压铸模具设计
压铸成型工艺与模具设计第章侧向抽芯机构设计
压铸成型工艺与模具设计:第章侧向抽芯机构设计1. 压铸成型工艺概述压铸成型是一种高效的工业生产方式,可以制造高精度、高品质的复杂零件。
该工艺使用一种叫做压铸机的设备,通过将熔化的金属注入到模具中,形成所需的零件。
压铸成型工艺广泛应用于汽车、电子、家电等行业,是现代工业生产中不可或缺的一环。
2. 模具设计中的侧向抽芯机构模具是压铸成型的核心之一。
在压铸过程中,模具起到了定型和成型的作用,直接影响到零件的精度和质量。
而侧向抽芯机构是模具中的一个重要组成部分。
侧向抽芯机构主要用于制造内部空洞或者凸台状的零件,在模腔中完成压铸后,通过侧向动力来将产品从模具中抽出。
3. 侧向抽芯机构的优点和应用侧向抽芯机构主要分为侧推式和抽拉式两种,各有特点。
在模具设计中,侧向抽芯机构的应用非常广泛,可以用于生产各种复杂的汽车、电子、家电等行业所需的高精度零件。
侧向抽芯机构在模具设计中的应用还有以下优点:•改善产品的精度。
侧向抽芯机构可以帮助制造更加精密的零件,保证产品的精度。
•提高生产效率。
侧向抽芯机构使零件的脱模速度更加稳定,从而提高生产效率。
•节省材料成本。
侧向抽芯机构可以生产更精细的零件,可以帮助压铸过程中节省材料成本。
4. 侧向抽芯机构设计的要点侧向抽芯机构的设计是模具设计中非常重要的一部分,需要考虑以下要点:4.1 选材侧向抽芯机构需要选用高质量的材料,以确保其结构的稳定性和使用寿命。
4.2 结构设计在模具设计中,侧向抽芯机构的结构设计也非常关键。
需要考虑到产品的结构特点,以及抽芯机构的具体应用场景。
4.3 几何形状抽芯机构的几何形状也会直接影响产品的质量。
需要在设计抽芯机构时,考虑产品形状和压铸成型的要求。
5.侧向抽芯机构是压铸模具设计中非常重要的一部分,可以帮助制造更加精细、高品质的零件。
在模具设计中,需要考虑到抽芯机构的选材、结构设计和几何形状等方面,以保证产品的质量和生产效率。
压铸工艺与模具设计
压铸工艺与模具设计压铸是一种常见的金属成型工艺,通过将熔融金属注入到预先设计的模具中,经过冷却与固化,得到所需形状的金属制品。
压铸工艺具有高效、精度高、生产周期短等优点,广泛应用于汽车、机械、电子等领域。
而模具设计是实现压铸工艺的关键环节,决定了产品的质量和生产效率。
下面将从压铸工艺和模具设计两个方面进行详细阐述。
一、压铸工艺1.压铸工艺流程:首先,将金属加热至熔点,并注入到模具中;然后,通过高压注射机构,将熔融金属迅速注入模具中,并保持一段时间;待金属冷却并固化后,打开模具,取出成品。
2.压铸工艺特点:①高效、精度高:压铸通过模具的高速填充和快速冷却,能够实现高效率、高精度的生产;②生产周期短:相比其他金属成型工艺,压铸生产周期较短,适用于大批量生产;③生产成本低:压铸可以实现自动化生产,减少人工成本;④可复杂成型:压铸可以实现复杂形状、薄壁、高强度的金属制品成型。
二、模具设计模具设计是实现压铸工艺的关键环节,影响产品的质量和生产效率的重要因素。
以下是模具设计的主要考虑因素:1.模具材料选择:模具材料要具有耐磨性、耐腐蚀性、热传导性和高温强度,常用的模具材料包括铸钢、合金钢等。
2.模具结构设计:模具结构设计要考虑产品的形状、尺寸及要求,尽可能减少产品缺陷和铸件结构应力,提高生产效率和产品质量。
3.模具冷却系统设计:模具冷却系统的设计直接影响到成品的质量和生产效率。
合理的冷却系统设计可以加快铸件凝固速度,减少缺陷的产生。
4.模具排气系统设计:排气系统的设计对于排除铸件中的气体孔洞和缺陷非常重要,合理的排气系统设计能够提高产品质量。
5.模具表面处理:模具表面处理可以提高成品的表面质量和延长模具寿命,常见的表面处理方式包括硬镀铬、熔融硬化、电镀等。
总结:综上所述,压铸工艺与模具设计是密切相关的。
压铸工艺具有高效、精度高、生产周期短等优点,模具设计是实现压铸工艺的关键环节,包括模具材料选择、模具结构设计、模具冷却系统设计、模具排气系统设计和模具表面处理。
压铸模具的设计与制造
压铸模具的设计与制造摘要本文介绍了压铸模具的设计与制造的基本原理和步骤。
首先,通过分析压铸工艺的特点和要求,确定压铸模具的设计准则和选材原则。
然后,介绍了压铸模具的结构和主要部件,并详细阐述了压铸模具设计的关键要素,如模具尺寸、浇口设计、冷却系统等。
最后,介绍了压铸模具的制造过程和注意事项,包括模具加工工艺、表面处理和模具试模等。
1. 引言压铸是一种常用的金属件成型工艺,广泛应用于汽车、电器、航空航天等领域。
而压铸模具作为压铸工艺的核心部件,直接影响产品的质量和生产效率。
因此,设计和制造高质量的压铸模具对于压铸工艺的成功应用至关重要。
2. 压铸模具设计的准则和选材原则2.1 压铸模具设计准则 - 模具的结构要易于制造和装卸。
- 模具的结构要满足产品的要求,确保产品的尺寸和表面质量。
- 模具的结构要考虑生产的连续性,尽量减少生产过程中不必要的停机时间。
2.2 压铸模具选材原则 - 模具材料应具有足够的强度和耐磨性。
常用的模具材料有H13、5CrNiMo等。
- 模具材料的热稳定性要好,能够承受高温和热冷交替的工作环境。
- 模具材料的导热性要好,以便快速散热,降低模具温度。
3. 压铸模具结构和主要部件3.1 压铸模具结构 - 模具底座:承载模具的主要部件,负责固定模具和提供支撑。
- 固定板:固定模具的位置,具有高度和平面度要求。
- 移动板:用于模具的开合动作,实现铸件的脱模。
- 滑块:用于在模具开合过程中加快铸件的脱模速度。
-缩水板:用于控制铸件在冷却过程中的收缩变形。
3.2 压铸模具主要部件 - 模具腔:用于形成铸件的空腔部分,需要考虑产品的尺寸和形状。
- 浇杆系统:用于将熔融金属注入模腔中的系统,包括浇杆、浇口和溢流槽等。
- 冷却系统:用于控制模具温度的系统,可以通过冷却水或其他介质实现。
