3.4.1列方程解决实际问题的一般方法-2020秋人教版七年级数学上册点拨习题课件(共25张PPT)

合集下载

七年级学生列方程解应用题的一般方法和步骤

七年级学生列方程解应用题的一般方法和步骤

七年级学生列方程解应用题的一般方法和步骤伟大的数学家笛卡儿说:“一切问题都可以转化为数学问题,一切数学问题都可以转化为代数问题,而一切代数问题又都可以转化为方程。

因此,一旦解决了方程问题,一切问题将迎刃而解。

”笛卡儿的这句话已经清楚地告诉我们方程是多么的重要,所以从七年级甚至小学我们就应该重视方程的教学。

所谓方程,就是“含有未知数的等式”。

而所谓列方程解应用题的思想方法,就是在一道数学实际应用题中运用方程的思想来寻求答案。

对于七年级学生来说,一道应用题如何入手才是最重要的,用方程的方法解答无疑是学生较易接受的方式。

方程是一种逆向思维的解题方法,它改变了小学一般解决逆思维题目用算术方法解答而学生很难理解的困惑,符合学生的认知规律和知识基础,易于学生运用知识的正迁移,并结合思维方法正确解决此类实际问题,学生学得轻松、有效,很好地提高了课堂教学效率。

列方程有这样一个定义:列方程是为了求未知数,在未知数和已知数之间建立的一种等式关系。

这就揭示了应用方程解决实际问题的三种好处:第一,它揭示了方程这一数学思想方法的目标,即为了求未知数。

第二,陈述了“已知数”的存在。

列方程解应用题需要充分利用已知数和未知数之间的关系。

第三,方程的本质是“关系”,而且是一个等式关系。

所以,列方程解应用题归根结底就是要在实际问题中确定等量关系。

一般来说,列方程解应用题要完成两个转化过程:首先,通过分析把实际问题中的数量关系转化为数学问题,也就是列方程;其次,通过解方程,将未知数转化为已知,也就是方程变形。

这时,根据等量关系列方程就成为了列方程解应用题的关键。

而等量关系往往是隐含在题目中的,一般情况下,题目里是不会明显呈现的,并且确定等量关系也没有固定方法可循,如果考虑的角度不同,所取得的等量关系也不会相同。

这正是学生在学习列方程解应用题时总是找不到恰当的等量关系的根本原因。

那么,如何加强列方程解应用题的训练,帮助学生实现从算术思维到代数思维的转变呢?一、列方程解应用题的一般方法1.解决设求的困难。

3.4 实际问题与一元一次方程-2020-2021学年七年级数学上册高频易错题汇编(人教版)

3.4 实际问题与一元一次方程-2020-2021学年七年级数学上册高频易错题汇编(人教版)

