[套卷]河南省洛阳市中成外国语学校2013届高三上学期8月月考数学(理)试题

合集下载

河南省郑州市外国语学校2024-2025学年高二上学期10月月考语文试题(含答案)

河南省郑州市外国语学校2024-2025学年高二上学期10月月考语文试题(含答案)

郑州外国语学校2024-2025学年高二上期月考语文参考答案一、现代文阅读(16分)(一)现代文阅读Ⅰ(本题共5小题,16分)1.【答案】B【解析】“会做出错误的定义或划分使推理出现瑕疵”错,材料一第一段“人类理性的活动是推演性的,而推演活动又是一种生产性的或构造性的,理性并不保证它在生产或构造或构成中不会出错,相反,它可能会做出错误的定义或划分,推理会出现瑕疵,思想会产生混乱”,可看出原文是“可能会”。

故选:B。

2.【答案】C【解析】“为了正面证明‘无理而妙’的艺术效果已经得到了学者的认可和重视”错。

引用鲁迅的话是为了从反面论证单靠逻辑和理性不能正确有效地品读鉴赏诗歌的语言,即“诗人的语言不能用常理来衡量”。

故选:C。

3.【答案】D【解析】先看“无理而妙”。

材料二第一段“语言运用的艺术,在某些情况下,又是可以突破逻辑规律的框框的,这不仅无碍于语言运用的正确,而且反而使得语言运用收到更好的艺术效果,这就是‘无理而妙’”。

A.“春风”不知离别之苦,也不能决定柳条是否发青。

李白却赋予春风以人的情感,春风不让柳条发青,怕离别之人又饱受别离的苦楚,从物的角度表现“无理而妙”。

B.不忿:恼恨、嫌恶。

思妇久盼归人,出门眺望,未见亲人,把失望迁怒于啼叫的喜鹊,表现其盼归之苦,无理而妙。

C.花不能“弄”影,此处用拟人手法,暗示有风。

一个“弄”字,生动细致地写出晚风吹拂时花影晃动之态,无理而妙。

D.是现实主义表达,没有突破思维逻辑的语言表达,不能体现“无理而妙”的艺术效果。

故选:D。

4.【答案】①材料一从逻辑内涵的角度强调逻辑是一门科学,又是一门艺术,还是一种理性精神。

②材料二从逻辑运用的角度强调语言艺术可以突破逻辑规律,达到“无理而妙”的效果,而“无理而妙”是建立在深邃的逻辑基础上的智慧和能力。

5.【答案】大前提:一个身在最高层的人是不害怕浮云挡住视线的。

小前提:我是一个身在最高层的人。

结论:我是不害怕浮云挡住视线的。

河南省郑州市宇华实验学校2024-2025学年高三上学期8月月考数学试题(含答案)

河南省郑州市宇华实验学校2024-2025学年高三上学期8月月考数学试题(含答案)

郑州市宇华实验学校2024—2025学年高三上学期第一次月考数学注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚.2.每道选择题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.在试题卷上作答无效.3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.考试结束后,请将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知,0,2παβ⎛⎫∈ ⎪⎝⎭,则“1cos()4αβ-<”是“1cos sin 4αβ+<”的( )A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件2.已知实数x ,y ,z 满足e ln e y x x y =且1e lne z x z x =,若01y <<,则( )A .x y z >> B .x z y >> C .y z x >>D .y x z >>3.已知函数2||,(),x m x m f x x x m +≤⎧=⎨>⎩,若存在实数b ,使得关于x 的方程()f x b =有三个不同的根,则实数m 的取值范围是()A .(0,2) B .(,2)(0,2)-∞-C .(2,0)-D .(2,0)(2,)-+∞ 4.定义:两条异面直线之间的距离是指其中一条直线上任意一点到另一条直线距离的最小值.在棱长为1的正方体1111ABCD A B C D -中,直线BD 与1CB 的距离为( )A .1BC .12D5.在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC △的面积为S ,若22cos bc A b c +=+,则sin cos cos A B C=+( )A B .12C D6.已知z 为复数,且||1z =,则|3i |z -的取值范围是()A .[]2,3B .[]3,4C .[]2,4D .4⎡⎤⎣⎦7.若样本空间Ω中的事件123,,A A A 满足()()()()()223113231221,,,4356P A P A A P A P A A P A A =====∣∣∣,则()13P A A =( )A .114 B .17 C .27 D .5288.已知a ,b 均为正实数,若直线y x a =-与曲线ln(2)y x b =+相切,则2a b ab ab ++的最小值是( )A .8 B .9 C .10 D .11二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.下列函数()f x 的最小值为2的是()A .2()21f x x x =--+B .()23()log 210f x x x =++C .()22x x f x -=+D .1()32x f x -=+10.如图,在棱长为的正方体1111ABCD A B C D -中,点P 是平面11A BC 内一个动点,且满足13PD PB +=+,则下列结论正确的是( )A .1B D PB ⊥B .直线1B P 与平面11A BC 所成角为定值C .点P 的轨迹的周长为D .三棱锥11P BB C -体积的最大值为11.对于函数3()()ln ,()f x f x x x g x x ==,则下列说法正确的是( )A .()g x 在x =12eB .(2)g g >C .()g x 只有一个零点D .若方程2()kf x x =恰好只有一个实数根,则0k <三、填空题:本大题共3个小题,每小题5分,共15分.12.一批小麦种子的发芽率是0.7,每穴只要有一粒发芽,就不需补种,否则需要补种.则每穴至少种_________粒,才能保证每穴不需补种的概率大于97%.()lg 30.48≈13.已知函数2()2sin cos 0)222xxxf x ωωωω=-+>的最小正周期为T ,若223T ππ<<,且3π是()f x 的一个极值点,则ω=_________.14.过点P 作斜率为k 的直线l 交圆22:8E x y +=于,A B 两点,动点Q 满足||||||||PA QA PB QB =,若对每一个确定的实数k ,记||PQ 的最大值为max d ,则当k 变化时,max d 的最小值为_________.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)各项都为整数的数列{}n a 满足272,4a a =-=,前6项依次成等差数列,从第5项起依次成等比数列.(1)求数列{}n a 的通项公式;(2)求出所有的正整数m ,使得1212m m m m m m a a a a a a ++++++=.16.(15分)如图,正方体111ABCD A B C D -.(1)求证:1A B ⊥面1A BC ;(2)若E 为线段1AC 的中点,求平面ABE 与平面BCE 所成锐二面角的大小.17.(15分)书籍是精神世界的入口,阅读让精神世界闪光,阅读逐渐成为许多人的一种生活习惯,每年4月23日为世界读书日.某研究机构为了解某地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,估计这100位年轻人每天阅读时间的平均数x (单位:分钟);(同一组数据用该组数据区间的中点值表示)(2)若年轻人每天阅读时间X 近似地服从正态分布(,100)N μ,其中μ近似为样本平均数x ,求(6494)P X <≤;(3)为了进一步了解年轻人的阅读方式,研究机构采用分层抽样的方法从每天阅读时间位于分组[50,60),[60,70),[80,90)的年轻人中抽取10人,再从中任选3人进行调查,求抽到每天阅读时间位于[80,90)的人数ξ的分布列和数学期望.附参考数据:若,则①()0.6827P X μδμδ-<≤+=;②(22)0.9545P X μδμδ-<≤+=;③(33)0.9973P X μδμδ-<≤+=.18.(17分)已知圆22:(1)1M x y ++=,圆22:(1)9N x y -+=动圆P 与圆M 外切并且与圆N 内切,圆心P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设不经过点Q 的直线l 与曲线C 相交于A ,B 两点,直线QA 与直线QB 的斜率均存在且斜率之和为2-,直线AB 是否过定点,若过定点,写出定点坐标.19.(17分)已知函数()ln f x x x =.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)求()f x 的单调区间;(3)若对于任意1,x e e ⎡⎤∈⎢⎥⎣⎦,都有()1f x ax ≤-,求实数a 的取值范围.数学参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B 【解析】,0,2παβ⎛⎫∈ ⎪⎝⎭,则0cos 1,0sin 1βα<<<<,所以cos()cos cos sin sin cos sin αβαβαβαβ-=+<+,所以由1cos()4αβ-<不能推出1cos sin 4αβ+<,充分性不成立;反之,11cos sin cos()44αβαβ+<⇒-<成立,即必要性成立;,0,2παβ⎛⎫∴∈ ⎪⎝⎭,则“1cos()4αβ-<”是“1cos sin 4αβ+<”的必要不充分条件.故选:B .2.【答案】A【解析】由e ln e y xx y =得ln e ex y x y =,由1e ln e z x z x =得ln e e x z x z -=,因此e ey z y z -=,又01y <<,所以0e e z y z y =-<,又e 0z >,所以0z <,利用01y <<得ln 0e ex y x y =>,又e 0x >,所以ln 0x >,即1x >,所以10x y z >>>>,即x y z >>.故选A .3.【答案】B【解析】分情况讨论,当0m >时,要使()f x b =有三个不同的根,则2|2|020m m m m ⎧>⇒<<⎨>⎩;当0m <时,要使()f x b =有三个不同的根,同理可知,需要2|2|20m m m m ⎧>⇒<-⎨<⎩.当0m =时,两个分段点重合,不可能有三个不同的根,故舍去.所以m 的取值范围是(,2)(0,2)-∞- .故选B .4.【答案】D【解析】设M 为直线BD 上任意一点,过M 作1MN CB ⊥,垂足为N ,可知此时M 到直线1CB 距离最短,设111,DM DB DA DC CN CB DA DA DD λλλμμμμ==+===+ ,1(1)()MN DN DM DC CN DM DC DA DD λμλμ=-=+-=-+-+ ,11CB DA DD =+ ,因为1MN CB ⊥,所以10MN CB ⋅= ,即()11(1)()0DC DA DD DA DD λμλμ⎡⎤-+-+⋅+=⎣⎦ ,所以0μλμ-+=,即=2λμ=,所以1(12)MN DC DA DD μμμ=--+ ,所以||MN === ,所以当13μ=时,||MN,所以直线BD 与1CB.故选:D .5.【答案】D【解析】由22cos bc A b c +=+22sin cos A bc A b c +=+,22cos 2sin 6b c b c A A A bc c b π+⎛⎫+=⇒+=+ ⎪⎝⎭,由于2,2sin 26b c A c b π⎛⎫+≥+≤ ⎪⎝⎭,当且仅当b c c b =,以及62A ππ+=时,等号成立,结合2sin 6b c A c b π⎛⎫+=+ ⎪⎝⎭,因此2sin 26b c A c b π⎛⎫+=+= ⎪⎝⎭,且b c c b =,以及3A π=,故3B C π==,因此sin cos cos A B C ==+故选D .6.【答案】C【解析】因为复数z 满足||1z =,不妨设cos isin ,R z θθθ=+∈,则|3i ||cos i(sin 3)|z θθ-=+-==.因为sin [1,1]θ∈-,所以[2,4],所以|3i |z -的取值范围是[2,4].故选:C .7.【答案】A【解折】因为()()()()()113223231221,,,4356P A P A A P A P A A P A A =====∣∣∣,所以()()()()()2323323P A P A P A A P A P A A =+∣∣()()()()()3233231P A P A A P A PA A =+-∣∣,解得()357P A =,()()31311P A A P A A =-∣∣()()()()()133131111P A A P A P A A P A P A =-=-∣()()()13311P A A P A A P A =∣()()()1133115144714P A P A A P A =-=-⨯=∣.故选:A .8.【答案】C 【解析】由于直线y x a =-与曲线ln(2)y x b =+相切,设切点为(,)m n ,而12y x b '=+,故112ln(2)m b m b m a⎧=⎪+⎨⎪+=-⎩,解得m a =,故21,,a b a b +=均为正实数,故22122(2)16610a b ab a b a b ab b a ba ++⎛⎫=+++=++≥+= ⎪⎝⎭,当且仅当22a b b a =,结合21a b +=,即得13a b ==时等号成立,故2a b ab ab ++的最小值是10,故选:C .二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,有选错的得0分,若只有2个正确选项,每选对1个得3分;若只有3个正确选项,每选对1个得2分.9.【答案】BC【解析】对于A,由二次函数性质可知,()f x 无最小值,A 错误;对于B,令22210(1)99t x x x =++=++≥,因为3log y t =单调递增,所以3()log 92f x ≥=,当1x =-时等号成立,所以min ()2f x =,B 正确;对于C,因为20x >,所以1()222x x f x =+≥,当且仅当122x x =,即0x =时,等号成立,所以min ()2f x =,C 正确;对于D,由指数函数性质可知,130x ->,所以1()322x f x -=+>,D 错误.故选:BC .10.【答案】ABD【解析】对于A,连接11B D ,因为四边形1111A B C D 为正方形,则1111A C B D ⊥,因为1DD ⊥平面111111,A B C D A C ⊂平面1111A B C D ,则111A C DD ⊥,因为111111,B D DD D B D = 、1DD ⊂平面11B DD ,所以11A C ⊥平面11B DD ,1B D ⊂平面11B DD ,所以111B D A C ⊥,同理可得11B D A B ⊥,因为1111111,A C A B A A C A B =⊂ 、平面11A BC ,所以1B D ⊥平面11A BC ,因为PB ⊂平面11A BC ,所以1B D PB ⊥,故A 正确;对于C,由A 选项知1B D ⊥平面11A BC ,设1B D 平面11A BC E =,即1B E ⊥平面11,A BC DE ⊥平面11A BC ,因为1111111116,A B BC AC A B BB B C ======,所以三棱锥111B A BC -为正三棱锥,因为1B E ⊥平面11A BC ,则E 与正11A BC △的中心,则12sin 3A BBE π==,所以1B E ==,因为1B D ==所以DE =,因为13PD PB +=+,3=+,3+=+(3=+-,两边平方化简可得0)PE PE =>,因为E 点到等边三角形11A BC 的边的距离为163PE ==,所以点P 的轨迹是在11A BC △内,且以E所以点P 的轨迹的周长为,故C 错误;对于B,由选项C 可知,点P 的轨迹是在11A BC △内,且以E 的圆,EP =1B E =1B E ⊥平面11A BC ,所以1B PE ∠就是直线1B P 与平面11A BC 所成角,所以11tan B E B PE PE ∠===102B PE π<∠<,所以直线1B P 与平面11A BC 所成角为定值,故B 正确;对于D,因为点E 到直线1BC点P 到直线1BC =,故1BPC △的面积的最大值为162⨯=,因为1B E ⊥平面11A BC ,则三棱锥11B BPC -体积的最大值为13⨯=,故D 正确.故选:ABD .11.【答案】AC【解新】对于A ,函数32()ln ()ln ,()f x xf x x xg x x x===,则24312ln 12ln (),0x x xxx g x x x x⨯--'==>,令()0g x '=,即12ln 0x -=,解得x =当0x <<时,()0g x '>,故函数()g x在上为单调递增函数,当x >时,()0g x '<,故函数()g x在)+∞上为单调递减函数,故()g x在x =处取得极大值12eg =,故选项A 正确;对于B,当x >()0g x '<,故函数()g x在)+∞上为单调递减函数,所以(2)g g <,故选项B 错误;对于C,令函数()0g x =,则ln 0x =,解得1x =,所以函数()g x 只有一个零点,故选项C 正确;对于D,易知1x =不是方程的解;当1x ≠时,()0f x ≠,方程2()kf x x =恰好只有一个实数根,等价于y k =和()ln xh x x=只有一个交点,则2ln 1(),0(ln )x h x x x -'=>且1x ≠,令()0h x '=,即ln 10x -=,解得e x =,当e x >时,()0h x '>,故函数()h x 在(e,)+∞上为单调递增函数,当01,1e x x <<<<时,()0h x '<,故函数()h x 在(0,1),(1,e)上均单调递减,1x =是一条渐近线,当01x <<时,()0h x <,当1e x <<时,()0h x >,故()h x 在e x =处取得极小值(e)e h =,结合条件可知k e =或0k <,故选项D 错误;故选:AC.三、填空题:本大题共3个小题,每小题5分,共15分.12.【答案】3【解析】记事件A 为“种一粒种子,发芽”,则()0.7,(0.3P A P A ==设每穴种n 粒,则相当于做了n 次独立重复实验,记事件B 为“每穴至少有一粒发芽”,则00()C 0.7(10.7)0.3,()1()10.3n n n n P B P B P B =-==-=-若保证每穴不需补种的概率大于97%,则10.30.97n ->即0.30.03n <,两边取对数得,lg 0.3lg 0.03n <,即(lg 31)lg 32n -<-又lg 30.48≈,则lg 322.92lg 31n ->≈-,又n 为整数,则每穴至少种3粒,才能保证每穴不需补种的概率大于97%.故答案为:3.13.【答案】72【解析】2()2sincossin 2sin 2223xxxf x x x x ωωωπωωω⎛⎫=-+==+ ⎪⎝⎭所以()2sin 3f x x πω⎛⎫=+ ⎪⎝⎭的最小正周期为2T πω=,于是2223πππω<<,解得34ω<<,因为3π是()f x 的一个极值点,则,Z 332k k πππωπ+=+∈,解得13,2k k Z ω=+∈,所以1k =时,7(3,4)2ω=∈.故答案为:72.14.【答案】2【解析】由题设1348+=<,即P 在圆22:8E x y +=内,令||||P APA PB P Bλ'=='且1λ≠,显然P 是A ,B 内分比点,若P '为外分比点,则||||P APA PB P Bλ'==',此时PP '的中点C 为P ,Q 所在阿氏圆的圆心,对于每一个确定的实数,||k PQ 最大值为max d PP '=,即,Q P '重合时max d 为对应圆直径,根据圆的对称性,如上图,讨论1λ>的情况,而||2OP =,当AB为直径时,max ||3||PA PB λ===+,3=+可得4P B '=-故||PQ 的最大值为max ||2d PP P B PB ''==+=;当AB不为直径时134||AB λ<<+<<,且,||AB λ增减趋势相同,由||P A P B AB P B P Bλ''+=='',得||1AB P B λ'=-,显然||1AB P B λ'=-接近于1时P B '趋向无穷大,此时||PQ 的最大值为max d 趋向无穷大.综上,max d 的最小值是2.故答案为:2.四、解答题:本大题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)【答案】(1)()*54,14N 2,5n n n n a n n --≤≤⎧=∈⎨≥⎩;(2){1,3}【解析】(1)设前6项的公差为d ,所以2151612,4,5a a d a a d a a d =+=-=+=+,所以()()12112445a d a d a d +=-⎧⎪⎨+⨯=+⎪⎩,化简可得(43)(1)0d d --=,所以1d =或34,又因为{}n a 各项均为整数,所以d 为整数,所以1d =,当*14,n n ≤≤∈N 时,2(2)4n a a n d n =+-=-,当*5,N n n ≥∈时,555621,2,121n n n a a a --⎛⎫===⨯= ⎪⎝⎭,综上所述,()*54,14N 2,5n n n n a n n --≤≤⎧=∈⎨≥⎩;(2)当1m =时,1231236,6a a a a a a ++=-=-,满足条件;当2m =时,2342343,0a a a a a a ++=-=,不满足条件;当3m =时,3453450,0a a a a a a ++==,满足条件;当4m =时,4564562,0a a a a a a ++==,不满足条件;当5m ≥时,52n n a -=,若1212m m m m m m a a a a a a ++++++=,则有22111m m m m m m a a a a a a ++++++=,则5311222m m -+-++=,所以28722m -=,所以2727m -=,又因为273m -≥,所以2728m -≥,所以2727m -=无解,综上所述,m 的取值为{1,3}.16.(15分)【答案】(1)证明见解析;(2)3π【解析】(1)因为正方体1111ABCD A B C D -,所以四边形11ABB A 是正方形,所以11AB BA ⊥,又BC ⊥平面111,ABB A AB ⊂平面11ABB A ,所以1BC AB ⊥,又111,,AB BA BA BC ⊥是平面1A BC 内的两条相交直线,所以1AB ⊥面1A BC(2)如图,以A 为原点,以1,,AB AA AD 所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设正方体1111ABCD A B C D -的边长为a ,又E 为线段1AC 的中点,则(0,0,0),(,0,0),(,,0),,,222a a a A B a C a a E ⎛⎫⎪⎝⎭,所以(,0,0),,,,(0,,0),,,222222a a a a a a AB a AE BC a BE ⎛⎫⎛⎫====- ⎪ ⎪⎝⎭⎝⎭,设平面ABE 的法向量为(,,)m x y z =,则0000222ax m AB a a ax y z m AE ⎧=⎧⋅=⎪⎪⇒⎨⎨++=⋅=⎪⎪⎩⎩,令1y =,则0,1x z ==-,所以(0,1,1)m =- ,设平面BCE 的法向量为()111,,n x y z =,11110000222ay n BC a a a x y z n BE ⎧=⎧⋅=⎪⎪⇒⎨⎨-++=⋅=⎪⎪⎩⎩,令1111,0x z y ===,所以(1,0,1)n = ,设平面ABE 与平面BCE 所成锐二面角的大小为θ.所以1cos ||||2m n m n θ⋅== ,又0,2πθ⎛⎫∈ ⎪⎝⎭,所以3πθ=17.(15分)【答案】(1)74;(2)0.8186;(3)分布列见解析;期望为65【解析】(1)根据频率分布直方图得:(550.01650.02750.045850.02950.005)1074x =⨯+⨯+⨯+⨯+⨯⨯=.(2)由题意知~(74,100)X N ,即74,10μσ==,所以0.68270.9545(6494)(2)0.81862P X P X μδμδ+<≤=-<≤+==.(3)由题意可知[50,60),[60,70)和[80,90)的频率之比为:1:2:2,故抽取的10人中[50,60),[60,70)和[80,90)分别为:2人,4人,4人,随机变量ξ的取值可以为0,1,2,3,321664331010C C C 11(0),(1)C 6C 2P P ξξ======,123644331010C C C 31(2),(3)C 10C 30P P ξξ======,故ξ的分布列为:ξ0123P1612310130所以11316()01236210305E ξ=⨯+⨯+⨯+⨯=.18.(17分)【答案】(1)221(2)43x y x +=≠-;(2)直线l 过定点.【解析】(1)设动圆P 的半径为r ,因为动圆P 与圆M 外切,所以||1PM r =+,因为动圆P 于圆N 外切,所以||3PN r =-,则||||(1)(3)4||2PM PN r r MN +=++-=>=,由椭圆的定义可知,曲线C 是以(1,0),(1,0)M N -为左、右焦点,长轴长为4的椭圆.设椭圆方程为22221(0)x y a b a b+=>>,则2,1a c ==,故2223b a c =-=,所以曲线C 的方程为221(2)43x y x +=≠-.(2)①当直线l斜率存在时,设直线:,l y kx m m =+≠联立22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 可得()()222438430k x kmx m +++-=,则()()222(8)164330km k m ∆=-+->,化简得22430k m -+>.设()()1122,,,A x y B x y ,则()12221228434343km x x k m x x k ⎧+=-⎪+⎪⎨-⎪=⎪+⎩.由题意可知,因为2QA QB k k +=-.2==-,所以)1221121220x y x y x x x x +-++=,所以()())1221121220x kx m x kx m x x x x +++++=,即()1212(22)(0k x x m x x ++-+=,()222438(22)(04343m km k m k k -⎛⎫+⋅+⋅-= ⎪++⎝⎭,即()2(1)3(0k m km m +--=,即(1)]0m m k -++=.因为m ≠,所以1)0m k +=,即m =所以直线l的方程为(y kx k x =-=-,所以直线l过定点.②当直线l 斜率不存在时,设直线:(0)l x t t =≠,且(2,2)t ∈-,则点,,A t B t ⎛⎛ ⎝⎝.所以k 2QA QBk k +=+==-,解得t =,所以直线l的方程为x =也过定点.综上所述,直线l过定点.19.(17分)【答案】(1)1y x =-(2)()f x 的单调递增区间是1,e⎛⎫+∞ ⎪⎝⎭;()f x 的单调递减区间是10,e ⎛⎫ ⎪⎝⎭(3)1a e ≥-.【解析】(1)因为函数()ln f x x x =,所以1()ln ln 1,(1)ln111f x x x x f x''=+⋅=+=+=.又因为(1)0f =,则切点坐标为(1,0),所以曲线()y f x =在点(1,0)处的切线方程为1y x =-.(2)函数()ln f x x x =定义域为(0,)+∞,由(1)可知,()ln 1f x x '=+.令()0f x '=解得1x e=.()f x 与()f x '在区间(0,)+∞上的情况如下:x10,e ⎛⎫ ⎪⎝⎭1e1,e ⎛⎫+∞ ⎪⎝⎭()f x -0+()f x '↘极小值↗所以,()f x 的单调递增区间是1,e⎛⎫+∞ ⎪⎝⎭;()f x 的单调递减区间是10,e ⎛⎫⎪⎝⎭.(3)当1x e e ≤≤时,“()1f x ax ≤-”等价于“1ln a x x≥+”.令22111111()ln ,,,(),,x g x x x e g x x e x e x x x e -⎡⎤⎡⎤'=+∈=-=∈⎢⎥⎢⎥⎣⎦⎣⎦.令()0g x '=解得1x =,当1,1x e ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在区间1,1e ⎛⎫ ⎪⎝⎭单调递减.当(1,)x e ∈时,()0g x '>,所以()g x 在区间(1,)e 单调递增.而111ln 1 1.5,()ln 1 1.5g e e e g e e e e e⎛⎫=+=->=+=+< ⎪⎝⎭.所以()g x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的最大值为11g e e ⎛⎫=- ⎪⎝⎭.所以当1a e ≥-时,对于任意1,x e e⎡⎤∈⎢⎥⎣⎦,都有()1f x ax ≤-.。

广东省广州市白云区龙涛外国语实验学校2024~2025学年八年级第一次月考数学模拟卷(一)[含答案]

广东省广州市白云区龙涛外国语实验学校2024~2025学年八年级第一次月考数学模拟卷(一)[含答案]

