高中数学第三章统计案例32独立性检验的基本思想及其初步应用课前导引素材新人教A版选修23
高中数学 第三章 统计案例 3.2 独立性检验的基本思想及其初步应用(第3课时)教案 新人教A版选修23
3.2独立性检验的基本思想及其初步应用第三课时教学目标 知识与技能理解独立性检验的基本思想,会根据K 2的观测值的大小判断两个分类变量有关的可信度,培养学生的自主探究的学习能力,并能应用数学知识解决实际问题.过程与方法 通过主动探究、自主合作、相互交流,从具体实例中归纳出进行独立性检验的基本步骤,使学生充分体会知识的发现过程,并渗透统计的基本思想和方法.情感、态度与价值观使学生体会数学的理性与严谨,了解数学来源于实际,应用于实际的唯物主义思想,培养学生对新知识的科学态度,勇于探索和敢于创新的精神.重点难点教学重点:利用独立性检验的基本思想解决实际问题以及处理步骤; 教学难点:对独立性检验思想的理解.教学过程引入新课提出问题:在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶;而另外772名不是因为患心脏病而住院的男性病人中有175名秃顶.(1)利用图形判断秃顶与患心脏病是否有关系;(2)能否在犯错误的概率不超过0.01的前提下认为秃顶与患心脏病有关系? 学生活动:小组合作完成.活动结果:根据题目所给的数据画出列联表:比较来说,秃顶的病人中患心脏病的比例大一些,可以在某种程度上认为“秃顶与患心脏病有关”.根据列联表中的数据,得到k =1 437×(214×597-175×451)2389×1 048×665×772≈16.373>6.635,因此,在犯错误的概率不超过0.01的前提下认为秃顶与患心脏病有关系.设计目的:以实际问题创建情境,引起学生的好奇,激发学习和探究知识的兴趣,从而也引起学生的无意注意,在不知不觉中进入教师设计的教学情境中,为本节课的学习做有利的准备.探究新知 提出问题:上述解法中,用到了等高条形图和独立性检验两种方法来判断“秃顶与患心脏病是否有关系”,试比较两种方法的关系和各自的特点.学生活动:学生先自由发言,大胆描述.学情预测:独立性检验能精确判断可靠程度,而等高条形图的优点是直观,但只可以粗略判断两个分类变量是否有关系,一般在通过图表判断后还需要用独立性检验来确认,这主要是因为列联表中的数据来源于样本数据,它们反映出来的这种相关性的特征能够在多大程度上代表总体,则需要用独立性检验来确认.提出问题:试总结独立性检验的基本步骤. 学生活动:思考总结,然后回答.活动结果:①根据数据画出列联表;②计算随机变量K 2的观测值;③与已知数据对照下结论.设计目的:比较判断分类变量相关性方法的优缺点,并在解决问题的基础上将独立性检验的具体步骤模式化.理解新知提出问题:你所得的结论在什么范围内有效? 学生活动:学生先自由发言,教师逐步引导学生.学情预测:开始学生的回答可能不全面、不准确,但在其他学生的不断补充、纠正下,会趋于完善.活动结果:“样本只能代表相应总体”,这里的数据来自于医院的住院病人,因此题目中的结论能够很好地适用于住院的病人群体,而把这个结论推广到其他群体则可能会出现错误,除非有其他的证据表明可以进行这种推广.设计意图:让学生充分体会用样本估计总体的思想. 提出问题:两个分类变量X 和Y 的2×2列联表如下若令W =⎪⎪⎪⎪⎪⎪a a +b -c c +d ,试结合前面的学习,分析W 的大小与“X 与Y 有关系”的联系. 学生活动:分组讨论,通过协作交流来解决问题,教师进行适当的引导.学情预测:W 越大,越有利于结论“X 与Y 有关系”,它越小,越有利于结论“X 与Y 没有关系”.提出问题:类似于通过K 2的构造判断规则,我们也可以用W 构造一个判断“X 与Y 有关系”的规则,即当W 的观测值w>w 0时,就判断“X 与Y 有关系”;否则,判断“X 与Y 没有关系”.那么,在“X 与Y 没有关系”的前提下P(W≥w 0)=0.01,且P(K 2≥k 0)=0.01,可以通过k 0来确定w 0吗?学生活动:分组讨论,通过协作交流来解决问题,教师进行适当的引导.学情预测:由计算公式可得K 2=W 2×n(a +b)(c +d)(a +c)(b +d),其中n =a +b +c +d.因此,K 2≥k 0等价于W≥k 0×(a +c)(b +d)n(a +b)(c +d),即可取w 0=k 0×(a +c)(b +d)n(a +b)(c +d).设计目的:通过一组精心设计的问题链来引导和激发学生的参与意识、创新意识,培养探究问题的能力,提升思维的层次.在解决问题的过程中,激发学生的研究兴趣,培养学生的科学理性精神,体会交流、合作和竞争等现代意识.运用新知1为考察高中生的性别与是否喜欢数学课程之间的关系,在某城市的某校高中生中随机抽取300由表中数据计算得到K的观察值k≈4.513.在多大程度上可以认为高中生的性别与数学课程之间是否有关系?分析:根据K2的观察值k≈4.513,对照数据确定多大程度上可以认为高中生的性别与数学课程之间是否有关系.由上表可知k≈4.513>3.841,而P(K≥3.841)≈0.05,故在犯错误的概率不超过0.05的前提下认为“高中生的性别与数学课程之间有关系”.点评:在熟练掌握了两个分类变量的独立性检验方法之后,可直接计算K2的观测值解决实际问题,而没有必要画相应的图形,但是图形的直观性也不可忽视.【变练演编】2某市为调查全市高中生学习状况是否对生理健康有影响,随机进行调查并得到如下的列联表.案.活动设计:学生先独立探索,允许互相交流成果.然后全班交流.学情预测:等高条形图、独立性检验等.设计意图:设置本开放性问题,意在增加问题的多样性、有趣性、探索性,不仅会加深学生对数学的理解、掌握,而且会潜移默化地学会编题、解题.课堂小结1.知识收获:独立性检验的思想方法及一般步骤;2.方法收获:独立性检验的思想方法;3.思维收获:数学来源于生活.设计意图:让学生自己小结,这是一个多维整合的过程,是一个高层次的自我认识过程.补充练习【基础练习】1.在研究某种新药对猪白痢的防治效果问题时,得到以下数据:2.在一次恶劣气候的飞行航程中,调查男女乘客在机上晕机的情况如下表所示,据此资料,在犯错误的概率不超过0.1的前提下,你是否认为在恶劣气候飞行中男性比女性更容易晕机?答案:1.提示:K 20.01的前提下认为新措施对防治猪白痢有效.2.提示:K 2的观测值k≈2.149<2.706,而P(K 2>2.706)≈0.10,故在犯错误的概率不超过0.1的前提下,我们不能认为在恶劣气候飞行中男性比女性更容易晕机.【拓展练习】3.考察黄烟经过培养液处理与否跟发生青花病的关系,调查了457株黄烟,得到下表中的数据,请根据数据作统计分析.解:根据公式得K 2的观测值k =457×(25×142-80×210)235×222×105×352≈41.61,由于41.61>10.828,故在犯错误的概率不超过0.001的前提下,说明黄烟经过培养液处理与否跟发生青花病是有关系的.设计说明 本设计主要采用“诱思探究教学法”,其核心是“诱导思维,探索研究”,其教学思想是“教师为主导,学生为主体,训练为主线,思维为主攻”的“四为主”原则.教师不是抛售现成的结论,而是充分暴露学生的思维,展示“发现”的过程,突出“师生互动”的教学,这种设计充分体现了教师的主导作用.学生在一系列的思考、探究中逐步完成了本节的学习任务,充分实现了学生的主体性地位,在整个教学过程中,始终着眼于培养学生的思维能力,这种设计符合现代教学观和学习观的精神,体现了素质教育的要求:教与学有机结合而对立统一.良好的教学设想,必须通过教学实践来体现,教师必须善于驾驭教法,指导学法,完成教学目标,从而使学生愉快地、顺利地、认真地、科学地接受知识.备课资料独立性检验在实际生活中有广泛的应用,解决该类问题的关键是准确的运算. 例1为了研究色盲与性别的关系,调查了1 000人,调查结果如下表所示:根据上述数据,试问在犯错概率不超过0.001的前提下,色盲与性别是否是相互独立的?假设色盲与性别是相互独立的,即色盲与性别无关,依据公式得K2的观测值k=1 000×(442×6-38×514)2≈27.139.956×44×480×520由于27.139>10.828,∴在犯错概率不超过0.001的前提下,可认为色盲与性别有关,从而拒绝原假设,故在犯错概率不超过0.01的前提下,可以认为色盲与性别不是相互独立的.。
2020学年高中数学第3章统计案例3.2独立性检验的基本思想及其初步应用课件新人教A版选修2_3
返回目录
(2)独立性检验(精确判断) 具体实施步骤如下: ①根据实际问题需要的可信程度确定临界值 k0; ② 根 据 观 测 数 据 计 算 随 机 变 量 K2 = a+bcn+add-ab+cc2b+d的观测值 k,其中 n=a+b+c+ d 为样本容量;
返回目录
③查临界值表(以K2的观测值k的大小作为检验在多 大程度上可以认为“两个变量有关系”的标准),如果 k≥k0,就以(1-P(K2≥k0))×100%的把握认为“两分类 变量有关系”;否则,就认为根据样本数据没有充分的 理由说明“两分类变量有关系”.