4. 压铸模具设计的关键要素4.1 模具尺寸 - 模具尺寸的确定要考虑产品的尺寸和结构要求,确保产品的尺寸和形状的准确性。
压铸模具设计方案
压铸模具设计方案压铸模具设计方案一、设计方案概述本设计方案旨在设计一种用于压铸工艺的模具,以满足工件的外观质量和尺寸精度要求。
本设计方案采用CAD软件进行设计,并结合模具设计的基本原理和经验进行设计。
二、模具结构设计1. 模具整体结构设计模具采用分离式结构设计,包括上模和下模。
上模为固定模,下模为活动模。
其中,上模包括模座、顶针、顶杆等部件,下模包括模座、导柱、导套等部件。
模具座采用刚性结构,以确保模具的稳定性和刚度。
2. 模具中心距设计模具中心距的确定是保证工件尺寸精度的关键之一。
根据工件的尺寸和结构特点,设计合理的模具中心距,以确保模具能够精确复制工件的尺寸。
3. 模具冷却系统设计为了提高生产效率、减少模具磨损和延长模具寿命,设计冷却系统对模具进行冷却。
冷却系统包括冷却孔和进水口,通过冷却水的流动,迅速冷却模具,以提高生产效率和模具寿命。
4. 模具材料选择模具的材料选择是保证模具寿命和使用效果的重要因素。
根据工件的材料和要求,选择适当的模具材料,保证模具具有良好的硬度和耐磨性。
三、模具生产工艺1. 加工工艺规程模具的加工工艺包括数控加工、外圆磨削等。
根据模具的具体结构和工艺要求,制定合理的加工工艺规程,以确保模具的加工质量。
2. 检测工艺模具加工完成后,进行检测以验证模具的质量。
检测工艺包括模具尺寸检测、表面质量检测等,通过合适的检测工艺,确保模具符合设计要求。
四、模具的维护、维修和更换为了保证模具的正常使用和延长其寿命,进行模具的定期维护、维修和更换。
维护工作包括清洁模具、添加润滑剂等,维修工作包括修复模具损伤、更换模具部件等,更换工作包括根据模具磨损程度,定期更换模具部件。
五、结论本设计方案是一种用于压铸工艺的模具设计方案,通过合理的结构设计、材料选择和加工工艺,可以满足工件的外观质量和尺寸精度要求。
同时,通过模具的定期维护、维修和更换,可以保证模具的正常使用和延长其寿命。
压铸模具设计基础知识
压铸模具设计基础知识一、概述压铸模具是用于压铸工艺的模具,在金属、塑料等材料的制品生产过程中起到关键作用。
压铸模具的设计质量直接影响产品的质量和生产效率。
本文将介绍压铸模具设计的基础知识,包括设计原则、材料选择、结构设计等内容。
二、设计原则1.功能性原则压铸模具应该符合产品的设计要求,能够满足产品的结构、尺寸、表面质量等要求。
设计过程中需要充分考虑产品的功能性需求,确保模具能够满足生产要求。
2.可制造性原则在设计压铸模具时,需要考虑到模具的加工工艺和生产成本。
设计应尽量简化,避免复杂的结构和加工工艺,以降低生产成本。
3.可靠性原则压铸模具在长期使用中需要具有稳定可靠的性能。
设计中需要考虑模具的寿命、耐磨性等因素,确保模具能够长时间稳定运行。
4.易维护性原则模具在使用过程中可能会有损坏或磨损,设计时需要考虑模具的易维护性,便于维修和更换受损部件。
三、材料选择压铸模具的材料选择直接影响模具的寿命和性能。
常用的模具材料包括工具钢、合金钢、硬质合金等。
在选择材料时需要考虑以下因素:1.硬度模具材料应具有足够的硬度和强度,能够抵抗压力和磨损,确保模具的稳定性和寿命。
2.热稳定性压铸过程中温度较高,模具材料需要具有良好的热稳定性,不易变形或烧损。
3.耐磨性压铸模具在长期使用中会有磨损,需要选择耐磨性好的材料,延长模具的使用寿命。
4.耐蚀性部分压铸过程中会有化学物质接触,模具材料需要具有良好的耐腐蚀性,避免腐蚀损坏。
四、结构设计压铸模具的结构设计直接影响产品质量和生产效率。
在设计时需要考虑以下因素:1.分型设计合理的分型设计能够提高产品的成型效率和质量,减少缺陷产生。
分型设计应考虑产品的结构特点和成型过程中的收缩变形。
2.冷却系统设计冷却系统设计影响压铸过程中的温度控制和冷却速度,直接影响产品的组织和性能。
设计时应考虑冷却系统的布局和冷却介质的选择。
3.排气系统设计在压铸过程中需要排除模具内的气体,避免气泡和气孔产生。
压铸工艺及模具设计
压铸工艺及模具设计在工业生产中,压铸工艺及模具设计是常见且重要的工艺制造方法。
压铸工艺以其高效、高质量和高精度的特点,被广泛应用于汽车、摩托车、电子、机械和家电等行业。
压铸工艺是指将金属材料经过加热熔化后,通过高压注入模具中,使金属凝固成型的工艺过程。
压铸工艺的主要特点是能够快速、高效地生产复杂形状、高精度的零部件。
压铸工艺通常分为冷室压铸和热室压铸两种方式。
冷室压铸适用于铝合金、镁合金和铜合金等高熔点金属的铸造,而热室压铸适用于低熔点金属如锌合金、铅合金和锡合金等的铸造。
模具设计在压铸工艺中起到了至关重要的作用。
模具设计的质量直接影响到产品的质量、生产效率和成本。
压铸模具通常包括上模、下模、模芯和顶针等零件组成。
对于复杂形状的产品,还需要考虑模具的结构、冷却系统和顶出机构等技术要求。
模具设计要考虑到产品的材料、几何复杂度、尺寸精度和表面质量等因素,充分利用材料的力学性能和热传导性能,以满足产品的工程要求。
1.材料选择:压铸工艺适用于铝合金、镁合金、铜合金、锌合金等多种金属材料。
不同的材料有不同的熔点、流动性和固化速度等特点,需要根据产品的要求选择合适的材料。
2.模具结构:模具的结构包括上模、下模和模芯等组成部分,需要考虑产品的几何形状、尺寸精度和表面质量等工程要求。
同时,模具还要具备良好的刚性和稳定性,以确保产品的精度和质量。
3.冷却系统:在压铸过程中,金属材料需要快速冷却和固化,以保证产品的密实性和准确性。
因此,模具中需要设置合理的冷却系统,以提高铸件的冷却速度和冷却效果。
4.顶出机构:对于出模困难的产品,需要设计合适的顶出机构,以确保产品能够顺利脱模。
顶出机构通常包括顶针、顶杆和顶出板等部件。
5.加工工艺:压铸工艺需要考虑金属材料的熔化温度、注射压力和注射速度等因素。
在模具设计中要合理设置熔化炉、喷嘴和压机等设备,确保加工工艺的可行性和稳定性。
