matlab概率分布拟合共72页PPT资料
2024版matlab教程(全)资料ppt课件
进行通信系统的建模、仿真和分析。
谢谢聆听
B
C
变量与赋值
在MATLAB中,变量不需要事先声明,可以 直接赋值。变量名以字母开头,可以包含字 母、数字和下划线。
常用函数
MATLAB提供了丰富的内置函数,如sin、 cos、tan等三角函数,以及abs、sqrt等数 学函数。用户可以通过help命令查看函数的
D
使用方法。
02 矩阵运算与数组操作
错误处理
阐述try-catch错误处理机制的语法、 执行流程及应用实例。
04
函数定义与调用
函数概述
阐述函数的概念、作用及分类,包括内置函数和 自定义函数。
函数调用
深入剖析函数的调用方法,包括直接调用、间接 调用及参数传递等技巧。
ABCD
函数定义
详细讲解自定义函数的定义方法,包括函数名、 输入参数、输出参数及函数体等要素。
拟合方法
利用已知数据点构造近似函数,如最小二乘法、多项 式拟合、非线性拟合等。
插值与拟合的比较
插值函数经过所有数据点,而拟合函数则追求整体上 的近似。
数值积分与微分
01
数值积分方法
利用数值技术计算定积分的近似 值,如矩形法、梯形法、辛普森 法等。
02
数值微分方法
通过数值技术求解函数的导数或 微分,如差分法、中心差分法、 五点差分法等。
02
01
矩阵运算
加法与减法
对应元素相加或相减,要求矩阵 大小相同
乘法
使用`*`或`mtimes`函数进行矩阵 乘法,要求内维数相同
点乘与点除
使用`.*`、`./`进行对应元素相乘或 相除,要求矩阵大小相同
特征值与特征向量
概率统计与MATLAB精品PPT课件
功能:产生M lambda)
功能:计算分布密度p(x)在x的值
21.10.2020
x0 x0
7
§1 随机变量及其分布
均匀分布X~U(a,b) 命令1:Fx=unifcdf(x, a,b) 功能:计算累积概率Fx=P{X≤x}=F(x) 命令2:x=unifinv(p, a,b) 功能:计算随机量x,使得p=P{X≤x} 命令3:X=unifrnd(a,b,M,N) 功能:产生M*N维随机数矩阵X 命令4:Px=unifpdf(x, a,b) 功能:计算分布密度p(x)在x的值 补充:rand()---(0,1)均匀分布随机数
21.10.2020
12
§1 随机变量及其分布
例1某人向空中抛硬币100次,落下为正面的概率 为0.5。这100次中正面向上的次数记为X: (1)试计算x=45的概率和x≤45的概率; (2)绘制分布函数图象和分布列图象。
程序:》clear;
px=binopdf(45,100,0.5) % 计算x=45的概率
命令2:x=hygeinv(p,M, N,K)
功能:在已知参数M、N 、 K和p的情况下计算随 机量x,使得p=P{0≤次品数X≤x}
命令3:X=hygernd(M,N,K,m,n)
功能:在已知参数M,N ,K的情况下产生m*n维符合
超几何分布的随机数矩阵X
21.10.2020
2
§1 随机变量及其分布
21.10.2020
6
§1 随机变量及其分布
指数分布X~exp(λ)
1ex
P{Xx}
0
命令1:Fx=expcdf(x, lambda)
功能:计算累积概率Fx=P{X≤x}=F(x)
matlab 概率拟合
matlab 概率拟合Matlab是一种强大的数学软件工具,可以用于各种数学和统计分析。
其中,概率拟合是一项常见的统计分析任务,用于根据实际数据拟合概率分布模型。
本文将介绍如何使用Matlab进行概率拟合,并给出一些实例来说明其应用。
概率分布是描述随机变量可能取值的函数,常见的概率分布包括正态分布、指数分布、泊松分布等。
在实际统计分析中,我们常常需要根据观测数据来确定随机变量的概率分布。
概率拟合就是根据观测数据来拟合最佳的概率分布模型,以描述数据的分布特征。
在Matlab中,可以使用`fitdist`函数来进行概率拟合。
该函数可以根据给定的数据和概率分布类型,估计分布参数,并返回一个概率分布对象。
例如,我们可以使用正态分布来拟合一组观测数据:```matlabdata = [1.3, 2.1, 1.8, 3.2, 2.6, 2.9, 2.4];pd = fitdist(data, 'Normal');```上述代码中,`data`是一组观测数据,`'Normal'`表示正态分布。
`fitdist`函数将返回一个正态分布对象`pd`,其中包含了拟合得到的分布参数。
除了正态分布,Matlab还支持其他常见的概率分布,如指数分布、泊松分布等。