返回目录
2.(独立性检验)有人发现,多看电视容易使人变冷 漠,下表是一个调查机构对此现象的调查结果.
冷漠 不冷漠 总计 多看电视 68 42 110 少看电视 20 38 58
总计 88 80 168
返回目录
则大约有多大的把握认为多看电视与人变冷漠有关
系( )
A.99%
B.97.5%
C.95%
D.90%
返回目录
要点三 独立性检验
定义 利用随机变量K2来判断“两个分类变量有关系” 的方法称为独立性检验 nad-bc2
公式 K2=_____a_+__b__c_+__d__a_+__c___b_+__d_____,其中n= ___a_+_b_+__c_+__d___
返回目录
①认真读题,取出相关数据,作出2×2列联表; 具体 ②根据2×2列联表中的数据,计算K2的观测值k; 步骤 ③通过观测值k与临界值k0比较,得出事件有关的
返回目录
P(K2≥k0) 0.100 0.050 0.010 k0 2.706 3.841 6.635
思维导引:根据列联表直接代入K2公式可得南方学 生和北方学生的差异与是否喜欢甜品的相关程度.
第三章--统计案例-3.2-独立性检验的基本思想及其初步应用
解:由列联表中的数据,得 K2 的观测值为 1 633×30×1 355-224×242 k= ≈68.033>10.828. 254×1 379×54×1 579 因此,在犯错误的概率不超过 0.001 的前提下,认为每 一晚都打鼾与患心脏病有关.
为了调查某生产线上,某质量监督员甲对产
品质量好坏有无影响,现统计数据如下:质量监督员在现 场时,990件产品中合格品为 982 件,次品数为 8 件,甲不 在现场时,510件产品中合格品为493件,次品数为17件, 试分别用列联表、等高条形图、假设检验的方法对数据进
的方法来判断色盲与性别是否有关?你所得的结论在什么
范围内有效? 解:根据题目所给的数据作出如下的列联表: 色盲 不色盲 合计
男 女 合计
38 6 44
442 514 956
480 520 1 000
根据列联表作出相应的等高条形图,如图所示:
38 从等高条形图来看在男人中患色盲的比例480比在女人
38 6 6 中患色盲的比例520要大,其差值为480-520 ≈0.068,差
位统一,图形准确,但它不能给我们两个分类变量有关或
无关的精确的判断,若要作出精确的判断,可以进行独立 性检验的有关计算.
本题应首先作出调查数据的列联表,再根据列联表画
出等高条形图,并进行分析,ห้องสมุดไป่ตู้后利用独立性检验作出判 断.
在调查 480 名男士中有 38 名患有色盲, 520名女士中有6名患有色盲,分别利用图形和独立性检验
步
骤
③如果 k≥k0 ,就推断“X与Y有关系”,这种推断
犯错误的概率不超过α;否则,就认为在犯错误的概 率不超过α的前提下不能推断“X与Y有关系”,或者 在样本数据中没有发现足够证据支持结论“X与Y有 关系”.
人教版高中数学选修2-3第三章统计案例3.2独立性检验的基本思想及其初步应用教案(3)
课型:新授课编写时时间:年月日执行时间:年月日
教学目标:
通过对典型案例的探究,进一步巩固独立性检验的基本思想、方法,并能运用χ2统计量进行独立性检验.
批注
教学重点:独立性检验的基本方法是重点.基本思想的领会及方法应用是难点.
教学难点:独立性检验的基本方法是重点.基本思想的领会及方法应用是难点.
教学后记:
解:提出假设 :两种中草药的治疗效果没有差异,即病人使用这两种药物中的何种药物对疗效没有明显差异.
由列联表中的数据,求得
当 成立时, 的概率约为 ,而这里
所以我们有 的把握认为:两种药物的疗效有差异.
例3.下表中给出了某周内中学生是否喝过酒的随机调查结果,若要使结论的可靠性不低于95%,根据所调查的数据,能否作出该周内中学生是否喝过酒与性别有关的结论?
教学用具:多媒体
教学方法:重视基本思想的领会及方法应用
教学过程:
一.学生活动
练习:
(1)某大学在研究性别与职称(分正教授、副教授)之间是否有关系,你认为应该收集哪些数据?.
(2)某高校“统计初步”课程的教师随机调查了选该课的一些学生情况,具体数据如下表:
非统计专业
统计专业
男
13
10
女
7
20
为了判断主修统计专业是否与性别有关系,根据表中的数据,得到
(1)根据以上数据建立一个2× 2列联表;
(2)判断性别与休闲方式是否有关系。
解:(1)2× 2的列联表:
休闲方式
性别
看电视
运动
总计
女
43
27
70
男
21
33
54
高中数学第三章统计案例32独立性检验的基本思想及其初步应用同步课件新人教A版选修2
(3)独立性检验的具体做法: ①根据实际问题的需要确定容许推断“两个分类变量有 关系”犯错误概率的上界 α,然后查表确定临界值 k0. ②利用公式计算随机变量 K2 的观测值 k. ③如果 k≥k0,就推断“X 与 y 有关系”,这种推断犯错 误的概率不超过 α;否则,就认为在犯错误的概率不超过 α 的前提下不能推断“X 与 Y 有关系”,或者在样本数据中没有 发现足够证据支持结论“X 与 Y 有关系”.
[迁移探究] 把本例条件“理科对外语有兴趣的有 138 人,无兴趣的有 98 人,文科对外语有兴趣的有 73 人, 无兴趣的有 52 人.”换成“理科对外语有兴趣的有 100 人,无兴趣的有 136 人,文科对外语有兴趣的有 93 人, 无兴趣的有 32 人.”试分析能否在犯错误的概率不超过 0.001 的前提下,认为学生选报文科、理科与对外语的兴 趣有关.
联表)如下表所示:
Y
X
y1
y2
总计
x1
a
b
a+b
x2 c
d
c+d
总计 a+c b+d a+b+c+观地反映出两个分类 变量间是否互相影响,常用等高条形图展示列联表数据的 频数特征.
3.独立性检验
(1)定义:利用随机变量 K2 来判断“两个分类变量有 关系”的方法称为独立性检验.
