题意有 ()432x y z x y x y y y z z z x y ++=⎧⎨-+-=+-=+--⎩, 解得19812688x y z =⎧⎪=⎨⎪=⎩.故甲堆原来有198个苹果.故答案为:198.【点睛】考查了三元一次方程组的应用,在解决实际问题时,若未知量较多,要考虑设三个未知数,但同时应注意,设几个未知数,就要找到几个等量关系列几个方程.三、解答题21.(1)C (a+h ,b-1),D (m+h ,n-1);(2)①见解析;②相等,理由见解析【分析】(1)根据平移规律解决问题即可..(2)①证明A ,D 的纵坐标相等即可解决问题;②如图,设AD 交直线l 于J ,首先证明BJ=DJ=1,推出D (m+1,n-1),再证明p=q ,即可解决问题.【详解】解:(1)由题意,C (a+h ,b-1),D (m+h ,n-1);(2)①∵b=n-1,∴A (a ,b ),D (m+h ,n-1),∴点A ,D 的纵坐标相等,∴AD ∥x 轴,∵直线l⊥AD,∴直线l⊥x轴;②相等,理由是:如图,设AD交直线l于J,∵DE的最小值为1,∴DJ=1,∵BJ=1,∴D(m+1,n-1),∴二元一次方程px+qy=k(pq≠0)的图象经过点B,D,∴mp+nq=k,(m+1)p+(n-1)q=k,∴p-q=0,∴p=q,∴m+n=kp,∵tp+sp=k,∴t+s=kp,∴m+n=t+s.【点睛】本题考查坐标与图形的变化-平移,二元一次方程等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.22.(1)163a b+;(2)①11ab=⎧⎨=-⎩;②53m=【分析】(1)把(4,-1)代入新运算中,计算得结果;(2)①根据新运算规定和T(-2,0)=-2且T(5,-1)=6,得关于a、b的方程组,解方程组即可;②把①中求得的a、b代入新运算,并对新运算进行化简,根据T(3m-10,m)=T(m,3m-10)得关于m的方程,求解即可.【详解】解:(1)224(1)16(4,1)413a b a b T ⨯+⨯-+-==-; 故答案为:163a b +; (2)①∵()2,02T -=-且()5,16T -=, ∴42,225 6.4a ab ⎧=-⎪⎪-⎨+⎪=⎪⎩ 解得:1,1.a b =⎧⎨=-⎩②∵a=1,b=1-,且x+y≠0, ∴22()()(,)x y x y x y T x y x y x y x y -+-===-++.∴()310,33103610T m m m m m --=-+=-,()3,3103310610T m m m m m --=--+=-+∵()()310,33,310T m m T m m --=--,∴610610m m -=-+, 解得:53m =. 【点睛】本题考查了解一元一次方程、二元一次方程组的解法及新运算等相关知识,理解新运算的规定并能运用是解决本题的关键 23.(155)a b +;23a b =⎧⎨=⎩;28.3吨;a 的值上调了0.4时b 的值上调了0.6或者a 的值上调了0.6时b 的值上调了0.1.【分析】(1)小王家今年3月份用水20吨,超过15吨,所以分两部分计费,15吨及以下费用为15a ,超过15吨的费用为(2015)5b b -=,故总费用155a b +;(2)依题意列方程组1564815105270a b a b +=⎧⎨++⨯=⎩,可求解; (3)在第(2)题的条件下,正好25吨时,所需费用60(元),可知若交水费76.5元,肯定用水超过25吨,可得用水量;(4)由小王家5月份用水量与4月份用水量相同与要比4月份多交9.6元钱水费,可列方程,满足方程的条件的解列出即所求.【详解】解:(1)小王家今年3月份用水20吨,要交消费为155a b +,故答案为:(155)a b +;(2)根据题意得,1564815105270a b a b +=⎧⎨++⨯=⎩, 解得:23a b =⎧⎨=⎩; (3)在第(2)题的条件下,当正好25吨时,可得费用15210360⨯+⨯=(元),由交水费76.5元可知,小王家用水量超过25吨,即:超过25吨的用水量(76.560)5 3.3=-÷=吨,合计本月用水量 3.32528.3=+=吨(4)设a 上调了x 元,b 上调了y 元,根据题意得:1569.6x y +=,52 3.2x y ∴+=,,x y 为整数角线(没超过1元),∴当0.6x =时,0.1y =元,当0.4x =时,0.6y =元,∴a 的值上调了0.4时,b 的值上调了0.6;a 的值上调了0.6时,b 的值上调了0.1.【点睛】本题考查了二元一次方程组的实际应用,并学会看图提练已知,用二元一次方程列举法来表示解.24.(1)C 的坐标为(0,4),点D 的坐标为(1,2);(2)①点E 的坐标为(1,3),F 的坐标为(0,3)或点E 的坐标为(0,1),F 的坐标为(1,1);②存在△PEF 的面积为2,点E 、F 两点的坐标为E (﹣,0)、F (,0),或E (,4)、F (﹣,4).【解析】【分析】(1)由点A 和点C 在y 轴上确定出向右平移3个单位,再根据△ACD 的面积求出向上平移的单位,然后写出点C 、D 的坐标即可.(2)①根据线段EF 平行于线段OM 且等于线段OM ,得出2a +1=﹣2b +3,|a ﹣b |=1,解答即可;②首先根据题意求出点P 的坐标为(,2),设点E 在F 的左边,由EF ∥x 轴得出a +b =1,求出△PEF 的面积=(b ﹣a )×|2a +1﹣2|=2,得出(b ﹣a )|2a ﹣1|=4,当EF 在点P 的上方时,(b ﹣a )(2a ﹣1)=4,与a +b =1联立得:,此方程组无解;当EF 在点P 的下方时,(b ﹣a )(1﹣2a )=4,与a +b =1联立得:,解得:,或;分别代入点E(a,2a+1)、F(b,﹣2b+3)即可.【详解】解:(1)∵A(﹣3,0),点C在y轴的正半轴上,∴向右平移3个单位,设向上平移x个单位,∵S△ACO=OA×OC=6,∴×3x=6,解得:x=4,∴点C的坐标为(0,4),﹣2+3=1,﹣2+4=2,故点D的坐标为(1,2).(2)①存在;理由如下:∵线段EF平行于线段OM且等于线段OM,∴2a+1=﹣2b+3,|a﹣b|=1,解得:a=1,b=0或a=0,b=1,即点E的坐标为(1,3),F的坐标为(0,3)或点E的坐标为(0,1),F的坐标为(1,1);②存在,理由如下:如图2所示:当点E、F重合时,,解得:,∴2a+1=2,∴点P的坐标为(,2),设点E在F的左边,∵EF∥x轴,∴2a+1=﹣2b+3,∴a+b=1,∵△PEF的面积=(b﹣a)×|2a+1﹣2|=2,即(b﹣a)|2a﹣1|=4,当EF在点P的上方时,(b﹣a)(2a﹣1)=4,与a+b=1联立得:,此方程组无解;当EF 在点P 的下方时,(b ﹣a )(1﹣2a )=4,与a +=1联立得:, 解得:,或;分别代入点E (a ,2a +1)、F (b ,﹣2b +3)得:E (﹣,0)、F (,0),或E (,4)、F (﹣,4);综上所述,存在△PEF 的面积为2,点E 、F 两点的坐标为E (﹣,0)、F (,0),或E (,4)、F (﹣,4).【点睛】本题是三角形综合题目,考查了平移的性质、三角形面积公式、坐标与图形性质、方程组的解法、平行线的性质等知识;本题综合性强,根据题意得出方程组是解题的关键.25.(1)214342k x ky -⎧=⎪⎪⎨-⎪=⎪⎩;(2)k <﹣52;(3)m 的值为1或2. 【分析】(1)把k 当成一个已知得常数,解出二元一次方程组即可;(2)将(1)中得,x y 的值代入+x y >5 ,即可求出k 的取值范围;(3)将(1)中得,x y 的值代入23m x y =-得m=7k ﹣5.由于m >0,得出7k ﹣5>0,及1k ≤得出解集517<k ≤ 进而得出m 的值为1或2【详解】(1)2x32 2x+y=1-k?y k-=-⎧⎨⎩①②②+①,得4x=2k﹣1,即214kx-=;②﹣①,得2y=﹣4k+3即342k y-=所以原方程组的解为214342kxk y-⎧=⎪⎪⎨-⎪=⎪⎩(2)方程组的解x、y满足x+y>5,所以21345 42k k--+>,整理得﹣6k >15,所以52k<﹣;(3)m=2x﹣3y=2134 2342k k--⨯-⨯=7k﹣5由于m为正整数,所以m>0即7k﹣5>0,k>5 7所以57<k≤1当k=67时,m=7k﹣5=1;当k=1时,m=7k﹣5=2.答:m的值为1或2.【点睛】本题主要考查了二元一次方程组的解法,熟练掌握解二元一次方程组的方法是解题的关键. 26.(1)甲45人,乙30人 (2) 租65座的客车2辆,45座的客车2辆,30座的3辆【解析】分析:(1)根据题意,设甲种客车每辆能载客x人,乙两种客车每辆能载客x人,由等量关系列方程组求解即可;(2)根据坐满的租车方案,由总人数列方程求解即可.详解:(1)设甲种客车每辆能载客x 人,乙两种客车每辆能载客x 人,根据题意得 231803165x y x y +=⎧⎨+=⎩,解之得:4530x y =⎧⎨=⎩答:甲种客车每辆能载客45人,乙两种客车每辆能载客30人.(2)设同时租65座.45座和30座的大小三种客车各m 辆,n 辆,(7﹣m ﹣n )辆, 根据题意得出:65m+45n+30(7﹣m ﹣n )=303+7,整理得出:7m+3n=20,故符合题意的有:m=2,n=2,7﹣m ﹣n=3,租车方案为:租65座的客车2辆,45座的客车2辆,30座的3辆.点睛:本题考查二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的等关系式,列出对应的方程.。
七年级下学期数学第三次月考试卷及答案
七年级下学期数学第三次月考试卷一、选择题(共10小题,每小题3分,共30分)1.下列汽车标志中可以看作是由某图案平移得到的是()A B C D2.∠1、∠2是邻补角的为()A B C D3.下列方程组中是二元一次方程组的是()A.⎩⎨⎧=+=+1487764zxyxB.⎪⎪⎩⎪⎪⎨⎧=-=+211342yxyx C.⎩⎨⎧=+=321yxxyD.⎪⎪⎩⎪⎪⎨⎧=+=+422652yxyx4.如图,一把矩形直尺沿直线断开并错位,点E、D、B、F在同一条直线上.若∠ADE=125°,则∠DBC的度数为()A.55°B.65°C.75°D.125°4题图 6题图 8题图5.若⎩⎨⎧-==12yx是关于x、y的二元一次方程ax+by-5=0的一组解,则2a-b-2的值为()A.-3 B.3 C.-7 D.76.如图,下列条件中不能判断AB∥CD的是()A.∠1+∠3=180°B.∠1=∠2 C.∠1+∠2=180° D.∠1=∠47.下列命题是真命题的是()A.互补的角是邻补角B.内错角相等C.过一点,有且只有一条直线与这条直线平行D.在同一平面内,已知直线a⊥b,直线b⊥c,则直线a∥c8.将一张长方形纸条ABCD沿EF折叠后点B、A分别落在B′、A′位置上,FB′与AD的交点为G.若∠DGF=100°,则∠FEG的度数为()A.40°B.45°C.50°D.55°9.我国民间流传着这样一道题:只闻隔壁人分银,不知多少银和人;每人7两多7两,每人半斤少半斤.设有x 人、y 两银(古代1斤等于16两),则所列方程组正确的是( )A .⎩⎨⎧=+=-y x y x 8877B .⎩⎨⎧=-=-y x y x 8877C .⎩⎨⎧=+=+y x y x 8877D .⎩⎨⎧=-=+y x y x 8877 10.某车间有90名工人,每人每天平均能生产螺栓15个或螺帽24个,已知一个螺栓配套两个螺帽,应该如何分配工人才能使生产的螺栓和螺帽刚好配套?则生产螺栓和生产螺帽的人数分别为( )A.50人,40人B.30人,60人C.40人,50人D.60人,30人二、填空题(本大题共5个小题,每小题4分,共20分)11.如图,把小河里的水引到田地C 处,作CD 垂直于河岸,沿CD 挖水沟,则水沟最短,其理论依据是___________________________12.如图,AD ∥BC ,∠C =30°,∠2=2∠1,则∠2的度数是____________13.如图,将周长为14的三角形ABC 向右平移1个单位后得到三角形DEF ,则四边形ABFD 的周长等于___________11题图 12题图 13题图14.在同一平面内,两条直线的位置关系只有两种 , .15. 设m是的整数部分,n是的小数部分,则2m ﹣n= .三、解答题(一)(本大题共5个小题,每小题6分,共30分)16.解二元一次方程组:⎩⎨⎧-=--=+ ②y x ①y x 5231217.解三元一次方程组:⎪⎩⎪⎨⎧=-+=+-=+-③z y x ②z y x ①z y x 132723343218.填空,并在后面的括号中填理由:如图,已知∠B +∠E =∠BCE ,求证:AB ∥DE证明:如图,过点C 作CF ∥AB∴∠B =∠_______( )∵∠B +∠E =∠BCE即∠B +∠E =∠1+∠2∴∠E =∠_______∴_______∥_______( )∵AB ∥CF ,____________(已证)∴_______∥_______( )19.若关于x 、y 的方程组⎩⎨⎧--=++=-4525223k y x k y x 的解x 、y 互为相反数,求k 的值20.如图,DE ∥BC ,CD 是∠ACB 的平分线,∠ACB=60°,求∠EDC 的度数.四、解答题(二)(本大题共5个小题,每小题8分,共40分)21..已知 A D ⊥BC ,FG ⊥BC ,垂足分别为 D 、G ,且∠1=∠2.求证:∠BDE=∠C22.如图,直线AB ,CD 相交于点O ,∠DOE ︰∠BOE =3︰1,OF 平分∠AOD ,∠AOC =∠AOF -30°,求∠EOF ;23.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?24.如图所示,已知∠1+∠2=180°,∠B=∠3,DE和BC平行吗?如果平行,请说明理由.25.如图1,E点在BC上,∠A=∠D,∠ACB+∠BED=180°(1) 求证:AB∥CD(2) 如图2,BG平分∠ABE,与∠CDE的邻补角∠EDF的平分线交于H点.若∠E比∠H大60°,求∠E七年级下学期数学第三次月考参考答案一、选择题(共10小题,每小题3分,共30分)二、填空题(共5小题,每小题3分,共15分) 11.垂线段最短12.100° 13.16 14. 平行,相交 15.6-5三、解答题(共5题,共35分)16.解:由①×2得4X+2Y+-2 ③③+②得X=-1把X=-1代入得Y=1所以原方程组的解为⎩⎨⎧=-=11y x 17解:③×2-①得7Y-10Z=-1④③×3-②得8Y-10Z=-4⑤⑤-④得Y=-3把Y =-3代入④ 得Z=-2把Y=-3 Z=-2代入③ 得X=1所以原方程组的解⎪⎩⎪⎨⎧-=-==231z y x18.解:1,两直线平行,内错角相等2DE 、CF 、内错角相等,两直线平行DE ∥CFAB 、DE 、平行于同一条直线的两条直线平行19.解:根据题意得因为X 、Y 互为相反数,所以X=-Y方程可变为⎩⎨⎧--=+=-43525k y k y解得⎩⎨⎧-==35y k所以K 的值为520.解: ∵DE ∥BC∴∠EDC=∠DCB∵CD 是∠ACB 的平分线∴∠DCB=∠ACD=1/2∠ACB∵∠ACB=60°∴∠EDC=∠DCB=30°21.解:22.解:∵OF 平分∠AOD∴∠AOF=∠DOF=1/2∠AOD∵∠AOD+∠AOC=180∠AOC=∠AOF-30∴∠AOF=∠DOF=70∵∠DOE:∠BOE=3:1∠AOC=∠DOB∴∠DOE=30∴∠EOF=∠DOF +∠DOE=70+30=10023.解:设A 饮料生产了X 瓶,B 饮料生产了Y 瓶。
2019-2020年七年级数学下学期第三次月考试卷含答案解析
2019-2020年七年级数学下学期第三次月考试卷含答案解析一、选择题(30分)1、化简(3x -2)(x -3)-3(x 2+2)的结果是( )A .11x ;B .-11x ;C .6x 2-8x +12;D .x 2-1; 2、下列计算正确的是( )A .x 2+ x 3= x 5;B .(x 3)3=x 6;C .x·x 2=x 2;D .x (2x )2=4x 2; 3、如图,∠BAC=90°,AD ⊥BC ,垂足为D ,则下面的结论中正确的个数为( )① AB 与AC 互相垂直;②AD 与AC 互相垂直;③点C 到 AB 的垂线段是线段AB ;④线段AB 的长度是点B 到AC的距离;⑤线段AB 是B 点到AC 的距离;A .2;B .3;C .4;D .5; 4、如图,AB ∥CD ,如果∠B=20°,那么∠C 的度数是( ), A .40°; B .20°; C .60°; D .70°;5、若方程组23133530.9a b a b -=⎧⎨+=⎩的解是8.31.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30.9x y x y +--=⎧⎨++-=⎩的解是( )A. 6.32.2x y =⎧⎨=⎩;B.8.31.2x y =⎧⎨=⎩;C.10.32.2x y =⎧⎨=⎩;D. 10.30.2x y =⎧⎨=⎩; 6、将一张长方形纸片按如图方式折叠,BC ,BD 为折痕, 折叠后A′B 和E′B 在同一直线上,则∠CBD 的度数是( ) A .大于90°; B .等于90°; C .小于90°; D .不能确定;7、如图,线段AB=2cm ,把线段AB 向右平移3cm ,得到线段DC ,连接BC ,AD ,则四边形ABCD 的面积是( ) A .4cm 2; B .9cm 2; C .6cm 2; D .无法确定; 8、已知M=(x -3)(x -5),N=(x -2)(x -6),则M 与N 的关系为( )A .M=N ;B .M>N ;C .M<N ;D .M 与N 的大小由x 得取值决定; 9、如图,则图中阴影部分的面积是( )A .112xy ;B .132xy ; C .6xy ; D .3xy ;10、某商场为了促销,服装部推出“女装全部八折”,“男装全部八五折”的优惠活动,一顾客买了原价为x 女装和原价为y 元的男装各一套,优惠前一共要700元,而他实际付款580元, 要求x 、y ,则可列方程组为( )A.5800.80.85700x y x y +=⎧⎨+=⎩;B.7000.850.8580x y x y +=⎧⎨+=⎩; C. 7000.80.85700580x y x y +=⎧⎨+=-⎩; D.7000.80.85580x y x y +=⎧⎨+=⎩; A B C D ABCDA B CDE A′ E ′A B C D 2二、填空题(32分) 11、从数学对称的角度看,下面几组大写英文字母:①ANEC ;②KBSM ;③XRHZ ;④ZDWH ;不同于另外三组的一组是 。
2022学年河南郸城县七年级数学下学期第三次月考卷附答案解析
2022学年河南郸城县七年级数学下学期第三次月考卷试卷满分120分,考试时间100分钟。
一、选择题(每小题3分,共30分)1.若31x +<,则x 的取值范围是()A .2x <B .2x <-C .2x >D .2x >-2.图2所示的三角形ABC 是某座大桥(如图1)的部分平面示意图.若B C ∠=∠,36A ∠=︒,则B∠的度数为()图1图2A .52°B .62°C .72°D .82°3.小明在某书店购买数学课外读物《几何原本》,已知每本《几何原本》的定价为40元,若按八折出售,该书店仍可获利10元,则每本《几何原本》的进价为()A .22元B .24元C .26元D .28元4.若方程组10,6y x y x -=⎧⎨=⎩的解x ,y 满足2x k y -=,则k 的值为()A .-2B .-4C .-6D .-85.若关于x 的不等式423x x m ->-的解集如图所示,则m 的值为()A .1B .-1C .2D .-26.若一个多边形的内角和为900°,则这个多边形是()A .十边形B .九边形C .八边形D .七边形7.小康将220I R<(其中0I >,0R >)变形为220I R ⋅<是利用了()A .等式的性质1B .不等式的性质1C .不等式的性质2D .不等式的性质38.如图,在长方形ABCD 中,90A C ∠=∠=︒,点E ,F 在边AD 上(不与点A ,D 重合),点G 在边BC 上(不与点B ,C 重合),若图中直角三角形有m 个,钝角三角形有n 个,则()2023n m -的值为()A .-1B .0C .1D .-1或09.在2023年春季开学期间,我校计划采购篮球、足球共50个,并要求总费用不超过5500元,已知篮球每个120元,足球每个90元,则最多采购篮球()A .32个B .33个C .34个D .35个10.如图,在ABC △中,AD 是ABC △的中线,DE 是ADC △的中线,EF DC ⊥,DG AC ⊥,垂足分别为F ,G .若ABC △的周长为43,32AB AC =,10AC =,4EF =,则DG 的长为()A .5B .173C .9D .365二、填空题(每小题3分,共15分)11.已知一个三角形的两边长分别为4和5,则第三边长x 的取值范围是______.12.“一千官兵一千布,一官四尺无零数,四兵才得布一尺,请问官兵多少数?”这首诗的意思:一千名官兵分一千尺布,一名军官分四尺,四名士兵分一尺,正好分完,设军官有x 名,士兵有y 名,根据题意可列方程组:______.13.生活中处处都存在着数学知识,只要同学们学会用数学的眼光观察生活,就会有许多意想不到的收获.边长相等的正五边形和正六边形按如图所示的方式拼接在一起,已知ACB ABC ∠=∠,则ABC ∠=______°.14.若不等式组3326,3144x x x x ->-⎧⎪⎨≤+⎪⎩的所有整数解的和为k ,则关于x 的一元一次方程2kx x k =-的解为______.15.已知一个等腰三角形的周长为20,其中一边的长比另一边短2,则这个等腰三角形的底边长为______.三、解答题(本大题共8个小题,共75分)16.(1)(5分)解方程:()311x x x --=+.(2)(5分)解不等式组:521,4 4.x x -≥⎧⎨>-⎩17.(9分)郑州市楹联学会决定购进一批图书,已知购买2本《中华楹联大全》和3本《趣谈楹联》需77.6元,购买4本《中华楹联大全》和5本《趣谈楹联》需142.6元,问《中华楹联大全》与《趣谈楹联》的单价分别为多少元?18.(9分)如图,已知A B C D E F G α∠+∠+∠+∠+∠+∠+∠=,三角形ADG 的外角和与四边形BCEF 的外角和分别为β与γ.若αβγ-+的度数恰好与n 边形内角和的度数相等,求n的值.19.(9分)下面是小明设计的由大小相同的正六边形、正方形、正三角形三种地砖铺满小路地面的图案,请观察图案,根据你发现的规律解答下列问题:(1)第6个图案中有正六边形______个,正方形______个,正三角形______个.