中考专题费马点讲义与练习

合集下载

化学专题费马点讲义与练习

化学专题费马点讲义与练习

化学专题费马点讲义与练习
什么是费马点
费马点(也称为零点能)是指任何化学反应从反应物到产物之间的能量差异。

它定义了反应物是否能被转化为产物。

当反应物的能量低于费马点时,反应是自发的。

反之,如果反应物的能量高于费马点,则需要外部能量才能触发反应。

计算费马点
计算费马点需要考虑反应物和产物的电子能级,以及它们之间的距离。

以下是计算费马点的公式:
费马点 =(反应物电子亲和力+ 产物电离能)/ 2 + 反应物和产物之间的距离

1. 将钠(Na)水解产生氢气(H2)和氢氧化钠(NaOH)时,
计算费马点。

解:首先,我们需要知道钠和氢氧化钠的电子亲和力和电离能。

钠的电子亲和力为 52.8 kJ/mol,电离能为 496 kJ/mol。

氢氧化钠的
电子亲和力为 -1,091 kJ/mol,电离能为 684.3 kJ/mol。

根据上面的
费马点公式,我们得出以下计算:
费马点 =(52.8 + 684.3)/ 2 +(0.3 + 0.3)= 369.9 kJ/mol
2. 某个反应物的电子亲和力为 -172 kJ/mol,电离能为 490
kJ/mol,产物的电子亲和力为 -234 kJ/mol,电离能为 726 kJ/mol,
反应物和产物之间的距离为 0.1 nm。

计算反应的费马点。

解:根据费马点公式,我们有:
费马点 =(-172 + 726)/ 2 +(0.1)= 280 kJ/mol
- 以上练希望能够对计算费马点有所帮助。

中考中的费马点详解加练习

中考中的费马点详解加练习

皮耶·德·费马(Pierre de Fermat)是一个17世纪的法国律师,也是一位业余数学家。

之所以称业余,是由于皮耶·德·费马具有律师的全职工作。

他的姓氏根据法文与英文实际发音也常译为“费尔玛”(注意“玛”字)。

费马最后定理在中国习惯称为费马大定理,西方数学界原名“最后”的意思是:其它猜想都证实了,这是最后一个。

著名的数学史学家贝尔(E. T. Bell)在20世纪初所撰写的著作中,称皮耶·德·费马为”业余数学家之王。

“贝尔深信,费马比皮耶·德·费马同时代的大多数专业数学家更有成就,然而皮耶·德·费马并未在其他方面另有成就,本人也渐渐退出人们的视野,考虑到17世纪是杰出数学家活跃的世纪,因而贝尔认为费马是17世纪数学家中最多产的明星。

费马点问题最早是由法国数学家皮埃尔·德·费马在一封写给意大利数学家埃万杰利斯塔·托里拆利(气压计的发明者)的信中提出的。

托里拆利最早解决了这个问题,而19世纪的数学家斯坦纳重新发现了这个问题,并系统地进行了推广,因此这个点也称为托里拆利点或斯坦纳点,相关的问题也被称作费马-托里拆利-斯坦纳问题。

这一问题的解决极大推动了联合数学的发展,在近代数学史上具有里程碑式的意义。

“费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点。

若给定一个三角形△ABC的话,从这个三角形的费马点P到三角形的三个顶点A、B、C的距离之和比从其它点算起的都要小。

这个特殊点对于每个给定的三角形都只有一个。

1.若三角形3个内角均小于120°,那么3条距离连线正好三等分费马点所在的周角,即该点所对三角形三边的X角相等,均为120°。

所以三角形的费马点也称为三角形的等角中心。

2.若三角形有一内角大于等于120°,则此钝角的顶点就是距离和最小的点。

费马点与中考试题

费马点与中考试题

识别“费马点”思路快突破例1 探究问题:(1)阅读理解:①如图(A),在已知△ABC所在平面上存在一点P,使它到三角形顶点的距离之和最小,则称点P为△ABC的费马点,此时P A+PB+PC的值为△ABC的费马距离.②如图(B),若四边形ABCD的四个顶点在同一圆上,则有AB·CD+BC·DA=AC·BD.此为托勒密定理.(2)知识迁移:①请你利用托勒密定理,解决如下问题:如图(C),已知点P为等边△ABC外接圆的»BC上任意一点.求证:PB+PC=P A.②根据(2)①的结论,我们有如下探寻△ABC(其中∠A、∠B、∠C均小于120°)的费马点和费马距离的方法:第一步:如图(D),在△ABC的外部以BC为边长作等边△BCD及其外接圆;第二步:在»BC上任取一点P′,连结P′A、P′B、P′C、P′D.易知P′A+P′B+P′C=P′A+(P′B+P′C)=P′A+;第三步:请你根据(1)①中定义,在图(D)中找出△ABC的费马点P,并请指出线段的长度即为△ABC的费马距离.(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A、B、C构成了如图(E)所示的△ABC(其中∠A、∠B、∠C均小于120°),现选取一点P打水井,使从水井P到三村庄A、B、C所铺设的输水管总长度最小,求输水管总长度的最小值.(1)平面内一点P到△ABC三顶点的之和为PA+PB+PC,当点P为费马点时,距离之和最小.特殊三角形中:(2)三内角皆小于120°的三角形,分别以AB,BC,CA,为边,向三角形外侧做正三角形ABC1,ACB1,BCA1,然后连接AA1,BB1,CC1,则三线交于一点P,则点P就是所求的费马点.(3)若三角形有一内角大于或等于120度,则此钝角的顶点就是所求.(4)当△ABC为等边三角形时,此时外心与费马点重合.可见,永州卷这道考题对于费马点只是以课题学习为问题载体,考得比较直截了当;巧合的是例2 如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.⑴求证:△AMB≌△ENB;⑵①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;3 时,求正方形的边长.⑶当AM+BM+CM的最小值为1A DB C思路探求:⑴略;⑵ ①要使AM +CM 的值最小,根据“两点之间线段最短”,需设法将AM +CM 转化为一条线段,连接AC 即可获取;②要使AM +BM +CM 的值最小,由例3积累的知识经验:点M 应该是△ABC 的费马点.由例3中(2)的求解示范,只要连接CE 即可获得CE 为AM +BM +CM 的值最小.这样获到M 点至少帮助我们在思路获取上提高了效率.理由说明供助于第(1)问的全等获得BM=BN ,将三条线段转化到CE 上去,问题化为两点之间线段最短.⑶根据题意,添加辅助线,构造直角三角形,过E 点作EF ⊥BC 交CB 的延长线于F . 设正方形的边长为x ,则BF =23x ,EF =2x .在Rt △EFC 中,由勾股定理得(2x )2+(23x +x )2=()213+,解得即可.简答:⑴略;⑵①当M 点落在BD 的中点时,AM +CM 的值最小.②如图,连接CE ,当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小.理由如下:连接MN.由⑴知,△AMB ≌△ENB∴AM =EN .∵∠MBN =60°,MB =NB ,∴△BMN 是等边三角形.∴BM =MN .∴AM +BM +CM =EN +MN +CM .根据“两点之间线段最短”,得EN +MN +CM =EC 最短∴当M 点位于BD 与CE 的交点处时,AM +BM +CM 的值最小,即等于EC 的长.⑶过E 点作EF ⊥BC 交CB 的延长线于F ,∴∠EBF =90°-60°=30°.设正方形的边长为x ,则BF =23x ,EF =2x . 在Rt △EFC 中,∵EF 2+FC 2=EC 2,∴(2x )2+(23x +x )2=()213+. 解得,x =2(舍去负值).∴正方形的边长为2.F A D B C点评:本题中“AM+BM+CM的值最小”如果没有费马点的知识积累,会在探究点M的位置上花费不少时间,这对紧张的考试来说,势必造成“隐性失分”.。