2024-2025学年第一学期第一次月考模拟卷(一)八年级·数学测试范围:11.1—12.2 测试时间:120分钟满分:120分一.选择题(共10小题)1.下面四个图形中,线段BD 是ABC V 的高的是( )A .B .C .D .2.人字梯中间一般会设计一“拉杆”,这样做的道理是( )A .两点之间,线段最短B .垂线段最短C .两直线平行,内错角相等D .三角形具有稳定性3.一个多边形的内角和是它的外角和的4倍.这个多边形是( )A .六边形B .九边形C .八边形D .十边形4.在ABC V 中,1122A B C Ð=Ð=Ð,则ABC V 是( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰直角三角形5.如图,ABC V 中,AD 为ABC V 的角平分线,BE 为ABC V 的高,70C Ð=°,48ABC Ð=°,那么3Ð是( )A .59°B .60°C .56°D .22°6.一副含30°角和45°角的直角三角板如图摆放,则1Ð的度数为( )A .60°B .65°C .75°D .70°7.如图,ABC DCB △≌△,若7AC =,5BE =,则DE 的长为( )A .2B .3C .4D .58.如图,点E 、H 、G 、N 共线,∠E =∠N ,EF =NM ,添加一个条件,不能判断△EFG ≌△NMH 的是( )A .EH =NGB .∠F =∠MC .FG =MHD .FG HM ∥9.如图,七边形ABCDEFG 中,AB ,ED 的延长线交于点O ,若∠1,∠2,∠3,∠4的外角和等于215°,则∠BOD 的度数为( )A .20°B .35°C .40°D .45°10.如图,在ABC V 中,D 是AB 上一点,DF 交AC 于点E ,AE EC =,=DE EF ,则下列结论中:①ADE EFC Ð=Ð;②180ADE ECF FEC Ð+Ð+Ð=°;③+180B BCF ÐÐ=°;④ABC DBCF S S =V 四边形,正确的结论有( )A .4个B .3个C .2个D .1个二.填空题(共6小题)11.已知三角形的三边长分别是8、10、x ,则x 的取值范围是 .12.如图,已知AD 、AE 分别是△ABC 的中线、高,且AB =5cm ,AC =3cm ,则△ABD 与△ADC 的周长之差为 .13.在△ABC 中,∠A =∠B +∠C ,则∠A = .14.如图,A B C D B F Ð+Ð+Ð+Ð+Ð+Ð的度数为 .15.如图,BP 、CP 分别是ABC V 的内角、外角平分线,若40P Ð=°,则A Ð= °.16.如图,90ACB Ð=°,AC BC =,AD CE ^,BE CE ^,垂足分别是点D 、E ,3AD =,1BE =,则DE 的长是 .三.解答题(共9小题)17.如图,ABC DBE ≌△△,请写出对应角,对应边.①B Ð的对应角为( )②C Ð的对应角为( )③BAC Ð的对应角为( )④AB 的对应边为( )⑤AC 的对应边为( )⑥BC 的对应边为( )18.如图,ABC V 中,B C Ð=Ð,FD BC ^,DE AB ^,152A FD Ð=°,求EDF Ð.19.已知ABC V 的三边长是a b c ,,.(1)若68a b ==,,且三角形的周长是小于22的偶数,求c 的值;(2)化简a b c c a b +---+.20.如图,ABC DEF ≌△△,其中点A 、E 、B 、D 在一条直线上.(1)若,58AD FE F ^Ð=°,求A Ð的大小;(2)若9cm,5cm AD BE ==,求AE 的长.21.如图,A 、D 、E 三点在同一条直线上,且ABD CAE △△≌.(1)若6DB =,4CE =,求DE ;(2)若BD CE ∥,求BAC Ð.22.在△ABC 中,∠A =12∠B =13∠ACB ,CD 是△ABC 的高,CE 是∠ACB 的角平分线,求∠DCE 的度数.23.ABC V 中,32AB AC =::,1BC AC =+,若ABC V 的中线BD 把ABC V 的周长分成两部分的比是87:,求边AB ,AC 的长.24.小丽与爸爸妈妈在公园里荡秋千,如图,小丽坐在秋千的起始位置A 处,OA 与地面垂直,两脚在地面上用力一蹬,妈妈在距地面1.2m 高的B 处接住她后用力一推,爸爸在C 处接住她,若妈妈与爸爸到OA 的水平距离BF CG 、分别为1.8m 和2.2m ,90BOC Ð=°.(1)CGO V 与OFB △全等吗?请说明理由.(2)爸爸是在距离地面多高的地方接住小丽的?25.如图,ABC V 中,P 为AB 上一点,Q 为BC 延长线上一点,且PA CQ =,过点P 作PM AC ^于点M ,过点Q 作QN AC ^交AC 的延长线于点N ,且PM QN =,连PQ 交AC 边于D .求证:(1)APM CQN ≌△△;(2)12DM AC =.【分析】本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.根据高的画法知,过点B 作AC 边上的高,垂足为E ,其中线段BD 是ABC V 的高.【详解】解:由图可得,线段BD 是ABC V 的高的图是D 选项.故选:D2.D【分析】根据三角形具有稳定性,进行判断即可.【详解】解:人字梯中间一般会设计一“拉杆”,这样做的道理是:三角形具有稳定性;故选D .【点睛】本题考查三角形的稳定性.熟练掌握三角形具有稳定性,是解题的关键.3.D【分析】本题考查了多边形的内角与外角和,解题的关键是熟练的掌握多边形的内角与外角和定理与运算.根据外角和是360°求出内角和,代入公式计算即可.【详解】解:Q 多边形外角和是360°,设多边形边数为n ,故多边形的内角和为3604(2)180n °´=-´°,解得10n =,故选D .4.A【分析】设A x Ð=,则2B C x Ð=Ð= ,再根据三角形内角和定理求出x 的值即可.【详解】在ABC V 中,1122A B C Ð=Ð=Ð 设A x Ð=,则2B C x Ð=Ð=,180A B C Ð+Ð+Ð=°Q ,即22180x x x ++=°°,解得36x =°,223672B C x \Ð=Ð==´°=° ,ABC \V 是锐角三角形.故选:A .【点睛】本题考查的是三角形内角和定理,根据题意列出关于x 的方程是解答此题的关5.A【分析】本题考查了三角形内角和定理,三角形的高,角平分线,对顶角相等,解题的关键是掌握这些知识点.根据三角形内角和定理得62CAB Ð=°,根据角平分线得112312CAB Ð=Ð=Ð=°,根据高得90AEB Ð=°,可得59EFA Ð=°,根据对顶角相等即可得.【详解】解:∵70C Ð=°,48ABC Ð=°,∴180170486802C A B BC CA Ð-Ð=°-°=°Ð=°-°-,∵AD 为ABC V 的角平分线,∴112312CAB Ð=Ð=Ð=°,∵BE 为ABC V 的高,∴90AEB Ð=°,∴1801180319059EFA AEB Ð=°-Ð-Ð=°-°-°=°∴359EFA Ð=Ð=°,故选:A .6.C【分析】本题主要考查了三角形外角的性质.根据三角形外角的性质,可得43304575Ð+Ð=°+°=°即可.【详解】解:如图,根据题意得:430Ð=°,3245Ð=Ð=°,∴43304575Ð+Ð=°+°=°.故选:C7.A【分析】根据全等三角形的对应边相等推知7BD AC ==,然后根据线段的和差即可得到结论.【详解】解:ABC DCB QV V ≌,7BD AC \==,5BE =Q ,2DE BD BE \=-=,故选:A .【点睛】本题考查了全等三角形的性质,仔细观察图形,根据已知条件找准对应边是解决本题的关键.8.C【分析】根据全等三角形的判定定理,即可一一判定.【详解】解:在△EFG 与△NMH 中,已知,∠E =∠N ,EF =NM ,A .由EH =NG 可得EG =NH ,所以添加条件EH =NG ,根据SAS 可证△EFG ≌△NMH ,故本选项不符合题意;B .添加条件∠F =∠M ,根据ASA 可证△EFG ≌△NMH ,故本选项不符合题意;C .添加条件FG =MH ,不能证明△EFG ≌△NMH ,故本选项符合题意;D .由FG HM ∥可得∠EGF =∠NHM ,所以添加条件FG HM ∥,根据AAS 可证△EFG ≌△NMH ,故本选项不符合题意;故选:C .【点睛】本题考查了全等三角形的判定定理,熟练掌握和运用全等三角形的判定定理是解决本题的关键.9.B【分析】由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD .【详解】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE 内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-505°=35°,故选:B .【点睛】本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.10.A【分析】根据条件证明ADE CFE V V ≌,从而得证AD CF ∥,最后根据全等三角形的性质和平行的性质即可求解.【详解】ADE V 和CFE △中,DE EF AED CEF AE EC =ìïÐ=Ðíï=î,()SAS ADE CFE \V V ≌,A ACF \Ð=Ð,ADE EFC Ð=Ð,,ADE CFE S S =△△,①正确,AD CF \∥,ADE CFE BDCE BDCE S S S S +=+四边形四边形V V ,180B BCF \Ð+Ð=°,③正确,ABC DBCF S S =四边形V ,④正确,180EFC ECF FEC Ð+Ð+Ð=°,180ADE ECF FEC \Ð+Ð+Ð=°,②正确综上所述,正确的共有4个,故选A .【点睛】本题考查了全等三角形的判定及性质的运用,三角形的面积公式的运用,等式的性质的运用,三角形的内角和定理的运用,平行线的判定及性质的运用,解答时证明三角形全等是关键.11.2<x <18【分析】根据三角形三边关系定理:三角形两边之和大于第三边,三角形的两边之差小于第三边可得答案.【详解】解:根据三角形的三边关系可得:10−8<x <10+8,即2<x <18,故答案为:2<x <18.【点睛】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.12.2【分析】△ABD 与△ACD 的周长的差=AB-AC ,据此答题即可.【详解】解:△ABD 的周长=AB+AD+BD ,△ACD 的周长=AC+AD+CD ,∵AD 是BC 的中线,∴BD=CD ,∵AB=5cm ,AC=3cm ,∴△ABD 的周长-△ACD 的周长=AB+AD+BD-AC-AD-CD=AB-AC=2(cm ),故答案为:2.【点睛】考查了三角形的中线概念和性质,掌握三角形的中线的概念是解题的关键.13.90°【详解】∵∠A=∠B+∠C ,∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,故答案为:90°.14.360°##360度【分析】本题考查角的计算.由D C CBE DEB Ð+Ð=Ð+Ð,推出A B C D AEC BFD B C BFE CEF Ð+Ð+Ð+Ð+Ð+Ð=Ð+Ð+Ð+Ð,即可得到答案.【详解】解:连接EF ,D A AEF DFE Ð+Ð=Ð+ÐQ ,A B C D AEC BFD\Ð+Ð+Ð+Ð+Ð+Ð360B C BFE CEF =Ð+Ð+Ð+Ð=°.故答案为:360°.15.80【分析】本题主要考查角平分线的定义和三角形外角的性质,熟练利用角平分线的定义和三角形外角的性质是解题的关键.首先根据平分线的概念得到2ABC PBC Ð=Ð,2ACD PCD Ð=Ð.然后利用三角形外角的性质得到40PCD PBC Ð-Ð=°,进而得到80ACD ABC Ð-Ð=°,即可求解.【详解】∵BP 、CP 分别是ABC V 的内角、外角平分线,∴2ABC PBC Ð=Ð,2ACD PCDÐ=Ð∵40P Ð=°∴40PCD PBC Ð-Ð=°∴2280PCD PBC Ð-Ð=°∴80ACD ABC Ð-Ð=°∴80A Ð=°.故答案为:80.16.2【分析】本题考查了全等三角形的判定及性质,熟练掌握性质定理是解题的关键.根据条件可以得出90E ADC Ð=Ð=°,利用AAS 可以得出CEB ADC V V ≌,再根据全等三角形的性质得出BE DC =,CE AD =,最后根据线段的和差即可得出答案.【详解】解:∵BE CE ^,AD CE ^,∴90E ADC Ð=Ð=°,∴90EBC BCE Ð+Ð=°.∵90BCE ACD Ð+Ð=°,∴EBC DCA Ð=Ð.在CEB V 和ADC △中,E ADC EBC DCA BC AC Ð=ÐìïÐ=Ðíï=î,∴()AAS CEB ADC V V ≌,∴1BE DC ==,3CE AD ==.∴312DE EC CD =-=-=,故答案为:2.17.见解析【分析】根据全等三角形的性质可直接得出答案.【详解】①B Ð的对应角为B Ð②C Ð的对应角为E Ð,③BAC Ð的对应角为BDE Ð④AB 的对应边为BD ,⑤AC 的对应边为DE ⑥BC 的对应边为BE .【点睛】本题考查了全等三角形的性质,找准对应边、对应角是解题的关键.18.62°【分析】本题考查了直角三角形内角的性质,熟练掌握直角三角形两锐角互余是本题的关键.根据平角的定义,求得28DFC Ð=°,由于B C Ð=Ð,FD BC ^,DE AB ^,根据直角三角形的性质求得28EDB DFC Ð=Ð=°,即可求得EDF Ð.【详解】解:152AFD Ð=°Q ,28DFC \Ð=°,B C \Ð=Ð,FD BC ^,DE AB ^,28EDB DFC \Ð=Ð=°,180180902862EDF EDB FDC \Ð=°-Ð-Ð=°-°-°=°.19.(1)4c =或6(2)222a b c+-【分析】本题考查了三角形三边关系、化简绝对值,熟练掌握三角形三边关系是解此题的关键.(1)由三角形三边关系结合三角形的周长是小于22的偶数,得出28c <<,即可得出答案;(2)由三角形三边关系得a b c +>,再利用绝对值的性质化简即可.【详解】(1)解:Q ABC V 的三边长是a b c ,,,68a b ==,,8686c \-<<+,即214c <<,Q 三角形的周长是小于22的偶数,28c \<<,\4c =或6;(2)解:由三角形三边关系得:a b c +>,0a b c \+->,()0c a b c a b --=-+<,a b c c a b\+-+--()a b c c a b =+----a b c c a b=+--++222a b c =+-.20.(1)32°(2)2cm【分析】此题考查了全等三角形的性质、直角三角形的性质等知识,熟练掌握全等三角形的性质是解题的关键.(1)先根据垂直以及直角三角形两锐角互余求出9032D F Ð=°-Ð=°,再利用全等三角形对应角相等即可得到A Ð的大小;(2)利用全等三角形的性质得到AB DE =,则AB BE DE BE -=-,即可得到()()12cm 2AE BD AD BE ==-=.【详解】(1)解:∵,FE AD ^∴90DEF Ð=°,∵58F Ð=°,∴9032D F Ð=°-Ð=°,∵ABC DEF≌△△∴32A D Ð=Ð=°(2)∵ABC DEF ≌△△,∴AB DE=∴AB BE DE BE -=-,∴()()()11952cm 22AE BD AD BE ==-=-=21.(1)2DE =(2)90BAC Ð=°【分析】本题考查了全等三角形的性质,平行线的性质,(1)根据ABD CAE △△≌,6BD =,4CE =得6BD AE ==,4AD CE ==,即可得;(2)根据BD CE ∥得BDE CEA Ð=Ð,根据ABD CAE △△≌得ADB CEA Ð=Ð,ABD CAE Ð=Ð,则ADB BDE Ð=Ð,根据180ADB BDE +Ð=°得90ADB Ð=°,可得90ABD BAD Ð+Ð=°,即可得;掌握全等三角形的性质,平行线的性质是解题的关键.【详解】(1)解:∵ABD CAE △△≌,6BD =,4CE =,∴6BD AE ==,4AD CE ==,2DE AE AD \=-=;(2)解:∵BD CE ∥,BDE CEA \Ð=Ð,∵ABD CAE △△≌,ADB CEA \Ð=Ð,ABD CAE Ð=Ð,ADB BDE \Ð=Ð,∵180ADB BDE +Ð=°,90ADB \Ð=°,90ABD BAD \Ð+Ð=°,90BAC BAD CAE BAD ABD \Ð=Ð+Ð=Ð+Ð=°.22.15°【分析】根据已知条件用∠A 表示出∠B 和∠ACB ,利用三角形的内角和求出∠A ,再求出∠ACB ,然后根据直角三角形两锐角互余求出∠ACD ,最后根据角平分线的定义求出∠ACE 即可.【详解】∵∠A =12∠B =13∠ACB ,设∠A =x ,∴∠B =2x ,∠ACB =3x ,∵∠A +∠B +∠ACB =180°,∴x +2x +3x =180°,解得:x =30°,∴∠A =30°,∠ACB =90°,∵CD 是△ABC 的高,∴∠ADC =90°,∴∠ACD =90°-30°=60°,∵CE 是∠ACB 的角平分线,∴∠ACE =12×90°=45°,∴∠DCE =∠ACD -∠ACE =60°-45°=15°.【点睛】本题考查了三角形的内角和定理,直角三角形两锐角互余,角平分线的定义,熟记概念并准确识图是解题的关键.23.6AB =,4AC =或2111AB =,1411AC =【分析】此题主要考查了三角形的中线,解题的关键是掌握三角形中线的定义,并注意分类讨论.首先设3AB x =,2AC x =,则21BC x =+,根据ABC V 的中线BD 把ABC V 的周长分成两部分的比是87:可得①()()87AB AD BC CD ++=::;②()()87BC CD AB AD ++=::,分两种情况进行计算即可.【详解】解:如图:利用32AB AC =::,设3AB x =,2AC x =,∵1BC AC =+,∴21BC x =+,∵ABC V 的中线BD 把ABC V 的周长分成两部分的比是87:,则①当()()87AB AD BC CD ++=::时,由题意得:()83322115x x x x x +=+++´,解得:2x =,则6AB =,4AC =;②当()()87BC CD AB AD ++=::时,由题意得:()73322115x x x x x +=+++´,解得:711x =,则2111AB =,1411AC =,答:6AB =,4AC =或2111AB =,1411AC =.24.(1)CGO OFB ≌△△,理由见解析(2)爸爸接住小丽的地方距地面的高度为1.6m【分析】(1)由直角三角形的性质得出BOF OCG Ð=Ð,根据AAS 可证明CGO OFB ≌△△;(2)由全等三角形的性质得出,OF CG OG BF ==,求出FG 的长则可得出答案.【详解】(1)CGO OFB ≌△△.理由如下;∵90BOC Ð=°,∴90COG BOF Ð+Ð=°∵CG OA ^,∴90COG OCG Ð+Ð=°,∴BOF OCG Ð=Ð.又∵BF OA ^,∴90BFO OGC Ð=Ð=°.∵OC OB =,∴()AAS CGO OFB ≌△△.(2)∵CGO OFB ≌△△,∴,OF CG OG BF ==,∴ 2.2 1.80.4m FG OF OG CG BF =-=-=-=,∴爸爸接住小丽的地方距地面的高度为1.20.4 1.6m +=.【点睛】本题考查了全等三角形的判定与性质,直角三角形两锐角互余,证明CGO OFB ≌△△是解题的关键.25.(1)证明见解析(2)证明见解析【分析】本题考查了三角形全等的判定与性质.熟练掌握三角形全等的判定与性质是解题的关键.(1)由“HL ”可证Rt Rt APM CQN V V ≌;(2)先由(1)可知AM CN =,证PDM QDN V V ≌,从而由三角形全等的性质可得DM DN =,然后由线段的和差即可得证.【详解】(1)证明:∵PM AC ^,QN AC ^,∴在APM △与CQN △中,PA CQ PM QN=ìí=î,()Rt Rt HL APM CQN \V V ≌;(2)证明:由(1)知APM CQN ≌△△,AM CN \=,∵PM AC ^,QN AC ^,90PMD QND \Ð=Ð=°,在PDM △与QDN △中,90PMD QND PDM QDN PM QN Ð=Ð=°ìïÐ=Ðíï=î,()AAS PDM QDN \V V ≌,DM DN \=,2AC AM DM CD CN CD DM DN DM DM \=++=++=+=,12DM AC \=.。

河南省洛阳市2013届高三5月“三练”考试数学(理)试题 Word版含答案

河南省洛阳市2013届高三5月“三练”考试数学(理)试题 Word版含答案

洛阳市2012—2013学年高三年级5月统一考试数学试卷(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟.第Ⅰ卷(选择题,共60分)注意事项:1.答卷前,考生务必将自己的姓名、考号填写在答题卷上.2.每小题选出答案后,用铅笔把答题卷上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3.考试结束,将答题卷交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x∈R|lg2x>0},集合B={x∈R|1≤2x+3<7},则A.C U B⊆A B.B⊆A C.A⊆C U B D.A⊆B2.复数z|+3i,i为虚数单位,则z的共轭复数为A.4-i B.2-i C.4+i D.2+i3.如图所示程序框图,执行该程序后输出的结果是2910,则判断框内应填入的条件是A.i>47 B.i≥4? C.i<4? D.i≤4?4.某三棱锥的三视图如图所示,则该三棱锥外接球的表面积为A.5πB.25πC.50πD.100π5.直线2x+my=2m-4与直线mx+2y=m-2平行的充要条件是A.m=0 B.m=±2 C.m=2 D.m=-26.已知函数f (x )=sin (3π-2x(6π+2x ),x ∈R ,则f (x )是A .最小正周期为π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的奇函数D .最小正周期为2π的偶函数7.椭圆213620x 2y +=的左顶点为A ,右焦点为F ,点P 在椭圆上,且位于第一象限,当△PAF是直角三角形时,S △PAF = A203 B或503 C103 D或2038.现从6人中选4人去参加某娱乐活动,该活动共有A ,B ,C ,D 四个游戏.要求每个游戏有一人参加,且一人只能参加一个游戏,如果这6人中甲,乙两人不熊参加D 游戏,则不同的选择方案种数有A .264B .240C .216D .729.已知变量x ,y 满足不等式组350,50,.x y x y x a ⎧⎪⎨⎪⎩+-1≤-3-≤≥使得y ≤3x 恒成立的实数a 的最小值为A .4B .3C .2D .110.直角△ABC 扣,∠C =90°,BC =2,AD uuu r =t AB uu u r ,其中1≤t ≤3,则BC uu u r ²DC uuu r的最大值为A .12B .C .3D .11.已知函数f (x )=33(1),(1)11x x f x x ⎧⎨⎩+≤--+(>-).方程f (x )=x +1的解从小到大排成一个数列{n a },该数列的前n 项的和为n S ,则210n S n+3+的最小值为A .283 B .192C .6D .3 12.已知双曲线2221x a b2y -=(a >0,b >0)上一点C ,过双曲线的中心作直线交双曲线于A ,B 两点,记直线AC ,BC 的斜率分别为k 1,k 2,当122k k +ln |k 1|+ln |k 2|取最小值时,双曲线的离心率为A .2 BCD第Ⅱ卷(非选择题,共90分)三、填空题:本题共4小题。

河南省洛阳市八年级(上)第一次月考数学试卷含答案

河南省洛阳市八年级(上)第一次月考数学试卷含答案
着圆柱侧面绕 3 圈到 B 点,则这根棉线的长度最短为( )
A. 12cm B. cm C. 15cm D. cm
二、填空题(本大题共 8 小题,共 24.0 分)
11. 的平方根是______.
12. |2- |+|3- |的值是______ .
13. 已知有理数 x,y,z 满足
,那么(x-yz)2 的平方根为______
D. 4 个
第 1 页,共 13 页
9. 如图,数轴上与 1, 对应的点分别为 A,B,点 B 关于点 A 的对称点为 C,设点 C
表示的数为 x,则
等于( )
A.
B. 3
C.
D. 5
10. 如图,圆柱底面半径为 cm,高为 9cm,点 A、B 分别是圆柱两
底面圆周上的点,且 A、B 在同一母线上,用一根棉线从 A 点顺
第 3 页,共 13 页
23. 为了绿化环境,我县某中学有一块四边形的空地
ABCD,如图所示,学校计划在空地上种植草皮,经 测量,∠ADC=90°,CD=6m,AD=8m,AB=26m, BC=24m, (1)求出空地 ABCD 的面积. (2)若每种植 1 平方米草皮需要 200 元,问总共需 投入多少元?
筋被拉长了( )
D. 20cm
A. 2cm
B. 3cm
C. 4cm
D. 5cm
5. 如图,将△ABC 放在正方形网格图中(图中每个小正方形的边长均为 1),点 A,B
,C 恰好在网格图中的格点上,那么△ABC 中 BC 的高是()
A.
B.
C.
D.
6. 若一个自然数的算术平方根是 x,则下一个自然数的算术平方根是( )

广东省深圳外国语学校2024-2025学年高三上学期第二次月考数学试题(含答案)

广东省深圳外国语学校2024-2025学年高三上学期第二次月考数学试题(含答案)