(2)若铺设这条小路用去n 块正六边形地砖,则正方形地砖的数量为______,正三角形地砖的数量为______.(用含n 的代数式表示)(3)若这条小路计划铺2021块正方形地砖,问该小路需要分别铺正六边形地砖、正三角形地砖多少块?20.(9分)下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务.二元一次方程组解的情况的讨论我们知道,二元一次方程组111222,a x b y c a x b y c +=⎧⎨+=⎩的解法主要有代入消元法和加减消元法,它的解的情况有三种.一是唯一解,例如方程组21,2x y x y +=⎧⎨-=⎩有唯一解1,1;x y =⎧⎨=-⎩二是有无穷多个解,例如方程组21,242x y x y +=-⎧⎨+=-⎩有无穷多个解;三是无解,例如方程组211,2411x y x y -=⎧⎨-=⎩无解.下面我们讨论一下方程组111222,a x b y c a x b y c +=⎧⎨+=⎩在什么情况下有唯一解,有无穷多个解或无解.我们先利用加减消元法解方程组111222,a x b y c a x b y c +=⎧⎨+=⎩①②解:①2a ⨯-②1a ⨯,得()12211221b a b a y c a c a -=-.下面我们分几种情况讨论:(1)当12210b a b a -≠,即1122a b a b ≠时,12211221c a c a y b a b a -=-,进而可得方程组的唯一解为1221122112211221,c b c b x a b a b c a c a y b a b a -⎧=⎪-⎪⎨-⎪=⎪-⎩(2)当12210b a b a -≠,即1122a b a b =时,①若12210c a c a -=,即1122a c a c =,也就是111222a b c a b c ==,方程组有无穷多个解;②若12210c a c a -≠,即1122a c a c ≠,也就是111222a b c a b c =≠,方程组无解.任务:(1)上面小论文中的分析过程中,主要体现的数学思想是______(填选项).A .整体思想B .分类讨论思想C .数形结合思想(2)请参照小论文提供的方法直接写出下列方程组解的情况:①51,4204;x y x y -=⎧⎨-=⎩②31,9;x y x y -=⎧⎨+=⎩③3,44 1.x y x y +=-⎧⎨+=-⎩(3)运用小论文提供的公式,解方程组25,3 6.x y x y -=⎧⎨+=⎩21.(9分)为庆祝十四届全国人大一次会议胜利召开,某区举行了主题为“人大知多少”的知识竞赛,一共有20道题,满分100分,答对一题得5分,答错一题扣2分,不答得0分.(1)若小武只有1道题没有作答,且他的总得分为81分,则小武一共答对了多少道题?(2)规定:凡是参赛者每道题都必须作答,且总得分不低于85分才可以去参加市里举办的“人大知多少”知识竞赛,问参赛者至少需要答对多少道题才能参加市里举办的“人大知多少”知识竞赛?22.(10分)问题情境:在数学活动课上,老师提出了一个问题:如图1,在ABC △中,BD 平分ABC ∠,AD BD ⊥于点D ,过点D 作//EF BC 分别交AB ,AC 于点E ,F .问题解决:(1)如图1,若::3:2:1BAC ABC ACB ∠∠∠=,求DAC ∠的度数.(2)如图1,若128BED ∠=︒,12DAF BAD ∠=∠,试猜想DAF ∠与C ∠之间的数量关系,并说明理由.问题拓展:(3)如图2,若过点D 作//DG AB 交BC 于点G ,连接EG ,交BD 于点O ,试探究DO 是否平分EDG ∠,并说明理由.图1图223.(10分)综合与探究对实数x ,y ,我们定义一种新运算:(),F x y ax by =+(其中a ,b 为常数).例如:()2,323F a b =+,()2,323F a b -=-.已知()1,13F =,()1,11F -=.(1)a =______,b =______.(2)已知x ,y 为非负整数,求关于x ,y 的方程(),38F x y =的解.(3)若关于x ,y 的方程组(,)3,1,4382F x y m F x y m -=-⎧⎪⎨⎛⎫=-+ ⎪⎪⎝⎭⎩的解满足0x y +>,且m 为非负整数,求m 的值.(4)若关于x 的不等式()3,42F x n ->恰好有3个正整数解,求n 的取值范围.2022—2023学年第二学期第三次月考试卷(X )七年级数学参考答案1.B 2.C 3.A 4.D5.A 6.D 7.C 8.A 9.B 10.D 提示:∵32AB AC =,10AC =,∴310152AB =⨯=.∵ABC △的周长为43,∴43AB BC AC ++=,∴18BC =.∵AD 是ABC △的中线,DE 是ADC △的中线,∴192DC BC ==,152CE AC ==.∵1122EDC S EF DC DG CE =⋅=⋅△,∴495DG ⨯=,∴365DG =.故DG 的长为365,故选D .11.19x <<12.1000,1410004x y x y +=⎧⎪⎨+=⎪⎩13.2414.1x =-15.8或163提示:设等腰三角形一边的长为x ,则另一边的长为2x +.分两种情况讨论:①当x 为腰长时,根据题意得220x x x +++=,解得6x =,∴三边的长分别为6,6,8,能构成等腰三角形,∴底边长为8;②当2x +为腰长时,2220x x x ++++=,解得163x =,∴三边的长分别为223,223,163,能构成等腰三角形,∴底边长为163.综上所述,这个等腰三角形的底边长为8或163.16.(1)解:去括号,得331x x x --=+,移项,得331x x x --=+,合并同类项,得4x =.(2)解:521,4 4.x x -≥⎧⎨>-⎩①②解不等式①,得2x ≤,解不等式②,得1x >-,∴不等式组的解集为12x -<≤.17.解:设《中华楹联大全》的单价为x 元,《趣谈楹联》的单价为y 元.根据题意得2377.6,45142.6,x y x y +=⎧⎨+=⎩解得19.9,12.6.x y =⎧⎨=⎩答:《中华楹联大全》的单价为19.9元,《趣谈楹联》的单价为12.6元.18.解:根据题意,得180360540α=︒+︒=︒,360β=︒,360γ=︒,∴540360360540αβγ-+=︒-︒+︒=︒,∴()2180540n -⨯︒=︒,∴5n =.19.解:(1)6;31;26.(2)51n +;42n +.(3)根据题意得512021n +=,解得404n =,∴小路需要铺正六边形地砖404块.44042161621618⨯+=+=,∴小路需要铺正三角形地砖1618块.答:该小路需要分别铺正六边形地砖、正三角形地砖404块、1618块.20.解:(1)B .(2)①有无穷多个解,②有唯一解,③无解.(3)∵12a =,11b =-,15c =,21a =,23b =,26c =,∴()()536132311x ⨯-⨯-==⨯-⨯-,516211132y ⨯-⨯==-⨯-⨯,∴方程组的解为3,1.x y =⎧⎨=⎩21.解:(1)设小武一共答对了x 道题,根据题意得()5220181x x ---=,解得17x =.答:小武一共答对了17道题.(2)设参赛者至少需要答对y 道题才能参加市里举办的“人大知多少”知识竞赛.根据题意得()522085y y --≥,解得6177y ≥.∵y 为整数,∴y 的最小整数值为18.答:参赛者至少需要答对18道题才能参加市里举办的“人大知多少”知识竞赛.22.解:(1)设ACB x ∠=,则2ABC x ∠=,3BAC x ∠=.∵180ACB ABC BAC ∠+∠+∠=︒,∴23180x x x ++=︒,∴30x =︒,∴260ABC x ∠==︒,390BAC x ∠==︒.∵BD 平分ABC ∠,∴30ABD ∠=︒.∵AD BD ⊥,∴903060BAD ∠=︒-︒=︒,∴906030DAC BAC BAD ∠=∠-∠=︒-︒=︒.(2)DAF C ∠=∠.理由:∵//EF BC ,128BED ∠=︒,∴180********ABC BED ∠=︒-∠=︒-︒=︒.∵BD 平分ABC ∠,∴11522622ABD ABC ∠=∠=⨯︒=︒.∵AD BD ⊥,∴902664BAD ∠=︒-︒=︒.∵11643222DAF BAD ∠=∠=⨯︒=︒,∴643296BAC BAD DAF ∠=∠+∠=︒+︒=︒,∴180180965232C BAC ABC ∠=︒-∠-∠=︒-︒-︒=︒,∴DAF C ∠=∠.(3)DO 平分EDG ∠.理由:∵//EF BC ,∴EDB DBC ∠=∠.∵BD 平分ABC ∠,∴EBD DBG ∠=∠,∴EBD EDB ∠=∠.∵//DG AB ,∴EBD BDG ∠=∠,∴EDB BDG ∠=∠,∴DO 平分EDG ∠.23.解:(1)2;1.(2)由(1)知,(),2F x y x y =+,则(),3238F x y x y =+=.∵x ,y 为非负整数,∴4,0,x y =⎧⎨=⎩或1,2.x y =⎧⎨=⎩(3)依题意23,438,x y m x y m -=-⎧⎨+=-+⎩①②①+②化简得253m x y -++=.∵0x y +>,即2503m -+>,解得52m <.又∵m 为非负整数,∴m 的值为0或1或2.(4)依题意得642x n -+>,解得23n x -+<.∵此不等式有3个正整数解,∴2343n -+<≤,解得107n -≤<-.。
初一数学作业的时间分配技巧
初一数学作业的时间分配技巧
当你迈入初中阶段,数学作业成为你学习生活的一部分。
如何合理分配时间,使作业完成得高效又不至于过度压力,是一项值得认真对待的技能。
想象一下,时间管理就像一个温柔的导师,帮助你在学习的道路上找到最佳节奏。
首先,制定一个明确的计划是成功的关键。
每周开始时,拿出一张表,规划出每天的学习时间,确保数学作业有固定的时间段。
这样,你的学习任务就不会随意混杂在其他活动中,而是被安排在一个有序的框架内。
接下来,将数学作业分解成小块任务,像是分解一个大项目。
每个小任务都有其独立的时间要求,这样可以让你更容易集中精力完成每一部分。
比如,你可以将作业分成几个部分,分别处理解题、复习和检查的时间。
合理的休息也是时间管理的重要组成部分。
长期的学习会让你的精力下降,定期的小休息可以帮助你保持高效。
每完成一个小任务后,给自己几分钟的放松时间,走动一下或做些轻松的活动,能有效提高集中力。
此外,创建一个适合自己的学习环境也是不可忽视的。
一个安静且整洁的学习空间可以让你更专注于数学作业。
确保你的学习环境远离干扰,例如手机和电视等,这样你的时间才能真正投入到数学问题的解答中。
最后,及时反馈也是至关重要的。
在完成数学作业后,花时间检查自己的解题过程和结果,找出可能的错误,并进行纠正。
这不仅有助于提高你的数学能力,还能让你在以后的作业中避免类似的错误。
掌握了这些技巧,你就能更好地管理自己的学习时间,使数学作业不再成为负担,而是提升你的工具。
在时间的引导下,你将发现自己在数学学习中逐渐变得更加自信和高效。
人教版七年级第二学期第三次质量检测数学试卷含答案
人教版七年级第二学期第三次质量检测数学试卷含答案一、选择题1.用“代入法”将方程组7317x y x y +=⎧⎨+=⎩中的未知数y 消去后,得到的方程是( ) A .3(7)17y y -+=B .3(7)17x x +-=C .210x =D .(317)7x x +-=2.下列方程组中是二元一次方程组的是( )A .12xy x y =⎧⎨+=⎩B .52313xy y x -=⎧⎪⎨+=⎪⎩ C .20135x z x y +=⎧⎪⎨-=⎪⎩ D .5723z z y =⎧⎪⎨+=⎪⎩ 3.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( ) A .5 B .-5 C .15 D .254.如图,用10块相同的长方形纸板拼成一个矩形,设长方形纸板的长和宽分别为xcm 和ycm ,则依题意列方程式组正确的是( )A .504x y y x +=⎧⎨=⎩B .504x y x y +=⎧⎨=⎩C .504x y y x -=⎧⎨=⎩D .504x y x y -=⎧⎨=⎩5.已知方程组221x y k x y +=⎧⎨+=⎩的解满足3x y -=,则k 的值为( ) A .2 B .2- C .1 D .1-6.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四.问人数、鸡价各几何?”译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为( ).A .7384x y x y -=⎧⎨+=⎩B .7384x y x y +=⎧⎨-=⎩C .8374x y x y -=⎧⎨+=⎩D .8374x y x y +=⎧⎨-=⎩7.小兰:“小红,你上周买的笔和笔记本的价格是多少啊?”小红:“哦,…,我忘了!只记得先后买了两次,第一次买了 5 支笔和 10 本笔记本共花了 42 元钱,第二次买了 10 文笔和 5 本笔记本共花了 30 元钱.”请根据小红与小兰的对话,求得小红所买的笔和笔 记本的价格分别是( )A .0.8 元/支,2.6 元/本B .0.8 元/支,3.6 元/本C .1.2 元/支,2.6 元/本D .1.2 元/支,3.6 元/本8.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319a d ,则b c +的值为( )A .3-B .2-C .1-D .09.如图,长方形ABCD 被分割成3个正方形和2个长方形后仍是中心对称图形,设长方形ABCD 的周长为l ,若图中3个正方形和2个长方形的周长之和为94l ,则标号为①正方形的边长为( ) A .112l B .116l C .516l D .118l 10.若二元一次方程组45ax by bx ay +=⎧⎨+=⎩的解为21x y =⎧⎨=⎩,则a +b 的值是( ) A .9 B .6C .3D .1 二、填空题11.某水稻种植中心培育了甲、乙、丙三种水稻,将这三种水稻分别种植于三块大小各不相同的试验田里.去年,三种水稻的平均亩产量分别为300kg ,500kg ,400kg ,总平均亩产量为450kg ,且丙种水稻的的总产量是甲种水稻总产量的4倍,今年初,研究人员改良了水稻种子,仍按去年的方式种植,三种水稻的平均亩产量都增加了.总平均亩产量增长了20%,甲、丙两种水稻的总产量增长了30%,则乙种水稻平均亩产量的增长率为_____.12.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,则方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩的解为__________. 13.甲乙两人共同解方程组515(1)42(2)ax y x by +=⎧⎨-=-⎩,由于甲看错了方程(1)中的a ,得到方程组的解为31x y =-⎧⎨=-⎩;乙看错了方程(2)中的b ,得到方程组的解为54x y =⎧⎨=⎩;计算20192018110a b ⎛⎫+-= ⎪⎝⎭________.14.冬季降至,贫困山区恶劣的地理环境加之其落后的交通条件,无疑将使得山区在漫长冬季里物资更加匮乏,“让冬天不冷让爱心永驻”,重庆市公益组织心驿家号召全市人民为贫困山区的孩子们捐赠过冬衣物,本次捐赠共收集了11600件棉衣、7500件羽绒服及防寒服若干,自愿者将所有衣物分成若干A 、B 、C 类组合,由自愿者们分别送往交通极其不便利的各个山区,一个A 类组合含有60件棉衣,80件防寒服和50件羽绒服;一个B 类组合含有40件棉衣,40件防寒服;一个C 类组合含有40件棉衣,60件防寒服,50件羽绒服;求防寒服一共捐赠了_____件.15.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件.16.已知x m y n =⎧⎨=⎩是方程组20234x y x y -=⎧⎨+=⎩的解,则3m +n =_____. 17.如图,长方形ABCD 被分成若干个正方形,已知32cm AB =,则长方形的另一边AD =_________cm .18.关于x ,y 的方程组223321x y m x y m +=+⎧⎨-=-⎩的解满足不等式组5030x y x y ->⎧⎨-<⎩,则m 的取值范围_____. 19.已知三个方程构成的方程组230xy y x --=,350yz z y --=,520xz x z --=,恰有一组非零解x a =,y b =,z c =,则222a b c ++=________.20.有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.22.阅读以下内容:已知有理数m,n满足m+n=3,且3274232m n km n+=-⎧⎨+=-⎩求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组3274232m n km n+=-⎧⎨+=-⎩,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组3232m nm n+=⎧⎨+=-⎩,再求k的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组()()11821a x byb x ay⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.23.某中学库存一批旧桌凳,准备修理后捐助贫困山区学校.现有甲、乙两个木工小组都想承揽这项业务,经协商得知:甲小组单独修理这批桌凳比乙小组多用20天,乙小组每天比甲小组多修8套,甲小组每天修16套桌凳;学校每天需付甲小组修理费80元,付乙小组120元.(1)求甲、乙两个木工小组单独修理这批桌凳各需多少天.(2)在修理桌凳的过程中,学校要委派一名维修工进行质量监督,并由学校负担他每天10元的生活补助.现有下面三种修理方案供选择:①由甲小组单独修理;②由乙小组单独修理;③由甲、乙两小组合作修理.你认为哪种方案既省时又省钱?试比较说明.24.某商贸公司有A、B两种型号的商品需运出,这两种商品的体积和质量分别如下表所示:(1)已知一批商品有A、B两种型号,体积一共是20立方米,质量一共是10.5吨,求A、B两种型号商品各有几件?(2)物资公司现有可供使用的货车每辆额定载重3.5吨,容积为6立方米,其收费方式有以下两种:①按车收费:每辆车运输货物到目的地收费600元;②按吨收费:每吨货物运输到目的地收费200元.现要将(1)中商品一次或分批运输到目的地,如果两种收费方式可混合使用,商贸公司应如何选择运送、付费方式,使其所花运费最少,最少运费是多少元?25.数轴上有两个动点M ,N ,如果点M 始终在点N 的左侧,我们称作点M 是点N 的“追赶点”.如图,数轴上有2个点A ,B ,它们表示的数分别为-3,1,已知点M 是点N 的“追赶点”,且M ,N 表示的数分别为m ,n .(1)由题意得:点A 是点B 的“追赶点”,AB =1-(-3)=4(AB 表示线段AB 的长,以下相同);类似的,MN =____________.(2)在A ,M ,N 三点中,若其中一个点是另外两个点所构成线段的中点,请用含m 的代数式来表示n .(3)若AM =BN ,MN=43BM ,求m 和n 值.26.已知:用3辆A 型车和2辆B 型车载满货物一次可运货17吨;用2辆A 型车和3辆B 型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A 型车a 辆,B 型车b 辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l 辆A 型车和l 辆B 型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】第一个式子中用x 表示y ,代入到第二个式子中即可.【详解】解:7317x y x y +=⎧⎨+=⎩①② 由①得7y x =-③,将③代入②中得3(7)17x x +-=,故选:B .【点睛】本题考查代入消元法解一元二次方程.熟练掌握代入消元法解一元二次方程的一般步骤是解题关键.2.D解析:D【分析】含有两个未知数,并且所含未知数的项的次数是1的整式方程组是二元一次方程组,根据定义解答.【详解】A、B、C都不是二元一次方程组,D符合二元一次方程组的定义,故选:D.【点睛】此题考查二元一次方程组的定义,正确理解定义并运用解题是关键.3.A解析:A【分析】将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可.【详解】解:2728 x yx y+=⎧⎨+=⎩①②①-②,得:x-y=-1,∴5x-5y+10=5(x-y)+10=5×(-1)+10=5.故选A.【点睛】本题考查了用加减法解二元一次方程组.4.B解析:B【解析】分析:设小长方形的长为xcm,宽为ycm,根据图形可得:大长方形的宽=小长方形的长+小长方形的宽,小长方形的长=小长方形的宽×4,列出方程中即可.详解:设小长方形的长为xcm,宽为ycm,则可列方程组:504x yx y+=⎧⎨=⎩.故选B.点睛:本题考查了由实际问题抽象出二元一次方程,解答本题关进是弄清题意,看懂图示,找出合适的等量关系,列出方程组,注意弄清小正方形的长与宽的关系.5.B解析:B【分析】将方程组中两方程相减可得x-y=1-k,根据x-y=3可得关于k的方程,解之可得.【详解】解:2? 21? x y k x y +=⎧⎨+=⎩①② ②-①,得:x-y=1-k ,∵x-y=3,∴1-k=3,解得:k=-2,故选:B .【点睛】本题考查了二元一次方程组的解及解法:同时满足二元一次方程组的两个方程的未知数的值叫二元一次方程组的解.本题用整体代入的方法达到了简便计算的目的.6.C解析:C【分析】设人数有x 人,鸡的价钱是y 钱,依据题意列方程组,即可完成求解.【详解】设人数有x 人,鸡的价钱是y 钱依据题意得:8374x y x y -=⎧⎨+=⎩即8374x y x y -=⎧⎨+=⎩故选:C .【点睛】本题考查了二元一次方程组的知识;解题的关键是熟练掌握二元一次方程组的性质,从而完成求解.7.D解析:D【分析】首先设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,根据关键语句“第一次买了5支笔和10本笔记本共花了42元钱,”可得方程5x+10y=42,“第二次买了10支笔和5本笔记本共花了30元钱”可得方程10x+5y=30,联立两个方程,再解方程组即可.