3.4 实际问题与一元一次方程高频易错题集一.选择题(共10小题)1.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A .B .C .D .2.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,设这个班有学生x人,下列方程正确的是()A.3x+20=4x﹣25B.3x﹣25=4x+20C.4x﹣3x=25﹣20D.3x﹣20=4x+253.某车间28名工人生产螺栓和螺母,螺栓与螺母个数比为1:2刚好配套,每人每天平均生产螺栓12个或螺母18个,求多少人生产螺栓?设:有x名工人生产螺栓,其余人生产螺母.依题意列方程应为()A.12x=18(28﹣x)B.2×12x=18(28﹣x)C.12×18x=18(28﹣x)D.12x=2×18(28﹣x)4.在一个笼子里面放着几只鸡与几只兔,数了数一共有14个头,44只脚.问鸡兔各有几只设鸡为x只,得方程()A.2x+4(14﹣x)=44B.4x+2(14﹣x)=44C.4x+2(x﹣14)=44D.2x+4(x﹣14)=445.某班把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,设获得一等奖的学生人数为x人,其中列方程不正确的是()A.200x+50(22﹣x)=1400B.1400﹣200x=50(22﹣x)C .=22﹣x D.50x+200(22﹣x)=14006.一商家进行促销活动,某商品的优惠措施是“第二件商品半价”.现购买2件该商品,相当于这2件商品共打了()A.5 折B.5.5折C.7折D.7.5折第1页(共1页)7.A、B两地相距900km,一列快车以200km/h的速度从A地匀速驶往B地,到达B地后立刻原路返回A地,一列慢车以75km/h的速度从B地匀速驶往A地.两车同时出发,截止到它们都到达终点时,两车恰好相距200km的次数是()A.5B.4C.3D.28.小明在某月的日历上圈出了三个数a、b、c,并求出了它们的和为39,则这三个数在日历中的排位位置不可能的是()A .B .C .D .9.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.510.在一张挂历上,任意圈出同一列上的三个数的和不可能是()A.14B.72C.33D.69二.填空题(共5小题)11.一家商店将某种衣服按成本价加价40%作为标价,又以8折卖出,结果每件服装仍可获利15元,如设这种服装每件的成本价为x元,则根据题意可列方程为.12.京张高铁是2022年北京冬奥会的重要交通保障设施.京张高铁设计时速350公里,建成后,乘高铁从北京到张家口的时间将缩短至1小时.如图,京张高铁起自北京北站,途经昌平、八达岭长城、怀来等站,终点站为河北张家口南,全长174公里.如果按此设计时速运行,设每站(不计起始站和终点站)停靠的平均时间是x分钟,那么依题意,可列方程为.第1页(共1页)13.为了倡导居民节约用水,自来水公司规定:居民每户用水量在8立方米以内,每立方米收费0.8元;超过规定用量的部分,每立方米收费1.2元.小明家12月份水费为18元,求小明家12月份的用水量,设小明家12月份用水量为x立方米,根据题意,可列方程为.14.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距千米.15.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲,乙一起做,则需天完成.三.解答题(共5小题)16.如图为一梯级平面图,一只老鼠沿长方形的两边A﹣B﹣C的路线逃跑,一只猫同时沿梯级(折线)A﹣C﹣D的路线追,结果在距离C点0.6m的D点处,猫捉住了老鼠,已知老鼠的速度是猫的,求梯级(折线)A﹣C的长度,(1)请将下表中每一句话“译成”数学语言(在表格中写出对应的代数式):设梯级(折线)A→C的长度为xmAB+BC的长度为A→C→D的长度为A→B→D的长度为设猫捉住老鼠所用时间为ts猫的速度是老鼠的速度是(2)根据表格中代数式列出一个你认为正确的方程(不要求解):.第1页(共1页)17.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90超过17吨但不超过30吨的部分b0.90超过30吨的部分 6.000.90(说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)18.下表是某网约车公司的专车计价规则:计费项目起租价里程费时长费远途费单价15元 2.5元/公里 1.5元/分1元/公里注:车费由起租价、里程费、时长费、远途费四部分构成,其中起租价15元含10分钟时长费和5公里里程费,远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收1元.(1)若小李乘坐专车,行车里程为20公里,行车时间为30分,则需付车费元;(2)若小李乘坐专车,行车里程为x(7<x≤10)公里,平均时速为40km/h,则小李应付车费多少元?(用含x的代数式表示)第1页(共1页)(3)小李与小王各自乘坐专车,行车车费之和为76元,里程之和为15公里(其中小王的行车里程不超过5公里).如果行驶时间均为20分钟,那么这两辆专车此次的行驶路程各为多少公里?19.数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.当点P到达点C时,两点都停止运动.设运动的时间为t秒.问:(1)t=2秒时,点P在“折线数轴”上所对应的数是;点P到点Q的距离是个单位长度;(2)动点P从点A运动至C点需要秒;(3)P、Q两点相遇时,t=秒;此时相遇点M在“折线数轴”上所对应的数是;(4)如果动点P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等,直接写出t的值.20.如图,已知A、B、C是数轴上的三点,点C表示的数是6,点B与点C之间的距离是4,点B与点A的距离是12,点P为数轴上一动点.(1)数轴上点A表示的数为.点B表示的数为;(2)数轴上是否存在一点P,使点P到点A、点B的距离和为16,若存在,请求出此时点P所表示的数;若不存在,请说明理由;(3)点P以每秒1个单位长度的速度从C点向左运动,点Q以每秒2个单位长度从点B 出发向左运动,点R从点A以每秒5个单位长度的速度向右运动,它们同时出发,运动的时间为t秒,请求点P与点Q,点R的距离相等时t的值.第1页(共1页)第1页(共1页)试题解析一.选择题(共10小题)1.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为()A .B .C .D .【考点】由实际问题抽象出一元一次方程.【分析】关系式为:零件任务÷原计划每天生产的零件个数﹣(零件任务+120)÷实际每天生产的零件个数=3,把相关数值代入即可求解.【解答】解:实际完成的零件的个数为x+120,实际每天生产的零件个数为50+6,所以根据时间列的方程为:=3,故选:C.2.把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,设这个班有学生x人,下列方程正确的是()A.3x+20=4x﹣25B.3x﹣25=4x+20C.4x﹣3x=25﹣20D.3x﹣20=4x+25【考点】由实际问题抽象出一元一次方程.【分析】设这个班有学生x人,等量关系为图书的数量是定值,据此列方程.【解答】解:设这个班有学生x人,由题意得3x+20=4x﹣25.故选:A.3.某车间28名工人生产螺栓和螺母,螺栓与螺母个数比为1:2刚好配套,每人每天平均生产螺栓12个或螺母18个,求多少人生产螺栓?设:有x名工人生产螺栓,其余人生产螺母.依题意列方程应为()第1页(共1页)A.12x=18(28﹣x)B.2×12x=18(28﹣x)C.12×18x=18(28﹣x)D.12x=2×18(28﹣x)【考点】由实际问题抽象出一元一次方程.【分析】螺栓与螺母个数比为1:2刚好配套,那么螺母的个数较多,要想让螺栓的个数和螺母的个数相等,等量关系为:2×生产的螺栓的个数=螺母的个数,把相关数值代入即可.【解答】解:∵有x名工人生产螺栓,∴有(28﹣x)名工人生产螺母,∵每人每天平均生产螺栓12个或螺母18个,∴螺栓有12x,螺母有18×(28﹣x)个,故方程为2×12x=18(28﹣x),故选:B.4.在一个笼子里面放着几只鸡与几只兔,数了数一共有14个头,44只脚.问鸡兔各有几只设鸡为x只,得方程()A.2x+4(14﹣x)=44B.4x+2(14﹣x)=44C.4x+2(x﹣14)=44D.2x+4(x﹣14)=44【考点】由实际问题抽象出一元一次方程.【分析】由常识可知鸡有一个头两只脚,兔有一个头四只脚,则由题意可得到鸡和兔共有14只,其等量关系为:鸡的脚数+兔的脚数=44只,根据此等式列方程即可.【解答】解:设鸡为x只,则要鸡有2x只脚,兔有4(14﹣x)只脚,根据等量关系列方程为2x+4(14﹣x)=44,故选:A.5.某班把1400元奖学金按照两种奖项奖给22名学生,其中一等奖每人200元,二等奖每人50元,设获得一等奖的学生人数为x人,其中列方程不正确的是()A.200x+50(22﹣x)=1400B.1400﹣200x=50(22﹣x)C .=22﹣x D.50x+200(22﹣x)=1400第1页(共1页)【考点】由实际问题抽象出一元一次方程.【分析】等量关系可以为:200×一等奖人数+50×二等奖人数=1400.【解答】解:A、符合200×一等奖人数+50×二等奖人数=1400,正确;B、符合1400﹣200×一等奖人数=50×二等奖人数,正确;C、符合(1400﹣200×一等奖人数)÷50=二等奖人数,正确;D、50应乘(22﹣x),错误.故选:D.6.一商家进行促销活动,某商品的优惠措施是“第二件商品半价”.现购买2件该商品,相当于这2件商品共打了()A.5 折B.5.5折C.7折D.7.5折【考点】一元一次方程的应用.【分析】根据题意设第一件商品x元,买两件商品共打y折,利用价格列出方程即可求解.【解答】解:设第一件商品x元,买两件商品共打了y折,根据题意可得:x+0.5x=2x •,解得:y=7.5即相当于这两件商品共打了7.5折.故选:D.7.A、B两地相距900km,一列快车以200km/h的速度从A地匀速驶往B地,到达B地后立刻原路返回A地,一列慢车以75km/h的速度从B地匀速驶往A地.两车同时出发,截止到它们都到达终点时,两车恰好相距200km的次数是()A.5B.4C.3D.2【考点】一元一次方程的应用.【分析】相距200km要从相遇前和相遇后;追及前和追及后,快车已到终点几个方面考虑,共计5种情况,经计算检验数据是否符合题意.【解答】解:设两车相距200km时,行驶的时间为t小时,依题意得:①当快车从A地开往B地,慢车从B地开往A地,相距200km时,则有:第1页(共1页)200t+75t+200=900,解得:t =;②当快车继续开往B地,慢车继续开往A地,相遇后背离而行,相距200km时,200t+75t﹣200=900,解得:t=4;③快车从A地到B地全程需要4.5小时,此时慢车从B地到A地行驶4.5×75=337.5km,∵337.5>200∴快车又从B地返回A地是追慢车,追上前相距200km,则有:75t=200+200(t﹣4.5),解得:t =;④快车追上慢车后并超过慢车相距200km,则有:200(t﹣4.5)﹣75t=200解得:t=8.8⑤快车返回A地终点所需时间是9小时,此刻慢车行驶了9×75=675km,距终点还需行驶225km,则有:75t=900﹣200解得:t =.综合所述两车恰好相距200km的次数为5次.故选:A.8.小明在某月的日历上圈出了三个数a、b、c,并求出了它们的和为39,则这三个数在日历中的排位位置不可能的是()A .B .第1页(共1页)C .D .【考点】一元一次方程的应用.【分析】日历中的每个数都是整数且上下相邻是7,左右相邻差1,根据题意列方程可解.【解答】解;A:设最小的数是x,则x+(x+1)+(x+2)=39,解得:x=12,故本选项不符合题意;B:设最小的数是x,则x+(x+1)+(x+8)=39,解得x=10,故本选项不符合题意;C:设最小的数是x,则x+(x+8)+(x+16)=39,解得x=5,故本选项不符合题意;D:设最小的数是x,则x+(x+8)+(x+14)=39,解得x =,故本选项符合题意.故选:D.9.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.5【考点】一元一次方程的应用.【分析】由图可知:2球体的重量=5圆柱体的重量,2正方体的重量=3圆柱体的重量.可设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程即可得出答案.【解答】解:设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程2x=5y;2z=3y,消去y可得:x =z,第1页(共1页)则3x=5z,即三个球体的重量等于五个正方体的重量.故选:D.10.在一张挂历上,任意圈出同一列上的三个数的和不可能是()A.14B.72C.33D.69【考点】一元一次方程的应用.【分析】因为挂历上同一列的数都相对于前一个数相差7,所以设第一个数为x,则第二个数、第三个数分别为x+7、x+14,求出三数之和,发现其和为3的倍数,对照四选项即可求解.【解答】解:设圈出的第一个数为x,则第二数为x+7,第三个数为x+14,∴三个数的和为:x+(x+7)+(x+14)=3(x+7),∴三个数的和为3的倍数,由四个选项可知只有A不是3的倍数,故选:A.二.填空题(共5小题)11.一家商店将某种衣服按成本价加价40%作为标价,又以8折卖出,结果每件服装仍可获利15元,如设这种服装每件的成本价为x元,则根据题意可列方程为(1+40%)x×80%﹣x=15.【考点】由实际问题抽象出一元一次方程.【分析】根据题意知,标价是以成本价为单位“1”的,所以用(1+40%)x表示,以8折卖出时是以标价为单位“1”的,所以在标价的基础上乘80%,然后减去成本价就是利润,由此可以进行列式.【解答】解:由题意知,标价是以成本价为单位“1”的,所以用(1+40%)x表示,以8折卖出时是以标价为单位“1”的,所以在标价的基础上乘80%,然后减去成本价就是利润15元,所以列式为:(1+40%)x×80%﹣x=15,故答案为:(1+40%)x×80%﹣x=15.12.京张高铁是2022年北京冬奥会的重要交通保障设施.京张高铁设计时速350公里,建成后,乘高铁从北京到张家口的时间将缩短至1小时.如图,京张高铁起自北京北站,途经昌平、八达岭长城、怀来等站,终点站为河北张家口南,全长174公里.如果按此设计时速运行,设每站(不计起始站和终点站)停靠的平均时间是x分钟,那么依题意,可列方程为.第1页(共1页)【考点】由实际问题抽象出一元一次方程.【分析】设每站(不计起始站和终点站)停靠的平均时间是x分钟,根据所行驶的时间差为1小时列出方程.【解答】解:设每站(不计起始站和终点站)停靠的平均时间是x分钟,依题意得:.故答案是:.13.为了倡导居民节约用水,自来水公司规定:居民每户用水量在8立方米以内,每立方米收费0.8元;超过规定用量的部分,每立方米收费1.2元.小明家12月份水费为18元,求小明家12月份的用水量,设小明家12月份用水量为x立方米,根据题意,可列方程为8×0.8+1.2(x﹣8)=18.【考点】由实际问题抽象出一元一次方程.【分析】先计算8立方米时的水费:8×0.8=6.4,与18对比,说明小明家12月份的水量x>8,可列方程即可.【解答】解:∵8×0.8=6.4<18,∴x>8,根据题意,可列方程为:8×0.8+1.2(x﹣8)=18,故答案为:8×0.8+1.2(x﹣8)=18.14.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/小时,水速为2千米/时,则A港和B港相距504千米.【考点】一元一次方程的应用.【分析】轮船航行问题中的基本关系为:第1页(共1页)(1)船的顺水速度=船的静水速度+水流速度;(2)船的逆水速度=船的静水速度一水流速度.若设A港和B港相距x千米,则从A 港顺流行驶到B 港所用时间为小时,从B港返回A 港用小时,根据题意列方程求解.【解答】解:设A港和B港相距x千米.根据题意,得,解之得x=504.故填504.15.一件工作,甲单独做需6天完成,乙单独做需12天完成,若甲,乙一起做,则需4天完成.【考点】一元一次方程的应用.【分析】本题就是把总的工作看成整体1.甲单独做需6天完成即甲一天完成工作的,同理乙一天完成工作的,设甲,乙一起做,则需x天完成,题目中的相等关系是:甲,乙一起做x天的工作=总工作1.就可以列方程.【解答】解:设需x天完成,则x(+)=1,解得x=4,故需4天完成.三.解答题(共5小题)16.如图为一梯级平面图,一只老鼠沿长方形的两边A﹣B﹣C的路线逃跑,一只猫同时沿梯级(折线)A﹣C﹣D的路线追,结果在距离C点0.6m的D点处,猫捉住了老鼠,已知老鼠的速度是猫的,求梯级(折线)A﹣C的长度,(1)请将下表中每一句话“译成”数学语言(在表格中写出对应的代数式):设梯级(折线)A→C的长度为xmAB+BC的长度为x第1页(共1页)A→C→D的长度为x+0.6A→B→D的长度为x﹣0.6设猫捉住老鼠所用时间为ts猫的速度是老鼠的速度是(2)根据表格中代数式列出一个你认为正确的方程(不要求解):×=.【考点】列代数式;由实际问题抽象出一元一次方程.【分析】(1)把楼梯的各条线段进行平移,可得AB+BC=楼梯A→C的总长;猫捉鼠的路程之和为楼梯A→C的总长+线段CD长;老鼠逃窜的路程为AB+BC﹣线段CD长;猫的速度=猫的路程÷猫用的时间;老鼠的速度=老鼠走的路程÷老鼠逃跑的时间,把相关数值代入即可求解;(2)根据“老鼠的速度是猫的”可得方程.【解答】解:(1)如题中表格所示设梯级(折线)A→C的长度为xmAB+BC的长度为xA→C→D的长度为x+0.6A→B→D的长度为x﹣0.6设猫捉住老鼠所用时间为ts第1页(共1页)猫的速度是老鼠的速度是(2)×=,故答案为:×=.17.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市民“一户一表”生活用水阶梯式计费价格表的部分信息:自来水销售价格污水处理价格每户每月用水量单价:元/吨单价:元/吨17吨及以下a0.90超过17吨但不超过30吨的部分b0.90超过30吨的部分 6.000.90(说明:①每户生产的污水量等于该户自来水用量;②水费=自来水费用+污水处理费)已知小王家2018年7月用水16吨,交水费43.2元.8月份用水25吨,交水费75.5元.(1)求a、b的值;(2)如果小王家9月份上交水费156.1元,则小王家这个月用水多少吨?(3)小王家10月份忘记了去交水费,当他11月去交水费时发现两个月一共用水50吨,其中10月份用水超过30吨,一共交水费215.8元,其中包含30元滞纳金,求小王家11月份用水多少吨?(滞纳金:因未能按期缴纳水费,逾期要缴纳的“罚款金额”)【考点】一元一次方程的应用.【分析】(1)16吨小于17吨,用16乘以自来水每吨的销售价格与污水处理单价之和,等于432元,得方程①;25=17+8,按照两段的价格计算,得出方程②,解方程组即可求得a和b;(2)设小王家这个月用水x吨,分17吨以下、17~30吨、30吨以上三部分相加计算,让其等于156.1,解方程即可;(3)设小王家11月份用水y吨,由于两个月一共用水50吨,其中10月份用水超过30吨,则分y≤17和17<y<20,分别列方程求解,再结合问题的实际意义可得本题答案.第1页(共1页)【解答】解:(1)由题意得:解①,得a=1.8,将a=1.8代入②,解得b=2.8∴a=1.8,b=2.8.(2)1.8+0.9=2.7,2.8+0.9=3.7,6.00+0.9=6.9设小王家这个月用水x吨,由题意得:2.7×17+3.7×13+(x﹣30)×6.9=156.1解得:x=39∴小王家这个月用水39吨.(3)设小王家11月份用水y吨,当y≤17时,2.7y+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=11当17<y<20时,17×2.7+(y﹣17)×3.7+2.7×17+3.7×13+(50﹣30﹣y)×6.9=215.8﹣30解得y=9.125(舍去)∴小王家11月份用水11吨.18.下表是某网约车公司的专车计价规则:计费项目起租价里程费时长费远途费单价15元 2.5元/公里 1.5元/分1元/公里注:车费由起租价、里程费、时长费、远途费四部分构成,其中起租价15元含10分钟时长费和5公里里程费,远途费的收取方式为:行车里程10公里以内(含10公里)不收远途费,超过10公里的,超出部分每公里收1元.(1)若小李乘坐专车,行车里程为20公里,行车时间为30分,则需付车费92.5元;(2)若小李乘坐专车,行车里程为x(7<x≤10)公里,平均时速为40km/h,则小李应付车费多少元?(用含x的代数式表示)(3)小李与小王各自乘坐专车,行车车费之和为76元,里程之和为15公里(其中小王的行车里程不超过5公里).如果行驶时间均为20分钟,那么这两辆专车此次的行驶路第1页(共1页)程各为多少公里?【考点】列代数式;代数式求值;一元一次方程的应用.【分析】(1)由于行车里程为20公里,行车时间为30分,其车费为起租价(15元)+里程费[2.5×(15﹣5)]+时长费[1.5×(30﹣10)]+远途费[1×(20﹣10)],按此计算便可;(2)由于行车里程为x(7<x≤10)公里,平均时速为40km/h =,不计算远途费,行驶时间超过分钟,即超过了10分钟,应算时长费,所以车费由前三部分组成:15+2.5×(x﹣5)+1.5×(x ÷﹣10),按此计算便可;(3)设小王的行驶路程为x公里,则小李的行驶路程为(15﹣x)公里,则小王的车费为[15+1.5(20﹣10)]元,小李的车费为)[15+2.5(15﹣x﹣5)+1.5×(20﹣10)+1×(15﹣x﹣10)]元,然后由两人车费和为76列出方程解答便可.【解答】解:(1)15+2.5×(20﹣5)+1.5×(30﹣10)+1×(20﹣10)=92.5(元),故答案为:92.5;(2)15+2.5×(x﹣5)+1.5×(x ÷﹣10)=x﹣12.5;(3)设小王的行驶路程为x公里,则小李的行驶路程为(15﹣x)公里,根据题意得,[15+1.5(20﹣10)]+[15+2.5(15﹣x﹣5)+1.5×(20﹣10)+1×(15﹣x﹣10)]=76,解得,x=4,∴15﹣x=11,答:小王的行驶路程为4公里,则小李的行驶路程为11公里.19.数轴是学习有理数的一种重要工具,任何有理数都可以用数轴上的点表示,这样能够运用数形结合的方法解决一些问题.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也第1页(共1页)立刻恢复原速.当点P到达点C时,两点都停止运动.设运动的时间为t秒.问:(1)t=2秒时,点P在“折线数轴”上所对应的数是﹣6;点P到点Q的距离是22个单位长度;(2)动点P从点A运动至C点需要19秒;(3)P 、Q两点相遇时,t=秒;此时相遇点M在“折线数轴”上所对应的数是;(4)如果动点P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等,直接写出t的值.【考点】数轴;一元一次方程的应用.【分析】(1)由路程、速度、时间三者关系,数轴上两点之间的距离与有理数的关系求出对应数为﹣6,距离为22个单位长度;(2)由路程、速度、时间三者关系分三段求出各段时间,再相加求出总时间为19秒;(3)由路程、速度、时间三者关系求出P、Q两点相遇的时间为秒,确定相遇点M 对应的数是;(4)由路程、速度、时间三者关系,根据PO=QB分类求出三种情况下的时间为2秒或秒或11秒或17秒.【解答】解:如图所示:(1)设动点P从点A出发,运动2秒后的点对应数为x,第1页(共1页)∵点P以2单位/秒的速度沿着“折线数轴”的正方向运动,∴AP=2×2=4,又∵x﹣(﹣10)=4,解得:x=﹣6,又∵同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,∴QC=2×1=2,又∵AC=28,AC=AO+OB+BC,∴点P到点Q的距离=28﹣4﹣2=22;故答案为﹣6,22;(2)由图可知:动点P从点A运动至C分成三段,分别为AO、OB、BC,AO 段时间为,OB 段时间为=10,BC 段时间为=4,∴动点P从点A运动至C点需要时间为5+10+4=19(秒),故答案为19秒;(3)设点Q经过8秒后从点B运动到OB段,再经进y秒与点P在OB段相遇,依题意得:3+y+2y=10,解得:y =,∴P、Q两点相遇时经过的时间为8+=(秒),此时相遇点M在“折线数轴”上所对应的数是为3+=;故答案为,;(4)当点P在AO,点Q在BC上运动时,依题意得:10﹣2t=8﹣t,解得:t=2,第1页(共1页)当点P、Q两点都在OB上运动时,t﹣5=2(t﹣8)解得:t=11,当P在OB上,Q在BC上运动时,8﹣t=t﹣5,解得:t =;当P在BC上,Q在OA上运动时,t﹣8﹣5+10=2(t﹣5﹣10)+10,解得:t=17;即PO=QB时,运动的时间为2秒或秒或11秒或17秒.20.如图,已知A、B、C是数轴上的三点,点C表示的数是6,点B与点C之间的距离是4,点B与点A的距离是12,点P为数轴上一动点.(1)数轴上点A表示的数为﹣10.点B表示的数为2;(2)数轴上是否存在一点P,使点P到点A、点B的距离和为16,若存在,请求出此时点P所表示的数;若不存在,请说明理由;(3)点P以每秒1个单位长度的速度从C点向左运动,点Q以每秒2个单位长度从点B 出发向左运动,点R从点A以每秒5个单位长度的速度向右运动,它们同时出发,运动的时间为t秒,请求点P与点Q,点R的距离相等时t的值.【考点】数轴;一元一次方程的应用.【分析】(1)根据同一数轴上两点的距离公式可得结论;第1页(共1页)。