深圳外国语学校2024-2025学年度高三第一学期第二次月考数学试题试卷共4页,卷面满分150分,考试用时120分钟.注意事项:1.答卷前,考生务必将自己的姓名、准考证号码填写在答题卡上.2.作答时,务必将答案写在答题卡上.写在本试卷及草稿纸上无效.3.考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知集合,则( )A.B.C.D.2.已知命题,则命题的否定为( )A. B.C. D.3.设函数在区间上单调递减,则实数的取值范围是( )A. B. C.D.4.函数的图象大致为()A. B.C. D.5.设正实数满足,则当取得最小值时,的最大值为( )A.1B.2C.3D.46.已知函数的定义域为是偶函数,是奇函数,则的值为{{},21x A xy B y y ====+∣∣A B ⋂=(]1,2(]0,1[]1,2[]0,2:1,1p x x ∀>>p 1,1x x ∀><1,1x x ∀≤>1,1x x ∃>≤1,1x x ∃≤≤()()3x x a f x -=30,2⎛⎫⎪⎝⎭a (),1∞--[)3,0-(]0,1[)3,∞+()1cos ex x xf x -=a b c 、、2240a ab b c -+-=c ab 236a b c+-()f x (),e xy f x =+R ()3e xy f x =-()ln3f( )A.B.3C.D.7.已知三倍角公式,则的值所在的区间是( )A. B. C. D.8.已知函数,若对于任意的实数与至少有一个为正数,则实数的取值范围是( )A.B.C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对得6分,部分选对的得部分分,选对但不全的得部分分,有选错的得0分.9.下列说法正确的是()A.若函数定义域为,则函数的定义域为B.若定义域为的函数值域为,则函数的值域为C.函数与的图象关于直线对称D.成立的一个必要条件是10.若,则下列不等式一定成立的是( )A. B.C. D.11.已知定义在上的偶函数和奇函数满足,则( )A.的图象关于点对称B.是以8为周期的周期函数C.D.三、填空题:本题共3小题,每小题5分,共15分.731031133sin33sin 4sin ααα=-sin10 11,43⎛⎫⎪⎝⎭11,54⎛⎫ ⎪⎝⎭11,65⎛⎫ ⎪⎝⎭11,76⎛⎫ ⎪⎝⎭()()()22241,f x mx m x g x mx =--+=(),x f x ()g x m ()0,2()0,8[)2,8(),0∞-()f x []1,3()21f x +[]0,1R ()f x []1,5()21f x +[]0,215xy ⎛⎫= ⎪⎝⎭5log y x =-y x =a b >1a b ->log 1a b >a b <1ab a b+>+11a b a b ->-11a b a b+<+R ()f x ()g x ()()21f x g x ++-=()f x ()2,1()f x ()()8g x g x +=20241(42)2025k f k =-=∑12.已知函数,则__________.13.已知函数且,若函数的值域是,则实数的取值范围是__________.14.若,则的最大值为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)设函数(1)求曲线在点处的切线方程;(2)设,若函数有三个不同零点,求c 的取值范围.16.(本小题满分15分)记的角的对边分别为,已知.(1)求;(2)若点是边上一点,且,求的值.17.(本小题满分15分)如图,四棱锥中,底面是边长为2的菱形,,已知为棱的中点,在底面的投影为线段的中点,是棱上一点.(1)若,求证:平面;(2)若,确定点的位置,并求二面角的余弦值.18.(本小题满分17分)已知函数.(1)函数与的图像关于对称,求的解析式;()cos2f x x =066lim x f x f xππ∆→⎛⎫⎛⎫+∆-⎪ ⎪⎝⎭⎝⎭=∆()223,2(06log ,2a x x x f x a x x ⎧-++≤=>⎨+>⎩1)a ≠()f x (],4∞-a ()e 1xa xb ≥++()1a b +()32.f x x ax bx c =+++().y f x =()()0,0f 4a b ==()f x ABC V ,,A B C ,,a b c sin sin sin A B Cb c a b-=++A D BC ,2AB AD CD BD ⊥=sin ADB ∠P ABCD -ABCD π3ABC ∠=E AD P H EC M PC 2CM MP =PE ∥MBD ,PB EM PC EC ⊥=M B EM C --()()()2ln 1cos 2g x x x =--+--()f x ()g x 1x =-()f x(2)在定义域内恒成立,求a 的值;(3)求证:,.19.(本小题满分17分)设集合,其中.若集合的任意两个不同的非空子集,都满足集合的所有元素之和与集合的元素之和不相等,则称集合具有性质.(1)试分别判断在集合与是否具有性质P ,不必说明理由;(2)已知集合具有性质P .①记,求证:对于任意正整数,都有;②令,,求证:;(3)在(2)的条件下,求的最大值.()1f x ax -≤2111ln 42nk n f k =+⎛⎫-< ⎪⎝⎭∑*n ∈N {}()12,,,3n S a a a n =≥ *,1,2,,i a i n ∈=N S A B 、A B S P {}11,2,3,4S ={}21,2,4,8S ={}12,,,n S a a a = 121kik i aa a a ==+++∑L k n ≤121kk i i a =≥-∑12i i i d a -=-1kk ii D d==∑0k D ≥12111na a a +++深圳外国语学校2025届高三第二次月考数学答案一、选择题:题号1234567891011答案ACDADDCBACBDABC二、填空题12. 13.14.三、解答题15.解:(1)由,得.因为,,所以曲线在点处的切线方程为.(2)当时,,所以.令,得,解得或.与在区间上的情况如下:所以,当且时,⎫⎪⎪⎭e2()32f x x ax bx c =+++()232f x x ax b =++'()0f c =()0f b '=()y f x =()()0,0f y bx c =+4a b ==()3244f x x x x c =+++()2384f x x x =++'()0f x '=23840x x ++=2x =-23x =-()f x ()f x '(),-∞+∞x(),2-∞-2-22,3⎛⎫-- ⎪⎝⎭23-2,3⎛⎫-+∞ ⎪⎝⎭()f x '+0-0+()f x Zc]3227c -Z0c >32027c -<存在,,,使得.由的单调性知,当且仅当时,函数有三个不同零点.16.(1)由及正弦定理得,整理得,所以由余弦定理得:因为,所以.(2),记,则.在中,.①在中,由正弦定理得.②由①②及得,解得.由,解得.17.(1)设,因为底面是边长为2的菱形,所以,对角线BD 平分,又为棱的中点,所以,在中,根据角平分线性质定理得,又,所以,所以,,平面,且平面平面.()14,2x ∈--222,3x ⎛⎫∈--⎪⎝⎭32,03x ⎛⎫∈- ⎪⎝⎭()()()1230f x f x f x ===()f x 320,27c ⎛⎫∈ ⎪⎝⎭()3244f x x x x c =+++sin sin sin A B C b c a b -=++a b cb c a b-=++222a b c bc =++2221cos ,22b c a A bc +-==-()0,πA ∈2π3A =π6DAC BAC BAD ∠=∠-∠=ADB α∠=π6C DAC αα∠=-∠=-Rt ABD V cos AD BD α=ADC V ππsinsin 66AD CDα=⎛⎫- ⎪⎝⎭2CD BD =cos 2ππsin sin 66αα=⎛⎫- ⎪⎝⎭4=tan α=22πtan cos 1,0,2αααα⎛⎫=+=∈ ⎪⎝⎭sin α=sin ADB ∠=BD CE N ⋂=ABCD CD AB =ADC ∠E AD 2CD AB DE ==ADC V 2CN CDNE DE==2CM MP =2CM MP =2CN CMNE MP==MN ∴∥PE PE ⊄MBD MN ⊂,MBD PE ∴∥MBD(2)平面,且平面,,因为,所以,在中,,,所以是等边三角形,又为棱的中点,所以,平面,平面,所以平面平面,又平面平面,平面ABCD ,平面,又平面,,又,平面,平面,且平面,.因为P 在底面的投影H 为线段的中点,所以,又所以为等边三角形,故为中点,所以在底面上的投影为的中点.在中,,,以为原点,分别以为轴,以过点且与平面垂直的直线为轴建立空间直角坐标系,所以,,设是平面的一个法向量,则,令,则,即,平面,是平面的一个法向量,PH ⊥ ABCD BC ⊂ABCD PHBC ∴⊥π3ABC∠=2π3BCD ∠=ACD V CD AB =π3ABC ∠=ACD V E AD BC CE ⊥PH ⊥ ABCD PH⊂PCE PCE ⊥ABCD PCE ⋂ABCD =CE BC ⊂BC ∴⊥PEC EM ⊂PEC BC EM ∴⊥PB EM ⊥ ,,PB BC B PB BC ⋂=⊂PBC EM ∴⊥PBC PC ⊂PBC EM PC ∴⊥EC PC PE =PC CE =PCE V MPC M ABCD CH CDE V CE ===3,2CEAD PH ⊥== C ,CB CE ,x y C ABCD z ()()()30,0,0,2,0,0,,4C B E M ⎛⎫⎪ ⎪⎝⎭()32,,4EB ME ⎛⎫∴==- ⎪ ⎪⎝⎭(),,n x y z = EBM 0203004n EB x n ME y z ⎧⋅=⇒=⎪⎨⋅=⇒-=⎪⎩ 2y =x z ==2,n =BC ⊥ PEC ()2,0,0CB ∴=PEC因为二面角是一个锐角,所以二面角18.(1)依题意,设图像上任意一点坐标为,则其关于对称的点在图像上,则,则,故,;(2)令,,则在在恒成立,又,且在上是连续函数,则为的一个极大值点,,,下证当时,在恒成立,令,,当,,在上单调递增,当,,在上单调递减,故,在上恒成立,又,则时,恒成立,综上,.(3)由(2)可知:,则,即,则,又由(2)可知:在上恒成立,则在上恒成立且当且仅当时取等,令,,则,cos ,n CB n CB n CB⋅∴===⋅B EMC --B EM C --()f x ()00,x y 1x =-()002,x y --()g x 000()(2)y f x g x ==--0000()(2)2ln(1)cos f x g x x x =--=++0(1)x >-()()2ln 1cos f x x x =++()1x >-()()()12ln 1cos 1h x f x ax x x ax =--=++--()1x >-()0h x ≤(1,)x ∈-+∞()00h =()h x (1,)x ∈-+∞0x =()h x 2()sin 1h x x a x '=--+(0)202h a a '=-=⇒=2a =()0h x ≤(1,)x ∈-+∞()ln(1)x x x ϕ=+-1()111x x x x ϕ'=-=-++()1,0x ∈-()0x ϕ'>()x ϕ()1,0-(0,)x ∈+∞()0x ϕ'<()x ϕ()0,∞+()()00x ϕϕ≤=()ln 1x x ≤+(1,)-+∞cos 1x ≤2a =()()()()12ln 1cos 10h x f x ax x x x ⎡⎤=--=+-+-⎦≤⎣2a =()12f x x -≤11111222f k k ⎛⎫⎛⎫--≤-⎪ ⎪⎝⎭⎝⎭1122f k k⎛⎫-≤ ⎪⎝⎭211111122122nk n f k n n n =+⎛⎫⎛⎫-≤+++ ⎪ ⎪++⎝⎭⎝⎭∑ ()ln 1x x ≤+()1,-+∞ln 1x x ≤-()0,∞+1x =(0,1)1nx n =∈+*N n ∈1ln1111n n n n n -<-=+++即,则,综上,,即证19.(1)对于集合,因为,故集合的元素和相等,故不具有性质.对于,其共有15个非空子集:,,各集合的和分别为:,,它们彼此相异,故具有性质.(2)①因为具有性质,故对于任意的,也具有性质,否则有两个非空子集,它们的元素和相等,而也是的子集,故不具有性质,矛盾.注意到共有个非空子集,每个子集的元素和相异,且子集的和最大为,最小为,故.②因为,故,由①可得,故.(3)不妨设,设,则,由(2)可得,且.而11ln ln ln(1)ln 11n n n n n n n +<-==+-++111ln(1)ln ln(2)ln(1)ln(2)ln(21)122n n n n n n n n n+++<+-++-+++--++ ln(2)ln ln 2n n =-=21112ln 2ln 42nk n f k =+⎛⎫-<= ⎪⎝⎭∑{}11,2,3,4S =1423+=+{}{}1,4,2,31S P {}21,2,4,8S ={}{}{}{}{}{}{}{}{}{}8,,,,,,1,2481,21,41,82,42,,,84,{}{}{}{}{}1,2,41,2,81,4,82,4,81,2,4,8,,,,59610121,2,4,8,3,,,,,7,11,13,14,152S P {}12,,,n a a a P k {}12,,,k a a a P {}12,,,k a a a ,A B ,A B {}12,,,n a a a {}12,,,n a a a P {}12,,,k a a a 21k -12k a a a +++ 1a 1221kk a a a +++≥- 12i i i d a -=-()112122k k k D a a a -=+++-+++ ()1221k k a aa =+++-- ()12210kk a a a +++--> 0k D ≥12n a a a <<< 1121112122111112112222n n n n n n a a a a a a a a a ---⎛⎫+++-+++=+++ ⎪--⎝⎭- 112i i ic a -=10i i c c +->12i i i d a -=-10kk ii D d==≥∑112112211222122n n n n n n a a a c d c d c d a a a ---+++=+++-- ()()()112213321n n n c D c D D c D D c D D -=+-+-++-,故,当且仅当时等号成立,即此时任意的正整数,即故此时时等号成立,故的最大值为.()()()121232110n n n n n c c D c c D c c D c D --=-+-++-+≥ 111211*********n n n a a a --+++≤+++=- 120n D D D ==== k 1221kk a a a ++=-1111,222kk k k a a --==-=12k k a -=12111n a a a +++ 1122n --。

2013年高考数学各地名校理科导数试题解析汇编

2013年高考数学各地名校理科导数试题解析汇编

2013年高考数学各地名校理科导数试题解析汇编-1【云南省玉溪一中2013届高三上学期期中考试理】已知曲线的一条切线的斜率为,则切点的横坐标为( )A. 3B. 2C. 1D.【答案】A【解析】函数的定义域为,函数的导数为,由,得,解得或(舍去),选A.2【云南师大附中2013届高三高考适应性月考卷(三)理科】如图3,直线y=2x与抛物线y=3-x2所围成的阴影部分的面积是()A.B.C.D.【答案】D【解析】,故选D.3【云南省玉溪一中2013届高三第三次月考理】如图所示,曲线和曲线围成一个叶形图(阴影部分),则该叶形图的面积是()A. B. C. D.【答案】D【解析】由,解得或,所以根据积分的应用可得阴影部分的面积为,选D.4【山东省烟台市莱州一中2013届高三10月月考(理)】由直线,曲线及轴所谓成图形的面积为A. B. C. D.【答案】D【解析】根据积分的应用可知所求,选D.5【云南师大附中2013届高三高考适应性月考卷(三)理科】已知为R上的可导函数,且均有′(x),则有()A.B.C.D.【答案】A【解析】构造函数则,因为,均有并且,所以,故函数在R上单调递减,所以,即,也就是,故选A. 6【山东省烟台市莱州一中2013届高三10月月考(理)】曲线在点处的切线与坐标轴所围三角形的面积为A. B. C. D.【答案】A【解析】,所以在点的导数为,即切线斜率为,所以切线方程为,令得,,令,得.所以三角形的面积为,选A.7【云南省昆明一中2013届高三新课程第一次摸底测试理】函数处的切线与坐标轴所围成的三角形的面积为A.B.C.D.【答案】D【解析】,所以在处的切线效率为,所以切线方程为,令,得,令,得,所以所求三角形的面积为,选D.8【山东省烟台市莱州一中20l3届高三第二次质量检测(理)】曲线在点处的切线方程是A. B. C. D.【答案】A【解析】,所以在点P处的切线斜率,所以切线方程为,选A.9【山东省烟台市莱州一中20l3届高三第二次质量检测(理)】由直线所围成的封闭图形的面积为A. B.1 C. D.【答案】B【解析】由积分的应用得所求面积为,选B.10【天津市新华中学2012届高三上学期第二次月考理】已知函数满足,且的导函数,则的解集为A. B. C. D.【答案】D【解析】设, 则,,对任意,有,即函数在R上单调递减,则的解集为,即的解集为,选D.11【山东省烟台市莱州一中20l3届高三第二次质量检测(理)】函数的大致图象如图所示,则等于A. B. C. D.【答案】C【解析】函数过原点,所以。

东莞外国语学校2024-2025学年高二上学期9月月考数学试题(解析版)

东莞外国语学校2024-2025学年高二上学期9月月考数学试题(解析版)

2024-2025学年第一学期东莞外国语学校高三段考一命题人:夏俊东 审题人:龚建兵一、单选题(每题5分,共40分)1. 设集合{}24Ax x=≥,{}2B x x a =<,若A B A = ,则a 的取值范围是( )A. (],4−∞−B. (],1−∞−C. [)1,+∞D. [)4,+∞【答案】A 【解析】【分析】先解一元二次不等式再根据集合间的关系求参. 【详解】(][),22,A ∞∞=−−∪+,,2a B ∞=−; 由A B A = 可以推出B A ⊆,所以22a≤−, a 的取值范围是(,4⎤-∞-⎦. 故选:A.2. 命题“N m ∃∈,N ”的否定是( ) A. N m ∀∈N B. N m ∀∉N C N m ∃∈N D. N m ∀∈N【答案】D 【解析】【分析】利用命题否定的定义求解即可. 【详解】由命题否定的定义得命题“N m ∃∈,N ”的否定是N m ∀∈N ,故D 正确.故选:D3. 某公司为了调查员工的健康状况,由于女员工所占比重大,按性别分层,用按比例分配的分层随机抽样的方法抽取样本,若样本中有女员工39人,男员工21人,女员工的平均体重为50kg ,标准差为6,男员工的平均体重为70kg ,标准差为4.则所抽取的所有员工的体重的方差为( ) A. 29B. 120C. 100D. 112.【答案】B 【解析】【分析】求出样本平均数,再根据分层抽样方差计算公式求出样本的方差. 【详解】依题意,样本中所有员工的体重的平均值为392150705739213921×+×=++,则样本中所有员工的体重的方差222223921[6(5057)][4(7057)]12039213921s =×+−+×+−=++. 故选:B4. 二项式5212x x +−展开式中,含2x 项的系数为( )A. 20B. 20−C. 60−D. 80【答案】A 【解析】【分析】利用展开式的意义可求含2x 项的系数.【详解】5212x x +−表示5个因式212x x +−的乘积,要得到含2x 项,需有1个因式取2x ,其余的4个因式都取2−,系数为()415C 2−, 或者需有2个因式取2x 项,需有2个因式取1x,其余的1个因式都取2−,系数为()22532C C −, 故含2x 项的系数为()()42215352C C C 220−+−=. 故选:A.5. 函数()f x ax x =,经过点(1,1)−,则关于x 的不等式2(3)(40)f x f x +−<解集为( ) A. (,1)(4,)−∞−+∞ B. (1,4)− C. (,4)(1,)∞∞−−∪+ D. (4,1)−【答案】B 【解析】【分析】根据图象经过点(1,1)−得到解析式,再判断函数单调性及奇偶性,由此求解不等式即可. 【详解】由函数()f x ax x =的图象经过点(1,1)−,得1a =−, 则ff (xx )=−xx |xx |=�xx 2,xx ≤0−xx 2,xx >0, 所以函数()f x 在(,0]−∞上单调递减,在(0,+∞)上单调递减,所以()f x 在R 上单调递减,又()||||()f x x x x x f x −=−==−,即函数()f x 是奇函数, 不等式2223)))(3)(40()(4(4f x f x f x f x f x +−=<⇔<−−−, 则243x x −<,即2340x x −−<,解得14x −<<, 所以原不等式的解集为(1,4)−. 故选:B.6. 若函数()f x 是定义在R 上的奇函数,()()()2,12f x f x f −==,则()()()1230f f f +++=( ) A. 2 B. 0C. 60D. 62【答案】A 【解析】【分析】根据题意得出函数的周期性、对称性,进一步得出()()()()12340f f f f +++=即可得解. 【详解】由题意()()()()22f x f x f x f x −==−−=−−,所以()f x 的周期为4, 且()f x 关于直线1x =对称,而()()()())()()()()()12340112200f f f f f f f f f f +++=++−+===,所以()()()()()()()()()123029*********f f f f f f f f f +++=+=+=+=+= . 故选:A.7. 如图,在两行三列的网格中放入标有数字1,2,3,4,5,6的六张卡片,每格只放一张卡片,则“只有中间一列两个数字之和为5”的不同的排法有( )A. 96种B. 64种C. 32种D. 16种【答案】B 【解析】【分析】分3步完成,每步中用排列求出排法数,再利用分步计数原理即可求出结果. 【详解】根据题意,分3步进行,第一步,要求“只有中间一列两个数字之和为5”,则中间的数字只能为两组数1,4或2,3中的一组,共有222A 4=种排法;第二步,排第一步中剩余的一组数,共有1142A A 8=种排法; 第三步,排数字5和6,共有22A 2=种排法;由分步计数原理知,共有不同的排法种数为48264××=. 故选:B.8. 已知实数x ,y ,满足2ln e ln 2x y y y x =−,则y 的最小值为( )A. eB.e2C.2eD.【答案】A 【解析】【分析】化简变形后可设()e t f t t =,知其在(1,)+∞上单调递增,若()(ln 2)2f xy f x =,则22e x xy =,对2e 2xy x=求导可得到极值点也是最值点,故可得结果.【详解】由已知有2ln ln 2e x y y y x +=,即2ln 2e x y xy =,即ln 22ln 2e 2e xy x xy x ⋅=,因为20x >,令()e t f t t =,0t >,()()1e 0t f t t +′=>易知()f t 在(0,)+∞上单调递增,因()(ln 2)2f xy f x =,所以ln 22xy x =,故22e xxy =,即2e 2xy x=. 所以22(21)e 2x x y x −′=,令22(21)e 02xx y x−′==,可得12x =, 又因22(21)e 2x x y x−′=在10,2上小于零,故y 在10,2 单调递减, 22(21)e 2x x y x−′=在1,2∞ + 上大于零,故y 在1,2∞ + 单调递增, 故当时12x =,y 取极小值也是最小值为e. 故选:A二、多选题(每题6分,共18分,部分选对得部分分,错选得0分)9. 已知正数x ,y 满足21x y +=,则下列说法正确的是( )A. xy 的最大值为18B. 224x y +的最小值为12C.的最大值为D.13x y+的最小值为7+【答案】ABD 【解析】【分析】利用已知条件、基本不等式逐项判断可得答案.【详解】对于A :∵0x >,0y >,21x y +=. ∴222112224+ ⋅≤==x y x y ,18xy ≤. 当且仅当221x y x y =+=,即12x =,14y =,取“=”,∴A 正确; 对于B :2224(2)414x y x y xy xy +=+−=−,由(1)知18xy ≤,∴142xy −≥−. ∴2211414122x y xy +=−≥−=.∴B 正确;对于C :22112112=++=+≤++=+=x y x y .≤,∴C 错误;对于D :()132******** ++=+++=++≥+y x y xx y x y x y x y 当且仅当23y xx y =,即222321y x x y = +=,取“=”,∴D 正确. 故选:ABD.10. 从某加工厂生产的产品中抽取200件作为样本,将它们进行某项质量指标值测量,并把测量结果x 用频率分布直方图进行统计(如图).若同一组中数据用该组区间的中点值作代表,则关于该样本的下列统计量的叙述正确的是( )A. 指标值在区间[)205,215的产品约有48件B. 指标值的平均数的估计值是200C. 指标值的第60百分位数是200D. 指标值的方差估计值是150 【答案】ABD 【解析】【分析】根据给定的频率分布直方图,利用各组的频率结合频数及百分位数的意义计算判断AC ;利用频率分布直方图求估算平均数、方差的方法计算判断BD 作答.【详解】指标值[)205,215x ∈的样本频率是100.0240.24×=,指标值在区间[205,215)的产品约有2000.2448×=件,A 正确;1700.021800.091900.222000.332100.242200.082300.02200x =×+×+×+×+×+×+×=, 2222222(30)0.02(20)0.09(10)0.2200.33100.24200.08300.02150s =−×+−×+−×+×+×+×+×=,BD 正确;由直方图得,从第一组至第七组的频率依次是0.02,0.09,0.22,0.33,0.24,0.08,0.02,所以指标值的第60百分位数m 在[)195,205内,()()1950.0330.60.020.090.22m −×=−++,解得203.18m ≈,C 错误.故选:ABD11. 已知函数()f x ,()g x 的定义域为R ,()g x 的导函数为()g x ′,且()()5f x g x ′+=,()()155f x g x −′−−=,若()g x 为偶函数,则下列说法正确的是( )A. ()05f =B.()2024110120n f n ==∑C. 若存在0x 使()f x 在()00,x 上单调递增,在()02x ,上单调递减,则()g x 的极小值点为()4Z k k ∈D. 若()f x 为偶函数,则满足题意的()f x 唯一,满足题意的()g x 不唯一 【答案】ABD 【解析】【分析】代入求得()05f =判断A ;利用函数的周期判断B ;利用已知条件和函数的周期性判断C ;根据函数的奇偶性结合已知条件求出()5f x =,()0g x ′=判断D .【详解】对A ,因为()g x 为偶函数,所以()g x ′是奇函数,所以()00g ′=,又()()5f x g x ′+=,所以()()()00505f g f ′+=⇒=,故A 对;对B ,由()()5f x g x ′+=,()()155f x g x −′−−=,得()()45f x g x ′−−=, 所以()()410f x f x −+=,所以()()1310f f +=,()()245f f ==,又()()()()554f x g x g x f x ′′=−=+−=+,所以()f x 是周期为4的函数,()g x ′也是周期为4的函数,所以()()()()12320242050610120f f f f ++++=×= ,故B 对; 对C ,()f x 在()00,x 上严格增,在()02x ,上严格减,由()()410f x f x −+=,()y f x =的图象关于()2,5对称且()25f =, 由A 可得()05f =,故()f x 在[)00,x 上严格增,在(]0,2x 上严格减, 可知()f x 在[)02,4x −严格递减,在(]04,4x −严格递增, 又()f x 的周期为4, 所以()f x 在(]0,0x −严格递增, 所以()g x ′在(]0,0x −严格递减,在[)00,x 严格递减,又()00g ′=,所以0是()g x 的极大值点,()g x ′是周期为4的函数, 所以则()g x 的极大值点为()4Z k k ∈,故C 错;对D ,若()f x 为偶函数,由于()g x ′是奇函数,()()5f x g x ′+=,则()()5f x g x +′−−=,即()()5f x g x −′=,所以()5f x =,()0g x ′=,所以()f x 唯一,()g x 不唯一,故D 对. 故选:ABD.【点睛】关键点点睛:本题关键是充分利用导数与函数单调性和极值的关系,并结合函数的奇偶性和周期性分析.三、填空题(每题5分,共15分)12. 已知随机变量X 服从正态分布()31N ,,且()240.6827P X ≤≤=,则()4P X >=______.(精确到小数点后第五位) 【答案】0.15865 【解析】【分析】根据正态分布对称性结合题意求解即可.【详解】由于X 服从正态分布()31N ,,所以正态曲线的对称轴为直线3x =, 所以()()42P X P X >=<, 故()()12440.158652P X P X −≤≤>==.故答案为:0.15865.13. 已知()f x 是定义R 在上的奇函数,当0x >时,()222xxf x −=+,当0x <时,()22x x f x m n −=⋅+⋅,则m n +=________【答案】5− 【解析】【分析】根据奇函数可求得0x <的解析式,从而可求得4m =−,1n =−,进而可得答案. 【详解】令0x <,则0x −>,所以()222xx f x −+−+.因为()f x 是定义在R 上的奇函数,所以()()f x f x −=−, 所以()222422xx x x f x +−−=−−=−×−,所以4m =−,1n =−,所以5m n +=−. 故答案为:5−14. 设a ∈R ,对任意实数x ,用ff (xx )表示22,35x x ax a −−+−中的较小者.若函数()f x 至少有3个零点,则a 的取值范围为______.的的【答案】10a ≥ 【解析】【分析】设()235g x x ax a =−+−,()2h x x =−,分析可知函数()g x 至少有一个零点,可得出0∆≥,求出a 的取值范围,然后对实数a 的取值范围进行分类讨论,根据题意可得出关于实数a 的不等式,综合可求得实数a 的取值范围. 【详解】设()235g x x ax a =−+−,()2h x x =−,由20x −=可得2x =±.要使得函数()f x 至少有3个零点,则函数()g x 至少有一个零点,则212200a a ∆=−+≥, 解得2a ≤或10a ≥.①当2a =时,()221g x x x =−+,作出函数()g x 、()h x 的图象如下图所示:此时函数()f x 只有两个零点,不合乎题意;②当2a <时,设函数()g x 的两个零点分别为1x 、()212x x x <, 要使得函数()f x 至少有3个零点,则22x ≤−,所以,()2224550ag a <− −=+−≥,解得a ∈∅; ③当10a =时,()21025g x x x =−+,作出函数()g x 、()h x 的图象如下图所示:由图可知,函数()f x 的零点个数为3,合乎题意;④当10a >时,设函数()g x 的两个零点分别为3x 、()434x x x <,要使得函数()f x 至少有3个零点,则32x ≥,可得()222450a g a > =+−≥,解得4a >,此时10a > 综上所述,实数a 的取值范围是[)10,+∞. 故答案为:[)10,+∞.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.四、解答题15. 已知函数()ln af x x x=−. (1)当1a =−时,求()f x 的极值;(2)若()0f x ≥恒成立,求实数a 的取值范围; 【答案】(1)极小值1,无极大值 (2)1a e≤− 【解析】【分析】(1)利用求导判断函数单调性,即可求得极值;(2)由()0f x ≥恒成立,转化为ln a x x ≤恒成立,继而结合求导得出()ln g x x x =的最小值即可. 【小问1详解】当1a =−时,()1ln f x x x=+,定义域为(0,+∞), 则()22111x f x x x x=′−=−, 当01x <<时,ff ′(xx )<0,当1x >时,ff ′(xx )>0, 则()f x 在(0,1)上单调递减,在(1,+∞)上单调递增,所以()f x 有极小值()11f =,无极大值. 【小问2详解】.因为()0f x ≥恒成立,得0x ∀>,ln a x x ≤, 令()ln g x x x =,0x >,则()1ln g x x =′+, 当10e x <<,()0g x ′<,当1ex >时,()0g x ′>, 即函数()g x 在10,e上递减,在()e,∞+上递增,因此()min 11e e g x g ==−,则1a e ≤−, 所以a 的取值范围为1a e≤−.16. 随着中国科技的迅猛发展和进步,中国民用无人机行业技术实力和国际竞争力不断提升,市场规模持续增长.为了适应市场需求,我国某无人机制造公司研发了一种新型民用无人机,为测试其性能,对其飞行距离与核心零件损坏数进行了统计,数据如下: 飞行距离x (千千米) 56 63 71 79 90 102 110 117 核心零件损坏数y (个) 617390105119136149163(1)据关系建立y 关于x 的回归模型 ˆˆˆybx a =+求y 关于x 的回归方程(ˆb 精确到0.1,ˆa 精确到1). (2)为了检验核心零件报废是否与保养有关,该公司进行第二次测试,从所有同型号民用无人机中随机选取100台进行等距离测试,对其中60台进行测试前核心零件保养,测试结束后,有20台无人机核心零件报废,其中保养过的占比30%,请根据统计数据完成2×2列联表,并根据小概率值0.01α=的独立性检验,能否认为核心零件的报废与保养有关保养未保养合计报废20未报废合计60100附:回归方程 ˆˆˆybx a =+中斜率和截距的最小二乘原理估计公式 121()()ˆ()nii i nii xx y y b xx ==−−=−∑∑,()()()()()22,,.ˆˆn ad bc ay bx K n a b c d a b c d a c b d −=−==+++++++20()P K k ≥0. 250. 10. 050.025 0. 01 0. 0010k1.3232.7063.841 5.0246.635 10.828参考数据:8821186,112,82743,62680i ii i i x y x y x ======∑∑【答案】(1)1.626ˆy x =−; (2)表格见解析,核心零件是否报废与是否保养有关. 【解析】【分析】(1)根据给定数据,利用最小二乘法求出回归直线方程. (2)完善22×,求出2K 的观测值并与临界值比对即可得解. 【小问1详解】依题意,881188222211ˆ6()()8827438861121.62680886()8i i i ii i i ii i x x y y x y xybx x x x ====−−−−××==≈−×−−∑∑∑∑, ˆ112 1.68626ˆay bx =−=−×≈−, 所以y 关于 x 的线性回归方程为1.626ˆy x =−. 【小问2详解】依题意,报废机核心零件中保养过的有2030%6×=台,未保养的有20614−=台, 则22×列联表如下:保养 未保养 合计 报废 6 14 20 未报废542680合计 60 40 100零假设0H :核心零件是否报废与保养无关,则22100(6261454)9.375 6.63520406080K ××−×==>×××,根据小概率值0.01α=的独立性检验,推断0H 不成立,即认为核心零件报废与是否保养有关,此推断的错误概率不大于0.01.17. 甲、乙两人准备进行台球比赛,比赛规定:一局中赢球的一方作为下一局的开球方.若甲开球,则本局甲赢的概率为23,若乙开球,则本局甲赢的概率为13,每局比赛的结果相互独立,且没有平局,经抽签决定,第1局由甲开球.(1)求第3局甲开球的概率;(2)设前4局中,甲开球的次数为X ,求X 的分布列及期望. 【答案】(1)59(2)分布列见解析,()7427E x = 【解析】【分析】(1)设第i 局甲胜为事件i A ,则第3局甲开球为事件1212A A A A +,结合条件概率公式计算即可. (2)由X 的取值,根据对应的事件,求相应的概率,得分布列,由公式求解期望. 【小问1详解】设第i 局甲胜为事件i A ,则第i 局乙胜为事件i A ,其中1,2,3,i = 则“第3局甲开球”为事件2A ,()()()()()()()212121211212211533339P A P A A P A A P A P A A P A P A A =+=+=⋅+⋅=. 【小问2详解】 依题意1,2,3,4X =,()()1231224133327P X P A A A ===⋅⋅=,()()()()1231231232121111217233333333327P X P A A A P A A A P A A A ==++=⋅⋅+⋅⋅+⋅⋅=, ()()()()1231231232212111128333333333327P X P A A A P A A A P A A A ==++=⋅⋅+⋅⋅+⋅⋅=, ()()1232228433327P X P A A A ===⋅⋅=,X ∴的分布列为则()47887412342727272827E x =×+×+×+×=. 18. 已知函数1()e ln ln x f x a x a −−+.(1)当a e =时,求曲线()y f x =在点()()1,1f 处的切线与两坐标轴围成的三角形的面积; (2)若不等式()1f x ≥恒成立,求a 的取值范围. 【答案】(1)21e −(2)[1,)+∞ 【解析】【分析】(1)利用导数的几何意义求出在点()()1,1f 切线方程,即可得到坐标轴交点坐标,最后根据三角形面积公式得结果;(2)方法一:利用导数研究函数()f x 的单调性,当a =1时,由()10f ′=得()()11minf x f ==,符合题意;当a >1时,可证1()(1)0f f a′′<,从而()f x ′存在零点00x >,使得0101()0x f x ae x −′=−=,得到min ()f x ,利用零点的条件,结合指数对数的运算化简后,利用基本不等式可以证得()1f x ≥恒成立;当01a <<时,研究()1f .即可得到不符合题意.综合可得a 的取值范围.【详解】(1)()ln 1x f x e x =−+ ,1()xf x e x′∴=−,(1)1k f e ′∴==−. (1)1f e =+ ,∴切点坐标(1,1+e ),∴函数()f x 在点(1,f (1)处的切线方程为1(1)(1)y e e x −−=−−,即()12y e x =−+,∴切线与坐标轴交点坐标分别为2(0,2),(,0)1e −−, ∴所求三角形面积为1222||=211e e −××−−. (2)[方法一]:通性通法 1()ln ln x f x ae x a −−+ ,11()x f x ae x−′∴=−,且0a >. 为设()()g x f x =′,则121()0,x g x ae x −′=+> ∴g(x )在(0,)+∞上单调递增,即()f x ′在(0,)+∞上单调递增, 当1a =时,(1)0f ′=,∴()()11minf x f ==,∴()1f x ≥成立.当1a >时,11a < ,111a e −<∴,111()(1)(1)(1)0a f f a e a a−′′∴=−−<,∴存在唯一00x >,使得01001()0x f x ae x −′=−=,且当0(0,)x x ∈时()0f x ′<,当0(,)x x ∈+∞时()0f x ′>,011x ae x −∴=,00ln 1ln a x x ∴+−=−, 因此01min 00()()ln ln x f x f x aex a −==−+001ln 1ln 2ln 12ln 1a x a a a x =++−+≥−++>1, ∴()1,f x >∴()1f x ≥恒成立;当01a <<时, (1)ln 1,f a a a =+<<∴(1)1,()1f f x <≥不是恒成立. 综上所述,实数a 的取值范围是[1,+∞). [方法二]【最优解】:同构由()1f x ≥得1e ln ln 1x a x a −−+≥,即ln 1ln 1ln a x e a x x x +−++−≥+,而ln ln ln x x x e x +=+,所以ln 1ln ln 1ln a x x e a x e x +−++−≥+.令()m h m e m =+,则()10m hm e +′=>,所以()h m 在R 上单调递增. 由ln 1ln ln 1ln a x x e a x e x +−++−≥+,可知(ln 1)(ln )h a x h x +−≥,所以ln 1ln a x x +−≥,所以max ln (ln 1)a x x ≥−+.令()ln 1F x x x =−+,则11()1xF x x x−′=−=. 所以当(0,1)x ∈时,()0,()F x F x ′>单调递增; 当(1,)x ∈+∞时,()0,()F x F x ′<单调递减.所以max[()](1)0F x F ==,则ln 0a ≥,即1a ≥.所以a 的取值范围为1a ≥. [方法三]:换元同构由题意知0,0a x >>,令1x ae t −=,所以ln 1ln a x t +−=,所以ln ln 1a t x =−+. 于是1()ln ln ln ln 1x f x ae x a t x t x −=−+=−+−+.由于()1,ln ln 11ln ln f x t x t x t t x x ≥−+−+≥⇔+≥+,而ln y x x =+在(0,)x ∈+∞时为增函数,故t x ≥,即1x ae x −≥,分离参数后有1x x a e−≥.令1()x x g x e −=,所以1112222(1)()x x x x x e xe e x g x e e−−−−−−−==′. 当01x <<时,()0,()g x g x >′单调递增;当1x >时,()0,()g x g x <′单调递减. 所以当1x =时,1()x x g x e−=取得最大值为(1)1g =.所以1a ≥.[方法四]:因为定义域为(0,)+∞,且()1f x ≥,所以(1)1f ≥,即ln 1a a +≥. 令()ln S a a a =+,则1()10S a a=′+>,所以()S a 在区间(0,)+∞内单调递增. 因为(1)1S =,所以1a ≥时,有()(1)S a S ≥,即ln 1a a +≥.下面证明当1a ≥时,()1f x ≥恒成立.令1()ln ln x T a ae x a −−+,只需证当1a ≥时,()1T a ≥恒成立. 因为11()0x T a ea−=+>′,所以()T a 在区间[1,)+∞内单调递增,则1min [()](1)ln x T a T e x −==−. 因此要证明1a ≥时,()1T a ≥恒成立,只需证明1min [()]ln 1x T a e x −=−≥即可.由1,ln 1x e x x x ≥+≤−,得1,ln 1x e x x x −≥−≥−.上面两个不等式两边相加可得1ln 1x e x −−≥,故1a ≥时,()1f x ≥恒成立. 当01a <<时,因为(1)ln 1f a a =+<,显然不满足()1f x ≥恒成立. 所以a 的取值范围为1a ≥.【整体点评】(2)方法一:利用导数判断函数()f x 的单调性,求出其最小值,由min 0f ≥即可求出,解法虽稍麻烦,但是此类题,也是本题的通性通法;方法二:利用同构思想将原不等式化成ln 1ln ln 1ln a x x e a x e x +−++−≥+,再根据函数()m h m e m =+的单调性以及分离参数法即可求出,是本题的最优解;方法三:通过先换元,令1x ae t −=,再同构,可将原不等式化成ln ln t t x x +≥+,再根据函数ln y x x =+的单调性以及分离参数法求出;方法四:由特殊到一般,利用(1)1f ≥可得a 的取值范围,再进行充分性证明即可.19. 无穷数列1a ,2a ,…,n a ,…的定义如下:如果n 是偶数,就对n 尽可能多次地除以2,直到得出一个奇数,这个奇数就是n a ﹔如果n 是奇数,就对31n +尽可能多次地除以2,直到得出一个奇数,这个奇数就是n a .(1)写出这个数列的前7项;(2)如果n a m =且m a n =,求m ,n 的值; (3)记()n a f n =,*n ∈N ,求一个正整数n ,满足()()()()()()2024fn f n f f n f f f n <<<<个 .【答案】(1)11a =,21a =,35a =,41a =,51a =,63a =,711a =; (2)1m n ==; (3)202521n k −(答案不唯一,满足()*212025,,m n k m m k =−≥∈N 即可)【解析】【分析】(1)根据数列{aa nn }的定义,逐一求解;(2)根据数列{aa nn }的定义,分1n =和1n >分别求解;(3)根据数列{aa nn }的定义,写出()f n 的值,即可求解. 【小问1详解】 根据题意,()1311221a ×+÷÷,2221a =÷=,()333125a =×+÷=,44221a =÷÷=,()4535121a =×+÷=,6623a =÷=,()7371211a =×+÷=.【小问2详解】由已知,m ,n 均为奇数,不妨设m n ≤.当1n =时,因为11a =,所以1m =,故1m n ==;当1n >时,因为314n n m +<≤,而n 为奇数,n a m =,所以312n m +=. 又m 为奇数,m a n =,所以存在*k ∈N ,使得312km n +=为奇数. 所以()33195231122k n n n m ++=+=+=. 而95462n n n +<<,所以426k n n n <<,即426k <<,*k ∈N ,无解. 所以1m n ==. 【小问3详解】显然,n 不能为偶数,否则()2nf n n ≤<,不满足()n f n <. 所以,n 为正奇数.又()111f a ==,所以3n ≥. 设41n k =+或41n k =−,*k ∈N . 当41n k =+时,()()341131414k f n k k n ++==+<+=,不满足()n f n <; 当41n k =−时,()()341161412k f n k k n −+==−>−=,即()n f n <.所以,取202521nk −,*k ∈N 时,()()()()2025202420242202332113321132132122k k k f f n k −+×−+=×−<==×−()()()()20223202322023332113212k f f f n k ×−+<<==×−()()()()2023220242024332113212k f f f n k ×−+<==×−即()()()()()()2024fn f n f f n f f f n <<<< 个.【点睛】关键点点睛:第(3)问中,发现当41n k =−时,满足()n f n <,从而设202521nk −,*k∈N,验证满足条件.。