【中考几何模型压轴题】专题9《费马点》

【中考几何模型压轴题】专题9《费马点》

中考几何压轴题(几何模型30讲)最新讲义专题9《费马点》破解策略费马点是指平面内到三角形三个顶点距离之和最小的点,这个最小的距离叫做费马距离.若三角形的内角均小于120°,那么三角形的费马点与各顶点的连线三等分费马点所在的周角;若三角形内有一个内角大于等于120°,则此钝角的顶点就是到三个顶点距离之和最小的点.若三角形有一个内角大于等于120°,则此钝角的顶点即为该三角形的费马点如图在△ABC中,∠BAC≥120°,求证:点A为△ABC的费马点证明:如图,在△ABC内有一点P延长BA至C,使得AC=AC,作∠CAP=∠CAP,并且使得AP=AP,连结PP则△APC≌△APC,PC=PC因为∠BAC≥120°所以∠PAP=∠CAC≤60所以在等腰△PAP中,AP≥PP所以PA+PB+PC≥PP+PB+PC>BC=AB+AC所以点A为△ABC的费马点2.若三角形的内角均小于120°,则以三角形的任意两边向外作等边三角形,两个等边三角形外接圆在三角形内的交点即为该三角形的费马点.如图,在△ABC中三个内角均小于120°,分别以AB、AC为边向外作等边三角形,两个等边三角形的外接圆在△ABC内的交点为O,求证:点O为△ABC的费马点证明:在△ABC内部任意取一点O,;连接OA、OB、OC将△AOC绕着点A逆时针旋转60°,得到△AO′D连接OO′则O′D=OC 所以△AOO′为等边三角形,OO′=AO所以OA+OC+OB=OO′+OB+O′D则当点B、O、O′、D四点共线时,OA+OB+OC最小此时ABAC为边向外作等边三角形,两个等边三角形的外接圆在△ABC内的交点即为点O如图,在△ABC 中,若∠BAC 、∠ABC 、∠ACB 均小于120°,O 为费马点,则有∠AOB =∠BOC =∠COA =120°,所以三角形的费马点也叫三角形的等角中心例1 如图,在平面直角坐标系中,点A 的坐标为(-6,0),点B 的坐标为(6,0),点C 的坐标为(6,34),延长AC 至点D 使得CD =AC ,过点DE 作DE //AB ,交BC 的延长线于点E ,设G 为y 轴上的一点,点P 从直线y =3-x +36与y 轴的交点M 出发,先沿y 轴到达点G ,再沿GA 到达点A ,若点P 在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定点G 的位置,使点P 按照上述要求到达A 所用的时间最短解:∵t =vGM v v GM 22GA GA 2+=+ ∴当2GA +GM 最小时,时间最短如图,假设在OM 上存在一点G ,则BG =AG∴MG +2AG =MG +AG +BG把△MGB绕点B顺时针旋转60°,得到△M′G′B,连结GG′,MM′∴△GG′B、△MM′B都为等边三角形则GG′=G′B=GB又∵M′G′=MG∴MG+AG+BG=M′G′+GG′+AG∵点A、M′为定点∴AM′与OM的交点为G,此时MG+AG+BG最小∴点G的坐标为(0,32)例2 A、B、C、D四个城市恰好为一个正方形的四个顶点,要建立一个公路系统使得每两个城市之间都有公路相通,并是整个公路系统的总长度为最小,则应当如何修建?解:如图,将△ABP 绕点N 逆时针旋转60°,得到△EBM ;同样,将△DCQ 绕点C 顺时针旋转60°,得到△FCN ,连结AE 、DF ,则△ABE 、△DCF 均为等边三角形,连结PM 、QN ,则△BPM ,△CQN 均为等边三角形所以当点E ,M ,P ,Q ,N ,F 共线时,整个公路系统的总长取到最小值,为线段EF 的长,如图,此时点P ,Q 在EF 上,1=2=3=4=30. F N E MB C A D P Q进阶训练1.如图,在ABC 中,ABC =60,AB =5,BC =3,P 是ABC 内一点,求PA +PB +PC 的最小值,并确定当PA +PB +PC 取得最小值时,APC 的度数. B C AP答案:PA +PB +PC 的最小值为7,此时APC =120.P'A'P AC B E【提示】如图,将APB 绕点B 逆时针旋转60,得到A 'BP ',连结PP ',A 'C .过点A '作A 'E BC ,交CB 的延长线于点E .解Rt A 'EC 求A 'C 的长,所得即为PA +PB +PC 的最小值.2. 如图,四边形ABCD 是正方形,ABE 是等边三角形,M 为对角线BD 上任意一点,将BM 绕点B 逆时针旋转60得到BN ,连结AM ,CM ,EN .(1)当M 在何处时,AM +CM 的值最小?(2)当M 在何处时,AM +BM +CM 的值最小?请说明理由;(3)当AM +BM +CM 的最小值为31 时,求正方形的边长.NE C DB A M答案:(1)当点M 落在BD 的中点时,AM +CM 的值最小,最小值为AC 的长;(2)连结CE ,当点M 位于BD 与CE 的交点处时.AM +BM +CM 的值最小,最小值为CE 的长.(3)正方形的边长为2.【提示】(3)过点E 作EF BC ,交CB 的延长线于点F ,解Rt EFC 即可.E。

中考复习之线段和差最值之费马点问题-附练习题含参考答案

中考复习之线段和差最值之费马点问题-附练习题含参考答案

ABCP中考数学复习线段和差最值系列之费马点皮耶·德·费马,17世纪法国数学家,有“业余数学家之王”的美誉,之所以叫业余并非段位不够,而是因为其主职是律师,兼职搞搞数学.费马在解析几何、微积分等领域都有卓越的贡献,除此之外,费马广为人知的是以其名字命名的“费马小定理”、“费马大定理”等.言归正传,今天的问题不是费马提出来的,是他解决的,故而叫费马点. 问题:在△ABC 内找一点P ,使得P A +PB +PC 最小.【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.以上依据似乎都用不上,怎么办?若点P 满足∠PAB=∠BPC=∠CPA=120°,则PA+PB+PC 值最小,P 点称为该三角形的费马点.一、如何作费马点问题要从初一学到的全等说起:(1)如图,分别以△ABC 中的AB 、AC 为边,作等边△ABD 、等边△ACE . (2)连接CD 、BE ,即有一组手拉手全等:△ADC ≌△ABE .(3)记CD 、BE 交点为P ,点P 即为费马点.(到这一步其实就可以了)(4)以BC 为边作等边△BCF ,连接AF ,必过点P ,有∠P AB =∠BPC =∠CP A =120°.在图三的模型里有结论:(1)∠BPD =60°;(2)连接AP ,AP 平分∠DPE .有这两个结论便足以说明∠P AB =∠BPC =∠CP A =120°.但是在这里有个小小的要求,细心的同学会发现,这个图成立的一个必要条件是∠BAC <120°,若120BAC ∠≥︒ ,这个图就不是这个图了,会长成这个样子:EB ACAB CDE此时CD 与BE 交点P 点还是我们的费马点吗?显然这时候就不是了,显然P 点到A 、B 、C 距离之和大于A 点到A 、B 、C 距离之和.所以,是的,你想得没错,此时三角形的费马点就是A 点!当然这种情况不会考的,就不多说了.二、为什么是这个点为什么P 点满足∠P AB =∠BPC =∠CP A =120°,P A +PB +PC 值就会最小呢?归根结底,还是要重组这里3条线段:P A 、PB 、PC 的位置,而重组的方法是构造旋转!在上图3中,如下有△ADC ≌△ABE ,可得:CD =BE .类似的手拉手,在图4中有3组,可得:AF =BE =CD .巧的,它们仨的长度居然一样长!更巧的是,其长度便是我们要求的P A +PB +PC 的最小值,这一点是可以猜想得到的,毕竟最小值这个结果,应该也是个特别的值! 接下来才是真正的证明:考虑到∠APB =120°,∴∠APE =60°,则可以AP 为边,在PE 边取点Q 使得PQ =AP ,则△APQ 是等边三角形.△APQ 、△ACE 均为等边三角形,且共顶点A ,故△APC ≌△AQE ,PC =QE . 以上两步分别转化P A =PQ ,PC =QE ,故P A +PB +PC =PB +PQ +QE =BE .没有对比就没有差别,我们换个P 点位置,如下右图,同样可以构造等边△APQ ,同样有△APC ≌△AQE ,转化P A =PQ ,PC =QE ,显然,P A +PB +PC =PB +PQ +QE >BE .还剩下第3个问题!如果说费马点以前还算是课外的拓展内容,那现在,已经有人把它搬上了中考舞台!【中考再现】问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE .问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG=O 是△MNG 内一点,则点O 到△MNG 三个顶点的距离和的最小值是______.【分析】本题的问题背景实际上是提示了解题思路,构造60°的旋转,当然如果已经了解了费马点问题,直接来解决就好了!如图,以MG 为边作等边△MGH ,连接NH ,则NH 的值即为所求的点O 到△MNG 三个顶点的距离和的最小值.(此处不再证明)过点H 作HQ ⊥NM 交NM 延长线于Q 点,根据∠NMG =75°,∠GMH =60°,可得∠HMQ =45°,∴△MHQ 是等腰直角三角形, ∴MQ =HQ =4,∴NH== 练习题1.如图,在△ABC 中,△ACB=90°,AB=AC=1,P 是△ABC 内一点,求P A +PB +PC 的最小值.2. 如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.NG图2图1ABCD EPHGN M464Q HGN MABCDME3.如图,矩形ABCD中,AB=10,BC=15,现在要找两点E、F,则EA+EB+EF+FC+FD的最小值为__________4.如图,等腰Rt∆ABC中,AB=4,P为∆ABC内部一点,则PA+PB+PC的最小值为_______5.如图,∆ABC中,AB=4,,∠ABC=75°,P为∆ABC内的一个动点,连接PA、PB、PC,则PA+PB+PC的最小值为________6.如图,P为正方形ABCD对角线BD上一动点,若AB=2,则PA+PB+PC的最小值为______7.在Rt∆ABC中,∠ACB=90°,AC=1,,点O为Rt∆ABC内一点,连接AO、BO、CO,且∠AOC=∠COB=∠BOA=120°,则OA+OB+OC=_______8.如图,在四边形ABCD中,∠B=60°,AB=BC=3,AD=4,∠BAD=90°,点P是四边形内部一点,则PA+PB+PD的最小值是______9.如图,点P是矩形ABCD对角线BD上的一个动点,已知AB=2,,则PA+PB+PC 的最小值为_______10.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则PA+PB+PD的最小值为__________11.已知,在∆ABC中,∠ACB=30°点P是ABC内一动点,则PA+PB+PC的最小值为__________12.如图,设点P到等边三角形ABC两顶点A、B的距离分别为2则PC的最大值为______13.如图,设点P到正方形ABCD两顶点A、D的距离为2PC的最大值为________14.如图,设点P到正方形ABCD两顶点A、D的距离为2则PO的最大值为_________.15.如图,在Rt∆ABC中,∠BAC=90⁰,AB=AC,点D是BC边上一动点,连接AD,把AD 绕点A逆时针旋转90⁰,得到AE,连接CE、DE,点F是DE的中点,连接CF问题:在点D运动的过程中,在线段AD上存在一点P,使PA+PB+PC的值最小,当PA+PB+PC 取最小值时,AP的长为m,用含有m的式子表示CE的长.参考答案1.7.8.7 9.3 10. 12.2+13.2+1 15.32m +。