《3.4 一元一次方程模型的应用》同步练习2020-2021学年数学湘教版七年级上册

《3.4 一元一次方程模型的应用》同步练习2020-2021学年数学湘教版七年级上册

《3.4 一元一次方程模型的应用》同步练习2020-2021年数学湘教版七(上)一.选择题(共6小题)1.我国古代的数学名著《九章算术》中有下列问题:“今有女子善织,日自倍,五日织五尺.问日织几何?”其意思为:今有一女子很会织布,每日加倍增长,5日共织布5尺.问每日各织多少布?根据此问题中的已知条件,可求得该女子第一天织布()尺.A.B.C.D.2.《九章算术》中有一问题,“今有善行者一百步,不善行者六十步.今不善行者先行一百步,善行者追之.问:几何步几之?”其意思是:有一个善于走路的人和一个不善于走路的人.善于走路的人走100的同时,不善于走路的人只能走60步.现在不善于走路的人先走100步,善于走路的人追他,需要走多少步才能追上他?根据题意,可以求得答案为()A.250步B.200步C.160步D.320步3.为大力发展现代农业,山西省连续多年整合各项相关资金设立了农田建设补助专项资金,用于支持高标准农田建设.2020年省级财政在许多支出大幅压减的情况下,仍下达农田建设补助资金约14.5亿元,与2019年相比增长率约为16%,则2020年比2019年农田建设补助资金增加了()A.2亿元B.2.5亿元C.3亿元D.3.5亿元4.七(1)班全体同学进行了一次转盘得分活动.如图,将转盘等分成8格,每人转动一次,指针指向的数字就是获得的得分,指针落在边界则重新转动一次.根据小红、小明两位同学的对话,可得七(1)班共有学生()人.A.38B.40C.42D.455.甲、乙、丙三人按如下步骤摆放硬币:第一步:每个人都发若干枚硬币(每个人的硬币数一样,且不少于2枚);第二步:甲拿出2枚硬币给丙;第三步:乙拿出1枚硬币给丙;第四步:甲有几枚硬币,丙就拿出几枚硬币给甲.此时,若甲的硬币数是丙的硬币数的2倍,则此时()A.乙有4枚硬币B.乙有5枚硬币C.乙有6枚硬币D.乙的硬币无法确定6.“津南”幼儿园的小朋友正在玩搭积木的游戏,小南的城堡已经有26cm高,小开拿了一些A正方体木块和B正方体木块过来帮忙,已知A正方体木块高2cm,B正方体木块高bcm,且A、B两种正方体木块数量相同,小开将所有的木块一块接一块的依次叠加上去,现在量得小南的城堡有40cm高,则所有满足要求的整数b的值的和为()A.12B.15C.16D.17二.解答题(共17小题)7.新冠病毒爆发期间,武汉某医院住院部有27个重症病房和若干个普通病房,其中一个重症病房需要1名医生,1名护士,5个普通病房需要1名医生,2名护士,某省第三批援鄂医疗队126名医护人员刚好接管该医院住院部所有病房.(1)该批援鄂医疗队中医生、护士各有多少人?(2)该医院住院部普通病房有多少个?8.小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.9.阅读理解题阅读下列材料:若一个三位数的十位数字是个位数字的2倍,我们称这个三位数为“倍尾数”,如521.(1)已知一个“倍尾数”的百位数字比十位数字大1,其各位数字之和是16,求这个“倍尾数”;(2)若一个“倍尾数”的各位数字之和是17,求出所有符合要求的“倍尾数”.10.现有一块质量为10kg的甲、乙两种金属的合金.用甲种金属若干与这块合金重新熔炼,所得的新合金中甲种金属占3份,乙种金属占2份.如果再用相同数量的甲种金属与新合金重新熔炼,那么所得合金中甲种金属占7份,乙种金属占3份.求每次所用的甲种金属的质量.11.某城市平均每天产生垃圾700吨,由甲,乙两个垃圾处理厂处理.已知甲厂每小时可处理垃圾55吨,每吨需费用10元;乙厂每小时可处理垃圾45吨,每吨需费用11元.(1)甲,乙两厂同时处理该城市的垃圾,每天需多少时间完成?(2)如果该城市每天用于处理垃圾的费用为7300元,那么甲厂每天处理垃圾多少吨?12.中国宝武马鞍山钢铁集团第二炼铁厂接到一批原料加工任务425吨,现打算调用甲、乙两条生产线完成.已知甲生产线平均每天比乙生产线多加工5吨.若甲生产线独立加工20天后,乙生产线加入,两条生产线又联合加工5天,刚好全部加工完毕.甲生产线加工一吨需用电40度,乙生产线加工一吨需用电25度.求完成这批加工任务需用电多少度?13.今年开学,由于疫情防控的需要,某学校统一购置口罩,本周该学校给(1)班全体学生配备了一定数量的口罩,若每个学生发3个口罩,则多30个口罩,若给每个学生发5个口罩,则少50个口罩,请问该班有多少名学生?14.列方程解应用题:某工厂有中、乙两车间各生产不同型号的产品,原计划乙车间人数比甲车间少100人,产品上市后,甲车间的产品成为爆款,于是又从乙车间调50人支援甲车间,这时甲车间的人数是乙车间剩余人数的3倍,求原来甲乙车间各有多少人?15.在手工制作课上,老师组织七年级2班的学生用硬纸制作圆柱形茶叶筒.七年级2班共有学生50人,其中男生人数比女生人数少2人,并且每名学生每小时剪筒身40个或剪筒底120个.(1)七年级2班有男生、女生各多少人?(2)原计划男生负责剪筒底,女生负责剪筒身,要求一个筒身配两个筒底,那么男生应向女生支援多少人时,才能使每小时剪出的筒身与筒底配套.16.某车间每天能生产甲种零件120个,或乙种零件100个,甲、乙两种零件分别取3个、2个才能配成一套,现要在18天内生产最多的成套产品,问怎样安排生产甲、乙两种零件的天数?17.我市居民生活用水实行阶梯式计量水价,实施细则如下表所示:分档水量年用水量水价(元/吨)第1级180吨以下(含180吨)5第2级180﹣260吨(含260吨)7第3级260吨以上9例:若某用户2020年的用水量为270吨,按三级计算则应交水费为:180×5+80×7+(270﹣260)×9=1550(元).(1)如果小丽家2020年的用水量为200吨,求小丽家全年需缴水费多少元?(2)如果小明家2020年的用水量为a吨(a>260),求小明家全年应缴水费多少元?(用含a的代数式表示,并化简)(3)如果全年缴水费2000元,则该年的用水量为多少吨?18.“水是生命之源”,某自来水公司为鼓励用户节约用水,按以下规定收取水费:月用水量/吨单价(元/吨)不超过20吨的部分2超过20吨的部分 2.5另:每吨水加收0.3元的城市污水处理费(1)若某用户11月份共用水25吨,他应缴水费多少元?(2)若该用户的水表有故障,每次用水只有60%计入用水量,在这样的情况下12月份共缴水费41.4元,则该用户12月份实际用水多少吨?19.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木头的长,绳子还剩余4尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?请你用一元一次方程的知识解决问题.20.某车间生产一种零件,该零件由甲乙两种配件组成,现有7名工人,每人每天可制作甲配件900个或者乙配件1200个.应怎样安排人力,才能使每天制作的甲乙配件的个数相等?21.现有面值为5元和2元的人民币共32张,币值共计100元,问:这两种人民币各有多少张?22.六年级和七年级分别有192人和133人,现在需要从两个年级选出133人参加“读书节”活动,并且要使六年级,七年级剩余学生数之比为2:1,问应从六年级,七年级各选出多少人?23.用库存化肥给麦田施肥,若每亩施肥90千克,就少3000千克,若每亩施肥75千克,就余4500千克,那么共有多少亩麦田?参考答案一.选择题(共6小题)1.解:设第一天织布x尺,则第二天织布2x尺,第三天织布4x尺,第四天织布8x尺,第五天织布16x尺,根据题意可得:x+2x+4x+8x+16x=5,解得:x=,即该女子第一天织布尺.故选:C.2.解:设走路快的人追上走路慢的人所用时间为t,根据题意得(100﹣60)t═100,40t═100,t=2.5,则100t=100×2.5═250(步).答:善于走路的人追他,需要走250步才能追上他.故选:A.3.解:设2019年的补助资金为x亿元,则可列方程:(1+16%)x=14.5,解得:x=12.5,∴14.5﹣12.5=2(亿元),故选:A.4.解:设得3分,4分,5分和6分的共有x人,它们平均得分为y分,分两种情况:(1)得分不足7分的平均得分为3分,xy+3×2+5×1=3(x+5+3),xy﹣3x=13①,(2)得3分及以上的人平均得分为4.5分,xy+3×7+4×8=4.5(x+3+4),4.5x﹣xy=21.5②,①+②得1.5x=34.5,解得x=23,故七(1)班共有学生23+5+3+3+4=38(人).故选:A.5.解:设每个人都发x枚硬币,由题意知,第一步中,甲有x枚硬币、乙有x枚硬币,丙有x枚硬币,第二、三步后,甲有(x﹣2)枚硬币,乙有(x﹣1)枚硬币,丙有(x+3)枚硬币,第四步后,甲有2(x﹣2)枚硬币,丙的硬币有x+3﹣(x﹣2)=5(枚),依题意有2(x﹣2)=5×2,解得x=7,此时乙有x﹣1=7﹣1=6.故选:C.6.解:设A、B两种正方体木块分别为x块,依题意有2x+bx+26=40,解得x=,∵x,b为正整数,∴2+b=1,2,7,14,∴b=﹣1,0,5,12,∵b=5,12,则所有满足要求的整数b的值的和为5+12=17.故选:D.二.解答题(共17小题)7.解:(1)设该批援鄂医疗队中医生有x人,则护士有(126﹣x)人,根据题意得:2(x﹣27=126﹣x﹣27),解得x=51,则126﹣x=75.答:该批援鄂医疗队中医生有51人,护士有75人;(2)∵负责普通病房的医生有51﹣27=24人,而5个普通病房需要1名医生,∴普通病房有24×5=120(个),答:该医院住院部普通病房有120个.8.解:(1)250﹣75÷15×10=250﹣50=200(毫升).故输液10分钟时瓶中的药液余量是200毫升;(2)设小华从输液开始到结束所需的时间为t分钟,依题意有(t﹣20)=160,解得t=60.故小华从输液开始到结束所需的时间为60分钟.9.解:(1)设这个“倍尾数”的个位数为x,则十位数字为2x,百位数字为2x+1,由题意可得,(2x+1)+2x+x=16,解得x=3,∴2x=6,2x+1=7,即这个“倍尾数”是763,答:这个“倍尾数”是763;(2)设这个“倍尾数”的个位数为a,百位数字为b,由题意可得,b+2a+a=17,化简,得3a+b=17,∵a、2a、b均为不大于9的非负整数,∴或,即满足条件的“倍尾数”是863、584,答:所有符合要求的“倍尾数”是863、584.10.解:设每次所用的甲种金属有xkg,依题意得:.,解得:x=5,答:每次所用的甲种金属有5kg.11.解:(1)设每天需要m小时完成,根据题意得:(55+45)m=700,解得:m=7,则甲,乙两厂同时处理该城市的垃圾,每天需7小时完成;(2)设甲厂每天处理x吨垃圾,乙厂处理(700﹣x)吨,根据题意得:10x+11(700﹣x)=7300,解得:x=400.则甲厂每天处理垃圾400吨.12.解:设甲生产线每天生产x吨,则乙生产线每天生产(x﹣5)吨,由题意得20x+5(x+x﹣5)=425,解得x=15,所以x﹣5=10,甲生产线每天生产15吨,乙生产线每天生产10吨,需用电:(20+5)×15×40+5×10×25=16250(度),答:完成这批加工任务需用电16250度.13.解:设该班有x名学生,3x+30=5x﹣50,解得:x=40,答:该班有40名学生.14.解:设乙车间x人,则甲车间(x+100)人,由题意得,x+100+50=3(x﹣50),解得x=150.故甲车间:150+100=250(人),答:乙车间150人,甲车间250人.15.解:(1)设七年级2班男生有x人,则女生有(x+2)人,由题意得:x+x+2=50,解得:x=24,女生:24+2=26(人),答:七年级2班男生有24人,则女生有26人;(2)设男生应向女生支援y人,由题意得:120(24﹣y)=(26+y)×40×2,解得:y=4,答:男生应向女生支援4人时,才能使每小时剪出的筒身与筒底配套.16.解:设甲种零件生产x天,由题意得:2×120x=3×100(18﹣x),解得:x=10,答:甲种零件生产10天,乙种零件生产8天.17.解:(1)根据题意得:180×5+(200﹣180)×7=1040(元),∴小丽家全年需缴水费1040元;(2)根据题意得:180×5+80×7+(a﹣260)×9=9a﹣880(元),答:小明家全年应缴水费(9a﹣880)元;(3)∵用水量为260吨,需缴水费:180×5+80×7=1460(元),∴全年缴水费2000元,用水量大于260吨,设该年的用水量为x吨,根据题意可得:9x﹣880=2000,解得:x=320,∴该年的用水量为320吨.18.解:(1)20×2+(25﹣20)×2.5+0.3×25=60(元),答:他应缴水费60元.(2)∵20×2+0.3×20=46>41.4,故水表有故障时,计入用水量不超过20吨,设该用户12月份实际用水x吨,由题意,得2×60%x+0.3×60%x=41.4,解得x=30,答:该用户12月份实际用水30吨.19.解:设木头长x尺,则绳子长(x+4)尺,根据题意得:x﹣(x+4)=1,解得x=6.答:木头长6尺.20.解:设安排x名工人制作甲配件,安排(7﹣x)名工人制作乙配件,900x=1200(7﹣x),解得:x=4,7﹣4=3(名),答:安排4名工人制作甲配件,安排3名工人制作乙配件,才能使每天制作的甲乙配件的个数相等.21.解:设面值为5元得人民币由x张,面值为2元得人民币由(32﹣x)张,根据题意得:5x+2(32﹣x)=100,解得:x=12(张),∴32﹣x=20(张).答:面值为5元得人民币由12张,面值为2元得人民币由20张.22.解:设从六年级抽出x人,则应从七年级抽出(133﹣x),由题意得:(192﹣x):[133﹣(133﹣x)]=2:1,即(192﹣x):x=2:1,解得:x=64,∴133﹣64=69(人).答;应从六年级抽出64人,从七年级抽出69人.23.解:设共有x亩麦田,90x﹣3000=75x+4500,解得x=500.故共有500亩麦田.。