2023-2024学年河南省洛阳市七年级上学期第一次月考数学模拟试题(含解析)

2023-2024学年河南省洛阳市七年级上学期第一次月考数学模拟试题(含解析)

2023-2024学年河南省洛阳市七年级上学期第一次月考数学模拟试题1、选择题(3×10=30分)1. 我校每年新学期会组织全体教职工拉练,以健步走5000步为达标.若王老师走了7205步,记为+2205步;李老师走了4700步,记为( )A. -4700步B. -300步C. 300步D. 4700步2. 在下列选项中,具有相反意义的量是( )A. 胜二局与负三局 B. 气温升高3°C 与气温为-3℃C. 盈利5万元与支出5万元D. 甲、乙两队篮球比赛比分分别为66∶63与63∶663. 下面关于有理数的说法正确的是( )A. 正数、负数和零统称为有理数 B. 正整数与负整数合在一起就构成整数C. 正数和负数统称为有理数D. 整数和分数统称有理数4. ①0是绝对值最小的有理数;②相反数大于自身的数是负数;③任何一个有理数的绝对值都是非负数;④两个数相互比较,绝对值大的反而小;⑤符号不同的两个数是互为相反数.③绝对值等于本身的数是0和1.其中正确的有( )A. 2个B. 3个C. 4个D. 5个5. 在数轴上与表示-2的点距离等于3的点所表示的数是( )A. 1B. 5C. 1或5D. 1或-56. 一个点从数轴上表示-3的点开始,先向左移动5个单位长度,再向右移动10个单位长度,那么终点表示的数是( )A. -2B. -3C.3D.27. 把有理数、、比较大小,正确的是( )12-3-13-A.B. 11323-<-<-11332-<-<-C.D. 11332-<-<-11332-<-<-8. 下列各式不成立的是( )A. ()()209710209710+--+-=---B. ()1321113211-++--=-+--C. ()()3.1 4.9 2.64 3.1 4.9 2.64-+-+--=----D.()()()7182171821-+-+-=----9. 若用A 、B 、C 分别表示有理数,O 为原点如图所示.化简的a b c 、、a cb ac a -+---结果为( )A. B. C. D. 2a b c +-32b a c -+2a b c +-b a-10. 把有理数代入得到,称为第一次操作,再将作为的值代入得到,称a 410a +-1a 1a a 2a 为第二次操作,…,若,经过第2023次操作后得到的结果是( )12a =-A. B. C. D. 2-6-8-10-2、填空题(3×5=15分)11. 如果一个负数的绝对值是6,那么这个数是_____.12. 已知|a ﹣1|与(b +6)2互为相反数,则a +b 的值是_____.13. 在数轴上,点A 、B 表示的数分别为,,则A 、B 间的距离为_____.132-1314. 若符号表示两数中较大的一个数,符号表示两数中较小的一个数,则[],a b ,a b (),a b ,a b 计算的结果是_____.()[]1,21,3-+--15. 观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有_____个★.3、解答题(75分)16. (16分)计算:(1)(2)8(10)(2)(5)+-+---666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-(3)(4)()577.36 3.366⎛⎫---+-+ ⎪⎝⎭()2116031215⎛⎫--⨯- ⎪⎝⎭17. (6分)请画出数轴,把下列有理数在数轴上表示出来,并用“<”号将它们连接起来.2,,0,,1.5-3-13218. (8分)已知M 是的相反数与的绝对值的差,N 是比大5的数.5-12-8-(1)求;M N -(2)求;N M -(3)从(1)(2)的计算结果中,你能知道与之间有什么关系吗?M N -N M -19. (8分)已知|a|=5,|b|=2,回答下列问题:(1)由|a|=5,|b|=2,可得a =__________,b =__________;(2)若a+b >0,求a ﹣b 的值;(3)若ab <0,求|a+b|的值.20. (8分)已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2 ,求的值.1322a b cd x +---21. (7分)21. 定义一种新运算“※”,即m ※n =(m +2)×3-n ,例如2※3=(2+2)×3-3=9.根据这规定解答下列问题:(1)求6※(﹣3)的值;(2)通过计算说明6※(﹣3)与(﹣3)※6的值相等吗?22. (10分)科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期一二三四五六日柚子销售超过或不足计划量情况(单位:千克)+35-2-+117-13++5(1)小王第一周销售柚子最多的一天比最少的一天多销售多少千克?(2)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元千克进行柚子销售,平均运费为3元千克,则小王第一周销售柚子一共收入多少元?23. (12分)如图,在一条直线上,从左到右依次有点,其中,C B A 、、cm AB 4=.以这条直线为基础建立数轴、设点所表示数的和是.cm BC 2=C B 、、A p(1)如果规定向右为正方向;若以的中点为原点,以为单位长度建立数轴,则___________;①BC O 1cm p =若单位长度不变,改变原点的位置,使原点在点的右边,且,求的②O O C 30cm CO =p 值;并说明原点每向右移动,值将如何变化?1cm p 若单位长度不变,使,则应将中的原点沿数轴向___________方向移动③64p =①O ___________;cm 若以中的原点为原点,单位长度为建立数轴,则___________.④①cm n p =(2)如果以为单位长度,点表示的数是-1,则点表示的数是___________.1cm A C(解析)1. 我校每年新学期会组织全体教职工拉练,以健步走5000步为达标.若王老师走了7205步,记为+2205步;李老师走了4700步,记为()A. -4700步B. -300步C. 300步D. 4700步【正确答案】B2. 在下列选项中,具有相反意义的量是( )A. 胜二局与负三局B. 气温升高3°C与气温为-3℃C. 盈利5万元与支出5万元D. 甲、乙两队篮球比赛比分分别为66∶63与63∶66【正确答案】A3. 下面关于有理数的说法正确的是( )A.正数、负数和零统称为有理数B. 正整数与负整数合在一起就构成整数C.正数和负数统称为有理数D. 整数和分数统称有理数【正确答案】D4. ①0是绝对值最小的有理数;②相反数大于自身的数是负数;③任何一个有理数的绝对值都是非负数;④两个数相互比较,绝对值大的反而小;⑤符号不同的两个数是互为相反数.③绝对值等于本身的数是0和1.其中正确的有( )A. 2个B. 3个C. 4个D. 5个【正确答案】B【分析】根据相反数和绝对值的概念进行判断.【详解】解:①0是绝对值最小的有理数,故①符合题意;②相反数大于自身的数是负数,若-a >a ,则a <0,即a 是负数,故②符合题意;③任何一个有理数的绝对值都是非负数,故③符合题意;④两个负数相互比较,绝对值大的反而小;故④不符合题意;⑤只有符号不同的两个数是互为相反数的,故⑤不符合题意;⑥绝对值等于本身的数是0和正数,故⑥不符合题意.所以正确的结论是①②③,共有3个.故选:B .5. 在数轴上与表示-2的点距离等于3的点所表示的数是( )A. 1B. 5C. 1或5D. 1或-5【正确答案】D6. 一个点从数轴上表示-3的点开始,先向左移动5个单位长度,再向右移动10个单位长度,那么终点表示的数是( )A. -2B. -3C.3D.2【正确答案】D7. 把有理数、、比较大小,正确的是( )12-3-13-A.B. 11323-<-<-11332-<-<-C.D. 11332-<-<-11332-<-<-【正确答案】A8. 下列各式不成立的是( )A. ()()209710209710+--+-=---B. ()1321113211-++--=-+--C.()()3.1 4.9 2.64 3.1 4.9 2.64-+-+--=----D.()()()7182171821-+-+-=----【正确答案】D9. 若用A 、B 、C 分别表示有理数,O 为原点如图所示.化简的结a b c 、、a cb ac a -+---果为()A. B. C. D. 2a b c +-32b a c -+2a b c +-b a-【正确答案】D【分析】直接利用绝对值的性质结合各点的位置得出答案.【详解】由数轴可得:a−c <0,b−a >0,c−a >0,故|a−c|+|b−a|−|c−a|=−(a−c )+b−a−(c−a )=−a +c +b−a−c +a =−a +b .故选D .10. 把有理数代入得到,称为第一次操作,再将作为的值代入得到,称a 410a +-1a 1a a 2a 为第二次操作,…,若,经过第2023次操作后得到的结果是( )12a =-A. B. C. D. 2-6-8-10-【正确答案】B详解】解:第1次操作,;1|124|102a =-+-=-第2次操作,;2|24|108a =-+-=-第3次操作,;3|84|106a =-+-=-第4次操作,;4|64|108a =-+-=-第5次操作,;5|84|106a =-+-=-第6次操作,;6|64|108a =-+-=-…;第2023次操作,.610482023-=-+-=a 故选:B .11. 如果一个负数的绝对值是6,那么这个数是 _____.【正确答案】6-12. 已知|a ﹣1|与(b +6)2互为相反数,则a +b 的值是_____.【正确答案】-513. 在数轴上,点A 、B 表示的数分别为,,则A 、B 间的距离为______132-13【正确答案】53614. 若符号表示两数中较大的一个数,符号表示两数中较小的一个数,则[],a b ,a b (),a b ,a b 计算的结果是_____________________________()[]1,21,3-+--【正确答案】-315. 观察下列图形:它们是按一定规律排列的,依照此规律,第9个图形中共有___个★【正确答案】20【分析】观察图形可知后面一个图形比前面一个图形多2枚五角星,所以可得规律为:第n 个图形中共有[4+2(n -1)]枚五角星.【详解】由图片可知:规律为五角星的总枚数=4+2(n -1)=2n +2.n =9时,五角星的总枚数=2×9+2=20.故20.16. 计算:(1)8(10)(2)(5)+-+---(2)666(5)(3)(7)(3)12(3)777-⨯-+-⨯-+⨯-(3)()577.363.366⎛⎫---+-+ ⎪⎝⎭(4)()2116031215⎛⎫--⨯- ⎪⎝⎭【正确答案】(1)1(2)0(3)4(4)31-17. 请画出数轴,把下列有理数在数轴上表示出来,并用“<”号将它们连接起来.2,,0,,1.5-3-132【正确答案】数轴上表示见解析,13 1.50232-<-<<<【分析】根据有理数与数轴的关系,分别把已知的数表示在数轴上,然后用“<”表示.【详解】解:如图用“<”表示:.13< 1.5<0<2<32--18. 已知M 是的相反数与的绝对值的差,N 是比大5的数.5-12-8-(1)求.M N -(2)求.N M -(3)从(1)(2)的计算结果中,你能知道与之间有什么关系吗?M N -N M -【正确答案】(1)4-(2)4(3)互为相反数【分析】(1)根据题意可求出与的值,然后代入原式即可求出答案.M N (2)根据题意可求出与的值,然后代入原式即可求出答案.M N (3)判断与的和是否为0即可求出答案.M N -N M -【小问1详解】解:由题意可知:,(5)|12|5127M =----=-=-.853N =-+=-.7(3)4M N ∴-=---=-【小问2详解】;(3)(7)374N M -=---=-+=【小问3详解】,0M N N M -+-=与互为相反数.M N ∴-NM -19. 已知|a |=5,|b |=2,回答下列问题:(1)由|a |=5,|b |=2,可得a =__________,b =__________;(2)若a +b >0,求a ﹣b 的值;(3)若ab <0,求|a +b |的值.【正确答案】(1)±5;±2;(2)3或7 (3)3【分析】(1)根据绝对值的性质可直接得出结果;(2)根据题意分两种情况:①,;②,;然后代入求解即可;5a =2b =5a =2b =-(3)根据题意分两种情况:①,;②,;然后代入求解即可.5a =2b =-5a =-2b =【小问1详解】解:∵|a |=5,|b |=2,∴a =±5,b =±2,故±5;±2;【小问2详解】∵,0a b +>∴①,,,5a =2b =70a b +=>∴;523a b -=-=②,,,5a =2b =-30a b +=>∴;5(2)7a b -=--=故a -b 的值为3或7;【小问3详解】解:∵,即a 、b 异号,0ab <∴①,,5a =2b =-∴;5(2)3a b +=+-=②,,5a =-2b =∴;523a b +=-+=-故.|||3|3a b +=±=20. 已知a 、b 互为相反数,c 、d 互为倒数,x 的绝对值是2 ,求的值.1322a b cd x +---【正确答案】或152-12【分析】根据a 、b 互为相反数, c 、d 互为倒数,x 的绝对值是2,得到,代入求值即可.0,1,2a b cd x +===±【详解】因为a 、b 互为相反数, c 、d 互为倒数,x 的绝对值是2,所以,0,1,2a b cd x +===±所以1322a b cd x +---=1342---=;152-或1322a b cd x +---=1342--+=.12综上所述,的值为或.1322a b cd x +---152-1221. 定义一种新运算“※”,即m ※n =(m +2)×3-n ,例如2※3=(2+2)×3-3=9.根据这规定解答下列问题:(1)求6※(--3)的值.(2)通过计算说明6※(--3)与(--3)※6的值相等吗?【正确答案】(1)27;(2)不相等,理由见解析【分析】(1)利用题中的新定义计算即可得到结果;(2)分别计算出两式的值,即可做出判断.【详解】(1)6※(−3)=(6+2)×3−(−3)=24+3=27;(2)(−3) ※6=(−3+2)×3−6=−3−6=−9,所以6※(−3)与(−3) ※6的值不相等.22. 科技改变生活,当前网络销售日益盛行,许多农商采用网上销售的方式进行营销,实现脱贫致富.小明把自家种的柚子放到网上销售,计划每天销售100千克,但实际每天的销售量与计划销售量相比有增减,超过计划量记为正,不足计划量记为负.下表是小王第一周柚子的销售情况:星期一二三四五六日柚子销售超过或不足计划量情况(单位:千克)+35-2-+117-13++5(1)小王第一周销售柚子最多的一天比最少的一天多销售多少千克?(2)小王第一周实际销售柚子的总量是多少千克?(3)若小王按8元千克进行柚子销售,平均运费为3元千克,则小王第一周销售柚子一共收入多少元?【正确答案】(1)小王第一周销售柚子最多一天比最少一天多销售20千克;(2)小王第一周实际销售柚子总量是718千克;(3)小王第一周销售柚子一共收入3590元.【分析】(1)将销售量最多的一天与销售量最少的一天相减计算即可;(2)根据第一周实际销售柚子的数量相加计算即可;(3)将总数量乘以价格差解答即可.【小问1详解】(千克)()13720--=答:小王第一周销售柚子最多的一天比最少的一天多销售20千克.【小问2详解】352111351007--++++⨯=18+700=718(千克)答:小王第一周实际销售柚子的总量是718千克.【小问3详解】(元)()718833590⨯-=答:小王第一周销售柚子一共收入3590元.23. 如图,在一条直线上,从左到右依次有点、、,其中,.以A B C 4cm AB =2cm BC =这条直线为基础建立数轴、设点、、所表示数的和是.A B C p(1)如果规定向右为正方向;若以的中点为原点,以为单位长度建立数轴,则___________;①BC O 1cm p =若单位长度不变,改变原点的位置,使原点在点的右边,且,求的值;②O O C 30cm CO =p 并说明原点每向右移动,值将如何变化?1cm p 若单位长度不变,使,则应将中的原点沿数轴向___________方向移动③64p =①O ___________;cm 若以中的原点为原点,单位长度为建立数轴,则___________.④①cm n p =(2)如果以为单位长度,点表示的数是,则点表示的数是___________.1cm A 1-C 【正确答案】(1)①;②;每向右移动,值减小;③左;;④; 5-98-1cm p 3235n -(2)5【分析】(1)根据单位长度及、的长度,原点位置,确认点、、表示的数,再AB BC A B C 计算即可.由计算原点位置时,可设点A 表示的数为,再表示点、表示的数,计算p a B C 值列方程求解;p (2)由单位长度和点A 表示的数,点C 为点A 向右移动5个单位,得到点C 表示的数.【小问1详解】①中点B :;点C :;点A :,故;1-1+5-1(1)(5)5p =+-+-=-②中由原点在点的右边,且得:O C 30cm CO =点C :;点B :;点A :,故;30-32-36-(30)(32)(36)98p =-+-+-=-原点每向右移动,点、、均减小1,故点值减小3;1cm A B C p ③中设点表示的数为,则点C :;点B :;A a 6a +4a +4664p a a a ∴=++++=得,18a =故点表示的数由①中的变成了,A 5-18故原点O 向左移动了个单位,即原点O 向左移动了;2323cm ④中中点为原点O ,单位长度为,BC cm n 故点C :;点B :;点A :,1n 1n -5n -;1155()()p n n n n =+-+-=-【小问2详解】以为单位长度,点表示的数是,1cm A 1-点C 在点A 右边6,故点C :.cm 165-+=建立数轴时,利用左右平移的数字变化可求出点所表示的数的大小,向右移动则数加大,向左移动则数减小,在计算不方便的情况下,可设未知数列方程计算,正确的计算是解题的关键.。

河南省洛阳多校2024-2025学年高二上学期10月联考数学试卷(含答案)

河南省洛阳多校2024-2025学年高二上学期10月联考数学试卷(含答案)

