2018年高考文数二轮复习精品资料-专题19 不等式选讲(解析版)

合集下载

【2018年高考一轮课程】文科数学全国通用版不等式选讲教案

【2018年高考一轮课程】文科数学全国通用版不等式选讲教案

【2018年⾼考⼀轮课程】⽂科数学全国通⽤版不等式选讲教案⼀、⾃我诊断知⼰知彼1、解不等式:|21|3x x +-< 【答案】4(2,)3-【解析】根据题意,原不等式等价于:43213,23x x x x -<-<-∴-<<,解集为4(2,)3-。

2、已知函数52)(---=x x x f(I )证明:3)(3≤≤-x f ;(II )求不等式158)(2+-≥x x x f 的解集. 【答案】(I )略;(II )}635{≤≤-x x【解析】(I )3,2,()|2||5|27,25,3, 5.x f x x x x x x -≤??=---=-<当25,327 3.x x <<-<-<时所以3() 3.f x -≤≤(II )由(I )可知,当2≤x 时,158)(2+-≥x x x f 的解集为空集;当52<158)(2+-≥x x x f 的解集为}535{<≤-x x ;当5≥x 时,158)(2+-≥x x x f 的解集为}65{≤≤x x ;综上,不等式158)(2+-≥x x x f 的解集为}635{≤≤-x x 。

3、不等式|5||3|10x x -++≥的解集为(A )]7,5[- (B )]6,4[- (C )(,5][7,)-∞-?+∞ (D )(,4][6,)-∞-?+∞ 【答案】D【解析】根据题意,双绝对值的分界点为-3,5,(1)当3-≤x 时,1035≥---x x ,解得4-≤x ;(2)当53<<-x 时,1035≥++-x x ,⽆解;(3)当5≥x 时,1035≥++-x x ,解得6≥x ,综合上述不等式的解集为(,4][6,)-∞-?+∞,选项D 正确。

4、若存在实数x 使|||1|3x a x -+-≤成⽴,则实数a 的取值范围是________ 【答案】42≤≤-a【解析】根据题意,|||1|3x a x -+-≤表⽰在数轴上,a 到1的距离⼩于等于3,即31≤-a则42≤≤-a 。

2018届高考理科数学二轮专题复习讲义 不等式选讲

2018届高考理科数学二轮专题复习讲义 不等式选讲

专题八 选修系列第2讲 不等式选讲考情考向分析本部分主要考查绝对值不等式的解法.求含绝对值的函数的值域及求含参数的绝对值不等式中参数的取值范围,不等式的证明等,结合集合的运算、函数的图象和性质、恒成立问题及基本不等式,绝对值不等式的应用成为命题的热点,主要考查基本运算能力与推理论证能力及数形结合思想、分类讨论思想. 热点分类突破热点一 含绝对值不等式的解法含有绝对值的不等式的解法(1)|f (x )|>a (a >0)⇔f (x )>a 或f (x )<-a .(2)|f (x )|<a (a >0)⇔-a <f (x )<a .(3)对形如|x -a |+|x -b |≤c ,|x -a |+|x -b |≥c 的不等式,可利用绝对值不等式的几何意义求解. 例1 (2017届四川省成都市三诊)已知f (x )=|x -a |,a ∈R.(1)当a =1时,求不等式f (x )+|2x -5|≥6的解集;(2)若函数g (x )=f (x )-|x -3|的值域为A ,且[-1,2]⊆A ,求a 的取值范围.解 (1)当a =1时,不等式即为|x -1|+|2x -5|≥6.当x ≤1时,不等式可化为-(x -1)-(2x -5)≥6, ∴x ≤0;当1<x <52时,不等式可化为(x -1)-(2x -5)≥6, ∴x ∈∅; 当x ≥52时,不等式可化为(x -1)+(2x -5)≥6, ∴x ≥4. 综上所述,原不等式的解集为{x |x ≤0或x ≥4}.(2)∵||x -a |-|x -3||≤ |x -a -(x -3)|=|a -3|,∴f (x )-|x -3|=|x -a |-|x -3|∈[-|a -3|,|a -3|] .∴函数g (x )的值域A =[-|a -3|,|a -3|].∵[-1,2]⊆A ,∴⎩⎪⎨⎪⎧-|a -3|≤-1,|a -3|≥2,解得a ≤1或a ≥5. ∴a 的取值范围是(-∞,1]∪[5,+∞).思维升华 (1)用零点分段法解绝对值不等式的步骤①求零点;②划区间、去绝对值号;③分别解去掉绝对值的不等式;④取每个结果的并集,注意在分段时不要遗漏区间的端点值.(2)用图象法、数形结合法可以求解含有绝对值的不等式,使得代数问题几何化,既通俗易懂,又简洁直观,是一种较好的方法.跟踪演练1 (2017·全国Ⅲ)已知函数f (x )=|x +1|-|x -2|.(1)求不等式f (x )≥1的解集;(2)若不等式f (x )≥x 2-x +m 的解集非空,求m 的取值范围.解 (1)f (x )=⎩⎪⎨⎪⎧ -3,x <-1,2x -1,-1≤x ≤2,3,x >2.当x <-1时,f (x )≥1无解;当-1≤x ≤2时,由f (x )≥1,得2x -1≥1,解得1≤x ≤2;当x >2时,由f (x )≥1,解得x >2.所以f (x )≥1的解集为{x |x ≥1}.(2)由f (x )≥x 2-x +m ,得m ≤|x +1|-|x -2|-x 2+x ,而|x +1|-|x -2|-x 2+x ≤|x |+1+|x |-2-x 2+|x |=-⎝⎛⎭⎫|x |-322+54≤54. 当且仅当x =32时,|x +1|-|x -2|-x 2+x =54, 故m 的取值范围是⎝⎛⎦⎤-∞,54. 热点二 不等式的证明1.含有绝对值的不等式的性质||a |-|b ||≤|a ±b |≤|a |+|b |.2.算术—几何平均不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab .当且仅当a =b 时,等号成立.定理2:如果a ,b 为正数,则a +b 2≥ab ,当且仅当a =b 时,等号成立. 定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立. 定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n ≥n a 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.例2 (2017届福建省福州质检)(1)求函数f (x )=|3x +2|-|1-2x ||x +3|的最大值M ; (2)若实数a ,b ,c 满足a 2+b 2≤c ,求证:2(a +b +c )+1≥0,并说明取等条件.(1)解 f (x )=|3x +2|-|1-2x ||x +3|≤|3x +2+1-2x ||x +3|=1, 当且仅当x ≤-23或x ≥12时等号成立,所以M =1. (2)证明 2(a +b +c )+1≥2(a +b +a 2+b 2)+1≥2⎣⎡⎦⎤a +b +(a +b )22+1 =(a +b +1)2≥0,当且仅当a =b =-12,c =12时取等号, 所以存在实数a =b =-12,c =12满足条件. 思维升华 (1)作差法是证明不等式的常用方法.作差法证明不等式的一般步骤:①作差;②分解因式;③与0比较;④结论.关键是代数式的变形能力.(2)在不等式的证明中,适当“放”“缩”是常用的推证技巧.跟踪演练2 (2017届河北省衡水中学押题卷)已知a ,b 为任意实数.(1)求证:a 4+6a 2b 2+b 4≥4ab (a 2+b 2);(2)求函数f (x )=|2x -a 4+(1-6a 2b 2-b 4)|+2|x -(2a 3b +2ab 3-1)|的最小值.(1)证明 a 4+6a 2b 2+b 4-4ab (a 2+b 2)=(a 2+b 2)2-4ab (a 2+b 2)+4a 2b 2=(a 2+b 2-2ab )2=(a -b )4.因为(a -b )4≥0,所以a 4+6a 2b 2+b 4≥4ab (a 2+b 2).(2)解 f (x )=|2x -a 4+(1-6a 2b 2-b 4)|+2|x -(2a 3b +2ab 3-1)|=|2x -a 4+(1-6a 2b 2-b 4)|+|2x -2(2a 3b +2ab 3-1)|≥|[2x -2(2a 3b +2ab 3-1)]-[2x -a 4+(1-6a 2b 2-b 4)]|=|(a -b )4+1|≥1.即f (x )min =1.热点三 柯西不等式的应用柯西不等式(1)设a ,b ,c ,d 均为实数,则(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时等号成立.(2)设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,当且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立. 例3 (2017届长沙市雅礼中学模拟)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}.(1)求实数a ,b 的值;(2)求证:2≤at +12+bt ≤4.(1)解 由|x +a |<b ,得-b -a <x <b -a ,则⎩⎪⎨⎪⎧-b -a =2,b -a =4, 解得a =-3,b =1.(2)证明 由柯西不等式,有 (-3t +12+t )2=(3·-t +4+1·t )2≤[(3)2+12][(-t +4)2+(t )2]=16, 所以-3t +12+t ≤4, 当且仅当4-t 3=t 1,即t =1时等号成立. 又(-3t +12+t )2=-3t +12+t +2-3t +12·t≥12-2t ≥4(0≤t ≤4),所以-3t +12+t ≥2,当且仅当t =4时等号成立,综上,2≤at +12+bt ≤4.思维升华 (1)使用柯西不等式证明的关键是恰当变形,化为符合它的结构形式,当一个式子与柯西不等式的左边或右边具有一致形式时,就可使用柯西不等式进行证明.(2)利用柯西不等式求最值的一般结构为(a 21+a 22+…+a 2n )⎝⎛⎭⎫1a 21+1a 22+…+1a 2n≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.跟踪演练3 已知函数f (x )=|x +2|-m ,m ∈R ,且f (x )≤0的解集为[-3,-1].(1)求m 的值;(2)设a ,b ,c 为正数,且a +b +c =m ,求3a +1+3b +1+3c +1的最大值.解 (1)由f (x )≤0,得|x +2|≤m ,所以⎩⎪⎨⎪⎧m ≥0,-m -2≤x ≤m -2, 又f (x )≤0的解集为[-3,-1],所以⎩⎪⎨⎪⎧-m -2=-3,m -2=-1, 解得m =1.(2)由(1) 知a +b +c =1,由柯西不等式,得(3a +1+3b +1+3c +1)2≤(3a +1+3b +1+3c +1)·(12+12+12),所以(3a +1+3b +1+3c +1)2≤3[3(a +b +c )+3]=18, 所以3a +1+3b +1+3c +1≤32, 当且仅当3a +1=3b +1=3c +1,即a =b =c =13时等号成立, 所以3a +1+3b +1+3c +1的最大值为3 2.真题体验1.(2017·全国Ⅰ)已知函数f (x )=-x 2+ax +4,g (x )=|x +1|+|x -1|.(1)当a =1时,求不等式f (x )≥g (x )的解集;(2)若不等式f (x )≥g (x )的解集包含[-1,1],求a 的取值范围.解 (1)当a =1时,不等式f (x )≥g (x )等价于x 2-x +|x +1|+|x -1|-4≤0. ①当x <-1时,①式化为x 2-3x -4≤0,无解;当-1≤x ≤1时,①式化为x 2-x -2≤0,从而-1≤x ≤1;当x >1时,①式化为x 2+x -4≤0,从而1<x ≤-1+172. 所以f (x )≥g (x )的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1≤x ≤-1+172. (2)当x ∈[-1,1]时,g (x )=2,所以f (x )≥g (x )的解集包含[-1,1]等价于当x ∈[-1,1]时,f (x )≥2.又f (x )在[-1,1]上的最小值必为f (-1)与f (1)之一,所以f (-1)≥2且f (1)≥2,得-1≤a ≤1.所以a 的取值范围为[-1,1].2.(2017·全国Ⅱ)已知a >0,b >0,a 3+b 3=2,证明:(1)(a +b )(a 5+b 5)≥4;(2)a +b ≤2.证明 (1)(a +b )(a 5+b 5)=a 6+ab 5+a 5b +b 6=(a 3+b 3)2-2a 3b 3+ab (a 4+b 4)=4+ab (a 4+b 4-2a 2b 2)=4+ab (a 2-b 2)2≥4.(2)因为(a +b )3=a 3+3a 2b +3ab 2+b 3=2+3ab (a +b )≤2+3(a +b )24(a +b ) =2+3(a +b )34, 所以(a +b )3≤8,因此a +b ≤2.押题预测1.已知函数f (x )=|x -2|+|2x +a |,a ∈R .(1)当a =1时,解不等式f (x )≥4;(2)若∃x 0,使f (x 0)+|x 0-2|<3成立,求a 的取值范围.押题依据 不等式选讲问题中,联系绝对值,关联参数、体现不等式恒成立是考题的“亮点”所在,存在问题、恒成立问题是高考的热点,备受命题者青睐.解 (1)当a =1时,f (x )=|x -2|+|2x +1|.由f (x )≥4,得|x -2|+|2x +1|≥4.当x ≥2时,不等式等价于x -2+2x +1≥4,解得x ≥53,所以x ≥2; 当-12<x <2时,不等式等价于2-x +2x +1≥4, 即x ≥1,所以1≤x <2;当x ≤-12时,不等式等价于2-x -2x -1≥4, 解得x ≤-1,所以x ≤-1.所以原不等式的解集为{x |x ≤-1或x ≥1}.(2)应用绝对值不等式,可得f (x )+|x -2|=2|x -2|+|2x +a |=|2x -4|+|2x +a |≥|2x +a -(2x -4)|=|a +4|.因为∃x 0,使f (x 0)+|x 0-2|<3成立,所以(f (x )+|x -2|)min <3,所以|a +4|<3,解得-7<a <-1,故实数a 的取值范围为(-7,-1).2.已知x ,y ∈R +,x +y =4.(1)要使不等式1x +1y≥|a +2|-|a -1|恒成立,求实数a 的取值范围; (2)求证:x 2+2y 2≥323,并指出等号成立的条件. 押题依据 不等式选讲涉及绝对值不等式的解法,包含参数是命题的显著特点.本题将二元函数最值、解绝对值不等式、不等式证明综合为一体,意在检测考生理解题意,分析问题、解决问题的能力,具有一定的训练价值.(1)解 因为x ,y ∈R +,x +y =4,所以x 4+y 4=1. 由基本不等式,得1x +1y =⎝⎛⎭⎫1x +1y ⎝⎛⎭⎫x 4+y 4 =12+14⎝⎛⎭⎫y x +x y ≥12+12 y x ·x y=1, 当且仅当x =y =2时取等号.要使不等式1x +1y≥|a +2|-|a -1|恒成立, 只需不等式|a +2|-|a -1|≤1成立即可.构造函数f (a )=|a +2|-|a -1|,则等价于解不等式f (a )≤1.因为f (a )=⎩⎪⎨⎪⎧ -3,a ≤-2,2a +1,-2<a <1,3,a ≥1,所以解不等式f (a )≤1,得a ≤0.所以实数a 的取值范围为(-∞,0].(2)证明 因为x ,y ∈R +,x +y =4,所以y =4-x (0<x <4),于是x 2+2y 2=x 2+2(4-x )2=3x 2-16x +32=3⎝⎛⎭⎫x -832+323≥323, 当x =83,y =43时等号成立.A 组 专题通关1.(2017届山西省实验中学模拟)已知函数f (x )=|x -2|+|x +4|,g (x )=x 2+4x +3.(1)求不等式f (x )≥g (x )的解集;(2)如果f (x )≥|1-5a |恒成立,求a 的取值范围.解 (1)f (x )≥g (x ),即|x -2|+|x +4|≥x 2+4x +3,①当x <-4时,原不等式等价于-(x -2)-(x +4)≥x 2+4x +3,即x 2+6x +5≤0,解得-5≤x ≤-1,∴-5≤x <-4;②当-4≤x ≤2时,原不等式等价于-(x -2)+(x +4)≥x 2+4x +3,即x 2+4x -3≤0,解得-2-7≤x ≤-2+7,∴-4≤x ≤-2+7;③当x >2时,原不等式等价于(x -2)+(x +4)≥x 2+4x +3,即x 2+2x +1≤0,解得x =-1,得x ∈∅.综上可知,不等式f (x )≥g (x )的解集是{x |-5≤x ≤-2+7}.(2)∵|x -2|+|x +4|≥|x -2-x -4|=6,且f (x )≥|1-5a |恒成立,∴6≥|1-5a |,即-6≤1-5a ≤6,∴-1≤a ≤75,∴a 的取值范围是⎣⎡⎦⎤-1,75. 2. (2017届陕西省渭南市二模)已知函数f (x )=|x +3|-m ,m >0,f (x -3)≥0的解集为(-∞,-2]∪[2,+∞).(1)求m 的值;(2)若∃x ∈R ,f (x )≥|2x -1|-t 2+32t +1成立,求实数t 的取值范围. 解 (1)∵f (x )=|x +3|-m ,∴f (x -3)=|x |-m ≥0.∵m >0,∴x ≥m 或x ≤-m .又∵f (x -3)≥0的解集为(-∞,-2]∪[2,+∞),∴m =2.(2)f (x )≥|2x -1|-t 2+32t +1等价于不等式 |x +3|-|2x -1|≥-t 2+32t +3,g (x )=|x +3|-|2x -1|=⎩⎪⎨⎪⎧ x -4,x ≤-3,3x +2,-3<x <12,-x +4,x ≥12,故g (x )max =g ⎝⎛⎭⎫12=72,则有72≥-t 2+32t +3, 即2t 2-3t +1≥0,解得t ≤12或t ≥1. 即实数t 的取值范围为⎝⎛⎦⎤-∞,12∪[1,+∞). 3.(2017届安徽省蚌埠市教学质检)已知x ,y ∈R ,m +n =7,f (x )=|x -1|-|x +1|.(1)解不等式f (x )≥(m +n )x ;(2)设max{a ,b }=⎩⎪⎨⎪⎧a ,a ≥b ,b ,a <b ,求F =max{|x 2-4y +m |,|y 2-2x +n |}的最小值. 解 (1)f (x )≥(m +n )x ⇔|x -1|-|x +1|≥7x ,当x ≤-1时,2≥7x ,恒成立,当-1<x <1时,-2x ≥7x ,即-1<x ≤0;当x ≥1时,-2≥7x ,即x ∈∅,综上可知,不等式的解集为{x |x ≤0}.(2)∵F ≥|x 2-4y +m |,F ≥|y 2-2x +n |,∴2F ≥|x 2-4y +m |+|y 2-2x +n |≥|(x -1)2+(y -2)2+m +n -5|=|(x -1)2+(y -2)2+2|≥2,∴F ≥1,F min =1.4.(2017届河南省洛阳市统考)设不等式0<|x +2|-|1-x |<2的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪a +12b <34; (2)比较|4ab -1|与2|b -a |的大小,并说明理由.(1)证明 记f (x )=|x +2|-|1-x |=⎩⎪⎨⎪⎧ -3,x ≤-2,2x +1,-2<x <1,3,x ≥1.由0<2x +1<2,解得-12<x <12, 则M =⎝⎛⎭⎫-12,12. ∵a ,b ∈M ,∴|a |<12,|b |<12, ∴⎪⎪⎪⎪a +12b ≤|a |+12|b |<12+12×12=34. (2)解 由(1)得a 2<14,b 2<14. ∵|4ab -1|2-4|b -a |2=(16a 2b 2-8ab +1)-4(b 2-2ab +a 2)=(4a 2-1)(4b 2-1)>0,∴|1-4ab |2>4|a -b |2,故|1-4ab |>2|a -b |.5.(2017届云南省昆明市适应性检测)已知a ,b ,c ,m ,n ,p 都是实数,且a 2+b 2+c 2=1,m 2+n 2+p 2=1.(1)证明:|am +bn +cp |≤1;(2)若abc ≠0,证明:m 4a 2+n 4b 2+p 4c 2≥1. 证明 (1)因为|am +bn +cp |≤|am |+|bn |+|cp |,a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以|am |+|bn |+|cp |≤a 2+m 22+b 2+n 22+c 2+p 22=a 2+b 2+c 2+m 2+n 2+p 22=1, 即|am +bn +cp |≤1.(2)因为a 2+b 2+c 2=1,m 2+n 2+p 2=1,所以m 4a 2+n 4b 2+p 4c 2 =⎝⎛⎭⎫m 4a 2+n 4b 2+p 4c 2(a 2+b 2+c 2) ≥⎝⎛⎭⎫m 2a·a +n 2b ·b +p 2c ·c 2 =(m 2+n 2+p 2)2=1.所以m 4a 2+n 4b 2+p 4c 2≥1. B 组 能力提高6.(2017届云南省师范大学附属中学月考)已知函数f (x )=|x -1|.(1)求不等式2f (x )-x ≥2的解集;(2)对∀x ∈R ,a ,b ,c ∈(0,+∞),求证:|x -1|-|x +5|≤1a 3+1b 3+1c 3+3abc . (1)解 令g (x )=2f (x )-x =2|x -1|-x=⎩⎪⎨⎪⎧x -2,x ≥1,-3x +2,x <1, 当x ≥1时,由x -2≥2,得x ≥4,当x <1时,由-3x +2≥2,得x ≤0,∴不等式的解集为(-∞,0]∪[4,+∞).(2)证明 |x -1|-|x +5|≤|x -1-(x +5)|=6,又∵a ,b ,c >0,∴1a 3+1b 3+1c 3+3abc ≥331a 3·1b 3·1c 3+3abc =3abc +3abc ≥23abc·3abc =6, 当且仅当a =b =c =1时取等号,∴|x -1|-|x +5|≤1a 3+1b 3+1c3+3abc . 7.(2017届四川省成都市二诊)已知函数f (x )=4-|x |-|x -3|.(1)求不等式f ⎝⎛⎭⎫x +32≥0的解集; (2)若p ,q ,r 为正实数,且13p +12q +1r=4,求3p +2q +r 的最小值. 解 (1)f ⎝⎛⎭⎫x +32=4-⎪⎪⎪⎪x +32-⎪⎪⎪⎪x -32≥0, 根据绝对值的几何意义,得⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32表示点(x,0)到A ⎝⎛⎭⎫-32,0,B ⎝⎛⎭⎫32,0两点的距离之和. 接下来找出到A ,B 距离之和为4的点.将点A 向左移动12个单位长度到点A 1(-2,0), 这时有|A 1A |+|A 1B |=4;同理,将点B 向右移动12个单位长度到点B 1(2,0), 这时有|B 1A |+|B 1B |=4.∴当x ∈[-2,2]时,⎪⎪⎪⎪x +32+⎪⎪⎪⎪x -32≤4,即f ⎝⎛⎭⎫x +32≥0的解集为[-2,2]. (2)令a 1=3p ,a 2=2q ,a 3=r ,由柯西不等式,得⎣⎡⎦⎤⎝⎛⎭⎫1a 12+⎝⎛⎭⎫1a 22+⎝⎛⎭⎫1a 32·(a 21+a 22+a 23) ≥⎝⎛⎭⎫1a 1·a 1+1a 2·a 2+1a 3·a 32 即⎝⎛⎭⎫13p +12q +1r (3p +2q +r )≥9,∵13p +12q +1r =4,∴3p +2q +r ≥94. 上述不等式当且仅当13p =12q =1r =43, 即p =14,q =38,r =34时取等号. ∴3p +2q +r 的最小值为94. 8.(2017·湖北省黄冈中学三模)设函数f (x )=|x +a |-|x -1-a |.(1)当a =1时,解不等式f (x )≥12; (2)若对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,求实数b 的取值范围.解 (1)当a =1时,不等式f (x )≥12等价于 |x +1|-|x |≥12, ①当x ≤-1时,不等式化为-x -1+x ≥12,无解; ②当-1<x <0时,不等式化为x +1+x ≥12, 解得-14≤x <0; ③当x ≥0时,不等式化为x +1-x ≥12, 解得x ≥0.综上所述,不等式f (x )≥12的解集为⎣⎡⎭⎫-14,+∞. (2)∵不等式f (x )≥b 的解集不为空集,∴b ≤f (x )max ,∵f (x )=|x +a |-|x -1-a |≤|x +a -x +1-a |=|a +1-a |=a +1-a ,当且仅当x ≥1-a 时取等号,∴f (x )max =a +1-a ,对任意a ∈[0,1],不等式f (x )≥b 的解集不为空集,∴b ≤[a +1-a ]min ,令g (a )=a +1-a ,∴g 2(a )=1+2a ·1-a =1+2a (1-a )=1+2 -⎝⎛⎭⎫a -122+14. ∵当a ∈⎣⎡⎦⎤0,12时单调递增,a ∈⎣⎡⎦⎤12,1时单调递减,当且仅当a =0或a =1,g (a )min =1, ∴b 的取值范围为(-∞,1].。