中学考试中地费马点详解加练习

中学考试中地费马点详解加练习

皮耶·德·费马(Pierre de Fermat)是一个17世纪的法国律师,也是一位业余数学家。

之所以称业余,是由于皮耶·德·费马具有律师的全职工作。

他的姓氏根据法文与英文实际发音也常译为“费尔玛”(注意“玛”字)。

费马最后定理在中国习惯称为费马大定理,西方数学界原名“最后”的意思是:其它猜想都证实了,这是最后一个。

著名的数学史学家贝尔(E. T. Bell)在20世纪初所撰写的著作中,称皮耶·德·费马为”业余数学家之王。

“贝尔深信,费马比皮耶·德·费马同时代的大多数专业数学家更有成就,然而皮耶·德·费马并未在其他方面另有成就,本人也渐渐退出人们的视野,考虑到17世纪是杰出数学家活跃的世纪,因而贝尔认为费马是17世纪数学家中最多产的明星。

费马点问题最早是由法国数学家皮埃尔·德·费马在一封写给意大利数学家埃万杰利斯塔·托里拆利(气压计的发明者)的信中提出的。

托里拆利最早解决了这个问题,而19世纪的数学家斯坦纳重新发现了这个问题,并系统地进行了推广,因此这个点也称为托里拆利点或斯坦纳点,相关的问题也被称作费马-托里拆利-斯坦纳问题。

这一问题的解决极大推动了联合数学的发展,在近代数学史上具有里程碑式的意义。

“费马点”是指位于三角形内且到三角形三个顶点距离之和最短的点。

若给定一个三角形△ABC的话,从这个三角形的费马点P到三角形的三个顶点A、B、C的距离之和比从其它点算起的都要小。

这个特殊点对于每个给定的三角形都只有一个。

1.若三角形3个内角均小于120°,那么3条距离连线正好三等分费马点所在的周角,即该点所对三角形三边的张角相等,均为120°。

所以三角形的费马点也称为三角形的等角中心。

2.若三角形有一内角大于等于120°,则此钝角的顶点就是距离和最小的点。

中考专题费马点讲义与练习

中考专题费马点讲义与练习

图4—11PC BA从“费马点”说起前言解题 题海战术 通性通法 过程与结果 内化 一、走近费马点 1.(浙教版数学八下P82)设计题 你听说过费马点吗?如图4—11,P 为△ABC 所在平面上一点。

如果∠APB=∠BPC=∠CPA=120°,则点P 就叫做费马点。

费马点有许多有趣并且有意义的性质,例如,平面内一点P 到△ABC 三顶点的距离之和为PA+PB+PC ,当点P 为费马点时,距离之和最小。

假设A,B,C 表示三个村庄,要选一处建车站,使车站到三个村庄的公路路程的和最短。

若不考虑其他因素,那么车站应建在费马点上。

请按下列步骤对费马点进行探究:(1) 查找有关资料,了解费马点被发现的历史背景;(2) 在特殊三角形中寻找并验证费马点。

例如,当△ABC 是等边三角形、等腰三角形或直角三角形时,费马点有哪些性质?(3) 把你的研究结果写成一篇小论文,并通过与同学交流来修改完善你的小论文。

2.(2009年浙江省湖州市中考题)若P 为ABC △所在平面上一点,且120APB BPC CPA ∠=∠=∠=°,则点P 叫做ABC △的费马点. (1)若点P 为锐角ABC △的费马点,且60ABC PA PC ∠===°,3,4,则PB 的值为________; (2)如图,在锐角ABC △外侧作等边ACB △′连结BB ′. 求证:BB ′过ABC △的费马点P ,且BB ′=PA PB PC ++.3.(2010年湖南省永州市中考数学试题)探究问题:(1)阅读理解:①如图(1),在已知△ABC 所在平面上存在一点P ,使它到三角形三顶点的距离之和最小,则称点P 为△ABC 的费马点,此时PA+PB+PC 的值为△ABC 的费马距离.②如图(2),若四边形ABCD 的四个顶点在同一圆上,则有AB ·CD+BC ·DA=AC ·BD ,此为托勒密定理.(2)知识迁移:HPDCBA①请你利用托勒密定理,解决如下问题:如图(3),已知点P 为等边△ABC 外接圆的弧BC 上任意一点.求证:PB+PC=PA ②根据(2)①的结论,我们有如下探寻△ABC(其中∠A 、∠B 、∠C 均小于120度)的费 马点和费马距离的方法:第一步:如图(4)在△ABC 的外部以BC 为边长作等边△BCD 及其外接圆; 第二步:在弧BC 上任取一点'P ,连结'P A 、'P B 、'P C 、'P D易知''''('')'P A P B P C P A P B P C P A ++=++=+ ; 第三步:请你根据(1)①中定义,在图(4)中找出△ABC 的费马点P ,并请指出 线段 的长度即为△ABC 的费马距离(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A 、B,C 构成了如图(5)所示的△ABC(其中∠A 、∠B 、∠C 均小于120o),现选取一点P 打水井,使从水井P 到三村庄A 、B 、C 所铺设的 输水管总长度最小,求输水管总长度的最小值. 4.(2008年广东省中考题)已知正方形ABCD 内一动点E 到A,B,C 三点的距离之和的最小值为62+,求此正方形的边长。

(完整版)“费马点”与中考试题

(完整版)“费马点”与中考试题

“费马点”与中考试题费马,法国业余数学家,拥有业余数学之王的称号,他是解析几何的发明者之一. 费马点一一就是到三角形的三个顶点的距离之和最小的点. 费尔马的结论:对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点.下面简单说明如何找点P使它到△ ABC三个顶点的距离之和PA+PB+PC最小?这就是所谓的费马问题.解析:如图1,把△ APC绕A点逆时针旋转60°得到△ APC',连接PP'.则厶APP为等边三角形,AP= PP P C = PC,所以PA+PB+PC= PP + PB+ PC'.点C'可看成是线段AC绕A点逆时针旋转60°而得的定点,BC为定长,所以当B、P、P、C '四点在同一直线上时,FA+PB+PC最小.这时/ BPA=180°- / APP =180°-60 °=120°,/ APC= / A P C =180°-Z AP P=180° -60 °=120°,/ BPC=360°-Z BPA- Z APC=360° -120。