【详解】解:设小红所买的笔的价格是x 元/支,笔记本的价格是y 元/本,由题意得:5104210530x y x y +=⎧⎨+=⎩ 解得: 1.23.6x y =⎧⎨=⎩故答案为D.【点睛】本题主要考查了二元一次方程组的应用,关键是弄懂题意,找出题目中的等量关系,再列出方程组即可.8.C解析:C【分析】先根据数轴上各点的位置可得到d-a=8,与2319a d -=-组成方程组可求出a 、d ,然后根据d-c=3,d-b=4求出b 、c 的值,再代入b+c 即可.【详解】解:由数轴上各点的位置可知d-a=8,d-c=3,d-b=4,82319d a a d -=⎧⎨-=-⎩, 所以35d a =⎧⎨=-⎩故c=d-3=0,b=d-4=-1,代入b+c=-1.故选:C .【点睛】本题考查的是数轴上两点间的距离及二元一次方程组的应用,根据题意列出方程组是解题关键.9.B解析:B【分析】设两个大正方形边长为x ,小正方形的边长为y ,由图可知周长和列方程和方程组,解答即可.【详解】 解:长方形ABCD 被分成3个正方形和2个长方形后仍是中心对称图形,∴两个大正方形相同、2个长方形相同.设小正方形边长为x ,大正方形的边长为y ,∴小长方形的边长分别为()y x -、()x y +,大长方形边长为()2y z -、()2y x +.长方形周长l =,即:()()222y x y x l -++⎤⎣⎦=⎡, 8y l ∴=,18y l ∴=. 3个正方形和2个长方形的周长和为94l , ()()9244224y x x y y x l ∴⨯++⨯⨯+⎤⎣⎦=⎡+-,91644y x l ∴+=, 116x l ∴=. ∴标号为①的正方形的边长116l . 故选:B .【点睛】此题主要考查了二元一次方程组的应用,关键是正确理解题意,要明确中心对称的性质,找出题目中的等量关系,列出方程组.注意各个正方形的边长之间的数量关系.10.C解析:C【分析】根据二元一次方程组的解及解二元一次方程组即可解答.【详解】解:将21x y =⎧⎨=⎩代入方程组45ax by bx ay +=⎧⎨+=⎩得 2425a b b a +=⎧⎨+=⎩解得:1 2a b =⎧⎨=⎩∴a +b =1+2=3.故选:C .【点睛】此题主要考查二元一次方程组的解和解二元一次方程组,正确理解二元一次方程组的解和灵活选择消元法解二元一次方程组是解题关键.二、填空题11.15%【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻解析:15%【分析】设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意列出方程组进行解答便可.【详解】解:设甲、乙、丙三种水稻各种植了a 亩,b 亩,c 亩,乙种水稻平均亩产量的增长率为x ,根据题意得,300500400450()4003004300(130%)500(1)400(130%)450()(120%)a b c a b c c a a b x c a b c ++=++⎧⎪=⋅⎨⎪+++++=+++⎩, 化简得30(1)2(2)501542(3)a b c c a bx a b c -+=⎧⎪=⎨⎪=++⎩,把(2)代入(1)得,b =6a (4),把(2)和(4)都代入(3)得,300ax =15a +24a +6a ,∴x =15%,故答案为15%.【点睛】本题主要考查了方程组解应用题,关键是读懂题意正确列出方程组.12.【分析】将解方程组变形为,依据题意得,求解即可.【详解】∵关于,的方程组的解为,将解方程组变形为,∴关于,的方程组的解为,解得,故答案为:.【点睛】本题考查了二元一次方程组的解法 解析:1856x y ⎧=⎪⎨⎪=⎩ 【分析】 将解方程组变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩,依据题意得536123x y ⎧=⎪⎪⎨⎪=⎪⎩,求解即可. 【详解】∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩, 将解方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩, ∴关于x ,y 的方程组11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩的解为536123x y ⎧=⎪⎪⎨⎪=⎪⎩, 解得1856x y ⎧=⎪⎨⎪=⎩, 故答案为:1856x y ⎧=⎪⎨⎪=⎩.【点睛】本题考查了二元一次方程组的解法,用到了换元法,体现了整体思想.13.0【分析】根据题意,将代入方程(2)可得出b 的值,代入方程(1)可得出a 的值,将a 与b 的值代入所求式子即可得出结果.【详解】解:根据题意,将代入方程组中的4x-by=-2得:-12+b=-2解析:0【分析】根据题意,将31x y =-⎧⎨=-⎩代入方程(2)可得出b 的值,54x y =⎧⎨=⎩代入方程(1)可得出a 的值,将a 与b 的值代入所求式子即可得出结果.【详解】解:根据题意,将31x y =-⎧⎨=-⎩代入方程组中的4x-by=-2得:-12+b=-2,即b=10; 将54x y =⎧⎨=⎩代入方程组中的ax+5y=15得:5a+20=15,即a=-1, ∴20192018110a b ⎛⎫+- ⎪⎝⎭=1-1=0.故答案为:0.【点睛】此题考查了二元一次方程组的解,方程组的解为能使方程组中两方程成立的未知数的值. 14.14600【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决.【详解析:14600【分析】根据题意,可以先设A 类组合x 个,B 类组合y 个,C 类组合z 个,然后根据题意可以列出三元一次方程组,从而可以得到x 、z 与y 的关系,然后即可求得需要防寒服多少件,本题得以解决.【详解】解:设A 类组合x 个,B 类组合y 个,C 类组合z 个,6040401160050507500x y z x ++=⎧⎨+=⎩, 化简,得28022130x y z y =-⎧⎨=-⎩, ∴需要的防寒服为:80x +40y +60z =80(280﹣2y )+40y +60(2y ﹣130)=22400﹣160y +40y +120y ﹣7800=14600,故答案为:14600.【点睛】本题考查三元一次方程组的应用,解答本题的关键是明确题意,列出相应的三元一次方程组,利用方程的知识解答.15.62【分析】设购买甲纪念品x 件,丙纪念品y 件,则购进乙纪念品2y 件,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为非负整数,即可求出x ,y 的值,进而可得出(x+y+2y )解析:62【分析】设购买甲纪念品x 件,丙纪念品y 件,则购进乙纪念品2y 件,根据总价=单价×数量,即可得出关于x ,y 的二元一次方程,结合x ,y 均为非负整数,即可求出x ,y 的值,进而可得出(x +y +2y )的值,取其最大值即可得出答案.【详解】设购买甲纪念品x件,丙纪念品y件,则购进乙纪念品2y件,依题意,得:5x+7×2y+10y=346,∴x=346245y-,∵x,y均为非负整数,∴346﹣24y为5的整数倍,∴y的尾数为4或9,∴504xy=⎧⎨=⎩,269xy=⎧⎨=⎩,214xy=⎧⎨=⎩,∴x+y+2y=62或53或44.∵62>53>44,∴最多可以购买62件纪念品.故答案为:62.【点睛】本题主要考查二元一次方程的实际应用,根据题意,求出x,y的非负整数解,是解题的关键.16.4【分析】将方程组的解代入得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把代入方程组得:,①+②得:3m+n=4,故答案为4【点睛】本题考查了方程组的解解析:4【分析】将方程组的解代入20234x yx y-=⎧⎨+=⎩得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把x my n=⎧⎨=⎩代入方程组得:20234m nm n-=⎧⎨+=⎩①②,①+②得:3m+n=4,故答案为4【点睛】本题考查了方程组的解的作用.将方程组的解代入方程组的解后,可以求出未知数,然后进行计算;但认真观察整体变换求得的结果,准确率更高.17.【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD= 32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】解析:76843【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求长方形另一边AD的长即可.【详解】设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y 表示出来(如图),根据AB=CD=32cm,可得:643322532y x y xx y-+-⎧⎨+⎩==解得:x=12843cm,y=22443cm.长方形的另一边AD=3y-x+y=4y-x=76843cm.故答案为:76843【点睛】本题考查了二元一次方程组的应用和正方形的性质,解题的关键是读懂图意根据矩形的性质列出方程组并求解.18.m>﹣【分析】利用方程组中两个式子加减可得到和x-3y用m来表示,根据等量代换可得到关于m 的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x ﹣y =3m+2,将两个方程相减解析:m >﹣23【分析】利用方程组中两个式子加减可得到5x y -和x-3y 用m 来表示,根据等量代换可得到关于m 的一元一次不等式组,解出来即可得到答案【详解】将两个方程相加可得5x ﹣y =3m +2,将两个方程相减可得x ﹣3y =﹣m ﹣4, 由题意得32040m m +>⎧⎨--<⎩, 解得:m >23-, 故答案为:m >23-. 【点睛】此题考查含参数的二元一次方程组与不等式组相结合的题目,注意先观察,通过二元一次方程的加减得到不等式组的相关式子,再进行等量代换19.152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a2+b2+c2的值.解析:152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a 2+b 2+c 2的值.【详解】xy 2y 3x 0--=,yz 3z 5y 0--=,xz 5x 2z 0--=组成方程组得230350520xy y x yz z y xz x z --=⎧⎪--=⎨⎪--=⎩①②③,由①得:x=23yy-④,把④代入③整理得:-10y+6z=0,∴z=53y,把z=53y代入②得:253y-5y-5y=0,解得:y1=0 (舍去),y2=6,∴z=53×6=10,x=2663⨯-=4,又∵x=a,y=b,z=c,∴a2+b2+c2=x2+y2+z2=42+62+102=16+36+100=152,故答案为152.【点睛】本题考查了解三元方程组;解题的关键是通过建立三元方程组,再运用代入法进行消元求出方程组的解.20.100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,解析:100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为100或85.【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键.三、解答题21.(1)1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A 型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车;②最省钱的租车方案是租用7辆A型车,最少租车费是840元【分析】(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,根据“用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,依题意,得:2312 3417 x yx y+=⎧⎨+=⎩,解得:32xy==⎧⎨⎩.故答案为:1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨.(2)①依题意,得:3m+2n=21,∴m=7﹣23 n.又∵m,n均为非负整数,∴19mn=⎧⎨=⎩或36mn=⎧⎨=⎩或53mn==⎧⎨⎩或7mn=⎧⎨=⎩.答:共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.22.(1)见解析;(2)a 和b 的值分别为2,5.【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k 的值即可;(2)根据加减消元法的过程确定出a 与b 的值即可.【详解】解:(1)选择甲,3274232m n k m n +=-⎧⎨+=-⎩①②, ①×3﹣②×2得:5m =21k ﹣8,解得:m =2185k -, ②×3﹣①×2得:5n =2﹣14k ,解得:n =2145k -, 代入m+n =3得:21821455k k --+=3, 去分母得:21k ﹣8+2﹣14k =15,移项合并得:7k =21,解得:k =3;选择乙, 3274232m n k m n +=-⎧⎨+=-⎩①②, ①+②得:5m+5n =7k ﹣6,解得:m+n =7-65k , 代入m+n =3得:7-65k =3, 去分母得:7k ﹣6=15,解得:k =3;选择丙,联立得:3232m n m n +=⎧⎨+=-⎩①②, ①×3﹣②得:m =11,把m =11代入①得:n =﹣8,代入3m+2n =7k ﹣4得:33﹣16=7k ﹣4,解得:k =3;(2)根据题意得:1327a b +=⎧⎨+=⎩, 解得:52b a =⎧⎨=⎩, 检验符合题意,则a 和b 的值分别为2,5.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(1)60天,40天;(2)方案③既省时又省钱.【分析】(1)设甲小组单独修完需要x 天,乙小组单独修完需要y 天,根据“甲小组单独修理这批桌凳比乙小组多用20天”,以及桌凳总数不变,便可建立方程组进行解答;(2)综合(1)所得求出这批旧桌凳的数目,然后求出三种方案的工作时间与实际花费,再进行比较即可.【详解】解:(1)设甲小组单独修理这批桌凳需要x 天,乙小组单独修理这批桌凳需要y 天.根据题意,得()16168,20.x y x y ⎧=+⎨-=⎩解得60,40.x y =⎧⎨=⎩答:甲、乙两个木工小组单独修理这批桌凳各需60天、40天.(2)这批旧桌凳的数目为60×16=960(套).方案①:学校需付费用为60×(80+10)=5400(元);方案②:学校需付费用为40×(120+10)=5200(元);方案③:学校需付费用为()96016168++×(120+80+10)=5040(元). 比较知,方案③既省时又省钱.故答案为(1)60天,40天;(2)方案③既省时又省钱.【点睛】解答本题的关键是读懂题意,找到等量关系,正确列出方程,再求解.24.(1)A 种型号商品有5件,B 种型号商品有8件;(2)先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元【分析】(1)设A 、B 两种型号商品各x 件、y 件,根据体积与质量列方程组求解即可;(2)①按车付费=车辆数⨯600;②按吨付费=10.5⨯200;③先按车付费,剩余的不满车的产品按吨付费,将三种付费进行比较.【详解】(1))设A 、B 两种型号商品各x 件、y 件,0.82200.510.5x y x y +=⎧⎨+=⎩, 解得58x y =⎧⎨=⎩, 答:A 种型号商品有5件,B 种型号商品有8件;(2)①按车收费:10.5 3.53÷=(辆),但是车辆的容积63⨯=18<20,3辆车不够,需要4辆车,60042400⨯=(元); ②按吨收费:200⨯10.5=2100(元);③先用车辆运送18m 3,剩余1件B 型产品,共付费3⨯600+1⨯200=2000(元), ∵2400>2100>2000,∴先按车收费用3辆车运送18m 3,再按吨收费运送1件B 型产品,运费最少为2000元.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键,(2)注意分类讨论,分别求出费用进行比较解答问题.25.(1)n -m ;(2)①M 是AN 的中点,n =2m +3;②A 是MN 中点,n =-m -6;③N 是AM 的中点,1322=-n m ;(3)0 4m n =⎧⎨=⎩或6 2m n =-⎧⎨=-⎩或95 15m n ⎧=-⎪⎪⎨⎪=-⎪⎩. 【解析】【分析】(1)由两点间距离直接求解即可;(2)分三种情况讨论:①M 是A 、N 的中点,n =2m +3;②当A 点在M 、N 点中点时,n =﹣6﹣m ;③N 是M 、A 的中点时,n 32m -+=; (3)由已知可得|m +3|=|n ﹣1|,n ﹣m 43=|m +3|,分情况求解即可. 【详解】(1)MN =n ﹣m .故答案为:n ﹣m ;(2)分三种情况讨论:①M 是A 、N 的中点,∴n +(-3)=2m ,∴n =2m +3;②A 是M 、N 点中点时,m +n =-3×2,∴n =﹣6﹣m ;③N 是M 、A 的中点时,-3+m =2n ,∴n32m -+=;(3)∵AM =BN ,∴|m +3|=|n ﹣1|.∵MN 43=BM , ∴n ﹣m 43=|m +3|, ∴3133412m n n m m +=-⎧⎨-=+⎩或3133412m n n m m +=-⎧⎨-=--⎩或3133412m n n m m +=-+⎧⎨-=+⎩或3133412m n n m m +=-+⎧⎨-=--⎩, ∴04m n =⎧⎨=⎩或62m n =-⎧⎨=-⎩或9515m n ⎧=-⎪⎪⎨⎪=-⎪⎩或35m n =⎧⎨=-⎩. ∵n >m ,∴04m n =⎧⎨=⎩或62m n =-⎧⎨=-⎩或9515m n ⎧=-⎪⎪⎨⎪=-⎪⎩. 【点睛】本题考查了列代数式,解二元一次方程组以及数轴上两点间的距离公式,解答本题的关键是:(1)根据两点间的距离公式求出线段AB 的长;(2)分三种情况讨论;(3)分四种情况讨论.解决该题型题目时,结合数量关系表示出线段的长度,再根据线段间的关系列出方程是关键.26.(1) A 型车、B 型车都装满货物一次可以分别运货3吨、4吨;(2) 最省钱的租车方案是方案一:A 型车8辆,B 型车2辆,最少租车费为2080元.【分析】(1)设每辆A 型车、B 型车都装满货物一次可以分别运货x 吨、y 吨,根据题目中的等量关系:用3辆A 型车和2辆B 型车载满货物一次可运货17吨;用2辆A 型车和3辆B 型车载满货物一次可运货l8吨,列方程组求解即可;(2)由题意得出3a+4b=35,然后由a 、b 为整数解,得到三中租车方案;(3)根据(2)中的所求方案,利用A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,分别求出租车费用即可.【详解】解:(1)设每辆A 型车、B 型车都装满货物一次可以分别运货x 吨、y 吨,依题意列方程组为:32172318x y x y +=⎧⎨+=⎩解得34x y =⎧⎨=⎩答:1辆A 型车辆装满货物一次可运3吨,1辆B 型车装满货物一次可运4吨.(2)结合题意,和(1)可得3a+4b=35∴a=3543b - ∵a、b 都是整数∴92a b =⎧⎨=⎩或55a b =⎧⎨=⎩或18a b =⎧⎨=⎩答:有3种租车方案:方案一:A 型车9辆,B 型车2辆;方案二:A 型车5辆,B 型车5辆;方案三:A 型车1辆,B 型车8辆.(3)∵A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省钱的租车方案是方案一:A 型车1辆,B 型车8辆,最少租车费为2120元.【点睛】此题主要考查了二元一次方程组以及二元一次方程的解法,关键是明确二元一次方程有无数解,但在解与实际问题有关的二元一次方程组时,要结合未知数的实际意义求解.。
七年级下第三次月考数学试卷(有答案)
七年级下第三次月考数学试卷(有答案) 七年级下第三次月考数学试卷(附答案)一、选择题(每小题3分,共计30分)1.若a>b,则下列不等式一定成立的是()A.a-b<0 B.a-b>0 C.1-a<1-b D.-1+a<-1+b2.给出下列四个命题,其中真命题的个数为()①坐标平面内的点可以用有序数对来表示;②若a>0,b不大于0,则P(-a,b)在第三象限内;③在x轴上的点,其纵坐标都为0;④当m≠0时,点P(m²,-m)在第四象限内。
A.1 B.2 C.3 D.43.如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,则图中与∠AGE相等的角()A.2个 B.3个 C.4个 D.5个4.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<-1 B.a<1 C.a>-1 D.a>15.立方根等于它本身的有()A.-1,0,1 B.-1,1 C.0,-1,1 D.16.某旅行社某天有空房10间,当天接待了一个旅行团,当每个房间只住3人时,有一个房间住宿情况是不满也不空。
若旅行团的人数为偶数,求旅行团共有多少人()A.27 B.28 C.29 D.307.点到直线的距离是指这点到这条直线的()A.垂线段 B.垂线 C.垂线的长度 D.垂线段的长度8.XXX用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么XXX最多能买笔的数目为()A.14 B.13 C.12 D.119.某校七(2)班42名同学为“希望工程”捐款,共捐款320元,捐款情况如下表:捐款数(元) | 6 | 8 |人数 | x | y |表格中捐款6元和8元的人数不小心被墨水污染已看不清楚。
若设捐款6元的有x名同学,捐款8元的有y名同学,根据题意,可得方程组6x+8y=320x+y=42A.B.C.D.10.点M(a,a-1)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、认真填一填(每题3分,共24分)11.√2的平方根为2/√2=√2.12.关于x的不等式2x-a≤-3的解集如图所示,则a的值是3.13.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于80°。
七年级数学下册第三次月考试卷(附答案)