2018年高考数学(理)复习解决方案真题与重难点课件:19 不等式选讲

2018年高考数学(理)复习解决方案真题与重难点课件:19 不等式选讲

(2)证明:∵ x, y∈ M,∴ |x|<3, |y|<3, ∴ |x+ y+ xy|≤|x+ y|+ |xy|≤|x|+ |y|+ |xy|= |x|+ |y|+ |x|· |y|<3+ 3+ 3×3=15.(10分 )
4.[2017· 广西河池联考]已知定义在R上的函数f(x)=|x -m|+ |x|,m∈N* ,存在实数 x使f(x)<2成立. (1)求实数m的值; 4 1 (2)若 α,β>1,f(α)+f(β)=4,求证: + >3. α β
(2分 )
当 x<- 2时,由 x- 3>0,得 x>3,舍去; (3分 ) 1 1 1 1 当-2≤x≤ 时,由 3x+1>0,得 x>- ,即- <x≤ ; 2 3 3 2 (4分 )
1 1 当 x> 时,由- x+ 3>0,得 x<3,即 <x<3.(5分 ) 2 2
1 综上, M=- , 3 .(6分 ) 3
3 x<- , 2 - 3, 2 x+ 4>4

(4分 )
⇔x<- 2或 0<x≤1或 x>1.(5分 ) 综上,不等式 f(x)>4的解集为 (- ∞,- 2)∪ (0,+ ∞). (6分 )
(2)存在 x∈ 1>f(x)min, (7分 )
2.[2016· 云南名校统考]已知关于 x的不等式m-|x- 2|≥1,其解集为 x∈[0,4]. (1)求m的值; (2)若a,b均为正实数,且满足a+b=m,求a2+b2的最 小值.