-120 °=120°因此,当厶ABC的每一个内角都小于120。

时,所求的点P对三角形每边的张角都是120 °可在AB、BC边上分别作120 的弓形弧,两弧在三角形内的交点就是P点;当有一内角大于或等于120°时,所求的P点就是钝角的顶点.费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.本文列举近年“费马点”走进中考试卷的实例,供同学们学习参考.例1 (2008年广东中考题)已知正方形ABCD内一动点E到A、B、C三点的距离之和的最小值为2 -.6,求此正方形的边长.分析:连接AC ,发现点E 到A 、B 、C 三点的距离之和就是到 △ ABC 三个顶点的距离 之和,这实际是费尔马问题的变形,只是背景不同.解 如图2,连接人6把厶AEC 绕点C 顺时针旋转60°得到△ GFC ,连接EF 、BG 、 AG ,可知△ EFC 、△ AGC 都是等边三角形,则 EF=CE .又 FG =AE ,••• AE+BE+CE = BE+EF+FG (图 4).•••点B 、点G 为定点(G 为点A 绕C 点顺时针旋转60°所得). •线段BG 即为点E 到A 、B 、C 三点的距离之和的最小值,此时 E 、F 两点都在BG上(图3).设正方形的边长为 a ,那么BG=BO+GO =』a +2点E 到A 、B 、C 三点的距离之和的最小值为.2,6 .注 本题旋转厶AEB 、△ BEC 也都可以,但都必须绕着定点旋转,读者不妨一试. 例2(2009年北京中考题) 如图4,在平面直角坐标系 xOy 中,△ ABC 三个顶点的坐标分别为A 6,0 , B 6,0 , C 0,4-. 3,延长AC 到点D,使CD=1 AC ,过点D 作2DE // AB 交BC 的延长线于点 E.(1)求D 点的坐标;BO=CO=GC=」2a , GO=「6,解得 a =2.(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线y kx b将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;(3)设G为y轴上一点,点P从直线y kx b与y轴的交点出发,先沿y轴到达G 点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短.分析和解:(1)D点的坐标(3, 3 )(过程略).(2)直线BM的解析式为y ,3x 6.3 (过程略).解法1 •/ BQ=AQ, ••• MQ + 2AQ最小就是MQ + AQ+ BQ最小,就是在直线MO上找点G使他到A、B、M三点的距离和最小•至此,再次发现这又是一个费尔马问题的变形,注意到题目中等边三角形的信息,考虑作旋转变换.把厶MQB绕点B顺时针旋转60。

初三数学中考模型之费马点问题(含答案)

初三数学中考模型之费马点问题(含答案)

费马点的问题定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。

它是这样确定的:1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。

3. 费马点与3个顶点连成的线段是沟通3点的最短路线,容易理解,这个路线是唯一的。

我们称这一结果为最短路线原理。

性质:费马点有如下主要性质:1.费马点到三角形三个顶点距离之和最小。

2.费马点连接三顶点所成的三夹角皆为120°。

3.费马点为三角形中能量最低点。

4.三力平衡时三力夹角皆为120°,所以费马点是三力平衡的点。

例1:已知:△ABH是等边三角形。

求证:GA+GB+GH最小证明:∵△ABH是等边三角形。

G是其重心。

∴∠AGH=∠AGB=∠BGH=120°。

以HB为边向右上方作等边三角形△DBH.以HG为边向右上方作等边三角形△GHP.∵AH=BH=AB=12.∴∠AGH=120°,∠HGP=60°.∴A、G、P三点一线。

再连PD两点。

∵△ABH、△GHP和△BDH都是等边三角形,∠GHB=30°.∴∠PHD=30°,.在△HGB和△HPD中∵HG=HP∠GHB=∠PHD;HB=HD;∴△HGB≌△HPD;(SAS)∴∠HPD=∠HGB=120°;∵∠HPG=60°.∴G、P、D三点一线。

∴AG=GP=PD,且同在一条直线上。

∵GA+GH+GB=GA+GP+PD=AD.∴G点是等边三角形内到三个顶点的距离之和最小的哪一点,费马点。

也就是重心。

例2:已知:△ABC是等腰三角形,G是三角形内一点。

∠AGC=∠AGB=∠BGC=120°。

求证:GA+GB+GC最小证明:将△BGC逆时针旋转60°,连GP,DB.则△HGB≌△HPD;∴∠CPD=∠CGB=120°,CG=CP,GB=PD,BC=DC,∠GCB=∠PCD.∵∠GCP=60°,∴∠BCD=60°,∴△GCP和△BCD都是等边三角形。

2023-2024学年人教版初三下学期中考《旋转模型之费马点问题》知识点专题解析及练习

2023-2024学年人教版初三下学期中考《旋转模型之费马点问题》知识点专题解析及练习

任课教师签名:旋转模型之费马点问题一、题目背景和实际应用:费马点,又称为费马-托里拆利点(Fermat-Torricelli Point ),是几何学中的一个重要概念。

费马点是三角形内的一个特殊点,从该点到三角形的三个顶点的距离之和最短。

这个神秘而有趣的点,自17世纪由法国数学家皮埃尔·德·费马提出以来,一直吸引着无数数学爱好者和研究者的关注。

费马点在几何学和实际应用中有很多用途。

例如,在建筑设计、机器人路径规划、电路设计等领域,通过找到费马点,可以实现最短路径、最优布局等目标。

此外,费马点还在一些数学竞赛和趣味题中得到了广泛应用,成为考察学生几何知识和思维能力的重要工具。

二、费马点证明问题:如何找点 P 使它到△ABC 三个顶点的距离之和 PA+PB+PC 最小? 图文解析:如图 1,把△APC 绕 C 点顺时针旋转 60°得到△A'P'C ,连接 PP'.则△CPP′为等边三角形,CP=PP',PA=P'A',∴PA+PB+PC= P''A'+ PB + PP' ≥BA′.∵点A'可看成是线段CA 绕C 点顺时针旋转60°而得的定点,BA'为定长, ∴当B 、P 、P'、A'四点在同一直线上时,PA+PB+PC 最小.最小值为 BA’ . 【如图 1 和图 2,利用旋转、等边等条件转化相等线段.】皮埃尔·德·费马图1∴在图2中,∠APC=∠A′ P′C=180°-∠CP′P=180°-60°=120°,∠BPC=180°-∠P′PC=180°-60°=120°,∠APB=360°-∠BPC-∠APC=360°-120°-120°=120°.因此,当△ABC 的每一个内角都小于120°时,所求的点P 对三角形每边的张角都是120°;当有一内角大于或等于120°时,所求的P点就是钝角的顶点.费马点问题告诉我们,存在这么一个点到三个定图2点的距离的和最小,解决问题的方法是运用旋转变换.【方法总结】利用旋转、等边等条件转化相等线段,将三条线段转化成首尾相连的三条线段.三:费马点的性质1. 到三个顶点的距离之和最短:费马点是三角形内唯一一个使得从该点到三角形三个顶点的距离之和最短的点。

初三数学费马点练习题

初三数学费马点练习题

初三数学费马点练习题费马点(Fermat Point)是指在一个三角形中,距离三个顶点的距离之和最小的点。

它被称为费马点,是为了纪念法国数学家皮埃尔·费马(Pierre de Fermat)。

在本文中,将提供一些初三数学费马点练习题,通过这些题目的解答,读者将更好地理解费马点的概念和特性。

题目一:已知△ABC中,∠ABC = 60°,AD为边BC上的高,点E为三角形内部一点,满足∠BAE = ∠CAE = 30°。

证明:点E为△ABC的费马点。

解答一:我们需要证明点E到三个顶点A、B、C的距离之和最小。

首先,连接AE、BE、CE,构造△BAE和△CAE。

由已知条件可知,∠BAE = ∠CAE = 30°,而∠ABC = 60°。

观察三角形△BAE,角度和为180°,因此∠AEB = 180° - 30° - 30°= 120°。

同理,在三角形△CAE中,∠AEC = 180° - 30° - 30° = 120°。

现在我们可以继续分析三角形△ABC,∠ABC = 60°,∠BAC = 180°- 60° - 30° - 30° = 60°。

接下来,我们来考虑三角形△BAE和△CAE的外角。

对于△BAE,∠BEA = 180° - 120° = 60°;对于△CAE,∠CEA = 180° - 120° = 60°。

现在,我们可以观察到三角形△BAE、△CAE和△ABC中都有一个60°的角,并且对应的外角也是60°。

根据确定费马点的性质,可知点E为△ABC的费马点。

题目二:已知△ABC中,∠BAC = 90°,点D为边BC上的一点,满足BD = DC。

费马定理初三练习题

费马定理初三练习题

费马定理初三练习题费马定理是数论中的一个重要定理,也是数学家费马提出的一道著名的问题。

该定理内容较为深奥,但是在初三数学的学习中,我们可以通过一些简单的练习题来加深对费马定理的理解和应用。

本文将提供一些初三级别的费马定理练习题,帮助学生巩固和扩展对该定理的认识。

一、选择题1. 设a、b、c为正整数,且满足(a^n + b^n = c^n),其中n为正整数,则根据费马定理情况分析,以下哪个情况是不可能的?A. n = 2B. n = 3C. n = 4D. n = 52. 已知正整数x、y满足公式(x^2 + y^2 = z^2),其中z为正整数,根据费马定理可以推断下列哪个选项一定成立?A. x与y均为奇数B. x与y均为偶数C. x与y之一为奇数,另一个为偶数D. 无法确定x与y的奇偶性二、填空题1. 利用费马定理,填空:若n为大于2的正整数,上式(a^n + b^n =c^n)无正整数解,a、b、c均不为0。