人教版七年级数学上册 3.4实际问题与一元一次方程 知识点归纳

人教版七年级数学上册 3.4实际问题与一元一次方程 知识点归纳

人教版七年级数学上册实际问题与一元一次方程用方程解决实际问题的步骤:①审题,圈起关键字词。

②找出等量关系。

③设未知数,列方程。

④解方程。

⑤时间充裕的话,可以把结果代入原方程检验。

⑥作答。

和差倍分问题:先设其中一个未知数为x,再用含有x的式子表示另一个未知数,最后根据题目的等量关系列出方程。

比赛积分问题、鸡兔同笼问题:设其中一个未知数为x,则另一个未知数=总数-x,最后根据题目的等量关系列出方程。

配套问题:①设其中一种工作的人数为x,则另一种工作的人数为:(总数-x)。

②用含有x的式子表示出两种工作的总量。

③根据比找出等量关系,即可列出方程。

调配问题:先用含有未知数的式子,表示出调配前的人数和调配后的人数,再根据题目所给的等量关系列方程。

数字问题:个位上的数是几就表示几个1,十位上的数是几就表示几个10,百位上的数是几就表示几个100。

例子:个位上的数是a,十位上的数是b,百位上的数是c,则这个数表示为a+10b+100c 。

日历问题:在日历中,左右两个日期相差1天,上下两个日期相差7天。

盈亏问题:①每人所得数×人数+盈=物数②每人所得数×人数-亏=物数③两次的物数相等。

年龄问题:①每过一年,人人都长大1岁。

②无论过多少年,两人的年龄差不变。

浓度问题:①溶质+溶剂=溶液②浓度=溶质溶液①利息=本金×利率×存期②利息×税率=利息税③本息和=本金+利息行程问题:速度×时间=路程行程问题中还分相遇问题、追及问题、相离问题、环形跑道问题,我们只要抓住最原始的公式“速度×时间=路程”,再配合画线段图,即可找出等量关系。

流水行船问题:①静水速度+水流速度=顺水速度②静水速度-水流速度=逆水速度如果把船改为飞机,则也有类似的等量关系:①静风速度+风速=顺风速度②静风速度-风速=逆风速度火车过桥问题:①桥长+车长=路程②车速×通过时间=桥长+车长流水行船问题、火车过桥问题都属于行程问题,除了要明确基本的公式以外,还要会画线段图,画出线段图之后,等量关系往往就会清晰了。

人教版七年级数学上册3.4.1《实际问题与一元一次方程(第1课时)》教案

人教版七年级数学上册3.4.1《实际问题与一元一次方程(第1课时)》教案

人教版七年级数学上册3.4.1《实际问题与一元一次方程(第1课时)》教案一. 教材分析《实际问题与一元一次方程(第1课时)》是人教版七年级数学上册第三章第四节的一部分。

这部分内容是在学生学习了代数式、方程等知识的基础上进行学习的。

本节课主要让学生学会如何将实际问题转化为一元一次方程,并利用方程求解。

通过本节课的学习,培养学生解决实际问题的能力,提高学生的数学素养。

二. 学情分析七年级的学生已经具备了一定的代数基础,对方程的概念和性质有一定的了解。

但学生在解决实际问题时,往往不知道如何将实际问题转化为方程。

因此,在教学过程中,教师需要引导学生将实际问题与方程建立联系,培养学生解决实际问题的能力。

三. 教学目标1.让学生掌握将实际问题转化为一元一次方程的方法。

2.培养学生运用方程解决实际问题的能力。

3.提高学生的数学素养,培养学生的逻辑思维能力。

四. 教学重难点1.教学重点:如何将实际问题转化为一元一次方程。

2.教学难点:如何指导学生运用方程解决实际问题。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法。

通过实际问题的引入,引导学生自主探索,合作交流,培养学生解决实际问题的能力。

六. 教学准备1.教师准备相关的实际问题案例。

2.准备课件,展示解题过程。

3.准备黑板,用于板书解题步骤。

七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题引入新课,如“小明买了3本书和2支笔,共花了27元,请问一本书的价格和一支笔的价格分别是多少?”让学生尝试将这个问题转化为方程。

2.呈现(10分钟)教师呈现更多的实际问题案例,引导学生发现实际问题与方程之间的联系。

例如,通过“速度、时间和路程”的关系,引导学生列出相应的方程。

3.操练(10分钟)教师学生进行小组合作,让学生尝试解决呈现的实际问题。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)教师选取几个典型的问题,让学生上黑板板书解题过程,并讲解解题思路。

人教版七年级数学上册3.4《实际问题与一元一次方程(一)》(提高)知识讲解及解答

人教版七年级数学上册3.4《实际问题与一元一次方程(一)》(提高)知识讲解及解答

实际问题与一元一次方程(一)(提高)知识讲解【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤;2.熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值;(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚.要点二、常见列方程解应用题的几种类型(待续)1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1.旅行社的一辆汽车在第一次旅程中用去油箱里汽油的25%,第二次旅程中用去剩余汽油的40%,这样油箱中剩的汽油比两次所用的汽油少1公斤,求油箱里原有汽油多少公斤?【答案与解析】解:设油箱里原有汽油x 公斤,由题意得:x(1-25%)(1-40%)+1=25%x+(1-25%)x×40%解得:x=10答:油箱里原有汽油10公斤.【点评】等量关系为:油箱中剩余汽油+1=用去的汽油.举一反三:【变式】某班举办了一次集邮展览,展出的邮票若平均每人3张则多24张,若平均每人4张则少26张,这个班有多少学生?一共展出了多少张邮票?【答案】解:设这个班有x 名学生,根据题意得:3x+24=4x -26解得:x =50所以3x+24=3×50+24=174答:这个班有50名学生,一共展出了174张邮票.类型二、行程问题1.车过桥问题2. 某桥长1200m ,现有一列匀速行驶的火车从桥上通过,测得火车从上桥到完全过桥共用了50s ,而整个火车在桥上的时间是30s ,求火车的长度和速度.【思路点拨】正确理解火车“完全过桥”和“完全在桥上”的不同含义.【答案与解析】解:设火车车身长为xm ,根据题意,得:120012005030x x +-=, 解得:x =300,所以12001200300305050x ++==. 答:火车的长度是300m ,车速是30m/s .【点评】火车“完全过桥”和“完全在桥上”是两种不同的情况,借助线段图分析如下(注:A 点表示火车头):(1)火车从上桥到完全过桥如图(1)所示,此时火车走的路程是桥长+车长.(2)火车完全在桥上如图(2)所示,此时火车走的路程是桥长-车长.由于火车是匀速行驶的,所以等量关系是火车从上桥到完全过桥的速度=整个火车在桥上的速度.举一反三:【变式】某要塞有步兵692人,每4人一横排,各排相距1米向前行走,每分钟走86米,通过长86米的桥,从第一排上桥到排尾离桥需要几分钟?【答案】解:设从第一排上桥到排尾离桥需要x 分钟,列方程得:6928611864x ⎛⎫=-⨯+ ⎪⎝⎭, 解得:x =3答:从第一排上桥到排尾离桥需要3分钟.2.相遇问题(相向问题)3.小李骑自行车从A 地到B 地,小明骑自行车从B 地到A 地,两人都匀速前进.已知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12点,两人又相距36千米.求A 、B 两地间的路程.【答案与解析】解:设A 、B 两地间的路程为x 千米,由题意得:363624x x -+= 解得:x =108.答:A 、B 两地间的路程为108千米.【点评】根据“匀速前进”可知A 、B 的速度不变,进而A 、B 的速度和不变.利用速度和=小李和小明前进的路程和/时间可得方程.举一反三:【高清课堂:实际问题与一元一次方程(一)388410二次相遇问题】【变式】甲、乙两辆汽车分别从A 、B 两站同时开出,相向而行,途中相遇后继续沿原路线行驶,在分别到达对方车站后立即返回,两车第二次相遇时距A 站34km ,已知甲车的速度是70km/h ,乙车的速度是52km/h ,求A 、B 两站间的距离.【答案】解:设A 、B 两站间的距离为x km ,由题意得:234347052x x -+= 解得:x=122答: A 、B 两站间的距离为122km. 3.追及问题(同向问题)4.一辆卡车从甲地匀速开往乙地,出发2小时后,一辆轿车从甲地去追这辆卡车,轿车的速度比卡车的速度每小时快30千米,但轿车行驶一小时后突遇故障,修理15分钟后,又上路追这辆卡车,但速度减小了13,结果又用两小时才追上这辆卡车,求卡车的速度. 【答案与解析】解:设卡车的速度为x 千米/时,由题意得:1122(30)(1)(30)243x x x x x x +++=++-⨯+⨯ 解得:x=24答:卡车的速度为24千米/时.【点评】采用“线示”分析法,画出示意图.利用轿车行驶的总路程等于卡车行驶的总路程来列方程,理清两车行驶的速度与时间.4.航行问题(顺逆风问题)5.(武昌区联考)盛夏,某校组织长江夜游,在流速为2.5千米/时的航段,从A 地上船,沿江而下至B 地,然后溯江而上到C 地下船,共乘船4小时.已知A 、C 两地相距10千米,船在静水中的速度为7.5千米/时,求A 、B 两地间的距离.【思路点拨】由于C 的位置不确定,要分类讨论:(1)C 地在A 、B 之间;(2)C 地在A 地上游.【答案与解析】解:设A 、B 两地间的距离为x 千米.(1)当C 地在A 、B 两地之间时,依题意得.1047.5 2.57.5 2.5x x -+=+- 解这个方程得:x =20(千米)(2)当C 地在A 地上游时,依题意得:1047.5 2.57.5 2.5x x ++=+- 解这个方程得:203x = 答:A 、B 两地间的距离为20千米或203千米. 【点评】这是航行问题,本题需分类讨论,采用“线示”分析法画出示意图(如下图所示),然后利用“共乘”4小时构建方程求解.5.环形问题6.环城自行车赛,最快的人在开始48分钟后遇到最慢的人,已知最快的人的速度是最慢的人速度的3倍,环城一周是20千米,求两个人的速度.【答案与解析】解;设最慢的人速度为x 千米/时,则最快的人的速度为x 千米/时, 由题意得:x×-x×=20 解得:x=10答:最快的人的速度为35千米/时,最慢的人的速度为10千米/时.【点评】这是环形路上的追及问题,距离差为环城一周20千米.相等关系为:最快的人骑的路程-最慢人骑的路程=20千米.举一反三:【变式】两人沿着边长为90m 的正方形行走,按A →B →C →D →A …方向,甲从A 以65m/min 的速度,乙从B 以72m/min 的速度行走,如图所示,当乙第一次追上甲时,在正方形的哪一条边上?【答案】解:设乙追上甲用了x 分钟,则有:72x -65x =3×902707x =(分) 答:乙第一次追上甲时走了2707227777⨯≈(m ) 此时乙在AD 边上 类型三、工程问题7.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?【答案与解析】解:设再过x 小时可把水注满.由题意得:11111()2()168689x +⨯++-= 解得:30421313x ==. 答:打开丙管后4213小时可把水放满. 【点评】相等关系:甲、乙开2h 的工作量+甲、乙、丙水管的工作量=1.举一反三:【变式】收割一块水稻田,若每小时收割4亩,预计若干小时完成,收割23后,改用新式农机,工作效率提高到原来的112倍,因此比预计时间提早1小时完成,求这块水稻田的面积.【答案】解:设这块水稻田的面积为x 亩,由题意得:21331144142x x x =++⨯ 解得:36x =.答:这块水稻田的面积为36亩.类型四、配套问题(比例问题、劳动力调配问题)8.某工程队每天安排120个工人修建水库,平均每天每个工人能挖土5 m 3或运土3 m 3,为了使挖出的土及时被运走,问:应如何安排挖土和运土的工人?【答案与解析】解:设安排x 人挖土,则运土的有(120-x )人,依题意得:5x =3(120-x ),解得x =45.120-45=75(人).答:应安排45人挖土,75人运土.【点评】用参数表示挖土数与运土数,等量关系:挖土与运土的总立方米数应相等.举一反三:【高清课堂:实际问题与一元一次方程(一) 388410 配制问题】【变式】某商店选用A 、B 两种价格分别是每千克28元和每千克20元的糖果混合成杂拌糖果后出售,为使这种杂拌糖果的售价是每千克25元,要配制这种杂拌糖果100千克,问要用这两种糖果各多少千克?【答案】解:设要用A 种糖果x 千克,则B 种糖果用(100-x)千克.依题意,得:28x+20(100-x)=25×100解得:x=62.5.当x=62.5时,100-x=37.5.答:要用A 、B 两种糖果分别为62.5千克和37.5千克.。