(1)不等式 m- |x- 2|≥1可化为 |x- 2|≤m- 1,
∴ 1- m≤x- 2≤m- 1,即 3- m≤x≤m+ 1.(3分 ) ∵其解集为 [0,4],

高考数学压轴专题新备战高考《不等式选讲》知识点总复习有答案解析

高考数学压轴专题新备战高考《不等式选讲》知识点总复习有答案解析

【高中数学】数学《不等式选讲》复习知识要点一、141.已知2(3)f x x x =+,若1x a -≤,则下列不等式一定成立的是( ) A .33()()f x f a a -≤+ B .24()()f x f a a -≤+ C .()()5f x f a a -≤+ D .2|()()2|(1)f x f a a -≤+【答案】B 【解析】 【分析】先令a=0,排除A ,C,D,再利用绝对值三角不等式证明选项B 成立 【详解】令a=0,则1x ≤,即-1≤x≤1,()()()()()0?f x f a f x f f x -=-=≤4,此时A,C,D 不成立,下面证明选项B 成立()()22 33f x f a x x a a -=+--=()() 3x a x a -++≤()()3x a x a -++≤()3x a ++=23x a a -++≤23x a a -++≤24a +故选:B . 【点睛】本题考查了绝对值三角不等式的应用,特值法,结合二次函数最值分析问题,准确推理计算是关键,是基础题.2.若不等式23x a x -≤+对任意[]0,2x ∈恒成立,则实数a 的取值范围是( ) A .()1,3- B .[]1,3-C .()1,3D .[]1,3【答案】B 【解析】 【分析】将不等式去掉绝对值符号,然后变量分离转为求函数的最值问题. 【详解】不等式23x a x -≤+去掉绝对值符号得323x x a x --≤-≤+, 即3223x x ax a x --≤-⎧⎨-≤+⎩对任意[]0,2x ∈恒成立,变量分离得333a x a x ≤+⎧⎨≥-⎩,只需min max (33)(3)a x a x ≤+⎧⎨≥-⎩,即31a a ≤⎧⎨≥-⎩所以a 的取值范围是[]1,3- 故选:B 【点睛】本题考查绝对值不等式的解法和恒成立问题的处理方法,属于基础题.3.关于x 不等式2x x a a -+-≥在R 上恒成立,则实数a 的最大值是 A .0 B .1C .-1D .2【答案】B 【解析】由于|x -2|+|x -a |≥|a -2|,∴等价于|a -2|≥a ,即a ≤1.故实数a 的最大值为1.4.已知,,则使不等式一定成立的条件是A .B .C .D .【答案】D 【解析】因为若,则,已知不等式不成立,所以,应选答案D 。

高考不等式选讲专题复习(经典)

高考不等式选讲专题复习(经典)