(2)错,K2 独立性检验显示“患慢性气管炎和吸烟习 惯有关”,是指有一定的把握说他们相关,或者说有一定 的出错率.
(3)错,2×2 列联表中的 4 个数据是对于某组特定数 据的统计数据,故四个数据间有一定的关系.
答案:(1)√ (2)× (3)×
高中数学第3章统计案例3.2独立性检验的基本思想及其初步应用课件新人教A版选修2-3
99
注:该优秀的有 880 人.
[探究共研型] 独立性检验与统计的综合应用
探究 1 从容量为 400 人的中年人与容量为 100 人的老年人中抽出 50 人去 体检某项健康指标,若采取分层抽样方法,应从中抽取老年人为多少人?
【提示】 4005+0100×100=10(人).
阶
阶
段
段
1
3
3.2 独立性检验的基本思想及其初步应用
学
阶 段
业 分 层
2
测
评
1.了解分类变量、2×2 列联表、随机变量 K2 的意义. 2.通过对典型案例的分析,了解独立性检验的基本思想方法.(重点) 3.通过对典型案例的分析,了解两个分类变量的独立性检验的应用.(难点)
[ 基础·初探]
教材整理 1 列联表和等高条形图 阅读教材 P91~P94,完成下列问题. 1.分类变量和列联表 (1)分类变量 变量的不同“值”表示个体所属的__不__同__类__别__,像这样的变量称为分类变量. (2)列联表 ①定义:列出的两个分类变量的__频__数__表____称为列联表.
3.独立性检验的具体做法
(1)根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率
的上界 α,然后查表确定__临__界__值_______k0. (2)利用公式计算随机变量 K2 的___观__测__值______k. (3)如果___k_≥_k_0__,就推断“X 与 Y 有关系”,这种推断犯错误的概率不超 犯错误的概率
过 α;否则,就认为在_____________率不超过 α 的前提下不能推断“X 与 Y 有 关系”,或者在样本数据中__没__有__发__现__足__够__证__据_____支持结论“X 与 Y 有关系”.
新人教A版高中数学教材目录
新人教A版高中数学目录湖北晨光(必修+选修)必修1第一章集合与函数概念1.1集合1.2函数及其表示1.3函数的基本性质第二章基本初等函数(Ⅰ)2.1指数函数2.2对数函数2.3幂函数第三章函数的应用3.1函数与方程3.2函数模型及其应用必修2第一章空间几何体1.1空间几何体的结构1.2空间几何体的三视图和直观图1.3空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质第三章直线与方程3.1直线的倾斜角与斜率3.2直线的方程3.3直线交点坐标与距离公式第四章圆与方程4.1圆的方程4.2直线、圆的位置关系4.3空间直角坐标系必修3第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例第二章统计2.1随机抽样2.2用样本估计总体2.3变量间的相关关系第三章概率3.1随机事件的概率3.2古典概型3.3几何概型必修4第一章三角函数1.1任意角和弧度制1.2任意角的三角函数1.3三角函数的诱导公式1.4三角函数的图象与性质1.5函数y=Asin(ωx+ψ)1.6三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换必修5第一章解三角形1.1正弦定理和余弦定理1.2应用举例1.3实习作业第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.4基本不等式选修2-1第一章常用逻辑用语1.1命题及其关系1.2充分条件与必要条件1.3简单的逻辑联结词1.4全称量词与存在量词第二章圆锥曲线与方程2.1曲线与方程2.2椭圆2.3双曲线2.4抛物线选修2-2第一章导数及其应用1.1变化率与导数1.2导数的计算1.3导数在研究函数中的应用1.4生活中的优化问题举例1.5定积分的概念1.6微积分基本定理1.7定积分的简单应用第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明2.3数学归纳法第三章数系的扩充与复数的引入3.1数系的扩充和复数的概念3.2复数代数形式的四则运算选修2-3第一章计数原理1.1分类加法计数原理与分步乘法计数原理1.2排列与组合1.3二项式定理第二章随机变量及其分布2.1离散型随机变量及其分布列2.2二项分布及其应用2.3离散型随机变量的均值与方差2.4正态分布第三章统计案例3.1回归分析的基本思想及其初步应用3.2独立性检验的基本思想及其初步应用选修3-1数学史选讲第一讲早期的算术与几何一古埃及的数学二两河流域的数学三丰富多彩的记数制度第二讲古希腊数学一希腊数学的先行者二毕达哥拉斯学派三欧几里得与《原本》四数学之神──阿基米德第三讲中国古代数学瑰宝一《周髀算经》与赵爽弦图二《九章算术》三大衍求一术四中国古代数学家第四讲平面解析几何的产生一坐标思想的早期萌芽二笛卡儿坐标系三费马的解析几何思想四解析几何的进一步发展第五讲微积分的诞生一微积分产生的历史背景二科学巨人牛顿的工作三莱布尼茨的“微积分”第六讲近代数学两巨星一分析的化身──欧拉二数学王子──高斯第七讲千古谜题一三次、四次方程求根公式的发现二高次方程可解性问题的解决三伽罗瓦与群论四古希腊三大几何问题的解决第八讲对无穷的深入思考一古代的无穷观念二无穷集合论的创立三集合论的进一步发展与完善第九讲中国现代数学的开拓与发展一中国现代数学发展概观二人民的数学家──华罗庚三当代几何大师──陈省身湖北晨光培训学校整理选修4-1几何证明选讲第一讲 相似三角形的判定及有关性质一 平行线等分线段定理二 平行线分线段成比例定理 三 相似三角形的判定及性质 1.相似三角形的判定 2.相似三角形的性质 四 直角三角形的射影定理 第二讲 直线与圆的位置关系 一 圆周角定理二 圆内接四边形的性质与判定定理三 圆的切线的性质及判定定理 四 弦切角的性质五 与圆有关的比例线段 第三讲 圆锥曲线性质的探讨 一 平行射影二 平面与圆柱面的截线三 平面与圆锥面的截线 选修4-4参数方程选讲第一讲 坐标系一、平面直角坐标系 二、极坐标系三、简单曲线的极坐标方程 四、柱坐标系与球坐标系 第二讲 参数方程一、曲线的参数方程 二、圆锥曲线的参数方程 三、直线的参数方程 四、渐开线与摆线选修4-5不等式选讲第一讲 不等式和绝对值不等式 一 不等式1.不等式的基本性质2.基本不等式3.三个正数的算术-几何平均不等式二 绝对值不等式1.绝对值三角不等式2.绝对值不等式的解法 第二讲 讲明不等式的基本方法 一 比较法二 综合法与分析法三 反证法与放缩法第三讲 柯西不等式与排序不等式 一 二维形式柯西不等式 二 一般形式的柯西不等式 三 排序不等式第四讲 数学归纳法证明不等式 一数学归纳法二 用数学归纳法证明不等式。
高中数学 第三章 统计案例 3.2 独立性检验的基本思想及其初步应用教材梳理素材 新人教A版选修23
3.2独立性检验的基本思想及其初步应用庖丁巧解牛知识·巧学一、两个分类变量之间关系的定性分析 1.分类变量取不同的“值”表示个体所属不同类别的分量称为分类变量.这里的“变量”和值都应作为“广义”的变量和值进行理解.例如:对于性别变量,其取值为男和女两种.那么这里的变量指的是性别,同样这里的“值”指的是“男”和“女”,因此,这里所说的“变量”和值不一定取的是具体的数值.要点提示 注意此处空半格分类变量是大量存在的,例如:吸烟变量有吸烟与不吸烟两种类别,而国籍变量则有多种类别. 2.定性分析的方法 (1)频率分析通过对样本的每个分类变量的不同类别的事件发生的频率大小比较来分析分类变量之间是否有关联关系.通常通过列联表列出两个分类变量的占少数表来进行分析. (2)图形分析①三维柱形图.它可以清晰的看出各个频数的相对大小;②二维条形图.如本节引例中,可画叠在一起的二维条形图.浅色条高表示不患肺癌的人数,深色条高表示患肺癌的人数; ③频率分布条形图:为了更清晰的表示引例的特征,我们可用等高条形图表示两种情况下患肺癌的比例.方法归纳 注意此处空半格三维柱形图和二维条形图能更直观地反映出相关数据的总体状况.作三维柱形图时要注意选择恰当的视角,以使每个柱体都能被看到. 