河南省洛阳多校2024-2025学年高二上学期10月联考数学试卷学校:___________姓名:___________班级:___________考号:___________一、选择题1.在空间四边形PABC 中,( )A. B. C. D.2.在空间直角坐标系Oxyz 中,点关于x 轴对称点的坐标为( )A. B. C. D.3.《九章算术》是我国东汉初年编订的一部数学经典著作,其在卷第五《商功》中描述的几何体“阳马”实为“底面为矩形,一侧棱垂直于底面的四棱锥”.如图,在“阳马”中,E 为的重心,若,,,则( )A. B. C. D.4.设,分别为两平面的法向量,若两平面所成的角为,则t 等于( )A.1B. C.或1D.25.已知为平面内一点,若平面的法向量为,则点到平面的距离为( )6.已知空间中三点,,,则以,为邻边的平行四边形的面积为( )PB AB AC -+=AP PC ABAC()1,1,2A ()1,1,2-()1,1,2-()1,1,2--()1,1,2-A OBCD -ACD △AB a =AC b = AD c = BE =1122a b c-++1133a b c-++2233a b c++1133a b c-+-()1,1,0a =(),0,1b t =60︒1-1-()1,2,1A -αα()1,1,1n =-()1,1,3P -α()0,0,0A ()1,1,2B -()1,2,1C --AB AC7.已知向量,,则向量在向量上的投影向量的坐标为( ) A. B. C. D.8.在正三棱柱中,,,M为棱上的动点,N为二、多项选择题9.若是空间的一个基底,则下列各组中能构成空间的一个基底的是( ) A.,, B.,,C.,,D.,,10.如图,四边形ABCD,ABEF都是边长为2的正方形,平面平面ABEF,P,Q分别是线段AE,BD的中点,则( )A.D.11.在平行六面体中,,,若,其中m,n,,则下列结论正确的为( )(2,3,0)a=-(0,3,4)b=ab1827,,01313⎛⎫- ⎪⎝⎭1827,,01313⎛⎫-⎪⎝⎭27360,,2525⎛⎫⎪⎝⎭27360,,2525⎛⎫--⎪⎝⎭111ABC A B C-2AB=1AA=2BO=11B C={},,a b ca b+a b-c a b+b c+c a+34a b-23b c-36a c-a b+a b c++2cABCD⊥//PQ DFDFQ△1111ABCD A B C D-12AB AD AA===1160DAB A AB A AD∠=∠=∠=︒1AQ mAB nAD p AA=++[0,1]p∈A.若点Q 在平面内,则B.若,则C.当D.当三、填空题12.设向量,,若,则________.13.在空间直角坐标系中,点A,B,C,M 的坐标分别是,,,,若A,B,C,M 四点共面,则________.14.如图,在三棱锥中,点G为底面的重心,点M 是线段OG 上靠近点G 的三等分点,过点M 的平面分别交棱,,于点D ,E ,F ,若,,________.四、解答题15.已知空间向量,,,.(1)求;(2)判断与以及与的位置关系.16.已知正四面体OABC 的棱长为2,点G 是的重心,点M 是线段AG 的中点.1111A B C D 1p =CQ DB ⊥m n =p =-m n +=()1,,3a m = ()4,1,0b =- a b ⊥m =O xyz -()2,0,2()2,1,0()0,4,1-()0,,5m -m =O ABC -ABC △OA OB OC OD kOA = OE mOB =OF nOC= 11m n+=11,2,2a ⎛⎫= ⎪⎝⎭ 11,,122b ⎛⎫=- ⎪⎝⎭ 12,3,2c ⎛⎫=-- ⎪⎝⎭ 311,,24d ⎛⎫=- ⎪⎝⎭ ()a cb +⋅a b c dOBC △(1)用,,表示(2)求.17.如图,在长方体中,,,,,,分别为棱,,,的中点.(1)证明:,,,四点共面;(2)若点在棱,且平面,求CP 的长度.18.如图,四棱柱的底面ABCD 为矩形,,M 为BC 中点,平面平面ABCD ,.(1)证明:平面;(2)求二面角的平面角的余弦值.19.在三棱台中,平面ABC ,,D ,E 分别为CA ,CB 的中点.OA OB OC OMOM AB ⋅1111ABCD A B C D -2AB BC ==14AA =2A 2B 2C 2D 1BB 11B C 11C D 1DD 2A 2B 2C 2D P 1CC 1A P ⊥2222A B C D 1111ABCD A B C D -2AD AB =11AA D D ⊥11AA A D AD ==1A D ⊥11ABB A 1B A A M --111ABC A B C -1CC ⊥1122AB BC AC A B ====(1)证明:平面;(2)已知,F 为线段AB 上的动点(包括端点).①求三棱台的体积;②求与平面所成角的正弦值的最大值.1//A B 1C DE 11BC A C ⊥111A B C ABC -1C F 11ABB A参考答案1.答案:B解析:.故选:B.2.答案:C解析:点关于x 轴对称点的坐标为.故选:C.3.答案:B解析:连接AE 并延长交CD 于点F ,因为E 为的重心,则F 为CD 的中点,且.故选:B.4.答案:C解析:因为法向量a ,b 所成的角与两平面所成的角相等或互补,所以.5.答案:B解析:,面的法向量为,则点到平面故选:B.PB AB AC PB BA AC PC -+=++=()1,1,2A ()1,1,2--ACD △23AE AF=()2211133233BE AE AB AF AB AC AD AB AC AD AB ∴=-=-=⨯+-=+- 1133a b c =-++ =1=±()2,1,4PA =- α()1,1,1n =-()1,1,3P -α6.答案:D解析:,夹角的余弦值为,夹角的正弦值为,为邻边的平行四边形的面积为.故选D.7.答案:D解析:因为,,所以,则向量在向量.故选:D.8.答案:D解析:因为正三棱柱中,有,所以O为的中点,取中点Q,连接,如图,以O为原点,,,为x,y,z轴建立空间直角坐标系,则,,,,因为M是棱上一动点,设,且,因为所以ABACcos,AB ACAB ACAB AC⋅===⋅ABACsin,AB AC=AB ACsin,S AB AC AB AC=⋅⋅==(2,3,0)a=-(0,3,4)b=203304a b⋅=⨯-⨯+⨯=-5=ab99(0,3,4)27360,,22555525b⎛⎫---⨯=-⎪⎭=⎝111ABC A B C-2BC BO=BC11B COQ OC OA OQ(0,0,0)O A1(B-1C11B C(M a[1,1]a∈-(MA a=-=2MOMNMA===于是令,,,,又函数上为增函数,所以当,即线段故选:D.9.答案:AB解析:设,所以,无解,所以,,是不共面的向量,能构成空间的一个基底,故A 正确;设,则,所以,无解,所以,,是不共面的向量,能构成空间的一个基底,故B 正确;因为,所以,,是共面向量,不能构成空间的一个基底,故C 错误;因为,所以,,是共面向量,不能构成空间的一个基底,故D 错误.故选:AB.10.答案:AC解析:因为四边形ABCD ,ABEF 都是边长为2的正方形,平面平面ABEF ,所以,又平面平面,平面ABCD ,所以平面ABEF ,由题意知AB ,AD ,AF 两两互相垂直,以A 为坐标原点,AD ,AB ,AF 所在直线分别为x 轴,y 轴,z 轴t =t ∈233t t t t -==-t ∈y t =-t =min 3t t ⎫-==⎪⎭MN ()=+a b a b c λμ+- =110λλμ⎧⎪=-⎨⎪=⎩a b + a b - c()()a b m b c n c a +=+++ ()a b na mb m n c +=+++ 110n m m n =⎧⎪=⎨⎪+=⎩a b + b c + c a+ ()3634223a c a b b c -=-+-34a b - 23b c - 36a c - ()122a b a b c c +=++-34a b - 23b c - 36a c - ABCD ⊥AD AB ⊥ABCD ABEF AB =AD ⊂AD ⊥建立如图所示空间直角坐标系,则,,,,,又P ,Q 分别是线段AE ,BD 的中点,所以,,所以,,又PQ ,DF 不共线,所以,故A 正确;,,设异面直线AQ ,PF 所成角为,则,所以;由,因为所以的面积故选:AC.11.答案:ABD解析:对于选项A,若点Q 在平面内,易知有,(0,0,0)A ()0,2,0B ()2,0,0D ()0,2,2E ()0,0,2F ()0,1,1P ()1,1,0Q ()1,0,1PQ =- ()2,0,22DF PQ =-=- //PQ DF ()1,1,0AQ = ()0,1,1PF =-θcos AQ PF AQ PF θ⋅==⋅ π0,2⎛⎤∈ ⎥⎝⎦θ=()0,1,1PF =- ()2,0,2DF =- ====//PQ DF DFQ △12S ==⨯=1111A B C D 11111AQ A B A D AB AD λμλμ=+=+所以,又,则,故A 正确;对于选项B,由题意易得,,且,又,即,故,解得,故B 正确;对于选项C,由题易知四面体为正四面体,设在平面ABCD 内的射影为点H ,则H 为的中心,易得当所以,又,由基本不等式可知111AA AQ AB AD AA AQ λμ+==++ 1AQ mAB nAD p AA =++1p =1122cos 602AB AD AB AA AD AA ⋅=⋅=⋅=⨯⨯︒=1()(1)(1)CQ AQ AC AQ AB AD m AB n AD p AA =-=-+=-+-+ DB AB AD =-CQ DB ⊥0CQ DB ⋅=2(1)2(1)0CQ DB m n ⋅=---=m n =1A ABD 1A ABD △AH =1A H =p =11132Q ABD ABD V S A H -=⋅⋅=△211)(1)AB n AD p AA -+-+ 222222111(1)(1)2(1)(1)2(1)2(1)m AB n AD p AA m n AB AD p m AB AA p n AD AA =-+-++--⋅+-⋅+-⋅ 24444mn p p =-+-2214444434342mn p p p mn mn ⎛⎫-+-=-+-≥- ⎪⎝⎭22m n mn +⎛⎫≤= ⎪⎝⎭n p ===故选:ABD.12.答案:4解析:因为,所以,即,解得.故答案为:413.答案:6解析:由题意,得,,,又A,B,C,M 四点共面,则存在x ,,使得,即,即,解得,所以.故答案为:6./4.5解析:由题意可知,,因为D ,E ,F ,M 四点共面,所以存在实数,,使,所以,所以,所以a b ⊥0a b ⋅=1400m ⨯-+=4m =()0,1,2AB =- ()2,4,3AC =-- ()2,,7AM m =--y ∈R AM xAB y AC =+()()()2,,70,1,22,4,3m x y --=-+--224723y m x yx y -=-⎧⎪=+⎨⎪-=--⎩216x y m =⎧⎪=⎨⎪=⎩6m =22221()()33332OM OG OA AG OA AB AC ⎡⎤==+=+⨯+⎢⎥⎣⎦211222=()()333999OA OB OA OC OA OA OB OC ⎡⎤+-+-=++⎢⎥⎣⎦λμDM DE DF λμ=+()()OM OD OE OD OF OD λμ-=-+- (1)(1)OM OD OE OF kOA mOB mOC λμλμλμλμ=--++=--++(1)2929k m n λμλμ⎧--=⎪⎪⎪=⎨⎪⎪=⎪⎩11999(1)222m n λμλμ+=--++=15.答案:(1)(2);.解析:(1)由题知,,所以.(2)因为,,所以,所以;因为,,所以,所以.16.答案:(1)(2)解析:(1)因为点M 是线段AG 的中点,点G 是的重心,所以,因为,,(2)3-a b ⊥ //c d ()1,5,0a c +=-()()111,5,0,,1322a c b ⎛⎫+⋅=-⋅-=- ⎪⎝⎭11,2,2a ⎛⎫= ⎪⎝⎭ 11,,122b ⎛⎫=- ⎪⎝⎭ 1111210222a b ⎛⎫⋅=⨯+⨯-+⨯= ⎪⎝⎭ a b ⊥ 12,3,2c ⎛⎫=-- ⎪⎝⎭ 311,,24d ⎛⎫=- ⎪⎝⎭ 3121,,224c d ⎛⎫=--=- ⎪⎝⎭ //c d 111266OM OA OB =++ OM =23-OBC △11112111112222322266OM OA OG OA OB OC OA OB OC ⎛⎫=+=+⨯+=++ ⎪⎝⎭ 22cos 602OA OB OB OC OA OC ⋅=⋅=⋅=⨯⨯︒=22222111111436366618OM OM OA OB OC OA OB OA OC OB OC==+++⋅+⋅+⋅ 1111114442222436366618=⨯+⨯+⨯+⨯+⨯+⨯=OM =∴111()266OM AB OA OB OC OB OA ⎛⎫⋅=++⋅- ⎪⎝⎭.17.答案:(1)证明见解析(2)3解析:(1)证明:连接,,,因为,,,分别为棱,,,的中点,所以,且,所以四边形为平行四边形,所以,又,所以,所以,,,四点共面.(2)以C 为坐标原点,以CD,CB,所在直线为x,y,z 轴建立空间直角坐标系,由,,,,,分别为棱,,,的中点,可得,,,,则,,设,即,则,221111132666OA OB OA OB OB OC OA OC =⋅-++⋅-⋅11111224422326663=⨯-⨯+⨯+⨯-⨯=-22B C 11B D 22A D 2A 2B 2C 2D 1BB 11B C 11C D 1DD 1122//D B D A 2112B A D D =2112A B D D 1122//B D A D 1122//B D B C 2222//B C A D 2A 2B 2C 2D 1CC 2AB BC ==14AA =2A 2B 2C 2D 1BB 11B C 11C D 1DD ()20,2,2A ()20,1,4B ()21,0,4C ()12,2,4A ()220,1,2B A =- ()221,1,0C B =-()04CP t t =≤≤()0,0,P t ()12,2,4A P t =---由平面,故,即,解得,所以.18.答案:(1)证明见解析解析:(1)证明:因为底面ABCD 是矩形,所以,又平面平面ABCD ,平面平面,平面ABCD ,所以平面,又平面,所以,因为,所以,所以,又,,平面,所以平面;(2)取AD 的中点O ,连接,因为,所以,又平面平面ABCD ,平面平面,平面,所以平面ABCD ,连接OM ,又底面ABCD 为矩形,所以,所以OM ,AD ,两两互相垂直,以O 为坐标原点,,,为x,y,z 轴的正方向建立空间直角坐标系,设,则,,,,所以,,.由(1)知平面,所以是平面的一个法向量.设平面的一个法向量为,则1A P ⊥2222A B C D 12212200A P B A A P C B ⎧⋅=⎪⎨⋅=⎪⎩()2240t ---=3t =3CP =AB AD ⊥11AA D D ⊥11AA D D ABCD AD =AB ⊂AB ⊥11AA D D 1A D ⊂11AA D D 1AB A D ⊥11AA A D AD ==22211AA A D AD +=11AA A D ⊥1AA AB A = 1AA AB ⊂11ABB A 1A D ⊥11ABB A 1AO 11A A A D =1AO AD ⊥11AA D D ⊥11AA D D ABCD AD =1A O ⊂11AA D D 1A O ⊥OM AD ⊥1OA OM OD 1OA1AB =()0,1,0A -()0,1,0D ()10,0,1A ()1,0,0M ()10,1,1AA = ()10,1,1A D =- ()1,1,0AM =1A D ⊥11ABB A 1A D11ABB A 1A AM (),,n x y z =,令,则.设二面角的平面角为由图可知二面角的平面角为锐角,所以二面角19.答案:(1)证明见解析解析:(1)证明:设交于点G ,连接EG ,如图,在三棱台中,,,又D 为AC 的中点,所以,,四边形是平行四边形,G 为的中点.又E 为BC 的中点,所以,又平面,平面,10n AA y z n AM x y ⎧⋅=+=⎪⎨⋅=+=⎪⎩1x =()1,1,1n =- 1B A A M --θ11cos A D n A D n θ⋅===⋅1B A A M --1B A A M --1AC 1C D 111ABC A B C -11//A C AC 1112A C AC =11//A C DC 11A C DC =11A C CD 1AC 1//EG AB EG ⊂1C DE 1A B ⊄1C DE所以平面.(2)①连接BD ,因为平面ABC ,且平面,所以平面平面,因为,D 为CA 的中点,所以,又平面平面,平面,所以平面,由平面,所以,又,,,平面,所以平面,由平面,所以,故四边形为菱形,,所以三棱台②如图所示建立平面直角坐标系,则,,,,不妨设,则,,设平面的一个法向量为,则,得,令,可得,设与平面所成角为,则所以与平面1//A B 1C DE 1CC ⊥1CC ⊂11AA C C ABC ⊥11AA C C AB BC =BD AC ⊥ABC 11AA C C AC =BD ⊂ABC BD ⊥11AA C C 1A C ⊂11AA C C 1BD A C ⊥11BC A C ⊥1BC BD B = 1BC BD ⊂1BDC 1A C ⊥1BDC 1DC ⊂1BDC 11A C DC ⊥11A C CD 11CC =111A B C ABC -1⨯=()10,0,1C ()11,0,1A ()B FA BA λ=()2,0F λ-()12,1C F λ=-- 11ABB A (),,n x y z =100n AA n AB ⎧⋅=⎪⎨⋅=⎪⎩0x z x -+=⎧⎪⎨-+=⎪⎩1y =n = 1C F 11ABB A θ1sin cos ,n C F θ==≤=1C F 1ABB A。

江苏省镇江市外国语学校2024-2025学年八上数学第一次月考试卷(含答案)

江苏省镇江市外国语学校2024-2025学年八上数学第一次月考试卷(含答案)

江苏省镇江市外国语学校2024-2025学年八上数学第一次月考试卷一.选择题(共7小题)1.如图,将三角形纸片ABC折叠,使点C与点A重合,折痕为DE.若∠B=80°,∠BAE =26°,则∠EAD的度数为( )A.36°B.37°C.38°D.45°2.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=24,DE=4,AB=5,则AC的长是( )A.4B.5C.6D.73.如图,∠BAC的平分线与BC的垂直平分线相交于点D,ED⊥AB,DF⊥AC,垂足分别为点E,F,AB=11,AC=5,则BE的长为( )A.3B.4C.5D.64.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A.48B.96C.84D.425.在△ABC中,∠C=90°,BC=16cm,∠A的平分线AD交BC于D,且CD:DB=3:5,则点D到AB的距离等于( )A.6cm B.7cm C.8cm D.9cm6.如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,记∠OAD=α,∠ABO=β,当BC∥OA时,α与β之间的数量关系为( )A.α=βB.α=2βC.α+β=90°D.α+2β=180°7.如图,在△ABC中,AB边的垂直平分线DE,分别与AB边和AC边交于点D和点E,BC 边的垂直平分线FG,分别与BC边和AC边交于点F和点G,又△BEG的周长为16,且GE=1,则AC的长为( )A.16B.15C.14D.13二.填空题(共11小题)8.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .9.如图,将一张长方形纸片ABCD沿EF折叠,ED′与BC交于点为G,点D、点C分别落在点D′、点C′的位置上,若∠1=110°,则∠GFC′= .10.已知点P为∠AOB内一点,且∠AOB=30°,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,若OP=6,则△PMN的周长为 .11.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的角平分线,若E,F分别是AD和AC上的动点,则EC+EF的最小值是 .12.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=28°,∠2=30°,则∠3= .13.如图,在Rt△ABC中,∠ACB=90°,点D在边AB上,将△CBD沿CD折叠,使点B 恰好落在边AC上的点E处.若∠A=24°,则∠CDE= °.14.如图,AB⊥CD,且AB=CD,E,F是AD上两点,CF⊥AD,BE⊥AD.若CF=8,BE =6,AD=10,则EF的长为 .15.如图,AD垂直平分BC于点D,EF垂直平分AB于点F,点E在AC上,BE+CE=20cm,则AB= .16.△ABC中,AB=5,AC=3,AD是△ABC的中线,设AD长为m,则m的取值范围是 .17.如图,已知△ABC的面积为18,BP平分∠ABC,且AP⊥BP于点P,则△BPC的面积是 .18.如图,在锐角△ABC中,∠ACB=50°;边上有一定点P,M、N分别是AC和BC边上的动点,当△PMN的周长最小时,∠MPN的度数是 .三.解答题(共6小题)19.(1)如图1,AD是△ABC的中线,延长AD至点E,使ED=AD,连接CE.①证明△ABD≌△ECD;②若AB=5,AC=3,设AD=x,可得x的取值范围是 ;(2)如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC 于点F,连接EF,求证:BE+CF>EF.20.如图,在△ABC中,BC=5,高AD、BE相交于点O,BD=CD,且AE=BE.(1)求线段AO的长;(2)动点P从点O出发,沿线段OA以每秒1个单位长度的速度向终点A运动,动点Q 从点B出发沿射线BC以每秒4个单位长度的速度运动,P、Q两点同时出发,当点P到达A点时,P、Q两点同时停止运动.设点P的运动时间为t秒,△POQ的面积为S,请用含t的式子表示S,并直接写出相应的t的取值范围;(3)在(2)的条件下,点F是直线AC上的一点且CF=BO.是否存在t值,使以点B、O、P为顶点的三角形与以点F、C、Q为顶点的三角形全等?若存在,请直接写出符合条件的t值;若不存在,请说明理由.21.如图,AD∥BC,AE平分∠BAD,BE平分∠ABC,AF=AD,AB=AD+BC.(1)AE与BE垂直吗?说明你的理由;(2)若AE=5,BE=3,试求出四边形ABCD的面积.22.如图,在△ABC中,AB<AC,边BC的垂直平分线DE交△ABC的外角∠CAM的平分线于点D,垂足为E,DF⊥AC于点F,DG⊥AM于点G,连接CD.(1)求证:BG=CF;(2)若AB=10cm,AC=14cm,求AG的长.23.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点P在线段AB上以1cm/s 的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动.它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=60°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.24.定义:如图,A,B为直线l同侧的两点,过点A作直线l的对称点A',连接A'B交直线l于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.如图①,在△ABC中,D,E分别是AB、AC上的点,AB=AC,AD=AE,然后将△ADE 绕点A顺时针旋转一定角度,连接BD,CE,得到图②,延长CE交BA的延长线于点N,延长BD至点M,使DM=EN,连接AM,得到图③,请解答下列问题:(1)在图②中,BD与CE的数量关系是 ;(2)在图③中,求证:点A为点C,M关于直线BN的“等角点”.参考答案与试题解析一.选择题(共7小题)1.【解答】解:∵∠B=80°,∠BAE=26°,∴∠AEB=180°﹣(∠B+∠BAE)=180°﹣(80°+26°)=74°,∵将△ABC折叠点C与点A重合,∴AE=CE,∴∠EAD=∠C,由三角形的外角性质得,∠AEB=∠EAD+∠C,∴2∠EAD=74°,∴∠EAD=37°.故选:B.2.【解答】解:作DF⊥AC于F,如图,∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DF⊥AC,∴DE=DF=4,∵S△ADB+S△ADC=S△ABC,∴×5×4+×AC×4=24,∴AC=7.故选:D.3.【解答】解:如图,连接CD,BD,∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,∴AE=AF,∵DG是BC的垂直平分线,∴CD=BD,在Rt△CDF和Rt△BDE中,,∴Rt△CDF≌Rt△BDE(HL),∴BE=CF,∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,∵AB=11,AC=5,∴BE=(11﹣5)=3.故选:A.4.【解答】解:由平移的性质知,BE=6,DE=AB=10,S△ABC=S△DEF,∴OE=DE﹣DO=10﹣4=6,∴S四边形ODFC=S△DEF﹣S△EOC=S△ABC﹣S△EOC=S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故选:A.5.【解答】解:∵BC=16,DC:DB=3:5,∴CD=×16=6,过点D作DE⊥AB于E,∵AD是∠BAC的平分线,∠C=90°,∴DE=CD=6,即点D到AB的距离是6cm.故选:A.6.【解答】解:∵△AOB≌△ADC,∴AB=AC,∠BAO=∠CAD,∴∠BAC=∠OAD=α,在△ABC中,∠ABC=(180°﹣α),∵BC∥OA,∴∠OBC=180°﹣∠O=180°﹣90°=90°,∴β+(180°﹣α)=90°,整理得,α=2β.故选:B.7.【解答】解:∵DE是AB边的垂直平分线,∴EB=EA,∵FG是BC边的垂直平分线,∴GB=GC,∵△BEG的周长为16,∴GB+GE+EB=16,∴AE+GE+GC=16,∴AC+GE+GE=16,∵GE=1,∴AC=16﹣2=14,故选:C.二.填空题(共11小题)8.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.9.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠AEG=180°﹣∠1=70°,∠DEF+∠EFC=180°,由翻折可得,∠DEF=∠GEF,∠EFC=∠EFC',∴∠DEF=55°,∴∠EFC=180°﹣55°=125°,∴∠GFC'=∠EFC'﹣∠EFG=∠EFC﹣∠DEF=125°﹣55°=70°,故答案为:70°.10.【解答】解:∵P1、P2分别是P关于OA、OB的对称点,∴∠P1OA=∠AOP,∠P2OB=∠BOP,PM=P1M,PN=P2N,P1O=PO=P2O,∴∠P1OP2=∠P1OA+∠AOP+∠P2OB+∠BOP=2∠AOB,∵∠AOB=30°,∴∠P1OP2=2×30°=60°,∴△OP1P2是等边三角形,又∵△PMN的周长=PM+MN=PN=P1M+MN+P2N=P1P2,∴△PMN的周长=P1P2=P1O=PO=6.故答案为:611.【解答】解:作F关于AD的对称点F',∵AD是∠BAC的平分线,∴点F'在AB上,∴EF=EF',∴当CF'⊥AB时,EC+EF的最小值为CF',∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,∴S△ABC=,∴12×8=10×CF',∴CF'=,∴EC+EF的最小值为,故答案为:.12.【解答】解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=28°,∴∠3=∠1+∠ABD=28°+30°=58°,故答案为:58°.13.【解答】解:∵∠ACB=90°,将△CBD沿直线CD翻折180°,得到△CED,点E恰好落在边AC上,∴∠ACD=∠BCD=∠ACB=45°,由三角形的外角性质得,∠CDB=∠A+∠ACD=24°+45°=69°,由据翻折的性质得,∠CDE=∠CDB=69°.故答案为:69.14.【解答】解:∵AB⊥CD,CF⊥AD,BE⊥AD,∴∠C+∠D=90°,∠A+∠D=90°,∠AEB=∠CFD=90°,∴∠A=∠C,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF=6,AE=CF=8,∵AF=AD﹣DF=10﹣6=4,∴EF=AE﹣AF=8﹣4=4,故答案为:4.15.【解答】解:∵EF垂直平分AB于点F,∴AE=BE,∵BE+CE=20cm,∴AE+CE=20cm,即AC=20cm,∵AD垂直平分BC于点D,∴AB=AC=20cm,故答案为:20cm.16.【解答】解:延长AD至E,使AD=DE,连接CE,则AE=2m,∵AD是△ABC的中线,∴BD=CD,在△ADB和△EDC中,∵,∴△ADB≌△EDC,∴EC=AB=5,在△AEC中,EC﹣AC<AE<AC+EC,即5﹣3<2m<5+3,∴1<m<4,故答案为:1<m<4.17.【解答】解:如图,延长AP交BC于点D,∵BP平分∠ABC∴∠ABP=∠DBP,且BP=BP,∠APB=∠DPB∴△ABP≌△DBP(ASA)∴AP=PD,∴S△ABP=S△BPD,S△APC=S△CDP,∴S△PBC=S△ABC=9,故答案为:9.18.【解答】解:作点P关于AC,BC的对称点D,G,连接PD,PG分别交AC,BC于E,F,连接DG交AC于M,交BC于N,连接PM,PN.此时△PMN的周长最小.∵PD⊥AC,PG⊥BC,∴∠PEC=∠PFC=90°,∴∠C+∠EPF=180°,∵∠C=50°,∴∠EPF=130°,∵∠D+∠G+∠EPF=180°,∴∠D+∠G=50°,由对称可知:∠G=∠GPN,∠D=∠DPM,∴∠GPN+∠DPM=50°,∴∠MPN=130°﹣50°=80°,故答案为:80°.三.解答题(共6小题)19.【解答】(1)①证明:∵AD是△ABC的中线,∴BD=CD,在△ADB和△ECD中,,∴△ABD≌△ECD(SAS);②解:由①知,△ABD≌△ECD,∴CE=AB,∵AB=5,∴CE=5,∵ED=AD,AD=x,∴AE=2AD=2x,在△ACE中,AC=3,根据三角形的三边关系得,5﹣3<2x<5+3,∴1<x<4,故答案为:1<x<4;(2)证明:如图2,延长FD,截取DH=DF,连接BH,EH,∵DH=DF,DE⊥DF,即∠EDF=∠EDH=90°,DE=DE,∴△DEF≌△DEH(SAS),∴EH=EF,∵AD是中线,∴BD=CD,∵DH=DF,∠BDH=∠CDF,∴△BDH≌△CDF(SAS),∴CF=BH,∵BE+BH>EH,∴BE+CF>EF.20.【解答】解:(1)如图1中,∵AD是高,∴∠ADC=90°,∵BE是高,∴∠AEB=∠BEC=90°,∴∠EAO+∠ACD=90°,∠EBC+∠ECB=90°,∴∠EAO=∠EBC,在△AOE和△BCE中,,∴△AOE≌△BCE,∴AO=BC=5.(2)∵BD=CD,BC=5,∴BD=2,CD=3,由题意OP=t,BQ=4t,①当点Q在线段BD上时,QD=2﹣4t,∴S=•t(2﹣4t)=﹣2t2+t(0<t<).②当点Q在射线DC上时,DQ=4t﹣2,∴S=•t(4t﹣2)=2t2﹣t(<t≤5).(3)存在.①如图2中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,∴△BOP≌△FCQ.∴CQ=OP,∴5﹣4t=t,解得t=1,②如图3中,当OP=CQ时,∵OB=CF,∠POB=∠FCQ,∴△BOP≌△FCQ.∴CQ=OP,∴4t﹣5=t,解得t=.综上所述,t=1或s时,△BOP与△FCQ全等.21.【解答】解:(1)结论:AE⊥BE.理由:∵AD∥BC,∴∠BAD+∠ABC=180°,又∵AE平分∠BAD,BE平分∠ABC,∴∠DAE=∠EAF=∠BAD,∠ABE=∠CBE=∠ABC,∴∠EAB+∠EBA=(∠BAD+∠ABC)=×180°=90°,∵∠EAB+∠ABE+∠AEB=180°,∴∠AEB=90°,∴AE⊥BE;(2)∵AF=AD,AB=AD+BC,∴BF=BC,在△AED和△AEF中,,∴△AED≌△AEF(SAS),∴S四边形ADEF=2S△AEF,同理△BEF≌△BEC,∴S四边形BCEF=2S△BEF,∴S四边形ABCD=S四边形ADEF+S四边形BCEF=2S△AEF+2S△BEF=2S△ABE=2××5×3=15.∴四边形ABCD的面积为15.22.【解答】(1)证明:连接BD,∵DE垂直平分BC,∴BD=CD,∵AD平分∠CAM,DF⊥AC,DG⊥AM,∴DG=DF,在Rt△BDG和Rt△CDF中,,∴Rt△BDG≌Rt△CDF(HL),∴BG=CF;(2)解:在Rt△ADG和Rt△ADF中,,∴Rt△ADG≌Rt△ADF(HL),∴AG=AF,∵AC=AF+CF,BG=AB+AG,BG=CF,∴AC=AF+AB+AG,∴AC=2AG+AB,∵AB=10cm,AC=14cm,∴AG==2cm.23.【解答】解:(1)当t=1时,AP=BQ=1,BP=AC=3,又∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(2)存在,理由:①若△ACP≌△BPQ,则AC=BP,AP=BQ,则,解得;②若△ACP≌△BQP,则AC=BQ,AP=BP,则,解得:;综上所述,存在或,使得△ACP与△BPQ全等.24.【解答】(1)解:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠CAE=∠BAD,在△CAE和△BAD中,∴,∴△CAE≌△BAD(SAS),∴BD=CE,故答案为:BD=CE;(2)证明:由(1)得:△CAE≌△BAD,∴∠ADB=∠AEC,∴180°﹣∠ADB=180°﹣∠AEC,∴∠ADM=∠AEN,在△ADM和△AEN中,,∴△ADM≌△AEN(SAS),∴∠DAM=∠EAN,∴∠DAM+∠MAE=∠EAN+∠MAE,∴∠MAN=∠DAE,∵∠DAE=∠BAC,∴∠MAN=∠BAC,过点M作关于BN的对称点M′,连接AM′,如图,则∠MAN=∠M′AN=∠BAC,∵∠BAC+∠CAN=180°,∴∠M′AN+∠CAN=180°,∴C、A、M′三点共线,即M′C交直线BN于点A,∴点A为点C,M关于直线BN的“等角点.。