人教版数学七年级上册3.4.1实际问题与一元一次方程——配套问题教案

人教版数学七年级上册3.4.1实际问题与一元一次方程——配套问题教案

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯3.4实际问题与一元一次方程一、学习目标:会用一元一次方程解决两类问题:1、配套问题;2、工程问题。

二、预习检查:1、1只小鸡2只脚,1只小兔4只脚,那么x小鸡只脚,y只小兔只脚。

2、工程问题中的等量关系:工作总量= 。

3、一件工作,甲单独做x小时完成,乙单独做y小时完成,那么甲、乙的工作效率分别为、;甲、乙合作m天可以完成的工作量为。

三、新课教学:例 1 某车间22名工人生产螺钉和螺母,每人每天平均生产螺钉1200个或螺母2000个,一个螺钉要配两个螺母,为了使每天生产的产品刚好配套,应该分配多少名工人生产螺钉,多少工人生产螺母?解:设分配x名工人生产螺钉,则(22-x)名工人生产螺母,根据题意,得:2×1200x=2000(22-x)解得x=10,22-x=12.答:所以为了使每天生产的产品刚好配套,应安排10人生产螺钉,12人生产螺母.例2:整理一批图书,由一个人做要40小时完成.现在计划由一部分人先做4小时,再增加2人和他们一起做8小时,完成这项工作.假设这些人的工作效率相同,具体应先安排多少人工作?分析:我们把总工作量看作 1 , 完成下列填空(1)1个人做1小时完成的工作量为(2)由x 人先做4小时,完成的工作量为(3)再增加2人和前一部分人一起做8小时,完成的工作量为(4)题中的相等关系是解:设应先安排x 人工作4小时,依题意得48(2)14040x x ++=去分母,得 4x+8(x+2)=40去括号,得 4x+8x+16=40移项,得 4x+8x=40-16合并,得 12x=24系数化为1,得 x=2答:应先安排2名工人工作4小时.四、小组合作:小组合作1:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?小组合作2:抗洪抢险中修补一段大堤,甲队单独施工12天完成,乙队单独施工8天完成;现在由甲队先工作两天,剩下的由两队合作完成,还需几天才能完成?五、当堂检测:检测1:用铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套.现在有36张铁皮,用多少张制盒身,多少张制盒底,可使盒身与盒底刚好配套?检测2:一件工作,甲单独做需50天才能完成,乙独做需要45天完成。

人教版七年级数学上册3.4《实际问题与一元一次方程(二)》(基础)知识讲解及解答

人教版七年级数学上册3.4《实际问题与一元一次方程(二)》(基础)知识讲解及解答

实际问题与一元一次方程(二)(基础)知识讲解【学习目标】(1)进一步提高分析实际问题中数量关系的能力,能熟练找出相等关系并列出方程; (2)熟悉利润,存贷款,数字及方案设计问题的解题思路. 【要点梳理】要点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类问题的一般步骤为:审、设、列、解、检验、答.要点诠释: (1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系. (2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数. (3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一. (4)“解”就是解方程,求出未知数的值. (5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可. (6)“答”就是写出答案,注意单位要写清楚.要点三、常见列方程解应用题的几种类型(续)1.利润问题 (1)=100%⨯利润利润率进价(2) 标价=成本(或进价)×(1+利润率) (3) 实际售价=标价×打折率(4) 利润=售价-成本(或进价)=成本×利润率注意:“商品利润=售价-成本”中的右边为正时,是盈利;当右边为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售. 2.存贷款问题(1)利息=本金×利率×期数(2)本息和(本利和)=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数) (3)实得利息=利息-利息税 (4)利息税=利息×利息税率 (5)年利率=月利率×12 (6)月利率=年利率×1213.数字问题已知各数位上的数字,写出两位数,三位数等这类问题一般设间接未知数,例如:若一个两位数的个位数字为a ,十位数字为b ,则这个两位数可以表示为10b+a . 4.方案问题选择设计方案的一般步骤:(1)运用一元一次方程解应用题的方法求解两种方案值相等的情况.(2)用特殊值试探法选择方案,取小于(或大于)一元一次方程解的值,比较两种方案的优劣性后下结论. 【典型例题】类型一、利润问题【高清课堂:实际问题与一元一次方程(二)388413利润问题例2】1.以现价销售一件商品的利润率为30%,如果商家在现有的价格基础上先提价40%,后降价50%的方法进行销售,商家还能有利润吗?为什么? 【答案与解析】解:设该商品的成本为a 元,则商品的现价为(1+30%)a 元,依题意其后来折扣的售价为(1+30%)a ·(1+40%)(1-50%)=0.91a .∵0.91a -a =-0.09a ,∴0.09aa-·100%=-9%. 答:商家不仅没有利润,而且亏损的利润率为9%.【总结升华】解答此类问题时,一定要弄清题意.分清售价、进价、数量、利润之间的关系很重要. 举一反三:【高清课堂:实际问题与一元一次方程(二)388413利润问题例3】【变式1】某个商品的进价是500元,把它提价40%后作为标价.如果商家要想保住12%的利润率搞促销活动,请你计算一下广告上可写出打几折? 【答案】解:设该商品打x 折,依题意,则: 500(1+40%)·10x=500(1+12%). x=10 1.121.4⨯=8. 答:该商品的广告上可写上打八折.【变式2】张新和李明相约到图书大厦去买书,请你根据他们的对话内容(如图所示),求出李明上次所买书籍的原价.【答案】解:设李明上次购买书籍的原价为x 元,由题意得:0.8x+20=x -12, 解这个方程得:x =160.答:李明上次所买书籍的原价是160元.类型二、存贷款问题2.爸爸为小强存了一个五年期的教育储蓄,年利率为2.7%,五年后取出本息和为17025元,爸爸开始存入多少元.【答案与解析】解:设爸爸开始存入x元.根据题意,得x+x×2.7%×5=17025.解之,得x=15000答:爸爸开始存入15000元.【总结升华】本息和=本金+利息,利息=本金×利率×期数.类型三、数字问题3.一个三位数,十位上的数是百位上的数的2倍,百位、个位上的数的和比十位上的数大2,又个位、十位、百位上的数的和是14,求这个三位数.【答案与解析】解:设百位上的数为x,则十位上的数为2x,个位上的数为14-2x-x由题意得:x+14-2x-x=2x+2解得:x=3∴ x=3, 2x=6,14-2x-x=5答:这个三位数为365【总结升华】在数字问题中应注意:(1)求的是一个三位数,而不是三个数;(2)这类应用题,一般设间接未知数,切勿求出x就答;(3) 三位数字的表示方法是百位上的数字乘以100,10位上的数字乘以10,然后把所得的结果和个位数字相加.举一反三:【变式】一个两位数,个位上的数字比十位上的数字大4,这个两位数又是这两个数字的和的4倍,求这个两位数.【答案】x+),由题意得:解:设十位上的数字为x,则个位上的数字为(4++=++⨯x x x x10(4)[(4)]4x=解得:4∴⨯++=410(44)48答:这两位数是48.类型四、方案设计问题4.为鼓励学生参加体育锻炼.学校计划拿出不超过1600元的资金再购买一批篮球和排球.已知篮球和排球的单价比为3:2,单价和为80元.(1)篮球和排球的单价分别是多少元?(2)若要求购买的篮球和排球的总数量是36个,且购买的篮球数量不少于26个.请探究有哪几种购买方案?【答案与解析】解:(1)设篮球和排球的单价分别为3x元和2x元.依题意3x+2x=80,解得x=16即3x=48,2x=32答:篮球和排球的单价分别为48元和32元.由列表可知,共有三种购买方案:方案一:购买篮球26个,排球10个;方案二:购买篮球27个,排球9个;方案三:购买篮球28个,排球8个.【总结升华】本例设未知数的方法很独特,值得借鉴.采用列表的方法探索方案,值得学习.举一反三:【变式】(武昌区期末调考)某校组织10位教师和部分学生外出考察,全程票价为25元,对集体购票,客运公司有两种优惠方案可供选择:方案一:所有师生按票价的88%购票;方案二:前20人购全票,从第21人开始,每人按票价的80%购票.(1)若有30位学生参加考察,问选择哪种方案更省钱?(2)参加考察的学生人数是多少时,两种方案车费一样多?【答案】解:设有x位学生参加考察.按方案一购票费用为:25×88%(10+x)=22x+220按方案二购票费用为:20×25+25×80%(x+10-20)=20x+300(1)当x=30时:22x+220=660+220=880(元)20x+300=600+300=900(元)答:当有30位学生参加考察,选择方案一更省钱.(2)设22x+220=20x+300,解得:x=40答:参加考察的学生人数为40人时,两种方案车费一样多.。

