高考数学练习题含答案四第3讲
高中数学第三讲 充分条件和必要条件练习北师大版选修21
高中数学第三讲充分条件和必要条件练习北师大版选修21一、考试说明理解必要条件、充分条件的意义,会分析四种命题的相互关系二、基础知识建构1、“若p则q”是真命题,即p⇒q;“若p则q”为假命题,即p⎭q.2、(1)若①,则p是q的充分不必要条件.(2)若p⎭ q, 但p⇐q,则p是q的②.(3)若③,则p是q的充分条件,也是必要条件,也是充要条件(一般要回答是充要条件)(4)若④,则p是q的既不充分也不必要条件.3、证明p是q的充要条件,分两步:证明:①充分性,把p当作已知条件,结合命题的前提条件,推出q.②必要性,把q当作已知条件,结合命题的前提条件,推理论证得出p.所以,p是q的充要条件.4、充分条件、必要条件常用判断法(1)定义法:判断B是A的什么条件,实际上就是判断B⇒A或A⇒B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义即可判断;(2)转换法:当所给命题的充要条件不易判断时,可对命题的逆否命题进行判断;(3)集合法:在命题的条件和结论间的关系判断有困难时,有时可以从集合的角度来考虑,记条件p、q对应的集合分别为A、B、,则:若A⊆B,则p是q的充分条件;若A B,则p是q的充分非必要条件;若A⊇B,则p是q的必要条件;若A B,则p是q的必要非充分条件;若A=B,则p是q的充要条件若A∑B,且A⎛B,则p是q的非充分又非必要条件.5、当p⇒q时,称条件p是条件q的充分条件,意指为使q成立,具备条件p就足够了,“充分”即“足够”的意思,当p⇐q时,也称条件p是条件q的必要条件,因为q⇒p等价于非p⇒非q,即若不具备q,则p必不成立,所以要使p成立必须具备q .“必要”即“必须具备”的意思. “若p则q”形式的命题,其条件p与结论q之间的逻辑关系有四种可能:(1)p⇒q但q⇒p 不一定成立:这时,p是q的充分而不必要条件;(2)q⇒p但p⇒q不一定成立:这时,称p是q 的必要而不充分条件;(3)p⇒q且q⇒p:这时,称p是q的充分且必要条件;(4)p⇒q不一定成立且q⇒p不一定成立:这时,称p是q的既不充分也不必要条件.6、由于“充分条件与必要条件”是四种命题的关系的深化,它们之间存在着密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断7、一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。
(浙江专用)高考数学二轮复习 专题四 解析几何 第3讲 圆锥曲线中的定点、定值、最值与范围问题学案-
第3讲 圆锥曲线中的定点、定值、最值与范围问题高考定位 圆锥曲线中的定点与定值、最值与范围问题是高考必考的问题之一,主要以解答题形式考查,往往作为试卷的压轴题之一,一般以椭圆或抛物线为背景,试题难度较大,对考生的代数恒等变形能力、计算能力有较高的要求.真 题 感 悟(2018·北京卷)已知抛物线C :y 2=2px 经过点P (1,2).过点Q (0,1)的直线l 与抛物线C 有两个不同的交点A ,B ,且直线PA 交y 轴于M ,直线PB 交y 轴于N . (1)求直线l 的斜率的取值范围;(2)设O 为原点,QM →=λQO →,QN →=μQO →,求证:1λ+1μ为定值.解 (1)因为抛物线y 2=2px 过点(1,2), 所以2p =4,即p =2. 故抛物线C 的方程为y 2=4x .由题意知,直线l 的斜率存在且不为0. 设直线l 的方程为y =kx +1(k ≠0).由⎩⎪⎨⎪⎧y 2=4x ,y =kx +1得k 2x 2+(2k -4)x +1=0. 依题意Δ=(2k -4)2-4×k 2×1>0, 解得k <0或0<k <1.又PA ,PB 与y 轴相交,故直线l 不过点(1,-2). 从而k ≠-3.所以直线l 斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1). (2)设A (x 1,y 1),B (x 2,y 2). 由(1)知x 1+x 2=-2k -4k 2,x 1x 2=1k2.直线PA 的方程为y -2=y 1-2x 1-1(x -1). 令x =0,得点M 的纵坐标为y M =-y 1+2x 1-1+2=-kx 1+1x 1-1+2.同理得点N 的纵坐标为y N =-kx 2+1x 2-1+2. 由QM →=λQO →,QN →=μQO →得λ=1-y M ,μ=1-y N . 所以1λ+1μ=11-y M +11-y N=x 1-1(k -1)x 1+x 2-1(k -1)x 2=1k -1·2x 1x 2-(x 1+x 2)x 1x 2=1k -1·2k 2+2k -4k 21k 2=2.所以1λ+1μ为定值.考 点 整 合1.定点、定值问题(1)定点问题:在解析几何中,有些含有参数的直线或曲线的方程,不论参数如何变化,其都过某定点,这类问题称为定点问题.若得到了直线方程的点斜式:y -y 0=k (x -x 0),则直线必过定点(x 0,y 0);若得到了直线方程的斜截式:y =kx +m ,则直线必过定点(0,m ).(2)定值问题:在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动直线中的参变量无关,这类问题统称为定值问题.2.求解圆锥曲线中的范围问题的关键是选取合适的变量建立目标函数和不等关系.该问题主要有以下三种情况:(1)距离型:若涉及焦点,则可以考虑将圆锥曲线定义和平面几何性质结合起来求解;若是圆锥曲线上的点到直线的距离,则可设出与已知直线平行的直线方程,再代入圆锥曲线方程中,用判别式等于零求得切点坐标,这个切点就是距离取得最值的点,若是在圆或椭圆上,则可将点的坐标以参数形式设出,转化为三角函数的最值求解.(2)斜率、截距型:一般解法是将直线方程代入圆锥曲线方程中,利用判别式列出对应的不等式,解出参数的范围,如果给出的只是圆锥曲线的一部分,则需要结合图形具体分析,得出相应的不等关系.(3)面积型:求面积型的最值,即求两个量的乘积的范围,可以考虑能否使用不等式求解,或者消元转化为某个参数的函数关系,用函数方法求解.热点一 定点与定值问题 [考法1] 定点的探究与证明【例1-1】 (2018·杭州调研)椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为12,其左焦点到点P (2,1)的距离为10.(1)求椭圆C 的标准方程;(2)若直线l :y =kx +m 与椭圆C 相交于A ,B 两点(A ,B 不是左、右顶点),且以AB 为直径的圆过椭圆C 的右顶点,求证:直线l 过定点,并求出该定点的坐标.(1)解 由e =c a =12,得a =2c ,∵a 2=b 2+c 2,∴b 2=3c 2,则椭圆方程变为x 24c 2+y 23c2=1.又由题意知(2+c )2+12=10,解得c =1, 故a 2=4,b 2=3,即得椭圆的标准方程为x 24+y 23=1.(2)证明 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则⎩⎪⎨⎪⎧Δ=64m 2k 2-16(3+4k 2)(m 2-3)>0,x 1+x 2=-8mk 3+4k 2,x 1·x 2=4(m 2-3)3+4k2.①∴y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=3(m 2-4k 2)3+4k 2. ∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2, ∴(x 1-2)(x 2-2)+y 1y 2=0, ∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0,∴3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0,∴7m 2+16mk +4k 2=0,解得m 1=-2k ,m 2=-2k 7.由Δ>0,得3+4k 2-m 2>0,②当m 1=-2k 时,l 的方程为y =k (x -2), 直线过定点(2,0),与已知矛盾. 当m 2=-2k 7时,l 的方程为y =k ⎝ ⎛⎭⎪⎫x -27, 直线过定点⎝ ⎛⎭⎪⎫27,0,且满足②, ∴直线l 过定点,定点坐标为⎝ ⎛⎭⎪⎫27,0. 探究提高 (1)动直线l 过定点问题解法:设动直线方程(斜率存在)为y =kx +t ,由题设条件将t 用k 表示为t =mk ,得y =k (x +m ),故动直线过定点(-m ,0).(2)动曲线C 过定点问题解法:引入参变量建立曲线C 的方程,再根据其对参变量恒成立,令其系数等于零,得出定点.[考法2] 定值的探究与证明【例1-2】 (2018·金丽衢联考)已知O 为坐标原点,直线l :x =my +b 与抛物线E :y 2=2px (p >0)相交于A ,B 两点. (1)当b =2p 时,求OA →·OB →;(2)当p =12且b =3时,设点C 的坐标为(-3,0),记直线CA ,CB 的斜率分别为k 1,k 2,证明:1k 21+1k 22-2m 2为定值.解 设A (x 1,y 1),B (x 2,y 2),联立方程⎩⎪⎨⎪⎧y 2=2px ,x =my +b ,消元得y 2-2mpy -2pb =0,所以y 1+y 2=2mp ,y 1y 2=-2pb .(1)当b =2p 时,y 1y 2=-4p 2,x 1x 2=(y 1y 2)24p2=4p 2, 所以OA →·OB →=x 1x 2+y 1y 2=4p 2-4p 2=0.(2)证明 当p =12且b =3时,y 1+y 2=m ,y 1y 2=-3.因为k 1=y 1x 1+3=y 1my 1+6,k 2=y 2x 2+3=y 2my 2+6, 所以1k 1=m +6y 1,1k 2=m +6y 2.因此1k 21+1k 22-2m 2=⎝ ⎛⎭⎪⎫m +6y 12+⎝ ⎛⎭⎪⎫m +6y 22-2m 2=2m 2+12m ⎝ ⎛⎭⎪⎫1y 1+1y 2+36⎝ ⎛⎭⎪⎫1y 21+1y 22-2m 2=12m ×y 1+y 2y 1y 2+36×(y 1+y 2)2-2y 1y 2y 21y 22=12m ×-m 3+36×m 2+69=24,即1k 21+1k 22-2m 2为定值.探究提高 (1)求定值问题常见的方法有两种:①从特殊入手,求出定值,再证明这个值与变量无关.②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.(2)定值问题求解的基本思路是使用参数表示要解决的问题,然后证明与参数无关,这类问题选择消元的方向是非常关键的.【训练1-1】 (2017·北京卷)已知抛物线C :y 2=2px 过点P (1,1),过点⎝ ⎛⎭⎪⎫0,12作直线l与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点.(1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.(1)解 把P (1,1)代入y 2=2px ,得p =12,所以抛物线C 的方程为y 2=x ,焦点坐标为⎝ ⎛⎭⎪⎫14,0,准线方程为x =-14. (2)证明 当直线MN 斜率不存在或斜率为零时,显然与抛物线只有一个交点不满足题意,所以直线MN (也就是直线l )斜率存在且不为零.由题意,设直线l 的方程为y =kx +12(k ≠0),l 与抛物线C 的交点为M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =kx +12,y 2=x ,得4k 2x 2+(4k -4)x +1=0. 考虑Δ=(4k -4)2-4×4k 2=16(1-2k ), 由题可知有两交点,所以判别式大于零,所以k <12.则x 1+x 2=1-k k 2,x 1x 2=14k2.因为点P 的坐标为(1,1),所以直线OP 的方程为y =x ,点A 的坐标为(x 1,x 1). 直线ON 的方程为y =y 2x 2x ,点B 的坐标为⎝⎛⎭⎪⎫x 1,y 2x 1x 2. 因为y 1+y 2x 1x 2-2x 1=y 1x 2+y 2x 1-2x 1x 2x 2=⎝ ⎛⎭⎪⎫kx 1+12x 2+⎝⎛⎭⎪⎫kx 2+12x 1-2x 1x2x 2=(2k -2)x 1x 2+12(x 2+x 1)x 2=(2k -2)×14k 2+1-k 2k2x 2=0.所以y 1+y 2x 1x 2=2x 1.故A 为线段BM 的中点. 【训练1-2】 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,A (a ,0),B (0,b ),O (0,0),△OAB 的面积为1. (1)求椭圆C 的方程;(2)设P 是椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N .求证:|AN |·|BM |为定值. (1)解 由已知ca =32,12ab =1. 又a 2=b 2+c 2,解得a =2,b =1,c = 3.∴椭圆方程为x 24+y 2=1.(2)证明 由(1)知A (2,0),B (0,1). 设椭圆上一点P (x 0,y 0),则x 204+y 0=1.当x 0≠0时,直线PA 方程为y =y 0x 0-2(x -2),令x =0得y M =-2y 0x 0-2.从而|BM |=|1-y M |=⎪⎪⎪⎪⎪⎪1+2y 0x 0-2. 直线PB 方程为y =y 0-1x 0x +1. 令y =0得x N =-x 0y 0-1. ∴|AN |=|2-x N |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1.∴|AN |·|BM |=⎪⎪⎪⎪⎪⎪2+x 0y 0-1·⎪⎪⎪⎪⎪⎪1+2y 0x 0-2 =⎪⎪⎪⎪⎪⎪x 0+2y 0-2x 0-2·⎪⎪⎪⎪⎪⎪x 0+2y 0-2y 0-1=⎪⎪⎪⎪⎪⎪x 20+4y 20+4x 0y 0-4x 0-8y 0+4x 0y 0-x 0-2y 0+2 =⎪⎪⎪⎪⎪⎪4x 0y 0-4x 0-8y 0+8x 0y 0-x 0-2y 0+2=4.当x 0=0时,y 0=-1,|BM |=2,|AN |=2, 所以|AN |·|BM |=4.故|AN |·|BM |为定值.热点二 最值与范围问题[考法1] 求线段长度、面积(比值)的最值【例2-1】 (2018·湖州调研)已知抛物线C :y 2=4x 的焦点为F ,直线l :y =kx -4(1<k <2)与y 轴、抛物线C 分别相交于P ,A ,B (自下而上),记△PAF ,△PBF 的面积分别为S 1,S 2.(1)求AB 的中点M 到y 轴的距离d 的取值范围; (2)求S 1S 2的取值范围.解 (1)联立⎩⎪⎨⎪⎧y =kx -4,y 2=4x ,消去y 得,k 2x 2-(8k +4)x +16=0(1<k <2).设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=8k +4k 2,x 1x 2=16k2,所以d =x 1+x 22=4k +2k2 =2⎝ ⎛⎭⎪⎫1k +12-2∈⎝ ⎛⎭⎪⎫52,6.(2)由于S 1S 2=|PA ||PB |=x 1x 2,由(1)可知S 1S 2+S 2S 1=x 1x 2+x 2x 1=(x 1+x 2)2-2x 1x 2x 1x 2=k 216·(8k +4)2k 4-2=⎝ ⎛⎭⎪⎫1k +22-2∈⎝ ⎛⎭⎪⎫174,7, 由S 1S 2+S 2S 1>174得,4⎝ ⎛⎭⎪⎫S 1S 22-17·S 1S 2+4>0, 解得S 1S 2>4或S 1S 2<14.因为0<S 1S 2<1,所以0<S 1S 2<14.由S 1S 2+S 2S 1<7得,⎝ ⎛⎭⎪⎫S 1S 22-7·S 1S 2+1<0, 解得7-352<S 1S 2<7+352,又S 1S 2<1,所以7-352<S 1S 2<1. 综上,7-352<S 1S 2<14,即S 1S 2的取值范围为⎝⎛⎭⎪⎫7-352,14. 探究提高 (1)处理求最值的式子常用两种方式:①转化为函数图象的最值;②转化为能利用基本不等式求最值的形式.(2)若得到的函数式是分式形式,函数式的分子次数不低于分母时,可利用分离法求最值;若分子次数低于分母,则可分子、分母同除分子,利用基本不等式求最值(注意出现复杂的式子时可用换元法).【训练2-1】 (2018·温州质检)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,且过点⎝⎛⎭⎪⎫1,63.(1)求椭圆C 的方程;(2)设与圆O :x 2+y 2=34相切的直线l 交椭圆C 与A ,B 两点,求△OAB 面积的最大值,及取得最大值时直线l 的方程.解 (1)由题意可得⎩⎪⎨⎪⎧1a 2+23b2=1,c a =63,a 2=b 2+c 2,解得a 2=3,b 2=1,∴x 23+y 2=1.(2)①当k 不存在时,直线为x =±32,代入x 23+y 2=1,得y =±32, ∴S △OAB =12×3×32=34;②当k 存在时,设直线为y =kx +m ,A (x 1,y 1),B (x 2,y 2),联立方程得⎩⎪⎨⎪⎧x 23+y 2=1,y =kx +m ,消y 得(1+3k 2)x 2+6kmx +3m 2-3=0,∴x 1+x 2=-6km1+3k2,x 1x 2=3m 2-31+3k2,直线l 与圆O 相切d =r 4m 2=3(1+k 2), ∴|AB |=1+k 2·⎝ ⎛⎭⎪⎫-6km 1+3k 22-12(m 2-1)1+3k 2=3·1+10k 2+9k41+6k 2+9k 4=3·1+4k21+6k 2+9k4 =3×1+41k 2+9k 2+6≤2.当且仅当1k 2=9k 2,即k =±33时等号成立,∴S △OAB =12|AB |×r ≤12×2×32=32,∴△OAB 面积的最大值为32, ∴m =±34⎝ ⎛⎭⎪⎫1+13=±1, 此时直线方程为y =±33x ±1. [考法2] 求几何量、某个参数的取值范围【例2-2】 已知椭圆E :x 2t +y 23=1的焦点在x 轴上,A 是E 的左顶点,斜率为k (k >0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (1)当t =4,|AM |=|AN |时,求△AMN 的面积; (2)当2|AM |=|AN |时,求k 的取值范围. 解 设M (x 1,y 1),则由题意知y 1>0.(1)当t =4时,E 的方程为x 24+y 23=1,A (-2,0).由|AM |=|AN |及椭圆的对称性知,直线AM 的倾斜角为π4. 因此直线AM 的方程为y =x +2.将x =y -2代入x 24+y 23=1得7y 2-12y =0,解得y =0或y =127,所以y 1=127.因此△AMN 的面积S △AMN =2×12×127×127=14449.(2)由题意t >3,k >0,A (-t ,0),将直线AM 的方程y =k (x +t )代入x 2t +y 23=1得(3+tk 2)x2+2t ·tk 2x +t 2k 2-3t =0.由x 1·(-t )=t 2k 2-3t 3+tk 2得x 1=t (3-tk 2)3+tk2, 故|AM |=|x 1+t |1+k 2=6t (1+k 2)3+tk2. 由题设,直线AN 的方程为y =-1k(x +t ),故同理可得|AN |=6k t (1+k 2)3k 2+t. 由2|AM |=|AN |得23+tk 2=k3k 2+t , 即(k 3-2)t =3k (2k -1),当k =32时上式不成立,因此t =3k (2k -1)k 3-2.t >3等价于k 3-2k 2+k -2k 3-2=(k -2)(k 2+1)k 3-2<0,即k -2k 3-2<0. 由此得⎩⎪⎨⎪⎧k -2>0,k 3-2<0,或⎩⎪⎨⎪⎧k -2<0,k 3-2>0,解得32<k <2. 因此k 的取值范围是(32,2).探究提高 解决范围问题的常用方法:(1)构建不等式法:利用已知或隐含的不等关系,构建以待求量为元的不等式求解.(2)构建函数法:先引入变量构建以待求量为因变量的函数,再求其值域. (3)数形结合法:利用待求量的几何意义,确定出极端位置后数形结合求解.【训练2-2】 (2018·台州调研)已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-c ,0),离心率为33,点M 在椭圆上且位于第一象限,直线FM 被圆x 2+y 2=b 24截得的线段的长为c ,|FM |=433.(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 的斜率大于2,求直线OP (O 为原点)的斜率的取值范围.解 (1)由已知,有c 2a 2=13,又由a 2=b 2+c 2,可得a 2=3c 2,b 2=2c 2. 设直线FM 的斜率为k (k >0),F (-c ,0), 则直线FM 的方程为y =k (x +c ).由已知,有⎝ ⎛⎭⎪⎫kc k 2+12+⎝ ⎛⎭⎪⎫c 22=⎝ ⎛⎭⎪⎫b 22,解得k =33.(2)由(1)得椭圆方程为x 23c 2+y 22c 2=1,直线FM 的方程为y =33(x +c ),两个方程联立,消去y ,整理得3x 2+2cx -5c 2=0,解得x =-53c ,或x =c .因为点M 在第一象限,可得M 的坐标为⎝⎛⎭⎪⎫c ,233c .由|FM |=(c +c )2+⎝ ⎛⎭⎪⎫233c -02=433, 解得c =1,所以椭圆的方程为x 23+y 22=1.(3)设点P 的坐标为(x ,y ),直线FP 的斜率为t , 得t =yx +1,即y =t (x +1)(x ≠-1),与椭圆方程联立⎩⎪⎨⎪⎧y =t (x +1),x 23+y22=1,消去y ,整理得2x 2+3t 2(x +1)2=6, 又由已知,得t =6-2x23(x +1)2>2,解得-32<x <-1,或-1<x <0.设直线OP 的斜率为m ,得m =y x, 即y =mx (x ≠0),与椭圆方程联立, 整理得m 2=2x 2-23.①当x ∈⎝ ⎛⎭⎪⎫-32,-1时,有y =t (x +1)<0, 因此m >0,于是m =2x 2-23,得m ∈⎝ ⎛⎭⎪⎫23,233. ②当x ∈(-1,0)时,有y =t (x +1)>0. 因此m <0,于是m =-2x 2-23, 得m ∈⎝⎛⎭⎪⎫-∞,-233.综上,直线OP 的斜率的取值范围是 ⎝⎛⎭⎪⎫-∞,-233∪⎝ ⎛⎭⎪⎫23,233.1.解答圆锥曲线的定值、定点问题,从三个方面把握:(1)从特殊开始,求出定值,再证明该值与变量无关;(2)直接推理、计算,在整个过程中消去变量,得定值;(3)在含有参数的曲线方程里面,把参数从含有参数的项里面分离出来,并令其系数为零,可以解出定点坐标. 2.圆锥曲线的范围问题的常见求法(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质来解决; (2)代数法:若题目的条件和结论能体现一种明确的函数关系,则可首先建立起目标函数,再求这个函数的最值,在利用代数法解决范围问题时常从以下五个方面考虑: ①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的核心是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围; ④利用基本不等式求出参数的取值范围; ⑤利用函数的值域的求法,确定参数的取值范围.一、选择题1.F 1,F 2是椭圆x 24+y 2=1的左、右焦点,点P 在椭圆上运动,则PF 1→·PF 2→的最大值是( )A.-2B.1C.2D.4解析 设P (x ,y ),依题意得点F 1(-3,0),F 2(3,0),PF 1→·PF 2→=(-3-x )(3-x )+y 2=x 2+y 2-3=34x 2-2,注意到-2≤34x 2-2≤1,因此PF 1→·PF 2→的最大值是1.答案 B2.(2018·镇海中学二模)若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) A.2B.12C.14D.18解析 根据题意,设P 到准线的距离为d ,则有|PF |=d .抛物线的方程为y =2x 2,即x 2=12y ,其准线方程为y =-18,∴当点P 在抛物线的顶点时,d 有最小值18,即|PF |min =18.答案 D3.设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m的取值范围是( ) A.(0,1]∪[9,+∞) B.(0,3]∪[9,+∞) C.(0,1]∪[4,+∞)D.(0,3]∪[4,+∞)解析 (1)当焦点在x 轴上,依题意得 0<m <3,且3m ≥tan ∠AMB 2= 3.