可以通过指定不同的分布类型来进行拟合。
例如,我们可以使用指数分布来拟合一组观测数据:```matlabdata = [0.5, 1.2, 1.8, 2.4, 3.1, 3.7, 4.3];pd = fitdist(data, 'Exponential');```类似地,`pd`是拟合得到的指数分布对象。
通过拟合得到的概率分布对象,我们可以进行各种统计分析。
例如,可以计算概率密度函数(PDF)、累积分布函数(CDF)和随机变量的均值、方差等。
Matlab提供了相应的函数来进行计算。
例如,对于上述的正态分布对象`pd`,可以计算PDF和CDF:```matlabx = 0:0.1:5;pdf_values = pdf(pd, x);cdf_values = cdf(pd, x);```上述代码中,`x`是一个范围,表示随机变量的取值范围。
matlab 分布拟合器 概率
标题:探讨MATLAB分布拟合器在概率领域的应用在统计学和概率论中,分布函数扮演着至关重要的角色。
分布函数描述了随机变量的取值概率分布规律,是统计推断和概率分析的基本工具之一。
而MATLAB作为一款强大的数学建模和计算软件,其分布拟合器功能可以帮助我们更好地理解概率分布并进行数据分析。
本文将深入探讨MATLAB分布拟合器在概率领域的应用,希望能为读者提供一些有价值的观点和方法。
1. MATLAB分布拟合器简介MATLAB提供了丰富的统计工具箱,其中包括了分布拟合器功能,可以自动拟合数学模型到样本数据以估计概率密度函数。
在MATLAB中,可以使用fitdist函数进行分布拟合,该函数支持包括正态分布、指数分布、泊松分布、beta分布等多种分布类型的拟合。
通过分布拟合器,我们可以分析样本数据的分布规律,进行概率密度函数的估计和拟合,从而更好地理解数据的特性和分布情况。
2. 概率概念概率是描述随机现象结果的可能性大小的数学工具。
在概率论中,概率分布描述了随机变量的取值和其对应的概率,是概率论和统计学中的核心概念。
常见的概率分布包括离散分布(如伯努利分布、泊松分布)和连续分布(如正态分布、指数分布),它们被广泛应用于风险评估、市场预测、财务分析等领域,具有重要的理论和实际意义。
3. MATLAB分布拟合器在概率分布分析中的应用MATLAB的分布拟合器功能为我们提供了便利的工具,可以对样本数据进行分布拟合,并且根据拟合结果进行概率分布的分析和推断。
通过使用MATLAB分布拟合器,我们可以实现以下应用:3.1 分布拟合通过fitdist函数,我们可以对样本数据进行分布拟合,得到某一特定类型分布的参数估计。
这使我们能够更好地了解样本数据的特性和分布类型,为后续的概率分析和建模提供重要参考。
3.2 概率密度函数估计通过分布拟合器,我们可以估计得到概率密度函数,从而分析随机变量的取值概率分布规律。
这对于理解样本数据的分布情况、评估风险和进行预测具有重要意义。
实验五用Matlab数据拟合PPT文档21页
此时的残差是: 0.0912.
拟合函数为: f(x)= 3ex+ 4.03x2 + 0.94 x3.
练习:
1. 已知观测数据点如表所示
x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 y 3.1 3.27 3.81 4.5 5.18 6 7.05 8.56 9.69 11.25 13.17 求用三次多项式进行拟合的曲线方程.
编写下面的程序调用拟合函数.
x=0:0.1:1; y=[3.1,3.27,3.81,4.5,5.18,6,7.05,8.56,9.69,11.25,13.17]; x0=[0,0,0]; [beta,r,J]=nlinfit(x',y','nihehanshu',x0);
程序运行后显示
beta = 3.0022 4.0304 0.9404
例4 已知观测数据点如表所示
x 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 y 3.1 3.27 3.81 4.5 5.18 6 7.05 8.56 9.69 11.25 13.17
求三个参数 a, b, c的值, 使得曲线 f(x)=aex+bx2+cx3 与 已知数据点在最小二乘意义上充分接近. 说明: 最小二乘意义上的最佳拟合函数为
用Matlab进行数据拟合
1. 多项式曲线拟合: polyfit.
p=polyfit(x,y,m) 其中, x, y为已知数据点向量, 分别表示横,纵坐 标, m为拟合多项式的次数, 结果返回m次拟合 多项式系数, 从高次到低次存放在向量p中.