七年级数学下册第三次月考试卷(附答案)一.选择题(共10小题,每小题3分,共30分) 1.如图,能判定直线a ∥b 的条件是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠1=∠42.下列方程中,是二元一次方程的是( ) A .xy =1B .x −1y =3C .x =yD .x +y ﹣z =03.用科学记数法记录一个较小的数0.00000503,正确的结果应是( ) A .5.03×10﹣6B .5.03×10﹣7C .5.03×10﹣8D .5.03×10﹣94.为全面掌握小区居民新冠疫苗接种情况,社区工作人员设计了以下几种调查方案: 方案一:调查该小区每栋居民楼的10户家庭成员的疫苗接种情况; 方案二:随机调查该小区100位居民的疫苗接种情况; 方案三:对本小区所有居民的疫苗接种情况逐一调查统计.在上述方案中,能较好且准确地得到该小区居民疫苗接种情况的是( ) A .方案一B .方案二C .方案三D .以上都不行5.一个多项式的平方是x 2+(m ﹣2)x +36,则m =( ) A .﹣10或14B .﹣14或14C .12D .66.分解因式ab 2﹣a ,下列结果正确的是( ) A .ab 2﹣a =a (b 2﹣1) B .ab 2﹣a =a (b ﹣1)2 C .ab 2﹣a =a (b +1)(b ﹣1) D .ab 2﹣a =a (b +1)27.要使分式3m−4有意义,m 应满足的条件是( )A .m <4B .m =4C .m ≠4D .m >48.某施工队整修一条480m 的道路.开工后,每天比原计划多整修20m ,结果提前4天完成任务.设原计划每天整修xm ,根据题意所列方程正确的是( ) A .480x+20−480x=4 B .480x −480x−4=20 C .480x−480x+20=4D .480x−4−480x=209.已知关于x ,y 的方程组{x +3y =4−a x −y =3a,下列结论中正确的有几个( )①当这个方程组的解x ,y 的值互为相反数时,a =﹣2; ②当a =1时,方程组的解也是方程x +y =4+2a 的解; ③无论a 取什么实数,x +2y 的值始终不变; ④若用x 表示y ,则y =−x 2+32; A .1B .2C .3D .410.对任意一个两位数n ,如果n 满足个位与十位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”的十位上的数字与个位上的数字互换位置后,得到一个新两位数:把所得的新两位数与原两位数的和与11的商记为F (n ).例如n =23.互换十位与个位上的数字得到32,所得的新两位数与原两位数的和为23+32=55,55÷11=5,所以F (23)=5.若s ,t 都是“相异数”,其中s =10x +3,t =50+y (1≤x ≤9,1≤y ≤9.x ,y 都是正整数),当F (s )+F (t )=15时,则F(s)F(t)的最大值为( )A .2B .32C .114D .4二.填空题(共6小题,每小题4分,共24分)11.已知方程2x +y ﹣3=0,用含x 的代数式表示y 为:y = . 12.已知a m =2,a n =3,则a m +n 的值为 . 13.已知a +b =5,ab =﹣3,则﹣2a 2b ﹣2ab 2= . 14.一们同学在解关于x 的分式方程a x−3−13−x=2的过程中产生了增根,则可以推断a 的值为 .15.有一条长度为359mm 的铜管料,把它锯成长度分别为59mm 和39mm 两种不同规格的小铜管(要求没有余料),每锯一次损耗1mm 的铜管料,为了使铜管料的损耗最少,应分别锯成59mm 的小铜管 段,39mm 的小铜管 段.16.响应国家号召,某区推进新型农村建设,强村富民.村民小红家准备将一块良田分成A 、B 、C 三个区域来种植三种畅销型农作物.爸爸计划好三个区域的占地面积后,小红主动承担起实地划分的任务.划分完毕后,爸爸发现粗心的小红将A 区20%的面积划分给了B 区,而原B 区50%的面积错划分给了A 区,C 区面积未出错,造成现B 区的面积占A 、B 两区面积和的比例达到了40%.为了协调三个区域的面积占比,爸爸只好将C 区面积的40%分成两部分划分给现在的A 区和B 区.爸爸划分完后,A 、B 、C 三个区域的面积比变为2:1:3,那么爸爸从C 区划分给B 区的面积与良田总面积的比为 . 三.解答题(66分,17题10分,18-21每题6分,22,23每题10分,24题12分)17.(1)解方程组:{5x −2y =123x −4y =10. (2)解分式方程:x−3x−2+2=32−x .18.计算:(1)﹣2ab 2•(−12a 2b 3)2÷34a 5b 4; (2)|−1|+(12)−1−(π−3.14)0+(−2)3 19.分解因式:(1)4x 2﹣100; (2)2mx 2﹣4mxy +2my .220.先化简:a−32a−4÷(a+2−5a−2),再从2,3,4中选择一个符合题意的数作为a的值,并代入求值.21.某中学为了提高学生的综合素质,成立了以下社团:A(机器人),B(围棋),C(羽毛球),D(电影配音),每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成两幅不完整的统计图(如图).根据上述信息,解答下列问题:(1)这次一共调查了多少人?(2)求“A”在扇形统计图中所占圆心角的度数;(3)请将条形统计图补充完整.22.如图,将△ABC沿射线AB的方向移动2cm到△DEF的位置.(1)找出图中所有平行的直线;(2)找出图中与AD相等的线段,并写出其长度;(3)若∠ABC=65°,求∠BCF的度数.23.常德市某校购进一批甲、乙两种中考排球,已知一只甲种排球的价格与一只乙种排球的价格的和为40元,用900元购进甲种排球的件数与用1500元购进乙种排球的件数相同.(1)求每件甲种、乙种排球的价格分别是多少元?(2)该校计划用3500元购买甲、乙两种排球,由于采购人员把甲、乙两种排球的只数互换了,结果需4500元,求该校原计划购进甲、乙两种排球各多少只?24.已知:∠AOB=α(0°<α<90°),一块三角板CDE中,∠CED=90°,∠CDE=30°,将三角板CDE如图所示放置,使顶点C落在OB边上,经过点D作直线MN∥OB交OA边于点M,且点M在点D的左侧.(1)如图1,若CE∥OA,∠NDE=45°,则α=°;(2)若∠MDC的平分线DF交OB边于点F,①如图2,当DF∥OA,且α=60°时,试说明:CE∥OA;②如图3,当CE∥OA保持不变时,试求出∠OFD与α之间的数量关系.参考答案一、选择题(每题3分,共30分)1-5 D C A C A 6-10 C C C C B二、填空题(每题4分,共24分)11、3﹣2x 12、 6 13、3014、﹣115、4316、17(每题5分,共10分)(1)解是(2)是原方程的解18(每题3分,共6分)(1)原式=﹣2ab2•a4b6a5b4a5b8a5b4b4;(2)原式=1+2﹣1﹣8=﹣6;19(每题3分,共6分)(1)原式=4(x2﹣25)=4(x+5)(x﹣5);(2)原式=2m(x2﹣2xy+y2)=2m(x﹣y)2.20、(6分)原式•,由分式有意义的条件可知:a不能取2,±3,∴a=4,∴原式.21、(6分)解:(1)30÷30%=100(人),答:本次一共调查100人;(2)360°×10%=36°,答:“A”在扇形统计图中所占圆心角的度数为36°;(3)“A类”人数:100×10%=10(人),“D类”人数:100﹣10﹣30﹣40=20(人),补全条形统计图如图所示.22、(10分)解:(1)AE∥CF,AC∥DF,BC∥EF;(2)AD=CF=BE=2cm;(3)∵AE∥CF,∠ABC=65°,∴∠BCF=∠ABC=65°.23、(10分)解:(1)设甲种排球的进价为x元/只,则乙种排球的进价为(40﹣x)元/只,依题意得:,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴40﹣x=40﹣15=25.答:甲种排球的进价为15元/只,乙种排球的进价为25元/只.(2)设该校原计划购进甲种排球a只,乙种排球b只,依题意得:,解得:.答:该校原计划购进甲种排球150只,乙种排球50只.24(12分)(1)45°解:(1)如图,过点E作EF∥MN,∴∠DEF=∠NDE=45°,∵∠CED=90°,∴∠FEC=45°,∵MN∥OB,∴EF∥OB,∴∠BCE=∠FCE=45°,∵AO∥CE,∴∠AOB=∠ECB=45°,则α=45°,故答案为:45;(2)①∵DF∥OA,∴∠DFC=∠AOB=α=60°,∵MN∥OB,∴∠MDF=∠DFC,∵DF平分∠MDC,∴∠CDF=∠MDF=60°,在直角三角形DCE中,∠DCE=60°,∴∠CDF=∠DCE,∴CE∥DF,∵DF∥OA,∴CE∥OA;②∵当CE∥OA保持不变时,总有∠ECB=α,在直角三角形DCE中,∠DCE=60°,∴∠DCB=60°+α,∵MN∥OB,∴∠MDC=∠DCB=60°+α,且∠DFC=∠MDF,∵DF平分∠MDC,∴,∴.。
2022春北师版七下数学6月1日星期三家庭作业答案与解析
2022春北师版七下数学6月1日星期三家庭作业答案与解析一、A选1.计算(a4)2的结果是()A.a6B.a8C.a16D.a64【答案】B【分析】根据幂的乘方公式,直接求解,即可.【详解】解:(a4)2=a8,故选B.【点睛】本题主要考查幂的乘方法则,熟练掌握上述法则,是解题的关键.2.下列图形中,可以被看作是轴对称图形的是()A. B. C. D.【答案】C【分析】利用轴对称图形定义进行解答即可.【详解】解:A、不可以看作轴对称图形,故此选项不符合题意;B、不可以看作轴对称图形,故此选项不符合题意;C、可以看作轴对称图形,故此选项符合题意;D、不可以看作轴对称图形,故此选项不符合题意;故选:C.【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.3.随着北斗系统全球组网的步伐,北斗芯片的研发生产技术也在逐步成熟,国产北斗芯片可支持接收多系统的导航信号,应用于自动驾驶、无人机、机器人等高精度定位需求领域,将为中国北斗导航产业发展提供有力支持.目前,该芯片工艺已达22纳米(即0.000000022米).则数据0.000000022用科学记数法表示为()A.0.22×10﹣7B.2.2×10﹣8C.22×10﹣9D.22×10﹣10【答案】B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:0.000000022=2.2×10−8.故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要确定a的值以及n的值.4.下列从左到右的变形,错误的是()A.﹣m+n=﹣(m+n)B.﹣a﹣b=﹣(a+b)C.(m﹣n)3=﹣(n﹣m)3D.(y﹣x)2=(x﹣y)2【答案】A【分析】根据添括号法则,乘方的符号规律,逐一判断各个选项,即可.【详解】解:A.﹣m+n=﹣(m-n),故原式变形错误,符合题意;B.﹣a﹣b=﹣(a+b),故原式变形正确,不符合题意;C.(m﹣n)3=﹣(n﹣m)3,故原式变形正确,不符合题意;D.(y﹣x)2=(x﹣y)2,故原式变形正确,不符合题意.故选A.【点睛】本题主要考查添括号法则以及符号法则,熟练掌握添括号法则,乘方的意义,是解题的关键.5.下列事件中,是必然事件的是()A.任意掷一枚质地均匀的骰子,掷出的点数是奇数B.一个射击运动员每次射击的命中环数C.任意买一张电影票,座位号是2的倍数D.早上的太阳从东方升起【答案】D【分析】根据必然事件的定义逐一判断相应事件的类型即可.【详解】解:A、掷一枚质地均匀的骰子,,掷出的点数是奇数,是随机事件,故A不符合题意;B、一个射击运动员每次射击的命中环数是随机事件,故B不符合题意;C、任意买一张电影票,座位号是2的倍数,是随机事件,故C不符合题意;D、早上的太阳从东方升起是必然事件,故D符合题意;故选:D.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.如图,一个含有30°角的直角三角尺的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()A.40°B.35°C.30°D.20°【分析】根据平行线的性质即可求解.【详解】解:如上图所示,∵FB∥AE,∴∠3=∠1(两直线平行,内错角相等),∵∠1=20°,∴∠3=20°,∵∠CBA=90°-30°=60°,∴∠2=∠CBA−∠3=60°−∠3=40°,故选:A.【点睛】本题考查的是平行线的性质以及直角三角形的性质.本题关键是根据平行线的性质找出图中角度之间的关系.7.等腰三角形一边长9cm,另一边长4cm,它的第三边是()cm.A.4B.9C.4或9D.大于5且小于13【答案】B【分析】根据等腰三角形的定义,分类讨论,结合三角形三边长关系,即可得到答案.【详解】解:∵等腰三角形一边长9cm,另一边长4cm,当边长为9cm,9cm,4cm时,符合题意,当边长为4cm,4cm,9cm时,不符合题意,∴它的第三边是9cm,故选:B.【点睛】此题主要考查三角形三边长关系,等腰三角形的性定义,掌握三角形任意两边之和大于第三边,是解题的关键.8.如图,在Rt△ABC中,BD是∠ABC的平分线,DE⊥AB,垂足是E.若AC=5,DE=2,则AD为()A.4B.3C.2D.1【答案】B【分析】根据角平分线的性质可得CD=DE=2,进而即可求解.【详解】解:∵在Rt△ABC中,BD是∠ABC的平分线,DE⊥AB,∴CD=DE=2,∵AC=5,∴AD=5-2=3,故选B.【点睛】本题主要考查角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等,是解题的关键.9.如图,在△ABC和△DCB中,∠ABC=∠DCB,要使△ABC≌△DCB,还需添加一个条件,这个条件不能是()A.∠A=∠DB.∠ACB=∠DBCC.AB=DCD.AC=DB 【答案】D【分析】由题意可知,∠ABC=∠DCB,BC=CB,然后利用三角形全等的判定定理逐个进行判【详解】解:由题意∠ABC=∠DCB,BC=CB∴A.∠A=∠D,可用AAS 定理判定△ABC≌△DCBB.∠ACB=∠DBC,可用ASA 定理判定△ABC≌△DCBC.AB=DC,可用SAS 定理判定△ABC≌△DCBD.AC=DB,不一定能够判定两个三角形全等故选:D【点睛】本题考查三角形全等的判定,掌握判定定理灵活应用是本题的解题关键.10.柿子熟了,从树上落下来.下面可以大致刻画出柿子下落过程(即落地前)的速度变化情况的是()A. B. C. D.【答案】C【分析】柿子在下落过程中,速度是越来越快的,所以速度随时间的增大而增大;根据上步提示,对各个选项中的函数图象进行分析,找出速度随时间的增大而增大的那一个即可【详解】因为柿子在下落过程中,速度是越来越快的,所以速度随时间的增大而增大;A.速度随时间的增大而减小,不符合题意;B.速度随时间的增大而保持不变,不符合题意;C.速度随时间的增大而增大,符合题意;D.速度随时间的增大而减小,不符合题意;故选C.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.二、A 填11.如图,如果∠1+∠2=280°,则∠3的度数是________;【答案】40︒【分析】因为1,2∠∠是对顶角,根据题意求得1∠的度数,再根据邻补角求得3∠【详解】12∠=∠,12280∠+∠=︒1140∴∠=︒又13180∠+∠=︒340∠∴=︒故答案为:40︒【点睛】本题考查了对顶角的性质,邻补角的定义,解二元一次方程组,求得1∠的度数是解题的关键.12.如图,AC DC =,BC EC =,请你添加一个适当的条件:_____,使得ABC DEC△≌△【答案】AB=DE.本题答案不唯一.【解析】【详解】解:添加条件是:AB=DE,SSS 可证全等∴△ABC ≌△DEC .故答案为AB=DE.本题答案不唯一.13.如图,//EF MN ,CA CB ⊥,35EAC ∠=︒,则MBC ∠的度数是___________.【答案】55︒【分析】过点C 作CP∥EF,则CP∥MN,利用“两直线平行,内错角相等”可得出∠PCA=∠EAC=35°,∠PCB=∠MBC,结合∠ACB=90°,∠PCB=∠ACB-∠PCA 可求出∠PCB 的度数,进而可得出∠MBC 的度数.【详解】解:过点C 作CP∥EF,则CP∥MN,如图所示.∵CP∥EF,CP∥MN,∴∠PCA=∠EAC=35°,∠PCB=∠MBC.∵CA⊥CB,∴∠ACB=90°,∴∠PCB=∠ACB-∠PCA=90°-35°=55°,∴∠MBC=55°.故答案为:55°.【点睛】本题考查了平行线的性质以及垂线,掌握“两直线平行,内错角相等”是解题的关键.14.观察下列各式的规律:22()()a b a b a b -+=-()2233()a b a ab b a b -++=-()322344()a b a a b ab b a b -+++=-……()()2018201720172018a b a a b ...ab b -++++=________【答案】20192019a b -【分析】观察已知等式,找出规律,归纳总结确定出所求即可.【详解】解:归纳总结得:()()201820172017201820192019a b aa b ...ab b a b -++++=-故答案为:20192019a b -【点睛】此题考查了平方差公式,熟练掌握平方差法则是解本题的关键.三、B填21.若x2+2mx+9是完全平方式,则m=_____.【答案】±3【分析】这里首末两项是x和3这两个数的平方,那么中间一项为加上或减去x与3的积的2倍.【详解】解:∵x2+2mx+9是完全平方式,∴x2+2mx+9=(x±3)2=x2±6x+9,∴2m=±6,m=±3.故答案为±3.【点睛】此题主要考查了完全平方公式的应用;两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.22.在△ABC中,BO平分∠ABC,CO平分∠ACB,若∠O=120°,则∠A=_____.【答案】60°.【分析】根据三角形的内角和等于180°求出∠ABC+∠ACB的度数,再根据角平分线的定义求出∠OBC+∠OCB的度数,然后利用三角形的内角和等于180°列式计算即可得解.【详解】解:∵∠ABC+∠ACB=180°﹣∠A,BO平分∠ABC,CO平分∠ACB,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠OBC+∠OCB=12(∠ABC+∠ACB)=12(180°﹣∠A)=90°﹣12∠A,∴在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=90°+12∠A=120°,∴∠A=60°,故答案为:60°.【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23.如图,在Rt△ABC中,AC⊥BC,∠A=30°,D为斜边AB的中点.若BC=2,则CD=_____.【答案】2【分析】根据直角三角形30°角所对的直角边等于斜边的一半可得AB=2BC,再根据直角三角形斜边上的中线等于斜边的一半可得CD=12AB.【详解】解:∵AC⊥BC,∴∠ACB=90°,∵∠A=30°,∴AB=2BC=2×2=4,∵D为斜边AB的中点,∴CD=12AB=12×4=2.故答案为:2.【点睛】本题考查了直角三角形30°角所对的直角边等于斜边的一半和直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.24.若(x﹣3)(x2+ax+b)的积中不含x的二次项和一次项,则a+b的值为_____.【答案】12【分析】原式利用多项式乘多项式法则计算,合并后根据积中不含x的二次项和一次项可得关于a、b的方程,进一步即可求出a与b的值,然后把a、b的值代入所求式子计算即可.【详解】解:原式=x3+ax2+bx﹣3x2﹣3ax﹣3b=x3+(a﹣3)x2+(b﹣3a)x﹣3b,由积中不含x的二次项和一次项,得到a﹣3=0,b﹣3a=0,解得:a=3,b=9,则a+b=3+9=12.故答案为:12.【点睛】本题考查了多项式的乘法,属于常考题型,正确理解题意、熟练掌握多项式的乘法法则是解题的关键.25.如图a是长方形纸带,∠DEF=15°,将纸带沿EF折叠成图b,则∠AEG的度数_____度,再沿BF折叠成图c.则图中的∠CFE的度数是_____度.【答案】①.150②.135【分析】根据长方形纸条的对边平行,利用平行线的性质和翻折不变性求出∠2=∠EFG,继而求出图b中∠GFC的度数,再减掉∠GFE即可得图c中∠CFE的度数.【详解】解:如图,延长AE到H,由于纸条是长方形,∴EH∥GF,∴∠1=∠EFG,根据翻折不变性得∠1=∠2=15°,∴∠2=∠EFG,∠AEG=180°﹣2×15°=150°,又∵∠DEF=15°,∴∠2=∠EFG=15°,∠FGD=15°+15°=30°.在梯形FCDG中,∠GFC=180°﹣30°=150°,根据翻折不变性,∠CFE=∠GFC﹣∠GFE=150°﹣15°=135°.故答案为:150;135.互补,折叠前后角的度数不变.。
华师附中初一数学寒假作业3:面积专题
2016年初一数学寒假作业3:面积专题初一( )班 姓名: 学号:一、面积比1、如图,三角形ABC 的面积为1,BD :DC=2:1,E 是AC 的中点,AD 与BE 相交于点P ,求四边形PDCE 的面积.2、如图所示,在ABC ∆中,DC=3BD ,DE=EA ,若ABC ∆的面积是1,求阴影部分的面积。
3、如图,在ABC ∆中,AE =EF =FD ,BD =DC ,若ABC ∆的面积为1,求四边形EFHG 的面积。
4、如图,△ABC 内的线段BD 、CE 相交于点O ,已知BO =DO ,CO =2EO ,设△BOE 、△BOC 、△COD 和四边形AEOD 的面积分别为4321,,,S S S S 。
(1)求31:S S ;(2)如果22=S ,求4S 的值。
C D BoCEDBAD C B5、如图, BD =DC ,CE =2EA ,AF =3FB ,若△ABC 的面积为1,求三角形PMN 的面积。
6、如图,已知四边形被它的两条对角线分为四个三角形,其中甲的面积是3,乙的面积是4,四边形的面积为28,求丙的面积。
7、如图,平行四边形ABCD 的面积为7.2,E 为BC 的中点,求阴影部分的面积。
8、如图,平行四边形ABCD 中,E 在AB 上,F 在AD 上,1412===∆∆ABCD CDF BCE S S S ,求 CEF S ∆。