不等式选讲高考导航考试要求重难点击命题展望1.理解绝对值的几何意义,并能用它证明绝对值三角不等式等较简单的不等式.①|a+b|≤|a|+|b|;②|a-b|≤|a-c|+|c-b|.2.能用绝对值的几何意义解几类简单的绝对值型不等式,如|ax+b|≤c或|ax+b|≥c,以及|x-a|+|x-b|≥c或|x-a|+|x-b|≤c类型.3.了解证明不等式的基本方法:比较法、综合法、分析法、反证法和放缩法.4.了解数学归纳法的原理及其使用范围,会用它证明一些简单不等式及其他问题.5.了解柯西不等式的几种不同形式:二维形式(a2+b2)(c2+d2)≥(ac+bd)2、向量形式|α|·|β|≥|α·β|、一般形式∑∑∑===•nininiiiiibaba112122)(≥,理解它们的几何意义.掌握柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用.6.了解排序不等式的推导及意义并能简单应用.7.会用数学归纳法证明贝努利不等式:.)1,0,1>(>1)1(的正整数为大于nxxnxx n≠-++本章重点:不等式的基本性质;基本不等式及其应用、绝对值型不等式的解法及其应用;用比较法、分析法、综合法证明不等式;柯西不等式、排序不等式及其应用.本章难点:三个正数的算术——几何平均不等式及其应用;绝对值不等式的解法;用反证法、放缩法证明不等式;运用柯西不等式和排序不等式证明不等式.本专题在数学必修5“不等式”的基础上,进一步学习一些重要的不等式,如绝对值不等式、柯西不等式、排序不等式以及它们的证明,同时了解证明不等式的一些基本方法,如比较法、综合法、分析法、反证法、放缩法、数学归纳法等,会用绝对值不等式、平均值不等式、柯西不等式、排序不等式等解决一些简单问题.高考中,只考查上述知识和方法,不对恒等变形的难度和一些技巧作过高的要求.知识网络§1 绝对值型不等式典例精析题型一解绝对值不等式【例1】设函数f(x)=|x-1|+|x-2|.(1)解不等式f(x)>3;(2)若f(x)>a对x∈R恒成立,求实数a的取值范围.【解析】(1)因为f (x )=|x -1|+|x -2|=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,11,<,23x x x x x所以当x <1时,3-2x >3,解得x <0; 当1≤x ≤2时,f (x )>3无解; 当x >2时,2x -3>3,解得x >3.所以不等式f (x )>3的解集为(-∞,0)∪(3,+∞).(2)因为f (x )=⎪⎩⎪⎨⎧-.2>3,-22,≤≤1,1<1,,23x x x x x 所以f (x )min =1.因为f (x )>a 恒成立,所以a <1,即实数a 的取值范围是(-∞,1). 【变式训练1】设函数f (x )=|x +1|+|x -2|+a . (1)当a =-5时,求函数f (x )的定义域; (2)若函数f (x )的定义域为R ,试求a 的取值范围.【解析】(1)由题设知|x +1|+|x -2|-5≥0,如图,在同一坐标系中作出函数y =|x +1|+|x -2|和y =5的图象,知定义域为(-∞,-2]∪[3,+∞).(2)由题设知,当x ∈R 时,恒有|x +1|+|x -2|+a ≥0,即|x +1|+|x -2|≥-a ,又由(1)知|x +1|+|x -2|≥3, 所以-a ≤3,即a ≥-3. 题型二 解绝对值三角不等式【例2】已知函数f (x )=|x -1|+|x -2|,若不等式|a +b |+|a -b |≥|a |f (x )对a ≠0,a 、b ∈R 恒成立,求实数x 的范围.【解析】由|a +b |+|a -b |≥|a |f (x )且a ≠0得|a +b |+|a -b ||a |≥f (x ).又因为|a +b |+|a -b ||a |≥|a +b +a -b ||a |=2,则有2≥f (x ).解不等式|x -1|+|x -2|≤2得12≤x ≤52.【变式训练2】(2010深圳)若不等式|x +1|+|x -3|≥a +4a对任意的实数x 恒成立,则实数a 的取值范围是 .【解析】(-∞,0)∪{2}.题型三 利用绝对值不等式求参数范围 【例3】(2009辽宁)设函数f (x )=|x -1|+|x -a |. (1)若a =-1,解不等式f (x )≥3; (2)如果∀x ∈R ,f (x )≥2,求a 的取值范围. 【解析】(1)当a =-1时,f (x )=|x -1|+|x +1|. 由f (x )≥3得|x -1|+|x +1|≥3,①当x ≤-1时,不等式化为1-x -1-x ≥3,即-2x ≥3,不等式组⎩⎨⎧-3≥)(1,≤x f x 的解集为(-∞,-32];②当-1<x ≤1时,不等式化为1-x +x +1≥3,不可能成立,不等式组⎩⎨⎧-3≥)(1,≤<1x f x 的解集为∅;③当x >1时,不等式化为x -1+x +1≥3,即2x ≥3,不等式组⎩⎨⎧3≥)(1,>x f x 的解集为[32,+∞).综上得f (x )≥3的解集为(-∞,-32]∪[32,+∞).(2)若a =1,f (x )=2|x -1|不满足题设条件.若a <1,f (x )=⎪⎩⎪⎨⎧+-++-1,≥1),(-2<1,<,1,≤,12x a x x a a a x a xf (x )的最小值为1-a .由题意有1-a ≥2,即a ≤-1.若a >1,f (x )=⎪⎩⎪⎨⎧+-++-,≥1),(-2,<<1,11,≤,12a x a x a x a x a xf (x )的最小值为a -1,由题意有a -1≥2,故a ≥3.综上可知a 的取值范围为(-∞,-1]∪[3,+∞).【变式训练3】关于实数x 的不等式|x -12(a +1)2|≤12(a -1)2与x 2-3(a +1)x +2(3a +1)≤0 (a ∈R )的解集分别为A ,B .求使A ⊆B 的a 的取值范围.【解析】由不等式|x -12(a +1)2|≤12(a -1)2⇒-12(a -1)2≤x -12(a +1)2≤12(a -1)2,解得2a ≤x ≤a 2+1,于是A ={x |2a ≤x ≤a 2+1}.由不等式x 2-3(a +1)x +2(3a +1)≤0⇒(x -2)[x -(3a +1)]≤0,①当3a +1≥2,即a ≥13时,B ={x |2≤x ≤3a +1},因为A ⊆B ,所以必有⎩⎨⎧++1,3≤1,2≤22a a a 解得1≤a ≤3;②当3a +1<2,即a <13时,B ={x |3a +1≤x ≤2},因为A ⊆B ,所以⎩⎨⎧++2,≤1,2≤132a a a 解得a =-1.综上使A ⊆B 的a 的取值范围是a =-1或1≤a ≤3.总结提高1.“绝对值三角不等式”的理解及记忆要结合三角形的形状,运用时注意等号成立的条件.2.绝对值不等式的解法中,||x <a 的解集是(-a ,a );||x >a 的解集是(-∞,-a )∪(a ,+∞),它可以推广到复合型绝对值不等式||ax +b ≤c ,||ax +b ≥c 的解法,还可以推广到右边含未知数x 的不等式,如||3x +1≤x -1⇒1-x ≤3x +1≤x -1.3.含有两个绝对值符号的不等式,如||x -a +||x -b ≥c 和||x -a +||x -b ≤c 型不等式的解法有三种,几何解法和代数解法以及构造函数的解法,其中代数解法主要是分类讨论的思想方法,这也是函数解法的基础,这两种解法都适宜于x 前面系数不为1类型的上述不等式,使用范围更广.§2 不等式的证明(一)典例精析题型一 用综合法证明不等式【例1】 若a ,b ,c 为不全相等的正数,求证: lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【证明】 由a ,b ,c 为正数,得lga +b 2≥lg ab ;lg b +c 2≥lg bc ;lg a +c2≥lg ac . 而a ,b ,c 不全相等,所以lg a +b 2+lg b +c 2+lg a +c2>lg ab +lg bc +lg ac =lg a 2b 2c 2=lg(abc )=lg a +lg b +lg c .即lg a +b 2+lg b +c 2+lg a +c 2>lg a +lg b +lg c .【点拨】 本题采用了综合法证明,其中基本不等式是证明不等式的一个重要依据(是一个定理),在证明不等式时要注意结合运用.而在不等式的证明过程中,还要特别注意等号成立的条件是否满足.【变式训练1】已知a ,b ,c ,d 都是实数,且a 2+b 2=1,c 2+d 2=1.求证:|ac +bd |≤1. 【证明】因为a ,b ,c ,d 都是实数,所以|ac +bd |≤|ac |+|bd |≤a 2+c 22+b 2+d 22=a 2+b 2+c 2+d 22.又因为a 2+b 2=1,c 2+d 2=1,所以|ac +bd |≤1. 题型二 用作差法证明不等式【例2】 设a ,b ,c 为△ABC 的三边,求证:a 2+b 2+c 2<2(ab +bc +ca ). 【证明】a 2+b 2+c 2-2(ab +bc +ca )=(a -b )2+(b -c )2+(c -a )2-a 2-b 2-c 2=[(a -b )2-c 2]+[(b -c )2-a 2]+[(c -a )2-b 2].而在△ABC 中,||b -a <c ,所以(a -b )2<c 2,即(a -b )2-c 2<0.同理(a -c )2-b 2<0,(b -c )2-a 2<0,所以a 2+b 2+c 2-2(ab +bc +ca )<0. 故a 2+b 2+c 2<2(ab +bc +ca ).【点拨】 不等式的证明中,比较法特别是作差比较法是最基本的证明方法,而在牵涉到三角形的三边时,要注意运用三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【变式训练2】设a ,b 为实数,0<n <1,0<m <1,m +n =1,求证:a 2m +b 2n≥(a +b )2.【证明】因为a 2m +b 2n -(a +b )2=na 2+mb 2mn -nm (a 2+2ab +b 2)mn=na 2(1-m )+mb 2(1-n )-2mnab mn=n 2a 2+m 2b 2-2mnab mn =(na -mb )2mn≥0,所以不等式a 2m +b 2n≥(a +b )2成立.题型三 用分析法证明不等式【例3】已知a 、b 、c ∈R +,且a +b +c =1. 求证:(1+a )(1+b )(1+c )≥8(1-a )(1-b )(1-c ).【证明】因为a 、b 、c ∈R +,且a +b +c =1,所以要证原不等式成立, 即证[(a +b +c )+a ][(a +b +c )+b ][(a +b +c )+c ] ≥8[(a +b +c )-a ][(a +b +c )-b ][(a +b +c )-c ],也就是证[(a +b )+(c +a )][(a +b )+(b +c )][(c +a )+(b +c )]≥8(b +c )(c +a )(a +b ).① 因为(a +b )+(b +c )≥2(a +b )(b +c )>0, (b +c )+(c +a )≥2(b +c )(c +a )>0, (c +a )+(a +b )≥2(c +a )(a +b )>0, 三式相乘得①式成立,故原不等式得证.【点拨】 本题采用的是分析法.从待证不等式出发,分析并寻求使这个不等式成立的充分条件的方法叫分析法,概括为“执果索因”.分析法也可以作为寻找证题思路的方法,分析后再用综合法书写证题过程.【变式训练3】设函数f (x )=x -a (x +1)ln(x +1)(x >-1,a ≥0).(1)求f (x )的单调区间;(2)求证:当m >n >0时,(1+m )n <(1+n )m . 【解析】(1)f ′(x )=1-a ln(x +1)-a ,①a =0时,f ′(x )>0,所以f (x )在(-1,+∞)上是增函数; ②当a >0时,f (x )在(-1,aa -1e -1]上单调递增,在[aa-1e -1,+∞)单调递减.(2)证明:要证(1+m )n <(1+n )m ,只需证n ln(1+m )<m ln(1+n ),只需证ln(1+m )m <ln(1+n )n.设g (x )=ln(1+x )x (x >0),则g ′(x )=x1+x -ln(1+x )x 2=x -(1+x )ln(1+x )x 2(1+x ). 由(1)知x -(1+x )ln(1+x )在(0,+∞)单调递减, 所以x -(1+x )ln(1+x )<0,即g (x )是减函数, 而m >n ,所以g (m )<g (n ),故原不等式成立.总结提高1.一般在证明不等式的题目中,首先考虑用比较法,它是最基本的不等式的证明方法.比较法一般有“作差比较法”和“作商比较法”,用得较多的是“作差比较法”,其中在变形过程中往往要用到配方、因式分解、通分等计算方法.2.用综合法证明不等式的过程中,所用到的依据一般是定义、公理、定理、性质等,如基本不等式、绝对值三角不等式等.3.用分析法证明不等式的关键是对原不等式的等价转换,它是从要证明的结论出发,逐步寻找使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立.4.所谓“综合法”、“分析法”其实是证明题的两种书写格式,而不是真正意义上的证明方法,并不像前面所用的比较法及后面要复习到的三角代换法、放缩法、判别式法、反证法等是一种具体的证明方法(或者手段),而只是两种互逆的证明题的书写格式.§3 不等式的证明(二)典例精析题型一 用放缩法、反证法证明不等式【例1】已知a ,b ∈R ,且a +b =1,求证:(a +2)2+(b +2)2≥252.【证明】 方法一:(放缩法) 因为a +b =1,所以左边=(a +2)2+(b +2)2≥2[(a +2)+(b +2)2]2=12[(a +b )+4]2=252=右边.方法二:(反证法)假设(a +2)2+(b +2)2<252,则 a 2+b 2+4(a +b )+8<252.由a +b =1,得b =1-a ,于是有a 2+(1-a )2+12<252.所以(a -12)2<0,这与(a -12)2≥0矛盾.故假设不成立,所以(a +2)2+(b +2)2≥252.【点拨】 根据不等式左边是平方和及a +b =1这个特点,选用重要不等式a 2 + b 2≥ 2(a + b 2)2来证明比较好,它可以将具备a 2+b 2形式的式子缩小.而反证法的思路关键是先假设命题不成立,结合条件a +b =1,得到关于a 的不等式,最后与数的平方非负的性质矛盾,从而证明了原不等式.当然本题也可以用分析法和作差比较法来证明.【变式训练1】设a 0,a 1,a 2,…,a n -1,a n 满足a 0=a n =0,且有 a 0-2a 1+a 2≥0, a 1-2a 2+a 3≥0, …a n -2-2a n -1+a n ≥0, 求证:a 1,a 2,…,a n -1≤0.【证明】由题设a 0-2a 1+a 2≥0得a 2-a 1≥a 1-a 0. 同理,a n -a n -1≥a n -1-a n -2≥…≥a 2-a 1≥a 1-a 0.假设a 1,a 2,…,a n -1中存在大于0的数,假设a r 是a 1,a 2,…,a n -1中第一个出现的正数. 即a 1≤0,a 2≤0,…,a r -1≤0,a r >0,则有a r -a r -1>0,于是有a n -a n -1≥a n -1-a n -2≥…≥a r -a r -1>0. 并由此得a n ≥a n -1≥a n -2≥…≥a r >0.这与题设a n =0矛盾.由此证得a 1,a 2,…,a n -1≤0成立. 题型二 用数学归纳法证明不等式 【例2】用放缩法、数学归纳法证明: 设a n =1×2+2×3+…+n (n +1),n ∈N *,求证:n (n +1)2<a n <(n +1)22. 【证明】 方法一:(放缩法)n 2<n (n +1)<n +(n +1)2,即n <n (n +1)<2n +12.所以1+2+…+n <a n <12[1+3+…+(2n +1)].所以n (n +1)2<a n <12·(n +1)(1+2n +1)2,即n (n +1)2<a n <(n +1)22.方法二:(数学归纳法)①当n =1时,a 1=2,而1<2<2,所以原不等式成立.②假设n =k (k ≥1)时,不等式成立,即k (k +1)2<a k <(k +1)22.则当n =k +1时,a k +1=1×2+2×3+…+k (k +1)+(k +1)(k +2),所以k (k +1)2+(k +1)(k +2)<a k +1<(k +1)22+(k +1)(k +2).而k (k +1)2+(k +1)(k +2)>k (k +1)2+(k +1)(k +1)=k (k +1)2+(k +1)=(k +1)(k +2)2,(k +1)22+(k +1)(k +2)<(k +1)22+(k +1)+(k +2)2=k 2+4k +42=(k +2)22. 所以(k +1)(k +2)2<a k +1<(k +2)22.故当n =k +1时,不等式也成立.综合①②知当n ∈N *,都有n (n +1)2<a n <(n +1)22.【点拨】 在用放缩法时,常利用基本不等式n (n +1)<n +(n +1)2将某个相乘的的式子进行放缩,而在上面的方法二的数学归纳法的关键步骤也要用到这个公式.在用数学归纳法时要注意根据目标来寻找思路.【变式训练2】已知数列8×112×32,8×232×52,…,8n (2n -1)2(2n +1)2,…,S n 为其前n 项和,计算得S 1=89,S 2=2425,S 3=4849,S 4=8081,观察上述结果推测出计算S n 的公式且用数学归纳法加以证明. 【解析】猜想S n =(2n +1)2-1(2n +1)2(n ∈N +).证明:①当n =1时,S 1=32-132=89,等式成立.②假设当n =k (k ≥1)时等式成立,即S k =(2k +1)2-1(2k +1)2.则S k +1=S k +8(k +1)(2k +1)2(2k +3)2=(2k +1)2-1(2k +1)2+8(k +1)(2k +1)2(2k +3)2=(2k +1)2(2k +3)2-(2k +1)2(2k +1)2(2k +3)2=[2(k +1)+1]2-1[2(k +1)+1]2.即当n =k +1时,等式也成立.综合①②得,对任何n ∈N +,等式都成立. 题型三 用不等式证明方法解决应用问题【例3】某地区原有森林木材存量为a ,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b ,设a n 为n 年后该地区森林木材存量.(1)求a n 的表达式;(2)为保护生态环境,防止水土流失,该地区每年森林木材量应不少于79a ,如果b =1972a ,那么该地区今后会发生水土流失吗?若会,需要经过几年?(取lg 2=0.30)【解析】(1)依题意得a 1=a (1+14)-b =54a -b ,a 2=54a 1-b =54(54a -b )-b =(54)2a -(54+1)b ,a 3=54a 2-b =(54)3a -[(54)2+(54+1)]b ,由此猜测a n =(54)n a -[(54)n -1+(54)n -2+…+54-4[(54)n -1]b (n ∈N +).下面用数学归纳法证明:①当n =1时,a 1=54a -b ,猜测成立.②假设n =k (k ≥2)时猜测成立,即a k =(54)k a -4[(54)k -1]b 成立.那么当n =k +1时,a k +1=54a k -b =54⎩⎨⎧⎭⎬⎫(54)k a -4[(54)k -1]b -b =(54)k +1a -4[(54)k +1-1]b ,即当n =k +1时,猜测仍成立.由①②知,对任意n ∈N +,猜测成立.(2)当b =1972a 时,若该地区今后发生水土流失,则森林木材存量必须少于79a ,所以(54)n a -4[(54)n -1]·1972a <79a ,整理得(54)n >5,两边取对数得n lg 54>lg 5,所以n >lg 5lg 5-2lg 2=1-lg 21-3lg 2≈1-0.301-3×0.30=7.故经过8年该地区就开始水土流失.【变式训练3】经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/时)与汽车的平均速度v (千米/时)之间的函数关系为y =920vv 2+3v +1 600(v >0).(1)在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(精确到0.1千辆/时) (2)若要求在该时段内车流量超过10千辆/时,则汽车的平均速度应在什么范围内?【解析】(1)依题意,y =9203+(v +1 600v)≤9203+2 1 600=92083,当且仅当v =1 600v,即v =40时,上式等号成立,所以y max =92083≈11.1(千辆/时).(2)由条件得920vv 2+3v +1 600>10,整理得v 2-89v +1 600<0,即(v -25)(v -64)<0,解得25<v <64.答:当v =40千米/时时,车流量最大,最大车流量约为11.1千辆/时.如果要求在该时段内车流量超过10千辆/时,则汽车的平均速度应大于25千米/时且小于64千米/时.总结提高1.有些不等式,从正面证如果不易说清,可以考虑反证法,凡是含有“至少”、“唯一”或者其他否定词的命题适用反证法.在一些客观题如填空、选择题之中,也可以用反证法的方法进行命题正确与否的判断.2.放缩法是证明不等式特有的方法,在证明不等式过程中常常要用到它,放缩要有目标,目标在结论和中间结果中寻找.常用的放缩方法有:(1)添加或舍去一些项,如a 2+1>||a ,n (n +1)>n ; (2)将分子或分母放大(或缩小);(3)利用基本不等式,如n (n +1)<n +(n +1)2;(4)利用常用结论,如k +1-k =1k +1+k <12k,1k 2<1k (k -1)=1k -1-1k ; 1k 2>1k (k +1)=1k -1k +1(程度大); 1k 2<1k 2-1=1(k -1)(k +1)=12(1k -1-1k +1) (程度小). 3.用数学归纳法证明与自然数有关的不等式的证明过程与用数学归纳法证明其他命题一样,先要奠基,后进行假设与推理,二者缺一不可.§4 柯西不等式和排序不等式典例精析题型一 用柯西不等式、排序不等式证明不等式【例1】设a 1,a 2,…,a n 都为正实数,证明:a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 1+a 2+…+a n .【证明】方法一:由柯西不等式,有(a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1)(a 2+a 3+…+a n +a 1)≥ (a 1a 2·a 2+a 2a 3·a 3+…+a n a 1·a 1)2=(a 1+a 2+…+a n )2. 不等式两边约去正数因式a 1+a 2+…+a n 即得所证不等式.方法二:不妨设a 1≤a 2≤…≤a n ,则a 21≤a 22≤…≤a 2n ,1a 1≥1a 2≥…≥1a n. 由排序不等式有a 21·1a 2+a 22·1a 3+…+a 2n -1·1a n +a 2n ·1a 1≥a 21·1a 1+a 22·1a 2+…+a 2n ·1a n =a 1+a 2+…+a n , 故不等式成立.方法三:由均值不等式有a 21a 2+a 2≥2a 1,a 22a 3+a 3≥2a 2,…,a 2na 1+a 1≥2a n ,将这n 个不等式相加得 a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1+a 2+a 3+…+a n +a 1≥2(a 1+a 2+…+a n ),整理即得所证不等式. 【点拨】 根据所证不等式的结构形式观察是否符合柯西不等式、排序不等式的结构形式或有相似之处.将其配成相关结构形式是解决问题的突破口,有时往往要进行添项、拆项、重组、配方等方法的处理.【变式训练1】已知a +b +c =1,且a 、b 、c 是正数,求证:2a +b +2b +c +2c +a≥9.【证明】左边=[2(a +b +c )](1a +b +1b +c +1c +a )=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)≥(1+1+1)2=9,(或左边=[(a +b )+(b +c )+(c +a )](1a +b +1b +c +1c +a)=3+a +b b +c +a +b c +a +b +c a +b +b +c c +a +c +a a +b +c +a b +c≥3+2b ac b c b b a ++++•+2b a a c a c b a ++++•+2c b ac a c c b ++++•=9) 所以2a +b +2b +c +2c +a≥9.题型二 用柯西不等式求最值【例2】 若实数x ,y ,z 满足x +2y +3z =2,求x 2+y 2+z 2的最小值. 【解析】 由柯西不等式得,(12+22+32)(x 2+y 2+z 2)≥(x +2y +3z )2=4(当且仅当1=kx,2=ky,3=kz 时等号成立,结合x +2y +3z =2,解得x =17,y =27,z =37),所以14(x 2+y 2+z 2)≥4.所以x 2+y 2+z 2≥27.故x 2+y 2+z 2的最小值为27.【点拨】 根据柯西不等式,要求x 2+y 2+z 2的最小值,就要给x 2+y 2+z 2再配一个平方和形式的因式,再考虑需要出现定值,就要让柯西不等式的右边出现x +2y +3z 的形式,从而得到解题思路.由此可见,柯西不等式可以应用在求代数式的最值中.【变式训练2】已知x 2+2y 2+3z 2=1817,求3x +2y +z 的最小值.【解析】因为(x 2+2y 2+3z 2)[32+(2)2+(13)2]≥(3x +2y ·2+3z ·13)2≥(3x +2y +z )2,所以(3x +2y +z )2≤12,即-23≤3x +2y +z ≤23,当且仅当x =-9317,y =-3317,z =-317时,3x +2y +z 取最小值,最小值为-2 3. 题型三 不等式综合证明与运用【例3】 设x >0,求证:1+x +x 2+…+x 2n ≥(2n +1)x n .【证明】(1)当x ≥1时,1≤x ≤x 2≤…≤x n ,由排序原理:顺序和≥反序和得 1·1+x ·x +x 2·x 2+…+x n ·x n ≥1·x n +x ·x n -1+…+x n -1·x +x n ·1, 即1+x 2+x 4+…+x 2n ≥(n +1)x n .①又因为x ,x 2,…,x n ,1为序列1,x ,x 2,…,x n 的一个排列,于是再次由排序原理:乱序和≥反序和得1·x +x ·x 2+…+x n -1·x n +x n ·1≥1·x n +x ·x n -1+…+x n -1·x +x n ·1,即x+x3+…+x2n-1+x n≥(n+1)x n,②将①和②相加得1+x+x2+…+x2n≥(2n+1)x n.③(2)当0<x<1时,1>x>x2>…>x n.由①②仍然成立,于是③也成立.综合(1)(2),原不等式成立.【点拨】分类讨论的目的在于明确两个序列的大小顺序.【变式训练3】把长为9 cm的细铁线截成三段,各自围成一个正三角形,求这三个正三角形面积和的最小值.【解析】设这三个正三角形的边长分别为a、b、c,则a+b+c=3,且这三个正三角形面积和S满足:3S=34(a2+b2+c2)(12+12+12)≥34(a+b+c)2=934⇒S≥334.当且仅当a=b=c=1时,等号成立.总结提高1.柯西不等式是基本而重要的不等式,是推证其他许多不等式的基础,有着广泛的应用.教科书首先介绍二维形式的柯西不等式,再从向量的角度来认识柯西不等式,引入向量形式的柯西不等式,再介绍一般形式的柯西不等式,以及柯西不等式在证明不等式和求某些特殊类型的函数极值中的应用.2.排序不等式也是基本而重要的不等式.一些重要不等式可以看成是排序不等式的特殊情形,例如不等式a2+b2≥2ab.有些重要不等式则可以借助排序不等式得到简捷的证明.证明排序不等式时,教科书展示了一个“探究——猜想——证明——应用”的研究过程,目的是引导学生通过自己的数学活动,初步认识排序不等式的数学意义、证明方法和简单应用.3.利用柯西不等式或排序不等式常常根据所求解(证)的式子结构入手,构造适当的两组数,有难度的逐步调整去构造.对于具体明确的大小顺序、数目相同的两列数考虑它们对应乘积之和的大小关系时,通常考虑排序不等式.嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇礤駴笪笪疸扼鄂锷萼珐旮虐暱咯臘國藍罵異燒嗄嗄锕茇。