基于MATLAB的概率统计数值实验ppt课件
快捷的学习可借助MATLAB的系统帮助,通过指令doc 获得具体函数的详细信息,语法是 doc <函数名>
5/60
2. 二项分布实验
已知Y~b(20, 0.3)求Y分布率的值,并划出图形
在Matlab中输入以下命令:
binopdf(10,20,0.2) x=0:1:20; y=binopdf(x,20,0.2) plot(x,y,’r.’)
例9 某种重大疾病的医疗险种,每份每年需交保险费100元,若在 这一年中,投保人得了这种疾病,则每份可以得到索赔额10000元, 假设该地区这种疾病的患病率为0.0002,现该险种共有10000份保 单,问: (1)保险公司亏本的概率是多少? (2)保险公司获利不少于80万元的概率是多少?
15/60
(1) 每小时恰有4次呼叫的概率
(2) 一小时内呼叫不超过5次的概率 (3) 画出分布律图像
(1)
( 2)
P ( X 4)
4
4!
5
e
3k 3 P ( X 5) P ( X k ) e k 0 k 0 k!
5
34 3 e 4!
在Matlab中输入以下命令: (1)p1= poisspdf(4,3) (2)p2= poisscdf(5,3) (3)x=0:1:20;y=poisspdf(x,3);plot(x,y)
(2) σ=0.5, μ=1,2,3,4
(1)命令: x=-6:0.1:6; y1=normpdf(x,3,0.5); y2=normpdf(x,3,0.7); y3=normpdf(x,3,1); y4=normpdf(x,3,1.5); y5=normpdf(x,3,2); plot(x,y1,'.',x,y2,'+',x,y3,'*',x,y4,'d',x,y5)
matlab 概率分布拟合
matlab 概率分布拟合
概率分布拟合是指通过对一组观测数据进行统计分析,将其拟合到一个特定的概率分布模型中。
在MATLAB软件中,可以使用统计工具箱(Statistics and Machine Learning Toolbox)来实现概率分布拟合。
首先,我们需要导入观测数据,并选择合适的概率分布模型。
常见的概率分布模型包括正态分布、指数分布、泊松分布等等。
在选择概率分布模型时,可以根据数据的特征、分布形态以及领域知识进行判断。
然后,我们可以使用fitdist函数来对观测数据进行概率分布拟合。
fitdist函数需要输入两个参数,第一个参数为观测数据,第二个参数为所选择的概率分布模型。
该函数会返回一个概率分布对象,其中包含了模型的参数估计值。
最后,我们可以使用概率分布对象的方法来进行各种统计分析。
例如,可以计算概率分布的均值、方差、中位数等等。
也可以生成随机变量,或者计算概率密度、累积分布函数等等。
综上所述,MATLAB软件提供了强大的工具来进行概率分布拟合和相关分析,只需要导入观测数据并选择合适的概率分布模型,即可进行相应的统计分析。
matlab概率统计第2讲ppt课件
A(i:k , j:l) 返回由二维矩阵A中的第i到k行行向量和
第j到l列列向量组成的子阵。
17
e. 特殊矩阵
命令 hilb(n) toeplitz(k,r) pascal(n) rosser gallery(n) wilkinson(n) magic(n)
……
运行结果 生成n×n的希尔波特矩阵 生成非对称的托普利兹矩阵 pascal矩阵(帕斯卡矩阵) rosser矩阵 数字分析中有名的n×n试验矩阵 返回wilkinson特征值测试矩阵 魔方矩阵
阵,B为n×p矩阵,则C=A*B为m×p矩阵。
39
(3) 矩阵除法 在MATLAB中,有两种矩阵除法运算:\和/,分别表
示左除和右除.如果A矩阵是非奇异方阵,则A\B和B/A 运算可以实现.A\B等效于A的逆左乘B矩阵,也就是 inv(A)*B,而B/A等效于A矩阵的逆右乘B矩阵,也就是 B*inv(A).