ECB ADC B A9、如图, ABCD 是平行四边形,面积为72平方厘米,E ,F 分别为AB ,BC 的中点,则图中阴影部分的面积为多少平方厘米?10、图中正方形ABCD 的面积为1,M 是AD 边的中点,求图中阴影部分的面积。
11、如图,正方形ABCD 的面积是120平方厘米,E 是AB 的中点,F 是BC 的中点,四边形BGHF 的面积是多少平方厘米?12、已知矩形GHCD 的面积是矩形ABCD 面积的41,矩形MHCF 的面积是矩形ABCD 面积的61,矩形BCFE 的面积等于3平方米,则矩形AEMG 的面积等于是多少平方米?ADEE13、如图,ABCD 是长方形,E 、F 分别是AB 、DA 的中点,G 是BF 和DE 的交点,四边形BCDG 的面积是40平方厘米,那么ABCD 的面积是多少厘米?14、面积分别为1、2、3、4、5、6的六个长方形如图排列,求阴影部分的面积。
人教版2020年七年级下册数学第三次月考试卷
2020年七年级下册数学第三次月考试卷(测试范围:相交线与平行线,实数,坐标,方程) 姓名分数.一、选择题(每小题3分,共30分)1.下面四个图形中,∠1与∠2的对顶角是()A B C D2.下列方程组中是二元一次方程组的是()A.141yxx y⎧+=⎪⎨⎪-=⎩B.43624x yy z+=⎧⎨+=⎩C.41x yx y+=⎧⎨-=⎩D.22513x yx y+=⎧⎨+=⎩3.由132x y-=可以得到用x表示y的式子为()A.223xy-=B.2133y x=-C.223xy=-D.223y x=-4.如图,已知直线a、b被直线c所截,那么∠1的同位角是()A.∠2 B.∠3 C.∠4 D.∠5 4题图5.下列说法中,正确的是()A.在同一平面内,过一点有无数条直线与已知直线垂直B.两直线相交,对顶角互补C.垂线段最短D.直线外一点到这条直线的垂线段叫做点到直线的距离6.若12xy=⎧⎨=⎩是方程3mx-2y-1=0的解,则m=()A.53B.1 C.53-D.-17.若P为直线l外一点,A为直线l上一点,且P A=3,d为点P到直线l的距离,则d的取值范围为()A.d=3 B.d≥3 C.0<d<3 D.0<d≤38.某班为奖励在校运动会上取得好成绩的同学,花了200元钱购买甲、乙两种奖品共30件,其中甲种奖品每件8元,乙种奖品每件6元,若设购买甲种奖品x件,乙种奖品y件,则所列方程组正确的是()A.3068200x yx y+=⎧⎨+=⎩B.3086200x yx y+=⎧⎨+=⎩C.6830200x yx y+=⎧⎨+=⎩D.8630200x yx y+=⎧⎨+=⎩9.如图,分别用火柴棍连续搭建正三角形和正六边形,公共边只用一根火柴棍. 如果搭建正三角形和正六边形共用2017根火柴棍,并且正三角形的个数比正六边形的个数多10个,那么能连续搭建正三角形的个数是()A.285 B.286 C.292 D.29510.商店里有A、B、C三种商品,单价分别为50元,30元,10元. 若小明购买了两种商品,共花费140元,则小明的购买方案有()种A.3 B.7 C.10 D.12题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(每小题3分,共18分)12.如图,与∠B 是同旁内有的是 .第16题13.如图,直线AB 、CD 相交于点O ,OE ⊥AB ,垂足为O ,如果∠EOD =38°,则∠AOC = .14.对于实数x ,y ,定义新运算:x ※y =ax +by ,其中a ,b 为常数,等式右边是通常的加法与乘法运算. 已知(-1)※2=3,3※1=5,则(-2)※4的值是 .15.若23234x y m x y m-=-⎧⎨-=-⎩(x ,y ,m ≠0),则x y = . 16.将九个数填在3×3的方格中,如果满足每横行,每竖列和每条对角线上三数之和都相等,则称为广义三阶幻方,如图,请根据广义三阶幻方中已给出的数,求出幻方的中间数是 .三、解答题:(共72分)17.(8分)解方程组:2128x y x y +=-⎧⎨-=⎩18.(8分)在等式y =ax 2+bx +c 中,当x =-1时,y =6;当x =1时,y =0;当x =3时,y =2.(1)求a 、b 、c 的值; (2)当x =4时,y 的值是多少.19.(8分)如图,已知△ABC ,按要求作图.(1)过点A 作BC 的垂线段AD ;(2)过C 作AB 、AC 的垂线分别交AB 于点E 、F ;(3)AB =15,BC =7,AC =20,AD =12,求点C 到线段AB 的距离.(第11题) (第13题) (第12题) A B C D E F 1 2 3 5 4 -5 -4 -1020.(8分)从甲地到乙地有一段上坡路与段平路,如果上坡路每小时走2km,平路每小时走3km,下坡每小时走4km. 那么从甲地到乙地需54min,从乙地到甲地需39min. 甲地到乙地全程是多少?21.(8分)若方程组23352x y mx y m+=⎧⎨+=+⎩的解x,y满足绝对值相等,求m的值.22.(10分)如图,直线AB,CD相交于点O,∠DOE︰∠BOE=3︰1,OF平分∠AOD,(1)∠AOC=∠AOF-30°,求∠EOF;(2)射线OM平分∠AOF,求∠MOE的度数.23.(10分)某商店准备购进A 、B 两种模型,若购进A 种模型8件,B 种模型3件,需要950元;若购进A 种模型5件,B 种模型6件,需要800元. 现商店用2000元购买了若干件模型,且A 、B 两种模型均多于10件.(1)求A 、B 型模型每件各需多少元?(2)该商店有多少种采购方案?(3)若A 种模型每件可获利30元,B 种模型每件可获利20元,哪种方案的盈利较大?24.(12分)如图,直线AB 、CD 交于点O ,OE 是一条射线,已知∠1=∠2,∠3=2∠4.(1)判断OE 与AB 的位置关系,并证明;(2)OE ,CD 分别以a °/秒,1°/秒的速度从上述位置开始,绕O 点逆时针转动,设运动时间为t 秒:①当a =2时,作∠AOE 的平分线OM ,若0<t <45,求∠MOD 的度数.②当a =3时,OE 旋转一周后两者均停止转动,问t 为何值时,有∠AOE =∠AOC ?图2O A B 图1。
2021-2022学年华师大版七年级数学下册第三阶段综合练习题(六月 附答案)
2021-2022学年华师大版七年级数学下册第三阶段综合练习题(六月附答案)一.选择题(共12小题,每题3分,共36分)1.在下列方程中,以x=﹣1为解的方程是()A.x+1=0B.x﹣1=﹣1C.﹣2x=D.x=﹣22.如图表示的是某个关于x的一元一次不等式组解集,则此不等式组的解集是()A.x≥﹣3B.﹣3≤x<1C.x<1D.无解3.下列图形中,是轴对称图形的有()个①角;②线段;③等腰三角形;④直角三角形;⑤圆;⑥锐角三角形.A.2B.3C.4D.54.现有两根木棒,它们的长分别是30cm和80cm,若要钉成一个三角形木架,则应选取的第三根木棒长为()A.40cm B.50cm C.60cm D.130cm5.用“加减法”将方程组中的x消去后得到的方程是()A.3y=2B.7y=8C.﹣7y=2D.﹣7y=86.现要选用两种不同的正多边形地砖铺地板,若已选择了正四边形,则可以再选择的正多边形是()A.正七边形B.正五边形C.正六边形D.正八边形7.一个两位数,个位、十位上的数字的和是5,如果把个位上的数字与十位上的数字对换可以得到比原数小9的两位数,则这个两位数是()A.14B.23C.32D.418.已知方程4ax﹣2x+1=﹣3的解为x=1,那么2a+的值为()A.﹣B.C.﹣3D.39.已知不等式组有解,则a的取值范围为()A.a>﹣2B.a≥﹣2C.a<2D.a≥210.如图,在△ABC中,AB=5,AC=3,BC=7,AI平分∠BAC,CI平分∠ACB,将∠BAC 平移,使其顶点与点I重合,则图中阴影部分的周长为()A.5B.8C.10D.711.如图,AC=BC=BD,AD=AE,DE=CE,则∠B为()度.A.30°B.36°C.40°D.45°12.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,∠CEG=2∠DCB,且∠DFB =∠CGE.下列结论:①EG∥BC,②CG⊥EG,③∠ADC=∠GCD,④CA平分∠BCG.其中正确的个数是()A.1B.2C.3D.4二、填空题(共4小题,每题4分,共16分)13.已知方程(a﹣2)x|a|﹣1﹣4=0是关于x一元一次方程,则方程的解x=.14.如果4a2x﹣3y b4与的和仍是单项式,则xy=.15.如图,在△ABC中,点D、E、F分别是线段BC、AD、CE的中点,且S△ABC=8cm2,则S△BEF=cm2.16.如图,点D是等边△ABC内一点,将△BDC以点C为中心顺时针旋转60°,得到△ACE,连接BE,若∠AEB=45°,则∠DBE的度数为.三.解答题(总分68分)17.解方程组:.18.解不等式组,并写出它的所有非负整数解.19.如图,在正方形网格上有一个△ABC.(1)作△ABC关于直线MN的对称图形(不写作法);(2)画出△ABC中BC边上的高.(3)若网格上的最小正方形的边长为1,求△ABC的面积.20.如图,在△ABC中,AB=AC,腰AC上的中线BD把△ABC的周长分成15和21两部分,求△ABC各边的长.21.若不等式组的偶数解a满足方程组,求x2+y2的值.22.众志成城抗疫情,全国人民在行动.某公司决定安排大、小货车共20辆,运送260吨物资到A地和B地,支援当地抗击疫情.每辆大货车装15吨物资,每辆小货车装10吨物资,这20辆货车恰好装完这批物资.已知这两种货车的运费如下表:A地(元/辆)B地(元/辆)目的地车型大货车9001000小货车500700现安排上述装好物资的20辆货车中的10辆前往A地,其余前往B地,设前往A地的大货车有x辆,这20辆货车的总运费为y元.(1)这20辆货车中,大货车、小货车各有多少辆?(2)求y与x的函数解析式,并直接写出x的取值范围;(3)若运往A地的物资不少于140吨,求总运费y的最小值.23.如图1,将三角板ABC与三角板ADE摆放在一起;如图2,其中∠ACB=30°,∠DAE =45°∠BAC=∠D=90°.固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).(1)当α为度时,AD∥BC,并在图3中画出相应的图形;(2)当△ADE的一边与△ABC的某一边平行(不共线)时,写出旋转角α的所有可能的度数;(3)当0°<α<45°时,连接BD,利用图4探究∠BDE+∠CAE+∠DBC值的大小变化情况,并给出你的证明.24.如图,在数轴上有A、B两点,点A对应的数为a,点B对应的数是b,且a、b满足|a+4|+(b﹣8)2=0(1)求线段AB的长;(2)若点M从点A出发以每秒3个单位长度的速度向右移动,同时点N从B点出发以每秒1个单位长度的速度向右移动,设移动时间为t秒.问t为多少时,M、N两点相距6个单位长度;(3)点C在数轴上对应的数为x,且x是方程2x﹣3=x+6的根.在线段AB之间有一点P(不包含A、B两点),若D为PB的中点,E为PC的中点,若CD=2CE,试求点P所对应的数.参考答案一.选择题(共12小题,每题3分,共36分)1.解:分别将x=﹣1代入A、B、C、D选项中的方程,可知:解为x=﹣1的方程是x+1=0.故选:A.2.解:由,得﹣3≤x<1.故选:B.3.解:根据轴对称图形的定义可知:①角的对称轴是该角的角平分线所在的直线;②线段的对称轴是线段的垂直平分线;③等腰三角形的对称轴是底边的高所在的直线;⑤圆的对称轴有无数条,是各条直径所在的直线,故轴对称图形共4个.故选:C.4.解:根据三角形的三边关系,得第三边应大于两边之差,即80﹣30=50;而小于两边之和,即30+80=110.下列答案中,只有60cm符合条件.故选:C.5.解:,①﹣②得:﹣7y=8,故选:D.6.解:A、正七边形的每个内角约是129°,正四边形每个内角是90°,不能构成360°,则不能铺满,故本选项错误;B、正五角形每个内角108°,正四边形每个内角是90°,不能构成360°,则不能铺满,故本选项错误;C、正六边形每个内角120°,正四边形每个内角是90°,不能构成360°,则不能铺满,故本选项错误;D、正八边形每个内角135°,正四边形每个内角是90°,两个正八边形和一个正四边形能构成360°,则能铺满,故本选项正确;故选:D.7.解:设原两位数的个位数为x,则十位数为5﹣x,原来的数是10(5﹣x)+x,新数为10x+(5﹣x).根据题意得:10x+(5﹣x)﹣9=10(5﹣x)+x,解得:x=3,则原数的十位上的数是2,原来的两位数为32.故选:C.8.解:把x=1代入方程4ax﹣2x+1=﹣3得4a﹣2+1=﹣3,解得:a=﹣,则2a+=﹣1﹣2=﹣3.故选:C.9.解:由(1)得x≥a,由(2)得x<2,故原不等式组的解集为a≤x<2,∵不等式组有解,∴a的取值范围为a<2.故选:C.10.解:连接BI、如图所示:∵点I为△ABC的内心,∴BI平分∠ABC,∴∠ABI=∠CBI,由平移得:AB∥DI,∴∠ABI=∠BID,∴∠CBI=∠BID,∴BD=DI,同理可得:CE=EI,∴△DIE的周长=DE+DI+EI=DE+BD+CE=BC=7,即图中阴影部分的周长为7,故选:D.11.解:∵AC=BC,∴∠A=∠B,∵DE=CE,∴∠ECD=∠EDC,设∠ECD=x°,∠B=y°,则∠EDC=x°,∠A=y°,∠AED=2x°,∵AE=AD,∴∠ADE=∠AED=2x°,∴∠BDC=∠A+∠ECD=x°+y°,∵BC=BD,∴∠BDC=∠BCD=x°+y°,则,解得:,∴∠B=36°,故选:B.12.解:①∵CD平分∠ACB,∴∠BCA=2∠DCB,∵∠CEG=2∠DCB,∴∠CEG=∠BCA,∴EG∥BC,故①正确;②∵△ABC的角平分线CD、BE相交于F,∴∠CBF=∠CBA,∠BCF=∠BCA,∵∠A=90°,∴∠CBA+∠BCA=90°,∴∠CBF+∠BCF=45°,即∠DFB=45°,∵∠DFB=∠CGE,∴∠CGE=90°,即CG⊥EG.故②正确;③∵CG⊥EG,∴∠G=90°,∴∠GCE+∠CEG=90°,∵∠A=90°,∴∠BCA+∠ABC=90°,∵∠CEG=∠ACB,∴∠ECG=∠ABC,∵∠ADC=∠ABC+∠DCB,∠GCD=∠ECG+∠ACD,∠ACD=∠DCB,∴∠ADC=∠GCD,故③正确;④假设CA平分∠BCG,则∠ECG=∠ECB=∠CEG,∴∠ECG=∠CEG=45°,显然不符合题意,故④错误.故选:C.二、填空题(共4小题,每题4分,共16分)13.解:由方程(a﹣2)x|a|﹣1﹣4=0是关于x一元一次方程,得|a|﹣1=1且a﹣2≠0.解得a=﹣2.原方程是﹣4x﹣4=0,解得x=﹣1,故答案为:﹣1.14.解:∵4a2x﹣3y b4与的和仍是单项式,∴,解得,∴xy=3×1=3,故答案为:3.15.解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×8=4,∴S△BCE=S△ABC=×8=4,∵点F是CE的中点,∴S△BEF=S△BCE=×4=2.故答案为:2.16.解:∵△ABC为等边三角形,∴∠ACB=60°,∵△BDC以点C为中心顺时针旋转60°,得到△ACE,∴∠CBD=∠CAE,∵∠CAE+∠AEB=∠CBE+∠BCA,即∠CBD+45°=∠CBE+60°,∴∠CBD﹣∠CBE=60°﹣45°=15°,即∠DBE=15°.故答案为:15°.三.解答题(总分68分)17.解:方程组整理得:,①+②×2得:7x=21,解得:x=3,把x=3代入②得:6+y=5,解得:y=﹣1,则方程组的解为.18.解:,由①得:x≥﹣2;由②得x<.∴不等式组的解集为﹣2≤x<,∴非负整数解为:0,1,2.19.解:(1)如图所示:△A′B′C′即为所求;(2)如图所示:AD即为△ABC中BC边上的高;(3)△ABC的面积:×2×2=2.20.解:∵BD是等腰△ABC的中线,可设AD=CD=x,则AB=AC=2x,又知BD将三角形周长分为15和21两部分,∴可知分为两种情况①AB+AD=15,即3x=15,解得x=5,BC=21﹣x=21﹣5=16,此时等腰△ABC的三边分别为10,10,16;②AB+AD=21,即3x=21,解得x=7;此时等腰△ABC的三边分别为14,14,8.经验证,这两种情况都是成立的.∴△ABC各边的长是10,10,16或14,14,8.21.解:解不等式①,得a>2,解不等式②,得a≤,∴原不等式组的解集是2<,∴偶数解为a=4.把a=4代入方程组,得,解得,∴x2+y2=(﹣1)2+32=10.22.解:(1)设大货车、小货车各有m与n辆,由题意可知:,解得:答:大货车、小货车各有12与8辆(2)设到A地的大货车有x辆,则到A地的小货车有(10﹣x)辆,到B地的大货车有(12﹣x)辆,到B地的小货车有(x﹣2)辆,∴y=900x+500(10﹣x)+1000(12﹣x)+700(x﹣2)=100x+15600,其中2≤x≤10,x为整数.(3)运往A地的物资共有[15x+10(10﹣x)]吨,15x+10(10﹣x)≥140,解得:x≥8,∴8≤x≤10,x为整数,当x=8时,y有最小值,此时y=100×8+15600=16400元,答:总运费最小值为16400元.23.解:(1)∵AD∥BC,∴∠FGC=∠D=90°,∵∠C=30°,∴∠AFD=∠CFG=60°,∴∠DAF=30°,∵∠DAE=45°,∴∠CAE=15°,∴当α为15度时,AD∥BC;故答案为:15;(2)当△ADE的一边与△ABC的某一边平行(不共线)时,旋转角α的所有可能的度数是:15°,45°,105°,135°,150°;(3)当0°<α<45°,∠BDE+∠CAE+∠DBC=105°,保持不变;理由如下:设BD分别交AC、AE于点M、N,在△AMN中,∠AMN+∠CAE+∠ANM=180,∵∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,∴∠E+∠BDE+∠CAE+∠C+∠DBC=180°,∵∠C=30°,∠E=45°,∴∠BDE+∠CAE+∠DBC=105°24.解:(1)∵|a+4|+(b﹣8)2=0,∴a+4=0,b﹣8=0,a=﹣4,b=8,∴AB=8﹣(﹣4)=12;(2)分两种情况:①当M在点N的左边时,8+t﹣(﹣4+3t)=6,t=3,②当M在点N的右边时,﹣4+3t﹣(8+t)=6,t=9,综上,t为3秒或9秒时,M、N两点相距6个单位长度;(3)2x﹣3=x+6,10x﹣15=x+30,9x=45,x=5,∴C所对应的数为5,设点P所对应的数为a,∵D为PB的中点,E为PC的中点,∴D所对应的数为:,E所对应的数为:,分两种情况:①当a<5时,如图1,∵CD=2CE,∴﹣5=2(5﹣),a=4;②当a>5时,如图2,∵CD=2CE,∴﹣5=2(﹣5),a=8,此时P与B重合,不符合题意;综上,点P所对应的数为:4.。
北师大版七年级下学期第三次月考数学试题卷及答案
七年级下学期第三次月考数学试题卷满分:150分考试用时:120分钟范围:第一章《整式的乘除》~第四章《三角形》班级姓名得分一、选择题:以下每小题均有A、B、C、D四个选项,其中只有一个选项正确,请用2B 铅笔在答题卡相应位置作答,每小题3分,共30分.1.如图,在△ABC中,画出AC边上的高,正确的图形是()A. B.C. D.2.甲在一个已知时间段内以固定速度前进,速度与时间的关系如图中虚线所示,在同一路程内,乙与甲同时同地同向出发,到终点停止,且乙的速度是甲的2倍,若乙的速度与时间的关系用实线表示,则下列图象可以大致描述整个过程的是()A. B.C. D.3.如图,∠1=120°,要使a//b,则∠2的大小是()A. 60°B. 80°C. 100°D. 120°4.若x n−16=(x2+4)(x+2)(x−2),则n的值是()A. 2B. 4C. 8D. 165.若(x+1)(x−1)(x2+1)(x4+1)=x n−1,则n等于()A. 16B. 8C. 6D. 46.如图,河道l的一侧有A、B两个村庄,现要铺设一条引水管道把河水引向A、B两村,下列四种方案中最节省材料的是()A. B.C. D.7.某星期天小李步行去图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是().A. B. C. D.8.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=18,则S△ADF−S△BEF=()A. 3B. 6C. 8D. 109.如图,∠ACB=90°,AC=CD,过点D作AB的垂线交AB的延长线于点E.若AB=2DE,则∠BAC的度数为()A. 45°B. 30°C. 22.5°D. 15°10.我市供暖改造工程,现甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③当x=4时,甲、乙两队所挖管道长度相同;④甲队比乙队提前2天完成任务.正确的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共5小题,共20.0分)11.买x份报纸的总价为y元,根据下表,用含x的式子表示y,则x与y之间的关系是份数/份1234…价钱/元0.40.8 1.2 1.6…12.的北偏西65∘的方向,连接AB,BC,AC,则∠ABC的度数是.13.如果表示3xyz,表示−2a b c d,则×÷3mn2=.14.如图,要测量河岸相对两点A、B间的距离,先从B点出发与AB成90∘角方向,向前走25米到C点处立一根标杆,然后方向不变继续朝前走25米到点D处,在点D处转90∘沿DE方向走17米,到达E处,使A、C与E在同一直线上,那么测得A、B之间的距离为米.15.在平面直角坐标系中,有点A(m−1,2m−2),B(m+1,2m+2),且在x轴上有另一点P,使三角形PAB的面积为4,则P点坐标为______.三、解答题(本大题共10小题,共100.0分)16.(8分)若a m=3,a n=5,求a2m+3n和a3m−2n的值.17.(10分)如图,点O在直线AB上,OC平分∠DOB.若∠COB=36°.求∠DOA的大小;18.(10分)某超市进了一批优质水果,出售时在进价(进货的价格)的基础上加上一定的利润,其数量x与售价y的关系如下表:数量x(kg)12345…售价y(元)4+0.58+1.012+1.516+2.020+2.5…求出售价y与商品数量x之间的关系式;(2)王阿姨想买这种水果6kg,她应付款多少元?19.(10分)如图,在等腰直角三角形ABC中,∠ABC=90°,AB=BC,D为斜边AC延长线上一点,过D点作BC的垂线交其延长线于点E,在AB的延长线上取一点F,使得BF=CE,连接EF.(1)若AB=2,BF=3,求AD的长度;(2)G为AC中点,连接GF,GE,GB,求证:GE=GF.20.