二、独立假设 1.2×2列联表种状态又分两种情况:吸烟,不吸烟以及患肺癌、未患肺癌.表中排成两列的数据是调查得来的结果,希望根据这4个数据来检验上述两种状态是否有关.这一检验就称为2×2列联表的独立性检验.2.独立性检验:利用随机变量K 2=))()()(()(2d b c a d c b a bc ad n ++++-(其中n=a+b+c+d为样本容量)来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.要点提示 注意此处空半格上述表达式就是统计中重要的K 2统计量,用它的大小可以决定是否拒绝原来的统计假设H 1,如果算出的K 2值较大,就拒绝H 1,也就是拒绝事件“X 与Y 无关”,从而就认为它们是有关的了.深化升华 注意此处空半格独立性检验的基本思想类似于反证法.要确认“两个分类变量有关系”这一结论的可信程度,首先假设该结论不成立,即假设结论“两个分类变量没有关系”成立.在该假设下构造的随机变量K 2应该很小.如果由观测数据计算得到的K 2的观测值k很大,则在一定程度上说明假设不合理.根据随机变量K 2的含义,可以通过概率P(K 2≥k)的大小来评价该假设不合理的程度有多大,从而说明这“两个分类变量没有关系”这一结论成立的可信程度有多大.三、判断结论成立的可能性的方法 1.通过三维柱形图和二维条形图,可以粗略地判断两个分类变量是否有关系,但是这种判断无法精确地给出所得结论的可靠程度.(1)在三维柱形图中,主对角线上两个柱形高度的乘积ad与副对角线上的两个柱形高度的乘积bc相关越大,H 1成立的可能性就越大.(2)在二维条形图中,可以估计满足条件X=x 1的个体中具有Y=y 1的个体所占的比例ba a+,也可以估计满足条件X=x 2的个体中具有Y=y 2的个体所占的比例dc c+.两个比例的值相差越大,H 1成立的可能性就越大.2.利用独立性检验来考查两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度.具体做法是根据观测数据计算检验随机变量K 2的值k ,其值越大,说明H 1成立的可能性就越大.当得到的观测数据a、b、c、d都不小于5时,可以通过随机变量k 2来确定结论的可信程度.要点提示 注意此处空半格在计算得检验随机变量K 2的值时,要注意临界值 6.635,3.841和2.706.如果k 2>6.635,就有99%把握认为“X 与Y 有关系”.如果k 2>3.841,就有95%把握认为“X 与Y 有关系”.如果k 2>2.706,就有90%把握认为“X 与Y 有关系”.而如果k 2≤2.706,就认为没有充分的证据显示“X 与Y 有关系”.误区警示 注意此处空半格使用K 2统计量作2×2列联表的独立性检验时,要求表中的4个数据都要大于5,所以在选取样本容量时一定要注意这一点. 问题·探究问题1某聋哑研究机构对聋哑关系进行抽样调查,在耳聋的657人中有416人哑,而另外不聋的680人中有249人哑.你能运用这组数据得出相应结论吗? 思路:认真分析后,我们就是要在聋与哑有无关系上作出结论.于是可以运用独立性检验进行判断.一种方法可以根据题目所给数据得到2×2列联表,计算K 2的值,与临界值做比较;另一种方法可以用三维柱形图粗略估计得出结论.当然,我们也可以采用对照两组人群中哑的比例进行粗略估计,但精确度要相对低一些.根据列联表中数据得到:K 2=680657672665)241249431416(13372⨯⨯⨯⨯-⨯≈95.29>10.828,所以我们有99.9%的把握说聋与哑有关.方法二:我们可以把题目中的数据做出相应的三维柱形图(图),容易比较发现,底面副对角线两个柱体高度的乘积大些,可以在某种程度上认为聋与哑有关. 问题2如何进行独立性检验?试举一例说明之.思路:(1)作统计假设:假设H 0“事件A 与B 独立”;(2)根据公式K 2=))()()(()(2d b c a d c b a bc ad n ++++-,求出K 2;(3)作出统计判断:若K 2>6.635,则有99%的把握说事件A 与B 有关,若K 2>3.841,则有95%的把握说事件A 与B 有关.若K 2≤2.706,则认为没有充分的证据显示事件A 与B 有关.注意在此过程中要使表中的4个数据大于5.如“五一”黄金周前某地的一旅游景点票价上浮,黄金周过后,统计本地与外地来的游客人数,问票价上浮后游客人数与所处地区是否有关系?探究:按照独立性检验的基本步骤,假设票价上浮后游客人数与所处地区没有关系.因为k 2=4907273833964249)1331284220651407(76452⨯⨯⨯⨯-⨯⨯≈30.35>6.635.所以假设不成立,我们有99%的把握认为票价上浮后游客人数与所处地区有关系. 典题·热题例1为了研究人的性别与患色盲与否是否有关,某研究所进行了随机调查.发现在调查的480名男性中有39名患有色盲,520名女性中有6名患有色盲,试检验人的性别与患色盲与否有关?思路分析:由题意列出2×2列联表,由公式计算出K 2,与临界值做比较,得出事件成立的可信程度.解:由题意所得数据列2×2列联表得:由公式得K 2=52048095545)441651439(10002⨯⨯⨯⨯-⨯⨯≈28.23.因为28.23>10.828,所以有99.9%的把握认为患色盲与否与人的性别有关,男性患色盲的概率要比女性大很多.方法归纳 注意此处空半格独立性检验问题的基本步骤为:(1)找相关数据,作列联表;(2)求统计量K 2;(3)判断可能性,注意与临界值做比较,得出事件有关的确信度.例2某县对在职的71名高中数学教师就支持新的数学教材还是支持旧的数学教材做了调查,结果如下表所示:根据此资料,你是否认为教龄的长短与支持新的数学教材有关?思路分析:根据独立性检验思想,由公式计算出K 2,然后与两临界值比较得出结论.解:由公式得K 2=49223437)10252412(71))()()(()(22⨯⨯⨯⨯-⨯=++++-d b c a d c b a bc ad n ≈0.08.由K 2<2.706,我们没有充分的证据说明教龄的长短与支持新的数学教材有关.深化升华 注意此处空半格独立性检验能帮助我们对日常生活中的实际问题作出合理的推断和预测.因此要在学习中,应通过案例分析,理解和掌握独立性检验的方法,体会其基本思想在解决实际问题中的应用,以提高我们分析和处理问题的能力.例3在某医院,因为患心脏病而住院的665名男性病人中,有214人秃顶,而另外772名不是因为患心脏病而住院的男性病人中有175人秃顶.利用独立性检验方法判断秃顶与患心脏病是否有关系?你所得的结论是在什么范围内有效?思路分析:由题意列出2×2列联表,利用公式求得K 2后与临界值比较,得出结论后要注意这组数据是来自于住院的病人,而不是随机对全体人群采样.由公式得K 2=7726651048389)451175597214(14372⨯⨯⨯⨯-⨯⨯≈10.828.所以有99.9%的把握认为“秃顶与患心脏病有关”.误区警示 注意此处空半格在应用公式时,切忌误用公式为K 2=))()()(()(2d b c a d c b a bc ad n ++++-.这会使结果相差甚远.例4某校高三年级在一次全年级的大型考试中,数学成绩优秀和非优秀的学生中,物理、化学、总分也为优秀的人数如下表所示,则数学成绩优秀与物理、化学、总分也优秀哪个关系注:该年级此次考试中数学成绩优秀的有360人,非优秀的有880人.思路分析:分别列出两个量间的2×2列联表,将数据代入公式求得K 2,对照K 2与临界值及三个的大小关系得出结论.代入公式可得K =270.114 3.(3)列出数学与总分优秀的2×2列联表如下:由上面分析可知,数学成绩优秀与物理、化学、总分优秀都有关系.由计算K2的值都大于10.828,由此说明都有99.9%的把握认为数学优秀与物理、化学、总分优秀都有关系,但与总分优秀关系最大,物理次之.深化升华注意此处空半格本例中,我们利用2×2列联表的独立假设分析了数学与物理、化学、总分优秀是否有关系.由此发现,学好数学对总分及学好物理关联很大,因此我们要努力学好数学.其次,本例还告诉我们如何利用所学习的独立性假设的思想方法来分析多个分类变量之间关系的方法.。
2018-2019学年高中数学 第三章 统计案例 3.2 独立性检验的基本思想及其初步应用优质课件
②2×2 列联表.