人教版七年级数学上册3.4《实际问题与一元一次方程(一)》(基础)知识讲解及解答

人教版七年级数学上册3.4《实际问题与一元一次方程(一)》(基础)知识讲解及解答

实际问题【学习目标】1.熟练掌握分析解决实际问题的一般方法及步骤;2.熟悉行程,工程,配套及和差倍分问题的解题思路.【要点梳理】知识点一、用一元一次方程解决实际问题的一般步骤列方程解应用题的基本思路为:问题−−−→分析抽象方程−−−→求解检验解答.由此可得解决此类 题的一般步骤为:审、设、列、解、检验、答.要点诠释:(1)“审”是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量,以及它们之间的关系,寻找等量关系;(2)“设”就是设未知数,一般求什么就设什么为x ,但有时也可以间接设未知数;(3)“列”就是列方程,即列代数式表示相等关系中的各个量,列出方程,同时注意方程两边是同一类量,单位要统一;(4)“解”就是解方程,求出未知数的值.(5)“检验”就是指检验方程的解是否符合实际意义,当有不符合的解时,及时指出,舍去即可;(6)“答”就是写出答案,注意单位要写清楚. 知识点二、常见列方程解应用题的几种类型(待续)1.和、差、倍、分问题(1)基本量及关系:增长量=原有量×增长率,现有量=原有量+增长量,现有量=原有量-降低量.(2)寻找相等关系:抓住关键词列方程,常见的关键词有:多、少、和、差、不足、剩余以及倍,增长率等.2.行程问题(1)三个基本量间的关系: 路程=速度×时间(2)基本类型有:①相遇问题(或相向问题):Ⅰ.基本量及关系:相遇路程=速度和×相遇时间Ⅱ.寻找相等关系:甲走的路程+乙走的路程=两地距离. ②追及问题:Ⅰ.基本量及关系:追及路程=速度差×追及时间Ⅱ.寻找相等关系:第一, 同地不同时出发:前者走的路程=追者走的路程;第二, 第二,同时不同地出发:前者走的路程+两者相距距离=追者走的路程.③航行问题:Ⅰ.基本量及关系:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度,顺水速度-逆水速度=2×水速;Ⅱ.寻找相等关系:抓住两地之间距离不变、水流速度不变、船在静水中的速度不变来考虑.(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,并且还常常借助画草图来分析.3.工程问题如果题目没有明确指明总工作量,一般把总工作量设为1.基本关系式:(1)总工作量=工作效率×工作时间;(2)总工作量=各单位工作量之和.4.调配问题寻找相等关系的方法:抓住调配后甲处的数量与乙处的数量间的关系去考虑.【典型例题】类型一、和差倍分问题1.2011年北京市生产运营用水和居民家庭用水的总和为5.8亿立方米,其中居民家庭用水比生产运营用水的3倍还多0.6亿立方米,问生产运营用水和居民家庭用水各多少亿立方米?【答案与解析】设生产运营用水x亿立方米,则居民家庭用水(5.8-x)亿立方米.依题意,得5.8-x=3x+0.6解得x=1.35.8-x=5.8-1.3=4.5(亿立方米)答:生产运营用水1.3亿立方米,居民家庭用水4.5亿立方米.【总结升华】本题要求两个未知数,不妨设其中一个未知数为x,另外一个用含x的式子表示.本题的相等关系是生产运营用水量+居民家庭用水总量=5.8亿立方米.举一反三:【变式】(麻城期末考试)麻商集团三个季度共销售冰箱2800台,第一个季度销售量是第二个季度的2倍.第三个季度销售量是第一个季度的2倍,试问麻商集团第二个季度销售冰箱多少台?【答案】解:设第二个季度麻商集团销售冰箱x台,则第一季度销售量为2x台,第三季度销售量为4x台,依题意可得:x+2x+4x=2800,解得:x=400答:麻商集团第二个季度销售冰箱400台.类型二、行程问题1.一般问题2.小山娃要到城里参加运动会,如果每小时走4千米,那么走完预订时间离县城还有0.5千米,如果他每小时走5千米,那么比预订时间早半小时就可到达县城.试问学校到县城的距离是多少千米?【答案与解析】解:设小山娃预订的时间为x小时,由题意得:4x+0.5=5(x-0.5),解得x=3.所以4x+0.5=4×3+0.5=12.5(千米).答:学校到县城的距离是12.5千米.【总结升华】当直接设未知数有困难时,可采用间接设的方法.即所设的不是最后所求的,而是通过求其它的数量间接地求最后的未知量.举一反三:【变式】某汽车在一段坡路上往返行驶,上坡的速度为10千米/时,下坡的速度为20千米/时,求汽车的平均速度.【答案】解:设这段坡路长为a 千米,汽车的平均速度为x 千米/时,则上坡行驶的时间为10a 小时,下坡行驶的时间为20a 小时.依题意,得:21020a a x a ⎛⎫+= ⎪⎝⎭, 化简得: 340ax a =.显然a ≠0,解得1133x = 答:汽车的平均速度为1133千米/时.2.相遇问题(相向问题) 【高清课堂:实际问题与一元一次方程(一) 388410 相遇问题】3. A 、B 两地相距100km ,甲、乙两人骑自行车分别从A 、B 两地出发相向而行,甲的速度是23km/h ,乙的速度是21km/h ,甲骑了1h 后,乙从B 地出发,问甲经过多少时间与乙相遇?【答案与解析】解:设甲经过x 小时与乙相遇.由题意得:()2312321(1)100x ⨯++-=解得,x=2.75答:甲经过2.75小时与乙相遇.【总结升华】等量关系:甲走的路程+乙走的路程=100km举一反三:【变式】甲、乙两人骑自行车,同时从相距45km 的两地相向而行,2小时相遇,每小时甲比乙多走2.5km ,求甲、乙每小时各行驶多少千米?【答案】解:设乙每小时行驶x 千米,则甲每小时行驶(x +2.5)千米,根据题意,得:2( 2.5)245x x ++=解得:10x =2.510 2.512.5x +=+=(千米)答:甲每小时行驶12.5千米,乙每小时行驶10千米3.追及问题(同向问题)4.一队学生去校外进行军事野营训练,他们以5千米/时的速度行进,走了18分钟时,学校要将一紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员用多少分钟可以追上学生队伍?【答案与解析】解:设通讯员x 小时可以追上学生队伍,则根据题意,得18145560x x =⨯+, 得:16x =, 16小时=10分钟. 答:通讯员用10分钟可以追上学生队伍.【总结升华】追及问题:路程差=速度差×时间,此外注意:方程中x 表示小时,18表示分钟,两边单位不一致,应先统一单位. 4.航行问题(顺逆风问题)5.一艘船航行于A 、B 两个码头之间,轮船顺水航行需3小时,逆水航行需5小时,已知水流速度是4千米/时,求这两个码头之间的距离.【答案与解析】解法1:设船在静水中速度为x 千米/时,则船顺水航行的速度为(x+4)千米/时,逆水航行的速度为(x -4)千米/时,由两码头的距离不变得方程:3(x+4)=5(x -4),解得:x=16,(16+4)×3=60(千米)答:两码头之间的距离为60千米.解法2:设A 、B 两码头之间的距离为x 千米,则船顺水航行时速度为3x 千米/时,逆水航行时速度为5x 千米/时,由船在静水中的速度不变得方程:4435x x -=+,解得:60x = 答:两码头之间的距离为60千米.【总结升华】顺流速度=静水速度+水流速度;逆流速度=静水速度-水流速度,根据两个码头的距离不变或船在静水中的速度不变列方程.类型三、工程问题6.一个水池有两个注水管,两个水管同时注水,10小时可以注满水池;甲管单独开15小时可以注满水池,现两管同时注水7小时,关掉甲管,单独开乙管注水,还需要几小时能注满水池?【思路点拨】视水管的蓄水量为“1”,设乙管还需x 小时可以注满水池;那么甲乙合注1小时注水池的110,甲管单独注水每小时注水池的115,合注7小时注水池的710,乙管每小时注水池的111015⎛⎫- ⎪⎝⎭. 【答案与解析】解:设乙管还需x 小时才能注满水池.由题意得方程:1171101510x ⎛⎫-=- ⎪⎝⎭解此方程得:x =9答:单独开乙管,还需9小时可以注满水池.【总结升华】工作效率×工作时间=工作量,如果没有具体的工作量,一般视总的工作量为“1” .举一反三:【变式】修建某处住宅区的自来水管道,甲单独完成需14天,乙单独完成需18天,丙单独完成需12天,前7天由甲、乙两人合作,但乙中途离开了一段时间,后两天由乙、丙合作完成问乙中途离开了几天?【答案】解:设乙中途离开x 天,由题意得 1117(72)21141812x ⨯+-++⨯= 解得:3x =答:乙中途离开了3天类型四、调配问题(比例问题、劳动力调配问题)7.星光服装厂接受生产某种型号的学生服的任务,已知每3m 长的某种布料可做上衣2件或裤子3条,一件上衣和一条裤子为一套,计划用750m 长的这种布料生产学生服,应分别用多少布料生产上衣和裤子才能恰好配套?共能生产多少套?【思路点拨】每3米布料可做上衣2件或裤子3条,意思是每1米布料可做上衣32 件,或做裤子1条,此外恰好配套说明裤子的数量应该等于上衣的数量.【答案与解析】解:设做上衣需要xm ,则做裤子为(750-x )m ,做上衣的件数为23x ⨯件,做裤子的件数为75033x -⨯,则有:23(750)33x x -= 解得:x =450,750-x =750-450=300(m ), 45023003⨯=(套) 答:用450m 做上衣,300m 做裤子恰好配套,共能生产300套.【总结升华】用参数表示上衣总件数与裤子的总件数,等量关系:上衣总件数=裤子的总件数.举一反三:【高清课堂:实际问题与一元一次方程(一) 388410调配问题】【变式】甲队有72人,乙队有68人,需要从甲队调出多少人到乙队,才能使甲队恰好是乙队人数的34. 解:设从甲队调出x 人到乙队.由题意得, ()372684x x -=+ 解得,x=12. 答:需要从甲队调出 12人到乙队,才能使甲队恰好是乙队人数的34 .。

新人教版七年级上册数学3.4.1列方程解实际问题的一般方法优质课件

新人教版七年级上册数学3.4.1列方程解实际问题的一般方法优质课件
新人教版七年级上册数学 3.4.1 列方程解实际问题的一般方法 优质课件
科 目:数学 适用版本:新人教版 适用范围:【教师教学】
第三章 一元一次方程
3.4 实际问题与一元一次方程
第1课时 列方程解实际问
题的一般方法
第一页,共二十五页。
知识点 1 列一元一次方程解实际问题的步骤
知1-讲
列方程解应用题的一般步骤: 设未知数、列方程、解方程、检验所得结果、确
第五页,共二十五页。
知识点 2 设未知数的方法
知2-讲
设未知数的方法:
(1)直接设未知数:即题目求什么就设什么为未知数;
(2)间接设未知数:直接设所求的量为未知数,不便
列方程时,可设与所求量有关系的量作为未知数,
进而求出所求的量.
第六页,共二十五页。
知2-讲
例3 某商场甲、乙两个柜台12月份营业额共计64 万元,1月份甲增长了20%,乙增长了15%, 营业额达到75万元,求两个柜台各增长了多
第十五页,共二十五页。
知2-讲
例6 现有菜地975公顷,要种植白菜、西红柿和芹
菜,其中种白菜与种西红柿的面积比是3∶2, 种西红柿与种芹菜的面积比是5∶7,则三种蔬 菜各种多少公顷?
第十六页,共二十五页。
解:因为3∶2=15∶10,5∶7=10∶14,
所以白菜、西红柿、芹菜的种植面积之比为 15∶10∶14.
第八页,共二十五页。
知2-讲
解:方法1:设1月份甲柜台的营业额增长了x万元,则
1月份乙柜台的营业额增长了_____(_7_5_-_6_4_-万x元) ,
依题意,列方程可得
x + 75-64-x =64,
解之得x=________. 20%