(10分)如图 ①,将一张长方形纸片沿一条对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆成如图 ②的形式,使点B,F,C,D在同一条直线上.(1)求证:AB⊥ED;(2)若AB=BD,PB=BC,请在图中找出除△ABC≌△DEF外的一对全等三角形,并说明理由.21.(10分)已知动点P以2cm/s的速度沿图1所示的边框从B—C—D—E—F—A的路径运动,记三角形ABP的面积为S(cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC=________cm,CD=________cm,DE=________cm;(2)求图2中m,n的值.22.(8分)如图,直线AB,CD相交于点O,OM⊥CD于点O,OA平分∠MOE,∠BOD=28∘,求∠COE的度数.23.(10分)小操找来一张挂历纸包数学课本.已知课本长为a厘米,宽为b厘米,厚为c厘米,小操想将课本封面与封底的每一边都包进去2厘米.问小操应在挂历纸上剪下一块多大面积的长方形⋅24.(12分)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30):提出概念所用时间x2571013141720对概念的接受能力y47.853.556.35959.959.858.355(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念几分钟时,学生的接受能力最强?(4)根据表格数据,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?(5)根据表格数据大致估计:当时间为23分钟时,学生对概念的接受能力是多少.25.(12分)等腰直角三角形OAB中,∠OAB=90°,OA=AB,点D为OA中点,DC⊥OB,垂足为C,连接BD,点M为线段BD中点,连接AM、CM,如图①.(1)求证:AM=CM;(2)将图①中的△OCD绕点O逆时针旋转90°,连接BD,点M为线段BD中点,连接AM、CM、OM,如图②.①求证:AM=CM,AM⊥CM;②若AB=4,求△AOM的面积.答案1.D2.C3.D4.B5.B6.B7.C8.A9.C10.D11.y=0.4x12.80°13.−4m3n14.1715.(2,0)或(−2,0)16.解:(1)∵a m=3,a n=5,∴a2m+3n=a2m·a3n=(a m)2·(a n)3=32×53=9×125=1125,(2)∵a m=3,a n=5,∴a3m−2n=a3m÷a2n=(a m)3÷(a n)2=33÷52=27.2517.解:∵OC平分∠DOB,∴∠DOB=2∠COB.∵∠COB=36°,∴∠DOB=2∠COB=72°,又∵∠AOD+∠BOD=180°,∴∠AOD=180°−72°=108°.18.解:(1)根据题意,得售价y与商品数量x之间的关系式为y=(4+0.5)x=4.5x(2)当x=6时,y=4.5×6=27答:她应付款27元.19.解:(1)∵DE ⊥BE ,AB ⊥BE ,∴DE//AB , ∴△ABC∽△DEC ,∵∠ABC =90°,AB =BC , ∴△CDE 为等腰直角三角形, ∵CE =BF =3, ∴CD =3√2, ∵AB =2, ∴AC =2√2,∴AD =AC +CD =5√2;(2)证明:∵G 是等腰直角△ABC 斜边AC 中点, ∴BG =CG ,∠ABG =∠ACB =45°, ∴∠GBF =∠GCE =135°, ∵在△GBF 和△GCE 中, {GB =GC∠GBF =∠GCE BF =CE, ∴△GBF≌△GCE(SAS), ∴GE =GF .20. (1)证明:由题意得△ABC ≌△DEF ,故∠A =∠D ,又因为∠DNC =∠ANP ,所以∠APN =∠DCN . 又因为AC ⊥BD ,所以∠DCN =90∘, 所以∠APN =90∘,所以AB ⊥ED . (2)△PNA ≌△CND.理由如下: 由△ABC ≌△DEF ,得∠A =∠D ,因为AB =DB ,PB =BC ,所以AB −PB =DB −BC ,即AP =DC . 在△PNA 和△CND 中,{∠ANP =∠DNC,∠A =∠D,AP =DC,所以△PNA≌△CND(AAS).21.解:(1)8,4,6(2)因为AB=6,CD=4,所以EF=2.AB⋅BC=24,当点P运动到CD上时,三角形ABP的面积为12所以m=24.因为BC+CD+DE+EF+AF=34,=17.所以n=34222.解:因为∠AOC=∠BOD=28∘,OM⊥CD,所以∠AOM=90∘−∠AOC=90∘−28∘=62∘.因为OA平分∠MOE,所以∠AOE=∠AOM=62∘.所以∠COE=∠AOE−∠AOC=62∘−28∘=34∘.23.解:需要在挂历纸上剪下一块长为(2b+c+4)厘米,宽为(a+4)厘米的长方形.所以面积为(2b+c+4)⋅(a+4)=(2ab+ac+4a+8b+4c+16)平方厘米.24.解:(1)表中反映了提出概念所用的时间和对概念的接受能力两个变量之间的关系,其中提出概念所用的时间是自变量,对概念的接受能力是因变量;(2)由表格可知,当提出概念所用的时间为10分钟时,学生的接受能力是59;(3)由表可知,当提出概念所用的时间为13分钟时,学生的接受能力最强;(4)当0<x≤13时,学生的接受能力逐步增强;当13<x≤30时,学生的接受能力逐步降低;(5)由表可知,14分钟之后,每增加3分钟,学生对概念的接受能力降低1.5,2.7,因此估计当时间为23分钟时,学生对概念的接受能力为50左右.25.解:(1)证明:∵∠OAB=90°,∴△ABD是直角三角形,∵点M是BD的中点,BD,∴AM=12∵DC⊥OB,∴∠BCD=90°,∵点M是BD的中点,∴CM=1BD,2∴AM=CM;(2)①如图②,在图①中,∵AO=AB,∠OAB=90°,∴∠ABO=∠AOB=45°,∵DC⊥OB,∴∠OCD=90°,∴∠ODC=∠AOB,∴OC=CD,延长CM交OB于T,连接AT,由旋转知,∠COB=90°,DC//OB,∴∠CDM=∠TBM,∵点M是BD的中点,∴DM=BM,∵∠CMD=∠TMB,∴△CDM≌△TBM(ASA),∴CM=TM,DC=BT=OC,∵∠AOC=∠BOC−∠AOB=45°=∠ABO,∵AO=AB,∴△OAC≌△BAT(SAS),∴AC=AT,∠OAC=∠BAT,∴∠CAT=∠OAC+∠OAT=∠BAT+∠OAT=∠OAB=90°,∴△CAT是等腰直角三角形,∵CM=TM,∴AM⊥CM,AM=CM;②如图③,在Rt△AOB中,AB=4,∴OA=4,OB=√2AB=4√2,在图①中,点D是OA的中点,OA=2,∴OD=12∵△OCD是等腰直角三角形,∴DC=CO==√2,√2由①知,BT=CD,∴BT=√2,∴OT=OB−TB=3√2,在Rt△OTC中,CT=√OC2+OT2=2√5,∵CM=TM=12CT=√5=AM,∵OM是Rt△COT的斜边上的中线,∴OM=12CT=√5,∴AM=OM,过点M作MN⊥OA于N,则ON=AN=12OA=2,根据勾股定理得,MN=√OM2−ON2=1,∴S△AOM=12OA⋅MN=12×4×1=2.。
2022春北师版七下数学家庭作业3.28——4.2(解析版)
2022春北师版七下数学家庭作业3.28——4.22022年3月28号星期一农历:2月26家庭作业(请严格作业格式、字迹,不要少步骤,切记!切记!!!)①整式混合运算:先化简,再求值:(1)(x﹣1)(x+1)﹣x(x﹣3),其中x=3;(2)[(x﹣y)2+y(4x﹣y)﹣8x]÷2x,其中x=8,y=2022.【考点】整式的混合运算—化简求值.【分析】(1)先算乘法,再合并同类项,最后代入求出即可;(2)先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:(1)(x﹣1)(x+1)﹣x(x﹣3)=x2﹣1﹣x2+3x=﹣1+3x,当x=3时,原式=﹣1+3×3=8;(2)[(x﹣y)2+y(4x﹣y)﹣8x]÷2x=[x2﹣2xy+y2+4xy﹣y2﹣8x]÷2x=(x2+2xy﹣8x)÷2x=x+y﹣4,当x=8,y=2014时,原式=×8+2022﹣4=2022.【点评】本题考查了整式的混合运算和求值的应用,主要考查学生的计算能力,题目比较好,难度适中.②几何计算题:如图,AB∥CD,DE⊥CE,∠1=34°,则∠DCE的度数是多少?【解答】解:∵AB∥CD,∴∠D=∠1=34°,∵DE⊥CE,∴∠DEC=90°,∴∠DCE=180°﹣90°﹣34°=56°.故∠DCE=56°.③几何计算题:如图:AB∥DE,∠B=30°,∠C=110°,∠D的度数是多少?【解答】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∵∠B=30°,∴∠1=30°,∵∠C=110°,∴∠2=80°,∴∠D=180°﹣∠2=180°﹣80°=100°.故∠D=100°.④变量关系综合题:多边形的内角和随着边数的变化而变化.设多边形的边数为n,内角和为N°,则变量N与n 之间的关系可以表示为N=(n-2)·180.(1)在这个关系式中,自变量、因变量各是什么?(2)在这个关系式中,n能取什么样的值?(3)利用这个关系式计算六边形的内角和;(4)当边数每增加1时,多边形的内角和如何变化?解:(1)n是自变量,N是因变量.(2)n取大于2的整数.(3)当n=6时,N=(6-2)×180=720,故六边形的内角和为720°.(4)当边数每增加1时,多边形的内角和增加180°.⑤变量关系综合题:将长为40cm、宽为15cm的长方形白纸,按如图所示的方法黏合起来,黏合部分宽为5cm.…(1)根据上图,将表格补充完整:白纸张数12345…纸条长度/cm4075…(2)设x张白纸黏合后的总长度为y cm,则y与x之间的关系式是什么?(3)你认为白纸黏合起来总长度可能为2020cm吗?为什么?解:(2)y=40x-5(x-1)=35x+5.(3)不可能.理由:根据题意,得2020=35x+5,解得x≈57.6.因为x为整数,所以总长度不可能为2020cm.2022年3月29号星期二农历:2月27家庭作业(请严格作业格式、字迹,不要少步骤,切记!切记!!!)①整式混合运算:2022+(π﹣3.14)0﹣(﹣)﹣1(1)(﹣1)(2)化简求值:(2x+y)2﹣(2x﹣y)(x+y)﹣2(x﹣2y)(x+2y),其中x=,y=﹣2.【考点】整式的混合运算—化简求值;零指数幂;负整数指数幂.【分析】(1)先算乘方、0指数幂与负指数幂,再算加减;(2)先利用完全平方公式、平方差公式和整式的乘法计算,再进一步合并化简,最后代入求得数值即可.【解答】解:(1)原式=1+1﹣(﹣3)=2+3=5;(2)原式=4x2+4xy+y2﹣(2x2+xy﹣y2)﹣2(x2﹣4y2)=4x2+4xy+y2﹣2x2﹣xy+y2﹣2x2+8y2=3xy+10y2,当x=,y=﹣2时,原式=3××(﹣2)+10×(﹣2)2=37.【点评】此题考查整式的混合运算,注意先利用整式的乘法计算合并化简,再进一步代入求得数值解决问题.②几何计算题:如图,直线a∥b,点B在直线b上,且AB⊥BC,∠2=65°,则∠1的度数是多少?【解答】解:∵直线a∥b,∠2=65°,∴∠3=∠2=65°,∵AB⊥BC,∴∠ABC=90°,∴∠1=180°﹣∠3﹣∠ABC=180°﹣65°﹣90°=25°.故∠1=25°.③几何计算题:如图,将矩形纸片ABCD沿对角线BD折叠,点C落在点E处,BE与AD相交于点F,∠EDF=38°,则∠DBE的度数是多少?【解答】解:由翻折的性质得,∠1=∠2,∵矩形的对边AD∥BC,∴∠1=∠3,∴∠2=∠3,在△BDE中,∠2+∠3+∠EDF=180°﹣90°,即2∠2+38°=90°,解得∠2=26°,∴∠DBE=26°.故∠DBE=26°.④变量关系综合题:“十一”期间,小明和父母一起开车到距家200km的景点旅游,出发前,汽车油箱内储油45L,当行驶150km时,发现油箱余油量为30L(假设行驶过程中汽车的耗油量是均匀的).(1)求该车平均每千米的耗油量,并写出行驶路程x(km)与剩余油量Q(L)的关系式;(2)当x=280时,求剩余油量Q.解:(1)该车平均每千米的耗油量为(45-30)÷150=0.1(L/km),行驶路程x(km)与剩余油量Q(L)的关系式为Q=45-0.1x.(2)当x=280时,Q=45-0.1×280=17.故当x=280时,剩余油量Q为17L.⑤变量关系综合题:在一次实验中,小明把一根弹簧的上端固定,在其下端悬挂物体,下表是测得的弹簧长度y 与所挂物体的重量x的几组对应值.所挂物体重量x/kg012345弹簧长度y/cm182022242628(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体重量为3kg时,弹簧的长度为多长?不挂物体呢?(3)若所挂物体重量为6kg时(在弹簧的允许范围内),你能说出此时弹簧的长度吗?解:(1)上表反映了弹簧长度与所挂物体重量之间的关系,其中所挂物体重量是自变量,弹簧长度是因变量.(2)所挂物体重量为3kg时,弹簧长24cm.不挂物体时,弹簧长18cm.(3)根据上表可知所挂物体重量为6kg(在允许范围内)时的弹簧长度为18+2×6=30(cm).2022年3月30号星期三农历:2月28家庭作业(请严格作业格式、字迹,不要少步骤,切记!切记!!!)①整式混合运算:(1)先化简,再求值:(2a+b)2﹣(2a﹣b)(2a+b)+(a+b)(a﹣2b),其中a=﹣1,.(2)已知a m=3,a n=2,求出a m+n和a2m﹣3n的值.【考点】整式的混合运算—化简求值.【分析】(1)首先利用完全平方公式以及平方差公式、多项式的乘法法则运算,然后合并同类项即可化简,最后代入数值计算即可;(2)根据a m+n=a m•a n,a2m﹣3n=代入数值计算即可.【解答】解:(1)原式=4a2+4ab+b2﹣(4a2﹣b2)+(a2﹣2ab+ab﹣2b2)=4a2+4ab+b2﹣4a2+b2+a2﹣2ab+ab﹣2b2=a2+3ab,当a=﹣1,时,原式=1﹣=﹣;(2)a m+n=a m•a n=3×2=6;a2m﹣3n===.【点评】本题主要考查平方差公式以及完全平方公式的利用以及幂的运算性质,熟记公式并灵活运用是解题的关键.②几何计算题:如图,AB∥CD,点E在CD上,EG与AB交于F,DF⊥EG于F,若∠D=25°,则∠GFB的度数是多少?【解答】解:∵∠D=25°,DF⊥EG,∴∠DEF=90°﹣∠D=90°﹣25°=65°,∵AB∥CD,∴∠GFB=∠DEF=65°.故∠GFB=65°.③几何计算题:如图,直线l∥m,△ABC 是等腰直角三角形,若∠1=25°,则∠2的度数是多少?【解答】解:∵△ABC 是等腰直角三角形,∴∠A=45°,∵∠1=25°,∠ACB=90°,∴∠3=90°+25°=115°,∵l∥m,∴∠3=∠4=115°,∴∠5=180°﹣115°﹣45°=20°,∴∠2=∠3=20°,故∠2=20°.④变量关系综合题:小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y 与所挂物体质量x的一组对应值:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?(3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?解:(1)弹簧长度与所挂物体质量之间的关系;其中所挂物体质量是自变量,弹簧长度是因变量;(2)24厘米;18厘米;(3)32厘米.⑤变量关系综合题:某电动车厂2014年各月份生产电动车的数量情况如下表:时间x/月123456789101112月产量y/万辆88.59101112109.59101010.5(1)为什么称电动车的月产量y 为因变量?它是谁的因变量?(2)哪个月份电动车的产量最高?哪个月份电动车的产量最低?(3)哪两个月份之间产量相差最大?根据这两个月的产量,电动车厂的厂长应该怎么做?解:(1)电动车的月产量y 为随着时间的变化而变化,有一个时间就有唯一一个y,月产量是时间的因变量;(2)六月份常量最高,一月份常量最低;(3)六月份和一月份相差最大,在一月份加紧生产,实现产量的增值.2022年3月31号星期四农历:2月29家庭作业(请严格作业格式、字迹,不要少步骤,切记!切记!!!)①整式混合运算:(1)已知x﹣2y=15,xy=﹣25,求x 2+4y 2﹣1的值.(2)已知x 2﹣5x﹣14=0,求代数式﹣2x(x+3)+(2x+1)2﹣(x+1)(x+2)的值.【考点】整式的混合运算—化简求值.【分析】(1)原式利用完全平方公式变形,把已知等式代入计算即可求出值;(2)原式利用单项式乘以多项式,完全平方公式,以及多项式乘以多项式法则计算得到最简结果,把已知等式变形后代入计算即可求出值.【解答】解:(1)∵x﹣2y=15,xy=﹣25,∴原式=(x﹣2y)2+4xy﹣1=225﹣100﹣1=124;(2)∵x 2﹣5x﹣14=0,∴x 2﹣5x=14,原式=﹣2x 2﹣6x+4x 2+4x+1﹣x 2﹣3x﹣2=x 2﹣5x﹣1=14﹣1=13.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.②几何计算题:如图,AC∥BD,AE 平分∠BAC 交BD 于点E.若∠1=68°,则∠2的度数为多少?【解答】解:∵∠1=68°,∴∠BAC=180°﹣∠1=180°﹣68°=112°,∵AE 平分∠BAC,∴∠3=∠BAC=×112°=56°,∵AC∥BD,∴∠2=180°﹣∠3=180°﹣56°=124°.故∠2=124°.③几何计算题:如图,直线l 1∥l 2,l 3⊥l 4,∠1=44°,那么∠2的度数是多少?【解答】解:如图,∵l 1∥l 2,∴∠1=∠3=44°,∵l 3⊥l 4,∴∠2+∠3=90°,∴∠2=90°﹣44°=46°.故∠2=90°﹣44°=46°.④变量关系综合题:下表记录的是某天一昼夜温度变化的数据:时刻/时24681012141618202224温度/℃-3-5-6.5-4047.510851-1-2请根据表格数据回答下列问题:(1)早晨6时和中午12时的温度各是多少?(2)这一天的温差是多少?(3)这一天内温度上升的时段是几时至几时?解:(1)早晨6时的温度是-4℃,中午12时的温度是7.5℃.(2)10-(-6.5)=16.5(℃).答:这一天的温差是16.5℃.(3)温度上升的时段是4时至14时.⑤变量关系综合题:心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中2≤x≤20):提出概念所257101213141720用时间(x)对概念的接47.853.556.35959.859.959.858.355受能力(y)(注:接受能力值越大,说明学生的接受能力越强)(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用时间是10分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(4)从表格中可知,当提出概念所用时间x在什么范围内时,学生的接受能力逐步增强?当提出概念所用时间x 在什么范围内时,学生的接受能力逐步降低?解:(1)反映了提出概念所用时间x和对概念的接受能力y两个变量之间的关系,其中x是自变量,y是因变量.(2)由表格可知,当提出概念所用时间是10分钟时,学生的接受能力是59.(3)由表格可知,当提出概念所用时间为13分钟时,学生的接受能力最强.(4)当x在2分钟至13分钟的范围内时,学生的接受能力逐步增强;当x在13分钟至20分钟的范围内时,学生的接受能力逐步降低.2022年4月1号星期五农历:3月初1家庭作业(请严格作业格式、字迹,不要少步骤,切记!切记!!!)①整式混合运算:(1)若x m+2n=16,x n=2,(x≠0),求x m+n的值;(2)已知有理x满足x2﹣x+1=0,求(x﹣1)3+(x﹣1)2+(x﹣1)的值.【考点】整式的混合运算—化简求值.【分析】(1)根据同底数幂的乘法的性质的逆用,先求出x m的值,再利用同底数幂的乘法求出x m+n的值即可.(2)对整式进行化简,先提取公因式、合并同类项,然后再将x2﹣x+1=0整体代入,从而求解.【解答】解:(1)∵xm+2n=16,∴x m ×(x n )2=16,∵x n=2,∴x m×4=16,x m=4,∴x m+n=x m×x n=4×2=8.(2)(x﹣1)3+(x﹣1)2+(x﹣1)=(x﹣1)(x 2+1﹣2x+x)=(x﹣1)(x 2﹣x+1)∵x 2﹣x+1=0,∴原式=(x﹣1)(x 2﹣x+1)=0.【点评】(1)第一问主要考查同底数幂的乘法,对x m+n根据性质的逆用表示成x m和x n的形式然后再代入数据计算,很巧妙.(2)此问考查整式的化简,先取公因式,再合并,另外还考查整体代入的思想,是一道很好的题.②几何计算题:如图,已知AB∥CD,BE 平分∠ABC,且交CD 于点D,∠CDE=150°,则∠C 是多少?【解答】解:∵直线AB∥CD,∴∠CDB=∠ABD,∵∠CDB=180°﹣∠CDE=30°,∴∠ABD=30°,∵BE 平分∠ABC,∴∠ABD=∠CBD,∴∠ABC=∠CBD+∠ABD=60°,∵AB∥CD,∴∠C=180°﹣∠ABC=180°﹣60°=120°.故∠C=120°.③几何计算题:如图,直线l 1∥l 2,且分别与△ABC 的两边AB、AC 相交,若∠A=50°,∠1=35°,则∠2的度数是多少?【解答】解:∵直线l 1∥l 2,且∠1=35°,∴∠3=∠1=35°,∵在△AEF 中,∠A=50°,∴∠4=180°﹣∠3﹣∠A=95°,∴∠2=∠4=95°,故∠2=95°.④变量关系综合题:弹簧挂上物体后会伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表物体的质量(kg)012345弹簧的长度(cm)1212.51313.51414.5(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当物体的质量为3kg 时,弹簧的长度是多少?(3)当物体的质量逐渐增加时,弹簧的长度怎样变化?(4)如果物体的质量为xkg,弹簧的长度为ycm,根据上表写出y 与x 的关系式。
数学初一上册立方根家庭作业浙教版
2019数学初一上册立方根家庭作业浙教版如果一个数的立方等于a,那么这个数叫a的立方根,也称为三次方根,也就是说,如果x3=a,那么x叫做a的立方根。
接下来大家一起来练习立方根家庭作业浙教版。