一般地,假设有两个分类变量 X 和 Y,它们的取值
分别为x1,x2和y1,y2,其样本频数列联表(称为 2×2 列
联表)如下表所示:
Y
X
y1
y2
总计x1a源自ba+bx2
c
d
c+d
总计 a+c b+d a+b+c+d
2.等高条形图 等高条形图与表格相比,更能直观地反映出两个分类 变量间是否互相影响,常用等高条形图展示列联表数据的 频数特征.
答案:假设电离辐射的剂量与人体受损程度无关
5.某高校统计初步课程的教师随机调查了选该课的 一些学生的情况,具体数据如下表所示:
性别 男生 女生
非统计专业 13 7
统计专业 10 20
为了检验主修统计专业是否与性别有关系,根据表
中 的 数 据 得 到 随 机 变 量 K2 的 观 测 值 为 k =
“这两个班在这次测试中成绩的差异与实施课题实验有
关.”
归纳升华 (1)独立性检验在实际中有着广泛的应用,是对实际 生活中数据进行分析的一种方法,通过这种分析得出的结 论对实际生活或者生产都有一定的指导作用.
(2)近几年高考中较少单独考查独立性检验,经常与 统计、概率等知识综合,频率分布表、频率分布直方图与 独立性检验融合在一起是常见的考查形式,一般需要根据 条件列出 2×2 列联表,计算 K2 的观测值,从而解决问题.
第三章 统计案例
3.2 独立性检验的基本思 想及其初步应用
[学习目标] 1.了解独立性检验(只要求 2×2 列联表) 的基本思想、方法及其简单应用(重点、难点). 2.会判 断两个分类变量是否有关系(重点). 3.能够根据题目所 给数据列出 2×2 列联表及求 K2 的观测值(重点、难点).
数学图形计算器辅助《独立性检验的基本思想及其初步应用》的教学设计与思考
a
b +
b
≈
c
d +
d ,即
ad
-
bc
≈
0。也就是说 | ad
-
bc
| 越小,说明
吸烟与患癌症之间的关系越弱;| ad - bc |越大,就说明吸烟与
课改探微
38
患癌症之间的关联性越强。基于上述分析,我们构造一个随机
变量
K2
=
(
a
+
b
)(
n ( ad - bc )2 c + d )( a + c
)(
课改探微
37
数学图形计算器辅助《独立性检验的基本思想 及其初步应用》的教学设计与思考
■王春健
《独立性检验的基本思想及其初步应用》是人教 A 版数学 教材选修 2-3 第三章《统计案例》的第二节知识,是在对回归分 析的基本思想及其初步应用的学习后对统计案例的进一步学 习,它可以看作是与前面学习过的相关关系的并列知识,也可
具体的教学中,教师基本的思路流程如下:
用数学图形计算器拟 合函数,发现问题(相关 性和把握的具体大小)
给出独立性检验的思 想方法,学生操作确认
总 结 方 法 和 步 骤 ,练 习 巩固,并利用所学知识, 核实自己的猜想并验证
笔者教学伊始,给出芜湖市镜湖区 2019 年某校的体检数 据,针对“视力”这一项提出问题:你觉得左右眼视力会相关吗? 相关性强吗?我们经常看到一些戴眼镜的小胖子,那么肥胖和 视力相关吗?相关性强吗?教师引导学生利用手中的数学图 形计算器探索、回答,从实例出发,也增强了学生的兴趣和课堂 参与度。学生不难发现,左右眼视力明显有相关性,但体重和 视力则相关性不强,那么相关性到底怎么确定强与弱呢?到底 有多大的把握说明它们有关呢?
高中数学第三章统计案例3.2独立性检验的基本思想及其初步应用(第1课时)教案新人教A版选修2_3
3.2 独立性检验的基本思想及其初步应用整体设计教材分析1.教材的地位和作用独立性检验是一种重要的统计方法,也是统计学中很常用的方法,更是高中数学新教材的新增内容.本节内容将反证法与独立性检验进行了合理整合,将假设检验的思想应用到实际生活中去.教材的设计还原了数学的本源、本质,是对“观察发现、抽象概括、感性到理性”等数学认知规律的提炼与总结,能让学生充分体会数学的发生、发展.2.课时划分独立性检验的基本思想及其初步应用的教学分三个课时完成:第1课时内容为直观判断两个分类变量是否有关系的基本方法;第2课时内容为独立性检验的基本思想;第3课时内容为独立性检验的初步应用.第一课时教学目标知识与技能结合生活实例了解分类变量的概念,了解直观判断分类变量相关性的方法,了解列联表和等高条形图的特点.过程与方法通过探索、研究、总结等方式使判断分类变量是否有关系的方法呈现在学生面前,使学生体会用样本来研究总体的思想.情感、态度与价值观通过学习本节课培养学生思维的批判性,深化学生对数学意义的理解,激发学习兴趣,认识数学的科学价值、应用价值和文化价值;通过探究学习培养学生互助合作的学习习惯,形成良好的思维品质和锲而不舍的钻研精神.重点难点教学重点:直观判断分类变量是否有关系的方法.教学难点:如何根据列联表和等高条形图来判断分类变量是否有关系.教学过程引入新课提出问题:在现实生活中,会遇到各种各样的变量,并需要研究它们之间的关系,观察下面两组变量,分析在取不同的“值”时表示的个体有何差异?(1)国籍、宗教信仰、性别、吸烟与患病是否有关;(2)成绩、身高、年龄、某班学生的百米成绩.学生活动:先独立思考,然后相互讨论交流认识统一看法.教师逐步引导学生发现分类变量的特点,分类变量的取值一定是离散的,而且不同的取值仅表示个体所属的类别.学情预测:(1)中的变量每取不同的“值”时,表示不同的类别;(2)中的变量每取不同的“值”时,表示不同的个体.教师:分类变量:变量的不同“值”表示个体所属的不同类别的变量称为分类变量.分类变量的取值一定是离散的,而且不同的取值仅表示个体所属的类别,如性别变量,只取男、女两个值,商品的等级变量只取一级、二级、三级等等.分类变量的取值有时可用数字来表示,但这时的数字除了分类以外没有其他的含义,如用“0”表示“男”,用“1”表示“女”.注意分类变量的取值一定是离散的.在我们的日常生活中,存在着大量的分类变量,如何判断两个分类变量是否有关系也是我们需要解决的一个重要问题.设计意图:从大量的生活实例出发,让学生充分体会分类变量的含义和分类变量的特点,使分类变量概念的形成水到渠成,同时也为判断分类变量的必要性做好铺垫.探究新知5月31日是世界无烟日.有关医学研究表明,许多疾病,例如:心脏病、癌症、脑血管病、慢性阻塞性肺病等都与吸烟有关,吸烟已成为继高血压之后的第二号全球杀手.这些疾病与吸烟有关的结论是怎样得出的呢?我们来看下面的问题:某医疗机构为了了解呼吸道疾病与吸烟是否有关,进行了一次抽样调查,共调查了515个成年人,其中吸烟者220人,不吸烟者295人.调查结果是:吸烟的220人中有37人患呼吸道疾病(简称患病),183人未患呼吸道疾病(简称未患病);不吸烟的295人中有21人患病,274人未患病.问题:根据这些数据能否断定“患呼吸道疾病与吸烟有关”?学生活动:先让学生独立思考,然后小组交流,教师巡视指导,并注意与学生交流,为了研究这个问题,(1)引导学生将上述数据用下表来表示:(2)问题:由上述结论能否得出患病与吸烟有关?把握有多大?学情预测:在吸烟的人中,有37220≈16.82%的人患病,在不吸烟的人中,有21295≈7.12%的人患病.由上可以看出,吸烟者中患病的比例与不吸烟者中患病的比例相比有很大的差异,故“患呼吸道疾病与吸烟可能有关”.