在压铸工艺及模具设计中,需要综合考虑产品的功能要求、表面效果、生产批量和成本等因素,以找到最优的工艺和设计方案。
压铸工艺及压铸模具设计要点
压铸工艺及压铸模具设计要点压铸工艺及压铸模具设计要点压铸是一种利用压力将液态金属注入模具中,通过冷却凝固形成定形零件的制造方法。
压铸产品在重量、强度、尺寸方面都有非常高的准确性和稳定性,被广泛应用于汽车、摩托车、电子、通讯设备、家电等产业中,成为目前工业生产中不可或缺的一种制造技术。
下面将从压铸工艺及压铸模具设计要点两个方面进行阐述。
一、压铸工艺1. 材料准备:首先需要准备液态金属,一般使用的是微量合金钢、铝合金、镁合金、铜合金等牌号。
材料的纯度、质量直接影响产品的质量。
2. 模具设计:由于压铸的成形过程主要依靠模具的形状和大小,所以模具设计非常重要。
模具一般由流道、高压室、模腔等主要部分组成,需要用CAD 设计软件绘制出预想的产品三维模型,然后进行分析预测。
3. 夹具安装:很多压铸厂家采用自动化流水线作业,这样可以让夹具自动加载模具。
夹具的准确安装和保持最佳状态对产品稳定的尺寸和质量有着至关重要的作用。
4. 液态金属注入:注入过程需要注意金属温度的控制,因为如果注入过热的金属会造成热缩,也会加快金属与模具接触面损耗的速度。
注入金属的速度和压力也需要掌握恰当的水平。
5. 压力保持和冷却:完成注入后,需要将模具保持一定的压力,通常设置的保持时间在15-20秒之间,直到金属凝固成型,然后通过水冷却或空气冷却来加速金属的冷却,降低模腔温度,以便后续顺利脱模。
6. 脱模:经过强制冷却后,模具表面的金属固化成型,可以脱模取出。
如果模具内存在脱模困难的产品,则采用震动或喷水技术来辅助脱模。
二、压铸模具设计要点1. 模具材料:模具材料的决定因素是金属的特性和成本。
有些材料具有良好的抗磨损性和耐腐蚀能力,例如CrMoV 钢,有些材料则具有良好的导热性和导电性能,例如铝合金。
选用模具材料需要考虑两方面因素:一、材料的使用寿命;二、成本。
2. 模具结构:模具结构需要考虑到成品的尺寸、线条、强度和表面质量等因素。
通常情况下,模具结构应该是四侧对称的,以确保在生产过程中的稳定性和成品准确性。
常见的压铸模具结构及设计
常见的压铸模具结构及设计压铸模具是利用压力将熔融金属注入模具腔中,通过冷却固化后得到所需形状的金属制品。
它由模具座、模具芯、模具板等组成,其结构设计直接影响到压铸产品的质量和生产效率,因此压铸模具的结构设计是相当关键的。
1.单向模具结构:即模具腔和模具芯的投入方向相同,熔融金属由一边流入模具腔,另一边流出。
这种结构适用于形状简单的压铸产品,生产效率较高。
但由于金属在流动过程中存在进气孔和气泡的产生,容易影响产品质量。
2.双向模具结构:即模具腔和模具芯的投入方向相反,熔融金属同时从两个方向流入模具腔,避免了进气孔和气泡的产生,使产品质量更加稳定。
但此种结构制造难度较大,因此适用于形状复杂的产品。
3.多向模具结构:即模具腔和模具芯的投入方向可以有多个选择,根据具体产品的形状和要求来设计。
这种结构适用于有多个几何孔形和复杂造型的产品。
4.滑动式模具结构:适用于有突出部分或凹陷部分的产品,模具芯和模具腔可以相对滑动,来实现产品形状的复杂性。
滑动式模具结构使得产品成型更加容易,同时也增加了模具制造的难度。
5.注射式模具结构:适用于较大规模的压铸产品生产,通过在模具腔中注入压力来驱动熔融金属充满整个模具腔,从而制造大型、复杂的产品。
在压铸模具的设计中,需要考虑以下几个方面:1.模具材料的选择:通常采用高速钢、合金钢或特殊合金作为模具材料,以保证模具的耐磨性和耐蚀性。
2.模具结构的合理性:要满足产品的形状和要求,保证产品质量和生产效率。
通过模具芯、模具腔和模具座的设计,确定模具的结构。
3.模具冷却系统的设计:合理的冷却系统设计可以缩短模具的冷却时间,提高生产效率。
同时可以有效控制模具温度,避免模具受热膨胀。
4.维修和更换模具的方便性:设计模具时要考虑到日常维修和更换部件的便利性,提高模具的使用寿命。
总结起来,压铸模具的结构设计需要根据产品形状和要求来确定,考虑到产品质量和生产效率。
同时还要合理选择模具材料,设计冷却系统,并考虑维修和更换模具的方便性。
压铸工艺流程中的模具设计要点
压铸工艺流程中的模具设计要点压铸是一种常用的金属加工工艺,通过将熔融金属注入模具中,并在固化后取出成型件。
模具设计是整个压铸工艺中的关键环节,决定了成型件的质量和生产效率。
本文将从模具结构设计、材料选择和加工工艺三个方面讨论压铸工艺流程中的模具设计要点。
一、模具结构设计要点1. 合理选择模具结构模具结构的设计应根据产品的形状、尺寸和压铸工艺要求进行合理选择。
一般常见的模具结构包括单腔、多腔、合模和分模等。
对于形状复杂的产品,可以采用多腔结构来提高生产效率。
对于尺寸较大的产品,可以考虑采用合模结构来减少模具成本。
2. 考虑产品的冷却和顶针装置在模具设计中,需要考虑产品的冷却和顶针装置。
冷却系统的设计应能够有效地排除熔融金属的热量,以确保成型件的质量。
顶针装置的设计应满足产品的要求,并保证顶针在压铸过程中的精确位置。
3. 设计合理的浇口和溢流槽浇口和溢流槽是模具设计中的重要组成部分。
设计浇口时应考虑熔融金属的流动性和冷却速度,并确保浇口与产品的结合处处于合适的位置。
溢流槽的设计应考虑金属液体的顺利流动,以避免产生气体和杂质。
二、材料选择要点1. 选择耐磨耐热的材料模具在压铸过程中需要承受高温和高压的作用,因此材料的选择至关重要。
一般采用耐磨耐热的工具钢或合金钢作为模具材料,以保证模具的使用寿命和成型件的质量。
此外,还应考虑材料的加工性能和可靠性。
2. 考虑材料的强度和刚性模具的结构设计需要兼顾材料的强度和刚性。
材料的强度直接影响到模具的承载能力,而刚性则影响到模具的稳定性和精度。
因此,在模具设计中应根据产品的要求选择合适的材料,并进行合理的加工和热处理,以提高模具的性能。