∴0<m <3且m ≤1,则0<m ≤1. (2)当焦点在y 轴上,依题意m >3,且m3≥tan ∠AMB2=3,∴m ≥9,综上,m 的取值范围是(0,1]∪[9,+∞). 答案 A4.已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=( ) A.3B.5C.6D.10解析 因y 2=8x ,则p =4,焦点为F (2,0),准线l :x =-2.如图,M 为FN 中点, 故易知线段BM 为梯形AFNC 的中位线, ∵|CN |=2,|AF |=4, ∴|MB |=3,又由定义|MB |=|MF |, 且|MN |=|MF |,∴|NF |=|NM |+|MF |=2|MB |=6. 答案 C5.(2018·北京西城区调研)过抛物线y 2=43x 的焦点的直线l 与双曲线C :x 22-y 2=1的两个交点分别为(x 1,y 1),(x 2,y 2),若x 1·x 2>0,则直线l 的斜率k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,12B.⎝ ⎛⎭⎪⎫-∞,-12∪⎝ ⎛⎭⎪⎫12,+∞C.⎝ ⎛⎭⎪⎫-22,22D.⎝ ⎛⎭⎪⎫-∞,-22∪⎝ ⎛⎭⎪⎫22,+∞ 解析 易知双曲线两渐近线为y =±22x ,抛物线的焦点为双曲线的右焦点,当k >22或k <-22时,l 与双曲线的右支有两个交点,满足x 1x 2>0. 答案 D6.在直线y =-2上任取一点Q ,过Q 作抛物线x 2=4y 的切线,切点分别为A ,B ,则直线AB 恒过的点的坐标为( ) A.(0,1)B.(0,2)C.(2,0)D.(1,0)解析 设Q (t ,-2),A (x 1,y 1),B (x 2,y 2),抛物线方程变为y =14x 2,则y ′=12x ,则在点A 处的切线方程为y -y 1=12x 1(x -x 1),化简得y =12x 1x -y 1,同理,在点B 处的切线方程为y =12x 2x -y 2,又点Q (t ,-2)的坐标适合这两个方程, 代入得-2=12x 1t -y 1,-2=12x 2t -y 2,这说明A (x 1,y 1),B (x 2,y 2)都满足方程-2=12xt -y ,即直线AB 的方程为y -2=12tx ,因此直线AB 恒过点(0,2).答案 B 二、填空题7.已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与圆x 2-4x +y 2+2=0相交,则双曲线的离心率的取值范围是______.解析 双曲线的渐近线方程为y =±b ax ,即bx ±ay =0,圆x 2-4x +y 2+2=0可化为(x -2)2+y 2=2,其圆心为(2,0),半径为 2. 因为直线bx ±ay =0和圆(x -2)2+y 2=2相交, 所以|2b |a 2+b2<2,整理得b 2<a 2.从而c 2-a 2<a 2,即c 2<2a 2,所以e 2<2.又e >1,故双曲线的离心率的取值范围是(1,2). 答案 (1,2)8.(2018·金华质检)已知椭圆x 24+y 2b 2=1(0<b <2)的左、右焦点分别为F 1,F 2,过F 1的直线l 交椭圆于A ,B 两点,若|BF 2|+|AF 2|的最大值为5,则b 的值是________,椭圆的离心率为________.解析 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF 2|+|BF 2|+|AB |=4a =8,所以|AB |=8-(|AF 2|+|BF 2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中垂直于长轴的弦最短,即2b 2a=3,可求得b 2=3,即b=3,e =ca=1-⎝ ⎛⎭⎪⎫b a 2=1-34=12.答案3 129.已知抛物线C :x 2=8y 的焦点为F ,动点Q 在C 上,圆Q 的半径为1,过点F 的直线与圆Q 切于点P ,则FP →·FQ →的最小值为________,此时圆Q 的方程为________. 解析 如图,在Rt △QPF 中,FP →·FQ →=|FP →||FQ →|cos ∠PFQ =|FP →||FQ →||PF →||FQ →|=|FP →|2= |FQ →|2-1.由抛物线的定义知:|FQ →|=d (d 为点Q 到准线的距离),易知,抛物线的顶点到准线的距离最短,∴|FQ →|min =2, ∴FP →·FQ →的最小值为3. 此时圆Q 的方程为x 2+y 2=1. 答案 3 x 2+y 2=110.(2018·温州模拟)已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴、y 轴的垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析 不妨设A (x 1,y 1)(y 1>0),B (x 2,y 2)(y 2<0). 则|AC |+|BD |=y 1+x 2=y 1+y 224.又y 1y 2=-p 2=-4,∴|AC |+|BD |=y 224-4y 2(y 2<0).设g (x )=x 24-4x (x <0),则g ′(x )=x 3+82x2,从而g (x )在(-∞,-2)递减,在(-2,0)递增.∴当x =-2时,|AC |+|BD |取最小值为3. 答案 311.如图,在平面直角坐标系xOy 中,F 是椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点,直线y =b2与椭圆交于B ,C 两点,且∠BFC =90°,则该椭圆的离心率是________.解析 联立方程组⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,y =b2,解得B ,C 两点坐标为B ⎝ ⎛⎭⎪⎫-32a ,b 2,C ⎝ ⎛⎭⎪⎫32a ,b 2,又F (c ,0), 则FB →=⎝ ⎛⎭⎪⎫-32a -c ,b 2,FC →=⎝ ⎛⎭⎪⎫3a 2-c ,b 2,又由∠BFC =90°,可得FB →·FC →=0,代入坐标可得: c 2-34a 2+b24=0,①又因为b 2=a 2-c 2,代入①式可化简为c 2a 2=23,则椭圆离心率为e =c a=23=63. 答案 63三、解答题12.(2018·北京海淀区调研)如图,椭圆E :x 2a 2+y 2b2=1(a >b >0)经过点A (0,-1),且离心率为22. (1)求椭圆E 的方程;(2)经过点(1,1),且斜率为k 的直线与椭圆E 交于不同的两点P ,Q (均异于点A ),证明:直线AP 与AQ 的斜率之和为定值. (1)解 由题设知c a =22,b =1, 结合a 2=b 2+c 2,解得a =2, 所以椭圆的方程为x 22+y 2=1.(2)证明 由题设知,直线PQ 的方程为y =k (x -1)+1(k ≠2),代入x 22+y 2=1,得(1+2k 2)x 2-4k (k -1)x +2k (k -2)=0,由已知Δ>0. 设P (x 1,y 1),Q (x 2,y 2),x 1x 2≠0, 则x 1+x 2=4k (k -1)1+2k 2,x 1x 2=2k (k -2)1+2k 2, 从而直线AP ,AQ 的斜率之和k AP +k AQ =y 1+1x 1+y 2+1x 2=kx 1+2-k x 1+kx 2+2-kx 2=2k +(2-k )⎝ ⎛⎭⎪⎫1x 1+1x 2=2k +(2-k )x 1+x 2x 1x 2=2k +(2-k )4k (k -1)2k (k -2)=2k -2(k -1)=2.故k AP +k AQ 为定值2.13.(2018·杭州调研)已知F 是抛物线T :y 2=2px (p >0)的焦点,点P ()1,m 是抛物线上一点,且|PF |=2,直线l 过定点(4,0),与抛物线T 交于A ,B 两点,点P 在直线l 上的射影是Q .(1)求m ,p 的值;(2)若m >0,且|PQ |2=|QA |·|QB |,求直线l 的方程. 解 (1)由|PF |=2得,1+p2=2,所以p =2,将x =1,y =m 代入y 2=2px 得,m =±2.(2)因为m >0,故由(1)知点P (1,2),抛物线T :y 2=4x .设直线l 的方程是x =ny +4,由⎩⎪⎨⎪⎧x =ny +4,y 2=4x 得,y 2-4ny -16=0.设A (x 1,y 1),B (x 2,y 2),则y 1+y 2=4n ,y 1·y 2=-16. 因为|PQ |2=|QA |·|QB |,所以PA ⊥PB , 所以PA →·PB →=0,且1≠2n +4,所以(x 1-1)(x 2-1)+(y 1-2)(y 2-2)=0,且n ≠-32.由(ny 1+3)(ny 2+3)+(y 1-2)(y 2-2)=0得, (n 2+1)y 1y 2+(3n -2)(y 1+y 2)+13=0,-16(n 2+1)+(3n -2)·4n +13=0,4n 2+8n +3=0,解得,n =-32(舍去)或n =-12,所以直线l 的方程是:x =-12y +4,即2x +y -8=0.14.(2018·绍兴模拟)如图,已知函数y 2=x 图象上三点C ,D ,E ,直线CD 经过点(1,0),直线CE 经过点(2,0).(1)若|CD |=10,求直线CD 的方程; (2)当△CDE 的面积最小时,求点C 的横坐标. 解 设C (x 1,y 1),D (x 2,y 2),E (x 3,y 3), 直线CD 的方程为:x =my +1.由⎩⎪⎨⎪⎧x =my +1,y 2=x 得:y 2-my -1=0,从而⎩⎪⎨⎪⎧y 1y 2=-1,y 1+y 2=m . (1)由题意,得|CD |=1+m 2×m 2+4=10,得m =±1, 故所求直线方程为x =±y +1,即x ±y -1=0.(2)由(1)知y 2=-1y 1,同理可得y 3=-2y 1,E ⎝ ⎛⎭⎪⎫4y 21,-2y 1,并不妨设y 1>0,则E 到直线CD 的距离为d =⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2,S △CDE =121+m 2×m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-11+m2=12m 2+4×⎪⎪⎪⎪⎪⎪4y 21+2m y 1-1,而m =y 1+y 2=y 1-1y 1,所以S △CDE =12y 21+1y 21+2×⎪⎪⎪⎪⎪⎪2y 21+1=12⎪⎪⎪⎪⎪⎪⎝⎛⎭⎪⎫y 1+1y 1×⎝ ⎛⎭⎪⎫2y 21+1,得S △CDE =12⎝ ⎛⎭⎪⎫y 1+3y 1+2y 31.考虑函数f (x )=x +3x +2x3,令f ′(x )=1-3x 2-6x 4=x 4-3x 2-6x 4=0,得x 2=3+332时f (x )有最小值, 即x 1=y 21=3+332时,△CDE 的面积最小, 也即△CDE 的面积最小时,点C 的横坐标为3+332. 15.(2018·湖州调研)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,短轴长为2.直线l :y =kx +m 与椭圆C 交于M ,N 两点,又l 与直线y =12x ,y =-12x 分别交于A ,B 两点,其中点A 在第一象限,点B 在第二象限,且△OAB 的面积为2(O 为坐标原点).(1)求椭圆C 的方程;(2)求OM →·ON →的取值范围.解 (1)由于b =1且离心率e =22, ∴c a =a 2-1a =22,则a 2=2, 因此椭圆的方程为x 22+y 2=1. (2)联立直线l 与直线y =12x ,可得点A ⎝ ⎛⎭⎪⎫2m 1-2k ,m 1-2k , 联立直线l 与直线y =-12x ,可得点B ⎝ ⎛⎭⎪⎫-2m 1+2k ,m 1+2k , 又点A 在第一象限,点B 在第二象限,∴⎩⎪⎨⎪⎧2m 1-2k >0,-2m 1+2k <0⎩⎪⎨⎪⎧m (1-2k )>0,m (1+2k )>0, 化为m 2(1-4k 2)>0,而m 2≥0,∴1-4k 2>0.又|AB |=⎝ ⎛⎭⎪⎫2m 1-2k +2m 1+2k 2+⎝ ⎛⎭⎪⎫m 1-2k -m 1+2k 2=4|m |1-4k 21+k 2, 原点O 到直线l 的距离为|m |1+k 2,即△OAB 底边AB 上的高为|m |1+k 2, ∴S △OAB =124|m |1+k 21-4k 2·|m |1+k 2=2m 21-4k2=2,∴m 2=1-4k 2.设M (x 1,y 1),N (x 2,y 2),将直线l 代入椭圆方程,整理可得: (1+2k 2)x 2+4kmx +2m 2-2=0,∴x 1+x 2=-4km 1+2k 2,x 1·x 2=2m 2-21+2k 2, Δ=16k 2m 2-4(1+2k 2)(2m 2-2)=48k 2>0,则k 2>0,∴y 1·y 2=(kx 1+m )(kx 2+m )=m 2-2k 21+2k 2, ∴OM →·ON →=x 1x 2+y 1y 2=2m 2-21+2k 2+m 2-2k 21+2k 2=81+2k 2-7. ∵0<k 2<14,∴1+2k 2∈⎝ ⎛⎭⎪⎫1,32, ∴81+2k 2∈⎝ ⎛⎭⎪⎫163,8,∴OM →·ON →∈⎝ ⎛⎭⎪⎫-53,1. 故OM →·ON →的取值范围为⎝ ⎛⎭⎪⎫-53,1.。
高考数学大一轮复习第四章三角函数解三角形第3讲两角和与差的正弦余弦和正切公式
(教材习题改编)已知
cos
α=-35,α
是第三象限角,则
π cos(4
+α)为( )
A.
2 10
C.7102
B.-
2 10
D.-7102
解析:选 A.因为 cos α=-35,α 是第三象限的角, 所以 sin α=- 1-cos2α=- 1-(-35)2=-45, 所以 cos(π4+α)=cos π4cos α-sin π4sin α= 22·(-35)- 22·(-45) = 102.
又 sin2α+cos2α=1,所以 sin α=255,cos α= 55,则 cosα-π4
=cos αcos π4+sin αsin π4= 55× 22+255× 22=31010.
答案:3
10 10
三角函数公式的直接应用
(1)已知 α∈π2,π,sin α=153,则 tanα+π4=(
2.若 α+β=34π,则(1-tan α)(1-tan β)的值是________. 解析:-1=tan34π=tan(α+β)=1t-antaαn+αttaannββ, 所以 tan αtan β-1=tan α+tan β. 所以 1-tan α-tan β+tan αtan β=2, 即(1-tan α)(1-tan β)=2. 答案:2
三角函数公式的活用 (高频考点) 三角函数公式的活用是高考的热点,高考多以选择题或填空题 的形式出现,研究三角函数的性质和解三角形常应用三角函数 公式.主要命题角度有: (1)两角和与差公式的逆用及变形应用; (2)二倍角公式的活用.
角度一 两角和与差公式的逆用及变形应用
(1)已知 sin α+cos α=13,则 sin2(π4-α)=(
高中数学必修4第3章课后习题解答
新课程标准数学必修4第三章课后习题解答(第1页共12页)新课程标准数学必修4第三章课后习题解答第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式练习(P127)1、cos()coscossinsin0cos 1sin sin222.cos(2)cos2cos sin2sin 1cos0sincos .2、解:由3cos ,(,)52,得2234sin1cos1()55;所以23242cos()coscos sinsin()444252510.3、解:由15sin17,是第二象限角,得22158cos1sin1()1717;所以811538153cos()cos cossin sin33317217234.4、解:由23sin ,(,)32,得2225cos1sin1()33;又由33cos,(,2)42,得2237sin1cos 1()44.所以35723527cos()cos cos sin sin ()()()434312.练习(P131)1、(1)624;(2)624;(3)624;(4)23.2、解:由3cos,(,)52,得2234sin1cos1()55;所以4133433sin()sin coscos sin()333525210.3、解:由12sin13,是第三象限角,得22125cos1sin1()1313;所以351125312cos()coscos sinsin ()()66621321326.4、解:tantan314tan()241311tantan4.5、(1)1;(2)12;(3)1;(4)32;新课程标准数学必修4第三章课后习题解答(第2页共12页)(5)原式=1(cos34cos26sin34sin 26)cos(3426)cos602;(6)原式=sin 20cos70cos20sin 70(sin 20cos70cos20sin 70)sin 901.6、(1)原式=cos cos sinsin cos()333x xx ;(2)原式=312(sin cos )2(sin coscos sin)2sin()22666x x x x x ;(3)原式=222(sin cos )2(sin cos cos sin )2sin()22444x x x x x;(4)原式=1322(cos sin )22(coscos sinsin )22cos()22333x x x x x .7、解:由已知得3sin()cos cos()sin5,即3sin[()]5,3sin()5所以3sin 5.又是第三象限角,于是2234cos1sin 1()55.因此555324272sin()sincoscos sin()()()()444525210.练习(P135)1、解:因为812,所以382又由4cos85,得243sin 1()855,3sin 385tan 484cos 85所以3424sinsin(2)2sin cos2()()488855252222437coscos(2)cossin()()488855252232tan23162484tantan(2)3482771tan1()842、解:由3sin()5,得3sin5,所以222316cos1sin1()525所以2221637cos2cos sin()255253、解:由sin 2sin且sin 0可得1cos2,又由(,)2,得2213sin 1cos1()22,所以sin 3tan (2)3cos2.新课程标准数学必修4第三章课后习题解答(第3页共12页)4、解:由1tan23,得22tan 11tan3.所以2tan6tan 10,所以tan 3105、(1)11sin15cos15sin 3024;(2)222cossincos 8842;(3)原式=212tan22.511tan4521tan 22.522;(4)原式=2cos452.习题3.1A 组(P137)1、(1)333cos()cos cos sin sin 0cos (1)sin sin 222;(2)333sin()sincoscossin1cos 0sincos222;(3)cos()cos cos sin sin 1cos 0sin cos ;(4)sin()sin coscos sin0cos(1)sinsin .2、解:由3cos,05,得2234sin1cos1()55,所以4331433cos()cos cossin sin666525210.3、解:由2sin,(,)32,得2225cos 1sin1()33,又由33cos ,(,)42,得2237sin1cos 1()44,所以53273527cos()cos cos sin sin ()()343412.4、解:由1cos7,是锐角,得22143sin1cos1()77因为,是锐角,所以(0,),又因为11cos()14,所以221153sin()1cos ()1()1414所以coscos[()]cos()cos sin()sin11153431()14714725、解:由60150,得9030180又由3sin(30)5,得2234cos(30)1sin (30)1()55所以coscos[(30)30]cos(30)cos30sin(30)sin 30新课程标准数学必修4第三章课后习题解答(第4页共12页)43314335252106、(1)624;(2)264;(3)23.7、解:由2sin ,(,)32,得2225cos 1sin1()33.又由3cos 4,是第三象限角,得2237sin1cos 1()44.所以cos()cos cos sin sin 5327()()3434352712sin()sin cos cos sin 2357()()()3434635128、解:∵53sin ,cos 135AB且,A B 为ABC 的内角∴0,02AB,124cos ,sin 135AB当12cos 13A时,sin()sin cos cos sin A B A B A B5312433()013513565A B ,不合题意,舍去∴124cos ,sin 135A B∴cos cos()(cos cos sin sin )CA B A B A B 1235416()135135659、解:由3sin,(,)52,得2234cos 1sin1()55.∴sin 353tan()cos544.∴31tan tan 242tan()311tantan111()42.新课程标准数学必修4第三章课后习题解答(第5页共12页)31tan tan 42tan()2311tantan1()42.10、解:∵tan ,tan是22370xx 的两个实数根.∴3tantan2,7tantan2.∴3tantan 12tan()71tantan31()2.11、解:∵tan()3,tan()5∴tan()tan()tan 2tan[()()]1tan()tan()3541357tan()tan()tan2tan[()()]1tan()tan()351135812、解:∵::2:3:6BD DC AD∴11tan,tan32BD DC ADAD ∴tantan tan tan()1tan tan BAC1132111132又∵0180BAC ,∴45BAC 13、(1)65sin()6x;(2)3sin()3x ;(3)2sin()26x ;(4)27sin()212x ;(5)22;(6)12;(7)sin();(8)cos();(9)3;(10)tan().14、解:由sin0.8,(0,)2,得22cos 1sin10.80.6∴sin 22sin cos 20.80.60.962222cos2cossin0.60.80.2815、解:由3cos,1802703,得2236sin1cos 1()33∴6322sin 22sin cos 2()()3332222361cos2cossin()()333sin 222tan2(3)22cos2316、解:设5sin sin 13BC,且090B,所以12cos 13B.βαDACB(第12题)新课程标准数学必修4第三章课后习题解答(第6页共12页)∴512120sin sin(1802)sin 22sin cos 21313169A B B B B2222125119cos cos(1802)cos2(cos sin )(()())1313169A B BB B sin 120169120tan ()cos 169119119A AA17、解:22122tan33tan 211tan41()3,13tan tan274tan(2)1131tan tan 2174.18、解:1cos()cos sin()sin 31cos[()]3,即1cos 3又3(,2)2,所以22122sin1cos 1()33∴22142sin 22sin cos 2()33922221227cos2cossin()()339∴72422728cos(2)cos2cossin2sin()44492921819、(1)1sin 2;(2)cos2;(3)1sin 44x ;(4)tan2.习题3.1B 组(P138)1、略.2、解:∵tan ,tan A B 是x 的方程2(1)10xp x ,即210x px p 的两个实根∴tan tan A B p ,tan tan 1A B p ∴tan tan[()]tan()CAB A B tan tan 11tan tan 1(1)ABp A Bp 由于0C ,所以34C.3、反应一般的规律的等式是(表述形式不唯一)223sincos (30)sin cos(30)4(证明略)本题是开放型问题,反映一般规律的等式的表述形式还可以是:223sin (30)cossin(30)cos 4223sin (15)cos (15)sin(15)cos(15)4223sincossin cos4,其中30,等等思考过程要求从角,三角函数种类,式子结构形式三个方面寻找共同特点,从而作出归纳.