教师:类似于上面的表格,我们称分类变量的汇总统计表(频数表)为列联表,一般我们只研究每个分类变量只取两个值,这样的列联表称作2×2列联表.在日常生活中,为了直观显示两个分类变量之间的关系,还可以画出两个分类变量的等高条形图.观察下面的图形,能得到什么结论?(教师在课堂上用Excel 软件演示等高条形图,引导学生观察这类图形的特征,并分析由图形得出的结论)等高条形图学生活动:观察给出的图形,相互讨论,沟通认识. 学情预测:通过上面的等高条形图可以直观看出,吸烟者中患病的比例与不吸烟者中患病的比例相比有很大的差异,故“患呼吸道疾病与吸烟可能有关”.设计目的:自然合理地提出问题,并通过不同的手段,让学生学会根据不同的方法来分析两个分类变量是否有关系.理解新知提出问题:一般地,假设有两个分类变量X 和Y ,它们的值域分别为{x 1,x 2}和{y 1,y 2},其2×2列联表和等高条形图如下表所示,试说明如何根据图表来判断分类变量X 和Y 是否可能有关系?学生活动:分组讨论,合作交流,教师引导学生回顾上面问题的解决过程并加以适当的提示.学情预测:根据列联表,可估计满足条件X =x 1的个体中具有Y =y 1的个体所占比例aa +b,也可以估计满足条件X =x 2的个体中具有Y =y 1的个体所占比例cc +d,两个比例的值相差越大,就意味着X 和Y 有关系的可能越大.由a a +b -c c +d =ad -bc (a +b)(c +d)可知,两个比例的值相差越大即ad 与bc 相差越大,就意味着X 和Y 有关系的可能越大.由于等高条形图的纵轴是频率,故通过等高条形图可以直观展示比例差距的相对大小,进而判断分类变量是否存在关系.提出问题:上面给出的两种判断分类变量是否可能有关系的方法各有什么特点? 学生活动:独立思考,然后再相互交流.学情预测:列联表有助于直观地观测数据之间的关系,与表格相比,等高条形图更能直观地反映出相关数据的总体状况.但这两种方法都仅能粗略地判断两个分类变量是否可能有关系,但无法精确地给出得出结论的可靠程度.设计意图:通过引导学生对三种直观方法进行分析和总结,使学生掌握如何根据列联表、等高条形图来判断两个分类变量是否有关系,并了解两种方法的局限性,同时为下一节课的学习打好基础.运用新知例1某学校对在校部分学生课外活动内容进行调查,结果整理成下表:学生课外活动的类别与性别有关吗?试用学过的等高条形图进行分析.分析:根据题设条件中的列联表,画出等高条形图进行直观分析.解:等高条形图如下图所示:由图可以直观看出喜欢体育的在男生中占有较高比例,喜欢文娱的在女生中占有较高比例,故学生课外活动的类别在性别上有较大差异,说明课外活动的类别与性别在某种程度上有关系.点评:在画等高条形图时,在有条件的情况下,可引导学生利用Excel软件进行作图.【变练演编】例2在调查的480名男人中有38人患色盲,520名女人中有6名患色盲,试利用图形来判断色盲与性别是否有关?分析:根据数据列出列联表,然后画出等高条形图,来分析色盲与性别是否有关.解:根据题目给出的数据作出如下的列联表:从等高条形图来看在男人中患色盲的比例要比在女人中患色盲的比例大得多,因而,我们认为性别与患色盲是有关系的.设计意图:通过例题以及变式的学习,进一步学习利用图形直观判断分类变量是否有关系的要领,并能够画出大致的直观图形.【达标检测】1.下列不是分类变量的是( )A.是否吸烟B.成绩C.宗教信仰D.国籍2.假设两个分类变量X和Y,它们的值域分别为{x1,x2}和{y1,y2},其中2×2列联表如下:( ) A.a=5,b=4,c=3,d=2 B.a=5,b=3,c=4,d=2C.a=2,b=3,c=4,d=5 D.a=2,b=3,c=5,d=43.服用某种维生素对婴儿头发稀疏或稠密的影响调查如下:服用维生素的婴儿有60人,头发稀疏的有5人;不服用维生素的婴儿有60人,头发稀疏的有46人.试根据以上数据作出列联表.答案:1.B 2.D 3.列联表如下课堂小结(给学生1~2分钟的时间默写本节的主要基础知识、方法、例题、题目类型、解题规律等;然后用精炼的、准确的语言概括本节的知识脉络、思想方法、解题规律) 1.知识收获:直观判断分类变量是否有关系的方法.2.方法收获:借助于图形的直观特征分析数据间的关系.设计意图:让学生自己小结,这是一个多维整合的过程,是一个高层次的自我认识过程.补充练习【基础练习】1.下列关于等高条形图说法正确的是( )A.等高条形图表示高度相对的条形图B.等高条形图表示的是分类变量的频数C.等高条形图表示的是分类变量的比例D.等高条形图表示的是分类变量的实际高度2.下面是一个2×2列联表:则表中a,b处的值分别为( )A.94,96 B.52,50 C.52,54 D.54,523.以下说法正确的是( )A.分类变量是表示个体所属的不同类别的变量B.分类变量是表示个体所属的不同类别的两个以上的变量C.分类变量是表示个体所属的不同类别的一个变量D.以上答案均不正确答案:1.C 2.C 3.A【拓展练习】4.从发生交通事故的司机中抽取2 000名司机的随机样本,根据他们的血液中是否含有酒精以及他们是否对事故负有责任将数据整理如下:试结合等高条形图分析血液中含有酒精与对事故负责有关系吗?解:由等高条形图可以看出,血液中含酒精的司机中负交通事故责任的比例要大于血液中不含酒精的司机,由此我们可以在某种程度上认为“血液中含有酒精与对事故负责”有关系.设计说明本节课在数学教材的选取上,力求贴近生活实际,如吸烟与患病、性别与课外活动的类型等,就地取材,创设学生熟悉的感兴趣的问题情境,使学生能在轻松、愉快的教学情境中学习有用的数学知识,同时也能运用数学知识来分析问题和解决问题.教案的设计“以人为本,以学定教”,教师始终扮演的是组织者、引导者、参与者的角色,通过问题教学法,变“教的课堂”为“学的课堂”,学生成为课堂学习真正的主人.倡导合作式学习,通过学生小组合作设计问题、小组交流解决问题的方式,不但提高了学生合作学习、主动探究的能力,而且大大促进了学生对知识的理解和灵活运用.备课资料用Excel软件画等高条形图用Excel软件画等高条形图的步骤.(1)在Excel软件中输入列联表的数据(也可以直接复制粘贴).(2)画柱形图.选中已输入的数据部分,然后单击工具栏上的“插入”,在下拉菜单中选择“图表”.然后在图表菜单中选择图表类型(如柱形图).按照提示依次进行下一步操作,就可以得到等高条形图了.。
人教版高中数学选修2-3第三章统计案例3.2独立性检验的基本思想及其初步应用教案(2)
回归分析与独立性检验教材分析(一)地位与作用:本节课是一节高三文科复习课,复习内容为新课标人教版高中数学课本选修1-2第一章《统计案例》p1-19页的内容,是在《必修3》概率统计的基础上,通过研究一些典型案例进一步介绍回归分析、独立性检验的基本思想、方法及初步应用。
(二)学情分析:1、学生已经初步掌握概率统计的相关知识;2、学生已经具备了一定的抽象思维能力和演绎推理能力;3、学生整体基础比较薄弱,但求学意识浓厚,高考压力大。
目标分析通过对典型案例的探究,了解回归与独立性检验的基本思想、方法及其初步应用。
(一)教学目标:1、了解回归的基本思想、方法及其简单应用。
2、了解独立性检验(只要求列联表)的基本思想、方法及其简单应用。