2019数学初一上册立方根家庭作业浙教版一、积累?整合1、判断题(1)如果b是a的三次幂,那么b的立方根是a.……………………………………( )(2)任何正数都有两个立方根,它们互为相反数.……………………………………( )(3)负数没有立方根.……………………………………………………………………( )(4)如果a是b的立方根,那么ab≥0.…………………………………………………( )2、填空题(5)如果一个数的立方根等于它本身,那么这个数是________.(6) =________, ( )3=________(7) 的平方根是________.(8) 的立方根是________.(9)729(10)- (11)- (12)(-5)3二、拓展?应用4、解答题(13)若球的半径为R,则球的体积V与R的关系式为V= πR3.已知一个足球的体积为6280 cm3,试计算足球的半径.(π取3.14,精确到0.1)(14)已知第一个正方体纸盒的棱长为6 cm,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm3,求第二个纸盒的棱长.三、探索?创新5、阅读理解题(15)判断下列各式是否正确成立. 判断完以后,你有什么体会?你能否得到更一般的结论?若能,请写出你的一般结论.(1) =2 (2) =3?(3) =4 (4) =5八年级上§12.1平方根与立方根立方根作业答案1、判断题(1)√ (2)× 正数有一个立方根(3)×因为负数有立方根。
(4)√2、填空题(5)0与±1 (6)- ,8 (7)±4 (8)2(9)9 因为,所以(10)- (11)- (12)-54、解答题(13)由已知6280= π?R3∴6280≈ ×3.14R3,∴R3=1500∴R≈11.3 cm(14)7cm 设第二个正方体纸盒棱长为xcm,得:x3=63+127,所以x=7cm5、阅读理解题(15)以上四个式子都正确,一般结论为:=n (其中n为正整数)小编为大家提供的立方根家庭作业浙教版,大家仔细阅读了吗?最后祝同学们学习进步。
七年级下学期第三次质量检测数学试卷含答案
七年级下学期第三次质量检测数学试卷含答案一、选择题1.用加减法将方程组2311255x y x y -=⎧⎨+=-⎩中的未知数x 消去后,得到的方程是( ).A .26y =B .816y =C .26y -=D .816y -= 2.用“代入法”将方程组7317x y x y +=⎧⎨+=⎩中的未知数y 消去后,得到的方程是( )A .3(7)17y y -+=B .3(7)17x x +-=C .210x =D .(317)7x x +-=3.已知10a b +=,6a b -=,则22a b -的值是( ) A .12 B .60C .60-D .12-4.已知2x y a=⎧⎨=⎩是方程25x y +=的一个解,则a 的值为( ) A .1a =-B .1a =C .23a =D .32a =5.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③6.《九章算术》是我国东汉初年编订的一部数学经典著作。
在它的“方程”一章里,一次方程组是由算筹布置而成的。
《九章算术》中的算筹图是竖排的,为看图方便,我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数,x y 的系数与相应的常数项。
把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是3219423x y x y +=⎧⎨+=⎩,在图2所示的算筹图中有一个图形被墨水覆盖了,如果图2所表示的方程组中x 的值为3,则被墨水所覆盖的图形为A .B .C .D .7.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( ) A .3B .5C .4或5D .3或4或58.若关于x ,y 的二元一次方程组432x y kx y k+=⎧⎨-=⎩的解也是二元一次方程2310x y +=的解,则x y -的值为( ) A .2 B .10 C .2- D .49.方程术是《九章算术》最高的数学成就,《九章算术》中“盈不足”一章中记载:“今有大器五小器一容三斛(古代的一种容量单位),大器一小器五容二斛,…”译文:“已知 5 个大桶加上 1 个小桶可以盛酒 3 斛,1 个大桶加上 5 个小桶可以盛酒 2 斛,…“则一个大桶和一个小桶一共可以盛酒斛,则可列方程组正确的是( )A .5253x y x y +=⎧⎨+=⎩B .5352x y x y +=⎧⎨+=⎩C .5352x y x y +=⎧⎨=+⎩D .5=+352x y x y ⎧⎨+=⎩10.为了开展阳光体育活动,某班计划购买毽子和跳绳两种体育用品,共花费35元,毽子单价3元,跳绳单价5元,购买方案有( ) A .1种B .2种C .3种D .4种二、填空题11.一个两位数的数字和为14,若调换个位数字与十位数字,新数比原数小36,则这个两位数是_____.12.若关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩,则方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩的解为__________. 13.某商场在11月中旬对甲、乙、丙三种型号的电视机进行促销.其中,甲型号电视机直接按成本价1280元的基础上获利25%定价;乙型号电视机在原销售价2199元的基础上先让利199元,再按八五折优惠;丙型号电视机直接在原销售价2399元上减499元;活动结束后,三种型号电视机总销售额为20600元,若在此次促销活动中,甲、乙、丙三种型号的电视机至少卖出其中两种型号,则三种型号的电视机共______有种销售方案. 14.若3x -5y -z =8,请用含x ,y 的代数式表示z ,则z =________.15.假设北碚万达广场地下停车场有5个出入口,每天早晨6点开始对外停车且此时车位空置率为75%,在每个出入口的车辆数均是匀速出入的情况下,如果开放2个进口和3个出口,8小时车库恰好停满;如果开放3个进口和2个出口,2小时车库恰好停满.2019年元旦节期间,由于商场人数增多,早晨6点时的车位空置率变为60%,又因为车库改造,只能开放2个进口和1个出口,则从早晨6点开始经过________小时车库恰好停满. 16.国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调査表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少8人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有_______人.17.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6. (1)计算:F (241)=_________,F (635)=___________ ;(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:()()F s k F t =,当F (s )+F (t )=18时,则k 的最大值是___. 18.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km . 19.如图,在长方形ABCD 中,放入六个形状,大小相同的长方形(即空白的长方形),AD =12cm ,FG =4cm ,则图中阴影部分的总面积是 __________2cm .20.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于_____.三、解答题21.某校规划在一块长AD 为18 m 、宽AB 为13 m 的长方形场地ABCD 上,设计分别与AD ,AB 平行的横向通道和纵向通道,其余部分铺上草皮,如图所示,若设计三条通道,一条横向,两条纵向,且它们的宽度相等,其余六块草坪相同,其中一块草坪两边之比AM∶AN=8∶9,问通道的宽是多少?22.对x ,y 定义一种新运算T ,规定()22,ax by T x y a y +=+(其中a ,b 是非零常数且0x y +≠),这里等式右边是通常的四则运算.如:()223193,1314a b a b T ⨯+⨯+==+,()24,22am bT m m +-=-. (1)填空:()4,1T =_____(用含a ,b 的代数式表示); (2)若()2,02T -=-且()5,16T -=. ①求a 与b 的值;②若()()310,33,310T m m T m m --=--,求m 的值. 23.阅读型综合题对于实数x ,y 我们定义一种新运算(),L x y ax by =+(其中a ,b 均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为(),L x y ,其中x ,y 叫做线性数的一个数对.若实数x ,y 都取正整数,我们称这样的线性数为正格线性数,这时的x ,y 叫做正格线性数的正格数对.(1)若(),3L x y x y =+,则()2,1L -=_________,31,22L ⎛⎫= ⎪⎝⎭_________; (2)已知(),3L x y x by =+,11,232L ⎛⎫= ⎪⎝⎭. ①求字母b 的取值;②若(),18L x kx =(其中k 为整数),问是否有满足这样条件的正格数对?若有,请找出;若没有,请说明理由. 24.阅读下面资料:小明遇到这样一个问题:如图1,对面积为a 的△ABC 逐次进行以下操作:分别延长AB 、BC 、CA 至A 1、B 1、C1,使得A 1B =2AB ,B 1C =2BC ,C1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1,求S 1的值.小明是这样思考和解决这个问题的:如图2,连接A 1C 、B 1A 、C 1B ,因为A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,根据等高两三角形的面积比等于底之比,所以11∆∆=A BC B CA S S =11∆∆=A BC C AB S S =2S △ABC =2a ,由此继续推理,从而解决了这个问题.(1)直接写出S 1= (用含字母a 的式子表示). 请参考小明同学思考问题的方法,解决下列问题:(2)如图3,P为△ABC内一点,连接AP、BP、CP并延长分别交边BC、AC、AB于点D、E、F,则把△ABC分成六个小三角形,其中四个小三角形面积已在图上标明,求△ABC的面积.(3)如图4,若点P为△ABC的边AB上的中线CF的中点,求S△APE与S△BPF的比值. 25.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)a b产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元.(1)求a、b的值;(2)若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3)在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一种最省钱的购买方案.26.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元.(1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】方程组两方程相减消去x 即可得到结果. 【详解】 解:2311? 255? x y x y -=⎧⎨+=-⎩①②②-①得:8y=-16,即-8y=16, 故选D . 【点睛】本题考查解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.2.B解析:B 【分析】第一个式子中用x 表示y ,代入到第二个式子中即可. 【详解】 解:7317x y x y +=⎧⎨+=⎩①②由①得7y x =-③,将③代入②中得3(7)17x x +-=, 故选:B . 【点睛】本题考查代入消元法解一元二次方程.熟练掌握代入消元法解一元二次方程的一般步骤是解题关键.3.B解析:B 【分析】先利用加减消元法解方程组106a b a b +=⎧⎨-=⎩可得a 、b 的值,再代入求值即可得.【详解】由题意得:106a b a b +=⎧⎨-=⎩,解得82a b =⎧⎨=⎩,则22222864460a b -==-=-, 故选:B . 【点睛】本题考查了解二元一次方程组、有理数的乘方和减法运算,掌握方程组的解法是解题关键.4.B解析:B 【分析】直接把2x y a =⎧⎨=⎩代入方程,即可求出a 的值.【详解】解:根据题意,∵2x y a =⎧⎨=⎩是方程25x y +=的一个解,∴225a ⨯+=, ∴1a =; 故选:B . 【点睛】本题考查了二元一次方程的解,以及解一元一次方程,解题的关键是掌握运算法则进行解题.5.C解析:C 【详解】解:①∵∠B+∠BCD=180°, ∴AB ∥CD ; ②∵∠1=∠2, ∴AD ∥BC ; ③∵∠3=∠4, ∴AB ∥CD ; ④∵∠B=∠5, ∴AB ∥CD ;∴能得到AB ∥CD 的条件是①③④. 故选C . 【点睛】此题主要考查了平行线的判定,解题关键是合理利用平行线的判定,确定同位角、内错角、同旁内角. 平行线的判定:同旁内角互补,两直线平行;内错角相等,两直线平行; 同位角相等,两直线平行.6.C解析:C 【分析】 根据3219423x y x y +=⎧⎨+=⎩,结合图1可判断出:(1)前面两列为方程的左边,后两列表示一个数,为方程的右边;(2)“|”表示1,“—”表示10,“||||”中的横线表示5;因此,设被墨水所覆盖的图形表示的数字为k ,列出方程组求解即可. 【详解】由题意可知,(1)前面两列为方程的左边,后两列表示一个数,为方程的右边;(2)“|”表示1,“—”表示10,“||||”中的横线表示5, 设被墨水所覆盖的图形表示的数字为k ,则有:211427x y x ky +=⎧⎨+=⎩将3x =代入可解得:53y k =⎧⎨=⎩根据图形所表示的数字规律,可推出3k =代表的图形为“|||”. 故答案为:C. 【点睛】本题考查了二元一次方程组的解法及实际应用,根据图1和其方程组判断出图形所表示的数字是解题关键,此型题较为新颖,是近年来的常考点.7.C解析:C 【解析】∵2x +1·4y =128,27=128, ∴x +1+2y =7,即x +2y =6. ∵x ,y 均为正整数,∴22x y =⎧⎨=⎩或41x y =⎧⎨=⎩∴x +y =4或5. 8.D解析:D 【分析】把k 看做已知数求出x 与y ,代入已知方程计算即可求出k 的值,从而求得x y -的值. 【详解】432x y k x y k +=⎧⎨-=⎩①②, ①-②得:5ky =, 把5k y =代入②得:115k x =, 把115k x =,5ky =代入2310x y +=,得:11231055k k ⨯+⨯= 解得:2k =, ∴225x =,25y =, ∴222455x y -=-=. 【点睛】本题考查了二元一次方程组的解,以及二元一次方程的解,方程组的解即为能使方程组中两方程都成立的未知数的值.9.B解析:B 【分析】设一个大桶盛酒x 斛,一个小桶盛酒y 斛,根据“5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛”即可得出关于x 、y 的二元一次方程组. 【详解】设一个大桶盛酒 x 斛,一个小桶盛酒 y 斛, 根据题意得:5352x y x y +=⎧⎨+=⎩,故选B.【点睛】根据文字转化出方程条件是解答本题的关键.10.B解析:B 【分析】首先设毽子能买x 个,跳绳能买y 根,根据题意列方程即可,再根据二元一次方程求解. 【详解】解:设毽子能买x 个,跳绳能买y 根,根据题意可得: 3x+5y=35, y=7-35x , ∵x 、y 都是正整数, ∴x=5时,y=4;x=10时,y=1; ∴购买方案有2种. 故选B . 【点睛】本题主要考查二元一次方程的应用,关键在于根据题意列方程.二、填空题 11.95 【详解】设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组,求解即可得,即这个两位数为95. 故答案为95. 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知解析:95 【详解】设十位数字为x ,个位数字为y ,根据题意所述的等量关系可得出方程组14101036x y x y y x +=⎧⎨+--=⎩,求解即可得95x y =⎧⎨=⎩,即这个两位数为95. 故答案为95. 【点睛】本题考查了二元一次方程组的应用,解答本题的关键是设出未知数,注意掌握二位数的表示方法.12.【分析】将解方程组变形为,依据题意得,求解即可. 【详解】∵关于,的方程组的解为, 将解方程组变形为, ∴关于,的方程组的解为, 解得, 故答案为:. 【点睛】本题考查了二元一次方程组的解法解析:1856x y ⎧=⎪⎨⎪=⎩ 【分析】将解方程组变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩,依据题意得536123x y ⎧=⎪⎪⎨⎪=⎪⎩,求解即可. 【详解】∵关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解为32x y =⎧⎨=⎩, 将解方程组11122252605260a x b y c a x b y c +-=⎧⎨+-=⎩变形为11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩, ∴关于x ,y 的方程组11122251635163a x b y c a x b y c ⎧⋅+⋅=⎪⎪⎨⎪⋅+⋅=⎪⎩的解为536123x y ⎧=⎪⎪⎨⎪=⎪⎩, 解得1856x y ⎧=⎪⎨⎪=⎩, 故答案为:1856x y ⎧=⎪⎨⎪=⎩.【点睛】本题考查了二元一次方程组的解法,用到了换元法,体现了整体思想.13.五【分析】设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号解析:五【分析】设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号的电视机卖出x 台,乙种型号的电视机卖出y 台,丙种型号的电视机卖出z 台,根据题意得:1280×(1+25%)x+(2199-199)×0.85y+(2399-499)z=20600整理得:16x+17y+19z=206∴16(x+y+z)+y+3z=16×12+14∵x、y、z为非负整数,且x、y、z最多一个为0,∴0≤x≤12,0≤y≤12,0≤z≤10,∴14≤y+3z≤42.设x+y+z=12-k,y+3z=14+16k,其中k为非负整数.∴14≤14+16k≤42,∴0≤k<2.∵k为整数,∴k=0或1.(1)当k=0时,x+y+z=12,y+3z=14,∴0≤z≤4.①当z=0时,y=14>12,舍去;②当z=1时,y=14-3z=11,x=12-y-z=12-11-1=0,符合题意;③当z=2时,y=14-3z=8,x=12-y-z=12-8-2=2,符合题意;④当z=3时,y=14-3z=5,x=12-y-z=12-5-3=4,符合题意;⑤当z=4时,y=14-3z=2,x=12-y-z=12-2-4=6,符合题意.(2)当k=1时,x+y+z=11,y+3z=30∵y=30-3z,∴0≤30-3z≤12,解得:6≤z≤10,当z=6时,y=30-3z=12,x=11-y-z=11-12-6=-7<0,舍去;当z=7时,y=30-3z=9,x=11-y-z=11-9-7=-5<0,舍去;当z=8时,y=30-3z=6,x=11-y-z=11-6-8=-3<0,舍去;当z=9时,y=30-3z=3,x=11-y-z=11-3-9=-1<0,舍去;当z=10时,y=30-3z=0,x=11-y-z=11-10-0=1,符合题意.综上所述:共有111xyz=⎧⎪=⎨⎪=⎩,282xyz=⎧⎪=⎨⎪=⎩,453xyz=⎧⎪=⎨⎪=⎩,624xyz=⎧⎪=⎨⎪=⎩,110xyz=⎧⎪=⎨⎪=⎩五种方案.故答案为:五.【点睛】本题考查了三元一次方程的应用.分类讨论是解答本题的关键.14.3x-5y-8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x-5y -z =8,∴z=3x-5y -8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解解析:3x -5y -8【解析】【分析】根据等式的性质,移项即可解题.【详解】解:∵3x -5y -z =8,∴z=3x -5y -8(移项).【点睛】本题考查了等式的性质,属于简单题,熟练运用移项是解题关键.15.【解析】【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x 解析:3215【解析】【分析】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,根据“如果开放2个进口和3个出口,8个小时车库恰好停满;如果开放3个进口和2个出口,2个小时车库恰好停满.”列出方程组求得x 、y ,进一步代入求得答案即可.【详解】设1个进口1小时开进x 辆车,1个出口1小时开出y 辆,车位总数为a ,由题意得: 82375%23275%x y a x y a ()()-=⎧⎨-=⎩解得:316332x a y a ⎧=⎪⎪⎨⎪=⎪⎩. 则60%a ÷(2x -y )=60%a ÷(316a ×2332-a )=3215(小时). 故答案为3215. 【点睛】本题考查了二元一次方程组的实际运用,找出题目蕴含的数量关系是解决问题的关键. 16.48【分析】设选洪崖洞的有a 人,选长江索道的有b 人,选李子坝轻轨站的有c 人,选磁器口的有d 人,根据题意可列出4个方程,然后整理得到不含c 的两个方程,再分情况讨论整数倍x 的值,得到符合题意的解即可解析:48【分析】设选洪崖洞的有a 人,选长江索道的有b 人,选李子坝轻轨站的有c 人,选磁器口的有d 人,根据题意可列出4个方程,然后整理得到不含c 的两个方程,再分情况讨论整数倍x 的值,得到符合题意的解即可.【详解】解:设选洪崖洞的有a 人,选长江索道的有b 人,选李子坝轻轨站的有c 人,选磁器口的有d 人,根据题意可列方程:c=d ﹣8,a=xd (x >1,且为整数),d+a=5(b+c ),b+a=c+d+24,整理可得:283727d b a b =-⎧⎨=-⎩, 当x=2时,解得b=16,d=﹣20,不符合题意,舍去;当x=3时,解得b=6,d=10,a=30,c=2,则旅行团共有6+10+30+2=48人;当x >3时,求得的b 均为负数,不符合题意.