2018届高考数学文科二轮复习(全国通用):第二篇 第28练 不等式选讲

2018届高考数学文科二轮复习(全国通用):第二篇 第28练 不等式选讲

9 10 11 12
解答
10.已知a2+2b2+3c2=6,若存在实数a,b,c,使得不等式a+2b+3c>|x+1| 成立,求实数x的取值范围.
解 由柯西不等式知,
[12+( 2)2+( 3)2][a2+( 2b)2+( 3c)2]≥(1·a+ 2· 2b+ 3· 3c)2,
即6×(a2+2b2+3c2)≥ (a+2b+3c)2. 又∵a2+2b2+3c2=6, ∴6×6≥(a+2b+3c)2,∴-6≤a+2b+3c≤6. ∵存在实数a,b,c,使得不等式a+2b+3c>|x+1|成立, ∴|x+1|<6,∴-7<x<5. ∴x的取值范围是{x|-7<x<5}.
所以 f(x)>1 的解集为x32<x<2

.

9 10 11 12
解答
(2)若f(x)的图象与x轴围成的三角形面积大于6,求a的取值范围.
x-1-2a,x<-1, 解 由题设可得 f(x)=3x+1-2a,-1≤x≤a,
-x+1+2a,x>a. 所以函数 f(x)的图象与 x 轴围成的三角形的三个顶点分别为 A2a3-1,0,
审题路线图 (1) 整理得绝对值不等式 ―→ 零点分段法求解 (2) |x-a|-fx≤m1 +1n恒成立 ⇒ |x-a|-fx≤m1 +1nmin ―利―不用―等―基式―本→ |x-a|-fx≤4恒成立 ―→ 求gx=|x-a|-fx的最大值
1234
解答
3.(2016·全国Ⅲ)已知函数f(x)=|2x-a|+a. (1)当a=2时,求不等式f(x)≤6的解集; 解 当a=2时,f(x)=|2x-2|+2. 解不等式|2x-2|+2≤6,得-1≤x≤3. 因此f(x)≤6的解集为{x|-1≤x≤3}.

2018届高考数学(文)二轮专题复习习题:第1部分 专题二 函数、不等式、导数 1-2-3

2018届高考数学(文)二轮专题复习习题:第1部分 专题二 函数、不等式、导数 1-2-3

限时规范训练六 导数的简单应用 限时45分钟,实际用时________ 分值81分,实际得分________一、选择题(本题共6小题,每小题5分,共30分)1.设函数f (x )=x 24-a ln x ,若f ′(2)=3,则实数a 的值为( )A .4B .-4C .2D .-2解析:选B.f ′(x )=x 2-a x ,故f ′(2)=22-a2=3,因此a =-4.2.曲线y =e x在点A 处的切线与直线x -y +3=0平行,则点A 的坐标为( ) A .(-1,e -1) B .(0,1) C .(1,e)D .(0,2)解析:选B.设A (x 0,e x 0),y ′=e x,∴y ′|x =x 0=e x 0.由导数的几何意义可知切线的斜率k =e x 0.由切线与直线x -y +3=0平行可得切线的斜率k =1. ∴e x 0=1,∴x 0=0,∴A (0,1).故选B.3.若函数f (x )=x 3-2cx 2+x 有极值点,则实数c 的取值范围为 ( ) A.⎣⎢⎡⎭⎪⎫32,+∞ B.⎝⎛⎭⎪⎫32,+∞ C.⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞ D.⎝⎛⎭⎪⎫-∞,-32∪⎝ ⎛⎭⎪⎫32,+∞ 解析:选D.若函数f (x )=x 3-2cx 2+x 有极值点,则f ′(x )=3x 2-4cx +1=0有两根,故Δ=(-4c )2-12>0,从而c >32或c <-32. 4.已知f (x )=a ln x +12x 2(a >0),若对任意两个不等的正实数x 1,x 2都有f x 1-f x 2x 1-x 2≥2恒成立,则实数a 的取值范围是( )A .[1,+∞)B .(1,+∞)C .(0,1)D .(0,1]解析:选A.由条件可知在定义域上函数图象的切线斜率大于等于2,所以函数的导数f ′(x )=a x+x ≥2.可得x =a 时,f ′(x )有最小值2.∴a ≥1.5.若定义在R 上的函数f (x )满足f (0)=-1,其导函数f ′(x )满足f ′(x )>k >1,则下列结论中一定错误的是( )A .f ⎝ ⎛⎭⎪⎫1k<1kB .f ⎝ ⎛⎭⎪⎫1k >1k -1C .f ⎝⎛⎭⎪⎫1k -1<1k -1D .f ⎝⎛⎭⎪⎫1k -1>1k -1解析:选C.构造函数g (x )=f (x )-kx +1,则g ′(x )=f ′(x )-k >0,∴g (x )在R 上为增函数. ∵k >1,∴1k -1>0,则g ⎝ ⎛⎭⎪⎫1k -1>g (0). 而g (0)=f (0)+1=0, ∴g ⎝⎛⎭⎪⎫1k -1=f ⎝ ⎛⎭⎪⎫1k -1-k k -1+1>0,即f ⎝⎛⎭⎪⎫1k -1>k k -1-1=1k -1,所以选项C 错误,故选C.6.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝ ⎛⎭⎪⎫12,c =f (3),则( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a解析:选C.因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝ ⎛⎭⎪⎫12=b ,又f (x )=f (2-x ),所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C.二、填空题(本题共3小题,每小题5分,共15分)7.(2017·高考全国卷Ⅰ)曲线y =x 2+1x在点(1,2)处的切线方程为________.解析:∵y ′=2x -1x2,∴y ′|x =1=1,即曲线在点(1,2)处的切线的斜率k =1, ∴切线方程为y -2=x -1, 即x -y +1=0. 答案:x -y +1=08.已知函数f (x )=-12x 2-3x +4ln x 在(t ,t +1)上不单调,则实数t 的取值范围是________.解析:由题意得,f (x )的定义域为(0,+∞),∴t >0, ∴f ′(x )=-x -3+4x=0在(t ,t +1)上有解,∴x 2+3x -4x=0在(t ,t +1)上有解,∴x 2+3x -4=0在(t ,t +1)上有解,由x 2+3x -4=0得x =1或x =-4(舍去),∴1∈(t ,t +1),∴t ∈(0,1),故实数t 的取值范围是(0,1).答案:(0,1)9.已知函数f (x )=1-xax+ln x ,若函数f (x )在[1,+∞)上为增函数,则正实数a 的取值范围为________.解析:∵f (x )=1-x ax +ln x ,∴f ′(x )=ax -1ax2(a >0).∵函数f (x )在[1,+∞)上为增函数,∴f ′(x )=ax -1ax 2≥0在x ∈[1,+∞)上恒成立,∴ax -1≥0在x ∈[1,+∞)上恒成立,即a ≥1x在x ∈[1,+∞)上恒成立,∴a ≥1.答案:[1,+∞)三、解答题(本题共3小题,每小题12分,共36分) 10.(2017·高考全国卷Ⅱ)设函数f (x )=(1-x 2)e x. (1)讨论f (x )的单调性;(2)当x ≥0时,f (x )≤ax +1,求a 的取值范围. 解:(1)f ′(x )=(1-2x -x 2)e x.令f ′(x )=0得x =-1-2或x =-1+ 2. 当x ∈(-∞,-1-2)时,f ′(x )<0; 当x ∈(-1-2,-1+2)时,f ′(x )>0; 当x ∈(-1+2,+∞)时,f ′(x )<0.所以f (x )在(-∞,-1-2),(-1+2,+∞)单调递减,在(-1-2,-1+2)单调递增.(2)f (x )=(1+x )(1-x )e x.当a ≥1时,设函数h (x )=(1-x )e x,则h ′(x )=-x e x<0(x >0),因此h (x )在[0,+∞)单调递减.而h (0)=1,故h (x )≤1,所以f (x )=(x +1)h (x )≤x +1≤ax +1.当0<a <1时,设函数g (x )=e x-x -1,则g ′(x )=e x-1>0(x >0),所以g (x )在[0,+∞)单调递增.而g (0)=0,故e x≥x +1.当0<x <1时,f (x )>(1-x )(1+x )2,(1-x )(1+x )2-ax -1=x (1-a -x -x 2),取x 0=5-4a -12,则x 0∈(0,1),(1-x 0)(1+x 0)2-ax 0-1=0,故f (x 0)>ax 0+1. 当a ≤0时,取x 0=5-12,则x 0∈(0,1),f (x 0)>(1-x 0)(1+x 0)2=1≥ax 0+1. 综上,a 的取值范围是[1,+∞).11.(2017·河南郑州质量检测)设函数f (x )=12x 2-m ln x ,g (x )=x 2-(m +1)x .(1)求函数f (x )的单调区间;(2)当m ≥0时,讨论函数f (x )与g (x )图象的交点个数.解:(1)函数f (x )的定义域为(0,+∞),f ′(x )=x 2-mx,当m ≤0时,f ′(x )>0,所以函数f (x )的单调递增区间是(0,+∞),无单调递减区间. 当m >0时,f ′(x )=x +mx -mx,当0<x <m 时,f ′(x )<0,函数f (x )单调递减;当x >m 时,f ′(x )>0,函数f (x )单调递增.综上,当m ≤0时,函数f (x )的单调递增区间是(0,+∞),无单调递减区间;当m >0时,函数f (x )的单调递增区间是(m ,+∞),单调递减区间是(0,m ).(2)令F (x )=f (x )-g (x )=-12x 2+(m +1)x -m ln x ,x >0,问题等价于求函数F (x )的零点个数,当m =0时,F (x )=-12x 2+x ,x >0,有唯一零点;当m ≠0时,F ′(x )=-x -x -m x,当m =1时,F ′(x )≤0,函数F (x )为减函数,注意到F (1)=32>0,F (4)=-ln 4<0,所以F (x )有唯一零点.当m >1时,0<x <1或x >m 时,F ′(x )<0;1<x <m 时,F ′(x )>0,所以函数F (x )在(0,1)和(m ,+∞)上单调递减,在(1,m )上单调递增,注意到F (1)=m +12>0,F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.当0<m <1时,0<x <m 或x >1时,F ′(x )<0;m <x <1时,F ′(x )>0,所以函数F (x )在(0,m )和(1,+∞)上单调递减,在(m,1)上单调递增,易得ln m <0, 所以F (m )=m2(m +2-2ln m )>0,而F (2m +2)=-m ln(2m +2)<0,所以F (x )有唯一零点.综上,函数F (x )有唯一零点,即两函数图象有一个交点. 12.(2017·河南洛阳模拟)已知函数f (x )=ln x -a x +x -1,曲线y =f (x )在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线平行于直线y =10x +1.(1)求函数f (x )的单调区间;(2)设直线l 为函数g (x )=ln x 的图象上任意一点A (x 0,y 0)处的切线,在区间(1,+∞)上是否存在x 0,使得直线l 与曲线h (x )=e x也相切?若存在,满足条件的x 0有几个?解:(1)∵函数f (x )=ln x -a x +x -1,∴f ′(x )=1x+2a x -2,∵曲线y =f (x )在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线平行于直线y =10x +1, ∴f ′⎝ ⎛⎭⎪⎫12=2+8a =10,∴a =1,∴f ′(x )=x 2+1x x -2.∵x >0且x ≠1,∴f ′(x )>0,∴函数f (x )的单调递增区间为(0,1)和(1,+∞). (2)存在且唯一,证明如下:∵g (x )=ln x ,∴切线l 的方程为y -ln x 0=1x 0(x -x 0),即y =1x 0x +ln x 0-1 ①,设直线l 与曲线h (x )=e x相切于点(x 1,e x 1), ∵h ′(x )=e x,∴e x 1=1x 0,∴x 1=-ln x 0,∴直线l 的方程也可以写成y -1x 0=1x 0(x +ln x 0),即y =1x 0x +ln x 0x 0+1x 0②,由①②得ln x 0-1=ln x 0x 0+1x 0,∴ln x 0=x 0+1x 0-1.证明:在区间(1,+∞)上x 0存在且唯一. 由(1)可知,f (x )=ln x -x +1x -1在区间(1,+∞)上单调递增, 又f (e)=-2e -1<0,f (e 2)=e 2-3e 2-1>0,结合零点存在性定理,说明方程f (x )=0必在区间(e ,e 2)上有唯一的根,这个根就是所求的唯一x 0.。