1 4
7
%A的2,3行 %A的第一列
33
键入: A=[1 2 3;4 5 6;7 8 9]; C=A(1:2, [1 3]) %A的第1,2行, %A的第1,3列
输出:C= 13 46
还有A(1:2:3, 3:-1:1)
34
5) 矩阵的拼接
将几个矩阵接在一起称为拼接,左右拼 接行数要相同,上下拼接列数要相同。
15
c. 三角矩阵
命令
triu(A) triu(A,k) tril(A) tril(A,k)
运行结果
生成一个和A维数相同的上三角矩阵。该矩 阵主对角线及以上元素取自A中相应元素。 其余元素为0。
生成一个和A维数相同的上三角矩阵。该矩 阵第k条对角线及以上元素取自A中相应元 素。其余元素为0。
matlab 概率密度分布
Matlab概率密度分布1. 简介概率密度分布是描述随机变量的概率分布的函数。
在统计学和概率论中,概率密度函数(Probability Density Function,PDF)是一个连续随机变量在某个确定的取值点上的取值概率。
MATLAB作为一种强大的数值计算和数据可视化工具,提供了丰富的函数和工具箱,可以方便地进行概率密度分布的计算和可视化。
本文将介绍如何使用MATLAB进行概率密度分布的计算和可视化。
首先,我们将介绍如何定义和计算连续随机变量的概率密度函数。
然后,我们将介绍如何使用MATLAB中的函数进行常见概率密度分布(如正态分布、指数分布、均匀分布等)的计算和可视化。
最后,我们将讨论如何进行多个随机变量之间的联合概率密度分布计算。
2. 连续随机变量的概率密度函数连续随机变量X的概率密度函数f(x)定义为:f(x)=limΔx→0P(x<X<x+Δx)Δx其中P(a < X < b)表示X落在区间(a, b)内的概率。
在MATLAB中,我们可以使用pdf函数来计算连续随机变量的概率密度函数。
该函数的语法如下:y = pdf(pd, x)其中,pd是一个概率分布对象,可以通过makedist函数创建,x是要计算概率密度函数的点的向量。
函数返回结果为对应点上的概率密度值。
例如,我们可以使用以下代码计算标准正态分布(mean=0, std=1)在x=0处的概率密度值:pd = makedist('Normal');y = pdf(pd, 0);3. 常见概率密度分布3.1 正态分布正态分布(Normal Distribution)是一种常见的连续概率分布,也称为高斯分布。
它具有钟形曲线的特征,均值和标准差决定了曲线的位置和形状。
在MATLAB中,我们可以使用normpdf函数来计算正态分布的概率密度函数。
该函数的语法如下:y = normpdf(x, mu, sigma)其中,x是要计算概率密度函数的点的向量,mu是正态分布的均值参数,sigma是正态分布的标准差参数。
matlab概率分布拟合PPT课件
眼科病床的合理安排
说起。。。
从1500到1931年的432年间,每年爆发战争的 次数可以看作一个随机变量,椐统计,这432 年间共爆发了299次战争,具体数据如下:
战争次数X 发生 X次战争的年数
0
223
1
142
2
48
3
15
4
4
在概率论中,大家对泊松分布产生的一
般条件已有所了解,容易想到,每年爆发战
本专题的主要目的是:熟悉Matlab相关命令;熟悉 各种常见分布的概率密度函数及其曲线,会利用数据 分布的形态猜测其分布类型;能够对密度函数进行参 数估计;进行简单的假设检验(以正态检验为主)。
内容提纲
➢1.Matlab相关命令介绍 ➢2.常见概率分布 ➢3.频数直方图与频数表 ➢4.参数估计 ➢5.假设检验
争的次数,可以用一个泊松随机变量来近似 描述 . 也就是说,我们可以假设每年爆发战 争次数分布X近似泊松分布.
现在的问题是:上面的数据能否证实X 具有
泊松分布的假设是正确的?
又如,某钟表厂对生产的钟进行精确性检 查,抽取100个钟作试验,拨准后隔24小时 以后进行检查,将每个钟的误差(快或慢) 按秒记录下来.