三、加工工艺要点1. 精确计算和控制成型参数在压铸工艺中,成型参数的精确计算和控制是保证成型件质量和加工效率的关键。
成型参数包括注射速度、压力、温度和冷却时间等。
合理选择和控制这些参数,可以避免产生缺陷和变形,提高成型件的精度和表面质量。
压铸基本概念压铸模具设计
压铸基本概念压铸模具设计
一、引言
压铸是一种常见的金属加工方法,通过将熔化的金属注入到模具中进行成形。
在压铸过程中,模具设计起着至关重要的作用。
本文将探讨压铸的基本概念以及压铸模具设计的要点。
二、压铸的基本概念
1. 压铸的工艺流程
压铸的工艺流程通常包括准备模具、熔化金属、填充模腔、冷却凝固、开模脱模等步骤。
在整个过程中,模具的设计直接影响着产品的成型质量。
2. 压铸的优势
压铸具有生产效率高、产品精度高、表面质量好等优点,被广泛应用于汽车制造、电子产品等行业。
3. 压铸的材料
常用的压铸材料包括铝合金、锌合金、镁合金等,不同材料的选择会影响产品的性能和成本。
三、压铸模具设计要点
1. 模具结构设计
模具的结构设计应考虑产品的形状、尺寸、壁厚等因素,确保产品能够正确成型并具备所需的性能。
2. 冷却系统设计
良好的冷却系统设计可以有效控制产品的冷却速度,避免产生变形或裂纹。
3. 喷口设计
喷口的设计应考虑金属的填充状态,避免产生气孔或渣等缺陷。
4. 排气系统设计
排气系统的设计可以排出模腔中的气体,防止气体被包裹在金属中导致气孔。
5. 浇口设计
浇口设计应考虑金属的流动路径,避免产生气孔或短裂纹。
四、总结
压铸是一种重要的金属加工方法,模具设计是保证产品质量的关键。
通过合理的模具设计,可以有效提高产品的生产效率和质量。
希望本文对压铸基本概念和压铸模具设计有所帮助。
以上内容为压铸基本概念和压铸模具设计的相关内容,涉及了压铸的优势、材料、模具结构设计、冷却系统设计等方面。
压铸成形工艺及模具设计
压铸成形工艺及模具设计一、压铸成形工艺1.压铸成形工艺是指将熔融的金属注入到压铸模腔中,经过一定的冷却时间和压力,使金属凝固成型的一种工艺。
压铸成形工艺主要用于制造复杂形状、精度高、表面质量要求较高的金属零件。
2.压铸成形工艺流程:(1)模具闭合:将模具的上下模闭合,并确保两模之间的间隙均匀。
(2)进料:将预先加热熔融的金属材料注入到压铸机的料斗中。
(3)注料:借助压铸机的压力将熔融金属注入到模腔中。
(4)冷却:通过冷却系统使金属冷却固化。
(5)脱模:打开模具,将成型的零件取出。
3.压铸成形工艺的优势:(1)成型周期短:压铸成形工艺生产周期短,能够高效地生产大量复杂形状的金属零件。
(2)生产精度高:由于模具的尺寸稳定,压铸成形工艺能够保证零件的尺寸精度高,表面质量好。
(3)材料利用率高:压铸成形工艺可以通过智能化控制,精确控制金属的注入量,减少材料浪费。
(4)工序简单:压铸成形工艺只需进行模具的闭合、注料、冷却和脱模等简单工序即可完成零件的生产。
二、模具设计1.模具是压铸成形工艺中非常重要的工具,模具设计的好坏直接影响到成型零件的质量和生产效率。
2.模具设计需要考虑的因素:(1)零件的形状复杂度:根据零件的形状复杂度选择合适的模腔结构,以保证零件的成型质量。
(2)材料的流动性:通过模具的设计,合理控制金属材料的流动性,以避免金属在注入过程中产生气孔和缺陷等问题。
(3)模具的耐用性:考虑到模具在生产过程中需要承受高温和高压等环境,应选择耐磨、耐腐蚀的材料制作模具。
(4)模具的冷却系统:设计合理的冷却系统,以确保模具在生产过程中能够及时散热,提高生产效率。
(5)模具的可维修性:合理设计模具的结构,以便于进行模具的维修和调整,延长模具的使用寿命。
3.模具设计的步骤:(1)确定零件的几何形状和尺寸。
(2)选择模具的结构类型。
(3)设计模腔和配套零部件。
(4)设计冷却系统和排气系统。
(5)选择模具材料和热处理工艺。
压铸工艺及压铸模具设计
压铸工艺及压铸模具设计1.压铸工艺简介压铸是一种将熔化金属注入模具腔内,然后通过压力固化成型的工艺。
它具有高效、高精度、高复杂度的特点,被广泛应用于制造各种金属零件,如汽车零件、电子零件等。
压铸工艺主要分为准备工作、铸造操作和后处理三个阶段。
准备工作包括选材、设计和制造模具等;铸造操作包括将金属加热至熔点、注入模具等;后处理包括去除模具、修整铸件等。
压铸模具是实现压铸工艺的重要工具,它直接影响着产品质量和生产效率。
模具设计需要考虑以下几个方面。
首先是材料选择。
模具的材料需要具备高强度、高耐磨性、高热稳定性等特点,以保证模具长期使用。
其次是结构设计。
模具结构应该简单、合理,易于加工和维修。
同时,对于复杂的产品,需要设计合适的分型面和可抽出芯等特殊结构。
再次是流道系统设计。
流道系统是将熔化金属导入模腔的通道。
优化的流道系统能够保证铸件充型充满、减小气泡和炸破等缺陷的产生。
最后是冷却系统设计。
良好的冷却系统能够快速、均匀地将铸件冷却,提高生产效率和产品质量。
常见的冷却系统包括水冷却、气冷却等。
3.常见问题及解决方法在压铸工艺和模具设计过程中,常会面临一些问题和挑战。
以下是一些常见问题及其解决方法。
首先是翘曲和变形问题。
由于金属在冷却过程中会有收缩和变形,容易导致铸件产生翘曲和变形。
解决方法可以是增加冷却系统,控制金属温度等。
其次是气孔和缺陷问题。
气孔和缺陷是常见的铸件质量问题,可能是由于金属中的气体未能完全排出或模具内部有不完全填充的区域导致。
解决方法可以是优化流道和冷却系统,增加压力等。
最后是模具使用寿命问题。
模具在使用过程中会受到磨损、冲击和热应力等的影响,容易损坏。
解决方法可以是选用高耐磨材料、增加模具表面硬度等。
4.发展趋势随着科技的发展和需求的变化,压铸工艺和模具设计也在不断发展和改进。
未来的发展趋势主要包括以下几个方面。
首先是数字化和智能化。
通过数字化技术和智能化设备,可以实现对压铸工艺和模具设计的更精确和高效的控制。