对认识三角函数式特点有帮助,证明过程也会促进推理能力、运算能力的提高.4、因为12PAPP ,则2222(cos()1)sin ()(cos cos )(sin sin )新课程标准数学必修4第三章课后习题解答(第7页共12页)即22cos()22cos cos 2sin sin所以cos()cos cossin sin3.2简单的三角恒等变换练习(P142)1、略.2、略.3、略.4、(1)1sin 42y x .最小正周期为2,递增区间为[,],8282k k kZ ,最大值为12;(2)cos 2y x.最小正周期为2,递增区间为[2,22],k k k Z ,最大值为3;(3)2sin(4)3yx.最小正周期为2,递增区间为5[,],242242kk kZ ,最大值为 2.习题3.2A 组(P143)1、(1)略;(2)提示:左式通分后分子分母同乘以2;(3)略;(4)提示:用22sincos代替1,用2sin cos 代替sin 2;(5)略;(6)提示:用22cos 代替1cos2;(7)提示:用22sin 代替1cos2,用22cos 代替1cos2;(8)略.2、由已知可有1sincoscos sin2……①,1sin coscos sin3……②(1)②×3-①×2可得sin cos 5cos sin(2)把(1)所得的两边同除以cos cos 得tan 5tan注意:这里cos cos0隐含与①、②之中3、由已知可解得1tan2.于是2212()2tan 42tan211tan31()21tantan1142tan()1431tantan1()142∴tan24tan()44、由已知可解得sinx ,cos y,于是2222sincos 1xy.5、()2sin(4)3f x x,最小正周期是2,递减区间为7[,],242242k k kZ .习题3.2B 组(P143)1、略.2、由于762790,所以sin 76sin(9014)cos14m新课程标准数学必修4第三章课后习题解答(第8页共12页)即22cos 71m ,得1cos72m 3、设存在锐角,使223,所以23,tan()32,又tantan 232,又因为tantan2tan()21tan tan2,所以tantan tan()(1tantan )33222由此可解得tan 1,4,所以6.经检验6,4是符合题意的两锐角.4、线段AB 的中点M 的坐标为11((cos cos ),(sinsin ))22.过M 作1MM 垂直于x 轴,交x 轴于1M ,111()()22MOM .在Rt OMA 中,coscos22OMOA .在1Rt OM M 中,11cos cos cos 22OM OM MOM ,11sin sincos22M MOM MOM .于是有1(cos cos )cos cos 222,1(sin sin )sin cos2225、当2x时,22()sin cos 1f ;当4x时,4422222()sin cos(sincos )2sincosf 211sin 22,此时有1()12f ≤≤;当6x 时,662232222()sincos(sincos)3sincos(sincos)f 231sin 24,此时有1()14f ≤≤;由此猜想,当2,x k k N 时,11()12k f ≤≤6、(1)345(sin cos )5sin()55yxx x,其中34cos,sin55所以,y 的最大值为5,最小值为﹣5;(第4题)新课程标准数学必修4第三章课后习题解答(第9页共12页)(2)22sin()yab x,其中2222cos,sina b abab所以,y 的最大值为22ab ,最小值为22ab ;第三章复习参考题A 组(P146)1、1665.提示:()2、5665.提示:5sin()sin[()]sin[()()]443、1.4、(1)提示:把公式tantantan()1tan tan变形;(2)3;(3)2;(4)3.提示:利用(1)的恒等式.5、(1)原式=cos103sin104sin(3010)4sin10cos10sin 20;(2)原式=sin10sin103cos10sin 40(3)sin 40cos10cos10=2sin 40cos40sin801cos10cos10;(3)原式=3sin 203sin 20cos20tan70cos10(1)tan70cos10cos20cos20=sin 702sin10sin 20cos101cos70cos20cos70;(4)原式=3sin10cos103sin10sin50(1)sin 50cos10cos102cos50sin100sin501cos10cos106、(1)95;(2)2425;(3)223.提示:4422222sincos(sincos)2sincos;(4)1725.7、由已知可求得2cos cos 5,1sin sin5,于是sin sin 1tan tancos cos2.8、(1)左边=222cos 214cos232(cos 22cos 21)22242(cos21)2(2cos )8cos=右边(2)左边=2222sincos2sincos (sincos )2cos 2sin cos 2cos (cos sin )新课程标准数学必修4第三章课后习题解答(第10页共12页)(第12(2)题)sincos 11tan2cos 22=右边(3)左边=sin(2)2cos()sin sin[()]2cos()sinsin2cos (cos sin )sin()coscos()sinsinsinsin=右边(4)左边=222234cos 22cos 212(cos 22cos 21)34cos 22cos 212(cos 22cos 21)A A A A A A A A 2224222(1cos2)(2sin )tan (1cos2)(2cos )A A A A A =右边9、(1)1sin 21cos2sin 2cos222sin(2)24y x xx x x递减区间为5[,],88k k kZ (2)最大值为22,最小值为22.10、2222()(cos sin )(cos sin )2sin cos cos2sin 22cos(2)4f x x x x x x xx x x(1)最小正周期是;(2)由[0,]2x 得52[,]444x,所以当24x ,即38x时,()f x 的最小值为2.()f x 取最小值时x 的集合为3{}8.11、2()2sin 2sin cos 1cos2sin 22sin(2)14f x xx xx xx(1)最小正周期是,最大值为21;(2)()f x 在[,]22上的图象如右图:12、()3sin cos 2sin()6f x xxa xa .(1)由21a 得1a ;(2)2{22,}3x k x k kZ ≤≤.13、如图,设ABD ,则CAE ,2sin h AB,1cos h AC所以1212sin 2ABCh h S AB AC,(0)2当22,即4时,ABCS的最小值为12h h .第三章复习参考题B 组(P147)h 1h 2l 2l 1BDE AC(第13题)新课程标准数学必修4第三章课后习题解答(第11页共12页)1、解法一:由221sin cos 5sincos1,及0≤≤,可解得4sin5,13cos sin 55,所以24sin 225,7cos225,312sin(2)sin 2cos cos2sin 44450.解法二:由1sincos5得21(sincos )25,24sin 225,所以249cos 2625.又由1sin cos5,得2sin()410.因为[0,],所以3[,]444.而当[,0]44时,sin()04≤;当3[,]444时,22sin()4210≥.所以(0,)44,即(,)42所以2(,)2,7cos225.312sin(2)4502、把1coscos 2两边分别平方得221coscos 2cos cos 4把1sinsin3两边分别平方得221sin sin2sin sin9把所得两式相加,得1322(cos cos sin sin )36,即1322cos()36,所以59cos()723、由43sin()sin 35可得3343sincos225,4sin()65.又02,所以366,于是3cos()65.所以334cos cos[()]66104、22sin 22sin 2sin cos 2sin 2sin cos (cos sin )sin 1tan cos sin 1cos xxx x xx x xx x xx xx 1tan sin2sin2tan()1tan 4x xx x x由177124x得5234x,又3cos()45x ,所以4sin()45x ,4tan()43x新课程标准数学必修4第三章课后习题解答(第12页共12页)所以2cos cos[()]cos()cossin()sin44444410xx x x ,72sin 10x,7sin 22sin cos 25xx x所以2sin 22sin 281tan 75xx x,5、把已知代入222sin cos(sincos )2sin cos1,得22(2sin )2sin1.变形得2(1cos2)(1cos2)1,2cos 2cos2,224cos 24cos 2本题从对比已知条件和所证等式开始,可发现应消去已知条件中含的三角函数.考虑sin cos ,sin cos 这两者又有什么关系?及得上解法.5、6两题上述解法称为消去法6、()3sin 21cos22sin(2)16f x x x m xm .由[0,]2x 得72[,]666x,于是有216m .解得3m.()2sin(2)4()6f x xxR 的最小值为242,此时x 的取值集合由322()62x k kZ ,求得为2()3xk kZ 7、设APx ,AQy ,BCP ,DCQ ,则tan 1x ,tan1y于是2()tan()()x y xy xy又APQ 的周长为2,即222x yxy,变形可得2()2xy x y 于是2()tan()1()[2()2]x y xy x y .又02,所以4,()24PCQ.8、(1)由221sin cos 5sincos 1,可得225sin5sin 120解得4sin 5或3sin 5(由(0,),舍去)所以13cossin 55,于是4tan 3(2)根据所给条件,可求得仅由sin ,cos ,tan 表示的三角函数式的值,例如,sin()3,cos22,sincos 2tan,sincos 3sin2cos,等等.。
2023年高考数学课后精练 第3讲 利用导数研究函数的性质(解析版)
第3讲 利用导数研究函数的性质【题型精练】一、单选题1.(2021·北京交通大学附属中学高三开学考试)已知()f x 是定义在R 上的偶函数,当0x >时,'2()()0xf x f x x ->,且()20f -=,则不等式()0f x x >的解集是( ) A .()()2,00,2- B .()(),22,-∞-+∞ C .()()2,02,-+∞D .()(),20,2-∞-【答案】C 【详解】解:∵()f x 是定义在R 上的偶函数,当0x >时,'2()()0xf x f x x ->, ∴()f x x 为增函数,()f x 为偶函数,()f x x 为奇函数, ∴()f x x在(),0-∞上为增函数, ∵()()220f f -==, 若0x >,()202f =,所以2x >; 若0x <,()202f -=-,()f x x 在(),0-∞上为增函数,可得20x -<<, 综上得,不等式()0f x x>的解集是()()2,02,-+∞.故选:C.2.(2021·河南·高三月考(文))函数()2e 21xf x x x x =---的极大值为( )A .1-B .1e- C .ln 2 D .()2ln 21--【答案】B 【详解】由()2e 21xf x x x x =---可得()()()()1e 221e 2x x f x x x x '=+--=+-,由()0f x '>可得:ln 2x >或1x <-, 由()0f x '<可得1ln 2x -<<,所以()f x 在(),1-∞-单调递增,在()1,ln 2-单调递减,在()ln 2,+∞单调递增,所以1x =-时,()f x 取得极大值为()111121e ef -=--+-=-,故选:B.3.(2021·全国·高三月考(文))函数321()3f x x ax =-在(2,1)--上单调递减则实数a 的取值范围为( )A .(,1)-∞-B .(,1]-∞-C .(1,)+∞D .[1,)-+∞【答案】B 【详解】2()2(2)f x x ax x x a '=-=-,∵()f x 在(2,1)--上单调递减,∴()0f x '≤在(2,1)--上恒成立,由二次函数()(2)f x x x a '=-的图象可知22a ≤-,即1a ≤-. 故选:B4.(2021·北京·潞河中学高三月考)函数()ln f x kx x =-在[1,)+∞单调递增的一个必要不充分条件是( ) A .2k > B .1k C .1k > D .0k >【答案】D 【详解】由题得1()f x k x'=-,函数()ln f x kx x =-在区间(1,)+∞单调递增,()0f x ∴'在区间(1,)+∞上恒成立. 1kx ∴, 而1y x=在区间(1,)+∞上单调递减,1k ∴.选项中只有0k >是1k 的必要不充分条件. 选项AC 是1k 的充分不必要条件,选项B 是充要条件. 故选:D5.(2021·甘肃·嘉峪关市第一中学模拟预测(文))已知函数2()ln 22x f x m x x =+-,()0,x ∈+∞有两个极值点,则实数m 的取值范围是( ) A .(],0-∞ B .(],1-∞C .[)1,-+∞D .()0,1【答案】D 【详解】22()2m x x mf x x x x-+'=+-=,因为()f x 有两个极值点,故()f x '有两个变号零点,故2x 2x m 0-+=在()0,∞+上有两个不同的解,故0440m m >⎧⎨∆=->⎩,所以01m <<, 故选:D.6.(2021·山东·嘉祥县第一中学高三期中)已知函数()x x f x e e -=+(其中e 是自然对数的底数),若 1.5(2)a f =,0.8(4)b f =,21log 5c f ⎛⎫= ⎪⎝⎭,则,,a b c 的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .b a c <<【答案】B 【详解】函数()x x f x e e -=+是偶函数,()x x f x e e -=-',当0,()0;0,()0x f x x f x ''<<>>, 即函数()f x 在(,0)-∞上单调递减,(0,)+∞上单调递增,因为2222log 5log 25log 325=<=, 2.5 1.55222<==⨯,所以 1.522log 5522<<⨯,则 1.51.60.82log 5224<<=,1.50.82221(log )(log 5)(log 5)(2)(4)5f f f f f =-=<<,即c a b <<. 故选:B .7.(2021·陕西·泾阳县教育局教学研究室高三期中(文))已知函数()f x 的定义域为R ,且()21f =,对任意x ∈R ,()()0f x xf x '+<,则不等式()()112x f x ++>的解集是( ) A .(),1-∞ B .(),2-∞ C .()1,+∞ D .()2,+∞【答案】A 【详解】设()()g x xf x =,则()()()0g x f x xf x =+'<' 所以()g x 在R 上单调递减,又()()2222g f == 由()()112x f x ++>,即()()12g x g +>,所以12x +< 所以1x < 故选:A8.(2021·广东深圳·高三月考)已知函数2ln ,0(),1,0x x x f x x x >⎧=⎨-≤⎩若函数()()=-g x f x k 有三个零点,则( ) A .e 1k -<≤B .11k e-<<C .e 0k -<<D .10ek -<<【答案】D 【详解】要使函数()f x k =有三个解,则()y f x =与y k =有三个交点,当0x >时,()ln f x x x =,则()ln 1f x x '=+,可得()f x 在10,e ⎛⎫⎪⎝⎭上递减,在1,e ⎛⎫+∞ ⎪⎝⎭递增,∴0x >时,()ln f x x x =有最小值11f e e ⎛⎫=- ⎪⎝⎭,且10x e <<时,ln 0x x <;当0x +→时,()0f x →;当x →+∞时,()f x →+∞; 当0x ≤时,2()1f x x =-+单调递增;∴()f x 图象如下,要使函数()g x 有三个零点,则10e k -<<,故选:D .二、多选题9.(2021·湖北·高三月考)已知函数()xf x xe ax =+.则下列说法正确的是( )A .当0a =时,()min 1f x e=-B .当1a =时,直线2y x =与函数()f x 的图象相切C .若函数()f x 在区间[)0,+∞上单调递增,则0a ≥D .若在区间[]0,1上()2f x x ≤恒成立,则1a e ≤-【答案】ABD 【详解】解:对于A :当0a =时,()xf x xe =,则()()'+1+x x x f x xe e e x ==,令'0f x,得1x =-,所以当1x <-时,()'0f x <,函数()f x 单调递减,当>1x -时,()'>0f x ,函数()f x 单调递增,所以()()1111f x f e e-≥-=-=-,所以()min 1f x e =-,故A 正确;对于B :当1a =时,()+x f x xe x =,则()'++1xx f x xe e =,设切点为()00,x y ,则过切点的切线方程为:()()()0000000+++1x xx y x e x e x e x x -=-,因为切线过原点,所以()()()00000000+++01x x x x e x x e x e -=-,解得00x =,此时()'000+0+12f e e =⨯=,所以直线2y x =与函数()f x 的图像相切,故B 正确;对于C :由函数()xf x xe ax =+得()()1+x f x x e a '=+,因为函数()f x 在区间[)0,+∞上单调递增,所以()()1+0xf x x e a '=+≥在区间[)0,+∞上恒成立,即()1x a x e ≥--在区间[)0,+∞上恒成立,令()()1x g x x e =--,则()()'+2x g x x e =-,又令[)0,x ∈+∞,所以,()'0g x <,函数()g x 单调递减, 所以()()000+21g x g e e ≤=-=,所以1a ≥,故C 不正确;对于D :在区间[]0,1上()2f x x ≤恒成立,等价于2x xe ax x +≤在区间[]0,1上恒成立,当0x =时,不等式恒成立;当01x <≤时,x a x e ≤-恒成立,令()xh x x e =-,则()'1x h x e =-,令()'0h x =,得0x =,因为01x <≤,()'0h x <,函数()h x 单调递减,所以()()1111h x h e e ≥=-=-,所以1a e -≤,故D 正确;故选:ABD.10.(2021·辽宁沈阳·高三月考)已知函数()()[)ln ,0,1e44,1,x x f x x x⎧-∈⎪⎪=⎨-⎪+∈+∞⎪⎩(其中e 是自然对数的底数),函数()()g x f x kx =-有三个零点()123123,,x x x x x x <<,则( ) A .实数k 的取值范围为()0,1 B .实数k 的取值范围为()0,e C .123x x x 的取值范围为4,e ⎛+∞⎫⎪⎝⎭D .123x x x 的取值范围为()e,+∞ 【答案】AC 【详解】由图可知,0,k >则方程44kx x-=+,即2440kx x -+=有两个正实数解, 所以16160,k =->解得)1(0k ∈,; 由图可知,12301,x x x <<<<所以234x x k⋅=,且11ln x k ex =-因为11ln 1x k ex =-<,则111x e ⎛⎫∈ ⎪⎝⎭,,所以21112311441,1ln x ex x x x x k x e ⎛⎫⎛⎫⋅⋅==-∈ ⎪ ⎪⎝⎭⎝⎭. 设1)0(1lnx t =∈-,,则()24te e g t t⋅=-, 所以()()22421'0t g tt e e t ⋅-=->,即()g t 单调递增, 又4()1g e -=,且0t ⇒时,()g t →+∞,所以()4,g t e ∈+∞⎛⎫ ⎪⎝⎭. 故选:AC11.(2021·重庆·高三月考)定义域在R 上函数()f x 的导函数为f x ,满足()()2'2f x f x <-,()211f e =-,则下列正确的是( ) A .()00f >B .()421f e >-C .()()()2021202021f ef e ->-D .()()22202120201f e f e ->-【答案】BCD 【详解】由题意,构造函数2()1()x f x g x e +=,则2()2(()1)()xf x f xg x e '-+'=,由()()2'2f x f x <-可知()0g x '>, 所以2()1()x f x g x e +=在R 上单调递增,且2(1)1(1)1f g e +==, 故(0)(1)1g g <=,即(0)11f +<,(0)0f <,A 错误;由(2)(1)1g g >=可得()421f e >-,故B 正确;当1x >时,()(1)1g x g >=,所以2()11xf x e +>,()0f x >, 所以()()()22f x f x f x '<<-,()()02f x f x '-->, 令()()2,1x f x h x x e +=>,则()()()20xf x f x h x e ''--=>, 所以()h x 单调递增,()()20212020h h >,即()()202120202202122020f f e e >++,所以()()2220212020f ef e >++,()()()2021202021f ef e ->-, 故C 正确;由(2021)(2020)g g >可得()()22202120201f e f e ->-,故D 正确;故选:BCD12.(2021·全国·高三专题练习)已知函数()y f x =,0,2x π⎛⎫∈ ⎪⎝⎭,()f x '是其导函数,恒有()()sin cos f x f x x x '>,则( )A .34f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭B .46f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭C .()2cos116f f π⎛⎫<⋅ ⎪⎝⎭D .()cos 13f f π⎛⎫>21⋅ ⎪⎝⎭【答案】AD 【详解】因为0,2x π⎛⎫∈ ⎪⎝⎭,所以sin 0x >,cos 0x >,又()()sin cos f x f x x x'>,所以()()cos sin f x x f x x '>. 构造函数()()cos g x f x x =,0,2x π⎛⎫∈ ⎪⎝⎭,则()()()cos sin 0g x f x x f x x -''=>,所以()g x 在0,2π⎛⎫⎪⎝⎭上为增函数,因为34ππ>,所以34g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以cos cos 3344f f ππππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即34f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,故A 正确;因为46ππ>,所以46g g ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以cos cos 4466f f ππππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,即46f f ππ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,故B 错误; 因为16π<,所以()16g g π⎛⎫< ⎪⎝⎭,所以()cos 1cos166f f ππ⎛⎫< ⎪⎝⎭,即()1cos16f f π⎛⎫< ⎪⎝⎭,故C 错误; 因为13π>,所以()13g g π⎛⎫> ⎪⎝⎭,所以()cos 1cos133f f ππ⎛⎫> ⎪⎝⎭,即()21cos13f f π⎛⎫> ⎪⎝⎭,故D 正确, 故选:AD. 三、填空题13.