河南省郑州枫杨外国语学校2024-2025学年九年级上学期第一次月考数学试卷(含答案解析)

河南省郑州枫杨外国语学校2024-2025学年九年级上学期第一次月考数学试卷(含答案解析)

10
答案
A
B
B
D
B
A
D
C
A
B
1.A
【分析】本题主要考查了轴对称图形的定义,如果一个平面图形沿一条直线折叠,直线两旁
的部分能够互相重合,这个图形就叫做轴对称图形.根据轴对称图形的定义进行逐一判断即
可.
【详解】解:A.平行四边形不是轴对称图形,故 A 符合题意;
B.矩形是轴对称图形,故 B 不符合题意;
故选:B
【点睛】考查了用配方法解一元二次方程,配方步骤:第一步平方项系数化 1;第二步移项,
把常数项移到右边;第三步配方,左右两边加上一次项系数一半的平方;第四步左边写成完
全平方式;第五步,直接开方即可.
4.D
答案第 1页,共 17页
【分析】本题主要考查了矩形的判定,频率估计概率,正方形的判定和性质,等腰三角形的
(2)若小红和小丽-起去食堂用餐时 4 个窗口都没有人,求小红和小丽在相邻窗口取餐的概
率.(请用画树状图或列表等方法说明理由)
20.如图,四边形 ABCD 是平行四边形, AE BD 于点 E , CG BD 于点 F , FG CF ,
连接 AG .
(1)求证:四边形 AEFG 是矩形;
5.0 x 5.5
5.5 x 6.0
6.0 x 6.5
x 6.5
稻穗个数
5
8
16
14
7
根据以上数据,估计此试验田的 3 万棵水稻中“良好”(穗长在 5.5 x 6.5 范围内)的水稻
数量为
万棵.
13.方程 x 2 9 x 18 0 的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为

湖南省名校2024届高三上学期月考数学题型分类汇编(单选题)第1辑PDF版含答案

湖南省名校2024届高三上学期月考数学题型分类汇编(单选题)第1辑PDF版含答案

湖南省名校2024届高三上学期月考数学题型分类汇编单选题(第1辑)目录湖南省长沙市长郡中学2024届高三上学期月考(一)数学(单选题)湖南省长沙市长郡中学2024届高三上学期月考(二)数学(单选题)湖南省长沙市长郡中学2024届高三上学期月考(三)数学(单选题)湖南省长沙市长郡中学2024届高三上学期月考(四)数学(单选题)湖南省长沙市长郡中学2024届高三上学期月考(五)数学(单选题)湖南省长沙市雅礼中学2024届高三上学期月考(一)数学(单选题)湖南省长沙市雅礼中学2024届高三上学期月考(二)数学(单选题)湖南省长沙市雅礼中学2024届高三上学期月考(三)数学(单选题)湖南省长沙市雅礼中学2024届高三上学期月考(四)数学(单选题)参考答案说明:本套资源是2024届高三上学期数学学科月考试卷题型分类汇编,本辑为单选题,试题来源于湖南省长郡中学和雅礼中学两所名校上学期月考试卷,可供高三学生上学期进行数学总复习时学习和参考。

湖南省长沙市长郡中学2024届高三上学期月考(一)数学(单选题)1.集合{}260A x x x =--<,集合{}2log 1B x x =<,则A B = ()A.()2,3- B.(),3-∞ C.()2,2- D.()0,22.已知λ∈R ,向量()3,a λ= ,()1,2b λ=- ,则“3λ=”是“a b ∥”的()A.必要不充分条件B.充分不必要条件C.充分必要条件D.既不充分也不必要条件3.复数i z a b =+(,a b ∈R ,i 为虚数单位),z 表示z 的共轭复数,z 表示z 的模,则下列各式正确的是()A.z z =- B.z z z ⨯=C.22z z= D.1212z z z z +≤+4.若直线l :3sin 20x y θ⋅-=与圆C:2250x y +--=交于M ,N 两点,则MN的最小值为()A.B.C.D.5.数列{}n a 满足112,0,2121,1,2n n n n n a a a a a +⎧≤<⎪⎪=⎨⎪-≤<⎪⎩若125a =,则2023a 等于()A.15B.25C.35D.456.现有长为89cm 的铁丝,要截成n 小段()2n >,每段的长度为不小于1cm 的整数,如果其中任意三小段都不能拼成三角形,则n 的最大值为()A.8B.9C.10D.117.已知函数()()211sinsin 0222x f x x ωωω=+->,x ∈R .若()f x 在区间(),2ππ内没有零点,则ω的取值范围是()A.10,8⎛⎤ ⎥⎝⎦B.150,,148⎛⎤⎡⎫ ⎪⎥⎢⎝⎦⎣⎭C.50,8⎛⎤ ⎥⎝⎦D.1150,,848⎛⎤⎡⎤ ⎥⎢⎥⎝⎦⎣⎦8.已知函数()2242af x x x x =---在区间(),2-∞-,)+∞上都单调递增,则实数a 的取值范围是()A.0a <≤B.04a <≤C.0a <≤D.0a <≤湖南省长沙市长郡中学2024届高三上学期月考(二)数学(单选题)1.若集合{}()(){}41,,190A x x k k B x x x ==-∈=+-≤N ,则A B ⋂的元素个数为()A.2B.3C.4D.52.设a ∈R ,若复数20231i ia -的虚部为3(其中i 为虚数单位),则=a ()A.13-B.3- C.13 D.33.已知非零向量a ,b满足)b =,π,3a b = ,若()a b a -⊥ ,则向量a 在向量b 方向上的投影向量为()A.14bB.12b C.D.b4.设抛物线C :22x py =的焦点为F ,(),4M x 在C 上,5MF =,则C 的方程为()A.24x y =B.24x y =-C.22x y =-D.22x y=5.若函数()1e x af x x -+=-在区间()0,∞+上单调递增,则实数a 的取值范围为()A.(],1-∞-B.(),1-∞C.[)0,∞+ D.(],1-∞6.直线:1l y kx =+与圆22:1O x y +=相交于,A B 两点,则"1"k =是“OAB 的面积为12”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分又不必要条件7.已知π0,2α⎛⎫∈ ⎪⎝⎭π2sin 4αα⎛⎫=+ ⎪⎝⎭,则sin 2α=()A.34-B.34C.1-D.18.若实数a b c d ,,,满足2e 111a a cb d --==-,则22()()ac bd -+-的最小值是()A.8 B.9 C.10D.11湖南省长沙市长郡中学2024届高三上学期月考(三)数学(单选题)1.已知集合{}2430,{ln 1}A x x x B x x =-+<=≤∣∣,则A B = ()A .(1,e]B .[1,3]C .(0,e]D .(0,3]2.若i 是虚数单位,则复数23i1i ++的实部与虚部之积为()A .54-B .54C .5i 4D .5i4-3.函数2sin (09)63x y x ππ⎛⎫=-≤≤ ⎪⎝⎭的最大值与最小值之差为()A .2B .0C .2D .2+4.已知函数()2()lg 45f x x x =--在(,)a +∞上单调递增,则a 的取值范围是()A .[5,)+∞B .[2,)+∞C .(,2]-∞D .(,1]-∞-5.已知12,F F 是双曲线C 的两个焦点,P 为C 上一点,且121260,3F PF PF PF ∠=︒=,则C 的离心率为()A B .132C .72D 6.“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形为面围成的多面体,它体现了数学的对称美.如图,将一个正方体沿交于一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形,六个面为正方形的“阿基米德多面体”,则该多面体中具有公共顶点的两个正三角形所在平面的夹角的正切值为()A .22B .1C D .7.设正实数,,x y z 满足22430x xy y z -+-=,则xyz的最大值为()A .0B .1C .2D .38.已知函数3ln ()2xf x a ax x=+-,若存在唯一的整数0x ,使()00f x >,则实数a 的取值范围是()A .(ln 2,ln 3)B .ln 3ln 2,52⎛⎫⎪⎝⎭C .ln 3ln 2,52⎡⎫⎪⎢⎣⎭D .ln 2ln 3,23⎛⎫⎪⎝⎭湖南省长沙市长郡中学2024届高三上学期月考(四)数学(单选题)1.设集合{}{13},2,1,0,1M xx N =-<<=--∣,则M N ⋂=()A.{}1,0,1- B.{}0,1C.{11}x x -<<∣ D.{11}xx -<≤∣2.已知i 是虚数单位,若()()2i 1i 4i a ++=,则实数=a ()A.2B.0C.1- D.2-3.设随机变量2(,)X N μσ ,且()3()P X a P X a <=≥,则()P X a ≥=()A.0.75B.0.5C.0.3D.0.254.已知43log log 5,log 2a b c ===,则下列结论正确的是()A.<<b c aB.c b a <<C.b a c<< D.<<c a b5.已知圆锥的高为3,若该圆锥的内切球的半径为1,则该圆锥的表面积为()A.6πB. C.9πD.12π6.已知角π02α⎛⎫∈ ⎪⎝⎭,,且满足cos 4παα⎛⎫-= ⎪⎝⎭,则sin 2cos αα+=()A.2- B.2516 C.2516-D. 27.在等腰ABC 中,2,30,AC CB CAB ABC ∠===︒ 的外接圆圆心为O ,点P 在优弧AB 上运动,则2PA PB PO PC PA PB⎡⎤⎛⎫⎢⎥ ⎪-+⋅⎢⎥⎪⎝⎭⎣⎦的最小值为()A.4B.2C.-D.6-8.已知椭圆E :22221(0)x y a b a b +=>>的右焦点为()3,0F ,过点F 的直线交椭圆E 于,A B 两点,若AB 的中点坐标为()1,1-,则椭圆E 的方程为()A.221189x y += B.2212718x y +=C.2213627x y += D.2214536x y +=湖南省长沙市长郡中学2024届高三上学期月考(五)数学(单选题)1.若i 为虚数单位,则()()2i 1i +-的虚部为()A.iB.1C.i- D.-12.若集合{}2log 1,{1}A xx B x x =<=∣∣ ,则A B ⋃=R ð()A.{01}x x <<∣B.{12}xx -<<∣C.{10xx -<<∣或02}x << D.{2}xx <∣3.已知不共线的两个非零向量,a b ,则“a b + 与a b - 所成角为锐角”是“a b > ”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件4.要得到函数()πcos 23g x x ⎛⎫=+⎪⎝⎭的图象,可以将函数()πsin 26f x x ⎛⎫=+ ⎪⎝⎭的图象()A.向右平移π3个单位长度 B.向左平移π3个单位长度C.向右平移π6个单位长度D.向左平移π6个单位长度5.已知()()4223,0,,0,x x x f x g x x ⎧-->⎪=⎨<⎪⎩若()f x 为()(),00,∞∞-⋃+上的奇函数,()0(0)g a a =<,则a =()A.2±B.32-C.2-D.-16.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右顶点分别为12,,A A F 为C 的右焦点,C的离心率为2,若P 为C 右支上一点,2PF FA ⊥,记12π02A PA ∠θθ⎛⎫=<< ⎪⎝⎭,则tan θ=()A.12B.1D.27.已知二面角l αβ--的平面角为π0,,,,,,2A B C l D l AB l AB θθαβ⎛⎫<<∈∈∈∈⊥ ⎪⎝⎭与平面β所成角为π3.记ACD 的面积为1,S BCD 的面积为2S ,则12S S 的取值范围为()A.1,12⎡⎫⎪⎢⎣⎭B.12⎡⎢⎣C.32⎣D.3,12⎫⎪⎪⎣⎭8.在长郡中学文体活动时间,举办高三年级绳子打结计时赛,现有()*5n ∈N根绳子,共有10个绳头,每个绳头只打一次结,且每个结仅含两个绳头,所有绳头打结完毕视为结束.则这5根绳子恰好能围成一个圈的概率为()A.64315B.256315C.32315D.128315湖南省长沙市雅礼中学2024届高三上学期月考(一)数学(单选题)1.若集合{}2|log 4M x x =<,{}|21N x x =≥,则M N ⋂=()A.{}08x x ≤< B.182x x ⎧⎫≤<⎨⎬⎩⎭C.{}216x x ≤< D.1162xx ⎧⎫≤<⎨⎬⎩⎭2.记等差数列{a n }的前n 项和为S n .若a 6=16,S 5=35,则{a n }的公差为()A.3B.2C.-2D.-33.已知1z ,2z 是关于x 的方程2220x x +=-的两个根.若11i z =+,则2z =()A.2B.1C.D.24.函数sin exx x y =的图象大致为()A. B.C. D.5.已知220x kx m +-<的解集为()(),11t t -<-,则k m +的值为()A.1B.2C.-1D.-26.古代数学家刘徽编撰的《重差》是中国最早的一部测量学著作,也为地图学提供了数学基础,根据刘徽的《重差》测量一个球体建筑的高度,已知点A 是球体建筑物与水平地面的接触点(切点),地面上B ,C 两点与点A 在同一条直线上,且在点A 的同侧,若在B ,C 处分别测量球体建筑物的最大仰角为60°和20°,且BC =100m ,则该球体建筑物的高度约为()(cos10°≈0.985)A.45.25mB.50.76mC.56.74mD.58.60m7.已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++-=,()1f x +为偶函数,()11f =,则()2023f =()A.1B.-1C.2D.-38.如今中国被誉为基建狂魔,可谓是逢山开路,遇水架桥.公路里程、高铁里程双双都是世界第一.建设过程中研制出用于基建的大型龙门吊、平衡盾构机等国之重器更是世界领先.如图是某重器上一零件结构模型,中间最大球为正四面体ABCD 的内切球,中等球与最大球和正四面体三个面均相切,最小球与中等球和正四面体三个面均相切,已知正四面体ABCD 棱长为,则模型中九个球的表面积和为()A.6πB.9πC.31π4D.21π湖南省长沙市雅礼中学2024届高三上学期月考(二)数学(单选题)1.若12z i =+,则()1z z +⋅=()A.24i-- B.24i-+ C.62i- D.62i+2.全集U =R ,集合{2,3,5,7,9}A =,{4,5,6,8}B =,则阴影部分表示的集合是()A.{2,3,5,7,9}B.{2,3,4,5,6,7,8,9}C.{4,6,8}D.{5}3.函数()2log 22xxx x f x -=+的部分图象大致是()A.B.C.D.4.在边长为3的正方形ABCD 中,点E 满足2CE EB = ,则AC DE ⋅=()A.3B.3- C.4- D.45.某校科技社利用3D 打印技术制作实心模型.如图,该模型的上部分是半球,下部分是圆台.其中半球的体积为3144πcm ,圆台的上底面半径及高均是下底面半径的一半.打印所用原料密度为31.5g/cm ,不考虑打印损耗,制作该模型所需原料的质量约为()(1.5 4.7π≈)A.3045.6gB.1565.1gC.972.9gD.296.1g6.已知数列{} n a 为等比数列,其前n 项和为n S ,10a >,则“公比0q >”是“对于任意*n ∈N ,0n S >”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件7.若存在实数a ,对任意的x ∈[0,m ],都有(sin x -a )·(cos x -a )≤0恒成立,则实数m 的最大值为()A.4πB.2πC.34π D.54π8.已知函数()f x 的定义域为R ,()()()()2,24f x f x f f +=--=-,且()f x 在[)1,+∞上递增,则()10xf x ->的解集为()A.()()2,04,∞-⋃+ B.()(),15,∞∞--⋃+C.()(),24,-∞-+∞ D.()()1,05,∞-⋃+湖南省长沙市雅礼中学2024届高三上学期月考(三)数学(单选题)1.已知复数1i z =-(i 为虚数单位),z 是z 的共轭复数,则1z的值为A .1B .22C .12D2.设全集U R =,{A x y ==,{}2,x B y y x R ==∈,则()U A B =ðA .{}0x x <B .{}01x x <≤C .{}12x x <≤D .{}2x x >3.已知向量a ,b满足7a b += ,3a = ,4b = ,则a b -=A .5B .3C .2D .14.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先成果,哥德巴赫猜想如下:每个大于2的偶数都可以表示为两个素数(一个整数除了1和它本身没有其他约数的数称为素数)的和,如30723=+,633=+,在不超过25的素数中,随机选取2个不同的数,则这2个数恰好含有这组数的中位数的概率是A .14B .13C .29D .385.若函数()32132x a f x x x =-++在区间1,32⎛⎫⎪⎝⎭上有极值点,则实数a 的取值范围是A .52,2⎛⎫ ⎪⎝⎭B .52,2⎡⎫⎪⎢⎣⎭C .102,3⎛⎫⎪⎝⎭D .102,3⎡⎫⎪⎢⎣⎭6.已知3log 2a =,ln 3ln 4b =,23c =.则a ,b ,c 的大小关系是A .a b c <<B .a c b<<C .c a b<<D .b a c<<7.已知tan tan 3αβ+=,()sin 2sin sin αβαβ+=,则()tan αβ+=A .6-B .32-C .6D .48.已知函数()()32sin 4x f x x x x π=-+的零点分别为1x ,2x ,…,n x ,*n N ∈),则22212n x x x +++=A .12B .14C .0D .2湖南省长沙市雅礼中学2024届高三上学期月考(四)数学(单选题)1.已知集合{}2|1A x x =≤,{}|1B y y =≥-,则A B = ()A.∅B.[]1,1- C.[1,)-+∞ D.[1,1)-2.已知复数z 满足2(1i)z 24i -=-,其中i 为虚数单位,则复数z 的虚部为()A.1B.1- C.iD.i-3.如图所示,九连环是中国传统民间智力玩具,以金属丝制成9个圆环,解开九连环共需要256步,解下或套上一个环算一步,且九连环的解下和套上是一对逆过程.九连环把玩时按照一定的程序反复操作,可以将九个环全部从框架上解下或者全部套上.将第n 个圆环解下最少需要移动的次数记为n a (9n ≤,*n ∈N ),已知11a =,21a =,按规则有1221n n n a a a --++=(3n ≥,*n ∈N ),则解下第4个圆环最少需要移动的次数为()A.31B.16C.11D.74.二项式61x x ⎛⎫- ⎪⎝⎭的展开式中4x 的系数与6x 的系数之比为()A.6B.-6C.15D.-155.函数()()e e 2cos x x x f x x-+=+的部分图象大致为()A. B.C. D.6.已知定义域是R 的函数()f x 满足:x ∀∈R ,()()40f x f x ++-=,()1f x +为偶函数,()11f =,则()2023f =()A.1B.-1C.2D.-37.若点G 是ABC 所在平面上一点,且0,AG BG CG H →++=是直线BG 上一点,AH xAB =+ y AC ,则224x y +的最小值是().A.2 B.1C.12D.148.已知0.05a e =,ln1.112b =+,c =)A.a b c >> B.c b a >>C.b a c>> D.a c b>>参考答案湖南省长沙市长郡中学2024届高三上学期月考(一)数学(单选题)参考答案1.A【解析】解不等式260x x --<,得23x -<<,则{}23A x x =-<<,解不等式2log 1x <,得02x <<,即{}02B x x =<<,所以()2,3A B =- ,故选A.2.B【解析】若向量a b ∥ ,则()3210λλ⨯--=,即260λλ--=,解得2λ=-或3λ=,所以“3λ=”是“a b ∥”的充分不必要条件,故选B.3.D【解析】因为i z a b =-,所以i z a b -=-+,故A 错误;()()22i i z z a b a b a b ⨯=+-=+,z =,故B 错误;2222i z a b ab =-+,222z a b =+,故C 错误;由复数的几何意义可知,()1212z z z z --≤+-,则1212z z z z +≤+,故D 正确.故选D.4.C【解析】依题意,圆C :(2218x y +-=,故圆心(C 到直线l :3sin 20x y θ⋅-=的距离d =,故MN =≥,当且仅当2sin 0θ=时等号成立,故min MN = C.5.C【解析】因为12152a =<,所以245a =,335a =,415a =,525a =,所以数列具有周期性,周期为4,所以202333$5a a ==.故选C.6.B【解析】截成的铁丝最小为1,因此第一段为1,因n 段之和为定值,欲n 尽可能的大,则必须每段的长度尽可能小,所以第二段为1,又因为任意三条线段都不能构成三角形,所以三条线段中较小两条之和不超过最长线段,又因为每段的长度尽可能小,所以第三段为2,为了使得n 最大,因此要使剩下的铁丝尽可能长,因此每一条线段总是前面的相邻两段之和,依次为:1,1,2,3,5,8,13,21,34,以上各数之和为88,与89相差1,因此可以取最后一段为35,这时n 达到最大为9.故选B.7.D【解析】由题设有()1cos 11sin 22224x f x x x ωπωω-⎛⎫=+-=- ⎪⎝⎭,令()0f x =,则有4x k πωπ-=,k ∈Z ,即4k x ππω+=,k ∈Z .因为()f x 在区间(),2ππ内没有零点,故存在整数k ,使得5442k k ππππππωω++≤<≤,即1,45,28k k ωω⎧≥+⎪⎪⎨⎪≤+⎪⎩因为0ω>,所以1k ≥-且15428k k +≤+,故1k =-或0k =,所以108ω<≤或1548ω≤≤,故选D.8.D【解析】设()242a g x x x =--,其判别式21604a =+>△,∴函数()g x 一定有两个零点,设()g x 的两个零点为1x ,2x 且12x x <,由2402a x x --=,得1x =2x =,∴()121224,,224,,24,.2ax x x a f x x x x x x ax x x ⎧+<⎪⎪⎪=--≤⎨⎪⎪+>⎪⎩≤①当0a ≤时,()f x 在()1,x -∞上单调递减或为常函数,从而()f x 在(),2-∞-不可能单调递增,故0a >;②当0a >时,()20g a -=>,故12x >-,则120x -<<,∵()f x 在()1,x -∞上单调递增,∴()f x 在(),2-∞-上也单调递增,102ga =--<2x <,由()f x 在2,8a x ⎡⎤⎢⎥⎣⎦和()2,x +∞上都单调递增,且函数的图象是连续的,∴()f x 在,8a ⎡⎫+∞⎪⎢⎣⎭上单调递增,欲使()f x在)+∞上单调递增,只需8a≤,得a ≤,综上,实数a的范围是0a <≤故选D.湖南省长沙市长郡中学2024届高三上学期月考(二)数学(单选题)参考答案1.B 【解析】集合{}19B x x =-≤≤,{}1,3,7,11,15,A =- ,则{}1,3,7A B ⋂=-,即元素个数为3.故选:B 2.A 【解析】复数()20231i i 1i 1i 1i 1i i i +-+-+====---a a a a a a,因为其虚部为3,所以13-=a ,可得13=-a .故选:A.3.A 【解析】因为()a b a -⊥ ,所以()20a b a a a b -⋅=-⋅=,∴2102a a b -=,又)b =,所以2b ==,∴1a =或0a = (舍去),所以21a b a ⋅== ,所以a 在b方向上的投影向量为14a b b b b b⋅⋅=⋅.故选:A.4.A 【解析】抛物线22x py =的开口向上,由于(),4M x 在C 上,且5MF =,根据抛物线的定义可知45,22pp +==,所以抛物线C 的方程为24x y =.故选:A 5.D 【解析】由()1ex a f x x -+=-,得()1e 1x a f x -+=-',因为函数()1e x af x x -+=-在区间()0,∞+上单调递增,所以()1e10x a f x -+'=-≥在区间()0,∞+恒成立,所以10x a -+≥在区间()0,∞+恒成立,即1a x ≤+在区间()0,∞+恒成立,所以1a ≤.故选:D 6.A 【解析】由1k =时,圆心到直线:1l y x =+的距离2d =..所以11222OAB S ∆==.所以充分性成立,由图形的对称性,当1k =-时,OAB 的面积为12.所以必要性不成立.故选A.7.B 【解析】π2sin()4αα=+Q ,)222(sin cos )2cos sin αααα=+-Q ,1(cos sin )(cos sin )02αααα∴+--=,又π0,2α⎛⎫∈ ⎪⎝⎭,则sin 0,cos 0αα>>,即cos sin 0αα+>所以1cos sin 2αα-=,因为π0,2α⎛⎫∈ ⎪⎝⎭,所以2(0,π)α∈,sin 20α>.由1cos sin 2αα-=平方可得11sin 24α-=,即3sin 24α=,符合题意.综上,3sin 24α=.故选:B.8.A 【解析】由2e 1a a b-=,得2e a b a =-,令()2e x f x x =-,则()'12e x f x =-,令()'0fx =得ln 2x =-,当ln 2x >-时,()()'0,f x f x <单调递减,当ln 2x <-时,()()'0,f x f x >单调递增;由111cd -=-,得2d c =-+,令()2g x x =-+,()(),f x g x 的图像如下图:则22()()a c b d -+-表示()y f x =上一点(),M a b 与()y g x =上一点(),N c d 的距离的平方,显然,当过M 点的()f x 的切线与()g x 平行时,MN 最小,设()y f x =上与()y g x =平行的切线的切点为()000,M x y ,由()0'012e 1xf x =-=-,解得00x =,所以切点为()00,2M -,切点到()y g x =的距离的平方为28=,即22()()a c b d -+-的最小值为8;故选:A.湖南省长沙市长郡中学2024届高三上学期月考(三)数学(单选题)参考答案1.A【解析】{}2430(1,3),{ln 1}(0,e],(1,e]A x x x B x x A B =-+<==≤=∴= ∣∣,故选A .2.B 【解析】因为23i (23i)(1i)51i 1i (1i)(1i)22++-==+++-,所以实部为52,虚部为12,实部与虚部之积为54.故选B .3.D【解析】因为09x ≤≤,所以9066x ππ≤≤,所以73636x ππππ-≤-≤,所以当633x πππ-=-时,有最小值为2sin 3π⎛⎫-= ⎪⎝⎭,所以当632x πππ-=时,有最大值为2sin 22π=,所以最大值与最小值之差为2,故选D .4.A【解析】由于()2()lg 45f x x x =--在(,)a +∞上单调递增,而lg y x =在(0,)+∞上单调递增,所以2450,2,a a a ⎧--≥⎨≥⎩所以5a ≥,故a 的取值范围是[5,)+∞,故选A .5.C【解析】由双曲线的定义得,12||||||2PF PF a -=,又123PF PF =,所以21,3PF a PF a ==,所以在12F PF △中,有222121212122cos F F PF PF PF PF F PF =+-⋅∠,即2224923cos 60c a a a a =+-⋅⋅︒,化简得2247c a =,即2274c a =,所以离心率72c e a ===,故选C .6.D【解析】将该“阿基米德多面体”放入正方体中,如图,平面EFG 和平面GHK 为有公共顶点的两个正三角形所在平面,建立如图所示空间直角坐标系,设正方体的棱长为2,则(1,0,2),(2,1,2),(2,0,1),(2,1,0),(1,0,0)E F G H K ,设平面EFG 的法向量为(,,),(1,1,0),(1,0,1)m x y z EF EG ===-,所以0,0,EF m x y EG m x z ⎧⋅=+=⎪⎨⋅=-=⎪⎩令1,1,1x y z ==-=,所以(1,1,1)m =- ,设平面GHK 的法向量为(,,),(0,1,1),(1,0,1)n a b c GH GK ==-=--,所以0,0,GH n b c GK n a c ⎧⋅=-=⎪⎨⋅=--=⎪⎩令1,1,1a b c ==-=-,所以(1,1,1)n =-- ,设平面EFG 和平面GHK 的夹角为θ,则1cos ,3||||m n m n m n ⋅〈〉===⋅,因为平面EFG 和平面GHK 的夹角为锐角,所以1cos |cos ,|3m n θ=〈〉= ,所以22sin sin ,tan 3cos θθθθ====,故选D .7.B【解析】2243z x xy y =-+,则22114433xy xy x y z x xy y y x ==≤=-++-.8.C【解析】由()0f x >,得3ln 2x a ax x >-+,令3ln (),()2xg x h x a ax x==-+,则23(1ln )()x g x x -'=,则()g x 在(0,e)上单调递增,在(e,)+∞上单调递减,作出()g x 的大致图象如图所示,易知()h x 的图象是恒过,点1,02⎛⎫⎪⎝⎭的直线,若0a ≤,则显然不符合题意;若0a >,则(2)(2),(3)(3),g h g h >⎧⎨≤⎩即3ln 24,23ln 36,3a a a a ⎧>-+⎪⎪⎨⎪≤-+⎪⎩解得ln 3ln 252a ≤<.故选C .湖南省长沙市长郡中学2024届高三上学期月考(四)数学(单选题)参考答案1.B 【解析】由已知得{}0,1M N = .故选:B 2.A 【解析】因为R a ∈,()()()2i 1i 22i 4i a a a ++=-++=,所以2024a a -=⎧⎨+=⎩,解得2a =.故选:A 3.D 【解析】随机变量2(,)X N μσ ,显然()()1P X a P X a <+≥=,而()3()P X a P X a <=≥,所以()0.25P X a ≥=.故选:D 4.B 【解析】因为2234422log 62log log 21log 5log 6==log log 42c b a =<<=<=,即c b a <<.故选:B .5.C【解析】圆锥与其内切球的轴截面如下图所示,由已知111,2O D SO ==,可知130O SD ∠=,所以圆锥的轴截面为正三角形,因为3SO =,所以圆锥底面圆半径tan 30AO SO =⋅=cos 06AOSA ==o,则圆锥的表面积为2ππ9πS =⨯+=.故选:C .6.D 【解析】由已知得π4α⎛⎫-= ⎪⎝⎭3(sin cos )cos ααα-=,∴4tan 3α=,∵π(0,2α∈,∴43sin ,cos ,sin 2cos 255αααα==+=.故选:D.7.D 【解析】由已知2,30AC CB CAB ∠===︒,所以圆O 的外接圆直径为24sin BCR A==,因为30APC ABC BPC BAC ∠∠∠∠====︒,所以PA PB PA PB += ,所以2223112|2(2622PA PB PO PC PO PC PC PC PA PB PC ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ -+⋅=-⋅=-=--⎢⎥⎪ ⎪⎝⎭⎝⎭⎣⎦,因为2AC PC R <≤ ,即24PC <≤,所以PC = 时,取到最小值6-.故选:D .8.A 【解析】根据题意设()()1122,,,A x y B x y ,代入椭圆方程可得22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩;两式相减可得22221212220x x y y a b --+=,整理可得2221211122y y x x b a x x y y --++=-;又因为AB 的中点坐标为()1,1-,可得12122,2x x y y +=+=-;因此过,A B 两点的直线斜率为212212ABy y b k x x a -==-,又()3,0F 和AB 的中点()1,1-在直线上,所以101132AB k --==-,即2212b a =,可得222a b =;又易知3c =,且22229a b c b =+=+,计算可得2218,9a b ==;所以椭圆E 的方程为221189x y +=,代入AB 的中点坐标为()1,1-,得()22113118918-+=<,则其在椭圆内部,则此时直线AB 与椭圆相交两点.故选:A.湖南省长沙市长郡中学2024届高三上学期月考(五)数学(单选题)参考答案1.D【解析】因为()()2i 1i 22i i 13i +-=-++=-,故选D.2.B【解析】不等式2log 1x <解得02x <<,则{02}A xx =<<∣,{1},{1}{11},{12}B x x B x x x x A B x x ==<=-<<∴⋃=-<<R R∣∣∣∣ ,故选B.3.C【解析】因为,a b 不共线,可知a b + 与a b - 不共线,则a b + 与a b - 所成角为锐角等价于()()0a b a b +⋅-> ,即22a b > ,即a b > ,所以“a b + 与a b - 所成角为锐角”是“a b > ”的充分必要条件.故选C.4.B【解析】()()π5π5πsin2,sin 2sin212612f x x g x x x ⎛⎫⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,5πππ12123-=,故选B.5.C【解析】由题意可得当0a <时,()()0f a g a ==,因为()f x 为()(),00,∞∞-⋃+上的奇函数,所以()()f a f a =--,所以()()()()4222230,1230g a f a a a a a =--=-++=+-=,所以21a =-(舍去),或232a =,因为0a <,所以2a =-.故选C.6.A【解析】设C 的焦距为2c ,点()00,P x y ,由C 的离心率为2可知2,c a b ==,因为2PF FA ⊥,所以0x c =,将()0,P c y 代入C 的方程得220221y c a b-=,即0y =,所以()2133tan 3,tan 1PA F PA F c a c a ∠∠====---,故()21311tan tan 1312PA F PA F θ∠∠-=-==+⨯.故选A.7.C【解析】作AE CD ⊥,垂足为E ,连接BE ,因为AB l ⊥,即,,,AB CD AE AB A AE AB ⊥⋂=⊂平面AEB ,故CD ⊥平面,AEB BE ⊂平面AEB ,故CD BE ⊥,又CD ⊂平面β,故平面AEB ⊥平面β,平面AEB ⋂平面BE β=,则AB 在平面β内的射影在直线BE 上,则ABE ∠为AB 与平面β所成角,即π3ABE ∠=,由于,AE CD CD BE ⊥⊥,故AEB ∠为二面角l αβ--的平面角,即π02AEB ∠θθ⎛⎫=<< ⎪⎝⎭,121212AE CD S AE S BEBE CD ⨯==⨯,在ABE 中,sin sin sin AE BE ABABE BAE AEB∠∠∠==,则sin 1sin 2sin AE ABE BE BAE BAE∠∠∠==⋅,而π02θ<<,则π2ππ33BAE ∠θθ=--=-,则π2π1,,sin ,1632BAE BAE ∠∠⎛⎫⎛⎤∈∴∈⎪ ⎥⎝⎭⎝⎦,故sin 313sin 2sin 2AE ABE BE BAE BAE ∠∠∠==⋅∈⎣,故选C.8.D【解析】不妨令绳头编号为1,2,3,4,,2n ,可以与绳头1打结形成一个圆的绳头除了1,2外有22n -种可能,假设绳头1与绳头3打结,那么相当于对剩下1n -根绳子进行打结,令()*n n ∈N根绳子打结后可成圆的种数为na,那么经过一次打结后,剩下1n -根绳子打结后可成圆的种数为1n a -,由此可得,()122,2n n a n a n -=- ,所以()1212122,24,,2n n n n a a an n a a a ---=-=-= ,所以()()()112224221!n na n n n a -=-⨯-⨯⨯=⋅- ,显然11a =,故()121!n n a n -=⋅-;另一方面,对2n 个绳头进行任意2个绳头打结,总共有()()()222222224222122212!C C C C ;!2!2!n n n nn n n n n N n n n --⋅-⋅-⋅⋅⋅===⋅⋅ 所以()()()()12121!2!1!2!2!2!n n n n n n n a P n N n n --⋅-⋅-===⋅.所以当5n =时,128315P =,故选D .湖南省长沙市雅礼中学2024届高三上学期月考(一)数学(单选题)参考答案1.D 【解析】{}{}2|log 4|016M x x x x =<=<<,1|2N x x ⎧⎫=≥⎨⎩⎭,则1162M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:D.2.A 【解析】解:由等差数列性质可知,S 5=152a a +×5=5a 3=35,解得a 3=7,设等差数列的公差为d ,所以11+27516a d a d =⎧⎨+=⎩,解之得3d =.故选:A.3.C 【解析】法一:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z +=,所以()21221i 1i z z =-=-+=-,所以21i z =-=法二:由1z ,2z 是关于x 的方程2220x x +=-的两个根,得122z z ⋅=,所以21221i z z ==+,所以2221i 1i z ====++.故选:C .4.D 【解析】令()sin exx x f x =,该函数的定义域为R ,()()()sin sin eexxx x x x f x f x ----===,所以,函数sin exx x y =为偶函数,排除AB 选项,当0πx <<时,sin 0x >,则sin 0exx x y =>,排除C 选项.故选:D.5.B 【解析】因为220x kx m +-<的解集为()(),11t t -<-,所以=1x -为方程220x kx m +-=的一个根,所以2k m +=.故选:B .6.B 【解析】设球的半径为R,,tan10R AB AC ==,100tan10RBC =-=- ,25250.760.985R R ==故选:B.7.B【解析】因为()1f x +为偶函数,所以()f x 的图象关于直线1x =对称,所以()()2=f x f x -,又由()()40f x f x ++-=,得()()4f x f x +=--,所以()()()846f x f x f x +=---=-+,所以()()2f x f x +=-,所以()()4f x f x +=,故()f x 的周期为4,所以()()()2023311f f f ==-=-.故选:B .8.B 【解析】如图,取BC 的中点E ,连接DE ,AE ,则CE BE ==,AE DE ===,过点A 作AF ⊥底面BCD ,垂足在DE 上,且2DF EF =,所以DF EF ==4AF ===,点O 为最大球的球心,连接DO 并延长,交AE 于点M ,则DM ⊥AE ,设最大球的半径为R ,则OF OM R ==,因为Rt AOM △∽Rt AEF ,所以AO OMAE EF ==1R =,即1OM OF ==,则413AO =-=,故1sin 3OM EAF AO ∠==设最小球的球心为J ,中间球的球心为K ,则两球均与直线AE 相切,设切点分别为,H G ,连接,HJ KG ,则,HJ KG 分别为最小球和中间球的半径,长度分别设为,a b ,则33,33AJ HJ a AK GK b ====,则33JK AK AJ b a =-=-,又JK a b =+,所以33b a a b -=+,解得2b a =,又33OK R b AO AK b =+=-=-,故432b R =-=,解得12b =,所以14a =,模型中九个球的表面积和为2224π4π44π44π4ππ9πR b a +⨯+⨯=++=.故选:B湖南省长沙市雅礼中学2024届高三上学期月考(二)数学(单选题)参考答案1.C 【解析】()()()122i 12i 244i 2i 62i z z +⋅=+-=+-+=-.故选:C .2.C 【解析】韦恩图的阴影部分表示的集合为()U A B ð,而全集U =R ,集合{2,3,5,7,9}A =,{4,5,6,8}B =,所以(){4,6,8}U A B ⋂=ð.故选:C 3.A 【解析】易知()2log 22xxx x f x -=+的定义域为{}0x x ≠,因为()()22log log 2222xxxxx x x f x x f x -----==-=-++,所以()f x 为奇函数,排除答案B ,D ;又()2202222f -=>+,排除选项C .故选:A .4.A【解析】以B 为原点,BC ,BA 所在直线分别为x ,y 轴,建立如图所示直角坐标系,由题意得()()()()0,3,1,0,3,0,3,3A E C D ,所以()3,3AC =- ,()2,3DE =-- ,所以()()()32333AC DE ⋅=⨯-+-⨯-= .故选:A.5.C【解析】设半球的半径为R ,因为332π144πcm 3V R ==半球,所以6R =,由题意圆台的上底面半径及高均是3,下底面半径为6,所以((223113π6π363πcm 33V S S h =+=⋅+⋅+⨯=下上圆台,所以该实心模型的体积为3144π63π207πcm V V V =+=+=半球圆台,所以制作该模型所需原料的质量为207π 1.5207 4.7972.9g⨯≈⨯=故选:C.6.A【解析】若10a >,且公比0q >,则110n n a a q -=>,所以对于任意*n ∈N ,0n S >成立,故充分性成立;若10a >,且12q =-,则()111112212111101323212n n n n n a S a ⎡⎤⎛⎫--⎢⎥ ⎪⎡⎤⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦==-=--⨯>⎢⎥⎢⎥ ⎪ ⎛⎫⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦-- ⎪⎝⎭,所以由对于任意*n ∈N ,0n S >,推不出0q >,故必要性不成立;所以“公比0q >”是“对于任意*n ∈N ,0n S >”的充分不必要条件.故选:A.7.C【解析】在同一坐标系中,作出y =sin x 和y =cos x的图象,当m =4π时,要使不等式恒成立,只有a =22,当m >4π时,在x ∈[0,m ]上,必须要求y =sin x 和y =cos x 的图象不在y =a =22的同一侧.∴由图可知m 的最大值是34π.故选:C.8.D【解析】解:函数()f x ,满足()()2f x f x +=-,则()f x 关于直线1x =对称,所以()()()244f f f -==-,即()()240f f -==,又()f x 在[)1,+∞上递增,所以()f x 在(),1-∞上递减,则可得函数()f x的大致图象,如下图:所以由不等式()10xf x ->可得,20210x x -<<⎧⎨-<-<⎩或414x x >⎧⎨->⎩,解得10x -<<或5x >,故不等式()10xf x ->的解集为()()1,05,∞-⋃+.故选:D.湖南省长沙市雅礼中学2024届高三上学期月考(三)数学(单选题)参考答案1.B2.D【解析】易知{}02A x x =≤≤,{}0B y y =>,∴{}02U A x x x =<>或ð,故(){}2UA B x x => ð.故选D .3.D 【解析】由条件a b a b +=+ 知a ,b 同向共线,所以1a b a b -=-= ,故选D .4.C【解析】不超过25的素数有2,3,5,7,11,13,17,19,23共9个,中位数为11,任取两个数含有1l 的概率为182982369C p C ===,故选C .5.C【解析】由题意()2'1f x x ax =-+在区间1,32⎛⎫⎪⎝⎭上有零点,∴1a x x =+,1,32x ⎛⎫∈ ⎪⎝⎭,∴1023a <≤,又当2a =时,()()2'10f x x =-≥,()f x 单调,不符合,∴2a ≠,∴1023a <<,故选C .6.B【解析】∵2333332log 3log log log 23c a ===>=,∴c a >,又23442log 4log 3c ===44ln 3log log 3ln 4b ===,∴c b <,∴a c b <<.故选B .7.A【解析】由条件知cos cos 0αβ≠,sin cos cos sin 2sin sin αβαβαβ⇒+=,两边同除以cos cos αβ得:tan tan 2tan tan αβαβ+=,∴3tan tan 2αβ=,从而()tan tan tan 61tan tan αβαβαβ++==--,故选A .8.A 【解析】由()()210sin 04f x x x x x π⎡⎤=⇒-⋅+=⎢⎥⎣⎦,0x =为其中一个零点,令()()21sin 4g x x x x π=-+,∵()00g ≠,∴令()()2140sin x g x x x π+=⇒=,∵()1sin 1x π-≤≤∴2141x x +≤,∴214x x +≤,∴2102x ⎛⎫- ⎪⎝⎭≤,∴12x =±,所以()f x )共有三个零点12-,0,12,∴2221212n x x x +++= ,故选A .湖南省长沙市雅礼中学2024届高三上学期月考(四)数学(单选题)参考答案1.B【解析】因为21x ≤,所以11x -≤≤,即{}|11A x x =-≤≤,所以A B = {}|11x x -≤≤.故选:B.2.B【解析】由题意,化简得224i 24i 2i 42i (1i)2i 2z --+====+--,则2i z =-,所以复数z 的虚部为1-.故选:B3.D【解析】由题意,11a =,21a =,1221n n n a a a --++=(3n ≥,*n ∈N ),解下第4个圆环,则4n =,即43221a a a =++,而321211214a a a =++=++=,因此44217a =++=,所以解下第4个圆环最少需要移动的次数为7.故选:D.4.B【解析】由题设6621661C ()(1)C r r r r r r r T x x x--+=-=-,所以含4x 项为()1144261C 6T x x =-=-,含6x 项为()0066161C T x x =-=,,则系数之比为-6.故选:B.5.C【解析】解:根据题意,对于函数()()e e 2cos x xx f x x-+=+,有函数()()()()e e e e 2cos 2cos x xx xx x f x f x x x---++-==-=-++,即函数()f x 为奇函数,图象关于原点对称,故排除A 、B ;当0x >时,cos [1,1]x ∈-,则恒有()()e e 02cos x x x f x x -+=>+,排除D ;故选:C.6.B【解析】因为()1f x +为偶函数,所以()f x 的图象关于直线1x =对称,所以()()2=f x f x -,又由()()40f x f x ++-=,得()()4f x f x +=--,所以()()()846f x f x f x +=---=-+,所以()()2f x f x +=-,所以()()4f x f x +=,故()f x 的周期为4,所以()()()2023311f f f ==-=-.故选:B .7.C【解析】设()G x y ,,112233(,),(,),(,)A x y B x y C x y ,因为0AG BG CG ++= ,所以1233x x x x ++=,1233y y y y ++=,所以点G 是ABC 的重心,设点D 是AC 的中点,则2AC AD =,B 、G 、D 共线,如图,又2AH x AB y AD =+ .因为B 、H 、D 三点共线,所以21x y +=,所以()()22222214222x y x y x y ++=+≥=,当且仅当2x y =,即12x =,14y =时取等号,即224x y +的最小值是12.故选:C .8.D【解析】令()()10x f x e x x =-->,则()10x f e x ='->,()f x \在()0,∞+上单调递增,()()00f x f ∴>=,即1x e x >+,0.1 1.1e ∴>,0.05e ∴>,即a c >;令()ln 1g x x x =-+,则()111x g x x x-'=-=,∴当()0,1x ∈时,()0g x '>;当()1,x ∈+∞时,()0g x '<;()g x ∴在()0,1上单调递增,在()1,+∞上单调递减,()()10g x g ∴≤=,ln 1x x ∴≤-(当且仅当1x =时取等号),1∴≤-,即ln 12x +≤1x =时取等号),ln1.112∴+<,即b c <;综上所述:a c b >>.故选:D.。