2018--2020年高考数学试题分类汇编不等式选讲附答案详解

2018--2020年高考数学试题分类汇编不等式选讲附答案详解

2018-2020年高考数学试题分类汇编不等式选讲1、(2018年高考全国卷1文理科第23题)(10分)已知f(x)=|x+1|﹣|ax﹣1|.(1)当a=1时,求不等式f(x)>1的解集;(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|=,由f(x)>1,∴或,解得x>,故不等式f(x)>1的解集为(,+∞),(2)当x∈(0,1)时不等式f(x)>x成立,∴|x+1|﹣|ax﹣1|﹣x>0,即x+1﹣|ax﹣1|﹣x>0,即|ax﹣1|<1,∴﹣1<ax﹣1<1,∴0<ax<2,∵x∈(0,1),∴a>0,∴0<x<,∴a<∵>2,∴0<a≤2,故a的取值范围为(0,2].2、(2018年高考全国卷II文理科第23题)[选修4-5:不等式选讲](10分)设函数f(x)=5﹣|x+a|﹣|x﹣2|.(1)当a=1时,求不等式f(x)≥0的解集;(2)若f(x)≤1,求a的取值范围.【解答】解:(1)当a=1时,f(x)=5﹣|x+1|﹣|x﹣2|=.当x≤﹣1时,f(x)=2x+4≥0,解得﹣2≤x≤1,当﹣1<x<2时,f(x)=2≥0恒成立,即﹣1<x<2,当x≥2时,f(x)=﹣2x+6≥0,解得2≤x≤3,综上所述不等式f(x)≥0的解集为[﹣2,3],(2)∵f(x)≤1,∴5﹣|x+a|﹣|x﹣2|≤1,∴|x+a|+|x﹣2|≤4,∴|x+a|+|x﹣2|=|x+a|+|2﹣x|≥|x+a+2﹣x|=|a+2|,∴|a+2|≤4,即﹣4≤a+2≤4,解得﹣6≤a≤2,故a的取值范围[﹣6,2].3、(2018年高考全国卷III文理科第23题)[选修4-5:不等式选讲](10分)设函数f(x)=|2x+1|+|x﹣1|.(1)画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,求a+b的最小值.【解答】解:(1)当x≤﹣时,f(x)=﹣(2x+1)﹣(x﹣1)=﹣3x,当﹣<x<1,f(x)=(2x+1)﹣(x﹣1)=x+2,当x≥1时,f(x)=(2x+1)+(x﹣1)=3x,则f(x)=对应的图象为:画出y=f(x)的图象;(2)当x∈[0,+∞)时,f(x)≤ax+b,当x=0时,f(0)=2≤0•a+b,∴b≥2,当x>0时,要使f(x)≤ax+b恒成立,则函数f(x)的图象都在直线y=ax+b的下方或在直线上,∵f(x)的图象与y轴的交点的纵坐标为2,且各部分直线的斜率的最大值为3,故当且仅当a≥3且b≥2时,不等式f(x)≤ax+b在[0,+∞)上成立,即a+b的最小值为5.4、(2018年高考江苏卷第24题)[选修4-5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z=6,求x 2+y 2+z 2的最小值.【解答】解:由柯西不等式得(x 2+y 2+z 2)(12+22+22)≥(x +2y +2z )2, ∵x +2y +2z=6,∴x 2+y 2+z 2≥4 是当且仅当时,不等式取等号,此时x=,y=,z=,∴x 2+y 2+z 2的最小值为45、(2019全国III 卷文理科)[选修4-5:不等式选讲](10分) 设,,x y z ∈R ,且1x y z ++=.(1)求222(1)(1)(1)x y z -++++的最小值;(2)若2221(2)(1)()3x y z a -+-+-≥成立,证明:3a ≤-或1a ≥-. 解:(1)由于2[(1)(1)(1)]x y z -++++222(1)(1)(1)2[(1)(1)(1)(1)(1)(1)]x y z x y y z z x =-+++++-++++++-2223(1)(1)(1)x y z ⎡⎤≤-++++⎣⎦,故由已知得2224(1)(1)(1)3x y z -++++≥, 当且仅当x =53,y =–13,13z =-时等号成立.所以222(1)(1)(1)x y z -++++的最小值为43. (2)由于2[(2)(1)()]x y z a -+-+-222(2)(1)()2[(2)(1)(1)()()(2)]x y z a x y y z a z a x =-+-+-+--+--+--2223(2)(1)()x y z a ⎡⎤≤-+-+-⎣⎦,故由已知2222(2)(2)(1)()3a x y z a +-+-+-≥,当且仅当43a x -=,13a y -=,223a z -=时等号成立. 因此222(2)(1)()x y z a -+-+-的最小值为2(2)3a +.由题设知2(2)133a +≥,解得3a ≤-或1a ≥-.6、(2019全国II 卷文理科)[选修4-5:不等式选讲](10分)已知()|||2|().f x x a x x x a =-+-- (1)当1a =时,求不等式()0f x <的解集; (2)若(,1]x ∈-∞时,()0f x <,求a 的取值范围. 解:(1)当a =1时,()=|1| +|2|(1)f x x x x x ---.当1x <时,2()2(1)0f x x =--<;当1x ≥时,()0f x ≥. 所以,不等式()0f x <的解集为(,1)-∞. (2)因为()=0f a ,所以1a ≥.当1a ≥,(,1)x ∈-∞时,()=() +(2)()=2()(1)<0f x a x x x x a a x x ----- 所以,a 的取值范围是[1,)+∞.7、(2019全国I 卷文理科)[选修4—5:不等式选讲](10分)已知a ,b ,c 为正数,且满足abc =1.证明:(1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.解:(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c++++≥++==++.所以222111a b c a b c++≤++. (2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c a c3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥. 8、(2019江苏卷21C )C.[选修4-5:不等式选讲](本小题满分10分) 设x ∈R ,解不等式||+|2 1|>2x x -.解:当x <0时,原不等式可化为122x x -+->,解得x <-13; 当0≤x ≤12时,原不等式可化为x +1–2x >2,即x <–1,无解; 当x >12时,原不等式可化为x +2x –1>2,解得x >1. 综上,原不等式的解集为1{|1}3x x x <->或. 9、(2020•全国1卷)已知函数()|31|2|1|f x x x =+--. (1)画出()y f x =的图像;(2)求不等式()(1)f x f x >+的解集. 答案:(1)详解解析;(2)7,6⎛⎫-∞-⎪⎝⎭. 解析:(1)根据分段讨论法,即可写出函数()f x 的解析式,作出图象; (2)作出函数()1f x +的图象,根据图象即可解出.解:(1)因为()3,1151,1313,3x x f x x x x x ⎧⎪+≥⎪⎪=--<<⎨⎪⎪--≤-⎪⎩,作出图象,如图所示:(2)将函数()f x 的图象向左平移1个单位,可得函数()1f x +的图象,如图所示: 由()3511x x --=+-,解得76x =-. 所以不等式()(1)f x f x >+的解集为7,6⎛⎫-∞-⎪⎝⎭. 10、(2020•全国2卷)已知函数2()|21|f x x a x a =-+-+. (1)当2a =时,求不等式()4f x 的解集; (2)若()4f x ,求a 的取值范围. 答案:(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞.解析:(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果; (2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果. 解:(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤; 当34x <<时,()4314f x x x =-+-=≥,无解; 当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥; 综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭. (2)()()()()22222121211f x x a x a x ax a aa a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥, a ∴的取值范围为(][),13,-∞-+∞.11、(2020•全国3卷)设a ,b ,c ∈R ,a +b +c =0,abc =1. (1)证明:ab +bc +ca <0;(2)用max{a ,b ,c }表示a ,b ,c 中的最大值,证明:max{a ,b ,c . 答案:(1)证明见解析(2)证明见解析.解析:(1)由2222()2220a b c a b c ab ac bc ++=+++++=结合不等式的性质,即可得出证明;(2)不妨设max{,,}a b c a =,由题意得出0,,0a b c ><,由()222322b c b c bc a a a bcbc+++=⋅==,结合基本不等式,即可得出证明. 解:(1)2222()2220a b c a b c ab ac bc ++=+++++=,()22212ab bc ca a b c ∴++=-++. 1,,,abc a b c =∴均不为0,则2220a b c ++>,()222120ab bc ca a b c ∴++=-++<; (2)不妨设max{,,}a b c a =,由0,1a b c abc ++==可知,0,0,0a b c ><<,1,a b c a bc =--=,()222322224b c b c bc bc bc a a a bc bc bc++++∴=⋅==≥=.当且仅当b c =时,取等号,a ∴≥,即3max{,,}4a b c .12、(2020•江苏卷)设x ∈R ,解不等式2|1|||4x x ++≤. 答案:22,3⎡⎤-⎢⎥⎣⎦解析:根据绝对值定义化为三个方程组,解得结果解:因为1224x x x <-⎧⎨---≤⎩或10224x x x -≤≤⎧⎨+-≤⎩或0224x x x >⎧⎨++≤⎩21x ∴-≤<-或10x -≤≤或203x <≤所以解集为22,3⎡⎤-⎢⎥⎣⎦。

2018年高考数学总复习 选考部分 不等式选讲

2018年高考数学总复习 选考部分 不等式选讲

知识梳理 考点自测
-4-
2.绝对值不等式的解法 (1)含绝对值的不等式|x|<a与|x|>a(a>0)的解法:
①|x|<a⇔-a<x<a;②|x|>a⇔x>a或x<-a.
(2)|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法:
①|ax+b|≤c⇔ -c≤ax+b≤c ; ②|ax+b|≥c⇔ ax+b≥c或ax+b≤-c .
考点四
-10-
解绝对值不等式及求参数范围(多考向) 考向1 分离参数法求参数范围
例1(2017全国Ⅲ,文23)已知函数f(x)=|x+1|-|x-2|.
(1)求不等式f(x)≥1的解集; (2)若不等式f(x)≥x2-x+m的解集非空,求m的取值范围.
考点一
考点二
考点三
考点四
-11-
-3,������ < -1,
解 (1)f(x)= 2������-1,-1 ≤ ������ ≤ 2,当 x<-1 时,f(x)≥1 无解;
3,������ > 2
当-1≤x≤2 时,由 f(x)≥1 得,2x-1≥1,解得 1≤x≤2;
当 x>2 时,由 f(x)≥1 解得 x>2.
所以 f(x)≥1 的解集为{x|x≥1}.
(1)(a+b)(a5+b5)≥4;
(2)a+b≤2.
解 (1)(a+b)(a5+b5)=a6+ab5+a5b+b6 =(a3+b3)2-2a3b3+ab(a4+b4)=4+ab(a2-b2)2≥4. (2)因为(a+b)3=a3+3a2b+3ab2+b3 =2+3ab(a+b)≤2+3(������+4 ������)2(a+b)=2+3(������+4 ������)3, 当 a=b 时,取等号, 所以(a+b)3≤8,因此 a+b≤2.

2018年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

 2018年全国统一高考数学试卷(文科)(新课标ⅱ)(含解析版)

2018年全国统一高考数学试卷(文科)(新课标Ⅱ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)i(2+3i)=()A.3﹣2i B.3+2i C.﹣3﹣2i D.﹣3+2i2.(5分)已知集合A={1,3,5,7},B={2,3,4,5},则A∩B=()A.{3}B.{5}C.{3,5}D.{1,2,3,4,5,7}3.(5分)函数f(x)=的图象大致为()A.B.C.D.4.(5分)已知向量,满足||=1,=﹣1,则•(2)=()A.4B.3C.2D.05.(5分)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6B.0.5C.0.4D.0.36.(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x7.(5分)在△ABC中,cos=,BC=1,AC=5,则AB=()A.4B.C.D.28.(5分)为计算S=1﹣+﹣+…+﹣,设计了如图的程序框图,则在空白框中应填入()A.i=i+1B.i=i+2C.i=i+3D.i=i+49.(5分)在正方体ABCD﹣A1B1C1D1中,E为棱CC1的中点,则异面直线AE与CD所成角的正切值为()A.B.C.D.10.(5分)若f(x)=cosx﹣sinx在[0,a]是减函数,则a的最大值是()A.B.C.D.π11.(5分)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣112.(5分)已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50B.0C.2D.50二、填空题:本题共4小题,每小题5分,共20分。

2018年高考数学一轮复习热点难点精讲精析选修系列(第2部分:不等式选讲)

2018年高考数学一轮复习热点难点精讲精析选修系列(第2部分:不等式选讲)

2018 年高考一轮复习热门难点精讲精析:选修系列 <第 2 部分:不等式选讲)一、绝对值不等式<一)绝对值三角不等式性质定理的应用〖例〗“ |x-a|<m,且|y-a| <m是“ |x-y|<2m”(x,y,a,m∈ R>的<A)<A)充足非必需条件<B )必需非充足条件<C )充要条件<D )非充足非必需条件思路解读:利用绝对值三角不等式,推证与|x-y|<2m的关系即得答案。

解答:选 A。

<二)绝对值不等式的解法〖例〗解以下不等式:思路解读:<1)利用公式或平方法转变为不含绝对值的不等式。

<2)利用公式法转变为不含绝对值的不等式。

<3)利用绝对值的定义或去掉绝对值符号或利用数形结合思想求解。

<4)不等式的左侧含有绝对值符号,要同时去掉这两个绝对值符号,能够采纳“零点分段法”,本题亦可利用绝对值的几何意义去解。

解答: <1)方法一:原不等式等价于不等式组即解得 -1 ≤ x< 1 或 3< x≤ 5,所以原不等式的解集为{x|-1≤ x<1或3<x≤ 5}.<2)由不等式,可得或解得 x>2 或 x<-4.∴原不等式的解集是{x| x<-4或x>2}<3)原不等式①或②不等式①不等式②∴原不等式的解集是{x|2 ≤ x≤ 4 或x=-3}.(4> 分别求 |x-1|,|x+2| 的零点,即1, -2 。