Matlab相关命令
数据统计处理基本命令
– 最值:max(x), min(x)
• (1) max(X):返回向量X的最大值,如果X中包含复数元素, 则按模取最大值。
• (2) max(A):返回一个行向量,向量的第i个元素是矩阵A 的第i列上的最大值。
• (3) [Y,U]=max(A):返回行向量Y和U,Y向量记录A的每列 的最大值,U向量记录每列最大值的行号。
[Y,I]=sort(A,dim)
使用matlab进行数据拟合-PPT文档资料
同学手里有很多的数据,知道需要拟合的公 式,但是要求出公式的每个系数,于是把 数据给我求帮忙。如果用手算自然是费力 费时。这时matlab将为我们提供强大的计算 功能,俗话说,授人以鱼不如授人以渔, 在帮他处理完数据后,便给他写下了这个 ppt。也希望能帮上其他需要的朋友。下面 就是基于matla2019版本的方法。其他版本 大同小异。
• 打开matlab,进入主页面,如下页所示。在 中间编辑框内输入你所要拟合的数据,分 别为每组数据取一个名字,如下图x1,y1, x2,y2等。
• 从左下角,开始处点击,如下图。找到拟 合工具箱。
出现工具箱界面
点击data按键
然后分别在x data,y data 后选择要输入的数组变量, 如图。然后点击create data set 按键。点击close按键。
• 回到fitting界面(第10页),点击apply按键, 出现结果到工具箱界面(第七页图)。点击fitting 按键。进入fitting界面,如下图。
点击new fit,进入下页图像界面
在data set中选择要拟合的数据对,在type of fit 栏选择 custom equations,(如图)。
然后点击new按键
选择general equations 顶部选项卡,输入要拟合的公式。如下图 (记得输入符号,+,-,*,/,^等符号),点击ok。
最新数学建模Matlab数据拟合详解ppt课件
于是,
ln
lnk1
k2
令
zln, a0k2, a1lnk1
即 za0a1
在命令窗口输入:
x=[500*1.0e-6 1000*1.0e-6 1500*1.0e-6 2000*1.0e-6 2375*1.0e-6] y=[3.103*1.0e+3 2.465*1.0e+3 1.953*1.0e+3 1.517*1.0e+3 1.219*1.0e+3] z=log(y) a=polyfit(x,z,1) k1=exp(8.3009) w=[1.55 2.47 2.93 3.03 2.89] plot(x,w,'*')
切削时间 t/h 0 1 2 3 4 5 6 7 8 刀具厚度 y/cm 30.0 29.1 28.4 28.1 28.0 27.7 27.5 27.2 27.0
切削时间 t/h 9 10 11 12 13 14 15 16 刀具厚度 y/cm 26.8 26.5 26.3 26.1 25.7 25.3 24.8 24.0
t=0:0.1:1.2 s=polyval(p3,t) s1=polyval(p6,t) hold on plot(t,s,'r-','linewidth',2) plot(t,s,'b--','linewidth',2) grid
例2 用切削机床进行金属品加工时, 为了适当地调整 机床, 需要测定刀具的磨损速度. 在一定的时间测量刀 具的厚度, 得数据如表所示:
解 在命令窗口输入:
x=-1:0.1:1 y=1./(1+9*x.^2) xi=-1:0.1:1 yi=interp1(x,y,xi) plot(x,y,'r-',xi,yi,'*')例6对源自y11 x
matlab与分布拟合
• 数据分析做得比较深入的同学,会发现一条隐含在数据中的关键信息:术前住院时间过长是当前病 床使用效率不高的主要因素。这样一个关键信息的获得,会使得建模更有方向感。
第一问
● 主要考核对问题的考虑是否全面,对问题实质的理解是否到位。评价指标分两类:效率指标和公平性指标。 两类指标可以有各种不同的定义,其合理性是评分依据。
一个原因。
• 总体上说,竞赛论文完成得很好的不多,而在一些基本问题上也做得不理想的论文却不在少数,反映出学 生对此类问题的生疏。另外,对问题本质的理解不到位的也大有人在。
• 抽象来看,本问题可归类于一个通道分类-服务台共享的多通道随机服务问题,对这样的问题,排队论中 还没有现成的解决方法,可以作为一个排队论问题加以继续研究。