四川省成都市实验外国语学校2024-2025学年高三上学期10月月考数学试题(含答案)

四川省成都市实验外国语学校2024-2025学年高三上学期10月月考数学试题(含答案)

成都市实验外国语学校高三10月月考数学试题总分:150考试时间:120分钟一、单选题:本题共8小题,每小题5分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.命题“,使”的否定是( )A .,使B .不存在,使C .,D .,2.已知等差数列的前项和为,若,且,则( )A .60B .72C .120D .1443.若,则( )A .3B .4C .9D .164,侧面展开图的扇形圆心角为的圆锥侧面积为( )A .B .C .D .5.小王每次通过英语听力测试的概率是,且每次通过英语听力测试相互独立,他连续测试3次,那么其中恰有1次通过的概率是( )A .B .C .D .6.已知,是方程的两个根,则( )A .B .C .D .7.当阳光射入海水后,海水中的光照强度随着深度增加而减弱,可用表示其总衰减规律,其中是消光系数,(单位:米)是海水深度,(单位:坎德拉)和(单位:坎德拉)分别表示在深度处和海面的光强.已知某海域5米深处的光强是海面光强的,则该海域消光系数的值约为(参考数据:,)()A .0.2B .0.18C .0.1D .0.148.已知函数,方程有四个不同根,,,,且满足,则的取值范围是( )x ∃∈R 210x x +-=x ∃∈R 210x x +-≠x ∈R 210x x +-=x ∀∉R 210x x +-≠x ∀∈R 210x x +-≠{}n a n n S 21024a a +=36a =8S =24log log 2m n +=2m n =2π39π6π23292273949tan 23︒tan 37︒2230x mx +-=m =--0eKDD I I -=K D D I 0I D 40%K ln 20.7≈ln 5 1.6≈()22log ,012,04x x f x x x x ⎧>⎪=⎨++≤⎪⎩()f x a =1x 2x 3x 4x 1234x x x x <<<221323432x x x x x x +-A .B .C .D .二、多选题:本题共3小题,共18分。

湖北省武汉外国语学校2024-2025学年高三上学期10月月考数学试题

湖北省武汉外国语学校2024-2025学年高三上学期10月月考数学试题

湖北省武汉外国语学校2024-2025学年高三上学期10月月考数学试题一、单选题1.已知集合{}2|230A x x x =+-≥,{}|22B x x =-≤<,则A B =I ( )A .[]2,1--B .[)1,2-C .[]1,1-D .[)1,2 2.复数2i 12i-+的共轭复数是( ) A .3i 5- B .3i 5C .i -D .i 3.若2b a =r r ,=-r r r c a b ,且c a ⊥r r ,则a r 与b r 的夹角为( )A .π6B .π3C .2π3D .5π64.已知ππ(0,),(0,)22αβ∈∈,则下列不等关系中不恒成立的是( ) A .()sin sin sin αβαβ+<+B .()sin cos cos αβαβ+<+C .()cos sin sin αβαβ+<+D .()cos cos cos αβαβ+<+5.将体积为1的正四面体放置于一个正方体中,则此正方体棱长的最小值为( )A .3BCD 6.武汉外校国庆节放7天假(10月1日至10月7日),马老师、张老师、姚老师被安排到校值班,每人至少值班两天,每天安排一人值班,同一人不连续值两天班,则不同的值班方法共有( )种A .114B .120C .126D .1327.已知a R ∈,设函数222,1,()ln ,1,x ax a x f x x a x x ⎧-+=⎨->⎩…若关于x 的不等式()0f x …在R 上恒成立,则a 的取值范围为A .[]0,1B .[]0,2C .[]0,eD .[]1,e8.已知函数()(),R f x f x x =-∈,()5.51f =,函数()()()1g x x f x =-⋅,若()1g x +为偶函数,则()0.5g -的值为( )A .3B .2.5C .2D .1.5二、多选题9.下列关于概率统计的知识,其中说法正确的是( )A .数据1-,0,2,4,5,6,8,9的第25百分位数是1B .已知随机变量(),X B n p :,若()40E X =,()30D X =,则160n =C .若一组样本数据(),i i x y (1i =,2,…,n )的对应样本点都在直线132y x =-+上,则这组样本数据的相关系数为12- D .若事件M ,N 的概率满足()()0,1P M ∈,()()0,1P N ∈且()()1P N M P N +=,则M 与N 相互独立10.连接抛物线上任意四点组成的四边形可能是( )A .平行四边形B .梯形C .有三条边相等的四边形D .有一组对角相等的四边形11.设函数32()231f x x ax =-+,则( )A .当0a =时,直线1y =是曲线()y f x =的切线B .若()f x 有三个不同的零点123,,x x x ,则12312x x x ⋅=-⋅ C .存在,a b ,使得x b =为曲线()y f x =的对称轴D .当02a x ≠时,()f x 在0x x =处的切线与函数()y f x =的图象有且仅有两个交点三、填空题12.已知n S 是等差数列{}n a 的前n 项和,若320S =,990S =,则6S =.13.已知函数()()sin ,0,2π2cos x f x x x=∈+,写出函数()f x 的单调递减区间. 14.掷一个质地均匀的骰子,向上的点数不小于3得2分,向上的点数小于3得1分,反复掷这个骰子,(1)恰好得3分的概率为;(2)恰好得n 分的概率为.(用与n 有关的式子作答)四、解答题15.已知ABC ∆的面积为3,且满足0AB AC ≤⋅≤u u u r u u u r 设AB u u u r 和AC u u u r 的夹角为θ,(1)求θ的取值范围;(2)求函数()2πcos sin 3f θθθθ⎛⎫=⋅+ ⎪⎝⎭的值域. 16.如图,已知四棱锥P ABCD -,PB AD ⊥,侧面PAD 为正三角形,底面ABCD 是边长为4的菱形,侧面PAD 与底面ABCD 所成的二面角为120︒.(1)求四棱锥P ABCD -的体积;(2)求二面角A PB C --的正弦值.17.已知函数()()2e ln 0x a f x a a x-=+> (1)当e a =时,求曲线y =f x 在点 1,f 1 处的切线方程;(2)若不等式()2f x ≥恒成立,求a 的取值范围.18.已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为12,F F ,离心率为23,且经过点52,3A ⎛⎫ ⎪⎝⎭(1)求椭圆E 的方程;(2)求12F AF ∠的角平分线所在直线l 的方程;(3)在椭圆E 上是否存在关于直线l 对称的相异两点?若存在,请找出;若不存在,说明理由. 19.设()f x 使定义在区间(1,)+∞上的函数,其导函数为()f x '.如果存在实数a 和函数()h x ,其中()h x 对任意的(1,)x ∈+∞都有()h x >0,使得()()()21f x h x x ax '=-+,则称函数()f x 具有性质()P a .(1)设函数()f x 2ln (1)1b x x x +=+>+,其中b 为实数 ① 求证:函数()f x 具有性质()P b ;② 讨论函数()f x 的单调性;(2)已知函数()g x 具有性质(2)P ,给定1212,(1,),,x x x x ∈+∞<设m 为正实数,12(1)mx m x α=+-,12(1)m x mx β=-+,且1,1αβ>>,若12()()()()g g g x g x αβ-<-,求m 的取值范围.。

广东佛山南海外国语学校2023-2024学年八年级上学期月考数学试题(解析版)

广东佛山南海外国语学校2023-2024学年八年级上学期月考数学试题(解析版)