则n的最小可能值为\_\_\_。

2. 利用费马定理,填空:若(a^n + b^n = c^n),其中a、b为正整数,c为正整数,n为大于2的正整数。

若n为奇数,则a、b的奇偶性相\_\_\_;若n为偶数,则a、b的奇偶性相\_\_\_。

三、证明题证明:当n为大于2的正整数时,费马定理指出,关于方程(a^n +b^n = c^n)的正整数解不存在。

四、应用题1. 选择合适的等式填空,利用费马定理,说明以下宣告中哪些是错误的,并给出正确的宣告:宣告1:对于任意正整数n,方程(a^n + b^n = c^n)在正整数范围内无解。

宣告2:关于方程(a^n + b^n = c^n),当a、b、c满足条件时,n的取值范围可以是任意正整数。

宣告3:方程(a^n + b^n = c^n)在正整数范围内的解存在与n的奇偶性无关。

2. 利用费马定理,判断以下等式的解是否存在,若存在则给出对应的解;若不存在则说明原因:等式1:(a^3 + b^3 = c^3),其中a、b、c为正整数。

专题40中考最值难点突破费马点问题(原卷版)

专题40中考最值难点突破费马点问题(原卷版)

专题40 中考最值难点突破费马点问题(原卷版)模块一典例剖析+针对训练费马点问题解题技巧:旋转变换.类型一费马点模型典例1(2020秋•仓山区校级期中)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CP A=120°,则点P叫做△ABC的费马点,此时P A+PB+PC的和最小,称为△ABC的费马距离.(1)若点P是等边三角形三条高的交点,点P(填是或不是)该三角形的费马点.(2)如图(2),分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD相交于P点.求证:P点为△ABC的费马点.(3)若图(2)中,AB=5,AC=4,BC=a,BD=b,则△ABC的费马距离=.针对训练1.(2021春•滨海县期中)如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B 点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)当M点在何处时,2AM的值最小,并说明理由;(3)当M点在何处时,2AM+BM的值最小,并说明理由.2.(2021春•历下区期末)【操作发现】(1)如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.①请按要求画图:将ABC绕点A按顺时针方向旋转90°,点B的对应点为B',点C的对应点为C′;②连接BB′,此时∠ABB′=°;【问题解决】在某次数学兴趣小组活动中,小明同学遇到了如下问题:(2)如图2,在等边△ABC中,点P在内部,且P A=3,PC=4,∠APC=150°,求PB的长.经过同学们的观察、分析、思考、交流,对上述问题形成了如下想法:将△APC绕点A按顺时针方向旋转60°,得到△ABP′,连接PP′,寻找P A、PB、PC三边之间的数量关系.…请参考他们的想法,完成该问题的解答过程;【学以致用】(3)如图3,在等腰直角△ABC中,∠ACB=90°,P为△ABC内一点,且P A=5,PC=2√2,∠BPC =135°,求PB;【思维拓展】(4)注意:从以下①②中,你任意选择一道题解答即可.①等腰直角△ABC中,∠ACB=90°,P为△ABC内部一点,若BC=4,则AP+BP+CP的最小值=;②如图4,若点P是正方形ABCD外一点,P A=3,PB=√3,PC=√15,求∠APB的度数.3.(2019春•金水区校级期中)在△ABC中,∠ACB=90°,点P为△ABC内一点.(1)如图1,连接PB,PC,将△BCP沿射线CA方向平移,得到△DAE,点B,C,P的对应点分别为点D,A,E,连接CE.如果BP⊥CE,BP=3,AB=6,则CE=.(2)如图2,连接P A,PB,PC,当AC=BC=8时,求P A+PB+PC的最小值.类型二费马点模型变式典例2(2021春•碑林区校级期中)[问题发现]如图①,在△OAB中,OB=3,若将△OAB绕点O逆时针旋转120°得△OA′B′,连接BB'.则BB'=.[问题探究]如图②,已知△ABC是边长为4√3的等边三角形,以BC为边向外作等边△BCD,P为△ABC 内一点,将线段CP绕点C逆时针旋转60°,P的对应点为Q.求P A+PB+PC的最小值.[实际应用]如图③,在长方形ABCD中,其中AB=600,AD=800,点P是长方形内一动点,且S△P AD =2S△PBC,点Q为△ADP内的任意一点,是否存在一点P和一点Q,使得AQ+DQ+PQ有最小值?若存在,请求出这个最小值,并求出此时PQ的长度,若不存在,请说明理由.针对训练1.(2021•雁塔区校级模拟)【问题情境】如图1,在△ABC中,∠A=120°,AB=AC,BC=5√3,则△ABC的外接圆的半径值为.【问题解决】如图2,点P为正方形ABCD内一点,且∠BPC=90°,若AB=4,求AP的最小值.【问题解决】如图3,正方形ABCD是一个边长为3√3cm的隔离区域设计图,CE为大门,点E在边BC上,CE=√3cm,点P是正方形ABCD内设立的一个活动岗哨,到B、E的张角为120°,即∠BPE=120°,点A、D为另两个固定岗哨.现需在隔离区域内部设置一个补水供给点Q,使得Q到A、D、P三个岗哨的距离和最小,试求QA+QD+QP的最小值.(保留根号或结果精确到1cm,参考数据√3≈1.7,10.52=110.25).模块二2023中考押题预测一.选择题1.(2017秋•义乌市月考)已知点P是△ABC内一点,且它到三角形的三个顶点距离之和最小,则P点叫△ABC的费马点(Fermatpoint).已经证明:在三个内角均小于120°的△ABC中,当∠APB=∠APC=∠BPC=120°时,P就是△ABC的费马点.若点P是腰长为√2的等腰直角三角形DEF的费马点,则PD+PE+PF=()A.2√3B.1+√3C.6D.3√32.(2022春•山亭区期中)如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置,使CC′∥AB,则旋转角的度数为()A.40°B.30°C.50°D.65°二.填空题3.(2019秋•开福区校级月考)法国数学家费马提出:在△ABC内存在一点P,使它到三角形顶点的距离之和最小.人们称这个点为费马点,此时P A+PB+PC的值为费马距离.经研究发现:在锐角△ABC中,费马点P满足∠APB=∠BPC=∠CP A=120°,如图,点P为锐角△ABC的费马点,且P A=3,PC=4,∠ABC=60°,则费马距离为.4.(2019秋•梁溪区期末)如图,已知正方形ABCD内一动点E到A、B、C三点的距离之和的最小值为1+√3,则这个正方形的边长为.5.(2021•丹东)已知:到三角形3个顶点距离之和最小的点称为该三角形的费马点.如果△ABC是锐角(或直角)三角形,则其费马点P是三角形内一点,且满足∠APB=∠BPC=∠CP A=120°.(例如:等边三角形的费马点是其三条高的交点).若AB=AC=√7,BC=2√3,P为△ABC的费马点,则P A+PB+PC =;若AB=2√3,BC=2,AC=4,P为△ABC的费马点,则P A+PB+PC=.6.(2022秋•洪山区校级期中)如图,以等边△ABC的一边BC为底边作等腰△BCD,已知AB=3,CD=BD=√3,且∠BDC=120°,在△BCD内有一动点P,则PB+PC+PD的最小值为.7.(2022秋•大冶市期末)如图,D是等边三角形ABC外一点,连接AD,BD,CD,已知BD=8,CD=3,则当线段AD的长度最小时,①∠BDC=;②AD的最小值是.三.解答题8.(2009•湖州)自选题:若P为△ABC所在平面上一点,且∠APB=∠BPC=∠CP A=120°,则点P叫做△ABC的费马点.(1)若点P为锐角△ABC的费马点,且∠ABC=60°,P A=3,PC=4,则PB的值为;(2)如图,在锐角△ABC外侧作等边△ACB′连接BB′.求证:BB′过△ABC的费马点P,且BB′=P A+PB+PC.9.问题探究:(1)如图1,已知,在四边形ABCD中,AB=BC,AD=DC,则对角线AC、BD的位置关系是.(2)如图2,已知,在△ABC中,AC=BC,∠ACB=90°.△ABC内一动点E到A、B、C三点的距离之和的最小值为2,求AC的长.问题解决:(3)如图3,在平面直角坐标系xOy中,△ABC三个顶点的坐标分别为A(﹣6,0),B(6,0),C(0,4√3),延长AC至点D,使CD=12AC,过点D作DE⊥y轴于点E.设G为y轴上一点,点P从点E出发,先沿y轴到达G点,再沿GA到达A点.若点P在直线GA上运动速度为定值v,在y轴上运动速度为2v,试确定点G的位置,使P点按照上述要求到达A点所用的时间最短,并求此时点G的坐标.10.(2017•利辛县一模)如图(1),P为△ABC所在平面上一点,且∠APB=∠BPC=∠CP A=120°,则点P叫做△ABC的费马点.(1)若点P是等边三角形三条中线的交点,点P(填是或不是)该三角形的费马点.(2)如果点P为锐角△ABC的费马点,且∠ABC=60°.求证:△ABP∽△BCP;(3)已知锐角△ABC,分别以AB、AC为边向外作正△ABE和正△ACD,CE和BD交于P点.如图(2)①求∠CPD的度数;②求证:P点为△ABC的费马点.12.(2022春•兰溪市校级月考)定义:在一个等腰三角形底边的高线上所有点中,到三角形三个顶点距离之和最小的点叫做这个等腰三角形的“近点”,“近点”到三个顶点距离之和叫做这个等腰三角形的“最近值”.【基础巩固】(1)如图1,在等腰Rt△ABC中,∠BAC=90°,AD为BC边上的高,已知AD上一点E满足∠DEC =60°,AC=4√6,求AE+BE+CE=;【尝试应用】(2)如图2,等边三角形ABC边长为4√3,E为高线AD上的点,将三角形AEC绕点A逆时针旋转60°得到三角形AFG,连接EF,请你在此基础上继续探究求出等边三角形ABC的“最近值”;【拓展提高】(3)如图3,在菱形ABCD中,过AB的中点E作AB垂线交CD的延长线于点F,连接AC、DB,已知∠BDA=75°,AB=6,求三角形AFB“最近值”的平方.。