(2021·江西赣州·高三期中(理))已如函数3()5,(2,2)f x x x x =+∈-,若()2()20f t f t +->.则t 的取值范围为___________. 【答案】(1,0)(0,2)- 【详解】3()5f x x x =+,()3()5f x x x f x -==---,函数为奇函数.2()350f x x '=+>,函数单调递增,()2()20f t f t +->,即()2(2)f t f t ->,故22222222t t t t -<<⎧⎪-<-<⎨⎪>-⎩,解得(1,0)(0,2)t ∈-⋃. 故答案为:(1,0)(0,2)-.14.(2021·陕西·西安中学高三月考(理))已知函数()3()x f x e ax a R =+-∈,若对于任意的12,[1,)x x ∈+∞且12x x <,都有211212()()()x f x x f x a x x -<-成立,则a 的取值范围是________. 【答案】(,3]-∞ 【详解】对于任意的1x ,2[1x ∈,)+∞,且12x x <,都有211212()()()x f x x f x a x x -<-成立, ∴不等式等价为1212()()f x a f x ax x ++<恒成立, 令()()f x ah x x+=,则不等式等价为当12x x <时,12()()h x h x <恒成立, 即函数()h x 在(1,)+∞上为增函数; 3()x e ax a h x x+-+=,则23()0x x xe e ah x x -+-'=在[1,)+∞上恒成立; 30x x xe e a ∴-+-;即3x x a xe e --恒成立,令()x x g x xe e =-,()0x g x xe ∴'=>;()g x ∴在[1,)+∞上为增函数; ()g x g ∴(1)0=; 30a ∴-;3a ∴.a ∴的取值范围是(,3]-∞.故答案:(,3]-∞.15.(2021·宁夏·固原一中高三期中(文))已知函数()f x 是定义在R 上的偶函数,()20f =,()()()0xf x f x x '<>,则不等式()0xf x <的解集为______.【答案】(2,0)(2,)-+∞ 【详解】 令()()f x g x x=,则()2()()xf x f x g x x '-'=,当0x >时.由()()xf x f x '<,得()0g x '<, 所以函数()()f xg x x=在(0,)+∞上是减函数, 函数()f x 是定义在R 上的偶函数,∴()()f x f x -=, ∴()()()f x g x g x x--==--, ∴()g x 是定义在(,0)(0,)-∞+∞上的奇函数, ∴()g x 在(,0)-∞上递减,又(2)0f =,∴(2)(2)02f g ==, 则()g x 的大致图象如图所示:∴02x <<时,()0>g x ,2x >时,()0<g x ,根据函数的奇偶性知,20x -<<时,()0<g x ,2x <-时,()0>g x , 当0x ≠时,()0xf x <等价于()0<g x ,当0x =时,()0xf x <不成立, ∴不等式()0xf x <的解集为(2,0)(2,)-+∞,所以不等式()0xf x <的解集是(2,0)(2,)-+∞. 故答案为:(2,0)(2,)-+∞.16.(2021·陕西·千阳县中学二模(理))已知函数9()(),[1,9]g x x a a R x x=+-∈∈,则()g x 的值域是___________.设函数()|()|f x g x =,若对于任意实数a ,总存在0[1,9]x ∈,使得()0f x t ≥成立,则实数t 的取值范围是___________【答案】[]6,10a a -- (],2-∞ 【详解】 (1)()()()223391x x g x x x +-'=-=, 当[]1,3x ∈,()0g x '<,()g x 单调递减;当[]3,9x ∈,()0g x '>,()g x 单调递增;()()min 36g x g a ∴==-,又()()110,910g a g a =-=-,()max 10g x a ∴=-, 故()g x 的值域是[]6,10a a --; (2)()|()|f x g x =,当610a a -≥-,即8a ≥时,()max 66f x a a t =-=-≥恒成立,则2t ≤, 当610a a -<-,即8a <时,()max 1010f x a a t =-=-≥恒成立,则2t ≤, 综上,实数t 的取值范围是(],2-∞. 故答案为:[]6,10a a --;(],2-∞。
2022年高考数学新题好题汇编 第3讲 函数与导数小题(原卷版=解析版)
第3讲函数与导数小题一、多选题1.(2021·全国高三专题练习)已知函数()sin 2xxf x e ex -=--,若()()12f x f x >,则()A .2212x x >B .121x x e ->C .12ln ln x x >D .1122x x x x >2.(2021·山东高三专题练习)函数ln ()xf x x=,则下列说法正确的是()A .(2)(3)f f >B .ln π>C .若()f x m =有两个不相等的实根12x x 、,则212x x e < D .若25,x y x y =、均为正数,则25x y <3.(2021·广东深圳市·高三一模)已知函数3()3x f x x =+,若01m n <<<,则下列不等式一定成立的有()A .(1)(1)f m f n -<-B .()f f m n <+C .()()log log m n f n f m <D .()()nmf mf n <4.(2021·广东湛江市·高三一模)已知函数f (x )=x 3-3ln x -1,则() A .f (x )的极大值为0 B .曲线y =f (x )在(1,f (1))处的切线为x 轴 C .f (x )的最小值为0D .f (x )在定义域内单调5.(2021·河北邯郸市·高三一模)已知函数()22,21ln 1,1x x f x x x e+-≤≤⎧=⎨-<≤⎩,若关于x 的方程()f x m =恰有两个不同解()1212,x x x x <,则()212)x x f x -(的取值可能是() A .3-B .1-C .0D .26.(2021·全国高三专题练习)已知函数()2tan f x x x =+,其导函数为()'f x ,设()()cos g x f x x '=,则()A .()f x 的图象关于原点对称B .()f x 在R 上单调递增C .2π是()g x 的一个周期D .()g x 在0,2π⎛⎫⎪⎝⎭上的最小值为7.(2021·全国高三专题练习(理))已知函数()sin sin xxf x e e=+,以下结论正确的是()A .()f x 是偶函数B .()f x 最小值为2C .()f x 在区间,2ππ⎛⎫--⎪⎝⎭上单调递减D .()()2g x f x x π=-的零点个数为58.(2021·江苏高三专题练习)若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x m '>>,则下列成立的有()A .11mf m m -⎛⎫>⎪⎝⎭B .11f m ⎛⎫<-⎪⎝⎭ C .1111f m m ⎛⎫>⎪--⎝⎭ D .101f m ⎛⎫<⎪-⎝⎭9.(2021·全国高三专题练习)设函数cos2cos2()22xx f x -=-,则() A .()f x 在0,2π⎛⎫⎪⎝⎭单调递增B .()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦C .()f x 的一个周期为πD .4f x π⎛⎫+ ⎪⎝⎭的图像关于点,04π⎛⎫ ⎪⎝⎭对称二、单选题10.(2021·广东广州市·高三一模)已知e 2.71828≈是自然对数的底数,设21323,2,eln 2e ea b c -=-=-=-,则()A .a b c <<B .b a c <<C .b c a <<D .c a b <<11.(2021·全国高三专题练习)已知函数()()1ln 12xf x e x =+-,若41log 5a f ⎫⎛= ⎪⎝⎭,()5log 6b f =,()6log 4c f =,则a ,b ,c 的大小关系正确的是()A .b a c >>B .a b c >>C .c b a >>D .c a b >>12.(2021·全国高三专题练习)已知函数2()22x xf x x -=++,若不等式()2(1)2f ax f x-<+对任意x ∈R 恒成立,则实数a 的取值范围是()A.()-B.(-C.(-D .(2,2)-13.(2021·江苏常州市·高三一模)若()316,00,0x x f x xx ⎧-≠⎪=⎨⎪=⎩则满足(10)xf x -≥的x 的取值范围是() A .[)1,1][3,-+∞ B .(,1][0,1][3,)-∞-⋃⋃+∞ C .[1,0][1,)-⋃+∞D .(,3][1,0][1,)-∞-⋃-⋃+∞14.(2021·辽宁铁岭市·高三一模)若a ∈R ,“3a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的(). A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件15.(2021·全国高三专题练习)下列函数中,既是奇函数,又在()0,1上单调递减的是() A .()()()ln ln xx xxf x e eee --=+--B .()1sin sin f x x x=+ C .()()()ln 1ln 1f x x x =+--D .()1 xxf x e e =-16.(2021·湖南岳阳市·高三一模)对于函数()y f x =,若存在0x ,使00()()f x f x =--,则点00(,())x f x 与点00(,())x f x --均称为函数()f x 的“先享点”已知函数316,0(),6,0ax x f x x x x ->⎧=⎨-≤⎩且函数()f x 存在5个“先享点”,则实数a 的取值范围为() A .(6,)+∞B .(,6)-∞C .(0,6)D .(3,)+∞17.(2020·山东高三专题练习)已知函数39,0(),0x x x f x xe x ⎧-≥=⎨<⎩( 2.718e =为自然对数的底数),若()f x 的零点为α,极值点为β,则αβ+=() A .1- B .0 C .1 D .2三、填空题18.(2021·广东韶关市·高三一模)若曲线()21:0C y ax a =>与曲线2:x C y e =存在公共切线,则a 的取值范围为__________.19.(2021·全国高二课时练习(理))设曲线xy e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为_____.20.(2021·辽宁铁岭市·高三一模)已知函数()f x 是定义在R 上的奇函数,当0x <时,()221ax x f x =-+,且曲线()y f x =在点()()1,1f 处的切线斜率为4,则a =______. 21.(2021·河北邯郸市·高三一模)已知函数()2ln f x ax x =+满足0(1)(12)lim23x f f x x∆→--∆=∆,则曲线()y f x =在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线斜率为___________.22.(2021·湖南衡阳市·高三一模)定义在R 上的函数()f x 满足()()21f x f x +-=,()f x 的导函数()f x ',则()()20192021f f '--'=___________.第3讲函数与导数小题一、多选题1.(2021·全国高三专题练习)已知函数()sin 2xxf x e ex -=--,若()()12f x f x >,则()A .2212x x >B .121x x e ->C .12ln ln x x >D .1122x x x x >【答案】BD 【分析】先分析得到()f x 在R 上单调递增,得到12x x >,由于二次函数2yx 不是单调函数,2212x x >不一定成立,所以选项A 错误;121x x e->,所以选项B 正确;由于函数ln()0ln ln 0x x y x x x -<⎧==⎨>⎩,不是单调函数,所以12ln ln x x >不一定成立.所以选项C 错误;因为函数2200x x y x x x x ⎧-<==⎨≥⎩,函数在R 上单调递增,所以选项D 正确. 【详解】因为()2cos222cos20xxf x e ex x -'=+-≥-≥,所以()f x 在R 上单调递增,由()()12f x f x >可得12x x >,所以121x x e ->,所以选项B 正确;又因为函数220x x y x x x x ⎧-<==⎨≥⎩,函数在R 上单调递增,所以1122x x x x >,所以选项D 正确;由于二次函数2yx 不是单调函数,所以当12x x >时,2212x x >不一定成立,所以选项A 错误;由于函数ln()0ln ln 0x x y x x x -<⎧==⎨>⎩,不是单调函数,所以当12x x >时,12ln ln x x >不一定成立.所以选项C 错误. 故选:BD 【点睛】关键点睛:解答本题的关键是想到利用导数分析得到函数的单调性,研究函数的问题,一般先要通过探究函数的奇偶性、单调性和周期性等,再求解函数问题.2.(2021·山东高三专题练习)函数ln ()xf x x=,则下列说法正确的是()A .(2)(3)f f >B .ln π>C .若()f x m =有两个不相等的实根12x x 、,则212x x e < D .若25,x y x y =、均为正数,则25x y <【答案】BD 【分析】求出导函数,由导数确定函数日单调性,极值,函数的变化趋势,然后根据函数的性质判断各选项. 由对数函数的单调性及指数函数单调性判断A ,由函数()f x 性质判断BC ,设25x y k ==,且,x y 均为正数,求得252ln ,5ln ln 2ln 5x k y k ==,再由函数()f x 性质判断D . 【详解】 由ln (),0x f x x x =>得:21ln ()xf x x -'=令()0f x '=得,x e =当x 变化时,(),()f x f x '变化如下表:故,()f x x=在(0,)e 上递增,在(,)e +∞上递减,()f e e =是极大值也是最大值,x e >时,x →+∞时,()0f x →,且x e >时()0f x >,01x <<时,()0f x <,(1)0f =,A .1132ln 2(2)ln 2,(3)ln 32f f ===66111133223232(3)(2)f f ⎛⎫⎛⎫>∴>∴> ⎪ ⎪⎝⎭⎝⎭,故A 错B .e e π<<,且()f x 在(0,)e 单调递增ln f fe ππ∴<<<∴>,故:B 正确 C .()f x m =有两个不相等的零点()()1212,x x f x f x m ∴==不妨设120x e x <<<要证:212x x e <,即要证:221222,()e e x x e ef x x x<>∴<在(0,)e 单调递增,∴只需证:()212e f x f x ⎛⎫< ⎪⎝⎭即:()222e f x f x ⎛⎫<⎪⎝⎭只需证:()2220e f x f x ⎛⎫-< ⎪⎝⎭……① 令2()(),()e g x f x f x e x ⎛⎫=-> ⎪⎝⎭,则2211()(ln 1)g x x e x '⎛⎫=-- ⎪⎝⎭当x e >时,2211ln 1,()0()x g x g x e x'>>∴>∴在(,)e +∞单调递增 ()22()0x e g x g e >∴>=,即:()2220e f x f x ⎛⎫-> ⎪⎝⎭这与①矛盾,故C 错D .设25x y k ==,且,x y 均为正数,则25ln ln log ,log ln 2ln 5k kx k y k ====252ln ,5ln ln 2ln 5x k y k ∴== 1152ln 2ln 5ln 2,ln 525==且1010111153222525⎛⎫⎛⎫⎛⎫ ⎪>> ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭ln 2ln 52502525ln 2ln 5x y ∴>>∴<∴<,故D 正确.故选:BD . 【点睛】关键点点睛:本题考查用导数研究函数的单调性、极值,函数零点等性质,解题关键是由导数确定函数()f x 的性质.其中函数值的大小比较需利用单调性,函数的零点问题中有两个变量12,x x ,关键是进行转化,利用零点的关系转化为一个变量,然后引入新函数进行证明.3.(2021·广东深圳市·高三一模)已知函数3()3x f x x =+,若01m n <<<,则下列不等式一定成立的有()A .(1)(1)f m f n -<-B .()f f m n <+C .()()log log m n f n f m <D .()()nmf mf n <【答案】BD 【分析】确定函数是增函数,然后比较自变量的大小后可得正确选项. 【详解】易知3()3xf x x =+是R 上的增函数,01m n <<<时,m n +>1n m m n <<成立,BD 一定成立; 1m -与1n -的大小关系不确定,A 不一定成立;同样log m n 与log m n 的大小关系也不确定,如1m n=时,log log 1m n n m ==-,C 也不一定成立. 故选:BD .4.(2021·广东湛江市·高三一模)已知函数f (x )=x 3-3ln x -1,则() A .f (x )的极大值为0 B .曲线y =f (x )在(1,f (1))处的切线为x 轴 C .f (x )的最小值为0 D .f (x )在定义域内单调【答案】BC 【分析】直接对f (x )=x 3-3ln x -1,求出导函数,利用列表法可以验证A 、C 、D;对于B:直接求出切线方程进行验证即可. 【详解】f (x )=x 3-3ln x -1的定义域为()0+∞,,()()23333=1f x x x x x'=-- 令()()23333=1=0f x x x x x'=--,得1x =, 列表得:所以f (x )的极小值,也是最小值为f (1)=0,无极大值,在定义域内不单调;故C 正确,A 、D 错误; 对于B:由f (1)=0及()10f '=,所以y =f (x )在(1,f (1))处的切线方程()001y x -=-,即0y =.故B 正确. 故选:BC 【点睛】导数的应用主要有:(1)利用导函数几何意义求切线方程;(2)利用导数研究原函数的单调性,求极值(最值); (3)利用导数求参数的取值范围.5.(2021·河北邯郸市·高三一模)已知函数()22,21ln 1,1x x f x x x e+-≤≤⎧=⎨-<≤⎩,若关于x 的方程()f x m =恰有两个不同解()1212,x x x x <,则()212)x x f x -(的取值可能是() A .3- B .1-C .0D .2【答案】BC 【分析】利用函数的单调性以及已知条件得到1122,e ,(1,0]2m m x x m +-==∈-,代入()212)x x f x -(,令121(),(1,0]2x g x xe x x x +=-+∈-,求导,利用导函数的单调性分析原函数的单调性,即可求出取值范围. 【详解】因为()f x m =的两根为()1212,x x x x <, 所以1122,e ,(1,0]2m m x x m +-==∈-, 从而()()211212222m m m m x x f x e m me m ++-⎛⎫-=-=-+ ⎪⎝⎭. 令121(),(1,0]2x g x xex x x +=-+∈-, 则1()(1)1x g x x e x +'=+-+,(1,0]x ∈-.因为(1,0]x ∈-,所以1010,1,10x x e e x ++>>=-+>, 所以()0g x '>在(1,0]-上恒成立, 从而()g x 在(1,0]-上单调递增. 又5(0)0,(1)2g g =-=-, 所以5(),02g x ⎛⎤∈-⎥⎝⎦, 即()()212x x f x -⋅的取值范围是5,02⎛⎤-⎥⎝⎦,故选:BC . 【点睛】关键点睛:本题考查利用导数解决函数的范围问题.构造函数121(),(1,0]2x g x xe x x x +=-+∈-,利用导数求取值范围是解决本题的关键.6.(2021·全国高三专题练习)已知函数()2tan f x x x =+,其导函数为()'f x ,设()()cos g x f x x '=,则()A .()f x 的图象关于原点对称B .()f x 在R 上单调递增C .2π是()g x 的一个周期D .()g x 在0,2π⎛⎫⎪⎝⎭上的最小值为【答案】AC 【分析】对A :求出()f x 的定义域,再利用奇偶性的定义判断即可; 对B :利用()f x 的导数可判断;对C :计算(2)g x π+,看是否等于()g x 即可; 对D :设cos t x =,根据对勾函数的单调性可得最值. 【详解】()2tan f x x x =+的定义域是,2xx k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭∣,其定义域关于坐标原点对称, 且()2tan()2tan (2tan )()f x x x x x x x f x -=-+-=--=-+=-, 所以()f x 是奇函数,所以()f x 的图象关于原点对称,故A 项正确;由()2tan f x x x =+,得22()1cos f x x '=+,则2()()cos cos cos g x f x x x x'==+. 22()10cos f x x '=+>恒成立,所以()f x 在,()22k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭上单调递增,并不是在R 上单调递增,故B 项错误; 由2()cos cos g x x x =+,得函数()g x 的定义域是,2xx k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭∣22(2)cos(2)cos ()cos(2)cos g x x x g x x xπππ+=++=+=+,故C 项正确;设cos t x =,当0,2x π⎛⎫∈ ⎪⎝⎭时,(0,1)t ∈, 此时()2()h t g x t t==+,(0,1)t ∈,根据对勾函数的单调性,()h t 在(0,1)上单调递减, ()()13g x h ∴>=,故D 项错误.故选:AC .7.(2021·全国高三专题练习(理))已知函数()sin sin xxf x e e=+,以下结论正确的是()A .()f x 是偶函数B .()f x 最小值为2C .()f x 在区间,2ππ⎛⎫-- ⎪⎝⎭上单调递减D .()()2g x f x x π=-的零点个数为5【答案】ABD 【分析】去掉绝对值,由函数的奇偶性及周期性,对函数分段研究,利用导数再得到函数的单调性,再对选项进行判断. 【详解】∵x ∈R ,()()f x f x -=,∴()f x 是偶函数,A 正确;因为()()2f x f x π+=,由函数的奇偶性与周期性,只须研究()f x 在[]0,2π上图像变化情况.()sin sin sin 2,01,2x x x e x f x e x e πππ⎧≤≤⎪=⎨+<≤⎪⎩, 当0x π≤≤,()sin 2cos xf x xe'=,则()f x 在0,2x π⎡⎤∈⎢⎥⎣⎦上单调递增,在,2ππ⎡⎤⎢⎥⎣⎦上单调递减,此时()[]2,2f x e ∈;当2x ππ≤≤时,()()sin sin cos xx f x x ee -'=-,则()f x 在3,2x ππ⎡⎤∈⎢⎥⎣⎦上单调递增,在3,22x ππ⎡⎤∈⎢⎥⎣⎦上单调递减,此时()12,f x e e⎡⎤∈+⎢⎥⎣⎦,故当02x π≤≤时,()min 2f x =,B 正确.因()f x 在,2x ππ⎛⎫∈⎪⎝⎭上单调递减,又()f x 是偶函数,故()f x 在,2ππ⎛⎫-- ⎪⎝⎭上单调递增,故C 错误.对于D ,转化为()2f x x π=根的个数问题.因()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫⎪⎝⎭上单调递减,在3,2ππ⎛⎫ ⎪⎝⎭上单调递增,在3,22ππ⎛⎫⎪⎝⎭上单调递减.当(),x π∈-∞时,()2f x ≥,22x π<,()2f x x π=无实根.()3,x π∈+∞时,()max 262x e f x π>>=,()2f x x π=无实根,3,2x ππ⎡⎤∈⎢⎥⎣⎦,显然x π=为方程之根.()sin sin xx f x ee -=+,()()sin sin cos 0x xf x x e e -'=->,3123322f e e πππ⎛⎫=+>⨯=⎪⎝⎭,单独就这段图象,()302f f ππ⎛⎫'='=⎪⎝⎭,()f x 在3,2ππ⎡⎤⎢⎥⎣⎦上变化趋势为先快扣慢,故()g x 在3,2ππ⎛⎫⎪⎝⎭内有1个零点,由图像知()g x 在3,32ππ⎛⎫⎪⎝⎭内有3个零点,又5252f e π⎛⎫=> ⎪⎝⎭,结合图象,知D 正确.