由 -2,1 把数轴分红三部分:x<-2,-2 ≤ x≤ 1,x>1.当 x<-2 时,原不等式即 1-x-2-x<5, 解得 -3<x<-2;当 -2 ≤x≤ 1 时,原不等式即 1-x+2+x<5 ,由于 3<5 恒建立,则 - 2≤ x≤ 1; 当x>1 时,原不等式即 x-1+2+x<5,解得 1<x<2.综上,原不等式的解集为{x|-3<x<2}.<三)含参数的绝对值不等式〖例〗若对于 x 的不等式 |x+2|+|x-1|≤ a的解集为,务实数 a 的取值范围。

最新届高考数学专题-不等式选讲-高考真题

最新届高考数学专题-不等式选讲-高考真题

2019届高考数学专题-不等式选讲-高考真题解答题1.(2018全国卷Ⅰ)[选修4–5:不等式选讲](10分)已知()|1||1|f x x ax =+--.(1)当1a =时,求不等式()1f x >的解集;(2)若(0,1)x ∈时不等式()f x x >成立,求a 的取值范围.2.(2018全国卷Ⅱ) [选修4-5:不等式选讲](10分)设函数()5|||2|=-+--f x x a x .(1)当1a =时,求不等式()0≥f x 的解集;(2)若()1≤f x ,求a 的取值范围.3.(2018全国卷Ⅲ) [选修4—5:不等式选讲](10分)设函数()|21||1|f x x x =++-.(1)画出()y f x =的图像;(2)当[0,)x ∈+∞时,()f x ax b +≤,求a b +的最小值.4.(2017新课标Ⅰ)已知函数2()4f x x ax =-++,()|1||1|g x x x =++-.(1)当1a =时,求不等式()()f x g x ≥的解集;(2)若不等式()()f x g x ≥的解集包含[1,1]-,求a 的取值范围.5.(2017新课标Ⅱ)已知0a >,0b >,332a b +=,证明:(1)55()()4a b a b ++≥;(2)2a b +≤.6.(2017新课标Ⅲ)已知函数()|1||2|f x x x =+--.(1)求不等式()1f x ≥的解集;(2)若不等式2()f x x x m -+≥的解集非空,求m 的取值范围.7.(2016年全国I 高考)已知函数()|1||23|f x x x =+--.(I )在图中画出()y f x =的图像;(II )求不等式|()|1f x >的解集.8.(2016年全国II )已知函数()1122f x x x =-++,M 为不等式()2f x <的解集. (I )求M ;(II )证明:当a ,b M ∈时,1a b ab +<+.9.(2016年全国III 高考)已知函数()|2|f x x a a =-+(Ⅰ)当a =2时,求不等式()6f x ≤的解集; (Ⅱ)设函数()|21|g x x =-,当x ∈R 时,()()3f x g x +≥,求a 的取值范围.。

2018届高三数学文高考二轮复习课件 第一部分 专题一 第四讲 不等式 精品

2018届高三数学文高考二轮复习课件 第一部分 专题一 第四讲 不等式 精品

试题 解析
根据约束条件画出可行域,将 z=3x+2y 的最小值转化为在 y 轴 上的截距,当直线 z=3x+2y 经过点 B 时,z 最小,又 B 点坐标 为(1,-2a),代入 3x+2y=1,得 3-4a=1,得 a=12,故选 B.
考点三
考点三
试题 解析
考点一 考点二 考点三
x+y≤4
2.(2016·广州五校联考)已知点 P 的坐标(x,y)满足y≥x
第四讲 不等式
考点一 不等式性质与解法
试题 解析
考点一 考点二 考点三
1.(2016·高考浙江卷)已知函数 f(x)满足:f(x)≥|x|且 f(x)≥2x,x ∈R.( B ) A.若 f(a)≤|b|,则 a≤b B.若 f(a)≤2b,则 a≤b C.若 f(a)≥|b|,则 a≥b D.若 f(a)≥2b,则 a≥b
[师生共研·析重点]
[例 1]已知 x,y 满足不等式组y2≤x+2xy≤2 ,则 z=3x+y 的最大 x-y≤1
值为( D )
A.12
B.32
C.52
D.3
考点三
考点一 考点二 考点三
试题 通解 优解
作出不等式组所表示的平面区域如图中阴影部分所示,易知,当 直线 y=-3x+z 经过点 A 时,z=3x+y 取得最大值.由2xx-+y=y=12
2.(2016·贵阳模拟)若点 A(a,b)在第一象限且在直线 x+2y=4 上
移动,则 log2a+log2b( C )
A.有最大值 2
B.有最小值 1
C.有最大值 1
D.没有最大值和最小值
考点二
试题 解析
考点一 考点二 考点三
由题意,知 a+2b=4(a>0,b>0),则有 4=a+2b≥2 2ab,当且 仅当 a=2b,即 a=2,b=1 时等号成立,所以 0<ab≤2,所以 log2a+log2b=log2ab≤log22=1,故选 C.

最新-2018年高考数学 试题解析分项版之专题19 选修系

最新-2018年高考数学 试题解析分项版之专题19 选修系

2018年高考试题解析数学(文科)分项版之专题19 选修系列:不等
式选讲--教师版
一、填空题:
1.(2018年高考陕西卷文科15)A (不等式选做题)若存在实数x 使|||1|3x a x -+-≤成立,则实数a 的取值范围是
二、解答题: 2.(2018年高考新课标全国卷文科24)(本小题满分10分)选修4—5:不等式选讲 已知函数f (x ) = |x + a | + |x -2|.
(Ⅰ)当a =-3时,求不等式f (x )≥3的解集;
(Ⅱ)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围. 【解析】
3.(2018年高考江苏卷21)(选修4 - 5:不等式选讲)(本小题满分10分) 已知实数x ,y 满足:11|||2|36x y x y +<-<,,求证:5||18
y <. 【解析】证明:∵()()3||=|3|=|22|22y y x y x y x y x y ++-≤++-, 由题设11|||2|36x y x y +<-<,,∴1153||=366y <+,∴5||18
y <. 【考点定位】本题主要考查不等式的基本性质、绝对值不等式及其运用,属于中档题,难度适中.切实注意绝对值不等式的性质与其灵活运用.。

专题19 不等式选讲-2018年高考文数二轮复习精品资料(学生版)

专题19 不等式选讲-2018年高考文数二轮复习精品资料(学生版)

专题19 不等式选讲(押题专练)1.已知函数f (x )=|2x -1|+|x -2a |.(1)当a =1时,求f (x )≤3的解集;(2)当x ∈[1,2]时,f (x )≤3恒成立,求实数a 的取值范围.2.已知函数f (x )=|2x +1|+|2x -3|.(1)求不等式f (x )≤6的解集;(2)若关于x 的不等式f (x )<|a -1|的解集不是空集,求实数a 的取值范围.3.已知函数f (x )=|x +3|-|x -2|.(1)求不等式f (x )≥3的解集;(2)若f (x )≥|a -4|有解,求a 的取值范围.4.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M .(1)证明:⎪⎪⎪⎪⎪⎪13a +16b <14; (2)比较|1-4ab |与2|a -b |的大小,并说明理由.5.设函数f (x )=|x -3|-|x +1|,x ∈R .(1)解不等式f (x )<-1;(2)设函数g (x )=|x +a |-4,且g (x )≤f (x )在x ∈[-2,2]上恒成立,求实数a 的取值范围.6.已知a >0,b >0,a +b =1,求证:(1)1a +1b +1ab≥8; (2)⎝ ⎛⎭⎪⎫1+1a ⎝ ⎛⎭⎪⎫1+1b ≥9. 7.已知关于x 的不等式m -|x -2|≥1,其解集为[0,4].(1)求m 的值;(2)若a ,b 均为正实数,且满足a +b =m ,求a 2+b 2的最小值.8.已知a ,b 均为正数,且a +b =1,证明:(1)(ax +by )2≤ax 2+by 2;(2)⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252. 9.已知二次函数f (x )=x 2+ax +b (a ,b ∈R )的定义域为[-1,1],且|f (x )|的最大值为M .(1)证明:|1+b |≤M ;(2)证明:M ≥12. 10.已知a ,b ,c 为非零实数,且a 2+b 2+c 2+1-m =0,1a 2+4b 2+9c 2+1-2m =0. (1)求证:1a 2+4b 2+9c 2≥36a 2+b 2+c 2; (2)求实数m 的取值范围.11.已知函数f (x )=m -|x -1|-|x -2|,m ∈R ,且f (x +1)≥0的解集为[0,1].(1)求m 的值;(2)若a ,b ,c ,x ,y ,z ∈R ,且x 2+y 2+z 2=a 2+b 2+c 2=m ,求证:ax +by +cz ≤1.。

高考数学压轴专题专题备战高考《不等式选讲》分类汇编含解析

高考数学压轴专题专题备战高考《不等式选讲》分类汇编含解析

【最新】数学《不等式选讲》高考知识点一、141.2018年9月24日,英国数学家M.F 阿帝亚爵在“海德堡论坛”展示了他“证明”黎曼猜想的过程,引起数学界震动,黎曼猜想来源于一些特殊数列求和.记无穷数列21n ⎧⎫⎨⎬⎩⎭的各项的和222111123S n L L =+++++,那么下列结论正确的是( ) A .413S << B .5443S << C .322S << D .2S >【答案】C 【解析】 【分析】由2n ≥时,()2111111n n n n n<=---,由裂项相消求和以及不等式的性质可得2S <,排除D ,再由前3项的和排除A ,B ,从而可得到结论. 【详解】 由2n ≥时,()2111111n n n n n<=---, 可得222111111111...11...232231n S n n n =++++<+-+-++--12n=-, n →+∞时,2S →,可得2S <,排除D ,由22111341123363++=+>,可排除,A B ,故选C. 【点睛】本题主要考查裂项相消法求数列的和,以及放缩法和排除法的应用,属于中档题. 用特例代替题设所给的一般性条件,得出特殊结论,然后对各个选项进行检验,从而做出正确的判断,这种方法叫做特殊法. 若结果为定值,则可采用此法. 特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性.2.若关于x 的不等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,则a =( ) A .2- B .2 C .3D .3-【答案】D 【解析】 【分析】由绝对值不等式的性质可知,()22329ax ax -⇔-<<,从而可得到()229ax -=的两个解为2151,33x x -==,即可求出a 的值. 【详解】由题意可知0a ≠,()22329ax ax -⇔-<<,即22450a x ax --<, 故一元二次方程22450a x ax --=的解为2151,33x x -==, 则1212224455,39a x x x x a a +==-=-=-,解得3a =-. 故答案为D. 【点睛】本题主要考查了绝对值不等式的解法,考查了学生的计算能力,属于基础题.3.已知函数()f x 是定义在[1,2]a a -上的偶函数,且当0x >时,()f x 单调递增,则关于x 的不等式(1)()f x f a ->的解集为 ( ) A .45[,)33B .2112(,][,)3333--⋃ C .12[,)33⋃45(,]33D .随a 的值而变化【答案】C 【解析】试题分析:∵函数()f x 是定义在[1,2]a a -上的偶函数,∴1-a=2a ,∴a=13,故函数()f x 的定义的定义域为22[,]33-,又当203x <≤时,()f x 单调递增,∴11113(1)()(1)(){23313x f x f f x f x ->->⇔->⇔-≤,解得1233x ≤<或4533x <≤,所以不等式(1)()f x f a ->的解集为12[,)33⋃45(,]33,故选C考点:本题考查了抽象函数的运用点评:此类问题往往利用偶函数的性质()()f x f x =避免了讨论,要注意灵活运用4.已知()f x 是定义域为R 的偶函数,当0x …时,2()4f x x x =+,则(2)5f x +>的解集为( )A .(,5)(5,)-∞-+∞UB .(,5)(3,)-∞-+∞UC .(,7)(3,)-∞-+∞UD .(,7)(2,)-∞-+∞U【答案】C【解析】 【分析】根据偶函数以及当0x …时,2()4f x x x =+,可得0x ≥时的表达式,由此求得(2)(|2|)f x f x +=+,再代入可解得.【详解】∵()f x 是定义域为R 的偶函数,∴当0x ≥时,0x -≤,所以22()()()4()4f x f x x x x x =-=-+-=-. 由()25f x +>以及()f x 为偶函数,得(|2|)5f x +>, ∴2|2|4|2|5x x +-+>, 所以(|2|5)(|2|1)0x x +-++>, 因为|2|10x ++>, 所以|2|5x +>,所以25x +>或25x +<-, 解得7<-x 或 3.x > 故选C 【点睛】本题考查了利用函数的奇偶性求函数解析式,绝对值不等式的解法,属于中档题.5.已知点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,点(,)M a b 为平面上一点,O 为坐标原点,则当OM 取最小值时,椭圆的离心率为( )A .3B .13C .2D 【答案】D 【解析】 【分析】点(3,1)P 在椭圆22221(0)x y a b a b +=>>上,可得22911a b +=,(,)M a b 为平面上一点,||OM =a ,b 关系,代入即可.【详解】解:点(3,1)P 在椭圆22221(0)x y a b a b+=>>上,可得22911a b +=,(,)M a b为平面上一点,||OM =所以||4OM ==,当且仅当223a b =时,取等号,222213b e a =-=,e =. 故选D . 【点睛】考查椭圆的性质,柯西不等式的应用,求椭圆的离心率,中档题.6.已知命题p :不等式11x m ->-的解集为R ,命题q :()(52)x f x m =--是减函数,若p ∨q 为真命题,p ∧q 为假命题,则实数m 的取值范围是( ) A .1≤m≤2 B .1≤m<2C .1<m≤2D .1<m<2【答案】B 【解析】 【分析】若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,化简p,q 为真时,对应m 的取值范围,然后按p 真q 假或p 假q 真求解即可. 【详解】若p 为真时,10m -<,即1m < ,若q 为真时,521m ->,即2m <,若p ∨q 为真命题,p ∧q 为假命题,可知p 真q 假或p 假q 真,当p 真q 假时,12m m <⎧⎨≥⎩ ,无解,若p 假q 真时,12m m ≥⎧⎨<⎩,即 12m ≤<,故选B.【点睛】本题主要考查了含且、或命题的真假,及含绝对值不等式恒成立,指数型函数的增减性,属于中档题.7.已知f (x )=|x +2|+|x -4|的最小值为n ,则二项式1nx x ⎛⎫- ⎪⎝⎭展开式中x 2项的系数为( ) A .11 B .20 C .15 D .16 【答案】C 【解析】 【分析】由题意利用绝对值三角不等式求得n=6,在二项展开式的通项公式中,令x 的幂指数等于0,求出r 的值,即可求得展开式中x 2项的系数. 【详解】∵f (x )=|x+2|+|x ﹣4|≥|(x+2)﹣(x ﹣4)|=6,故函数的最小值为6, 再根据函数的最小值为n ,∴n=6.则二项式(x ﹣1x )n =(x ﹣1x)6 展开式中的通项公式为 T r+1=6r C •(﹣1)r •x 6﹣2r , 令6﹣2r=2,求得r=2,∴展开式中x 2项的系为26C =15, 故选:C . 【点睛】本题主要考查绝对值三角不等式的应用,二项展开式的通项公式,求展开式中某项的系数,二项式系数,属于中档题.8.325x -≥不等式的解集是( ) A .{|1}x x ≤- B .{|14}x x -≤≤C .{|14}x x x ≤-≥或D .{|4}x x ≥【答案】C 【解析】 【分析】根据绝对值定义化简不等式,求得解集. 【详解】因为325x -≥,所以325x -≥或325x -≤-,即14x x ≤-≥或,选C. 【点睛】本题考查含绝对值不等式解法,考查基本求解能力.9.不等式|1||2|x x a +--<无实数解,则a 的取值范围是( ) A .(,3)-∞ B .(3,)-+∞ C .(,3]-∞- D .(,3)-∞-【答案】C 【解析】 【分析】利用绝对值不等式的性质||||||a b a b -≤-,因此得出||||a b -的范围, 再根据无实数解得出a 的范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