(二)重点难点:重点是了解回归分析的方法步骤,独立性检验的基本思想及实施步骤;难点是独立性检验的基本思想及K2的含义。
(三)情感态度与价值观:教材案例典型,方案设计、数据的处理与分析、结论的形成主要通过学生的自主研究来完成,强化了学生的相互协作、合作交流的能力。
知识体系构建本节内容重在线性相关和列联表,最终体现在应用。
教法分析、学法分析(一)教法分析:基于本节课的内容特点和高三学生的年龄特征,在本节课中我采用启发式教学法和合作探究法,突出学生的主体地位,培养学生的自主意识和合作意识。
1、从学生熟悉的实际问题引入课堂,创设情境,引导学生温故知新。
尤其注重以典型案例引领学生探索、发现、掌握方法。
2、教师介绍高考要求和最新动态,学生相互补充复习要点,以起到明确目标、互动交流的作用。
3、合理安排例题讲解与习题巩固,以达到精讲多练、以练为主的目的。
4、合理采用多媒体手段,扩容增效,强化教学效果。
(二)学法分析:学习过程始终贯穿自主学习,通过分组协作,分工配合,协同完成学习。
教学过程分析一、考纲解读1、会作两个变量的散点图,判断两变量之间是否具有相关关系;2、了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程;3、了解常见的统计方法,并能应用这些方法解决一些常见问题:①了解独立性检验(只要求列联表)的基本思想、方法及其简单应用;②了解回归的基本思想、方法及其简单应用.③了解假设检验的基本思想、方法及其简单应用.二、高考预测近几年全国高考个别省市对本部分内容考查有加强趋势,大部分地区以容易题为主。
学高中数学统计案例独立性检验的基本思想及其初步应用教师用书教案新人教A版选修
第3章统计案例3.2独立性检验的基本思想及其初步应用学习目标核心素养1.理解独立性检验的基本思想及其实施步骤.(重点)2.能利用条形图、列联表探讨两个分类变量的关系.(易混点)3.了解K2的含义及其应用.(重点)4.通过对数据的处理,来提高解决实际问题的能力.(难点)1.通过学习独立性检验的基本思想提升逻辑推理的素养.2.借助k2公式培养数学运算的素养.3.借助条形图培养直观想象的素养.1.分类变量及2×2列联表(1)分类变量变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.(2)列联表1定义:列出的两个分类变量的频数表,称为列联表.22×2列联表:一般地,假设有两个分类变量X和Y,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(称为2×2列联表)为:y1y2总计x1a b a+bx2c d c+d总计a+c b+d a+b+c+d2.等高条形图(1)等高条形图与表格相比,图形更能直观地反映出两个分类变量间是否相互影响,常用等高条形图展示列联表数据的频率特征.(2)观察等高条形图发现错误!和错误!相差很大,就判断两个分类变量之间有关系.3.独立性检验(1)定义:利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.(2)K2=错误!,其中n=a+b+c+d.(3)独立性检验的具体做法1根据实际问题的需要确定容许推断“两个分类变量有关系”犯错误概率的上界α,然后查表确定临界值k0.2利用公式计算随机变量K2的观测值k.3如果k≥k0,就推断“X与Y有关系”,这种推断犯错误的概率不超过α,否则就认为在犯错误的概率不超过α的前提下不能推断“X与Y有关系”,或者在样本数据中没有发现足够证据支持结论“X与Y有关系”.思考:有人说:“我们有99%的把握认为吸烟和患肺癌有关,是指每100个吸烟者中就会有99个患肺癌的.”你认为这种观点正确吗?为什么?[提示]观点不正确.99%的把握说明的是吸烟与患肺癌有关的程度,不是患肺癌的百分数.1.下列变量中不属于分类变量的是()A.性别B.吸烟C.宗教信仰D.国籍B[“吸烟”不是分类变量,“是否吸烟”才是分类变量.故选B.]2.下面是一个2×2列联表:y1y2总计x1a 2173x282533总计b46则表中a,b处的值分别为52,60 [∵a+21=73,∴a=52.b=a+8=52+8=60.]3.根据下表计算:不看电视看电视男3785女35143K2的观测值k≈________(保留3位小数).4.514[k=错误!≈4.514.]用2×2列联表分析两变量间的关系以下的54人.六十岁以上的人中有43人的饮食以蔬菜为主,另外27人则以肉类为主;六十岁以下的人中有21人饮食以蔬菜为主,另外33人则以肉类为主.请根据以上数据作出饮食习惯与年龄的列联表,并利用错误!与错误!判断二者是否有关系.[解] 2×2列联表如下:年龄在六十岁以上年龄在六十岁以下总计饮食以蔬菜为主432164饮食以肉类为主273360总计7054124错误!=错误!=0.45.显然二者数据具有较为明显的差距,据此可以在某种程度上认为饮食习惯与年龄有关系.1.作2×2列联表时,关键是对涉及的变量分清类别.注意应该是4行4列,计算时要准确无误.2.利用2×2列联表分析两变量间的关系时,首先要根据题中数据获得2×2列联表,然后根据频率特征,即将错误!与错误!错误!的值相比,直观地反映出两个分类变量间是否相互影响,但方法较粗劣.错误!1.假设有两个分类变量X与Y,它们的可能取值分别为{x1,x2}和{y1,y2},其2×2列联表为:y1y2x11018x2m26则当m取下面何值时,X与Y的关系最弱()A.8 B.9C.14D.19C[由10×26=18m,解得m≈14.4,所以当m=14时,X与Y的关系最弱.]用等高条形图分析两变量间的关系素定性检查,结果如下:阳性数阴性数总计铅中毒病人29736对照组92837总计383573铅中毒病人与尿棕色素为阳性是否有关系?[解] 等高条形图如图所示:其中两个浅色条的高分别代表铅中毒病人和对照组样本中尿棕色素为阳性的频率.由图可以直观地看出铅中毒病人与对照组相比,尿棕色素为阳性的频率差异明显,因此铅中毒病人与尿棕色素为阳性有关系.利用等高条形图判断两个分类变量是否相关的步骤错误!2.如图所示的是调查某地区男、女中学生喜欢理科的等高条形图,阴影部分表示喜欢理科的百分比,从图中可以看出()A.性别与喜欢理科无关B.女生中喜欢理科的比例约为80%C.男生比女生喜欢理科的可能性大些D.男生中不喜欢理科的比例约为60%C[由题图可知女生中喜欢理科的比例约为20%,男生中喜欢理科的比例约为60%,因此男生比女生喜欢理科的可能性大些.故选C.]由K2进行独立性检验1.在K2运算后,得到K2的值为29.78,在判断变量相关时,P(K2≥6.635)≈0.01和P (K2≥7.879)≈0.005,哪种说法是正确的?[提示] 两种说法均正确.P(K2≥6.635)≈0.01的含义是在犯错误的概率不超过0.01的前提下认为两个变量相关;而P(K2≥7.879)≈0.005的含义是在犯错误的概率不超过0.005的前提下认为两个变量相关.2.你能说一下用K2进行独立性检验的依据吗?[提示] 独立性检验的基本思想类似于数学中的反证法.先假设“两个分类变量没有关系”成立,计算随机变量K2的值,如果K2值很大,说明假设不合理.K2越大,两个分类变量有关系的可能性越大.【例3】随着生活水平的提高,人们的休闲方式也发生了变化.