故答案为48.【点睛】本题主要考查列方程,解多元一次方程,解此题的关键在于根据题意准确列出方程. 17.14【解析】分析:(1)根据F (n )的定义式,分别将n=241和n=635代入F (n )中,即可求出结论;(2)由s=100x+32、t=150+y 结合F (s )+F (t )=18解析:1454【解析】分析: (1)根据F (n )的定义式,分别将n=241和n=635代入F (n )中,即可求出结论;(2)由s=100x+32、t=150+y结合F(s)+F(t)=18,即可得出关于x、y的二元一次方程,解之即可得出x、y的值,再根据“相异数”的定义结合F(n)的定义式,即可求出F(s)、F(t)的值,将其代入k=()()F sF t中,找出最大值即可.详解::(1)F(241)=(421+142+214)÷111=7;F(635)=(365+536+653)÷111=14.(2)∵s,t都是“相异数”,s=100x+32,t=150+y,∴F(s)=(302+10x+230+x+100x+23)÷111=x+5,F(t)=(510+y+100y+51+105+10y)÷111=y+6.∵F(t)+F(s)=18,∴x+5+y+6=x+y+11=18,∴x+y=7.∵1≤x≤9,1≤y≤9,且x,y都是正整数,∴16xy=⎧⎨=⎩或25xy=⎧⎨=⎩或34xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩或61xy=⎧⎨=⎩.∵s是“相异数”,∴x≠2,x≠3.∴y≠1,y≠5.∴16xy=⎧⎨=⎩或43xy=⎧⎨=⎩或52xy=⎧⎨=⎩,∴()()612F sF t⎧=⎪⎨=⎪⎩或()()99F sF t⎧=⎪⎨=⎪⎩或()()108F sF t⎧=⎪⎨=⎪⎩,∴k=()()F sF t=12或k=()()F sF t=1或k=()()F sF t=54,∴k的最大值为54.点睛: 本题考查了二元一次方程的应用,解题的关键是:(1)根据F(n)的定义式,求出F(241)、F(635)的值;(2)根据s=100x+32、t=150+y结合F(s)+F(t)=18,找出关于x、y的二元一次方程.18.3750【解析】设每个新轮胎报废时的总磨损量为k,则安装在前轮的轮胎每行驶1km磨损量为,安装在后轮的轮胎每行驶1km的磨损量为.又设一对新轮胎交换位置前走了xkm,交换位置后走了ykm.分别以解析:3750【解析】设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了xkm ,交换位置后走了ykm .分别以一个轮胎的总磨损量为等量关系列方程,有+=50003000+=50003000kx ky k ky kx k ⎧⎪⎪⎨⎪⎪⎩,两式相加,得()()250003000k x y k x y k +++=,则x+y=21150003000+=3750(千米). 故答案为:3750. 点睛:本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.19.48【解析】设小长方形的长为x cm ,宽为y cm ,根据图形可得①-②得4y =8,所以y =2,代入②得x =6,因此阴影部分总面积=12×10-6×2×6=48.故答案:48.【方法点睛】本解析:48【解析】设小长方形的长为x cm ,宽为y cm ,根据图形可得3124x y x y +=⎧⎨-=⎩,①,② ①-②得4y =8,所以y =2,代入②得x =6,因此阴影部分总面积=12×10-6×2×6=482cm .故答案:48.【方法点睛】本题目是一道二元一次方程组的问题,找出等量关系是解决问题的关键. 20.8【解析】试题分析:设小矩形的长为x ,宽为y ,则,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y )=6.8.解析:8【解析】试题分析:设小矩形的长为x ,宽为y ,则2 5.7{2 4.5x y x y +=+=,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y )=6.8.三、解答题21.1【分析】利用AM:AN=8:9,设通道的宽为xm ,AM=8ym ,则AN=9ym ,进而利用AD 为18m ,AB 为13m ,得出等式求出即可.【详解】设通道的宽是xm ,AM =8ym.因为AM ∶AN =8∶9,所以AN =9ym.所以22418,1813.x y x y +=⎧⎨+=⎩解得1,2.3x y =⎧⎪⎨=⎪⎩答:通道的宽是1m.故答案为1.【点睛】本题考查了二元一次方程组的应用.22.(1)163a b +;(2)①11a b =⎧⎨=-⎩;②53m = 【分析】(1)把(4,-1)代入新运算中,计算得结果;(2)①根据新运算规定和T (-2,0)=-2且T (5,-1)=6,得关于a 、b 的方程组,解方程组即可;②把①中求得的a 、b 代入新运算,并对新运算进行化简,根据T (3m-10,m )=T (m ,3m-10)得关于m 的方程,求解即可.【详解】 解:(1)224(1)16(4,1)413a b a b T ⨯+⨯-+-==-; 故答案为:163a b +; (2)①∵()2,02T -=-且()5,16T -=, ∴42,225 6.4a ab ⎧=-⎪⎪-⎨+⎪=⎪⎩解得:1,1.a b =⎧⎨=-⎩②∵a=1,b=1-,且x+y≠0, ∴22()()(,)x y x y x y T x y x y x y x y -+-===-++.∴()310,33103610T m m m m m --=-+=-,()3,3103310610T m m m m m --=--+=-+∵()()310,33,310T m m T m m --=--,∴610610m m -=-+, 解得:53m =. 【点睛】本题考查了解一元一次方程、二元一次方程组的解法及新运算等相关知识,理解新运算的规定并能运用是解决本题的关键23.(1)-1,3(2)①2;②有,分别是26x y =⎧⎨=⎩ 【分析】(1)根据题干定义,将x=2,y=-1和31,22x y ==代入到(),3L x y x y =+求值即可; (2)①将11,232L ⎛⎫= ⎪⎝⎭带入到(),3L x y x by =+,即可求出b 值;②由①可得出(),32L x y x y =+,将(),18L x kx =代入式中,表示出kx ,根据题干x ,y 都取正整数,分析求解即可.【详解】解:(1)∵(),3L x y x y =+,∴()()2,12311L -=+⨯-=-,3131,3=32222L ⎛⎫=+⨯⎪⎝⎭ 故答案为-1,3;(2)①∵(),3L x y x by =+ ∴1111,323232L b ⎛⎫=⨯+= ⎪⎝⎭,解得2b =; ②由①可知(),32L x y x y =+,∴(),3218L x kx x ky =+=, ∴1832x kx -=∵00x kx >>,,∴18302x -> ∴1830,06x x -><< ∵x、y 均为正整数,k 为整数 ∴x 为偶数,∴满足这样条件的正格数为26x y =⎧⎨=⎩【点睛】本题考查的是新定义的理解能力,设计二元一次方程的解和一元一次不等式的知识,能够充分理解题干定义是解题的关键.24.(1)19a ;(2)315;(3)23. 【解析】【分析】 (1)首先根据题意,求得S △A1BC =2S △ABC ,同理可求得S △A1B1C =2S △A1BC ,依此得到S △A1B1C1=19S △ABC ,则可求得面积S 1的值;(2)根据等高不等底的三角形的面积的比等于底边的比,求解,从而不难求得△ABC 的面积;(3)设S △BPF =m ,S △APE =n ,依题意,得S △APF =S △APC =m ,S △BPC =S △BPF =m .得出23APE BPF S S ∆∆=,从而求解.【详解】解:(1)连接A 1C ,∵B 1C=2BC ,A 1B=2AB ,∴122BCA ABC SS a ==,122BCA ABC S S a ==,1112A B C BCA S S =, ∴1144A B C ABC SS a ==, ∴1166A B B ABC S S a ==,同理可得出:11116A AC CB C S S a ==,∴S 1=6a+6a+6a+a=19a ;故答案为:19a ;(2)过点C 作CG BE ⊥于点G ,设BPF S x ∆=,APE S y ∆=,1·702BPC S BP CG ∆==;1·352PCES PE CG ∆==, ∴1·7022135·2BPCPCE BP CG S S PE CG ∆∆===. ∴2BP EP=,即2BP EP =. 同理,APB APE S BP S PE∆∆=. 2APB APE S S ∆∆∴=. 842x y ∴+=.① 8440APB BPD S AP x S PD ∆∆+==,3530APC PCD S AP y S PD ∆∆+==, ∴84354030x y ++=.② 由①②,得5670x y =⎧⎨=⎩, 315ABC S ∆∴=.(3)设BPF S m ∆=,APE S n ∆=,如图所示.依题意,得APF APC S S m ∆∆==,BPC BPF S S m ∆∆==.PCE S m n ∆∴=-.BPC APB APE PCE S S BP S S PE∆∆∆∆==, ∴2m m n m n=-. 2()m m n mn ∴-=,0m ≠,22m n n ∴-=. ∴23n m =. ∴23APE BPF S S ∆∆=. 【点睛】此题考查了三角形面积之间的关系.(2)的关键是设出未知三角形的面积,然后根据等高不等底的三角形的面积的比等于底边的比列式求解.25.(1)3018a b =⎧⎨=⎩;(2)有 4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器. (3)最省钱的方案是购买 2 台甲种机器,8 台乙种机器.【解析】【分析】(1)根据购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元这一条件建立一元二次方程组求解即可,(2)设买了x 台甲种机器,根据该公司购买新机器的资金不超过216万元,建立一次不等式求解即可,(3)将两种机器生产的产量相加,使总产量不低于1890吨,求出x 的取值范围,再分别求出对应的成本即可解题.【详解】(1)解:由题意得12236a b a b -=⎧⎨-=⎩, 解得,3018a b =⎧⎨=⎩; (2)解:设买了x 台甲种机器由题意得:30+18(10-x)≤216解得:x ≤3∵x 为非负整数∴x =0、1、2、3∴有 4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器.(3)解:由题意得:240+180(10-x )≥1890解得:x ≥1.5∴1.5≤x ≤ 3∴整数 x =2 或 3当 x =2 时购买费用=30×2+18×8=204(元) 当 x =3 时购买费用=30×3+18×7=216(元) ∴最省钱的方案是购买 2 台甲种机器,8 台乙种机器.【点睛】本题考查了利润的实际应用,二元一次方程租的实际应用,一元一次不等式的实际应用,难度较大,认真审题,找到等量关系和不等关系并建立方程组和不等式组是解题关键.26.(1) 甲内存卡每个20元,乙内存卡每个50元;(2) 有两种购买方案,方案一:购买A 商品5件,B 商品5件;方案二:购买A 商品6件,B 商品4件,其中方案二费用最低;(3) 共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.【解析】【分析】(1)设甲内存卡每个x 元,乙内存卡每个y 元,依据“买2个甲内存卡和1个乙内存卡共用了90元,买了3个甲内存卡和2个乙内存卡用了160元”列出方程组并解答;(2)设小亮准备购买A 甲内存卡a 个,则购买乙内存卡(10-a )个,根据关系式列出一元一次不等式方程组.求解再比较两种方案.(3)设老板一上午卖了c 个甲内存卡,d 个乙内存卡,根据“甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元”列出方程组,并解答.【详解】(1)解:设甲内存卡每个x 元,乙内存卡每个y 元,则29032160x y x y +⎧⎨+⎩=,=,解得2050x y ⎧⎨⎩== . 答:甲内存卡每个20元,乙内存卡每个50元(2)解:设小亮准备购买A 甲内存卡a 个,则购买乙内存卡(10﹣a )个,则 ()()205010300205010350a a a a ⎧+-≥⎪⎨+-≤⎪⎩, 解得5≤a≤623,根据题意,a的值应为整数,所以a=5或a=6.方案一:当a=5时,购买费用为20×5+50×(10﹣5)=350元;方案二:当a=6时,购买费用为20×6+50×(10﹣6)=320元;∵350>320∴购买A商品6件,B商品4件的费用最低.答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低(3)解:设老板一上午卖了c个甲内存卡,d个乙内存卡,则10c+15d=100.整理,得2c+3d=20.∵c、d都是正整数,∴当c=10时,d=0;当c=7时,d=2;当c=4时,d=4;当c=1时,d=6.综上所述,共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.【点睛】此题考查二元一次方程组及一元一次不等式方程组的应用,解题关键是读懂题意,找到关键描述语,找到所求的量的大小关系.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常青藤实验中学初一数学第三次回家作业(命题人:何英150916)
(周清部分)班级 姓名 学号 家长签字
一、 填空题(1-7每空1分,8-11每空2分)
1. (4)--的相反数是_______;1(1)2
-+的绝对值是_______;1-
-与_______互为相反数。
(2)x y -+的相反数是____ ___;一个数的相反数是2x y -,则原数是___ ____。
2 .把下列各数分别填在相应的大括号里:
17
-,3.5,-3.14, π, 0, -152, 13
19, 0.03, 10, -5℅, - .0.3,-2
自然数集合:{ …} ;整数集合:{ …} 负分数集合:{ …} ;非负数集合:{ …} 正有理数集合:{ …} ;无理数集合{ …} 3.因为到点2和点6距离相等的点表示的数是4,那么到点100和到点999距离相等的数是___________;到点m 和点n 距离相等的点表示的数是__________. 4.绝对值不大于2的所有负整数的和为 _________.
5. 已知a+b>0 ,(1)当a 、b 同号时,则a_______0,b ______0.
(2)当a 、b 异号时,且b>0,则|a|___ _|b| .(填“>”、“<”或“=”) 6.在32-的绝对值与2
3-的相反数之间的整数是 .
7.绝对值等于本身的数是 .相反数等于本身的数是 , 绝对值最小的负整数是 ,绝对值最小的有理数是
8.化简:23p p -+-= ;如果已知x>5,则|x-3|+|4-x|= 9. 若a 为任意一个有理数,则化简 |a|+a= , 当x 时,|x-2|=2-x. 10.化简:-[-(-5)]= , -|-(+3)|= 。
11.|a-1|+ |2+b|=0 , 则a b += 二、选择题(每个2分)
12.若|a|=a,则有理数a 为( ) A. 正数 B. 负数 C. 非负数 D. 负数和零 13.如图,x 在数轴上,则下列说法正确的是 ( ) A.x+1<0 B. |x|<0 C. x+1>1 D. |x|=0
14.下列说法中正确的是( )
A .正有理数和负有理数统称为有理数
B .零的意义是没有
C .零是最小的自然数
D .正数和分数统称为有理数
15.数轴上与原点距离不大于4的非负整数点有( )
A 、3个
B 、4个
C 、6个
D 、7个
16. 在数轴上,不在原点右边的点表示的数是( ) A.正数 B.负数 C.非正数 D.非负数
16.使等式 |6+x|=|6|+|x| 成立的有理数x 是 ( )
A.任意一个整数
B.任意一个非负数
C.任意一个非正数
D.任意一个有理数 17. -6的相反数与5的相反数的和的倒数是( ).
A .11
1 B .111- C .1+ D .1-
18.
其中,负数有 ( ) A.1个 B.2个 C.3个 D.4个 ()()[]112,2,2,(),(2),()22⎡
⎤-----+---+-+-+⎢⎥⎣
⎦
19.如果一个数的相反数不是负数,则这个数一定是( ) A 、正数 B 、负数 C 、负数或0 D 、正数或0
20. 比较m 与2m 的大小关系( ) A.2m m < B.2m m > C.2m m = D.以上都有可能 21.下列各对数中互为相反数 ( )
A .-(+3)和+(-3)
B .-(-3)和+(-3)
C .-(+3)和-3
D .+(-3)和-3 22. 两个数的和是正数,那么这两个数( )
A .都是正数 B.一正一负 C.都是非负数 D.至少有一个正数 23. 已知,0<y 则y x y x x -+,,中最小的一个是 ( )
A.x
B. y x +
C. y x -
D.不能确定
24.如果一个有理数的绝对值为3,另一个有理数的相反数为-4,,那么这两个有理数的和为( ) A .7±
B .1±
C.+7或+1
D.—7和—1
三、解答题:(38分)
25. (1) (-3)+(+0.99) (2) (-2.5)+(+65)+(-21)+(+161
) (3) (-999)+(+453)+(1002)+(-423)
(4) ()()()()()()123499100101 ++-+++-+++++-+ (5)若|a|=3, |b|=2,且a<b ,求a+b 的值. (6)29
130122123121122120121
1
-+∙∙∙+-+-+-
26.已知a 、b 互为相反数,c 是绝对值最小的数,d 是负整数中最大的数,求a+b+c -d 的值.
27. 某股民持有一种股票1000股,早上9∶30开盘价是10.5元/股,11∶30上涨了0.8元,下午15∶00收盘时,股价又下跌了0.9元,请你计算一下该股民持有的这种股票在这一天中的盈亏情况.
28.出租车司机小李某天下午营运全是在东西走向的人民大道进行的,如果规定向东为正,向西为负,
他这天下午行车里程如下(单位:千米):
(1)将最后一名乘客送到目的地时,小李距下午出车地点的距离是___________千米。
(2)若汽车耗油量为a 公升/千米,这天下午共耗油___________公升。
(列式计算)
回家拓展部分 姓名
一、选择或填空
1.大于-2且不大于4的整数的点的个数有( ) A.7个 B.6个 C.5个 D.4个
2.a , b 互为相反数,下列各组不一定互为相反数的是( )
3b 3A a 和 2b 2B a 和 b C -a 和 - a b D 和 2
2
3.下列各式中总是正数的是( )
A .2a
B .||a
C .|1|a +
D .21a +
4. 如图,M 、N 、P 、R 分别是数轴上四个整数所对应的点,其中有一个点是原点,并且MN=NP=PR=1.数a 对应的点在M 与N 之间,数b 对应的点在P 与R 之间,若3=+b a ,则原点是 ( ) (A) M 或R (B) N 或P (C) M 或N (D) P 或R
5.已知一列数:1,―2,3,―4,5,―6,7,… 将这列数排成下列形式:
第1行 1
第2行 -2 3
第3行 -4 5 -6
第4行 7 -8 9 -10 第5行 11 -12 13 -14 15
… … 按照上述规律排下去,那么第10行从左边数第5个数等于 . 6.若a>0,b<0 ,则a-b___ __0,b-a _____ __0.
7.在数轴上标出表示a,b 的相反数的,并用“<”或“>”填空。
b c 0
(1)a +b 0 ,b -c 0 ,c -a ,a -b ,; (2)ab 0,ac - 0,a --c a -= .
8.已知a 、b 在数轴上的位置如图,把a 、b 、a -、b -从小到大排列正确的是:( )
A 、a b a b -<-<<
B 、a b b a <-<<-
C 、b a a b -<<-<
D 、a b b a <<-<- 9.已知1<x<3,化简|x -1|+|x -3|= . 三、解答题
1. 将-
2.5,1
2,-|-2|,-(-3),0及它们的相反数在数轴上表示出来,并用“>”把它们连接起来
2.计算(1) 11111111324354109 -+-+-++-(2)
a
b
()()()()20041200322002310031002-+-+-++-
3.已知点A 、B 在数轴上分别表示数a 、b . (1)观察数轴并填写右表:
(2)若设A 、B 两点间的距离为c , 则c 可表示为( )
A .a+b
B .a -b
C .a b +
D .a b -
(3)求21x -=中x 的值.
4.某商店的文具用品专柜半年的销售中,盈亏情况如下表
表中12月的盈亏数被墨水涂污了,请你算出第12月的盈亏数,并说明12月是盈还是亏?盈亏多少?
5.M 国股民吉姆上星期六买进某公司股票1000股,每股27元,下表为本周内每日该股票的涨跌情况(单
(2)本周内每股最高价多少元?最低价多少元?
(3)已知吉姆买进股票时,付了0.15%的手续费,卖出时还需付成交额0.15%的手续费和0.1%的交易税,如果吉姆在星期六收盘前将全部股票卖出,他的收益情况如何?
6.动点A 从原点出发向数轴负方向运动,同时,动点B 也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度。
已知动点A 、B 的速度比是1:4 (速度单位:单位长度/秒)。
(1)求出两个动点运动的速度,并在数轴上标出A 、B 两点从原点出发运动3秒时的位置;
(2)若A 、B 两点从(1)中标出的位置同时向数轴负方向运动,几秒时,原点恰好处在两个动点的正中间? (3)拓展思考:当A 、B 两点从(1)中标出的位置同时向数轴负方向运动时,另一动点C 和点B 同时从B 点位置出发向A 运动,当遇到A 后,立即返回向B 点运动,遇到B 点后又立即返回向A 点运动,如此往返,直到B 追上A 时,C 立即停止运动。
若点C 一直以20单位长度/秒的速度匀速运动,那么点C 从开始运动到停止运动,行驶的路程是多少个单位长度?。