故选:ABD. 【点睛】方法点睛:研究函数性质往往从以下方面入手: (1)分析单调性、奇偶性、周期性以及对称性;(2)数形结合法:先对解析式变形,进而构造两个容易画出图象的函数,将两个函数的图象画在同一个平面直角坐标系中,利用数形结合的方法求解.8.(2021·江苏高三专题练习)若定义在R 上的函数()f x 满足()01f =-,其导函数()f x '满足()1f x m '>>,则下列成立的有()A .11mf m m -⎛⎫>⎪⎝⎭B .11f m ⎛⎫<-⎪⎝⎭ C .1111f m m ⎛⎫>⎪--⎝⎭D .101f m ⎛⎫<⎪-⎝⎭【答案】AC 【分析】构造函数()()g x f x mx =-,由已知可得()g x 在R 上单调递增,利用单调性对各个选项进行分析判断即可. 【详解】根据题意设()()g x f x mx =-,其导数为()()g x f x m ''=-, 由()1f x m '>>知()g x 在R 上单调递增,对于A, 1,1,10m m <<>由函数单调性得1(0)g g m ⎛⎫> ⎪⎝⎭即11(0)f m f m m ⎛⎫-⨯> ⎪⎝⎭,即111f m ⎛⎫->- ⎪⎝⎭,即10f m ⎛⎫>⎪⎝⎭,又由1m ,则10m m -<,必有11mf m m -⎛⎫> ⎪⎝⎭,故A 正确,B 错误;对于C, 1m ,则101m >-,则有1(0)1g g m ⎛⎫> ⎪-⎝⎭,即1(0)111m f f m m ⎛⎫->=- ⎪--⎝⎭,即1110111m f m m m ⎛⎫>-=> ⎪---⎝⎭,故C 正确,D 错误; 故选:AC 【点睛】本题考查利用导数研究函数的单调性,常用解题方法构造新函数,考查学生推理能力和计算能力,属于中档题.9.(2021·全国高三专题练习)设函数cos2cos2()22xx f x -=-,则() A .()f x 在0,2π⎛⎫⎪⎝⎭单调递增B .()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦ C .()f x 的一个周期为π D .4f x π⎛⎫+ ⎪⎝⎭的图像关于点,04π⎛⎫ ⎪⎝⎭对称【答案】BC【分析】根据余弦函数及指数函数的单调性,分析复合函数的单调区间及值域,根据周期定义检验所给周期,利用函数的对称性判断对称中心即可求解. 【详解】令cos2t x =,则12222tttt y -=-=-,显然函数12222t t tty -=-=-为增函数, 当0,2x π⎛⎫∈ ⎪⎝⎭时,cos2t x =为减函数, 根据复合函数单调性可知,()f x 在0,2π⎛⎫⎪⎝⎭单调递减, 因为cos2[1,1]t x =∈-, 所以增函数12222tttt y -=-=-在cos2[1,1]t x =∈-时,3322y -≤≤, 即()f x 的值域为33,22⎡⎤-⎢⎥⎣⎦; 因为cos2()cos2(cos2c )os222)(2()2x x x x x x f f πππ+-+-=-=+-=,所以()f x 的一个周期为π,因为sin 2sin 2224x x f x π-⎛⎫+=- ⎪⎝⎭,令sin 2sin 22(2)xx h x --=, 设(,)P x y 为sin 2sin 22(2)xx h x --=上任意一点,则(,)2P x y π'--为(,)P x y 关于,04π⎛⎫⎪⎝⎭对称的点, 而sin 2(sin 2())22sin 2sin 2()22222x x x x h y x y πππ-----=-==≠--,知点(,)2P x y π'--不在函数图象上,故()h x 的图象不关于点,04π⎛⎫⎪⎝⎭对称,即4f x π⎛⎫+ ⎪⎝⎭的图像不关于点,04π⎛⎫ ⎪⎝⎭对称.故选:BC 【点睛】本题主要考查了余弦函数的性质,指数函数的性质,复合函数的单调性,考查了函数的周期性,值域,对称中心,属于难题.二、单选题10.(2021·广东广州市·高三一模)已知e 2.71828≈是自然对数的底数,设21323,2,eln 2e ea b c -=-=-=-,则()A .a b c <<B .b a c <<C .b c a <<D .c a b <<【答案】A 【分析】 首先设()xf x x e=-,利用导数判断函数的单调性,比较,a b 的大小,设利用导数判断1x e x ≥+,放缩2ln 2c >-,再设函数()ln xg x x e=-,利用导数判断单调性,得()20g >,再比较,b c 的大小,即可得到结果. 【详解】设()x f x x e=-,()112f x e x '=-, 当204e x ≤<时,()0f x '>,函数单调递增,当24ex >时,()0f x '<,函数单调递减,()()3,2a f b f ==,2234e <<时,()()32f f <,即a b <,设1xy e x =--,1xy e '=-,(),0-∞时,0y '<,函数单调递减,()0,∞+时,0y '>,函数单调递增,所以当0x =时,函数取得最小值,()00f =,即1x e x ≥+恒成立, 即212e->,令()ln x g x x e =-,()11g x e x'=-,()0,x e ∈时,()0g x '<,()g x 单调递减,(),x e ∈+∞时,()0g x '>,()g x 单调递增,x e =时,函数取得最小值()0g e =,即()20g >,得:2ln 2e >222ln 2e<, 即212ln 22ln 22ee->>,即b c <, 综上可知a b c <<.故选:A 【点睛】关键点点睛:本题考查构造函数,利用导数判断函数的单调,比较大小,本题的关键是:根据1x e x ≥+,放缩ln 2c >,从而构造函数()ln xg x x e=-,比较大小. 11.(2021·全国高三专题练习)已知函数()()1ln 12xf x e x =+-,若41log 5a f ⎫⎛= ⎪⎝⎭,()5log 6b f =,()6log 4c f =,则a ,b ,c 的大小关系正确的是()A .b a c >>B .a b c >>C .c b a >>D .c a b >>【答案】B 【分析】先求出函数的定义域,判断函数()f x 为偶函数,再对函数求导判断出函数()f x 在0,上单调递增,然后作差比较45log 5,log 6的大小,可得456log 5log 61log 40>>>>,从而可比较出a ,b ,c 的大小 【详解】由题可知:()f x 的定义域为R ,且()()1ln 12xf x e x --=++()111ln ln 122x x x e x e x e +=+=+-,则()f x 为偶函数,()112x x e e f x =-+'()()2112121x x xx xe e e e e ---==++,当0x >时,0f x,()f x 在0,上单调递增.又由45551log 5log 6log 6log 4-=-5551log 4log 6log 4-⋅=2555log 4log 612log 4+⎫⎛- ⎪⎝⎭≥255log 25120log 4⎫⎛- ⎪⎝⎭>= 所以456log 5log 61log 40>>>>,41log 5a f ⎫⎛= ⎪⎝⎭()()44log 5log 5f f =-=,故a b c >>. 故选:B 【点睛】关键点点睛:此题考查利用函数的单调性比较大小,考查导数的应用,考查对数运算性质的应用,考查了基本不等式的应用,解题的关键是判断函数的奇偶性,再利用导数判断函数的单调性,然后利用单调性比较大小,属于中档题12.(2021·全国高三专题练习)已知函数2()22x x f x x -=++,若不等式()2(1)2f ax f x -<+对任意x ∈R恒成立,则实数a 的取值范围是()A .()- B .(-C .(-D .(2,2)-【答案】D 【分析】先利用定义确定函数()f x 为偶函数,再利用单调性证明()f x 在[)0,+∞上为增函数,所以不等式()2(1)2f ax f x -<+化简为212ax x -<+,转化为22212x ax x --<-<+在R 上恒成立,求出a 的取值范围. 【详解】函数2()22x xf x x -=++的定义域为R ,且2()22()xx f x x f x -=-=++,所以()f x 为偶函数.又当0x ≥时, 2()g x x =是增函数,任取[)12,0,x x ∈+∞,且12x x >,()112212()()2222x x x xh x h x ---=++-()()121212121212121112122221222222x x x x x x x x x x x x x x +++⎛⎫-⎛⎫+-= ⎪ ⎪⎝⎭⎝=-=--⎭- 120x x >>,12120,22210x x x x +∴-->>,12()()0h x h x ∴->所以()22-=+x xh x 在[)0,+∞上是增函数,即()y f x =在[)0,+∞上是增函数.所以不等式()2(1)2f ax f x-<+对任意x ∈R 恒成立,转化为212ax x-<+,即22212x ax x --<-<+,从而转化为210x ax ++>和230x ax -+>在R 上恒成立①若210x ax ++>在R 上恒成立,则240a ∆=-<,解得22a -<<;②若230x ax -+>在R 上恒成立,,则2120a ∆=-<,解得a -<< 综上所述,实数a 的取值范围是(2,2)-. 故选:D.方法点睛:本题考查了解抽象不等式,要设法把隐性划归为显性的不等式求解,方法是: (1)把不等式转化为[][]()()f g x f h x >的模型;(2)判断函数()f x 的单调性,再根据函数的单调性将不等式的函数符号“f ”脱掉,得到具体的不等式(组)来求解,但要注意奇偶函数的区别.13.(2021·江苏常州市·高三一模)若()316,00,0x x f x xx ⎧-≠⎪=⎨⎪=⎩则满足(10)xf x -≥的x 的取值范围是() A .[)1,1][3,-+∞ B .(,1][0,1][3,)-∞-⋃⋃+∞ C .[1,0][1,)-⋃+∞ D .(,3][1,0][1,)-∞-⋃-⋃+∞【答案】B 【分析】按1x =或0,0x <,1x >和01x <<四种情况,分别化简解出不等式,可得x 的取值范围. 【详解】①当1x =或0时,(1)0xf x -=成立;②当0x <时,()3(1601)11x x xf x x ⎡⎤=--⎢⎥-⎣⎦-≥,可有()31611x x -≤-,解得1x ≤-; ③当0x >且1x ≠时,()3(1601)11x x xf x x ⎡⎤=--⎢⎥-⎣⎦-≥ 若1x >,则()4116x -≥,解得3x ≥ 若01x <<,则()4116x -≤,解得01x << 所以(,1][0,1][3,)x ∈-∞-⋃⋃+∞则原不等式的解为(,1][0,1][3,)x ∈-∞-⋃⋃+∞, 故选:B14.(2021·辽宁铁岭市·高三一模)若a ∈R ,“3a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的().A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A求得函数的导数,利用导数求得函数的单调性与极值,结合充分条件、必要条件的判定,即可求解. 【详解】由题意,函数()()xf x x a e =-,则()()1xf x x a e '=-+,令()0f x '=,可得1x a =-,当1x a <-时,()0f x '<;当1x a >-时,()0f x '>, 所以函数()y f x =在1x a =-处取得极小值,若函数()y f x =在()0,∞+上有极值,则10a ->,解得1a >.因此“3a >”是“函数()()xf x x a e =-在()0,∞+上有极值”的充分不必要条件.故选:A .15.(2021·全国高三专题练习)下列函数中,既是奇函数,又在()0,1上单调递减的是() A .()()()ln ln xx xxf x e eee --=+--B .()1sin sin f x x x=+ C .()()()ln 1ln 1f x x x =+-- D .()1 xxf x e e =-【答案】B 【分析】利用函数奇偶性的定义判断各选项中函数的奇偶性,利用导数法判断各选项中函数在区间()0,1上的单调性,由此可得出合适的选项. 【详解】对于A 选项,由0x x x xe e e e --⎧+>⎨->⎩,解得0x >, 所以,函数()()()ln ln xx xxf x e eee --=+--的定义域为()0,∞+,该函数为非奇非偶函数,A 选项不满足条件;对于B 选项,由sin 0x ≠,可得()x k k Z π≠∈,即函数()1sin sin f x x x=+的定义域为{},x x k k Z π≠∈. ()()()()11sin sin sin sin f x x x f x x x-=-+=--=--,该函数为奇函数,当()0,1x ∈时,()322cos cos cos 0sin sin x xf x x x x-'=-=<, 所以,函数()1sin sin f x x x=+在()0,1上单调递减,B 选项满足条件; 对于C 选项,由1010x x +>⎧⎨->⎩,解得11x -<<,所以,函数()()()ln 1ln 1f x x x =+--的定义域为()1,1-,()()()()ln 1ln 1f x x x f x -=--+=-,该函数为奇函数,当()0,1x ∈时,()21120111f x x x x '=+=>+--,该函数在()0,1上为增函数,C 选项不满足条件; 对于D 选项,函数()1xx f x e e=-的定义域为R ,()()11x x x x f x e e f x e e---=-=-=-,该函数为奇函数,当()0,1x ∈时,()10xx f x e e'=+>,该函数在()0,1上为增函数,D 选项不满足条件.故选:B. 【点睛】方法点睛:函数单调性的判定方法与策略:(1)定义法:一般步骤:设元→作差→变形→判断符号→得出结论;(2)图象法:如果函数()f x 是以图象的形式给出或者函数()f x 的图象易作出,结合图象可得出函数的单调区间;(3)导数法:先求出函数的导数,利用导数值的正负确定函数的单调区间;(4)复合函数法:先将函数()y f g x ⎡⎤=⎣⎦分解为内层函数()u g x =和外层函数()y f u =,再讨论这两个函数的单调性,然后根据复合函数法“同增异减”的规则进行判定.16.(2021·湖南岳阳市·高三一模)对于函数()y f x =,若存在0x ,使00()()f x f x =--,则点00(,())x f x 与点00(,())x f x --均称为函数()f x 的“先享点”已知函数316,0(),6,0ax x f x x x x ->⎧=⎨-≤⎩且函数()f x 存在5个“先享点”,则实数a 的取值范围为() A .(6,)+∞ B .(,6)-∞C .(0,6)D .(3,)+∞【答案】A 【分析】首先根据题中所给的条件,判断出“先享点”的特征,之后根据()f x 存在5个“先享点”,等价于函数32()6(0)f x x x x =-≤关于原点对称的图象恰好与函数1()16(0)f x ax x =->有两个交点,构造函数利用导数求得结果.【详解】依题意,()f x 存在5个“先享点”,原点是一个,其余还有两对,即函数32()6(0)f x x x x =-≤关于原点对称的图象恰好与函数1()16(0)f x ax x =->有两个交点,而函数32()6(0)f x x x x =-≤关于原点对称的函数为32()6(0)f x x x x =-≥,即3166ax x x -=-有两个正根,32166166x x a x x x-+==+-, 令()2166(0)h x x x x=+->, 322162(8)'()2x h x x x x -=-=, 所以当02x <<时,'()0h x <,当2x >时,'()0h x >,所以()h x 在(0,2)上单调递减,在(2,)+∞上单调递增,且(2)4866h =+-=,并且当0x →和x →+∞时,()f x →+∞,所以实数a 的取值范围为(6,)+∞,故选:A.【点睛】该题考查的是有关新定义问题,结合题意,分析问题,利用等价结果,利用导数研究函数的性质,属于较难题目.17.(2020·山东高三专题练习)已知函数39,0(),0x x x f x xe x ⎧-≥=⎨<⎩( 2.718e =为自然对数的底数),若()f x 的零点为α,极值点为β,则αβ+=()A .1-B .0C .1D .2 【答案】C【分析】令()0f x =可求得其零点,即α的值,再利用导数可求得其极值点,即β的值,从而可得答案.【详解】解:39,0(),0x x x f x xe x ⎧-=⎨<⎩,当0x 时,()0f x =,即390x -=,解得2x =;当0x <时,()0x f x xe =<恒成立,()f x ∴的零点为2α=.又当0x 时,()39x f x =-为增函数,故在[0,)+∞上无极值点;当0x <时,()x f x xe =,()(1)x f x x e '=+,当1x <-时,()0f x '<,当1x >-时,()0f x '>,1x ∴=-时,()f x 取到极小值,即()f x 的极值点1β=-,211αβ∴+=-=.故选:C .【点睛】本题考查利用导数研究函数的极值,考查函数的零点,考查分段函数的应用,突出分析运算能力的考查,属于中档题.三、填空题18.(2021·广东韶关市·高三一模)若曲线()21:0C y axa =>与曲线2:x C y e =存在公共切线,则a 的取值范围为__________. 【答案】2,4e ⎡⎫+∞⎪⎢⎣⎭【解析】解:由y =ax 2(a >0),得y ′=2ax ,由y =e x ,得y ′=e x ,曲线C 1:y =ax 2(a >0)与曲线C 2:y =e x 存在公共切线,设公切线与曲线C 1切于点(x 1,ax 12),与曲线C 2切于点()22,x x e ,则22211212x x e ax ax e x x -==-, 可得2x 2=x 1+2,∴11212x e a x +=,记()122x e f x x +=,则()()1222'4x e x f x x +-=,当x ∈(0,2)时,f ′(x )<0,f (x )递减;当x ∈(2,+∞)时,f ′(x )>0,f (x )递增.∴当x =2时,()2min 4e f x =. ∴a 的范围是2,4e ⎡⎫+∞⎪⎢⎣⎭. 19.(2021·全国高二课时练习(理))设曲线x y e =在点(0,1)处的切线与曲线1(0)y x x=>上点P 处的切线垂直,则P 的坐标为_____.【答案】【详解】设00(,)P x y .对y =e x 求导得y ′=e x ,令x =0,得曲线y =e x 在点(0,1)处的切线斜率为1,故曲线1(0)y x x =>上点P 处的切线斜率为-1,由02011x x y x ==-=-',得01x =,则01y =,所以P 的坐标为(1,1). 考点:导数的几何意义.20.(2021·辽宁铁岭市·高三一模)已知函数()f x 是定义在R 上的奇函数,当0x <时,()221ax x f x =-+,且曲线()y f x =在点()()1,1f 处的切线斜率为4,则a =______.【答案】3-【分析】利用奇函数性质,求在0x >时()f x 的解析式,根据导数的几何意义有()14f '=,即可求参数a 的值.【详解】当0x >时,则0x -<,∴()()()222121a x x ax x f x =⋅--⋅-+=++-,此时()()221f x f x ax x =--=---. 所以,当0x >时,()22f x ax '=--,则()1224a f '=--=,解得3a =-.故答案为:3-.21.(2021·河北邯郸市·高三一模)已知函数()2ln f x ax x =+满足0(1)(12)lim 23x f f x x∆→--∆=∆,则曲线()y f x =在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线斜率为___________. 【答案】3【分析】根据极限形式和求导公式得(1)213f a '=+=,进而得1a =,计算12f ⎛⎫'⎪⎝⎭得解. 【详解】 由0(1)(12)lim23x f f x x ∆→--∆=∆,可得0(12)(1)lim 32x f x f x∆→-∆-=-∆. 因为1()2f x ax x '=+,所以(1)213f a '=+=,即1a =,则2()ln f x x x =+, 所以1()2f x x x '=+,132f ⎛⎫'= ⎪⎝⎭. 故答案为:3.22.(2021·湖南衡阳市·高三一模)定义在R 上的函数()f x 满足()()21f x f x +-=,()f x 的导函数()f x ',则()()20192021f f '--'=___________.【答案】0【分析】对()()21f x f x +-=两边同时求导得()()20x x f f '-'-=,进而得答案.【详解】因为()()21f x f x +-=,两边同时求导可得:()()20x x f f '-'-=,故()()201902021f f '-='.故答案为:0【点睛】本题考查复合函数导数问题,解题的关键在于根据已知对函数求导,考查运算求解能力,是中档题.。
2019届高考数学二轮复习 专题五 立 体 几 何 (讲义训练):第3讲 立体几何中的计算 课时训练(含答案)