某机构随机调查了n个人,其中男性占调查人数的错误!.已知男性中有一半的人的休闲方式是运动,而女性中只有错误!的人的休闲方式是运动.(1)完成下列2×2列联表:查的人数至少有多少?[思路点拨] (1)依据2×2列联表的定义填表;(2)计算K2,利用临界值建立不等关系,求n的值.[解] (1)补全2×2列联表如下:P(K2≥k0)≈3.841.由于K2的观测值k=错误!=错误!,故错误!≥3.841,即n≥138.276.又由错误!n∈Z,故n≥140.故若在犯错误的概率不超过0.05的前提下,可认为“性别与休闲方式有关”,那么本次被调查的至少有140人.1.(变结论)根据(2)的结论,本次被调查的人中,至少有多少人的休闲方式是运动?[解] 根据(2)的结论,本次被调查的人中,至少有错误!×140=56(人)的休闲方式是运动.2.(变条件)若增加条件n=100,问能否在犯错误不超过0.1的前提下,可认为“性别与休闲方式有关”?[解] 由(2)可知,当n=100时,K2的观测值k=错误!≈2.78>2.706.故在犯错误不超过0.1的前提下,我们可以认为性别与休闲方式有关.解决一般的独立性检验问题的步骤独立性检验问题的求解策略(1)等高条形图法:依据题目信息画出等高条形图,依据频率差异来粗略地判断两个变量的相关性.(2)K2统计量法:通过公式k=错误!.先计算观测值k,再与临界值表作比较,最后得出结论.1.判断(正确的打“√”,错误的打“×”)(1)在独立性检验中,若K2越大,则两个分类变量有关系的可能性越大.()(2)2×2列联表是借助两个分类变量之间频率大小差异说明两个变量之间是否有关联关系.(3)应用独立性检验的基本思想对两个变量间的关系作出的推断一定是正确的.[答案] (1)√(2)√(3)×2.在研究打鼾与患心脏病之间的关系中,通过收集数据、整理分析数据得到“打鼾与患心脏病有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的.下列说法中正确的是()A.100个心脏病患者中至少有99人打鼾B.1个人患心脏病,则这个人有99%的概率打鼾C.100个心脏病患者中一定有打鼾的人D.100个心脏病患者中可能一个打鼾的人都没有D[这是独立性检验,在犯错误的概率不超过0.01的前提下认为“打鼾与患心脏病有关”.这只是一个概率,即打鼾与患心脏病有关的可能性为99%.根据概率的意义可知答案应选D.]3.观察下列各图,其中两个分类变量x,y之间关系最强的是________.(4)[在四幅图中图(4)中两个深色条的高相差最明显,说明两个分类变量之间关系最强,故选(4).]4.某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品总计南方学生602080北方学生101020总计7030100异”.[解] 将2×2列联表中的数据代入公式计算,得k=错误!=错误!=错误!≈4.762.因为4.762>3.841,所以有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”.。
2019_2020学年高中数学第三章统计案例3.2独立性检验的基本思想及其初步应用课件新人教A版选修2_3
(2)列联表 ①定义:列出的两个分类变量的_频__数__表___称为列联表.
②2×2 列联表 一般地,假设有两个分类变量 X 和 Y,它们的取值分别为__{x__1,__x_2_}_ 和__{_y1_,__y_2_}__,其样本频数列联表(也称为 2×2 列联表)为下表.
y1
y2
总计
x1
a
b
a+b
第三章 统计案例
3.2 独立性检验的基本思想及其初步应用
第三章 统计案例
考点
学习目标
核心素养
了解分类变量的意义, 利用图形与分
了解 2×2 列联表的意义, 类变量间的关
会用等高条形图与 2×2 列联表反映 系作出分析
两个分类变量之间是否有关系
数据分析
通过对典型案例分析,能知独立性检 数据分析、
独立性检验
【解】 等高条形图如图所示:
其中两个浅色条的高分别代表铅中毒病人和对照组样本中尿棕 色素为阳性的频率. 由图可以直观地看出铅中毒病人与对照组相比,尿棕色素为阳性 的频率差异明显,因此铅中毒病人与尿棕色素为阳性有关系.
(1)判断两个分类变量是否有关系的两种常用方法 ①利用数形结合思想,借助等高条形图来判断两个分类变量是否 相关是判断变量相关的常见方法. ②一般地,在等高条形图中,a+a b与c+c d相差越大,两个分类变 量有关系的可能性就越大.
下认为推广新课改与总成绩是否优秀有关系?
参考数据:
P(K2≥k0) 0.15 0.10 0.05 0.025 0.010 0.005
k0
2.072 2.706 3.841 5.024
K2=(a+b)(cn+(da)d-(bac+)c2)(b+d).
6.635
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.2 独立性检验的基本思想及其初步应用
课前导引
问题导入
在现实生活中,存在大量分类变量,它们之间到底存在什么关系?两个变量之间是否有影响,这是我们所关心的问题,解决这类问题可用独立性检验的基本思想. 知识预览 1.分类变量
对于性别变量,其取值为男和女两种.这种变量的不同“值”表示个体所属的不同类别,像这类变量称为分类变量. 2.列联表
为调查吸烟是否对患肺癌有影响,某肿瘤研究所随机地调查了9 965人,得到如下结果(单位:人):
吸烟与患肺癌列联表
3.独立性检验
这种利用随机变量K 2
来确定在多大程度上可以认为“两个分类变量有关系”的方法称为两个分类变量的独立性检验.
独立性检验的基本思想类似于反证法.要确认“两个分类变量有关系”这一结论成立的可信程度,首先假设该结论不成立,即假设结论“两个分类变量没有关系”成立,在该假设下构
造的随机变量K 2应该很小.如果由观测数据计算得到的K 2
的观测值k 很大,则在一定程度上说明假设不合理.
4.判断结论成立的可能性的步骤
一般地,假设有两个分类变量X 和Y ,它们的值域分别为[x 1,x 2]和[y 1,y 2],其样本频数列联表(称为2×2列联表)为:2×2列联表
H 1:“X 与Y 有关系”,
可以按如下步骤判断结论H 1成立的可能性:
(1)通过三维柱形图和二维条形图,可以粗略地判断两个分类变量是否有关系,但是这种判断无法精确地给出所得结论的可靠程度.
①在三维柱形图中,主对角线上两个柱形高度的乘积ad 与副对角线上的两个柱形高度的乘积bc 相差越大,H 1成立的可能性就越大.
②在二维条形图中,可以估计满足条件X=x 1的个体中具有Y=y 1的个体所占的比例b
a a
+,也可以估计满足条件X=x 2的个体中具有Y=y 1的个体所占的比例
d
c c
+.两个比例的值相差越
大,H 1成立的可能性就越大.
(2)可以利用独立性检验来考察两个分类变量是否有关系,并且能较精确地给出这种判断
的可靠程度.具体做法是:根据观测数据计算由K 2
=)
)()()(()(2
d b c a d c b a bc ad n ++++-给出的检验
随机变量K 2
的值k ,其值越大,说明“X 与Y 有关系”.成立的可能性越大.当得到的观测数。