眼科病床安排的优化模型
• 摘要:本文针对眼科病床的合理安排问题,分析了影响医疗效率高低以及病人等待入院排队队长的主要 因素,并根据这些因素对医疗效率影响程度的分析,得出单位时间接收病人数是评价病床安排模型优劣 的最重要指标。单位时间接收病人数增加了,相应的队列长便会变短。首先我们建立了科学的评价指标 体系,建立了基于人均治疗时间最短为目标的优化模型。然后利用我们建立的评价指标体系,对我们建 立的模型与医院采用的FCFS规则进行了比较,得出我们建立的模型远远优于FCFS规则。
第三问
此问希望学生给出一个满足一定置信度(例如:90%)的预约住院时间区间,区间长度越短越好。
一种自然的想法是通过同类病人术后住院时间的概率分布从理论上得到这一区间,如果能通过此种理论方 法解决此问题,自然是最理想的。 但这样做的一个困难是已处于ห้องสมุดไป่ตู้后住院状态的该类病人的继续住院时间不 服从同一分布,从而将该类病人(含已住院与未住院)的预计住院时间求和后的随机变量的分布不知道。
matlab概率分布程序,常见的概率分布(matlab作图)
matlab概率分布程序,常见的概率分布(matlab作图)⼀、常见的概率分布表1.1 概率分布分类表连续随机变量分布连续统计量分布离散随机变量分布分布分布⼆项分布连续均匀分布⾮中⼼ 分布离散均匀分布(Gamma)分布分布⼏何分布指数分布⾮中⼼ 分布超⼏何分布正态分布分布负⼆项分布对数正态分布⾮中⼼ 分布泊松分布Weibull分布Rayleigh分布⼆、MATLAB为常见分布提供的五类函数1) 概率密度函数(pdf);2) (累积)分布函数(cdf);3) 逆(累积)分布函数(icdf);4) 随机数发⽣器(random);5) 均值和⽅差(stat).1、概率密度函数表1.2 概率密度函数(pdf)函数名称函数说明调⽤格式normpdf正态分布Y=normpdf (X, MU, SIGMA)chi2pdf分布Y=chi2pdf (X, N)tpdf分布Y=tpdf (X, N)fpdf分布Y=fpdf (X, N1, N2)注意: Y=normpdf (X, MU, SIGMA)的SIGMA是指标准差 , ⽽⾮ .【例1-2】 绘制标准正态分布 的概率密度图.x=-4:0.1:4;y=normpdf(x,0,1);plot(x,y)title('N(0,1)的概率密度曲线图')图1-22、累积分布函数表1.3 累积分布函数(cdf)函数名称函数说明调⽤格式normcdf正态分布P=normcdf (X, MU, SIGMA)chi2cdf分布P=chi2cdf (X, N)tcdf分布P=tcdf (X, N)fcdf分布P=fcdf (X, N1, N2)【例1-3】求服从标准正态分布的随机变量落在区间[-2, 2]上的概率. >> P=normcdf ([-2, 2])ans = 0.0228 0.9772>> P(2)-P(1)ans = 0.95453、逆累积分布函数 (⽤于求分位点)表1.4 逆累积分布函数(icdf)函数名称函数说明调⽤格式norminv正态分布X=norminv (P, MU, SIGMA)chi2inv分布X=chi2inv (P, N)tinv分布X=tinv (P, N)finv分布X=finv (P, N1, N2)【例1-4】(书P22例1.13) 求下列分位数:(i) ; (ii) ; (iii) ; (iv) .>> u_alpha=norminv(0.9,0,1)u_alpha = 1.2816>> t_alpha=tinv(0.25,4)t_alpha = -0.7407>> F_alpha=finv(0.1,14,10)F_alpha = 0.4772>> X2_alpha=chi2inv(0.025,50)X2_alpha = 32.35744、随机数发⽣函数表1.5 随机数发⽣函数(random)函数名称函数说明调⽤格式normrnd正态分布R=normrnd(MU, SIGMA, m, n)chi2rnd分布R=chi2rnd(N, m, n)trnd分布R=trnd(N, m, n)frnd分布R=frnd(N1, N2, m, n)5、均值和⽅差表1.6 常见分布的均值和⽅差函数(stat)函数名称函数说明调⽤格式unifstat连续均匀分布: ,[M,V]=unifstat (A, B)expstat指数分布: ,[M,V]=expstat (MU)normstat正态分布: ,[M,V]=normstat (MU, SIGMA)chi2stat分布: ,[M,V]=chi2stat (N)tstat分布: ,[M,V]=tstat (N)(N≥2)fstat分布: ,[M,V]=fstat (N1, N2)binostat⼆项分布,[M,V]=binostat (N, p)poisstat泊松分布: ,[M,V]=poisstat (LAMBDA)注意: 如果省略调⽤格式左边的[M, V], 则只计算出均值.