2023-2024学年第一学期八年级第二阶段数学学科核心素养综合评价一、选择题(本大题共10小题,每小题3分,共30分)1. 已知点M 的坐标为(23)−,,则点M 在哪个象限( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限【答案】D 【解析】【分析】在平面直角坐标系中要判定一个点所在的象限,通常只需要判断点的横坐标和纵坐标的符号是正还是负就可以确定它所在的象限了.【详解】解:点M 的坐标为(23)−,,点M 的横坐标为正数,纵坐标为负数,所以点M 在第四象限. 故选:D .【点睛】此题主要考查如何判断点所在的象限,熟练掌握每个象限内点的坐标的正负符号特征,即可轻松判断.2. 下列各数中属于无理数的是( ) A25B. C. 0D.【答案】D 【解析】【分析】根据无理数的定义“无理数,也称为无限不循环小数,不能写作两整数之比”,即可求解.常见的无理数有:开方开不尽的数、π等. 【详解】解:A ,25是分数,属于有理数,不合题意; B,3=−,属于有理数,不合题意; C ,0是有理数,不合题意;D= 故选D .3. 水是生命之源,为了留导节约用水,随机抽取某小区7户家庭上个月家里的用水量情况(单位:吨)数据为:7,8,6,8,9,9,9.这组数据的众数是( ) A. 8 B. 6C. 9D. 7【答案】C.【解析】【分析】根据众数的定义求解可得.【详解】解:这组数据中9出现了3次,出现的次数最多, 所以众数为9, 故选:C .【点睛】此题考查了众数,解题关键在于掌握众数是一组数据中出现次数最多的数据,注意众数可以不止一个.4. 若点1(3,)A y −,2(1,)B y 都在直线62y x =−+上,则1y 与2y 的大小关系是( ) A. 12y y < B. 12y y =C. 12y y >D. 无法比较大小【答案】C 【解析】【分析】本题主要考查了一次函数的增减性,熟知对于一次函数(y kx b k =+为常数,0)k ≠,当0k >时,y 随x 增大而增大;当0k <时,y 随x 增大而减小是解题的关键.根据一次函数的增减性进行求解即可.【详解】解:∵一次函数解析式为62y x =−+,60k =−<,∴y 随x 增大而减小, ∵31−<, ∴12y y >, 故选:C .5. 如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲 乙 丙 丁 平均数(cm ) 185 180 185 180 方差 3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择( ) A. 甲 B. 乙C. 丙D. 丁【答案】A 【解析】【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.详解】∵x 甲=x 丙>x 乙=x 丁, ∴从甲和丙中选择一人参加比赛, ∵2S 甲=2S 乙<2S 丙<2S 丁, ∴选择甲参赛, 故选A .【点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.6. 下列各组数中,能作为直角三角形三边长的是() A. 2,3,4B. C. 4,6,8D. 5,12,15【答案】B 【解析】【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形.最长边所对的角为直角.由此判定即可.【详解】解:A 、222234,+≠三条线段不能组成直角三角形,故A 选项错误; B、221,+三条线段能组成直角三角形,故B 选项正确;C 、222468,+≠三条线段不能组成直角三角形,故C 选项错误;D 、22251215,+≠三条线段不能组成直角三角形,故D 选项错误; 故选:B .【点睛】此题考查了勾股定理逆定理的运用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可,注意数据的计算. 7. 下列计算正确的是( )A.B.C. D.3=−【答案】A 【解析】【分析】本题考查二次根式混合运算,涉及二次根式性质化简、同类二次根式、二次根式加减乘法运算等知识,熟记二次根式性质及相关运算法则逐项判断是解决问题的关键. 【详解】解:A、根据合并二次根式运算法则,()21=−=【BC 、根据二次根式乘法运算法则,233515=×=×=≠,该选项错误,不符合题意;D 33=−=,该选项错误,不符合题意;故选:A .8. 若点A (a ,3)与B (2,b )关于x 轴对称,则点M (a ,b )的坐标为( ) A. (﹣2,3) B. (2,3)C. (2,﹣3)D. (﹣2,﹣3)【答案】C 【解析】【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”求出a 、b 的值,从而得到点M 的坐标,再根据各象限内点的坐标特征解答.【详解】解:∵点A (a ,3)与B (2,b )关于x 轴对称, ∴a =2,b =﹣3,∴点M 坐标为(2,﹣3). 故选:C .【点睛】本题考查了关于x 轴、y 轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x 轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y 轴对称的点,纵坐标相同,横坐标互为相反数.9. 如图,在网格中,每个小正方形的边长均为1.点A 、B ,C 都在格点上,若BD 是 ABC 的高,则BD 的长为( )A.B.C.D.【答案】C 【解析】【分析】根据题意和题目中的数据,可以计算出ABC 的面积和AC 的长,然后即可计算出BD 的长. 【详解】解:由题意可得:212423344222ABC S ×××=×−−−=△,BD是ABC 的高,AC ,∴4ABC S =△,解得:BD =,故选:C .【点睛】本题考查勾股定理、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.10. 一次函数y mx n =+与y mnx =()0mn ≠,在同一平面直角坐标系的图像是( )A. B.C. D.【答案】C 【解析】【分析】分别讨论m 、n 系是解题的关键.【详解】解:①.当00m n >>,时,0mn >,一次函数y mx n =+的图像一、二、三象限, 正比例函数y mnx =的图像过一、三象限,无符合项; ②当00m n ><,时,0mn <,一次函数y mx n =+的图像一、三、四象限, 正比例函数y mnx =的图像过二、四象限,C 选项符合; ③当00m n <<,时,0mn >,一次函数y mx n =+的图像二、三、四象限, 正比例函数y mnx =的图像过一、三象限,无符合项; ④当00m n <,>时,0mn <,一次函数y mx n =+的图像一、二、四象限, 正比例函数y mnx =的图像过二、四象限,无符合项.故选:C .二、填空题(本大题共5小题,每小题3分,共15分)11. 比较大小:. 【答案】> 【解析】【分析】先将,再进行比较即可.【详解】解:∵==,∴. 故答案为:>【点睛】此题考查了两个无理数的比较大小,方法:统一根据二次根式的性质,把根号外的移到根号内,只需比较被开方数的大小.12. 一组数据2,1,3,1,2的中位数是___________. 【答案】2 【解析】【分析】根据中位数的定义,进行判断即可. 【详解】解:将数据排序后,位于中间的数据是2, ∴中位数为2; 故答案为:2.【点睛】本题考查中位数.将一组数据排序后,位于中间一位(数据个数为奇数)或中间两位的平均数(数据个数为偶数)为这组数据的中位数.13. 点(2)A −,3关于原点对称的点的坐标是__________.【答案】(23)−,【解析】【分析】平面直角坐标系中任意一点()A x y ,,关于原点的对称点是()x y −−,,从而可得出答案. 【详解】解:根据中心对称的性质,得点(2)A −,3关于原点对称点的坐标是(23)−,. 故答案是:(23)−,. 【点睛】本题主要考查关于原点对称的点坐标的关系,解题的关键是掌握点关于原点对称的坐标规律.14. 如图,在Rt ABC △中,90C ∠=°,分别以各边为直径作半圆,图中阴影部分在数学史上被称为“希波克拉底月牙”.当8AC =,4BC =时,阴影部分的面积为______.【答案】16 【解析】【分析】根据勾股定理求得AB 的长度,再根据圆的面积公式分别计算三个半圆的面积,阴影部分的面积为:两个较小半圆的面积和减去以AB 为直径的半圆的面积,之后再加上ABC 的面积, 【详解】解:∵在Rt ABC △中,90C ∠=°,8AC =,4BC =,∴AB =,以AC 为直径半圆的面积:28282ππ=; 以BC 为直径半圆的面积:24222ππ=;以AB 为直径半圆的面积:22102ππ=; Rt ABC △的面积为:48162×=, ∴阴影部分的面积为:28101616πππ+−+=. 故答案为:16.【点睛】本题主要考查学生对图形的分解计算能力,先利用勾股定理求出AB 的值是解题的关键. 15. 如图,直线AB :12y x b =−+与坐标轴交于A 、B 两点,点C 为第一象限内一点,连接BC 且BC x ∥轴,交直线3x =于点E ,连接AC ,AE ,将ABC 沿着直线AB 翻折,得到ABD △,点D 正好落在直线3x =上,若26BDE ACE S S == ,那么点C 的坐标为______.【答案】()5,3 【解析】【分析】由直线12y x b =−+与坐标轴交于A 、B ,得()2,0A b ,()0,B b .设,()C t b ,则3BC t CE t ==−,,根据翻折可知BD BC t ==,从而DE =,又6BDE S = ,即得:1362×=,解得:5t =,则(5,)C b ,2CE =,再由26ACE S = ,即得出3b =,故(5,3)C .【详解】解:∵直线12y x b =−+与坐标轴交于A 、B 两点, ∴()2,0A b ,()0,B b , ∴2OA b OB b ==,.设,()C t b ,则3BC t CE t ==−,.∵将ABC 沿着直线AB ABD △, ∴BD BC t ==,∴DE . ∵6BDE S = ,∴162BE DB ⋅=,即1362×=, 解得:5t =或5t =− (C 在第一象限,舍去), ∴(5,)C b ,32CE t =−=.∵26BDE ACE S S == ,即3ACE S = , ∴132CE OB ⋅=,即1232b ××=,∴3b =, ∴(5,3)C . 故答案为:()5,3.【点睛】本题考查直角坐标系中的折叠问题,涉及勾股定理及三角形面积等知识,解题的关键是根据已知列出关于t的方程.三、解答题(一)(本大题共4小题,第16、17题各5分,第18题7分,19题7分,共24分)16.−+−.【答案】【解析】【分析】根据二次根式的化简,将每一项先化简,再进行加减计算即可解答.+−,=−,=.【点睛】本题考查了二次根式的加减计算,熟知二次根式化简的法则是解题的关键.17. 如图,湖的两岸有A,B两棵景观树,在与AB垂直的BC方向上取一点C,测得9BC=米,15AC=米.求两棵景观树之间的距离AB.【答案】两棵景观树之间距离是12米.【解析】【分析】根据勾股定理:在直角三角形中两直角边的平方和等于斜边的平方计算即可.【详解】解:在Rt ABC中,由勾股定理,得:22222215912AB AC BC=−=−=,12AB∴=(米).答:两棵景观树之间的距离是12米.【点睛】本题考查了勾股定理的实际应用,解题关键是熟练应用勾股定理.的18 如图:(1)写出A 、B 、C 三点的坐标.(2)若ABC 各顶点的横坐标不变,纵坐标都乘1−,请你在同一坐标系中描出对应的点A ′、B ′、C ′,并依次连接这三个点,所得的A B C ′′′ 与原ABC 有怎样的位置关系.【答案】(1)()34,,()12,,()51, (2)图见解析,A B C ′′′ 与原ABC 的位置关系是关于x 轴对称. 【解析】【分析】本题考查平面直角坐标系关于坐标轴成轴对称两点的坐标之间的关系,轴对称作图和点的坐标的确定,图对称图形的判定. (1)直接根据坐标系确定坐标即可;(2)先确定对称点,再顺次连接即可作图,利用坐标特征和图可知其关于x 轴对称. 【小问1详解】解:A 、B 、C 三点的坐标分别是()34,,()12,,()51,; 【小问2详解】解:∵ABC 各顶点的横坐标不变,纵坐标都乘1−,又由(1)知:A 、B 、C 三点的坐标分别是()34,,()12,,()51,, ∴A ′、B ′、C ′三点的坐标分别是()34,-,()12,-,()51,-, 如图,A B C ′′′ 即为所作,.的由坐标特征和图可知:A B C ′′′ 与原ABC 的位置关系是关于x 轴对称.19. 某城市居民用水实行阶梯收费,每户每月用水量如果未超过12吨,按每吨1.5元收费.如果超过12吨,未超过的部分仍按每吨1.5元收费,超过部分按每吨3元收费.设某户每月用水量为x 吨,应收水费为y 元.(1)分别写出当每月用水是未超过12吨和超过12吨时,y 与x 之间的函数表达式;(2)若该城市某用户6月份和7月份共用水30吨,且6月份的用水量不足12吨,两个月一共交水费60元,求该用户7月份用水多少吨?【答案】19. 012x <≤时, 1.5y x =;12x >时,318y x =− 20. 该用户7月份用水22吨 【解析】【分析】(1)根据每户每月用水量如果未超过12吨,按每吨1.5元收费.如果超过12吨,未超过的部分仍按每吨1.5元收费,超过部分按每吨3元收费,可以得到y 与x 的函数关系式; (2)根据题意结合第一问中的函数关系式,列出方程,解方程,即可求解. 【小问1详解】解:当012x <≤时, 1.5y x =;当12x >时,()12 1.5123318y x x =×+−×=−.即012x <≤时, 1.5y x =;12x >时,318y x =−. 【小问2详解】解:设6月份的用水量为m 吨,7月份用水为()30m −吨,依题意可得:()1.53301860m m +−−=, 解得:8m =,3030822m −−,答:该用户7月份用水22吨.【点睛】本题考查函数的表达式,解题的关键是明确题意,列出相应的函数关系式,找出所求问题需要的条件.四、解答题(二)(本大题共3小题,每小题9分,共27分)20. 我们知道,负数没有算术平方根,但对于三个互不相等的负整数,若两两乘积的算术平方根都是整数,则称这三个数为“完美组合数”,例如:9−,4−,1−6=,3=2=,其结果6,3,2都是整数,所以1−,4−,9−这三个数称为“完美组合数”.(1)18−,8−,2−这三个数是“完美组合数”吗?请说明理由,(2)若三个数3−,m ,12−是“完美组合数”,其中有两个数乘积的算术平方根为12.求m 的值. 【答案】(1)18−,8−,2−这三个数是“完美组合数”,理由见解析 (2)48m =− 【解析】【分析】本题主要考查了求一个数的算术平方根,熟知算术平方根的定义是解题的关键. (1)根据“完美组合数”的定义进行求解判断即可;(2)分3144m −=,12144m −=两种情况分别求出m 的值,再根据“完美组合数”的定义进行判断即可. 【小问1详解】解:18−,8−,2−这三个数是“完美组合数”,理由如下:12==4==6==,且4,6,12都是整数,∴18−,8−,2−这三个数是“完美组合数”; 【小问2详解】解:∵其中有两个数乘积的算术平方根为12, ∴这两个数的乘积为144, 当3144m −=时,则48m =−,∵()()24812481241212212−×−=×=××=×,24=,此时符合题意; 当12144m −=时,则12=−m 不符合题意;综上所述,48m =−.21. 如图1是著名的赵爽弦图,由四个全等的直角三角形拼成,用它可以证明勾股定理,思路是大正方形的面积有两种求法,一种是等于c 2,另一种是等于四个直角三角形与一个小正方形的面积之和,即12ab ×4+(b -a )2,从而得到等式c 2=12ab ×4+(b -a )2,化简便得结论a 2+b 2=c 2.这里用两种求法来表示同一个量从而得到等式或方程的方法,我们称之为“双求法”.现在,请你用“双求法”解决下面两个问题:(1)如图2,在Rt △ABC 中,∠ACB =90°,CD 是AB 边上的高,AC =3,BC =4,求CD 的长度. (2)如图3,在△ABC 中,AD 是BC 边上的高,AB =4,AC =5,BC =6,设BD =x ,求x 的值. 【答案】(1)CD =125(2)94x = 【解析】【分析】(1)根据勾股定理先求出AB ,再根据“双求法”求出CD 的长度;(2)在Rt △ABD 和Rt △ADC 中,分别利用勾股定理表示出2AD ,然后得到关于x 的方程,解方程即可. 【小问1详解】解:在Rt △ABC 中,AB 5=, 由面积的两种算法可得:1134522CD ××=×⋅, 解得:CD =125; 【小问2详解】在Rt △ABD 中,2222416AD x x =−=−,在Rt △ADC 中,()2222225561112AD CD x x x =−=−−=−+−, 所以22161112x x x -=-+-,解得:94x =. 【点睛】此题主要考查的是勾股定理的应用,熟知直角三角形两直角边的平方和等于斜边的平方是解题的关键.22. 某学校调查九年级学生对“二十大”知识的了解情况,进行了“二十大”知识竞赛测试,从两班各随机抽取了10名学生的成绩,整理如下:(成绩得分用x 表示,共分成四组:A .8085x ≤<,B .8590x ≤<,C .9095x ≤<,D .95100x ≤≤)九年级(1)班10名学生的成绩是:96,80,96,86,99,98,92,100,89,82. 九年级(2)班10名学生的成绩在C 组中的数据是:94,90,92. 通过数据分析,列表如下: 年级平均数 中位数 众数 方差 九年级(1)班 91.8 b c 52 九年级(2)班929310050.4九年级(1)班、(2)班抽取的学生竞赛成绩统计表 九年级(2)班学生成绩扇形统计图根据以上信息,解答下列问题:(1)直接写出上述a 、b 、c 的值:=a ___________,b =___________,c =___________;(2)学校欲选派成绩更稳定的班级参加下一阶段的活动,根据表格中的数据,学校会选派___________班.(3)九年级两个班共120人参加了此次调查活动,估计两班参加此次调查活动成绩优秀()90x ≥的学生总人数是多少?【答案】22. 40;94;96 23. 九年级(2) 24. 78人 【解析】【分析】(1)将九年级(1)班10名学生的成绩按由小到大的顺序排列,再结合中位数和众数的定义即可求出b 和c 的值;由题意可知九年级(2)班C 组有3人,即可求出其所占百分比,最后用1−其它各组所占百分比即可求出a 的值;(2)直接比较两个班级的方差即可;(3)求出样本中两个班级成绩优秀的人数,再利用样本的百分率估计总体即可得到答案. 【小问1详解】解:九年级(1)班10名学生的成绩按由小到大的顺序排列为:80,82,86,89,92,96,96,98,99,100, ∴9296942b+=. ∵成绩为96(分)的学生有2名,最多, ∴96c =.九年级(2)班C 组有3人, ∴扇形统计图中C 组所占百分比为3100%30%10×=, ∴扇形统计图中D 组所占百分比为120%10%30%40%−−−=, ∴40a =. 【小问2详解】解:∵两个班的平均成绩九年级(2)班高0.2分,而九年级(1)班的方差为52,九年级(2)班的方差为50.4, 又∵50.452<,∴九年级(2)班成绩更平衡,更稳定, ∴学校会选派九年级(2)班. 【小问3详解】解:九年级(1)班10名学生的成绩为优秀的有6人 九年级(2)班D 组的人数为1040%4×=(人),∴九年级(2)班10名学生的成绩为优秀的有347+=(人). ∴估计参加此次调查活动成绩优秀()90x ≥的九年级学生人数是∶67120781010+×=+(人). 答:估计两班参加此次调查活动成绩优秀()90x ≥的学生总人数是78人.【点睛】本题考查的是扇形统计图,统计表,众数,中位数,方差的含义及应用,同时考查了利用样本估计总体,熟练掌握以上知识是解题的关键.五、解答题(三)(本大题共2小题,每小题12分,共24分)23. 如图直线27y x =−+与x 轴、y 轴分别交于点C 、B ,与直线32y x =交于点A .(1)求点A 的坐标;(2)如果在y 轴上存在一点P ,使OAP △是以OA 为底边的等腰三角形,则点P 的坐标是____; (3)点Q 在线段AB 上,使OAQ 的面积等于6,求点Q 的坐标. 【答案】(1)()2,3; (2)130,6; (3)245,77. 【解析】【分析】本题是一次函数的综合题,考查了交点的求法,等腰三角形的性质,三角形面积的求法等. (1)联立方程组,即可求得;(2)设P 点坐标是()0,y ,即可得到OP ,AP 的长,根据OAP △是以OA 为底边的等腰三角形,即OP PA =,可列出方程,解方程即可求得;(3)设点Q 的坐标是(),x y ,过点Q 作QD y ⊥轴于点D ,则QD x =,根据OBQOAB OAQ S S S =− 列出关于x 的方程求解即可. 【小问1详解】解方程组2732y x y x =−+=得23x y = = , ∴点A 的坐标为()2,3 【小问2详解】设P 点坐标是()0,y , ∵()0,0O ,()2,3A ,∴OP y =,()()2222203613AP y y y =−+−=−+ ∵OAP △是以OA 为底边的等腰三角形,, ∴OP PA =, 即22OP AP =, ∴22613y y y =−+, 解得136y =, ∴P 点坐标是130,6. 故答案为:130,6【小问3详解】∵直线27y x =−+与x 轴、y 轴分别交于点C 、B , ∴()0,7B ,7,02C, ∴17272AOB S =××= , 设点Q 的坐标是(),x y ,过点Q 作QD y ⊥轴于点D ,如图,则QD x =, ∴761OBQ OABOAQS S S=−=−=△△△,∴112OB QD ⋅=,即1271x ×=,∴27x =, 把27x =代入27y x =−+,得457y =,∴Q 的坐标是245,77. 24. 综合与实践 【问题情境】在平面直角坐标系中,有不重合的两点()11,A x y 和点()22,B x y ,若12x x =,则AB y ∥轴,且线段AB 的长度为12y y −:若12y y =,则AB x ∥轴,且线段AB 的长度为12x x −. 【知识应用】(1)若点()1,1A −,()2,1B ,则AB x ∥轴,AB 的长度为________; 【拓展延伸】我们规定:平面直角坐标系中,任意不重合的两点()11,M x y ,()22,N x y 之间的折线距离为()1212,d M N x x y y =−+−.例如:图1中,点()1,1M −与点()1,2N −之间的折线距离为()(),1112235d M N =−−+−−=+=.【问题解决】(2)如图2,已知()2,0E ,若()1,1F −−,则(),d E F =________; (3)如图2,已知()2,0E ,()1,G t ,若(),3d E G =,则t 的值为________;(4)如图3,已知()2,0E ,()0,2H ,点P 是EOH △的边上一点,若(),d E P =P 的坐标.【答案】(1)3;(2)4;(3)2或 2−;(4)()2−或 【解析】【分析】(1)根据线段AB 的长度为12x x −,代入数据即可得出结论; (2)根据两点之间的折线距离公式,代入数据即可得出结论;(3)根据两点之间的折线距离公式,可得2103t −+−=,即可求解; (4)分三种情况讨论,结合两点之间的折线距离公式,以及一次函数的图象和性质,即可得出结论.【详解】解:(1)AB 的长度为123−−=, 故答案为:3;(2)∵()2,0E ,()1,1F −−, ∴()()(),21014d E F −−+−−;故答案为:4;(3)∵()2,0E ,()1,G t ,(),3d E G =,∴2103t −+−=, 解得∶ 2t =± , 故答案为:2或 2−; (4)设点(),P a b , 当点P 在OH 上时,0a =,∵()2,0E ,(),d E P =∴200b −+−=解得:2b=−或2,此时点P 的坐标为()2; 当点P 在OE 上时,0b =,∵()2,0E ,(),d E P =∴200a −+−=解得:22a =+>(舍去)或20<(舍去); 当点P 在HE 上时,设直线HE 的解析式为y kx n =+,把点()2,0E ,()0,2H 代入得:202k n n +== , 解得:12k n =− =, ∴直线HE 的解析式为2y x =−+, ∴2b a =−+,∴此时点P 的坐标为(),2a a −+,∵()2,0E ,(),d E P =∴()202a a −+−−+=解得:2a +2(舍去),此时点P 的坐标为 + ;综上所述,点P 的坐标为()2−或 + .【点睛】本题考查了两点间的距离公式,一次函数的图象和性质,读懂题意并熟练运用两点间的距离及两点之间的折线距离公式是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河南省洛阳市中成外国语学校2013届高三上学期8月月考数学(理)
试题
第I 卷(选择题)
一、选择题(题型注释)
1.设全集U=R ,
A=,则右图中阴影..
部分表示的集合为 ( )
(A) (B)
(C) (D)
2 )
A B .直线b a ,为异面直线的充要条件是直线b a ,不相交
C .“1=a 是“直线0=-ay x 与直线0=+ay x 互相垂直”的充要条件
D .若命题"01,:"2>--∈∃x x R x p ,则命题p 的否定为:"01,"2≤--∈∀x x R x
3
{|1}x x ≤{|01}x x <≤{|12}x x ≤<{|1}x x ≥(2){|21},{|ln(1)}
x x x B x y x -<==-
4.已知a 为实数,函数221(1)()1(1)
x ax x f x ax x x ⎧++≥⎪=⎨++<⎪⎩,则“20a -≤≤”是“()f x 在(,)-∞+∞上是增函数”的( )
A .充分而不必要条件
B .必要而不充分条件
C .充分必要条件
D .既不充分也不必要条件
5.求曲线0=-y x ,x x y 22-=所围成图形的面积
A .1 B
C .9 D
6y=f(x)
,另一种平均
价格曲线y=g(x),如f(2)=3表示股票开始买卖后2小时的即时价格为3元;g(2)=3表示2小时内的平均价格为3元.下面给出了四个图象,实线表示y=f(x),虚线表示y=g(x),其中可能正确的是
7.已知函数()f x 的反函数为2()log 1g x x =+,则(2)(2)f g +=
A .1
B .2
C .3
D .4
8的最小正周期是π,且其图像向右平移奇函数,则函数)(x f 的图像( )
A.
B.
C.
D.
9..右图是计算函数ln(),2,0,23,2,3x x x y x x ⎧-≤-⎪=-<≤⎨⎪>⎩
值的程序框图,在①、②、③处应分别填入的是( )
A .ln(),0,2x y x y y =-==
B .0,ln(),2x y y x y ==-=
C .0,2,ln()x y y y x ===-
D .ln(),2,0x y x y y =-==
10.数列}{n a 满足:⎩⎨⎧>≤--=-7,
7
,3)3(6n a n n a a n n ,且}{n a 为递增数列,则实数a 的取值范围是( ) A .)3,2( B .)3,1( C .
D
11.设定义在R 上的函数若关于x 的方程2()()0f x af x b ++= 有3个不同实数解1x 、2x 、3x ,且123x x x <<,则下列说法中错误的是( )
A .22212314x x x ++=
B .10a b ++=
C .240a b -=
D .134x x +=
12.定义域为[,a b ]的函数()y f x =图像的两个端点为A 、B ,M(x ,y)是()f x 图象上任意一点,其中[]1,0,)1(∈-+=λλλb a x .已知向量()λλ-+=1
k ≤恒成立,则称函数f (x)在[a ,b]上“k 阶线性近似”.若函数x x y 1-
=在[1,2]上“k 阶线性近似”,则实数k 的取值范围为( )
A.[0,+∞)
B.⎪⎭⎫⎢⎣⎡+∞,121
C.⎪⎭⎫⎢⎣⎡+∞+,223
D.⎪⎭

⎢⎣⎡+∞-,223
第II 卷(非选择题)
二、填空题(题型注释)
13恒成立,则实数a 的取值范围是 .
14.从集合}10,,3,2,1{ 中选出由5个数组成的子集,使得这5个数中的任何两个数的和不等于11,则这样的子集共有 个.
15. 对于三次函数32()(0)f x ax bx cx d a =+++≠,给出定义:设'()f x 是函数()y f x =的导数,''f 是'()f x 的导数,若方程''()0f x =有实数解0x ,则称点00(,())x f x 为函数()y f x =的“拐点”。

某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称
(1(216,下列结论正确的是 。

①,()()0;x R f x f x ∀∈-+= ②(0,1),()m f x m ∃∈=使得方程有两个不等的实数解; ③(1,),()()k x f x kx ∃∈+∞=-使得函数g 在R 上有三个零点;
④121212,,,()().x x R x x f x f x ∀∈≠≠若则
三、解答题(题型注释)
17.(本题满分12分)给出命题:p 方y 轴上的椭圆;命题:q 曲线1)32(2+-+=x a x y 与x 轴交于不同的两点.
(1)若命题p 为真,求a 的取值范围;
(2)如果命题“q p ∨”为真,“q p ∧”为假,求实数a 的取值范围.
18.(本小题满分10分)
在△ABC 中,角A 、B 、C 对边分别是,,a b c ,且满足222()AB AC a b c ⋅=-+ .
(1)求角A 的大小;
(2B 、C 的大小. 19.已知函数()2x f x m t =⋅+的图像经过点A(0,0),B(3,7)及C (,)n n S ,n S 为数列{}n a 的前n 项和*().n N ∈
(I )求{};n n S a 及
(II )若数列{}n c 满足12n n c na n =-,求数列{}n c 的前n 项和.n T
20.(本小题满分14分)
某工厂生产一种产品的成本费共由三部分组成:①原材料费每件50元;②职工工资支出7500+20x 元;③电力与机器保养等费用为230600x x -+元.其中x 是该厂生产这种产品的总件数。

(1)把每件产品的成本费()P x (元)表示成产品件数x 的函数,并求每件产品的最低成本费;
(2)170件且能全部销售,根据市场调查,每件产品的销售价为()Q x (元),且=总销售额-总的成本)
21.(本小题满分12分) (e 是自然对数的底数,71.2≈e ). (1)当15a =-时,求)(x f 的单调区间;
(2)若)(x f 在区间上是增函数,求实数a 的取值范围; (3对一切*∈N n 恒成立. (本题三选一,满分10分)
22.圆O 是ABC ∆的外接圆,过点C 的圆的切线与AB 的延长线交于点D ,72=CD ,
AB=BC=3,求BD 以及AC 的长.
23. 已知曲线C 1的极坐标方程为θρcos 6=,曲线C 2的极坐标方程为)4
R ∈=ρπ
θ(,曲线C 1,C 2相交于A ,B 两点(I )把曲线C 1,C 2的极坐标方程转化为直角坐标方程;
(II )求弦AB 的长度.
24. 已知c b a ,,都是正数,且c b a ,,成等比数列,求证:2
222)(c b a c b a +->++
参考答案
19.(I )S n =2n -1(n ∈N *a n =2n -1(n ∈N *).(II )n T =6(n -1)·2n +112
20.(1220元。

(2)生产100 21.(1)()f x 在区间(3,5)-上单调递增,在区间(,3),(5,)-∞+∞上单调递减
(2)a 的范围是2
(,2]e e -∞-
(3)证明见解析
22.解:由切割线定理得 2DC DA DB =⋅
2)(DC BA DB DB =+,故02832=-+DB DB , 解得 4=DB (6分)
因为BCD A ∠=∠,所以 DBC ∆∽DCA ∆ (8分)
所以 DC DB CA BC =,得 2
73=⋅=DB DC BC AC (10分)。

相关文档
最新文档