压铸模设计压铸件结构设计及压铸工艺
压铸模设计、压铸件结构设计及压铸工艺引言压铸是一种常用的金属零件制造方法,其通过将熔化的金属注入到预先加工好的模具中,通过压力将金属冷却固化成型。
在压铸过程中,压铸模具的设计、压铸件结构的设计以及压铸工艺的选择都是至关重要的。
本文将分别介绍压铸模设计的相关要点、压铸件结构设计的原则以及压铸工艺的选择。
压铸模设计要点压铸模具是进行压铸加工的关键工具,其设计的合理与否直接影响到产品质量和生产效率。
下面是一些压铸模设计的要点:1.模具材料选择:常见的模具材料有钢、铝合金等,根据压铸件的要求和使用场景选择合适的模具材料,以确保模具具有足够的强度和耐磨性。
2.结构设计:模具的结构要合理,与压铸件的形状相匹配,避免出现脱模困难、变形等问题。
同时,要考虑到模具的拆卸和维护,方便进行清理和更换模具零部件。
3.冷却系统设计:在模具中设置合适的冷却系统,以提高压铸件的凝固速度并避免产生缺陷。
冷却系统的设计要考虑到冷却介质的流动性、冷却效果以及与压铸件形状的匹配等因素。
4.压铸模表面处理:对模具表面进行适当的处理,如喷涂涂层、表面硬化等,以延长模具的使用寿命和提高模具的抗腐蚀性能。
压铸件结构设计原则压铸件结构设计的目标是在满足产品功能和外观要求的前提下,尽量减少结构复杂性和提高生产效率。
以下是一些常用的压铸件结构设计原则:1.壁厚均匀:保持压铸件的壁厚均匀,避免厚度过大或过薄导致不均匀收缩和应力集中。
2.避免尖角和过度薄壁结构:减少压铸件中的尖角和过度薄壁结构,因为这些部分容易引起变形和缺陷。
3.引导放料设计:在压铸件结构中设置合适的引导放料设计,以确保熔融金属能够充分填充整个模腔,并避免产生气孔和冷却不均。
4.滑动方向和出料设计:考虑到模具的拆卸和压铸件的出料,结构中应合理设置滑动方向和出料设计,以方便模具的安装和压铸件的脱模。
压铸工艺选择在确定了压铸模具设计和压铸件结构设计后,还需要选择适合的压铸工艺。
以下是一些常用的压铸工艺选择要点:1.压铸机选择:根据压铸件的尺寸和形状,选择合适的压铸机型号和规格。
第5章压铸模分型面设计
第5章压铸模分型面设计压铸模分型面设计是指在压铸模具设计中,为了方便模具开合和工件的取出,需要确定模具的分型面。
合理的分型面设计可以提高模具的使用寿命和生产效率,保证工件的质量。
本章将重点介绍压铸模分型面设计的原则和方法。
首先,压铸模分型面设计应符合以下原则:1.分型面应在工件较大的侧面,以便于工件容易取出。
一般来说,工件的表面较宽、长或面积较大的一侧作为分型面更合适。
2.分型面应尽量与工件的外形接近,减少加工量,提高生产效率。
3.分型面应具有足够的强度和刚度,以承受开合模具时的压力和挤压力。
4.分型面应尽量平滑,避免出现过多的锐角和凹凸不平的情况。
5.分型面应尽量避免位于工件的重要零部件上,避免对工件的质量造成影响。
接下来,介绍几种常见的压铸分型面设计方法:1.倒角法:将工件的角部倒圆,使其成为模具的分型面。
这种方法适用于工件角部比较尖锐的情况,可以减少材料的切割量,提高模具的使用寿命。
2.拉伸法:将工件的一部分拉长,成为模具的分型面。
这种方法适用于工件长度较长的情况,可以减少模具的长度,降低模具的成本。
3.分模法:将复杂形状的工件分成多个部分,每个部分都有一个相对简单的分型面。
通过组合这些分型面,可以得到整个工件的分型面。
4.滑板法:在模具上设置一个可移动的滑板,通过滑动滑板来完成工件的分型。
这种方法适用于工件较大的情况,可以减少模具的体积,提高模具的生产效率。
综上所述,压铸模分型面设计是压铸模具设计中非常重要的一环。
合理的分型面设计可以提高模具的使用寿命和生产效率,保证工件的质量。
通过倒角法、拉伸法、分模法和滑板法等不同的设计方法,可以根据工件的形状和尺寸选择适合的分型面设计方案。
在设计过程中,还需要考虑分型面的强度、刚度和平滑度等因素,以确保模具的稳定性和准确性。
压铸模具设计
压铸模具设计基础知识
压铸模具设计基础知识压铸模具是制造压铸件的关键设备,它直接影响着压铸产品的质量和生产效率。
下面将详细介绍压铸模具设计的基础知识。
一、压铸模具的分类压铸模具一般可分为冷室压铸模具和热室压铸模具两大类。
冷室压铸模具适用于铝合金和铜合金的压铸生产,相对简单,但适用于高温熔融的压铸合金。
热室压铸模具适用高熔点压铸合金,具有较高的耐热性和抗高温挤压性能。
二、压铸模具的结构1.压铸模具主要由模架、模座、模芯、出料系统和冷却系统等组成。
2.模架是模具的主架构,起着支撑模具部件和固定模具部件的作用。
3.模座是连接模具与注射机的部件,将模具安装在注射机上,保证注射过程的稳定性。
4.模芯是模具中用来形成产品内部空洞的零件,它通常由多段组成,可以根据产品的形状进行组装。
5.出料系统是将熔融的金属注入模腔的路径,通常由进料口、浇口和溢流槽等组成。
6.冷却系统是保证模具持续工作的关键部分,它能够快速降温和加热模具,确保产品冷却时间的缩短和生产效率的提高。
三、压铸模具设计的基本原则1.单向释放原则:保证产品易于从模具中脱模,避免产品损坏。
2.对称设计原则:尽量保证模具零件左右对称,以降低模具零部件制造和装配的难度。
3.预防变形原则:通过模具结构设计和冷却系统的合理布局来降低模具零件的变形,确保产品的尺寸精度。
4.合理浇注和冷却系统原则:通过优化浇注系统设计和加强冷却系统的作用,提高压铸产品表面质量,并缩短冷却时间。
5.合理安装和调整原则:确保模具零件的安装和调整精度,提高模具的使用寿命和产品的质量。
四、压铸模具设计的步骤1.确定产品的设计要求和材料性能,进行产品分析和模具选型。
2.进行模具结构设计,包括模腔结构、模芯结构、冷却系统和出料系统等设计。
3.进行模具零部件设计,包括模板、模座、模芯、冷却水口等零部件的形状和尺寸设计。
4.进行模具零部件的制造和装配,进行试模和测试,及时修复和调整模具零部件。