预测2017年对不等式选讲的考查仍以绝对值不等式的解法、性质为主,解含两个绝对值号的不等式是解答题题型的主流,并配以不等式的证明和函数图象的考查.一、含有绝对值不等式的解法1.|ax+b|≤c,|ax+b|≥c(c>0)型不等式的解法(1)若c>0,则|ax+b|≤c等价于-c≤ax+b≤c,|ax+b|≥c等价于ax+b≥c或ax+b≤-c,然后根据a,b的值解出即可.(2)若c<0,则|ax+b|≤c的解集为∅,|ax+b|≥c的解集为R.2.|x-a|+|x-b|≥c(c>0),|x-a|+|x-b|≤c(c>0)型不等式的解法可通过零点分区间法或利用绝对值的几何意义进行求解.(1)零点分区间法的一般步骤①令每个绝对值符号的代数式为零,并求出相应的根;②将这些根按从小到大排列,把实数集分为若干个区间;③由所分区间去掉绝对值符号得若干个不等式,解这些不等式,求出解集;④取各个不等式解集的并集就是原不等式的解集.(2)利用绝对值的几何意义由于|x-a|+|x-b|与|x-a|-|x-b|分别表示数轴上与x对应的点到a,b对应的点的距离之和与距离之差,因此对形如|x-a|+|x-b|<c(c>0)或|x-a|-|x-b|>c(c>0)的不等式,利用绝对值的几何意义求解更直观.3.|f(x)|>g(x),|f(x)|<g(x)(g(x)>0)型不等式的解法(1)|f(x)|>g(x)⇔f(x)>g(x)或f(x)<-g(x).(2)|f(x)|<g(x)⇔-g(x)<f(x)<g(x).二、不等式的证明1.证明不等式的常用结论(1)绝对值的三角不等式定理1:若a,b为实数,则|a+b|≤|a|+|b|,当且仅当ab≥0,等号成立.定理2:设a ,b ,c 为实数,则|a -c |≤|a -b |+|b -c |,当且仅当(a -b )(b -c )≥0时,等号成立. 推论1:||a |-|b ||≤|a +b |. 推论2:||a |-|b ||≤|a -b |.(2)三个正数的算术—几何平均不等式:如果a ,b ,c ∈R +,那么a +b +c3≥3abc ,当且仅当a =b =c时等号成立.(3)基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均值不小于它们的几何平均值,即a 1+a 2+…+a n n≥na 1·a 2·…·a n ,并且仅当a 1=a 2=…=a n 时等号成立.(4)一般形式的柯西不等式设a 1,a 2,a 3,…,a n ,b 1,b 2,b 3,…,b n 是实数,则(a 21+a 22+…+a 2n )·(b 21+b 22+…+b 2n )≥(a 1b 1+a 2b 2+…+a n b n )2,并且仅当b i =0(i =1,2,…,n )或存在一个数k ,使得a i =kb i (i =1,2,…,n )时,等号成立.2.证明不等式的常用方法 (1)比较法一般步骤:作差—变形—判断—结论.为了判断作差后的符号,有时要把这个差变形为一个常数,或者变形为一个常数与一个或几个平方和的形式,也可变形为几个因式的积的形式,以判断其正负.(2)综合法利用某些已经证明过的不等式和不等式的性质,推导出所要证明的不等式,这种方法叫综合法.即“由因导果”的方法.(3)分析法证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的充分条件,把证明不等式转化为判定这些充分条件是否具备的问题,如果能够肯定这些充分条件都已经具备,那么就可以判定原不等式成立,这种方法叫作分析法.即“执果索因”的方法.(4)反证法和放缩法①先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,这种方法叫作反证法.②证明不等式时,通过把不等式中的某些部分的值放大或缩小,简化不等式,从而达到证明的目的,这种方法叫作放缩法.考点一 解绝对值不等式例1.【2017课标3,文23】已知函数()f x =│x +1│–│x –2│. (1)求不等式()f x ≥1的解集;(2)若不等式()f x ≥x 2–x +m 的解集非空,求实数m 的取值范围. 【答案】(1)[1,)+∞;(2)5(,]4-∞【变式探究】【2016高考新课标1卷】(本小题满分10分),选修4—5:不等式选讲已知函数()123f x x x =+--.(I )在答题卡第(24)题图中画出()y f x =的图像; (II )求不等式()1f x >的解集.【答案】(I )见解析(II )()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,(2015·重庆,16)若函数f (x )=|x +1|+2|x -a |的最小值为5,则实数a =________. 【答案】4或-6【解析】由绝对值的性质知f (x )的最小值在x =-1或x =a 时取得,若f (-1)=2|-1-a |=5,a =32或a =-72,经检验均不合适;若f (a )=5,则|x +1|=5,a =4或a =-6,经检验合题意,因此a =4或a=-6.【变式探究】不等式|x -1|+|x +2|≥5的解集为________.【答案】{x |x ≤-3或x ≥2}考点二 不等式的证明例2.【2017课标II ,文23】已知330,0,2a b a b >>+=。

证明: (1)55()()4a b a b ++≥; (2)2a b +≤。

【答案】(1)证明略; (2)证明略。

【解析】解: ()()()3365561a b a baab a b b ++=+++()()23333442a ba b ab a b =+-++()2224ab a b =+- 4.≥(2)因为()3322333a b a a b ab b +=+++()23ab a b =++()()2324a b a b +≤++()3324a b +=+所以 ()38a b +≤,因此2a b +≤【变式探究】【2016高考新课标2文数】选修4—5:不等式选讲 已知函数11()||||22f x x x =-++,M 为不等式()2f x <的解集.(Ⅰ)求M ;(Ⅱ)证明:当,a b M ∈时,|||1|a b ab +<+. 【答案】(Ⅰ){|11}M x x =-<<;(Ⅱ)详见解析.由(1)得a +b >c +d .②若a +b >c +d ,则(a +b )2>(c +d )2,即a +b +2ab >c +d +2cd . 因为a +b =c +d ,所以ab >cd ,于是(a -b )2=(a +b )2-4ab <(c +d )2-4cd =(c -d )2. 因此|a -b |<|c -d |.综上,a +b >c +d 是|a -b |<|c -d |的充要条件.【变式探究】已知q 和n 均为给定的大于1的自然数.设集合M ={0,1,2,…,q -1},集合A ={x |x =x 1+x 2q +…+x n qn -1,x i ∈M ,i =1,2,…,n }.(1)当q =2,n =3时,用列举法表示集合A ; (2)设s ,t ∈A ,s =a 1+a 2q +…+a n q n -1,t =b 1+b 2q +…+b n qn -1,其中a i ,b i ∈M ,i =1,2,…,n .证明:若a n <b n ,则s <t .1.【2017课标1,文23】已知函数4)(2++-=ax x x f ,|1||1|)(-++=x x x g . (1)当1=a 时,求不等式)()(x g x f ≥的解集;(2)若不等式)()(x g x f ≥的解集包含[–1,1],求a 的取值范围.【答案】(1){|1x x -<≤;(2)[1,1]-. 【解析】(1)当1a =时,不等式()()f x g x ≥等价于21140x x x x -+++--≤.① 当1x <-时,①式化为2340x x --≤,无解;当11x -≤≤时,①式化为220x x --≤,从而11x -≤≤;当1x >时,①式化为240x x +-≤,从而1x <≤.所以()()f x g x ≥的解集为{|1x x -<≤. (2)当[]1,1x ∈-时, ()2g x =.所以()()f x g x ≥的解集包含[]1,1-,等价于当[]1,1x ∈-时()2f x ≥.又()f x 在[]1,1-的最小值必为()1f -与()1f 之一,所以()12f -≥且()12f ≥,得11a -≤≤. 所以a 的取值范围为[]1,1-.2. 【2017课标II ,文23】已知330,0,2a b a b >>+=。

证明: (1)55()()4a b a b ++≥; (2)2a b +≤。

【答案】(1)证明略; (2)证明略。

【解析】3.【2017课标3,文23】已知函数()f x =│x +1│–│x –2│. (1)求不等式()f x ≥1的解集;(2)若不等式()f x ≥x 2–x +m 的解集非空,求实数m 的取值范围. 【答案】(1)[1,)+∞;(2)5(,]4-∞1.【2016高考新课标1卷】(本小题满分10分),选修4—5:不等式选讲 已知函数()123f x x x =+--.(I )在答题卡第(24)题图中画出()y f x =的图像; (II )求不等式()1f x >的解集.【答案】(I )见解析(II )()()11353⎛⎫-∞+∞ ⎪⎝⎭ ,,,2.【2016高考新课标2文数】选修4—5:不等式选讲 已知函数11()||||22f x x x =-++,M 为不等式()2f x <的解集. (Ⅰ)求M ;(Ⅱ)证明:当,a b M ∈时,|||1|a b ab +<+. 【答案】(Ⅰ){|11}M x x =-<<;(Ⅱ)详见解析.3. 【2016高考新课标3文数】选修4-5:不等式选讲 已知函数()|2|f x x a a =-+.(I )当2a =时,求不等式()6f x ≤的解集;(II )设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a 的取值范围. 【答案】(Ⅰ){|13}x x -≤≤;(Ⅱ)[2,)+∞. 【解析】(Ⅰ)当2a =时,()|22|2f x x =-+. 解不等式|22|26x -+≤得13x -≤≤. 因此()6f x ≤的解集为{|13}x x -≤≤.(Ⅱ)当x ∈R 时,()()|2||12|f x g x x a a x +=-++- |212|x a x a ≥-+-+ |1|a a =-+,当12x =时等号成立,所以当x ∈R 时,()()3f x g x +≥等价于 |1|3a a -+≥. ①当1a ≤时,①等价于13a a -+≥,无解. 当1a >时,①等价于13a a -+≥,解得2a ≥. 所以a 的取值范围是[2,)+∞.1.(2015·陕西,24)已知关于x 的不等式|x +a |<b 的解集为{x |2<x <4}. (1)求实数a ,b 的值;(2)求at +12+bt 的最大值.2.(2015·新课标全国Ⅰ,24)已知函数f (x )=|x +1|-2|x -a |,a >0. (1)当a =1时,求不等式f (x )>1的解集;(2)若f (x )的图象与x 轴围成的三角形面积大于6,求a 的取值范围. 解 (1)当a =1时,f (x )>1化为|x +1|-2|x -1|-1>0.1.【2014高考安徽卷文第9题】若函数()12f x x x a =+++的最小值为3,则实数a 的值为( ) A.5或8 B.1-或5 C.1-或4- D.4-或8 【答案】D【解析】由题意,①当12a ->-时,即2a >,3(1),2()1,123(1),1a x a x a f x x a x x a x ⎧--+≤-⎪⎪⎪=+--<≤-⎨⎪++>-⎪⎪⎩,则当2a x =-时,min ()()|1|||322a a f x f a a =-=-++-+=,解得8a =或4a =-(舍);②当12a-<-时,即2a <,3(1),1()1,123(1),2x a x a f x x a x a x a x ⎧⎪--+≤-⎪⎪=-+--<≤-⎨⎪⎪++>-⎪⎩,则当2a x =-时,min ()()|1|||322a a f x f a a =-=-++-+=,解得8a=(舍)或4a =-;③当12a-=-时,即2a =,()3|1|f x x =+,此时min ()0f x =,不满足题意,所以8a =或4a =-,故选D.2. 【2014陕西高考文第15题】设,,,a b m n R ∈,且225,5a b ma nb +=+=的最小值为【解析】由柯西不等式得:22222()()()a b m n ma nb ++≥+,所以2225()5m n +≥,得225m n +≥≥。

相关文档
最新文档