第3讲 立体几何中的计算 课时训练1. 已知正四棱锥底面边长为42,体积为32,则此四棱锥的侧棱长为________.答案:5解析:由正四棱锥底面边长为42,则底面正方形对角线的一半长为4,再由体积公式得四棱锥的高为3,则此四棱锥的侧棱长为5.2. (2017·镇江期末)若圆锥底面半径为2,高为5,则其侧面积为________.答案:6π解析:因为圆锥的母线长为l =22+(5)2=3,所以其侧面积为π×2×3=6π.3. (2017·常州期末)以一个圆柱的下底面为底面,并以圆柱的上底面圆心为顶点作圆锥,若所得的圆锥底面半径等于圆锥的高,则圆锥的侧面积与圆柱的侧面积之比为________.答案:2∶2解析:如图,由题意可得圆柱的侧面积为S 1=2πrh =2πr 2.圆锥的母线l =h 2+r 2=2r ,故圆锥的侧面积为S 2=12×2πr ×l =2πr 2,所以S 2∶S 1=2∶2.4. (2018·启东调研)高为63的正四面体的表面积为________.答案:3解析:由正四面体的高为63,得正四面体的棱长为1,表面积为4×34=3.5. (2017·南通一调)如图,在正四棱柱ABCD A 1B 1C 1D 1中,AB =3 cm ,AA 1=1 cm ,则三棱锥D 1A 1BD 的体积为________cm 3.答案:32解析:VD 1A 1BD =VBA 1DD 1=13×3×12×3×1=32(cm 3).6. 将半径为5的圆分割成面积之比为1∶2∶3的三个扇形作为三个圆锥的侧面,设这三个圆锥的底面半径依次为r 1,r 2,r 3,则r 1+r 2+r 3=________.答案:5解析:三个圆锥的底面周长分别为53π,103π,5π,则它们的半径r 1,r 2,r 3依次为56,53,52,则r 1+r 2+r 3=5. 7. 已知圆锥的母线长为10 cm ,侧面积为60π cm 2,则此圆锥的体积为________cm 3. 答案:96π解析:设圆锥的底面半径为r ,侧面积=12×母线长×底面圆周长=60π,得r =6 cm ,此圆锥的高为8 cm ,则此圆锥的体积为13×36π×8=96π(cm 3).8. (2018·南通中学练习)如图,在正三棱柱ABC A 1B 1C 1中,若各条棱长均为2,且M 为A 1C 1的中点,则三棱锥M AB 1C 的体积是________.答案:233解析:在正三棱柱中,AA 1⊥平面A 1B 1C 1,则AA 1⊥B 1M .因为B 1M 是正三角形的中线,所以B 1M ⊥A 1C 1.所以B 1M ⊥平面ACC 1A 1,则VMAB 1C =VB 1ACM =13×⎝ ⎛⎭⎪⎫12×AC ×AA 1×B 1M =13×12×2×2×3=233.9. (2018·常熟期中)已知正三棱锥的体积为9 3 cm 3,高为3 cm ,则它的侧面积为________cm 2.答案:183解析:设正三棱锥底面三角形的边长为a ,则V =13×34a 2×3=93,a =6(cm),底面等边三角形的高为32×6=33(cm),底面中心到一边的距离为13×33=3(cm),侧面的斜高为32+(3)2=23(cm), S 侧=3×12×6×23=183(cm 2).10. (2018·南通一调)如图,铜质六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知正六棱柱的底面边长、高都为4 cm ,圆柱的底面积为9 3 cm 2.若将该螺帽熔化后铸成一个高为6 cm 的正三棱柱零件,则该正三棱柱的底面边长为________cm.(不计损耗)答案:210解析:由题意,六角螺帽毛坯体积为正六棱柱的体积减去圆柱的体积,即V 正六棱柱-V圆柱=(S 正六边形-S 圆)h =⎝ ⎛⎭⎪⎪⎫6×34×42-93×4=603(cm 3),因为正三棱柱的体积与六角螺帽毛坯的体积相等,设正三棱柱的底面边长为a ,所以34a 2·6=603,解得a =210(cm).11. 已知等边圆柱(轴截面是正方形的圆柱)的表面积为S ,求其内接正四棱柱的体积. 解:设等边圆柱的底面半径为r ,则高h =2r . 因为S =S 侧+2S 底=2πrh +2πr 2=6πr 2, 所以r =S6π, 所以内接正四棱柱的底面边长a =2r sin45°=2r ,所以V =S 底·h =(2r )2·2r =4r 3=S 6πS9π2.12. 如图,四边形ABCD 为菱形,四边形ACFE 为平行四边形,BD 与AC 相交于点G ,AB =BD =2,AE =3,∠EAD =∠EAB .(1) 求证:平面ACFE ⊥平面ABCD ;(2) 若∠EAG =60°,求三棱锥F BDE 的体积.(1) 证明:连结EG . ∵ 四边形ABCD 为菱形, ∴ AD =AB ,BD ⊥AC ,DG =GB . 在△EAD 和△EAB 中,AD =AB ,AE =AE ,∠EAD =∠EAB ,∴ △EAD ≌△EAB , ∴ ED =EB ,∴ BD ⊥EG . ∵ BD ⊥AC ,AC ∩EG =G , ∴ BD ⊥平面ACFE . ∵ BD ⊂平面ABCD , ∴ 平面ACFE ⊥平面ABCD .(2) 解:连结FG ,∵ BD ⊥平面ACFE ,FG ⊂平面ACFE ,∴ FG ⊥BD . 在△EAG 中,AE =AG =3,且∠EAG =60°, ∴ △EAG 为正三角形, ∴ ∠EGA =60°. 在△FCG 中,CG =FC =3,∠GCF =120°, ∴ ∠FGC =30°,∴ ∠EGF =90°,即FG ⊥EG . 又BD ∩EG =G , ∴ FG ⊥平面BDE ,∴ 点F 到平面BDE 的距离为FG =3. ∵ S △BDE =12×BD ·EG=12×2×3=3,∴ 三棱锥FBDE 的体积为13×3×3=3.13. 在矩形ABCD 中,将△ABC 沿其对角线AC 折起来得到△AB 1C ,且顶点B 1在平面ACD 上的射影O 恰好落在边AD 上,如图所示.(1) 求证:AB 1⊥平面B 1CD ; (2) 若AB =1,BC =3,求三棱锥B 1ABC 的体积.(1) 证明:因为B 1O ⊥平面ABCD ,CD ⊂平面ABCD ,所以B 1O ⊥CD . 又CD ⊥AD ,AD ∩B 1O =O , 所以CD ⊥平面AB 1D .因为AB 1⊂平面AB 1D ,所以AB 1⊥CD . 因为AB 1⊥B 1C ,且B 1C ∩CD =C , 所以AB 1⊥平面B 1CD .(2) 解:因为AB 1⊥平面B 1CD ,B 1D ⊂平面B 1CD , 所以AB 1⊥B 1D . 在Rt △AB 1D 中,B 1D =AD 2-AB 21=2. 由B 1O ·AD =AB 1·B 1D , 得B 1O =AB 1·B 1D AD=63,所以VB 1ABC =13S △ABC ·B 1O =13×12×1×3×63=26.。
高考数学一轮复习第12章选修4系列第3讲绝对值不等式讲义理含解析
第3讲绝对值不等式1.绝对值不等式(1)定理如果a,b是实数,那么|a+b|≤□01|a|+|b|,当且仅当□02ab≥0时,等号成立.(2)如果a,b,c是实数,那么|a-c|≤|a-b|+|b-c|.当且仅当□03(a-b)(b-c)≥0时,等号成立,即b落在a,c之间.(3)由绝对值不等式定理还可以推得以下几个不等式①|a1+a2+…+a n|≤|a1|+|a2|+…+|a n|.②||a|-|b||≤|a±b|≤|a|+|b|.2.绝对值不等式的解法(1)形如|ax+b|≥|cx+d|的不等式,可以利用两边平方的形式转化为二次不等式求解.(2)①绝对值不等式|x|>a与|x|<a的解集.②|ax+b|≤c(c>0)和|ax+b|≥c(c>0)型不等式的解法.|ax+b|≤c⇔□03-c≤ax+b≤c(c>0),|ax+b|≥c⇔□04ax+b≤-c或ax+b≥c(c>0).1.概念辨析(1)不等式|x-1|+|x+2|<2的解集为∅.( )(2)若|x|>c的解集为R,则c≤0.( )(3)|ax+b|≤c(c≥0)的解集,等价于-c≤ax+b≤c.( )(4)对|a-b|≤|a|+|b|当且仅当ab≤0时等号成立.( )答案 (1)√ (2)× (3)√ (4)√ 2.小题热身(1)设a ,b 为满足ab <0的实数,那么( ) A .|a +b |>|a -b | B .|a +b |<|a -b | C .|a -b |<||a |-|b || D .|a -b |<|a |+|b | 答案 B解析 ∵ab <0,∴|a -b |=|a |+|b |>|a +b |.(2)若不等式|kx -4|≤2的解集为{x |1≤x ≤3},则实数k =________. 答案 2解析 由|kx -4|≤2⇔2≤kx ≤6.∵不等式的解集为{x |1≤x ≤3},∴k =2. (3)函数y =|x -3|+|x +3|的最小值为________. 答案 6解析 因为|x -3|+|x +3|≥|(x -3)-(x +3)|=6,当-3≤x ≤3时,|x -3|+|x +3|=6,所以函数y =|x -3|+|x +3|的最小值为6.(4)不等式|x -1|-|x -5|<2的解集是________. 答案 (-∞,4)解析 |x -1|-|x -5|表示数轴上对应的点x 到1和5的距离之差.而数轴上满足|x -1|-|x -5|=2的点的数是4,结合数轴可知,满足|x -1|-|x -5|<2的解集是(-∞,4).题型 一 解绝对值不等式设函数f (x )=|2x +1|-|x -4|. (1)解不等式f (x )>2; (2)求函数y =f (x )的最小值.解 (1)解法一:令2x +1=0,x -4=0分别得x =-12,x =4.原不等式可化为:⎩⎪⎨⎪⎧x <-12,-x -5>2或⎩⎪⎨⎪⎧-12≤x <4,3x -3>2或⎩⎪⎨⎪⎧x ≥4,x +5>2.∴原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-7或x >53. 解法二:f (x )=|2x +1|-|x -4|=⎩⎪⎨⎪⎧-x -5,x <-12,3x -3,-12≤x <4,x +5,x ≥4.画出f (x )的图象,如图所示.求得y =2与f (x )图象的交点为(-7,2),⎝ ⎛⎭⎪⎫53,2. 由图象知f (x )>2的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-7或x >53. (2)由(1)的解法二知,f (x )min =-92.条件探究 把举例说明中函数改为“f (x )=|x +1|-|2x -3|”,解不等式|f (x )|>1.解 f (x )=⎩⎪⎨⎪⎧x -4,x ≤-1,3x -2,-1<x ≤32,-x +4,x >32,y =f (x )的图象如图所示.由f (x )的表达式及图象,当f (x )=1时,可得x =1或x =3; 当f (x )=-1时,可得x =13或x =5,故f (x )>1的解集为{x |1<x <3};f (x )<-1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <13或x >5.所以|f (x )|>1的解集为{|x x <13或1<x <3或x >5.解|x -a |+|x -b |≥c 或|x -a |+|x -b |≤c 的一般步骤 (1)零点分段法①令每个含绝对值符号的代数式为零,并求出相应的根;②将这些根按从小到大排序并以这些根为端点把实数集分为若干个区间; ③由所分区间去掉绝对值符号组成若干个不等式,解这些不等式,求出解集; ④取各个不等式解集的并集求得原不等式的解集. (2)利用|x -a |+|x -b |的几何意义数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体,|x -a |+|x -b |≥|x -a -(x -b )|=|a -b |.(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.见举例说明.提醒:易出现解集不全的错误.对于含绝对值的不等式,不论是分段去绝对值号还是利用几何意义,都要不重不漏.1.求不等式|x -1|+|x +2|≥5的解集.解 当x <-2时,不等式等价于-(x -1)-(x +2)≥5,解得x ≤-3;当-2≤x <1时,不等式等价于-(x -1)+(x +2)≥5,即3≥5,无解; 当x ≥1时,不等式等价于x -1+x +2≥5,解得x ≥2. 综上,不等式的解集为{x |x ≤-3或x ≥2}.2.若关于x 的不等式|ax -2|<3的解集为{|x -53<x <13,求a 的值.解 ∵|ax -2|<3,∴-1<ax <5. 当a >0时,-1a <x <5a ,-1a =-53,且5a =13无解; 当a =0时,x ∈R ,与已知条件不符; 当a <0时,5a <x <-1a ,5a =-53,且-1a =13,解得a =-3.题型 二 绝对值不等式性质的应用角度1 用绝对值不等式的性质求最值 1.设函数f (x )=|2x -3|.(1)求不等式f (x )>5-|x +2|的解集;(2)若g (x )=f (x +m )+f (x -m )的最小值为4,求实数m 的值. 解 (1)∵f (x )>5-|x +2|可化为|2x -3|+|x +2|>5, ∴当x ≥32时,原不等式化为(2x -3)+(x +2)>5,解得x >2,∴x >2;当-2<x <32时,原不等式化为(3-2x )+(x +2)>5,解得x <0,∴-2<x <0;当x ≤-2时,原不等式化为(3-2x )-(x +2)>5,解得x <-43,∴x ≤-2.综上,不等式f (x )>5-|x +2|的解集为(-∞,0)∪(2,+∞). (2)∵f (x )=|2x -3|,∴g (x )=f (x +m )+f (x -m )=|2x +2m -3|+|2x -2m -3|≥|(2x +2m -3)-(2x -2m -3)|=|4m |,∴依题意有4|m |=4,解得m =±1.角度2 用绝对值不等式的性质证明不等式 (多维探究)2.设a >0,|x -1|<a 3,|y -2|<a3,求证:|2x +y -4|<a .证明 因为|x -1|<a 3,|y -2|<a3, 所以|2x +y -4|=|2(x -1)+(y -2)| ≤2|x -1|+|y -2|<2×a 3+a3=a .即|2x +y -4|<a .结论探究 举例说明条件不变,求证:|x -2y +1|<a +2. 证明 |x -2y +1|=|(x -1)-2(y -1)|<|x -1|+|2(y -1)|=|x -1|+|2(y -2)+2|<|x -1|+2|y -2|+2a 3+2·a3+2=a +2.1.证明绝对值不等式的三种主要方法(1)利用绝对值的定义去掉绝对值符号,转化为普通不等式再证明. (2)利用三角不等式||a |-|b ||≤|a ±b |≤|a |+|b |进行证明. (3)转化为函数问题,利用数形结合进行证明. 2.用绝对值不等式的性质求最值的方法利用不等式|a +b |≤|a |+|b |(a ,b ∈R )和|a -b |≤|a -c |+|c -b |(a ,b ∈R ),通过确定适当的a ,b ,利用整体思想或使函数、不等式中不含变量,可以求最值.(2018·江西南昌模拟)已知函数f (x )=|2x -a |+|x -1|. (1)若不等式f (x )≤2-|x -1|有解,求实数a 的取值范围; (2)当a <2时,函数f (x )的最小值为3,求实数a 的值. 解 (1)由题意f (x )≤2-|x -1|,即为⎪⎪⎪⎪⎪⎪x -a 2+|x -1|≤1.而由绝对值的几何意义知⎪⎪⎪⎪⎪⎪x -a2+|x -1|≥⎪⎪⎪⎪⎪⎪a2-1, 由不等式f (x )≤2-|x -1|有解,∴⎪⎪⎪⎪⎪⎪a2-1≤1,即0≤a ≤4.∴实数a 的取值范围是[0,4].(2)由2x -a =0得x =a2,由x -1=0得x =1, 由a <2知a2<1,∴f (x )=⎩⎪⎨⎪⎧-3x +a +1⎝ ⎛⎭⎪⎫x <a 2,x -a +1⎝ ⎛⎭⎪⎫a 2≤x ≤1,3x -a -x函数的图象如图所示.∴f (x )min =f ⎝ ⎛⎭⎪⎫a 2=-a2+1=3,解得a =-4.题型 三 与绝对值不等式有关的参数范围问题(2018·全国卷Ⅰ)已知f (x )=|x +1|-|ax -1|. (1)当a =1时,求不等式f (x )>1的解集;(2)若x ∈(0,1)时不等式f (x )>x 成立,求a 的取值范围. 解 (1)当a =1时,f (x )=|x +1|-|x -1|, 即f (x )=⎩⎪⎨⎪⎧-2,x ≤-1,2x ,-1<x <1,2,x ≥1.故不等式f (x )>1的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >12. (2)当x ∈(0,1)时|x +1|-|ax -1|>x 成立等价于当x ∈(0,1)时|ax -1|<1成立. 若a ≤0,则当x ∈(0,1)时,|ax -1|≥1,不符合题意;若a >0,|ax -1|<1的解集为0<x <2a ,所以2a≥1,故0<a ≤2.综上,a 的取值范围为(0,2].条件探究 把举例说明函数改为“f (x )=|2x -1|-|x -a |”,若x ∈(-1,0)时,f (x )>1有解,求a 的取值范围.解 当x ∈(-1,0)时,f (x )>1有解⇔|x -a |<-2x 有解⇔2x <x -a <-2x 有解⇔3x <a <-x 有解,∵3x >-3,-x <1,∴-3<a <1,即实数a 的取值范围是(-3,1).两招解不等式问题中的含参问题(1)第一招是转化.①把存在性问题转化为求最值问题;②不等式的解集为R 是指不等式的恒成立问题;③不等式的解集为∅的对立面也是不等式的恒成立问题,此类问题都可转化为最值问题,即f (x )<a 恒成立⇔a >f (x )max ,f (x )>a 恒成立⇔a <f (x )min .(2)第二招是求最值.求含绝对值的函数最值时,常用的方法有三种:①利用绝对值的几何意义;②利用绝对值三角不等式,即|a |+|b |≥|a ±b |≥||a |-|b ||;③利用零点分区间法.已知f (x )=|x -a |,a ∈R .(1)当a =1时,求不等式f (x )+|2x -5|≥6的解集;(2)若函数g (x )=f (x )-|x -3|的值域为A ,且[-1,2]⊆A ,求实数a 的取值范围. 解 (1)当a =1时,不等式为|x -1|+|2x -5|≥6. 当x ≤1时,不等式可化为-(x -1)-(2x -5)≥6, 解得x ≤0,所以x ≤0;当1<x <52时,不等式可化为(x -1)-(2x -5)≥6,解得x ≤-2,所以x ∈∅;当x ≥52时,不等式可化为(x -1)+(2x -5)≥6,解得x ≥4,所以x ≥4.综上所述,原不等式的解集为{x |x ≤0或x ≥4}. (2)因为|g (x )|=||x -a |-|x -3|| ≤|x -a -(x -3)|=|a -3|, 所以g (x )∈[-|a -3|,|a -3|],所以函数g (x )的值域A =[-|a -3|,|a -3|], 因为[-1,2]⊆A ,所以⎩⎪⎨⎪⎧-|a -3|≤-1,|a -3|≥2,解得a ≤1或a ≥5.所以实数a 的取值范围是(-∞,1]∪[5,+∞).。
2015届高考数学(理)二轮专题配套练习:专题4_第3讲_推理与证明(含答案)
第3讲 推理与证明考情解读 1.以数表、数阵、图形为背景与数列、周期性等知识相结合考查归纳推理和类比推理,多以小题形式出现.2.直接证明和间接证明的考查主要作为证明和推理数学命题的方法,常与函数、数列及不等式等综合命题.1.合情推理 (1)归纳推理①归纳推理是由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理. ②归纳推理的思维过程如下:实验、观察→概括、推广→猜测一般性结论 (2)类比推理①类比推理是由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理.②类比推理的思维过程如下:观察、比较→联想、类推→猜测新的结论 2.演绎推理(1)“三段论”是演绎推理的一般模式,包括: ①大前提——已知的一般原理; ②小前提——所研究的特殊情况;③结论——根据一般原理,对特殊情况做出的判断. (2)合情推理与演绎推理的区别归纳和类比是常用的合情推理,从推理形式上看,归纳是由部分到整体、个别到一般的推理;类比是由特殊到特殊的推理;而演绎推理是由一般到特殊的推理.从推理所得的结论来看,合情推理的结论不一定正确,有待进一步证明;演绎推理在大前提、小前提和推理形式都正确的前提下,得到的结论一定正确. 3.直接证明 (1)综合法用P 表示已知条件、已有的定义、定理、公理等,Q 表示所要证明的结论,则综合法可用框图表示为: P ⇒Q 1→Q 1⇒Q 2→Q 2⇒Q 3→…→Q n ⇒Q(2)分析法用Q 表示要证明的结论,则分析法可用框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件 4.间接证明反证法的证明过程可以概括为“否定——推理——否定”,即从否定结论开始,经过正确的推理,导致逻辑矛盾,从而达到新的否定(即肯定原命题)的过程.用反证法证明命题“若p ,则q ”的过程可以用如图所示的框图表示.肯定条件p 否定结论q →导致逻辑矛盾→“既p ,又綈q ” 为假→“若p ,则q ” 为真 5.数学归纳法数学归纳法证明的步骤:(1)证明当n 取第一个值n 0(n 0∈N *)时命题成立.(2)假设n =k (k ∈N *,且k ≥n 0)时命题成立,证明n =k +1时命题也成立. 由(1)(2)可知,对任意n ≥n 0,且n ∈N *时,命题都成立.热点一 归纳推理例1 (1)有菱形纹的正六边形地面砖,按下图的规律拼成若干个图案,则第六个图案中有菱形纹的正六边形的个数是( )A .26B .31C .32D .36(2)两旅客坐火车外出旅游,希望座位连在一起,且有一个靠窗,已知火车上的座位的排法如图所示,则下列座位号码符合要求的应当是( )A .48,49B .62,63C .75,76D .84,85思维启迪 (1)根据三个图案中的正六边形个数寻求规律;(2)靠窗口的座位号码能被5整除或者被5除余1. 思维升华 归纳递推思想在解决问题时,从特殊情况入手,通过观察、分析、概括,猜想出一般性结论,然后予以证明,这一数学思想方法在解决探索性问题、存在性问题或与正整数有关的命题时有着广泛的应用.其思维模式是“观察——归纳——猜想——证明”,解题的关键在于正确的归纳猜想.(1)四个小动物换座位,开始是鼠、猴、兔、猫分别坐1、2、3、4号位上(如图),第一次前后排动物互换座位,第二次左右列动物互换座位,…这样交替进行下去,那么第202次互换座位后,小兔坐在第______号座位上.A .1B .2C .3D .4(2)已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,则有________________.热点二 类比推理例2 (1)在平面几何中有如下结论:若正三角形ABC 的内切圆面积为S 1,外接圆面积为S 2,则S 1S 2=14.推广到空间几何可以得到类似结论:若正四面体ABCD 的内切球体积为V 1,外接球体积为V 2,则V 1V 2=________.(2)已知双曲正弦函数sh x =e x -e -x 2和双曲余弦函数ch x =e x +e -x2与我们学过的正弦函数和余弦函数有许多类似的性质,请类比正弦函数和余弦函数的和角或差角.....公式,写出双曲正弦或双曲余弦函数的一个..类似的正确结论________.思维启迪 (1)平面几何中的面积可类比到空间几何中的体积;(2)可利用和角或差角公式猜想,然后验证. 思维升华 类比推理是合情推理中的一类重要推理,强调的是两类事物之间的相似性,有共同要素是产生类比迁移的客观因素,类比可以由概念性质上的相似性引起,如等差数列与等比数列的类比,也可以由解题方法上的类似引起.当然首先是在某些方面有一定的共性,才能有方法上的类比,例2即属于此类题型.一般来说,高考中的类比问题多发生在横向与纵向类比上,如圆锥曲线中椭圆与双曲线等的横向类比以及平面与空间中三角形与三棱锥的纵向类比等.(1)若数列{a n }是等差数列,b n =a 1+a 2+…+a nn,则数列{b n }也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( ) A .d n =c 1+c 2+…+c n n B .d n =c 1·c 2·…·c nnC .d n =D .d n =nc 1·c 2·…·c n(2)椭圆与双曲线有许多优美的对偶性质,如对于椭圆有如下命题:AB 是椭圆x 2a 2+y 2b 2=1(a >b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB =-b 2a 2.那么对于双曲线则有如下命题:AB 是双曲线x 2a 2-y 2b 2=1(a >0,b >0)的不平行于对称轴且不过原点的弦,M 为AB 的中点,则k OM ·k AB =________.热点三 直接证明和间接证明例3 已知数列{a n }满足:a 1=12,3(1+a n +1)1-a n =2(1+a n )1-a n +1,a n a n +1<0 (n ≥1);数列{b n }满足:b n =a 2n +1-a 2n (n ≥1).(1)求数列{a n },{b n }的通项公式;(2)证明:数列{b n }中的任意三项不可能成等差数列.思维启迪 (1)利用已知递推式中的特点构造数列{1-a 2n };(2)否定性结论的证明可用反证法. 思维升华 (1)有关否定性结论的证明常用反证法或举出一个结论不成立的例子即可.(2)综合法和分析法是直接证明常用的两种方法,我们常用分析法寻找解决问题的突破口,然后用综合法来写出证明过程,有时候,分析法和综合法交替使用.等差数列{a n }的前n 项和为S n ,a 1=1+2,S 3=9+3 2.(1)求数列{a n }的通项a n 与前n 项和S n ;(2)设b n =S nn (n ∈N *),求证:数列{b n }中任意不同的三项都不可能成为等比数列.热点四 数学归纳法例4 已知数列{a n }是各项均不为0的等差数列,S n 为其前n 项和,且满足S 2n -1=12a 2n ,n ∈N *,数列{b n }满足b n =⎩⎪⎨⎪⎧2n -1,n 为奇数,12a n -1,n 为偶数,T n 为数列{b n }的前n 项和.(1)求a n ,b n ;(2)试比较T 2n 与2n 2+n3的大小.思维启迪 (1)利用{a n }的前n 项确定通项公式(公差、首项),{b n }的通项公式可分段给出; (2)先求T n ,归纳猜想T n 与2n 2+n3的关系,再用数学归纳法证明.思维升华 在使用数学归纳法证明问题时,在归纳假设后,归纳假设就是证明n =k +1时的已知条件,把归纳假设当已知条件证明后续结论时,可以使用综合法、分析法、反证法.已知f (n )=1+123+133+143+…+1n 3,g (n )=32-12n2,n ∈N *.(1)当n =1,2,3时,试比较f (n )与g (n )的大小关系; (2)猜想f (n )与g (n )的大小关系,并给出证明.1.合情推理的精髓是“合情”,即得到的结论符合“情理”,其中主要是归纳推理与类比推理.归纳推理是由部分得到整体的一种推理模式.类比推理是由此及彼的推理模式;演绎推理是一种严格的证明方式. 2.直接证明的最基本的两种证明方法是综合法和分析法,这两种方法也是解决数学问题时常见的思维方式.在实际解题时,通常先用分析法寻求解题思路,再用综合法有条理地表述解题过程.3.数学归纳法是证明与正整数有关的数学命题的一种方法,在遇到与正整数有关的数学命题时,要考虑是否可以使用数学归纳法进行证明.(1)在证明过程中突出两个“凑”字,即一“凑”假设,二“凑”结论,关键是在证明n =k +1时要用上n =k 时的假设,其次要明确n =k +1时证明的目标,充分考虑由n =k 到n =k +1时,命题形式之间的区别和联系,化异为同,中间的计算过程千万不能省略.