5.进行模具的调试和优化,包括调整出料系统、冷却系统等,确保模具的正常工作。
压铸模设计注意事项
压铸模设计注意事项一、加工工艺流程1. 设计造型品本体模具分型面时,必须保证分型面平直且与主分型面平行。
2. 确定型腔深度,即抽芯距,应按照产品图样给定的技术要求来确认。
3. 根据模具大小或复杂程度确定其他辅助加工工序,如预埋、镗孔、沉孔、凸包、斜顶、油缸等辅助工序,合理分布型腔面的垂直度和同轴度。
4. 成形镶块的结构应考虑排料、出件及拆模方便性。
5. 成形镶块定位方式应考虑其安装固定形式,务必做到分型面打开后镶块不能移动。
一般采用燕尾槽形式或圆柱销钉固定,并要做到重复定位精度在0.01mm以内。
二、成形镶块选择1. 拼镶成形镶块应考虑材料容易得到,且机械加工量不大的结构,如采用整体式结构,便于集中加工,缩短加工周期,同时降低模具制造成本。
2. 拼镶成形镶块应考虑分型面容易制造和加工,如采用平分镶块,可以简化分型面制造和加工过程。
3. 拼镶成形镶块应考虑尽可能统一标准件,这样既可节省模具的辅助加工时间,又可降低加工成本。
4. 成形镶块与模板的拼接应尽量做到对称分布,并有利于模具的装配、更换及零件的加工和检验。
5. 成形镶块的组合及块数应考虑尽量减少加工后模板的拼接缝隙,有利于保证模具的分型面及模板的强度。
三、热处理方式选择1. 模具材料选择:根据不同的应用场合选择合适的材料,如压铸模的模座采用锻造模座,要求具有高的强度、硬度、耐磨性和韧性等性能。
2. 热处理工艺:采用合适的热处理工艺来消除内应力、提高材料硬度,并增加模具的韧性。
同时注意避免在热处理过程中产生裂纹等缺陷。
3. 表面处理:采用表面热处理工艺提高模具表面的耐磨性和抗腐蚀性,如氮化处理、渗碳处理等。
四、表面热处理方式1. 常用表面热处理方式包括浸淬、渗透、氧化等,应根据产品图样中的技术要求选择合适的热处理方式。
2. 热处理前应对零件进行机械加工消除内应力,防止零件变形。
3. 对于渗碳或碳氮共渗处理,应控制渗碳深度和渗碳浓度,并采用低温回火来减少残留奥氏体,提高模具的硬度、强度和耐磨性。
压铸模具设计全套课件(全)
(4)铸件结构方面的因素 ➢模数指铸件体积同其表面积之比 ➢结构复杂程度
29
第一篇:压铸原理及常用压铸合金
第三章 液态金属充填铸型的特点
二、金属液流动缺陷 (一)冷隔
1. 目视特征
Introduction
冷隔示意图
a)轻度冷隔
b)严重冷隔
30
Introduction
第一篇:压铸原理及常用压铸合金
一、金属液体流动的理论基础 (3)巴顿的理论
25
Introduction
第一篇:压铸原理及常用压铸合金
第三章 液态金属充填铸型的特点
第二节 充填缺陷 ➢术语含义 ➢分类 ➢危害性
一、金属液充填缺陷形成机理 (一)金属液流动缺陷 ➢ 型腔未被完全充满 ➢ 型腔被充满
26
Introduction
第一篇:压铸原理及常用压铸合金
第一篇:压铸原理及常用压铸合金
第二章 压铸压力和压铸速度
基础知识补充:
伯努利 定律
18
Introduction
第一篇:压铸原理及常用压铸合金
第二章 压铸压力和压铸速度
基础知识补充:
连续性 原理
19
Introduction
第一篇:压铸原理及常用压铸合金
第二章 压铸压力和压铸速度
压力:
20
Introduction
Short cycle time
Max. 300 - 500 ton locking force
6
Introduction
第一篇:压铸原理及常用压铸合金
压铸的实质与基本方法
Cold chamber die casting
High shot speed
压铸模具设计的注意事项
压铸模具设计的注意事项压铸模具是用来生产高性能零件的关键工具。
正确的设计和制造对于生产高质量,可靠的零件至关重要。
以下是压铸模具设计的注意事项:1. 理解产品需求:在设计压铸模具之前,首先要充分了解产品的需求和要求。
这包括产品的尺寸,形状,材料,表面要求等。
只有了解了产品需求,才能够设计出合适的模具。
2. 材料选择:压铸模具通常由工具钢或合金钢制成。
选择合适的材料对模具的使用寿命和性能至关重要。
需要考虑到模具的强度,耐磨性,热稳定性等因素。
3. 冷却系统设计:在设计模具时,要考虑到合理的冷却系统。
冷却系统的设计直接影响到产品的质量和生产效率。
要保证材料能够均匀快速地凝固,避免产生气孔和缩孔。
4. 浇口和浇注系统设计:浇口和浇注系统的设计对产品的性能和外观有很大影响。
要设计合适的浇口位置和形状,确保熔体能够均匀地充满模腔,并尽量减少气体的混入。
5. 模具结构设计:模具的结构设计要考虑到产品的形状,尺寸和结构特点。
要保证模具能够承受高温高压的工作环境,同时尽量减小产品的缩孔和变形。
6. 表面处理:模具的表面处理对于产品的表面质量和寿命有很大影响。
需要选择合适的表面处理工艺,比如镀铬,喷砂,热处理等,提高模具的耐磨性和抗腐蚀性。
7. 垫块和冷却通道设计:在模具设计中,要考虑到合理的垫块和冷却通道设计。
垫块的设计直接影响到产品的尺寸和形状精度,而冷却通道的设计则直接影响到模具的冷却效果。
8. 模具制造工艺:在设计模具时,要考虑到模具的制造工艺。
要选择合适的加工工艺和设备,确保模具的精度和质量。
在压铸模具设计中,需要考虑到以上的注意事项,充分了解产品的需求,选择合适的材料和工艺,设计合理的结构和系统,才能够生产出高质量的产品。
压铸模具的设计是一个复杂的工程,需要各个方面的专业知识和经验的积累。
只有通过不断的学习和实践,才能够设计出更加优秀的压铸模具。
压铸模具简明设计手册
压铸模具简明设计手册
压铸模具是用于铸造金属零件的重要工具,其设计质量直接影响着压铸零件的
质量和生产效率。
在设计压铸模具时,需要考虑诸多因素,包括零件的形状、尺寸、材料、厚度等,以确保最终铸件能够满足要求。
本文将介绍压铸模具的设计要点,帮助工程师更好地进行压铸模具的设计工作。
首先,压铸模具的设计应考虑零件的形状和尺寸。