3.4实际问题与一元一次方程教案人教数学七年级上册

3.4实际问题与一元一次方程教案人教数学七年级上册

第三章 一元一次方程3.4 实际问题与一元一次方程第1课时 产品配套问题和工程问题学习目标:1. 理解配套问题、工程问题的背景.2. 分清有关数量关系,能正确找出作为列方程依据的主要等量关系.3. 掌握用一元一次方程解决实际问题的基本过程.重点:掌握用一元一次方程解决实际问题的基本过程.难点:能够准确找出实际问题中的等量关系,并建立模型解决问题.一、要点探究探究点1:产品配套问题填一填:1.某厂欲制作一些方桌和椅子,1张方桌与4把椅子刚好配成一套,为了使桌椅刚好配 套,商家应制作椅子的数量是桌子数量的 ___ 倍. 方桌与椅子的数量之比是 .2.一个油桶由两个圆形铁片和一个长方形铁片相配套.某车间有工人42人,每个工人平均每小时可以生产圆形铁片120片或者长方形铁片80片.设安排x 名工人生产圆形铁片,可使圆形铁片和长方形铁片刚好配套,请填写下表:等量关系:(1)每小时生产的圆形铁片=_____×每小时生产的长方形铁片.(2)生产的套数相等.方法总结:生产调配问题通常从调配后各量之间的倍、分关系寻找相等关系,建立方程.解决配套问题的思路:1.利用配套问题中物品之间具有的数量关系作为列方程的依据;2.利用配套问题中的套数不变作为列方程的依据.例1 如图,足球是由32块黑白相间的牛皮缝制而成的,黑皮可看作正五边形,白皮可看作正六边形,求白皮、黑皮各多少块?(提示:一块白皮(六边形)中,有三边与黑皮(五边形)相连,因此白皮边数是黑皮边数的2倍)针对训练1.某车间有30名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个,现有一部分工人生产螺栓,其他部分工人生产螺母,恰好每天生产的螺栓螺母:按1:3配套.若2.一套仪器由一个A 部件和三个B 部件构成. 用1立方米钢材可做40个A 部件或240个B 部件. 现要用6立方米钢材制作这种仪器,应用多少钢材做A 部件,多少钢材做B 部件,才能恰好配成这种仪器?共配成多少套?探究点2:工程问题填一填一件工作,甲独做需要6天完成,乙独做需要5天完成.(1)若把工作总量设为1,则甲的工作效率(甲一天完成的工作量)是 ,乙的工作效率是 .(2)甲做x 天完成的工作量是 ,乙做x 天完成的工作量是 ,甲乙合做x 天完成的工作量是 .议一议工程问题中,涉及哪些量?它们之间有什么数量关系?(1)工程问题中,涉及的量有工作量、_________________________________________;(2)请写出这些量之间存在的数量关系:_____________________________________________________________________________. 例2 加工某种工件,甲单独作要20天完成,乙只要10天就能完成任务,现在要求二人在12天内完成任务.问乙需工作几天后甲再继续加工才可正好按期完成任务?【提示:可运用表格列出题中存在的各种量.】想一想:若要求二人在8天内完成任务,乙先加工几天后,甲加入合作加工,恰好能如期完成任务?要点归纳:解决工程问题的基本思路:1. 三个基本量:工作量、工作效率、工作时间. 它们之间的关系是:工作量 = 工作效率×工作时间;合作的工作效率 =工作效率之和.2. 相等关系:工作总量=各部分工作量之和=合作的工作效率×工作时间.3. 通常在没有具体数值的情况下,把工作总量看作“1”.针对训练一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天. 如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?二、课堂小结用一元一次方程解决实际问题的基本过程如下:实际问题 实际问题的答案 1. 某人一天能加工甲种零件50个或加工乙种零件20个,1个甲种零件与2个乙种零件配成 一套,30天制作最多的成套产品,若设x 天制作甲种零件,则可列方程为 .设未知数,列方程 检验2.一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由甲独做x天完成,那么所列方程为.3.某家具厂生产一种方桌,1立方米的木材可做50个桌面或300条桌腿,现有10立方米的木材,怎样分配生产桌面和桌腿使用的木材,才能使桌面、桌腿刚好配套,共可生产多少张方桌?(一张方桌有1个桌面,4条桌腿)4.一项工作,甲单独做20小时完成,乙单独做12小时完成,现在先由甲单独做4小时,剩下的部分由甲、乙合做. 剩下的部分需要几小时完成?5. 一个道路工程,甲队单独施工9天完成,乙队单独做24天完成.现在甲、乙两队共同施工3天,因甲另有任务,剩下的工程由乙队完成,问乙队还需几天才能完成?参考答案课堂探究一、要点探究有6(32x)条.依题意,得2×5x=6(32x),解得x=12,则32x=20.答:白皮20块,黑皮12块.【针对训练】1. 12x×3=18×(30−x)2.解:设应用 x 立方米钢材做 A 部件,则应用(6-x)立方米做 B 部件.根据题意,列方程:3×40x = (6-x)×240.解得x = 4.则6-x = 2.共配成仪器:4×40=160 (套). 答:应用 4 立方米钢材做 A 部件, 2 立方米钢材做 B 部件,共配成仪器 160 套.填一填(1议一议(1)工作效率、工作时间(2)工作量=工作效率×工作时间解:解:设乙需工作x天后甲再继续加工才可正好按期完成任务,则甲做了(12x)天.依题意,得11(12) 1.2010x x-+=解得x=8. 答:乙需工作8天后甲再继续加工才可正好按期完成任务.想一想:解:设甲加工y 天,两人如期完成任务,则在甲加入之前,乙先工作了(8y )天. 依题意,得18 1.2010y +=解得y =4. 答:乙需加工4天后,甲加入合作加工才可正好按期完任务.【针对训练】解:设要 x 天可以铺好这条管线,由题意得:11 1.1224x x +=解方程,得x = 8. 答:要8天可以铺好这条管线.当堂检测根据题意,得 4×50x = 300(10-x),解得x =6,所以10-x = 4,可做方桌为50×6=300(张). 答:用6立方米的木材做桌面,4立方米的木材做桌腿,才能使桌面、桌腿刚好配套,可做)+ 1.12x x = 13+(3+) 1.24x =解得x = 13. 答:乙队还需13天才能完成. 第三章 一元一次方程3.4 实际问题与一元一次方程第2课时 销售中的盈亏学习目标:1. 理解商品销售中的相关概念及数量关系.2. 根据商品销售中的数量关系列一元一次方程解决与打折销售有关的实际 问题,并掌握解此类问题的一般思路.重点:掌握商品销售中成本(进价)、售价(卖价)、标价(原价)、利润、利润率、折扣等量之间的数量关系,知道销售中的盈亏取决于售价与成本之差.难点:能够通过自主分析,建立一元一次方程模型解决同类型问题,并掌握解此类问题 的一般思路.一、要点探究探究点:销售中的盈亏合作探究:连一连:正确理解销售问题中的几个重要概念进价 也称成交价,是商店销售商品时的销售价格.标价 商店销售商品时所赚的钱.售价 商店购进商品时的价格.利润 商店销售商品时标出的价格,也称定价.填一填1. 商品原价200元,九折出售,卖价是 元.2. 商品进价是150元,售价是180元,则利润是 元,利润率是_____.3. 某商品原来每件零售价是a 元,现在每件降价10%,降价后每件零售价是 元.4. 某种品牌的彩电降价20%以后,每台售价为a 元,则该品牌彩电每台原价应为 元.5. 某商品按定价的八折出售,售价是12.8元,则原定售价是 元.想一想:以上问题中有哪些量?你能说出它们之间的关系吗?要点归纳:销售问题中的常用数量关系:●售价、进价、利润的关系:商品利润= 商品售价-商品进价;●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ; ●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数; ●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率).议一议:销售中存在盈亏,说一说销售盈亏中存在哪几种可能情况,并分别说明在该种情况下,售价与进价的大小.(1)盈利:售价 进价(填“>”、“<”或“=”),此时,利润 0(填“>”“<”或“=”);(2)亏损:售价 进价(填“>”、“<”或“=”),此时,利润 0(填“>”“<”或“=”);(3)不盈不亏:售价 进价(填“>”、“<”或“=”),此时,利润 0(填“>”、 “<”或“=”).例1 一商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?要点归纳:销售的盈亏取决于总售价与总成本之间的关系:总售价 > 总成本时,盈利;总售价 < 总成本时,亏损;总售价 = 总成本时,不盈不亏.针对训练1. 某琴行同时卖出两台钢琴,每台售价为960元. 其中一台盈利20%,另一台亏损20%. 这次琴行是盈利还是亏损,或是不盈不亏?2. 某文具店有两个进价不同的计算器都卖64元,其中一个盈利60%,另一个亏本20%. 请通过计算说明这次交易中的盈亏情况.例2 某商品的零售价是900元,为适应竞争,商店按零售价打9折(即原价的90%),并再让利40元销售,仍可获利10%,求该商品的进价.方法归纳:利用一元一次方程解决销售问题时,熟练、准确地运用销售问题中常用的等量关系是解题的关键.针对训练1. 某商场把进价为1980元的商品按标价的八折出售,仍获利10%,则该商品的标价为 元.2. 我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品在2005年涨价30%后,2007降价70%至a 元,则这种药品在2005年涨价前价格为 元.二、课堂小结●售价、进价、利润的关系:商品利润= 商品售价-商品进价●进价、利润、利润率的关系:利润率=%商品进价商品利润100 ●标价、折扣数、商品售价的关系:商品售价=标价×10折扣数 ●商品售价、进价、利润率的关系:商品售价=商品进价×(1+利润率)1.某种商品的进价为每件a 元,零售价为每件90元,若商品按八五折出售,仍可获利10%,则下列方程正确的是( ) A .85%a=10%×90 B .90×85%×10%=aC .85%(90a)=10%D .(1+10%)a=90×85%2.两件商品都卖120元,其中一件赢利25%,另一件亏本20%,则两件商品卖出后( )A .赢利16元B .亏本16元C .赢利6元D .亏本6元3.某种商品因换季准备打折出售,如果按原定价的七五折出售,将赔25元,而按原定价的九折出售,将赚20元,则这种商品的原价是( )A .500元B .400元C .300元D .200元4.某商品的进价是1000元,售价是1500元,由于销售情况不好,商店决定降价出售, 但又要保证利润率不低于5%,那么商店最多可打几折出售此商品?5.据了解个体商店销售中售价只要高出进价的20% 便可盈利,但老板们常以高出进价50%~100% 标价,假若你准备买一双标价为600元的运动鞋,应在什么范围内还价? 参考答案课堂探究一、要点探究连一连:进价也称成交价,是商店销售商品时的销售价格.标价商店销售商品时所赚的钱.售价商店购进商品时的价格.利润商店销售商品时标出的价格,也称定价.填一填:1.1802. 30 20%3.0.9a4.1.25a5.16议一议:(1)>>(2)<<(3)= =解:设盈利25%的那件衣服的进价是x元,根据进价与得润的和等于售价列得方程:x+0.25x=60,解得x=48,类似地,设另一件亏损衣服的进价为y元,它的商品利润是25%y元,列方程y+(25%y)=60,解得y=80.那么这两件衣服的进价是x+y=128元,而两件衣服的售价为120元,120128=8元,所以这两件衣服亏损8元.【针对训练】1.解:设盈利20%的钢琴的成本为x元,x(1+20%)=960,解得x=800.设亏本20%的钢琴的成本为y元,y(120%)=960,解得y=1200.所以960×2(800+1200)=80,所以亏损80元.这次琴行亏本80元.2.解:根据题意得:6464÷(1+60%)+6464÷(120%)=6440+6480=8(元).所以这次交易盈利8元.设盈利60%的计算器的成本为x元,x(1+60%)=64,解得x=40.设亏本20%的计算器的成本为y元,y(120%)=64,解得y=80.所以64×2(40+80)=8(元),所以这次交易盈利8元.解:设该商品的进价为每件x 元,依题意,得900×0.9-40=10% x +x,解得x=700.答:该商品的进价为700元.【针对训练】1.2722.5 2.10039a 当堂检测 1. D 2.D 3.C4.解:设商店最多可以打x 折出售此商品,根据题意,得15001000(15).10x ⨯=+% 解得x = 7. 答:商店最多可以打7折出售此商品.5. 解:答:应在360元~480元内还价.。

人教版七年级上册(新)第三章《3.4实际问题与一元一次方程──列一元一次方程解决数学应用题》教案

人教版七年级上册(新)第三章《3.4实际问题与一元一次方程──列一元一次方程解决数学应用题》教案
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一元一次方程的基本概念。一元一次方程是形如ax + b = 0的方程,其中a和b是常数,x是未知数。它在数学中非常重要,可以帮助我们解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。例如,小明和小华的年龄问题,我们可以通过列出方程来计算他们未来的年龄差。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一元一次方程在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(2)在解决实际问题时,学生容易混淆题意,难以找出正确的等量关系。
难点解析:如长度和面积问题,学生需要明确题目中的长度、宽度等关系,正确列出方程。
(3)一元一次方程的解法在实际问题中的应用。
难点解析:学生需要将解法与实际问题相结合,理解解方程的过程,并正确求解。
(4)将解出的答案代入实际问题中,检验答案是否符合题意。
5.在解决问题的过程中,鼓励学生进行合作交流,培养团队协作能力和表达交流能力,符合新教材对学生综合素质培养的要求。
三、教学难点与重点
1.教学重点
(1)理解和掌握将实际问题抽象为一元一次方程的方法,能准确找出问题中的等量关系。
举例:如年龄问题,小明比小华大3岁,3年后小明比小华大几岁?能准确将问题抽象为方程:x + 3 = y。
人教版七年级上册(新)第三章《3.4实际问题与一元一次方程──列一元一次方程解决数学应用题》教案

2024年秋新人教版七年级上册数学教学课件 第五章 一元一次方程 章末复习

2024年秋新人教版七年级上册数学教学课件 第五章 一元一次方程 章末复习
(2)去括号,得 4x-60 + 3x + 4= 0. 移项,得 4x + 3x =60-4. 合并同类项,得 7x = 56. 系数化为 1,得 x = 8.
(3)2
2
x
3
=
x 2x 3 36
;(4)0.1
y+ 0.4
0.2
0.02 y 0.03 0.06
=
1
.
(3)去分母,得 3(2-x)-18 = 2x-(2x + 3). 去括号,得 6-3x-18 = 2x-2x-3. 移项,得-3x-2x + 2x =-3-6 + 18. 合并同类项,得-3x = 9. 系数化为 1,得 x =-3.
(3)2
2
x
3
=
x 2x 3 36
;(4)0.1
y+ 0.4
0.2
0.02 y 0.03 0.06
=
1
.
(4)整理,得
y+2 2y3
4
6
=1
去分母,得 3(y + 2)-2(2y-3) = 12.
去括号,得 3y + 6-4y + 6 = 12.
移项,得 3y-4y = 12-6-6.
合并同类项,得-y = 0.
51~100 100以上
则 m 的值是( B )
A. 4
B. -4 C. ±4 D. 5
一元一 次方程 的概念
|m|-3 = 1 m-4 ≠ 0
m = ±4 m ≠4
m = -4
2. 若方程 2ax + 3 – b = 0 的解为 x = 1,则式子
2a - b 的值为( A )

七年级学生学习列方程解应用题的一般方法

七年级学生学习列方程解应用题的一般方法

七年级学生学习列方程解应用题的一般方法所谓方程,就是“含有未知数的等式叫方程”。

而所谓列方程解应用题的思想方法,就是在一道数学实际应用题中运用方程的思想来寻求答案。

对于一道应用题学生如何入手是最重要的,所以用方程解答对初一学生来说容易接受,更容易理解解题过程。

方程是一种逆思维的实际问题的解题方法,它改变了以往解决逆思维题目用算术方法解答而学生很难理解的困惑,它符合学生的认知规律和知识基础,易于学生运用知识的正迁移、结合思维方法正确解决此类的实际问题,学生学的轻松、灵活、有效。

很好地提高了课堂教学的效率。

2、列方程解应用题的意义鉴于方程在数学中的重要作用和基础地位,在中学数学甚至小学数学的学习中方程也成为基本内容之一,如《全日制义务教育数学课程标准》第三阶段中方程的教学目标:能够根据具体问题中的数量关系,列出方程,体会方程是刻划现实世界的一个有效的数学模型;二、列方程解应用题的一般方法方程有这样一个定义:方程是未了求未知数,在未知数和已知数之间建立的一种等式关系。