(2)注意“两个步骤、一个结论”一个也不能少,切忌忘记归纳结论.真题感悟1.(2014·福建)若集合{a ,b ,c ,d }={1,2,3,4},且下列四个关系:①a =1;②b ≠1;③c =2;④d ≠4.有且只有一个是正确的,则符合条件的有序数组(a ,b ,c ,d )的个数是________. 2.(2014·陕西)观察分析下表中的数据:猜想一般凸多面体中F 押题精练1.圆周上2个点可连成1条弦,这条弦可将圆面划分成2部分;圆周上3个点可连成3条弦,这3条弦可将圆面划分成4部分;圆周上4个点可连成6条弦,这6条弦最多可将圆面划分成8部分.则n 个点连成的弦最多可把圆面分成________部分.( ) A .2n -1B .2nC .2n +1D .2n +22.在计算“1×2+2×3+…+n (n +1)”时,某同学学到了如下一种方法:先改写第k 项,k (k +1)=13[k (k +1)(k+2)-(k -1)k (k +1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),…n (n +1)=13[n (n +1)(n +2)-(n -1)n (n +1)].相加,得1×2+2×3+…+n (n +1)=13n (n +1)(n +2).类比上述方法,计算“1×2×3+2×3×4+…+n (n +1)(n +2)”的结果为____________.(推荐时间:50分钟)一、选择题1.下列推理是归纳推理的是( )A .A ,B 为定点,动点P 满足|P A |+|PB |=2a >|AB |,则P 点的轨迹为椭圆B .由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C .由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b2=1的面积S =πabD .以上均不正确2.观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( ) A .28 B .76 C .123D .1993.已知x >0,观察不等式x +1x ≥2x ·1x =2,x +4x 2=x 2+x 2+4x 2≥33x 2·x 2·4x 2=3,…,由此可得一般结论:x +axn ≥n +1(n ∈N *),则a 的值为( ) A .n n B .n 2 C .3nD .2n4.已知函数f (x )是R 上的单调增函数且为奇函数,数列{a n }是等差数列,a 3>0,则f (a 1)+f (a 3)+f (a 5)的值( ) A .恒为正数 B .恒为负数 C .恒为0D .可正可负5.在平面内点O 是直线AB 外一点,点C 在直线AB 上,若OC →=λOA →+μOB →,则λ+μ=1;类似地,如果点O是空间内任一点,点A ,B ,C ,D 中任意三点均不共线,并且这四点在同一平面内,若DO →=xOA →+yOB →+zOC →,则x +y +z 等于( ) A .0 B .-1 C .1D .±16.已知f (n )=32n +2-8n -9,存在正整数m ,使n ∈N *时,能使m 整除f (n ),则m 的最大值为( ) A .24 B .32 C .48 D .64二、填空题7.如图所示的是由火柴棒拼成的一列图形,第n 个图形由n 个正方形组成,通过观察可以发现第4个图形中,火柴棒有________根;第n 个图形中,火柴棒有________根.8.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为________. 9.(2014·课标全国Ⅰ)甲、乙、丙三位同学被问到是否去过A ,B ,C 三个城市时, 甲说:我去过的城市比乙多,但没去过B 城市; 乙说:我没去过C 城市; 丙说:我们三人去过同一城市. 由此判断乙去过的城市为________.10.对大于1的自然数m 的三次幂可用奇数进行以下方式的“分裂”:23⎩⎨⎧35,33⎩⎪⎨⎪⎧7911,43⎩⎪⎨⎪⎧13151719,….仿此,若m 3的“分裂数”中有一个是59,则m =________. 三、解答题11.已知a ,b ,m 为非零实数,且a 2+b 2+2-m =0,1a 2+4b 2+1-2m =0.(1)求证:1a 2+4b 2≥9a 2+b 2;(2)求证:m ≥72.12.若不等式1n +1+1n +2+…+13n +1>a24对一切正整数n 都成立,求正整数a 的最大值,并证明结论.例1 (1)B (2)D 变式训练1 (1)B (2)f (2n )>n +22(n ≥2,n ∈N *)例2 (1)127 (2)ch(x -y )=ch x ch y -sh x sh y 变式训练2 (1)D (2)b 2a 2例3 (1)解 已知3(1+a n +1)1-a n =2(1+a n )1-a n +1化为1-a 2n +11-a 2n =23,而1-a 21=34,所以数列{1-a 2n }是首项为34,公比为23的等比数列,则1-a 2n =34×⎝⎛⎭⎫23n -1,则a 2n=1-34×⎝⎛⎭⎫23n -1, 由a n a n +1<0,知数列{a n }的项正负相间出现,因此a n =(-1)n +11-34×⎝⎛⎭⎫23n -1, b n =a 2n +1-a 2n =-34×⎝⎛⎭⎫23n +34×⎝⎛⎭⎫23n -1=14×⎝⎛⎭⎫23n -1.(2)证明 假设存在某三项成等差数列,不妨设为b m 、b n 、b p ,其中m 、n 、p 是互不相等的正整数,可设m <n <p , 而b n =14×⎝⎛⎭⎫23n -1随n 的增大而减小,那么只能有2b n =b m +b p ,可得2×14×⎝⎛⎭⎫23n -1=14×⎝⎛⎭⎫23m -1+14×⎝⎛⎭⎫23p -1,则2×⎝⎛⎭⎫23n -m=1+⎝⎛⎭⎫23p -m .(*) 当n -m ≥2时,2×⎝⎛⎭⎫23n -m≤2×⎝⎛⎭⎫232=89,(*)式不可能成立,则只能有n -m =1, 此时等式为43=1+⎝⎛⎭⎫23p -m , 即13=⎝⎛⎭⎫23p -m ,那么p -m =log 2313,左边为正整数,右边为无理数,不可能相等. 所以假设不成立,那么数列{b n }中的任意三项不可能成等差数列.变式训练3 (1)解 由已知得⎩⎨⎧a 1=2+1,3a 1+3d =9+32,所以d =2,故a n =2n -1+2,S n =n (n +2),n ∈N *. (2)证明 由(1)得b n =S nn=n + 2.假设数列{b n }中存在三项b p ,b q ,b r (p ≠q ≠r )成等比数列,则b 2q =b p b r . 即(q +2)2=(p +2)(r +2).∴(q 2-pr )+(2q -p -r )2=0.∵p ,q ,r ∈N *,∴⎩⎪⎨⎪⎧q 2-pr =0,2q -p -r =0,∵(p +r 2)2=pr ,(p -r )2=0,∴p =r 与p ≠r 矛盾.所以数列{b n }中任意不同的三项都不可能成等比数列. 例4 解 (1)设{a n }首项为a 1,公差为d ,在S 2n -1=12a 2n中,令n =1,2得⎩⎪⎨⎪⎧ a 21=2S 1,a 22=2S 3,即⎩⎪⎨⎪⎧a 21=2a 1,(a 1+d )2=2(3a 1+3d ),解得a 1=2,d =4,所以a n =4n -2.所以b n =⎩⎪⎨⎪⎧2n -1,n 为奇数,2n -3,n 为偶数.(2)T 2n =1+2×2-3+22+2×4-3+24+…+22n -2+2×2n -3=1+22+24+…+22n -2+4(1+2+…+n )-3n =1-4n 1-4+4·n (n +1)2-3n =4n 3-13+2n 2-n .所以T 2n -(2n 2+n 3)=13(4n -4n -1).当n =1时,13(4n -4n -1)=-13<0,当n =2时,13(4n -4n -1)=73>0,当n =3时,13(4n -4n -1)=513>0,…猜想当n ≥2时,T 2n >2n 2+n3,即n ≥2时,4n >4n +1.下面用数学归纳法证明:①当n =2时,42=16,4×2+1=9,16>9,成立; ②假设当n =k (k ≥2)时成立,即4k >4k +1.则当n =k +1时,4k +1=4·4k >4·(4k +1)=16k +4>4k +5=4(k +1)+1,所以n =k +1时成立.由①②得,当n ≥2时,4n >4n +1成立. 综上,当n =1时,T 2n <2n 2+n3,当n ≥2时,T 2n >2n 2+n3.变式训练4解 (1)当n =1时,f (1)=1,g (1)=1,所以f (1)=g (1), 当n =2时,f (2)=98,g (2)=118,所以f (2)<g (2),当n =3时,f (3)=251216,g (3)=312216,所以f (3)<g (3).(2)由(1),猜想f (n )≤g (n ),下面用数学归纳法给出证明 ①当n =1,2,3时,不等式显然成立②假设当n =k (k ≥3)时不等式成立,即1+123+133+143+…+1k 3<32-12k 2,那么,当n =k +1时,f (k +1)=f (k )+1(k +1)3<32-12k 2+1(k +1)3, 因为12(k +1)2-(12k 2-1(k +1)3)=k +32(k +1)3-12k 2=-3k -12(k +1)3k 2<0. 所以f (k +1)<32-12(k +1)2=g (k +1),即当n =k +1时,不等式成立.由①②可知,对一切n ∈N *,都有f (n )≤g (n )成立.1.6 2.F +V -E =2 1.A 2.14n (n +1)(n +2)(n +3)BCAABD 7.13,3n +1 8.n 2+n +229.A 10.811.证明 (1)(分析法)要证1a 2+4b 2≥9a 2+b 2成立,只需证(1a 2+4b 2)(a 2+b 2)≥9,即证1+4+b 2a 2+4a 2b 2≥9,即证b 2a 2+4a 2b 2≥4.根据基本不等式,有b 2a 2+4a 2b 2≥2b 2a 2·4a 2b 2=4成立, 所以原不等式成立.(2)(综合法)因为a 2+b 2=m -2,1a 2+4b 2=2m -1,由(1),知(m -2)(2m -1)≥9,即2m 2-5m -7≥0, 解得m ≤-1或m ≥72.又∵a 2+b 2=m -2>0∴m >2,故m ≤-1舍去,∴m ≥72.12.解 方法一 当n =1时,11+1+11+2+13+1>a 24,即2624>a24,所以a <26.而a 是正整数,所以取a =25,下面用数学归纳法证明1n +1+1n +2+…+13n +1>2524.①当n =1时,已证得不等式成立.②假设当n =k (k ∈N *)时,不等式成立,即1k +1+1k +2+…+13k +1>2524.则当n =k +1时,有1(k +1)+1+1(k +1)+2+…+13(k +1)+1=1k +1+1k +2+…+13k +1+13k +2+13k +3+13k +4-1k +1>2524+[13k +2+13k +4-23(k +1)]. 因为13k +2+13k +4-23(k +1)=6(k +1)(3k +2)(3k +4)-23(k +1)=18(k +1)2-2(9k 2+18k +8)(3k +2)(3k +4)(3k +3)=2(3k +2)(3k +4)(3k +3)>0,所以当n =k +1时不等式也成立.由①②知,对一切正整数n ,都有1n +1+1n +2+…+13n +1>2524,所以正整数a 的最大值为25.方法二 设f (n )=1n +1+1n +2+…+13n +1则f (n +1)-f (n )=13n +2+13n +3+13n +4-1n +1=13n +2+13n +4-23n +3=2(3n +2)(3n +4)(3n +3)>0,∴数列{f (n )}为递增数列,∴f (n )min =f (1)=12+13+14=2624,∴1n +1+1n +2+1n +3+…+13n +1>a 24对一切正整数n 都成立可转化为a 24<f (n )min ,∴a 24<2624,∴a <26.故正整数a 的最大值为25.。
第03讲 平面向量的数量积 (精讲)(含答案解析)
第03讲平面向量的数量积(精讲)-2023年高考数学一轮复习讲练测(新教材新高考)第03讲平面向量的数量积(精讲)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析角度2:平面向量数量积的几何意义高频考点二:平面向量数量积的运算角度1:用定义求数量积角度2:向量模运算角度3:向量的夹角角度4:已知模求数量积角度5:已知模求参数高频考点三:平面向量的综合应用高频考点四:极化恒等式第四部分:高考真题感悟第一部分:知识点精准记忆1、平面向量数量积有关概念1.1向量的夹角已知两个非零向量a 和b ,如图所示,作OA a = ,OB b =,则AOB θ∠=(0θπ≤≤)叫做向量a 与b的夹角,记作,a b <> .(2)范围:夹角θ的范围是[0,]π.当0θ=时,两向量a ,b共线且同向;当2πθ=时,两向量a ,b 相互垂直,记作a b ⊥ ;当θπ=时,两向量a ,b共线但反向.1.2数量积的定义:已知两个非零向量a 与b ,我们把数量||||cos a b θ 叫做a 与b的数量积(或内积),记作a b ⋅ ,即||||cos a b a b θ⋅= ,其中θ是a 与b的夹角,记作:,a b θ=<> .规定:零向量与任一向量的数量积为零.记作:00a ⋅=.1.3向量的投影①定义:在平面内任取一点O ,作OM a ON b ==,.过点M 作直线ON 的垂线,垂足为1M ,则1OM 就是向量a 在向量b 上的投影向量.②投影向量计算公式:当θ为锐角(如图(1))时,1OM 与e 方向相同,1||||cos OM a λθ== ,所以11||||cos OM OM e a e θ== ;当θ为直角(如图(2))时,0λ=,所以10||cos 2OM a e π==;当θ为钝角(如图(3))时,1OM 与e方向相反,所以11||||cos ||cos()||cos OM a MOM a a λπθθ=-=-∠=--= ,即1||cos OM a e θ= .当0θ=时,||a λ=,所以1||||cos0OM a e a e == ;当πθ=时,||a λ=-,所以1||||cosπOM a e a e =-= 综上可知,对于任意的[0π]θ∈,,都有1||cos OM a e θ= .2、平面向量数量积的性质及其坐标表示已知向量1122(,),(,)a x y b x y == ,θ为向量a 和b的夹角:2.1数量积1212=||||cos x x y y a b a b θ⋅=+2.2模:2211||a a x y =⋅=+a 2.3夹角:121222221122cos ||||x x y y a ba b x y x y θ+⋅==++ 2.4非零向量a b ⊥的充要条件:121200a b x x y y ⋅=⇔+= 2.5三角不等式:||||||a b a b ⋅≤ (当且仅当a b∥时等号成立)⇔222212121122x x y y x y x y +≤+⋅+3、平面向量数量积的运算①a b b a⋅=⋅r r r r ②()()a b a b a b λλλ⋅=⋅=⋅ ③()c+⋅=⋅+⋅ a b c a c b 4、极化恒等式①平行四边形形式:若在平行四边形ABCD 中,则221()4AB AD AC DB ⋅=- ②三角形形式:在ABC ∆中,M 为BC 的中点,所以222214AB AC AM MB AM BC⋅=-=- 5、常用结论①22()()a b a b a b+-=- ②222()2a b a a b b+=+⋅+ ③222()2a b a a b b-=-⋅+ 第二部分:课前自我评估测试一、判断题(2022·全国·高一专题练习)1.判断(正确的填“正确”,错误的填“错误”)(1)两个向量的数量积仍然是向量.()(2)若0a b ⋅= ,则0a =或0b = .()(3)a ,b 共线⇔a ·b =|a ||b |.()(4)若a ·b =b ·c ,则一定有a =c.()(5)两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量.()(2021·全国·高二课前预习)2.已知两个向量,NM MP的夹角为60°,则∠NMP =60°.()二、单选题(2022·河南安阳·高一阶段练习)3.已知向量()2,1a t =- ,()1,1b t =- ,若a b ⊥,则t =()A .1B .13-C .1-D .2(2022·全国·模拟预测(文))4.在边长为2的正三角形ABC 中,则AB BC ⋅= ()A .2-B .1-C .1D .2(2022·广东·深圳市龙岗区德琳学校高一期中)5.在ABC 中,若0AB AC ⋅<,则ABC -定是()A .锐角三角形B .直角三角形C .钝角三角形D .等边三角形第三部分:典型例题剖析高频考点一:平面向量数量积的定义角度1:平面向量数量积的定义及辨析例题1.(2022·河北武强中学高一期中)已知向量a ,b满足1a = ,1a b ⋅=- ,则()2a a b ⋅-=()A .0B .2C .3D .4【答案】C22(2)222113a a b a a b a a b ⋅-=-⋅=-⋅=⨯+=.故选:C.例题2.(2022·山西太原·高一期中)给出以下结论,其中正确结论的个数是()①0a b a b ⇒⋅=∥ ②a b b a⋅=⋅r r r r ③()()a b c a b c ⋅⋅=⋅⋅ ④a b a b⋅≤⋅A .1B .2C .3D .4【答案】B由数量积的定义知||||cos a b a b θ⋅=,对于①,若a b∥,则||||a b a b ⋅= 或||||a b a b -⋅= ,0a b ⋅= 不一定成立,①错误对于②,a b b a ⋅=⋅r r r r成立,②正确对于③,()a b c ⋅⋅r r r 与a共线,()a b c ⋅⋅r r r 与c 共线,两向量不一定相等,③错误对于④,||||cos a b a b a b θ⋅=≤⋅,④正确故选:B例题3.(2022·江苏·涟水县第一中学高一阶段练习)在锐角ABC 中,关于向量夹角的说法,正确的是()A .AB 与BC的夹角是锐角B .AC 与BA的夹角是锐角C .AC 与BC的夹角是锐角D .AC 与BC的夹角是钝角【答案】C 如下图所示:对于A 选项,AB 与BC的夹角为ABC π-∠,为钝角,A 错;对于B 选项,AC 与BA的夹角为BAC π-∠,为钝角,B 错;对于CD 选项,AC 与BC的夹角等于ACB ∠,为锐角,C 对D 错;故选:C.例题4.(2022·宁夏·平罗中学模拟预测(理))已知向量,a b 的夹角为23π,且||3,a b ==,则b 在a方向上的投影为___________.【答案】1-由题意得2b = ,则b 在a 方向上的投影为2||cos ,2cos13π=⨯=- b a b .故答案为:1-.角度2:平面向量数量积的几何意义例题1.(2022·江西抚州·高一期中)已知向量()()1121a b ==- ,,,,则a 在b 方向上的投影数量为()A .15B .15-CD.5【答案】D因为()()1121a b ==-,,,,所以cos a b a b a b ⋅〈⋅〉==⋅ ,因此a 在b方向上的投影数量为cos ()105a ab 〈⋅〉=-=-,故选:D例题2.(2022·全国·高三专题练习(理))在圆O 中弦AB 的长度为8,则AO AB ⋅=()A .8B .16C .24D .32【答案】Dcos 8432AO AB AB AO OAB ⋅=⋅∠=⨯=.故选:D例题3.(2022·甘肃·高台县第一中学高一阶段练习)已知8,4a b == ,a 与b 的夹角为120°,则向量b 在a方向上的投影为()A .4B .-4C .2D .-2【答案】D由向量8,4a b == ,且a 与b 的夹角为120°,所以向量b 在a 方向上的投影为cos 4cos1202b θ=⨯=-,故选:D.例题4.(2022·吉林一中高一期中)在ABC中,AB =4BC =,30B =︒,P 为边上AC 的动点,则BC BP ⋅的取值范围是()A .[]6,16B .[]12,16C .[]4,12D .[]6,12【答案】A如图,作AE BC ⊥于E ,作PF BC ⊥于F ,由已知得AE =32BE ==,cos 4BC BP BC BP PBC BF ⋅=∠= ,当P 在线段AC 上运动时地,F 在线段EC 上运动,342BF ≤≤,所以6416BF ≤≤ ,故选:A .例题5.(2022·江西景德镇·三模(理))窗花是贴在窗纸或窗户玻璃上的剪纸,它是中国古老的传统民间艺术之一.在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均在正方形ABCD 各边的中点(如图2,若点P 在四个半圆的圆弧上运动,则AB OP ×uu u r uu u r 的取值范围是()A .[]22-,B .⎡⎣-C .⎡-⎣D .[]4,4-【答案】Dcos ,AB OP AB OP AB OP ×=<>uu u r uu u r uu u r uu u r uu u r uu u r ,即AB 与OP 在向量AB方向上的投影的积.由图2知,O 点在直线AB 上的射影是AB 中点,由于2AB =,圆弧直径是2,半径为1,所以OP 向量AB方向上的投影的最大值是2,最小值是-2,因此AB OP ×uu u r uu u r 的最大值是224⨯=,最小值是2(2)4⨯-=-,因此其取值范围为[4,4]-,故选:D .题型归类练(2022·黑龙江·佳木斯一中高一期中)6.已知△ABC 的外接圆圆心为O ,且AO AB AC +=,AO AC = ,则向量BA 在向量BC上的投影向量为()A .14BCB .12BC C .14BC - D .12BC -(2022·内蒙古呼和浩特·二模(理))7.非零向量a ,b ,c 满足()b a c ⊥- ,a 与b 的夹角为6π,3a = ,则c 在b 上的正射影的数量为()A .12-B .2-C .12D .2(2022·北京市第十九中学高一期中)8.如图,已知四边形ABCD 为直角梯形,AB BC ⊥,//AB DC ,AB =1,AD =3,23πBAD ∠=,设点P 为直角梯形ABCD 内一点(不包含边界),则AB AP ⋅的取值范围是()A .3,12⎛⎫- ⎪⎝⎭B .3,12⎡⎤-⎢⎥⎣⎦C .30,2⎛⎫ ⎪⎝⎭D .30,2⎡⎤⎢⎥⎣⎦(2022·全国·高三专题练习)9.在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r ,1AD AB == ,与BC方向相同的单位向量为e ,则向量AB 在BC上的投影向量为()A .12eB .12e- C D .(2022·河南河南·三模(理))10.在△ABC 中,“0AB BC ⋅<”是“△ABC 为钝角三角形”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件(2022·四川·宜宾市叙州区第一中学校高一期中)11.在圆O 中弦4AB =,则AO AB ⋅=__________.(2022·四川·树德中学高一阶段练习)12.如图,直径4AB =的半圆,D 为圆心,点C 在半圆弧上,3ADC π∠=,线段AC 上有动点P ,则DP BA ⋅的取值范围为_________.高频考点二:平面向量数量积的运算角度1:用定义求数量积例题1.(2022·全国·华中师大一附中模拟预测)正六边形ABCDEF 的边长为2,则CE FD ⋅u u r u u u r=()A .-6B .-C .D .6【答案】A在CDE 中,2CD DE ==,120CDE ∠=︒,所以CE =所以有CE DF == CE 与FD 所成的角为120°,所以(2162CE FD ⎛⎫⋅=⨯-=- ⎪⎝⎭,故选:A .例题2.(2022·广东·东莞市东方明珠学校高一期中)已知正方形ABCD 的边长为2,E 为BC 的中点,则()AB BE BC +⋅=()A .2-B .0C .12D .2【答案】D()AB BE BC +⋅= AB BC BE BC ⋅+⋅0122=+⨯=.故选:D例题3.(2022·北京·中关村中学高一期中)已知12a = ,4b = ,且a ,b的夹角为π3,则⋅=a b ()A .1B .1±C .2D .2±【答案】Aπ||||cos 3a b a b ⋅=⋅⋅114122=⨯⨯=.故选:A例题4.(2022·安徽·高二阶段练习)已知平面向量)1a =-,单位向量b满足20b a b +⋅= ,则向量a 与b夹角为___________.【答案】23π)1a =- ,2a =,由20b a b +⋅= 可知112cos ,0a b +⨯⨯= ,解得1cos ,2a b =- ,所以2,3a b π= .