提拉法

基本原理
提拉法合成装置一、提拉法的基本原理提拉法是将构成晶体的原料放在坩埚中加热熔化,在熔体表面接籽晶提拉熔体,在受控条件下,使籽晶和熔体的交界面上不断进行原子或分子的重新排列,随降温逐渐凝固而生长出单晶体。二、提拉法的生长工艺首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶接触熔体表面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,在不断提拉和旋转过程中,生长出圆柱状晶体。
晶体提拉法的装置晶体提拉法的装置由五部分组成:
 (1)加热系统加热系统由加热、保温、控温三部分构成。最常用的加热装置分为电阻加热和高频线圈加热两大类。采用电阻加热,方法简单,容易控制。保温装置通常采用金属材料以及耐高温材料等做成的热屏蔽罩和保温隔热层,如用电阻炉生长钇铝榴石、刚玉时就采用该保温装置。控温装置主要由传感器、控制器等精密仪器进行操作和控制。
 (2)坩埚和籽晶夹作坩埚的材料要求化学性质稳定、纯度高,高温下机械强度高,熔点要高于原料的熔点200℃左右。常用的坩埚材料为铂、铱、钼、石墨、二氧化硅或其它高熔点氧化物。其中铂、铱和钼主要用于生长氧化物类晶体。籽晶用籽晶夹来装夹。籽晶要求选用无位错或位错密度低的相应宝石单晶。
 (3)传动系统为了获得稳定的旋转和升降,传动系统由籽晶杆、坩埚轴和升降系统组成。
 (4)气氛控制系统不同晶体常需要在各种不同的气氛里进行生长。如钇铝榴石和刚玉晶体需要在氩气气氛中进行生长。该系统由真空装置和充气装置组成。
 (5)后加热器后热器可用高熔点氧化物如氧化铝、陶瓷或多层金属反射器如钼片、铂片等制成。通常放在坩埚的上部,生长的晶体逐渐进入后热器,生长完毕后就在后热器中冷却至室温。后热器的主要作用是调节晶体和熔体之间的温度梯度,控制晶体的直径,避免组分过冷现象引起晶体破裂。

方法装置
晶体提拉法的装置由五部分组成:
(1)加热系统
加热系统由加热、保温、控温三部分构成。最常用的加热装置分为电阻加热和高频线圈加热两大类。采用电阻加热,方法简单,容易控制。保温装置通常采用金属材料以及耐高温材料等做成的热屏蔽罩和保温隔热层,如用电阻炉生长钇铝榴石、刚玉时就采用该保温装置。控温装置主要由传感器、控制器等精密仪器进行操作和控制。
(2)坩埚和籽晶夹
作坩埚的材料

要求化学性质稳定、纯度高,高温下机械强度高,熔点要高于原料的熔点200℃左右。常用的坩埚材料为铂、铱、钼、石墨、二氧化硅或其它高熔点氧化物。其中铂、铱和钼主要用于生长氧化物类晶体。
籽晶用籽晶夹来装夹。籽晶要求选用无位错或位错密度低的相应宝石单晶。
(3)传动系统
为了获得稳定的旋转和升降,传动系统由籽晶杆、坩埚轴和升降系统组成。
(4)气氛控制系统
不同晶体常需要在各种不同的气氛里进行生长。如钇铝榴石和刚玉晶体需要在氩气气氛中进行生长。该系统由真空装置和充气装置组成。
(5)后加热器
后热器可用高熔点氧化物如氧化铝、 陶瓷或多层金属反射器如钼片、铂片等制成。通常放在坩埚的上部,生长的晶体逐渐进入后热器,生长完毕后就在后热器中冷却至室温。后热器的主要作用是调节晶体和熔体之间的温度梯度,控制晶体的直径,避免组分过冷现象引起晶体破裂。

生长要点
(1)温度控制在晶体提拉法生长过程中,熔体的温度控制是关键。要求熔体中温度的分布在固液界面处保持熔点温度,保证籽晶周围的熔体有一定的过冷度,熔体的其余部分保持过热。这样,才可保证熔体中不产生其它晶核,在界面上原子或分子按籽晶的结构排列成单晶。为了保持一定的过冷度,生长界面必须不断地向远离凝固点等温面的低温方向移动,晶体才能不断长大。另外,熔体的温度通常远远高于室温,为使熔体保持其适当的温度,还必须由加热器不断供应热量。
(2)提拉速率提拉的速率决定晶体生长速度和质量。适当的转速,可对熔体产生良好的搅拌,达到减少径向温度梯度,阻止组分过冷的目的。一般提拉速率为每小时6-15mm。在晶体提拉法生长过程中,常采用“缩颈”技术以减少晶体的位错,即在保证籽晶和熔体充分沾润后,旋转并提拉籽晶,这时界面上原子或分子开始按籽晶的结构排列,然后暂停提拉,当籽晶直径扩大至一定宽度(扩肩)后,再旋转提拉出等径生长的棒状晶体。这种扩肩前的旋转提拉使籽晶直径缩小,故称为“缩颈”技术。

相关文档
最新文档