三、常⽤的统计量表1.7 常⽤统计量函数名称函数说明调⽤格式mean样本均值m=mean(X)range样本极差y=range(X)std样本标准差y=std(X)var样本⽅差y=var(X), y=var(X, 1)corrcoef相关系数R=corrcoef (X)cov协⽅差矩阵C=cov(X), C=cov(X, Y)moment任意阶中⼼矩m=moment(X, order)说明:(1) y=var(X) ——计算X中数据的⽅差. .y=var(X, 1) —— , 得到样本的⼆阶中⼼矩 (转动惯量).(2) C=cov(X) ——返回⼀个协⽅差矩阵, 其中输⼊矩阵X的每列元素代表着⼀个随机变量的观测值. 如果X为n×m的矩阵, 则C为m×m的矩阵.(3) var(X)=diag(cov(X)), std(X)=sqrt(diag(cov(X))).。
用matlab计算各种概率分布(ppt)
x=0.01:0.1:8.01; y=fpdf(x,4,10); plot(x,y)
抽样分布: t 分布
设随机变量 X ~ N (0,1), Y ~ χ 2 ( n) ,且 X 与 Y 相 互独立,则称随机变量
wblplot(x)
统计绘图函数,进行 Weibull 分布检验。
Matlab相关命令介绍
其它函数
cdf 系列函数:累积分布函数 inv 系列函数:逆累积分布函数 rnd 系列函数:随机数发生函数 stat 系列函数:均值与方差函数
例: p=normcdf(-2:2,0,1)
离散分布: Poisson 分布
泊松分布也属于离散分布,是1837年由发个数 学家 Poisson 首次提出,其概率分布列为:
k! 记做:X ~ P ( λ )
) P( X = k =
λk
e −λ
k (=
0, 1, 2, , λ > 0 )
泊松分布是一种常用的离散分布,它与单位时间(或单 位面积、单位产品等)上的计数过程相联系。如:单位时 间内,电话总机接到用户呼唤次数;1 平方米内,玻璃上的 气泡数等。
指数分布举例
例: λ=4 时的指数分布密度函数图
x=0:0.1:30; y=exppdf(x,4); plot(x,y)
离散分布:几何分布
几何分布是一种常见的离散分布
在贝努里实验中,每次试验成功的概率为 p,设试验进行 到第 ξ 次才出现成功,则 ξ 的分布满足:
P (ξ = k = ) pq k −1
X T= Y /n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• (4) max(A,[],dim):dim取1或2。dim取1时,该函数和 max(A)完全相同;dim取2时,该函数返回一个列向量,其 第i个元素是A矩阵的第i行上的最大值。
Matlab相关命令
Matlab相关命令
数据统计处理基本命令
– 相关系数
MATLAB提供了corrcoef函数,可以求出数据的相关系数矩阵。 corrcoef函数的调用格式为:
• corrcoef(X):返回从矩阵X形成的一个相关系数矩阵。此相关系数矩 阵的大小与矩阵X一样。它把矩阵X的每列作为一个变量,然后求它 们的相关系数。
[Y,I]=sort(A,dim)
其中dim指明对A的列还是行进行排序。若dim=1,则按列排;若dim=2, 则按行排。Y是排序后的矩阵,而I记录Y中的元素在A中位置。
Matlab相关命令
数据统计处理基本命令
类似的用法,请自己借助matlab在线帮 助功能自己了解:
– 中位数:median(x) – 标准差:std(x) – 方差:var(x) – 偏度:skewness(x) – 峰度:kurtosis(x)
为检验骰子是否均匀, 要把骰子实地投掷 若干次,统计各点出现的频率与1/6的差距.
问题是:得到的数据能否说明“Fra bibliotek子均匀” 的假设是可信的?