“费马点”与中考试题

“费马点”与中考试题

“费马点”与中考试题(一)费马,法国业余数学家,拥有业余数学之王的称号,他是解析几何的发明者之一.费马点——就是到三角形的三个顶点的距离之和最小的点.费尔马的结论:对于一个各角不超过120°的三角形,费马点是对各边的张角都是120°的点,对于有一个角超过120°的三角形,费马点就是这个内角的顶点.下面简单说明如何找点P使它到三个顶点的距离之和PA+PB+PC最小?这就是所谓的费马问题.图1解析:如图1,把△APC绕A点逆时针旋转60°得到△AP′C′,连接PP′.则△APP′为等边三角形,AP= PP′,P′C′=PC,所以PA+PB+PC= PP′+ PB+ P′C′.点C′可看成是线段AC绕A点逆时针旋转60°而得的定点,BC′为定长,所以当B、P、P′、C′ 四点在同一直线上时,PA+PB+PC最小.这时∠BPA=180°-∠APP′=180°-60°=120°,∠APC=∠A P′C′=180°-∠AP′P=180°-60°=120°,∠BPC=360°-∠BPA-∠APC=360°-120°-120°=120°因此,当的每一个内角都小于120°时,所求的点P对三角形每边的张角都是120°,可在AB、BC边上分别作120°的弓形弧,两弧在三角形内的交点就是P点;当有一内角大于或等于120°时,所求的P点就是钝角的顶点.费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.本文列举近年“费马点”走进中考试卷的实例,供同学们学习参考.例1 (广东中考题)已知正方形ABCD内一动点E到A、B、C三点的距离之和的最小值为,求此正方形的边长.图2图3分析:连接AC,发现点E到A、B、C三点的距离之和就是到三个顶点的距离之和,这实际是费尔马问题的变形,只是背景不同.解如图2,连接AC,把△AEC绕点C顺时针旋转60°,得到△GFC,连接EF、BG、AG,可知△EFC、△AGC都是等边三角形,则EF=CE.又FG=AE,∴AE+BE+CE = BE+EF+FG(图4).∵点B、点G为定点(G为点A绕C点顺时针旋转60°所得).∴线段BG即为点E到A、B、C三点的距离之和的最小值,此时E、F两点都在BG 上(图3).设正方形的边长为,那么BO=CO=,GC=, GO=.∴BG=BO+GO=+.∵点E到A、B、C三点的距离之和的最小值为.∴+=,解得=2.注本题旋转△AEB、△BEC也都可以,但都必须绕着定点旋转,读者不妨一试.例2 (北京中考题)如图4,在平面直角坐标系中,△ABC三个顶点的坐标分别为,,,延长AC到点D, 使CD=,过点D作DE∥AB交BC的延长线于点E.(1)求D点的坐标;(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线将四边形CDFE分成周长相等的两个四边形,确定此直线的解析式;(3)设G为y轴上一点,点P从直线与y轴的交点出发,先沿y轴到达G 点,再沿GA到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短.分析和解:(1)D点的坐标(3,)(过程略).(2)直线BM的解析式为(过程略).图4(3)如何确定点G的位置是本题的难点也是关健所在.设Q点为y轴上一点,P在y 轴上运动的速度为v,则P沿M→Q→A运动的时间为,使P点到达A点所用的时间最短,就是MQ+AQ最小,或MQ+2AQ最小.解法1 ∵BQ=AQ,∴MQ+2AQ最小就是MQ+AQ+BQ最小,就是在直线MO 上找点G使他到A、B、M三点的距离和最小.至此,再次发现这又是一个费尔马问题的变形,注意到题目中等边三角形的信息,考虑作旋转变换.把△MQB绕点B顺时针旋转60°,得到△M′Q′B,连接QQ′、MM′(图5),可知△QQ′B、△MM′B都是等边三角形,则QQ′=BQ.又M′Q′=MQ,∴MQ+AQ+BQ= M′Q′+ QQ′+AQ.∵点A、M′为定点,所以当Q、Q′两点在线段A M′上时,MQ+AQ+BQ最小.由条件可证明Q′点总在AM′上,所以 A M′与OM的交点就是所要的G点(图6).可证OG=MG.图5 图6 图7解法 2 考虑MQ+AQ最小,过Q作BM的垂线交BM于K,由OB=6,OM=,可得∠BMO=30°,所以QK=MQ.要使MQ+AQ最小,只需使AQ+QK最小,根据“垂线段最短”,可推出当点A、Q、K在一条直线上时,AQ+QK最小,并且此时的QK垂直于BM,此时的点Q即为所求的点G(图7).过A点作AH⊥BM于H,则AH与y轴的交点为所求的G点.由OB=6,OM=,可得∠OBM=60°,∴∠BAH=30°在Rt△OAG中,OG=AO·tan∠BAH=∴G点的坐标为(0,)(G点为线段OC的中点).例 3 (湖州中考题)若点P 为△ABC所在平面上一点,且∠APB=∠BPC=∠CPA=120°, 则点P叫做△ABC的费马点.(1)若P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4, 则PB的值为;(2)如图8,在锐角△ABC的外侧作等边△ACB′,连结BB′.求证:BB′ 过△ABC 的费马点P,且BB′=PA+PB+PC.图8解:(1)利用相似三角形可求PB的值为.(2)设点P为锐角△ABC的费马点,即∠APB=∠BPC=∠CPA=120°如图8,把△ACP绕点C顺时针旋转60°到△B′CE,连结PE,则△EPC为正三角形.∵∠B′EC = ∠APC =120°,∠PEC=60°∴∠B′EC+∠PEC=180°即 P、E、B′三点在同一直线上∵∠BPC=120°,∠CPE=60°,∴∠BPC +∠CPE =180°,即 B、P、E 三点在同一直线上∴B、P、E、B′四点在同一直线上,即BB′ 过△ABC的费马点P.又PE=PC,B′E= PA,∴BB′=E B′+PB+PE=PA+PB+PC.注通过旋转变换,可以改变线段的位置,优化图形的结构.在使用这一方法解题时需注意图形旋转变换的基础,即存在相等的线段,一般地,当题目出现等腰三角形(等边三角形)、正方形条件时,可将图形作旋转60°或90°的几何变换,将不规则图形变为规则图形,或将分散的条件集中在一起,以便挖掘隐含条件,使问题得以解决.费尔马问题是个有趣的数学问题,这些问题常常可通过旋转变换来解决.。