在设计模具时,需要根据零
件的几何形状确定模具的结构,包括模腔的形状、配合间隙、冷却系统等。
此外,还需要考虑零件的尺寸精度要求,以确定模具的制造精度和装配精度。
其次,压铸模具的设计还应考虑材料的选择。
模具的材料直接影响着模具的使
用寿命和生产效率。
通常情况下,压铸模具的材料应具有高的硬度、耐磨性和热稳定性,以确保模具在长时间的使用过程中仍能保持良好的性能。
此外,压铸模具的设计还应考虑厚度的设计。
模具的厚度直接影响着模具的强
度和刚度。
在设计模具的厚度时,需要考虑模具的受力情况,以确保模具能够承受铸造过程中的各种载荷,避免模具的变形和破裂。
最后,压铸模具的设计还应考虑冷却系统的设计。
在压铸过程中,模具的冷却
系统起着至关重要的作用,可以有效地控制铸件的凝固速度,避免铸件的缩孔和气孔。
因此,在设计模具时,需要合理设计冷却系统的布局和通道,以确保铸件的质量和生产效率。
综上所述,压铸模具的设计是一个复杂的工程,需要工程师综合考虑多个因素,以确保最终的模具能够满足铸件的要求。
通过本文的介绍,相信读者对压铸模具的设计有了更深入的了解,能够更好地进行压铸模具的设计工作。
希望本文对读者有所帮助,谢谢!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、压铸简介压力铸造简称压铸,是一种将熔融合金液倒入压室内,以高速充填钢制模具的型腔,并使合金液在压力下凝固而形成铸件的铸造方法。
压铸区别于其它铸造方法的主要特点是高压和高速。
①金属液是在压力下填充型腔的,并在更高的压力下结晶凝固,常见的压力为15—100MPa。
②金属液以高速充填型腔,通常在10—50米/秒,有的还可超过80米/秒,(通过内浇口导入型腔的线速度—内浇口速度),因此金属液的充型时间极短,约0.01—0.2秒(须视铸件的大小而不同)内即可填满型腔。
压铸机、压铸合金与压铸模具是压铸生产的三大要素,缺一不可。
所谓压铸工艺就是将这三大要素有机地加以综合运用,使能稳定地有节奏地和高效地生产出外观、内在质量好的、尺寸符合图样或协议规定要求的合格铸件,甚至优质铸件。
1、压铸机(1)压铸机的分类压铸机按压室的受热条件可分为热压室与冷压室两大类。
而按压室和模具安放位置的不同,冷室压铸机又可分为立式、卧式和全立式三种形式的压铸机。
热室压铸机立式冷室卧室全立式(2)压铸机的主要参数a合型力(锁模力)(千牛)————————KNb压射力(千牛)—————————————KNc 动、定型板间的最大开距——————————mmd动、定型板间的最小开距——————————mme动型板的行程———————————————mmf大杠内间距(水平×垂直)—————————mmg大杠直径—————————————————mmh顶出力——————————————————KNi顶出行程—————————————————mmj压射位置(中心、偏心)——————————mmk一次金属浇入量(Zn、Al、Cu)———————Kgl压室内径(Ф)——————————————mmm 空循环周期————————————————sn铸件在分型面上的各种比压条件下的投影面积注:还应有动型板、定型板的安装尺寸图等。
2、压铸合金压铸件所采用的合金主要是有色合金,至于黑色金属(钢、铁等)由于模具材料等问题,目前较少使用。
而有色合金压铸件中又以铝合金使用较广泛,锌合金次之。
下面简单介绍一下压铸有色金属的情况。
(1)、压铸有色合金的分类受阻收缩混合收缩自由收缩铅合金-----0.2-0.3%0.3-0.4%0.4-0.5%低熔点合金锡合金锌合金--------0.3-0.4%0.4-0.6%0.6-0.8%铝硅系--0.3-0.5%0.5-0.7%0.7-0.9%压铸有色合金铝合金铝铜系铝镁系---0.5-0.7%0.7-0.9%0.9-1.1%高熔点合金铝锌系镁合金----------0.5-0.7%0.7-0.9%0.9-1.1%铜合金(2)、各类压铸合金推荐的浇铸温度合金种类铸件平均壁厚≤3mm铸件平均壁厚>3mm结构简单结构复杂结构简单结构复杂铝合金铝硅系610-650℃640-680℃600-620℃610-650℃铝铜系630-660℃660-700℃600-640℃630-660℃铝镁系640-680℃660-700℃640-670℃650-690℃铝锌系590-620℃620-660℃580-620℃600-650℃锌合金420-440℃430-450℃400-420℃420-440℃镁合金640-680℃660-700℃640-670℃650-690℃铜合金普通黄铜910-930℃940-980℃900-930℃900-950℃硅黄铜900-920℃930-970℃910-940℃910-940℃注注:①浇铸温度一般以保温炉的金属液的温度来计量。
②锌合金的浇铸温度不能超过450℃,以免晶粒粗大。
二、压铸模压铸模是压铸生产三大要素之一,结构正确合理的模具是压铸生产能否顺利进行的先决条件,并在保证铸件质量方面(下机合格率)起着重要的作用。
由于压铸工艺的特点,正确选用各工艺参数是获得优质铸件的决定因素,而模具又是能够正确选择和调整各工艺参数的前提,模具设计实质上就是对压铸生产中可能出现的各种因素预计的综合反映。
如若模具设计合理,则在实际生产中遇到的问题少,铸件下机合格率高。
反之,模具设计不合理,例一铸件设计时动定模的包裹力基本相同,而浇注系统大多在定模,且放在压射后冲头不能送料的灌南压铸机上生产,无法正常生产,铸件一直粘在定模上。
尽管定模型腔的光洁度打得很光,因型腔较深,仍出现粘在定模上的现象。
所以在模具设计时,必须全面分析铸件的结构,熟悉压铸机的操作过程,要了解压铸机及工艺参数得以调整的可能性,掌握在不同情况下的充填特性,并考虑模具加工的方法、钻眼和固定的形式后,才能设计出切合实际、满足生产要求的模具。