这就揭示了方程的三种好处:第一、它揭示了方程这一数学思想方法的目标:为了求未知数;第二、陈述了“已知数”的存在,列方程解应用题需要充分利用已知数和未知数之间的关系;第三、方程的本质是“关系”,而且是一个等式关系。

所以,列方程解应用题归根结底就是要在实际问题中确定等量关系。

一般来说,列方程解应用题要完成两个转化过程:首先是通过分析把实际问题中的数量关系转化为数学问题,也就是列方程;其次是通过解方程,将未知数转化为已知,也就是方程变形。

根据等量关系列方程就成为列方程解应用题的关键。

而等量关系往往是隐含在题目中的,一般情况下,题目里是不会明显呈现的,并且确定等量关系也没有固定方法可循,如果考虑的角度不同,所取得的等量关系也不会相同。

学生学习列方程解应用题总是找不到恰当的等量关系。

找出题目中的等量关系是列方程解应用题的关键,此训练也有助于学生学习实现从算术思维到代数思维的转变。

【K12学习】七年级数学上册《解实际问题与一元一次方程》知识点人教版

【K12学习】七年级数学上册《解实际问题与一元一次方程》知识点人教版

七年级数学上册《解实际问题与一元一次方程》知识点人教版知识点在一个方程中,如果只含有一个未知数,且未知数的最高次数是1的整式方程叫做一元一次方程。

一般形式:ax+b=0。

一元一次方程只有一个解。

一元一次方程的最终结果是x=a的形式一元一次方程的“等式的性质1”和“等式的性质2”等式两边同时加或减一个相同数,等式两边相等。

等式两边同时乘或除以一个相同数,或一个整式,等式两边相等。

解法是通过移项将未知数移到一边,再把常数移到一边,然后两边同时除以未知数系数,即可得到未知数的值。

例题讲解例1.一件工作,甲独作10天完成,乙独作8天完成,两人合作几天完成?[分析]甲独作10天完成,说明的他的工作效率是1/10,乙的工作效率是1/8等量关系是:甲乙合作的效率×合作的时间=1解:设合作X天完成X=1解得X=40/9答:两人合作40/9天完成例2.一件工程,甲独做需15天完成,乙独做需12天完成,现先由甲、乙合作3天后,甲有其他任务,剩下工程由乙单独完成,问乙还要几天才能完成全部工程?[分析]设工程总量为单位1,等量关系为:甲完成工作量+乙完成工作量=工作总量。

解:设乙还需x天完成全部工程,设工作总量为单位1,由题意得,×3+=1,解这个方程,++=1+15+5x=605x=33∴x==6答:乙还需6天才能完成全部工程。

例3.一个蓄水池有甲、乙两个进水管和一个丙排水管,单独开甲管6小时可注满水池;单独开乙管8小时可注满水池,单独开丙管9小时可将满池水排空,若先将甲、乙管同时开放2小时,然后打开丙管,问打开丙管后几小时可注满水池?[分析]等量关系为:甲注水量+乙注水量-丙排水量=1。

解:设打开丙管后x小时可注满水池,由题意得,-=1解这个方程,-=11x+42-8x=723x=30∴x==2答:打开丙管后2小时可注满水池。

列方程解决实际问题的一般方法人教版七级数学上册点拨习题完美课件

列方程解决实际问题的一般方法人教版七级数学上册点拨习题完美课件

3列.方4 .程1 解列决方实程际解问决题实的际一问般题方的法一人般教方版法七-级20数20 学秋上人册教 点版拨七习年 题级课数件学 上册点 拨习题 课件(共 25张P PT)
10.一张长方形餐桌的四周可坐 6 人用餐,现把若干张这样的餐 桌按如图方式拼接.
(1)若把 4 张这样的餐桌拼接起来,四周可坐多少人?8 张呢? 解:若把 4 张这样的餐桌拼接起来,四周可坐 18 人; 若把 8 张这样的餐桌拼接起来,四周可坐 34 人.
列 方 程 解 决 实际问 题的一 般方法 人教版 七级数 学上册 点拨习 题课件
3列.方4 .程1 解列决方实程际解问决题实的际一问般题方的法一人般教方版法七-级20数20 学秋上人册教 点版拨七习年 题级课数件学 上册点 拨习题 课件(共 25张P PT)
解:设该农场去年计划生产玉米 x t、小麦(200-x)t. 根据题意,得(1+5%)x+(1+15%)·(200-x)=225,解得 x=50. 则 200-x=200-50=150. 50×(1+5%)=52.5(t), 150×(1+15%)=172.5(t). 答:该农场去年实际生产玉米 52.5 t、小麦 172.5 t.
人教版 七年级上
第三章 一元一次方程
第4节 实际问题与一元一次方程 第1课时 列方程解决实际问题的一般方

提示:点击 进入习题
(1)未知数 (2)数量;相
1 等;方程(3)方程 (4)
检验;答案
2 (2)(170-x) (3)3x=7(170-
x) (4)119;51 (6)119;51
3 见习题
上面所列方程中正确的有( A )
A.1 个
B.2 个
C.3 个
D.4 个

人教版七年级数学上册课件:3.4.1 解决实际问题(1)教学课件

人教版七年级数学上册课件:3.4.1 解决实际问题(1)教学课件
学生独立完成,然后同学间交流.
二、推进新课 投影展示课本例1. 例1 某车间有22名工人,每人每天可以生产1200个螺 钉或2000个螺母.1个螺钉需要配2个螺母,为使每天生产 的螺丝和螺母刚好配套,应安排生产螺钉和螺母的工人 各多少名? 教师提示学生思考以下问题: 1.“1个螺钉配2个螺母”这句话是什么意思,包含着 什么等量关系? 2.本问题中有哪些等量关系?
பைடு நூலகம்
投影展示课本例2. 例2 整理一批图书,由一个人做要40 h完成.现计划由 一部分人先做4 h,然后增加2人与他们一起做8 h,完成这 项工作.假设这些人的工作效率相同,具体应先安排多少 人工作? 学生先自主探究讨论,教师可以点拨以下问题. 分析:在工程问题中,通常把全部的工作量看作单位1. 根据题意完成下列各空. 1.人均效率为________.(指一个人1小时的工作量) 2.若设先由x人做4小时,完成的工作量是________. 再增加2人和前一部分人一起做8小时,两段完成的工作量 之和是________.
学生讨论后,独立尝试列方程.在本问题中“1个螺 钉配2个螺母”中包含的等量关系较隐蔽,是本问题的 难点,要让学生真正理解其中的含义.教师巡视检查 学生完成的情况.然后让学生打开教材,把自己的解 法和教材上的相比较,看一看过程中有什么不足之处, 修改以后思考下面的问题.
你的解法与教材上是否相同?如果相同,你是否能换 一种设未知数的方法解决这个问题?如果不同,请与 其他同学交流讨论比较两种方法间的异同点.
3.4 实际问题与一元一次方程(4课时)
第1课时 解决实际问题(1)
1.会根据实际问题中的数量关系列方程解决问题. 2.培养学生数学建模能力,分析问题、解决问题的能 力.
重点 将实际问题抽象为方程,列方程解应用题. 难点 将实际问题抽象为方程的过程中,如何找等量关 系.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 见习题
5A
6 见习题 7 见习题 8 见习题 9 见习题 10 见习题
答案显示
1.用一元一次方程分析和解决实际问题的基本步骤: (1)设_未__知__数_____; (2)分析问题中的__数__量___关系,找出其中的__相__等____关系,并由
此列出__方__程____; (3)解_方__程_____; (4)_检__验___解的正确性与合理性,并写出__答__案___.
解:设该农场去年计划生产玉米 x t、小麦(200-x)t. 根据题意,得(1+5%)x+(1+15%)·(200-x)=225,解得 x=50. 则 200-x=200-50=150. 50×(1+5%)=52.5(t), 150×(1+15%)=172.5(t). 答:该农场去年实际生产玉米 52.5 t、小麦 172.5 t.
7.(2019·吉林)问题解决: 如图,糖葫芦一般是用竹签穿上山楂,再蘸以冰糖制作而 成.现将一些山楂分别穿在若干根竹签上.如果每根竹签穿 5 个山楂,还剩余 4 个山楂;如果每根竹签穿 8 个山楂,还 剩余 7 根竹签.这些竹签有多少根?山楂有多少个?
解:问题解决 设竹签有 x 根. 由题意得 5x+4=8(x-7), 解得 x=20. 则有山楂 5×20+4=104(个). 答:竹签有 20 根,山楂有 104 个.
7
出工,求各村出工的人数.
①设甲、乙、丙三村分别派 3x 人、4x 人、7x 人,依题意得
3x+4x+7x=84;
②设甲村派 x 人,依题意得 x+4x+7x=84;
③设乙村派 x 人,依题意得 x+43x+74x=84;
④设丙村派 x 人,依题意得 3x+4x+x=84.
上面所列方程中正确的有( A )
依题意,列方程可得20x%+(
75-64-x 15%
) =64,
解得 x=___5_._6___. 75-64-x=___7_5_-__6_4_-__5_.6____=___5_._4________. 方法 2:设 12 月份甲柜台的营业额是 y 万元,则乙柜台的营业
额是(64-y)万元. 依题意,列方程可得__(1_+__2_0_%__)_y_+__(_1_+__1_5_%__)(_6_4_-__y_)_=__7_5___, 解得 y=___2_8____.
2.3 月 12 日是植树节,七年级 170 名学生参加义务植树活动, 如果平均一名男生一天能挖树坑 3 个,平均一名女生一天能 种树 7 棵,且正好使每个树坑种一棵树,那么该年级的男生、 女生各有多少名?
(1)审题:审清题意,找出已知量和未知量; (2)设未知数:设该年级的男生有 x 名,那么女生有_(_1_7_0_-__x_) 名; (3)列方程:根据相等关系,列方程为_3_x_=__7_(_1_7_0_-__x_)___________;
所以甲柜台增长了__2_8___×20%=___5_.6__(万元), 乙柜台增长了_(_6_4_-__2_8_)__×15%=___5_.4____(万元). 答:甲柜台的营业额增长了__5_.6_____万元,乙柜台的营业额增长
了___5_._4___万元.
*4.(2018·张家界)列方程解应用题 《九章算术》中有“盈不足术”的问题,原文如下:“今有共買 羊,人出五,不足四十五;人出七,不足三.问人数、羊價 各幾何?” 题意是:若干人共同出资买羊,每人出 5 元,则差 45 元;每 人出 7 元,则差 3 元.求人数和羊价各是多少.
人教版 七年级上
第三章 一元一次方程
第4节 实际问题与一元一次方程 第1课时 列方程解决实际问题的一般方

提示:点击 进入习题
(1)未知数 (2)数量;相
1 等;方程(3)方程 (4)
检验;答案
2 (2)(170-x) (3)3x=7(170-
x) (4)119;51 (6)119;51
3 见习题
(4)解方程:解得 x=____1_1_9____,则女生有___5_1______名; (5)检验:将解得的未知数值放入实际问题进行验证; (6)作答:答:该年级的男生有__1_1_9__名,女生有_5_1__名.
3.某商场甲、乙两个柜台去年 12 月份的营业额共计 64 万元, 今年 1 月份甲柜台的营业额增长了 20%,乙柜台的营业额增 长了 15%,两个柜台的营业额达到 75 万元.求两个柜台的 营业额各增长了多少万元. 分析:根据题中已知有如下相等关系: 12 月份甲柜台的营业额+12 月份乙柜台的营业额= ___6_4____万元,
1 月份甲柜台的营业额+1 月份乙柜台的营12 月份的营
乙柜台 12 月份的营
业额×(1+20%)
业额×(1+15%)
解:方法 1:设 1 月份甲柜台的营业额增长了 x 万元,则 1 月份
乙柜台的营业额增长了__(_7_5_-__6_4_-__x_)__________万元.
A.1 个
B.2 个
C.3 个
D.4 个
6.某国际马拉松赛鸣枪开跑,一名 34 岁的男子带着他的两个孩 子一同参加了比赛,下面是两个孩子与记者的对话:
根据对话内容,请你用方程的知识帮记者求出哥哥和 妹妹的年龄.
解:设哥哥的年龄是 x 岁,则妹妹的年龄是(16-x)岁. 根据题意,得 3(16-x+2)+(x+2)=34+2,解得 x=10. 则 16-x=6. 答:哥哥的年龄是 10 岁,妹妹的年龄是 6 岁.
【点拨】设人数为未知数,根据羊价不变列方程.也可以设羊价 为未知数,根据人数不变列方程,同学们不妨试一试.
解:设人数是 x. 由题意得 5x+45=7x+3,解得 x=21. 5×21+45=150(元). 答:人数是 21,羊价是 150 元.
5.如果甲、乙、丙三村合修一条公路,计划出工 84 人,按
反思归纳: 现有 a 根竹签,b 个山楂.若每根竹签穿 c 个山楂,还剩余 d 个 山楂,则下列等式成立的是___2_____(填写序号).(1)bc+d=a; (2)ac+d=b;(3)ac-d=b.
8.(中考·威海)某农场去年计划生产玉米和小麦共 200 t,采用新 技术后,实际产量为 225 t,其中玉米超产 5%,小麦超产 15%. 该农场去年实际生产玉米、小麦各多少吨?
相关文档
最新文档