(中考数学二轮强化专题)第10讲 费马点问题

(中考数学二轮强化专题)第10讲 费马点问题

第十讲线段和最小之“费马点问题”问题背景“费马点”——就是到三角形三个顶点的距离之和最小的点.“费马点”问题在中考考查时主要隐藏在求PA+PB+PC的最小值问题,通常将某三角形绕点旋转一定的角度,从而将三条线段转化在同一条直线上,利用两点之间线段最短解决问题.模型分析1、对于一个各角不超过120°的三角形,“费马点”是对各边的张角都是120°的点;2、对于有一个角超过120°的三角形,费马点就是这个内角的顶点.费马点P使它到△ABC三个顶点的距离之和PA+PB+PC最小,这就是所谓的“费马”问题.【模型计算】如图,将△APC绕点A逆时针旋转60°到△AP′C′,则可以构造出等边三角形APP′,从而得到AP=PP′,CP=C′P′,所以将PA+PB+PC的值转化为PP′+PB+P′C′的值,则线段BC′的长即为所求的最小值.经典例题剖析例1.如图,在△ABC中,P为平面内一点,连结P A,PB,PC,分别以PC和AC为一边向右作等边三角形△PCM和△ACD.【探究】求证:PM=PC,MD=P A【应用】若BC=a,AC=b,∠ACB=60°,则P A+PB+PC的最小值是______________(用a,b 表示)例2.如图,矩形ABCD中,AB=2√3,BC=6,P为矩形内一点,连接P A,PB,PC,则P A+PB+PC 的最小值是________________。

强化练习1.如图,已知正方ABCD内一动点E到A、B、C三点的距离之和的最小值为1+√3,则这个正方形的边长为______.2.问题背景:如图1,将△ABC绕点A逆时针旋转60°得到△ADE,DE与BC交于点P,可推出结论:P A+PC=PE.问题解决:如图2,在△MNG中,MN=6,∠M=75°,MG=4√2.点O是△MNG内一点,则点O到△MNG三个顶点的距离和的最小值是________.3.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.(1)求证:△AMB≌△ENB;(2)①当M点在何处时,AM+CM的值最小;②当M点在何处时,AM+BM+CM的值最小,并说明理由;(3)当AM+BM+CM的最小值为√3+1时,求正方形的边长.。

2024年中考数学几何模型之动点最值之费马点模型(讲+练)(原卷版[001]

2024年中考数学几何模型之动点最值之费马点模型(讲+练)(原卷版[001]

专题12 动点最值之费马点模型费马点模型:如图,在△ABC内部找到一点P,使得PA+PB+PC的值最小.当点P满足∠APB=∠BPC=∠CPA=120º,则PA+PB+PC的值最小,P点称为三角形的费马点.特别地,△ABC中,最大的角要小于120º,若最大的角大于或等于120º,此时费马点就是最大角的顶点A(这种情况一般不考,通常三角形的最大顶角都小于120°)费马点的性质:1.费马点到三角形三个顶点距离之和最小。

2.费马点连接三顶点所成的三夹角皆为120°。

费马点最小值解法:以△ABC任意一边为边向外作等边三角形,这条边所对两顶点的距离即为最小值证明过程:将△APC边以A为顶点逆时针旋转60°,得到AQE,连接PQ,则△APQ为等边三角形,PA=PQ。

即PA+PB+PC=PQ+PB+PC,当B、P、Q、E四点共线时取得最小值BE例题1. 已知:△ABC是锐角三角形,G是三角形内一点。

△AGC=△AGB=△BGC=120°.求证:GA+GB+GC的值最小.例题2. 已知正方形ABCD 内一动点E 到A 、B 、C 26求正方形的边长.【变式训练1】已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点。

已经证明:在三个内角均小于120°的△ABC 中,当∠APB =∠APC =∠BPC =120°时,P 就是△ABC 的费马点。

若点P 的等腰直角三角形DEF 的费马点,则PD +PE +PF = .【变式训练2】如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.【变式训练3】如图,P 是锐角△ABC 所在平面上一点,如果∠APB =∠BPC =∠CPA =120°,则点P 就叫做△ABC 费马点。

中考补充专题15

中考补充专题15

OMNG图2图1ABCD EPABC P专题15.“费马点模型”一.知识点:费马点就是“到三角形的三个顶点的距离之和最小的点”如图,△ABC 的三个内角均不大于120°,P 为△ABC 内的一点,且∠APB =∠BPC =∠CPA =120°时,此时PA+PB+PC 的和最小。

点P 就是△ABC 的费马点。

二.典型例题例1.问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE . 问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG =42,点O 是△MNG 内一点,则点O 到△MNG 三个顶点的距离和的最小值是______.例2.如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM .(1)求证:△AMB ≌△ENB ;(2)①当M 点在何处时,AM +CM 的值最小; ②当M 点在何处时,AM +BM +CM 的值最小,并说明理由;(3)当AM +BM +CM 的最小值为2+2时,求正方形的边长.三.变式练习1.如图1,在△ABC 中,∠ACB =90°,AB =AC =1,P 是△ABC 内一点,P A +PB +PC 的最小值为______. 2.如图2,在 Rt △ABC 中,∠ACB =90°,AC =1,BC =,∠ABC =30°,点O 为 Rt △ABC 内一点,连接AO 、BO 、CO .且∠AOC =∠COB =∠BOA =120°,则OA +OB +OC 的值为_____.图1 图23.如图3,在△MNG 中,MN =4,∠M =75°,MG =3.点O 是△MNG 内一点,则点O 到△MNG 三个顶点的距离和的最小值是 .图3A B C D M E 4.如图4,是有一个锐角为30°的直角三角形,如果斜边为2,点P 是这个三角形内一动点,求点P 到这个三角形各顶点的距离之和的最小值为 .图 4图55.如图,△ABC 中,∠ACB =30°,BC =6,AC =5,在△ABC 内部有一点P ,连接P A 、PB 、PC ,则P A +PB +PC 的最小值为 .6.如图6,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.8.如图,一个矩形菜地的A ,B ,C 三个顶点处有三个菜窖,现打算在矩形菜地内部建一个蔬菜运输点P ,经研究发现,运输点P 到A ,B ,C 三个菜窖的总路程至少为2千米,若AB =2BC ,则此矩形菜地的面积至少为 平方千米.7.如图,直角坐标系中有菱形ABCD ,点B 与原点重合,C 坐标为(4,0),∠ABC =60°,若在菱形ABCD 内部有一动点P ,试求P A +PB +PC 的最小值,并求出此时点P 的坐标是多少;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图4—11PC BA从“费马点”说起前言解题 题海战术 通性通法 过程与结果 内化 一、走近费马点 1.(浙教版数学八下P82)设计题 你听说过费马点吗?如图4—11,P 为△ABC 所在平面上一点。