现实生活中的许多数据都是随机产生的, 如考试分数、月降雨量、灯泡寿命等。从 数理统计角度来看,这些数据其实都是符 合某种分布的,这种规律就是统计规律。
本专题的主要目的是:熟悉Matlab相关命令;熟悉 各种常见分布的概率密度函数及其曲线,会利用数据 分布的形态猜测其分布类型;能够对密度函数进行参 数估计;进行简单的假设检验(以正态检验为主)。
数据统计处理基本命令
– 求和: • (1) sum(X),返回向量X各元素的和。 • (2) sum(A) ,返回一个行向量,其第i个元素是 A的第i列的元素和。 • (3)sum(A,dim) ,当dim为1时,该函数等同于sum(A);当dim为2 时,返回一个列向量,其第i个元素是A的第i行的各元素之和。
偏度和峰度的说明
表示分布形状的统计量—偏度和峰度
偏度: g1
1 s3
n
(Xi
i 1
X )3
峰度: g2
1 s4
n
(Xi
i 1
X )4
偏度反映分布的对称性,g1 >0 称为右偏态,此时数据位于均值
右边的比位于左边的多;g1 <0 称为左偏态,情况相反;而 g1 接近 0
则可认为分布是对称的.
– 乘积: • (1) prod(X) ,返回向量X各元素的乘积。 • (2) prod (A) , 返回一个行向量,其第i个元素是A的第i列元素的乘 积。 • (3) prod(A,dim) ,当dim为1时,该函数等同于prod(A);当dim为2 时,返回一个列向量,其第i个元素是A的第i行的各元素之乘积。
从1500到1931年的432年间,每年爆发战争的 次数可以看作一个随机变量,椐统计,这432 年间共爆发了299次战争,具体数据如下:
战争次数X 发生 X次战争的年数
0
223
1
142
2
48
3
15
4
4
在概率论中,大家对泊松分布产生的一
般条件已有所了解,容易想到,每年爆发战
争的次数,可以用一个泊松随机变量来近似 描述 . 也就是说,我们可以假设每年爆发战 争次数分布X近似泊松分布.
Matlab相关命令
数据统计处理基本命令
– 累加和与累乘积 在MATLAB中,使用cumsum和cumprod函数能方便地求得向
量和矩阵元素的累加和与累乘积向量,函数的调用格式为: • cumsum(X):返回向量X累加和向量。 • cumprod(X):返回向量X累乘积向量。 • cumsum(A):返回一个矩阵,其第i列是A的第i列的累加和向量。 • cumprod(A):返回一个矩阵,其第i列是A的第i列的累乘积向量。 • cumsum(A,dim):当dim为1时,该函数等同于cumsum(A);当 dim为2时,返回一个矩阵,其第i行是A的第i行的累加和向量。 • cumprod(A,dim):当dim为1时,该函数等同于cumprod(A);当 dim为2时,返回一个向量,其第i行是A的第i行的累乘积向量。
命令如下: X=sqrt(3)*randn(10000,5)+4; M=mean(X) D=std(X) R=corrcoef(X)
现在的问题是:上面的数据能否证实X 具有
泊松分布的假设是正确的?
又如,某钟表厂对生产的钟进行精确性检 查,抽取100个钟作试验,拨准后隔24小时 以后进行检查,将每个钟的误差(快或慢) 按秒记录下来.
问该厂生产的钟的误差是否服从正态 分布?
再如,某工厂制造一批骰子, 声称它是均匀的.
也就是说,在投掷中,出 现1点,2点,…,6点的概 率都应是1/6.
内容提纲
➢1.Matlab相关命令介绍 ➢2.常见概率分布 ➢3.频数直方图与频数表 ➢4.参数估计 ➢5.假设检验
Matlab相关命令
数据统计处理基本命令
– 最值:max(x), min(x)
• (1) max(X):返回向量X的最大值,如果X中包含复数元素, 则按模取最大值。
• (2) max(A):返回一个行向量,向量的第i个元素是矩阵A 的第i列上的最大值。
• corrcoef(X,Y):在这里,X,Y是向量,它们与corrcoef([X,Y])的作用一 样。
Matlab相关命令
数据统计处理基本命令
– 排序
MATLAB中对向量X是排序函数是sort(X),函数返回一个对X中的元 素按升序排列的新向量。
sort函数也可以对矩阵A的各列或各行重新排序,其调用 格式为:
峰度是分布形状的另一种度量,正态分布的峰度为 3,若 g2 比 3 大很多,表示分布有沉重的尾巴,说明样本中含有较多远离均值的数
据,因而峰度可用作衡量偏离正态分布的尺度之一.
Matlab相关命令
数据统计处理基本命令
–例
生成满足正态分布的10000×5随机矩阵,然后求各列 元素的均值和标准方差,再求这5列随机数据的相关系数矩 阵。