刚开始时已讲过,金属液的充型时间极短,金属液的比压和流速很高,这对压铸模来说工作条件极其恶劣,再加上激冷激热的交变应力的冲击作用,都对模具的使用寿命有很大影响。
模具的使用寿命通常是指通过精心的设计和制造,在正常使用的条件下,结合良好的维护保养下出现的自然损坏,在不能再修复而报废前,所压铸的模数(包括压铸生产中的废品数)。
实际生产中,模具失效主要有三种形式:①热疲劳龟裂损坏失效;②碎裂失效;③溶蚀失效。
致使模具失效的因素很多,既有外因(例浇铸温度高低、模具是否经预热、水剂涂料喷涂量的多少、压铸机吨位大小是否匹配、压铸压力过高、内浇口速度过快、冷却水开启未与压铸生产同步、铸件材料的种类及成分Fe的高低、铸件尺寸形状、壁厚大小、涂料类型等等)。
也有内因(例模具本身材质的冶金质量、坯料的锻制工艺、模具结构设计的合理性、浇注系统设计的合理性、模具机(电加工)加工时产生的内应力、模具的热处理工艺、包括各种配合精度和光洁度要求等)。
模具若出现早期失效,则需找出是哪些内因或外因,以便今后改进。
①模具热疲劳龟裂失效压铸生产时,模具反复受激冷激热的作用,成型表面与其内部产生变形,相互牵扯而出现反复循环的热应力,导致组织结构二损伤和丧失韧性,引发微裂纹的出现,并继续扩展,一旦裂纹扩大,还有熔融的金属液挤入,加上反复的机械应力都使裂纹加速扩展。
为此,一方面压铸起始时模具必须充分预热。
另外,在压铸生产过程中模具必须保持在一定的工作温度范围中,以免出现早期龟裂失效。
同时,要确保模具投产前和制造中的内因不发生问题。
因实际生产中,多数的模具失效是热疲劳龟裂失效。
②碎裂失效在压射力的作用下,模具会在最薄弱处萌生裂纹,尤其是模具成型面上的划线痕迹或电加工痕迹未被打磨光,或是成型的清角处均会最先出现细微裂纹,当晶界存在脆性相或晶粒粗大时,即容易断裂。
而脆性断裂时裂纹的扩展很快,这对模具的碎裂失效是很危险的因素。
为此,一方面凡模具面上的划痕、电加工痕迹等必须打磨光,即使它在浇注系统部位,也必须打光。
另外要求所使用的模具材料的强度高、塑性好、冲击韧性和断裂韧性均好。
③熔融失效前面已讲过,常用的压铸合金有锌合金、铝合金、镁合金和铜合金,也有纯铝压铸的,Zn、Al、Mg是较活泼的金属元素,它们与模具材料有较好的亲和力,特别是Al易咬模。
当模具硬度较高时,则抗蚀性较好,而成型表面若有软点,则对抗蚀性不利。
但在实际生产中,溶蚀仅是模具的局部地方,例内浇口直接冲刷的部位(型芯、型腔)易出现溶蚀现象,以及硬度偏软处易出现铝合金的粘模。
压铸生产中常遇模具存在的问题注意点:1、浇注系统、排溢系统例(1)对于冷室卧式压铸机上模具直浇道的要求:①压室内径尺寸应根据所需的比压与压室充满度来选定,同时,浇口套的内径偏差应比压室内径的偏差适当放大几丝,从而可避免因浇口套与压室内径不同轴而造成冲头卡死或磨损严重的问题,且浇口套的壁厚不能太薄。
浇口套的长度一般应小于压射冲头的送出引程,以便涂料从压室中脱出。
②压室与浇口套的内孔,在热处理后应精磨,再沿轴线方向进行研磨,其表面粗糙≤Ra0.2μm。
③分流器与形成涂料的凹腔,其凹入深度等于横浇道深度,其直径配浇口套内径,沿脱模方向有5°斜度。
当采用涂导入式直浇道时,因缩短了压室有效长度的容积,可提高压室的充满度。
(2)对于模具横浇道的要求①冷卧式模具横浇道的入口处一般应位于压室上部内径2/3以上部位,以免压室中金属液在重力作用下过早进入横浇道,提前开始凝固。
②横浇道的截面积从直浇道起至内浇口应逐渐减小,为出现截面扩大,则金属液流经时会出现负压,易吸入分型面上的气体,增加金属液流动中的涡流裹气。
一般出口处截面比进口处小10-30%。
③横浇道应有一定的长度和深度。
保持一定长度的目的是起稳流和导向的作用。
若深度不够,则金属液降温快,深度过深,则因冷凝过慢,既影响生产率又增加回炉料用量。
④横浇道的截面积应大于内浇口的截面积,以保证金属液入型的速度。
主横浇道的截面积应大于各分支横浇道的截面积。
⑤横浇道的底部两侧应做成圆角,以免出现早期裂纹,二侧面可做出5°左右的斜度。
横浇道部位的表面粗糙度≤Ra0.4μm。
(3)内浇口①金属液入型后不应立即封闭分型面,溢流槽和排气槽不宜正面冲击型芯。
金属液入型后的流向尽可能沿铸入的肋筋和散热片,由厚壁处想薄壁处填充等。
②选择内浇口位置时,尽可能使金属液流程最短。
采用多股内浇口时,要防止入型后几股金属液汇合、相互冲击,从而产生涡流包气和氧化夹杂等缺陷。
③薄壁件的内浇口厚件要适当小些,以保证必要的填充速度,内浇口的设置应便于切除,且不使铸件本体有缺损(吃肉)。
(4)溢流槽①溢流槽要便于从铸件上去除,并尽量不损伤铸件本体。
②溢流槽上开设排气槽时,需注意溢流口的位置,避免过早阻塞排气槽,使排气槽不起作用。
③不应在同一个溢流槽上开设几个溢流口或开设一个很宽很厚的溢流口,以免金属液中的冷液、渣、气、涂料等从溢流槽中返回型腔,造成铸件缺陷。
2、铸造圆角(包括转角)铸件图上往往注明未注圆角R2等要求,我们在开制模具时切忌忽视这些未注明圆角的作用,决不可做成清角或过小的圆角。
铸造圆角可使金属液填充顺畅,使腔内气体顺序排出,并可减少应力集中,延长模具使用寿命。
(铸件也不易在该处出现裂纹或因填充不顺而出现各种缺陷)。
例标准油盘模上清角处较多,相对来说,目前兄弟油盘模开的最好,重机油盘的也较多。
3、脱模斜度在脱模方向严禁有人为造成的侧凹(往往是试模时铸件粘在模内,用不正确的方法处理时,例钻、硬凿等使局部凹入)。
4、表面粗糙度成型部位、浇注系统均应按要求认真打光,应顺着脱模方向打光。
由于金属液由压室进入浇注系统并填满型腔的整个过程仅0.01-0.2秒的时间。
为了减少金属液流动的阻力,尽可能使压力损失少,都需要流过表面的光洁度高。
同时,浇注系统部位的受热和受冲蚀的条件较恶劣,光洁度越差则模具该处越易损伤。
5、模具成型部位的硬度铝合金:HRC46°左右铜:HRC38°左右加工时,模具应尽量留有修复的余量,做尺寸的上限,避免焊接。