如果∠APB=∠BPC=∠CPA=120°,则点P 就叫做费马点。

费马点有许多有趣并且有意义的性质,例如,平面内一点P 到△ABC 三顶点的距离之和为PA+PB+PC ,当点P 为费马点时,距离之和最小。

假设A,B,C 表示三个村庄,要选一处建车站,使车站到三个村庄的公路路程的和最短。

若不考虑其他因素,那么车站应建在费马点上。

请按下列步骤对费马点进行探究:(1) 查找有关资料,了解费马点被发现的历史背景;(2) 在特殊三角形中寻找并验证费马点。

例如,当△ABC 是等边三角形、等腰三角形或直角三角形时,费马点有哪些性质?(3) 把你的研究结果写成一篇小论文,并通过与同学交流来修改完善你的小论文。

2.(2009年浙江省湖州市中考题)若P 为ABC △所在平面上一点,且120APB BPC CPA ∠=∠=∠=°,则点P 叫做ABC △的费马点. (1)若点P 为锐角ABC △的费马点,且60ABC PA PC ∠===°,3,4,则PB 的值为________; (2)如图,在锐角ABC △外侧作等边ACB △′连结BB ′. 求证:BB ′过ABC △的费马点P ,且BB ′=PA PB PC ++.3.(2010年湖南省永州市中考数学试题)探究问题:(1)阅读理解:①如图(1),在已知△ABC 所在平面上存在一点P ,使它到三角形三顶点的距离之和最小,则称点P 为△ABC 的费马点,此时PA+PB+PC 的值为△ABC 的费马距离.②如图(2),若四边形ABCD 的四个顶点在同一圆上,则有AB ·CD+BC ·DA=AC ·BD ,此为托勒密定理.(2)知识迁移:HPDCBA①请你利用托勒密定理,解决如下问题:如图(3),已知点P 为等边△ABC 外接圆的弧BC 上任意一点.求证:PB+PC=PA ②根据(2)①的结论,我们有如下探寻△ABC(其中∠A 、∠B 、∠C 均小于120度)的费 马点和费马距离的方法:第一步:如图(4)在△ABC 的外部以BC 为边长作等边△BCD 及其外接圆; 第二步:在弧BC 上任取一点'P ,连结'P A 、'P B 、'P C 、'P D易知''''('')'P A P B P C P A P B P C P A ++=++=+ ; 第三步:请你根据(1)①中定义,在图(4)中找出△ABC 的费马点P ,并请指出 线段 的长度即为△ABC 的费马距离(3)知识应用:2010年4月,我国西南地区出现了罕见的持续干旱现象,许多村庄出现了人、畜饮水困难,为解决老百姓的饮水问题,解放军某部来到云南某地打井取水.已知三村庄A 、B,C 构成了如图(5)所示的△ABC(其中∠A 、∠B 、∠C 均小于120o),现选取一点P 打水井,使从水井P 到三村庄A 、B 、C 所铺设的 输水管总长度最小,求输水管总长度的最小值. 4.(2008年广东省中考题)已知正方形ABCD 内一动点E 到A,B,C 三点的距离之和的最小值为62+,求此正方形的边长。

5.(2009年天津市竞赛题)已知点P 是锐角三角形ABC 内的一个点,且使PA+PB+PC 最小。

试确定点P 的位置,并证明你的结论。

图1PCBAB`图2B6.(2011年北京市竞赛题)如图,矩形ABCD 是一个长为1000m ,宽为600m 的货场,A 、D 是入口。

现拟在货场内建一个收费站P ,在铁路线BC 段上建一个发货站台H ,设铺设公路AP 、DP 及HP 之长度和为l 。

(1)求l 的最小值;(2)请指出当l 取最小值时,收费站P 和发货站台H 的几何位置。

二、探究费马点 1.来历:费马在阅读“将军饮马”问题时,联想到“如何确定平面内到三个已知点距离和最小的点?” 写信给托里拆利,托里拆利解决了这个难题,后来斯坦纳进行了完善和推广。

2.结论:三角形的费马点:平面上,到一个已知三角形三个顶点的距离和最小的点叫做这个三角形的费马点. (1)当已知三角形最大内角小于120°时,费马点在该三角形内,且与任两个顶点的连线的夹角均为120°;(2)当已知三角形最大内角大于或等于120°时,费马点就是这个最大内角的顶点.3.证明.求三条发散的线段和的最小值,一般通过图形变换,形成确定两端点的折线,运用“两点之间线段最短”解决.1)当三角形的最大内角小于120°的情形.已知:如图1,P 为△ABC 内一点,∠APB=∠BPC=∠CPA=120°.设平面内有一点'P . 求证:PA+PB+PC ≤C P B P A P '''++.证明:如图2,分别以AP 、AC 为边作正三角形,连结E B '',得△APC ≌△'AEB ,易知',,,B E P B 在同一直线上,PA+PB+PC='EB PE BP ++≤C P B P A P '''++.B'B2)当三角形的最大内角不小于120°的情形.4.如何确定费马点的位置(最大内角小于120°的情形).分别以BC 、AC 为边向外作正三角形,连结'',AA BB ,交点即为所求费马点P 。

(连结PC ,先证明△'ACA ≌△CB B ',得∠PAC=∠C PB ',所以',,,B C P A 四点共圆,得∠APC=120°,同理∠BPC=120°)5.应用举例(思考:特殊三角形的费马点性质). 题1~6见前7.(2009年北京市中考题)如图,在平面直角坐标系xOy 中,△ABC 的坐标分别为()6,0A-,()6,0B,()0,43C,延长AC到点D,使CD=12AC,过点D作DE∥AB交BC的延长线于点E.(1)求D点的坐标;(2)作C点关于直线DE的对称点F,分别连结DF、EF,若过B点的直线y kx b=+将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;(3)设G为y轴上一点,点P从直线y kx b=+与y轴的交点出发,先沿y轴到达G点,再沿GA 到达A点,若P点在y轴上运动的速度是它在直线GA上运动速度的2倍,试确定G点的位置,使P点按照上述要求到达A点所用的时间最短。

(要求:简述确定G点位置的方法,但不要求证明)(2004年我爱数学初中生夏令营数学竞赛试题)8.如图,A、B两地相距600km,过A地的一条铁路AD笔直地沿东西方向向两边延伸.点B到A D 的最短距离为3 6 0km.今计划在铁路线AD上修一个中转站C,再在BC间修一条笔直的公路.如果同样的物资在每千米公路上的运费是铁路上的两倍,那么,为使通过铁路由A到C再通过公路由C到B的总运费达到最小值,中转站C的位置应使AC= km.三、拓展1.将军饮马问题的延伸.2.两个正三角形共顶点.3.两点间折线大小的比较.4.四点共圆.5.正三角形的媒介作用。

练习1 (湖州中考题)已知平面直角坐标系中,A,B两点的坐标分别为A(2,-3)、B(4,-1).(1)若P(x,0)是x轴上的一个动点,当△PAB的周长最短时,求x的值;(2)若C(a,0),D(a+3,0)是x轴上的两个动点,当四边形ABDC的周长最短时,求a 的值;PCBA 图5DCBA A D CB 图3O CBA(3)设M ,N 分别为x 轴,y 轴上的动点,问:是否存在这样的点M(m ,0)和N(0,n),使四边形ABMN 的周长最短?若存在,求出m ,n 的值;若不存在,请说明理由.练习2(武汉竞赛题)如图5,设P 到等边三角形ABC 两顶点A 、B 的距离分别为2,3,则PC 所能达到的最大值为( ) (A )5 (B )13 (C )5 (D )6练习3(四川竞赛题)如图,设△ABC 和△CDE 都是正三角形,且∠EBD =63o ,则∠AEB 的度数是 .练习4(广西竞赛题)如下图,已知∠ABC=30°, ∠ADC=60°,AD=DC ,求证:222BD AB BC =+.练习5(宁波竞赛题)如图3,已知点O 为等边三角形ABC 内的一点,∠AOB=115°, ∠BOC=125°,试求以OA 、OB 、OC 为三边的三角形的各内角 的度数.练习6如上右图,正三角形ABC 外一点D ,且∠BDC=120°, 求证:AD=BD+CD.图7D C B A练习7如图,菱形ABCD 的边BC,CD 上分别有点E,F ,∠B=60°,△AEF 有一个内角为60°,求证:△AEF 是正三角形。

ED练习8(重庆竞赛题)如图7,△ABC 中,∠ACB=90°,∠CAD=30°,AC=BC=AD 。

求证:BD=CD练习9(山东潍坊中考题)在平面确定四点,连结每两点,使任意三点构成等腰三角形(包括等边三角形),且每两点之间的线段长只有两个数值,则这四点的取法有多少种?画图说明。

练习10如图,求证:AC+BC >AP+BP;AC+BC >AP+PP ’+BP ’BABA练习11 (2010年江苏南通中考题)已知抛物线y =ax 2+bx +c 经过A (-4,3)、B (2,0)两点,当x =3和x =-3时,这条抛物线上对应点的纵坐标相等.经过点C (0,-2)的直线l 与 x 轴平行,O 为坐标原点. (1)求直线AB 和这条抛物线的解析式;(2)以A 为圆心,AO 为半径的圆记为⊙A ,判断直线l 与⊙A 的位置关系,并说明理由;(3)设直线AB 上的点D 的横坐标为-1,P (m ,n )是抛物线y =ax 2+bx +c 上的动点,当△PDO 的周长最小时,求四边形CODP 的面积.练习12(余姚中学自主招生试题)已知直线x y =上一点C (第三象限),过点C 作CD ⊥x 轴于D,交双曲线xky =于点B ,过点C 作CN ⊥y 轴于N,交双曲线xky =于点E ,若B 是CD 的中点,且四边形OBCE 的面积为4.5,(1)求k 的值;(2)若A (3,3),点M 是双曲线xky =第一象限上的任意一点,求证:MA MC -为常数6;(3)现要在双曲线xky =上选一处M 建一座码头,向A (3,3),P (9,6)两地转运货物,经测算,从M 到A ,从M 到P 修建公路的费用都是每单位长度a 万元,则码头M 应建在何处,才能使修建两条公路的总费用最低。

相关文档
最新文档