故答案为:23π例题5.(2022·上海奉贤区致远高级中学高一期中)在ABC 中,60,6,5B AB BC ∠=== ,则AB BC ⋅=_______【答案】15-因为60,6,5B AB BC ∠=== ,所以()1cos 1806065152AB BC AB BC ⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭.故答案为:15-.角度2:向量模运算例题1.(2022·山东潍坊·高一期中)已知i ,j是平面内的两个向量,i j ⊥ ,且2,2,34j a i j b i i j ===+=-+,则a b -=r r ()A .B .C .D .【答案】D 【详解】由42a b i j -=-r r r r,则2222(42)1616480a b i j i i j j -=-=-⋅+=r r r r r r r r ,所以a b -=r r 故选:D例题2.(2022·四川绵阳·高一期中)已知向量a 与b 的夹角为2π3,且||2a = ,1b ||=,则|2|a b +=()A .2B .C .4D .12【答案】A∵2π13|s |co b a b a ⋅==- ||则222|2|444a b a a b b +=+⋅+= ,即|2|2a b += 故选:A .例题3.(2022·河南安阳·高一阶段练习)已知向量a 与b的夹角为60︒,且||2,|2|a a b =-= ||b =()AB .1C .2D .4【答案】C解:向量a ,b夹角为60︒,且||2,|2|a a b =-= ∴222(2)44a b a a b b -=-⋅+ 22242||cos604||12b b ︒=-⨯⨯⨯+= ,即2||||20b b --=,解得||2b =或||1b =- (舍),∴||2b =,故选:C例题4.(2022·河南新乡·高一期中)已知向量a =,b ,且a 与b的夹角为6π,则2a b -= ()A .7B C .6D【答案】B2a ==,cos 362a b a b π∴⋅=⋅== ,222244161237a b a a b b ∴-=-⋅+=-+= ,2a b ∴-= 故选:B.例题5.(2022·河南·模拟预测(理))已知平面向量a ,b的夹角为π3,且3a = ,8b = ,则a b -=______.【答案】7因为平面向量a ,b的夹角为π3,且3a = ,8b = ,所以由7a b -====,故答案为:7例题6.(2022·河南·模拟预测(文))已知向量(a = ,4b = ,且向量a 与b 的夹角为34π,则a b -= ______.因为(a = ,所以a =又4b = ,3,4a b π〈〉=,所以34cos124a b π⋅==- 所以2222()218241658a b a b a a b b -=-=-⋅+=++=所以a b -角度3:向量的夹角例题1.(2022·内蒙古赤峰·模拟预测(理))若向量a ,b满足1a = ,2b = ,()235a a b ⋅+= ,则a 与b的夹角为()A .6πB .3πC .23πD .56π【答案】B解:因为1a = ,2b = ,()235a a b ⋅+= ,所以2235a a b +⋅=,即2235a a b +⋅= ,所以1a b ⋅= ,设a 与b的夹角为θ,则1cos 2a b a b θ⋅==⋅ ,因为[]0,θπ∈,所以3πθ=;故选:B例题2.(2022·山东济南·三模)已知单位向量a 、b 、c ,满足a b c +=,则向量a 和b的夹角为()A .2π3B .π2C .π3D .6π【答案】A∵a b c +=,∴()()a b a b c c +⋅+=⋅ ,∴2222a b a b c ++⋅= ,∴12a b ⋅=-r r ,∴1cos ,2a b a b a b ⋅==-⋅,∵[],0,π∈ a b ,∴2π,3a b = .故选:A .例题3.(2022·河北邯郸·二模)若向量a ,b 满足||2a =,b = 3a b ⋅=,则向量b 与b a -夹角的余弦值为().A.2BC.16D.20【答案】D因为b = 3a b ⋅=,所以22()39b b a b b a ⋅-=-⋅=-=,因为b a -==== ,所以向量b 与b a -夹角的余弦值为()20b b a b b a ⋅-==⋅- ,故选:D例题4.(2022·河南·扶沟县第二高中高一阶段练习)已知向量a = ,b 是单位向量,若|2|a b -= a 与b的夹角为_____.【答案】π3##60o由a = 、b为单位向量,|2|a b -= 得:2|23|1-= a b ,即224413a a b b -⋅+= ,由2a = ,=1b 所以cos ,1a b a b a b ⋅=⋅= ,1cos ,2a b = ,所以,a b =π3故答案为:π3例题5.(2022·山东烟台·高一期中)若||a =r ,||2b =,且|2|a b += a 与b的夹角大小为______.【答案】150︒##5π6因为|2|a b + 22447a a b b +⋅+= ,即34447a b +⋅+⨯= ,解得3a b ⋅=- ,所以cos ,2a b a b a b ⋅〈〉===-,而0,πa b ≤〈〉≤ ,所以5π,6a b 〈〉= .故答案为:150︒.例题6.(2022·安徽·巢湖市第一中学模拟预测(文))已知向量()1,2a =-r,()1,b λ= ,则“12λ<”是“a 与b 的夹角为锐角”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B当a 与b 的夹角为锐角时,0a b ⋅> 且a 与b不共线,即12020λλ->⎧⎨+≠⎩,∴12λ<且2λ≠-,∴“12λ<”是“a 与b 的夹角为锐角”的必要不充分条件.故选:B.例题7.(2022·辽宁·东北育才学校高一期中)已知向量()1,2a = ,()2,b λ= ,且a 与b的夹角为锐角,则实数λ的取值范围是______.【答案】1λ>-且4λ≠因向量()1,2a = ,()2,b λ= ,且a 与b 的夹角为锐角,于是得0a b ⋅> ,且a 与b 不共线,因此,220λ+>且40λ-≠,解得1λ>-且4λ≠,所以实数λ的取值范围是1λ>-且4λ≠.故答案为:1λ>-且4λ≠例题8.(2022·黑龙江·勃利县高级中学高一期中)已知向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角.则λ的取值范围是______.【答案】12λ>-且2λ≠解:因为向量()2,4a =-r 与向量()1,b λ=-r所成角为钝角,所以0a b ⋅<且两个向量不共线,即240240λλ--<⎧⎨-≠⎩,解得12λ>-且2λ≠.故答案为:12λ>-且2λ≠.例题9.(2022·河北·高一期中)已知向量(),2a λ=- ,()3,4b =- ,若a ,b 的夹角为钝角,则λ的取值范围为______【答案】833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭解:由题意得380a b λ⋅=--< ,且46λ≠,解得83λ>-且32λ≠,即833,,322λ⎛⎫⎛⎫∈-⋃+∞ ⎪ ⎪⎝⎭⎝⎭;故答案为:833,,322⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭角度4:已知模求数量积例题1.(2022·吉林长春·模拟预测(文))已知向量a ,b满足2a b == ,a b -=r r ,则⋅=a b ()A .2-B .-C .D .6【答案】A||a b -==4241 2,2a b a b ∴-⋅+=⋅=- 故选:A例题2.(2022·全国·模拟预测(文))已知向量a 、b 满足2a b b ==-=,则a b ⋅= ()A .6B .-C .D .-2【答案】D2244122||21222b a b a b a b a b +--=⇒-=+-⋅=⇒⋅==- .故选:D.例题3.(2022·北京十五中高一期中)若向量,a b满足122a b a b ==-= ,,,则a b ⋅=_____.【答案】12##0.5因为122a b a b ==-= ,,,所以22224a ba ab b-=-⋅+= ,即1244a b -⋅+=,所以12a b ⋅= .故答案为:12.例题4.(2022·安徽马鞍山·三模(文))设向量a ,b满足1a = ,2b = ,a b -= 则a b ⋅=___________.【答案】0解:因为向量a ,b满足1a = ,2b = ,a b -= 所以()22222221225a b a ba ab b a b -=-=-⋅+=+-⋅=,所以0a b ⋅=,故答案为:0.例题5.(2022·贵州贵阳·二模(理))已知向量0a b c ++=,||||||1a b c === ,则a b b c c a ⋅+⋅+⋅=________.【答案】32-##-1.5∵向量0a b c ++=,||||||1a b c === ,∴()()()22222320a b ca b a b b c c a a b b c c c a =⋅+⋅+⋅⋅+++++=+⋅=+⋅+,∴32a b b c c a ⋅+⋅+⋅=- .故答案为:32-.角度5:已知模求参数例题1.(2022·全国·高三专题练习)已知0m ≠,向量(,),(2,)a m n b m ==-,若||||a b a b +=-,则实数n =()A .BC .-2D .2【答案】D 【详解】由||||a b a b +=-可得22()()a b a b +=-2222220a a b b a a b b a b ∴+⋅+=-⋅+∴⋅= 20a b m mn ∴⋅=-+=,因为0m ≠,所以2n =.故选:D例题2.(2022·广东·高一阶段练习)已知单位向量,a b满足12a b ⋅= ,则()a tb t R +∈ 的最小值为()A .2B .34C .12D .14【答案】A 【详解】,a b为单位向量,1a b ∴==,2222221a tb a ta b t b t t ∴+=+⋅+=++,则当12t =-时,()2min314t t ++=,mina tb∴+=.故选:A.例题3.(2022·湖北鄂州·高二期末)已知向量(),2a m = ,()1,1b =r,若a b a += 则实数m =()A .2B .2-C .12D .12-【答案】A因为()1,1b =r,则b = a b a b +=+,等式a b a b +=+ 两边平方可得222222a a b b a a b b +⋅+=+⋅+ ,则a b a b ⋅=⋅ ,故a 与b同向,所以,2m =.故选:A.例题4.(2022·安徽·高二阶段练习(文))已知向量a ,b满足4a =,(b =- ,且0a kb +=,则k 的值为______.【答案】2∵0a kb += ,∴0a kb += ,∴a kb =-,∴a kb k b == ,∵(b =-,∴2b ==.又∵4a =,∴2a k b==.故答案为:2.题型归类练(2022·北京·潞河中学三模)13.已知菱形ABCD 的边长为,60a ABC ∠= ,则DB CD ⋅=()A .232a-B .234a-C .234aD .232a(2022·河南·方城第一高级中学模拟预测(理))14.已知向量a ,b 为单位向量,()0a b a b λλλ+=-≠ ,则a 与b的夹角为()A .6πB .π3C .π2D .2π3(2022·全国·高一单元测试)15.在ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,3cos 10C =,若92CB CA ⋅= ,则c 的最小值为()A .2B .4CD .17(2022·四川省内江市第六中学高一期中(理))16.如图,ABC 中,π3BAC ∠=,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ,若AC =3,AB =4,则AP CD ⋅的值为()A .125B .512C .1312D .1213(2022·湖南·长沙市明德中学二模)17.已知非零向量a 、b 满足0a b ⋅=,()()0a b a b +⋅-= ,则向量b 与向量a b - 夹角的余弦值为()A .2B .0C .2D .2(2022·广东·模拟预测)18.已知单位向量a ,b 满足()2a a b ⊥- ,则向量a ,b 的夹角为()A .120︒B .60︒C .45︒D .30︒(2022·安徽师范大学附属中学模拟预测(文))19.设,a b 为非零向量,且22a b a b +=- ,则a ,b的夹角为___________.(2022·广东广州·三模)20.已知,a b为单位向量,若2a b -= 2a b += __________.(2022·山东济宁·三模)21.在边长为4的等边ABC 中,已知23AD AB =,点P 在线段CD 上,且12AP mAC AB =+,则AP = ________.高频考点三:平面向量的综合应用例题1.(2022·湖南·高二阶段练习)“赵爽弦图”是中国古代数学的图腾,它是由四个全等的直角三角形与一个小正方形拼成的一个大正方形.如图,某人仿照赵爽弦图,用四个三角形和一个小的平行四边形拼成一个大平行四边形,其中,,,E F G H 分别是,,,DF AG BH CE 的中点,若AG x AB y AD =+,则xy =()A .625B .625-C .825D .825-【答案】C由题意,可得()11112224AG AB BG AB BH AB BC CH AB BC CE =+=+=++=++ ,因为EFGH 是平行四边形,所以AG CE =-,所以1124AG AB BC AG =+- ,所以4255AG AB BC =+ ,因为AG x AB y AD =+ ,所以42,55x y ==,则4285525xy =⨯=.故选:C.例题2.(2022·河南·唐河县第一高级中学高一阶段练习)2022年北京冬奥会开幕式中,当《雪花》这个节目开始后,一片巨大的“雪花”呈现在舞台中央,十分壮观.理论上,一片雪花的周长可以无限长,围成雪花的曲线称作“雪花曲线”,又称“科赫曲线”,是瑞典数学家科赫在1904年研究的一种分形曲线.如图是“雪花曲线”的一种形成过程:从一个正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边分别向外作正三角形,再去掉底边,重复进行这一过程.已知图①中正三角形的边长为6,则图③中OM ON ⋅的值为()A .24B .6C .D .【答案】A在图③中,以O 为坐标原点建立如图所示的平面直角坐标系,4OM =,(2cos ,2sin )(2,33OM ππ== ,83MP = ,即8(,0)3MP = ,23PN = ,由分形知//PN OM ,所以1(,)33PN = ,所以(5,)3ON OM MP PN =++= ,所以2524OM ON ⋅=⨯+= .故选:A .例题4.(2022·江苏·常州市第二中学高一阶段练习)如图,已知平行四边形ABCD 的对角线相交于点O ,过点O 的直线与,AB AD 所在直线分别交于点M ,N ,满足,,(0,0)AB mAM AN nAD m n ==>> ,若13mn =,则mn 的值为()A .23B .34C .45D .56【答案】B 【详解】因平行四边形ABCD 的对角线相交于点O ,则1122AO AB AD =+,而,,(0,0)AB mAM AN nAD m n ==>>,于是得122m AO AM AN n=+,又点M ,O ,N 共线,因此,1122m n +=,即12mn n +=,又13mn =,解得12,23m n ==,所以34m n =.故选:B例题5.(2022·江苏·常州市第二中学高一阶段练习)在梯形ABCD 中,,2,1,120,,AB CD AB BC CD BCD P Q ===∠=∥ 分别为线段BC ,CD 上的动点.(1)求BC AB ⋅ ;(2)若14BP BC =,求AP ;(3)若1,6BP BC DQ DC μμ== ,求AP BQ ⋅u u u r u u u r 的最小值;【答案】(1)2-76(1)因为,2,120AB CD AB BC BCD ==∠= ∥,所以60ABC ∠= ,所以,180120BC AB ABC =-∠=,所以cos 22cos1202BC AB BC AB BC AB =⨯⨯=⨯⨯=⋅-⋅ .(2)由(1)知,2BC AB -⋅=,因为14BP BC = ,所以14AP AB BP AB BC =+=+ ,所以()222222111111322221146264AP AB AB AB BC BC BC ⎛⎫=+=+⋅+=+⨯-+⨯= ⎪⎝⎭ ,所以AP = .(3)因为BP BC μ= ,16DQ DC μ=,则()()()616AP BQ AB BP BC CQ AB BC BC CD μμμ⎛⎫-⋅=+⋅+=+⋅+ ⎪⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 2611666AB BC AB CD BC CB CDμμμμ--=⋅+⋅++⋅u u u r u u u r u u u r u u u r u u u r u u u r u u u r 261161125221221566236μμμμμμ--⎛⎫=--⨯⨯+⨯+⨯⨯⨯-=+- ⎪⎝⎭,因为011016μμ<≤⎧⎪⎨<≤⎪⎩,解得116μ≤≤,设()125536f μμμ=+-,116μ≤≤,根据对勾函数的单调性可知,()f μ在1,16⎡⎤⎢⎥⎣⎦单调递增,所以当1μ=时,()f μ取得最大值:()125715366f =+-=.22.已知P 是ABC 的外心,且3420PA PB PC +-=uu r uu uu u r r r,则cos C =()A .-4B .-14C.4或-4D .14或-14(2022·河南洛阳·高二阶段练习(文))23.在△ABC 中,点D 满足AD =1162AB AC +,直线AD 与BC 交于点E ,则CE CB的值为()A .12B .13C .14D .15(2022·山东淄博·高一期中)24.如图,1,3,90,2AB AC A CD DB ==∠=︒= ,则AD AB ⋅=_________(2022·湖南·模拟预测)25.在三角形ABC 中,点D 在边BC 上,若2BD D C =,AD AB AC λμ=+ (),λμ∈R ,则λμ-=______.(2022·浙江·高一阶段练习)26.平面内的三个向量(1,1),(2,2),(,3)a b c k =-==.(1)若(2)//()a b c a +-,求实数k 的值;(2)若()()c a c b -⊥-,求实数k 的值.(2022·重庆市二0三中学校高一阶段练习)27.已知平面向量()()1,2,2,a b m =-=.(1)若a b ⊥,求2a b + ;与a夹角的余弦值.28.已知平行四边形ABCD 中,2DE EC = ,0AF DF +=,AE 和BF 交于点P.(1)试用AB,AD 表示向量AP .(2)若BPE 的面积为1S ,APF 的面积为2S ,求12S S 的值.(3)若AB AD AB AD +=- ,0AC BD ⋅= ,求APF ∠的余弦值.(2022·四川省内江市第六中学高一期中(文))29.如图,设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c ,AD 为BC 边上的中线,已知2AD =,c =1且12sin cos sin sin sin 4c A B a A b B b C =-+.(1)求b 边的长;(2)求△ABC 的面积;(3)设点E ,F 分别为边AB ,AC 上的动点,线段EF 交AD 于G ,且△AEF 的面积为△ABC 面积的一半,求AG EF ⋅的最小值.高频考点四:极化恒等式例题1.(2021·全国·高一课时练习)阅读一下一段文字:2222a b a a b b →→→→→→⎛⎫+=+⋅+ ⎪⎝⎭,2222a b a a b b →→→→→→⎛⎫-=-⋅+ ⎪⎝⎭,两式相减得:22221()44a b a b a b a b a b a b →→→→→→→→→→→→⎡⎤⎛⎫⎛⎫⎛⎫+--=⋅⇒⋅=+--⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦,我们把这个等式称作“极化恒等式”,它实现了在没有夹角的参与下将两个向量的数量积运算化为“模”的运算.试根据上面的内容解决以下问题:如图,在ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点.(1)若6AD =,4BC =,求→→⋅的值;(2)若4AB AC →→⋅=,1FB FC →→⋅=-,求EB EC →→⋅的值.【答案】(1)32;(2)78.【自主解答】解:(1)因为2,AB AC AD AB AC CB →→→→→→+=-=,所以2222113643244AB AC AB AC AB AC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-=-=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦.(2)设3AD m =,2(0,0)BC n m n =>>,因为4AB AC →→⋅=,由(1)知222214494AD CB m n →→=⇒-=-①因为2,3FB FC AD FB FC CB →→→→→→+=-=,所以根据2222111494FB FC FB FC FB FC AD CB →→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦,又因为1FB FC →→⋅=-,所以2222111194AD CB m n →→-=-⇒-=-②由①②解得258m =,2138n =.所以2222141494EB EC EB EC EB EC AD CB→→→→→→→→⎡⎤⎛⎫⎛⎫⋅=+--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦22201374888m n =-=-=.例题2.(2022·河北唐山·高三期末)ABC 中,D 为BC 的中点,4BC =,3AD =,则AB AC ⋅=______.【答案】5【自主解答】解:因为D 为BC 的中点,4BC =,所以DB DC =-,2DB DC ==,AB AD DB AC AD DC =+=+ ,所AB AC ⋅=()()AD DB AD DC =+⋅+ ()()22945AD DC AD DC AD DC =-⋅+=-=-= 故答案为:5法二:由极化恒等式2211916544AB AC AD BC ⋅=-=-⨯= 例题3.(2022届高三开年摸底联考新高考)已知直线l :10x y +-=与圆C :22()(1)1x a y a -++-=交于A ,B 两点,O 为坐标原点,则OA OB ⋅的最小值为:()A.12-B.D.12【自主解答】如图:圆C 22()(1)1x a y a -++-=的圆心(,1)C a a -,在直线l :10x y +-=上,由极化恒等式,2214OA OB OC BA ⋅=- ,而24BA = ,所以222114OA OB OC BA OC ⋅=-=- ,C是直线l :10x y +-=上的动点,所以||OC的最小值,就是点O 到直线l 的距离d 2min 1()12OA OB d ⋅=-=- .题型归类练30.设向量,a b 满足a b += a b -=r r a b ⋅=A .1B .2C .3D .531.如图,在ABC 中,90,2,2ABC AB BC ∠=== ,M 点是线段AC 上一动点.若以M 为圆心、半径为1的圆与线段AC 交于,P Q 两点,则BP BQ ⋅的最小值为()A .1B .2C .3D .432.已知ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC +的最小值是()A .2-B .32-C .43-D .1-33.如图放置的边长为1的正方形ABCD 的顶点A,D 分别在x 轴、y 轴正半轴(含原点)滑动,则OB OC ⋅的最大值为__________.第四部分:高考真题感悟(2021·浙江·高考真题)34.已知非零向量,,a b c ,则“a c b c ⋅=⋅ ”是“a b =”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件(2021·全国·高考真题)35.已知向量0a b c ++= ,1a = ,2b c == ,a b b c c a ⋅+⋅+⋅=_______.(2021·全国·高考真题(文))36.若向量,a b满足3,5,1a a b a b =-=⋅= ,则b = _________.(2021·全国·高考真题(理))37.已知向量()()3,1,1,0,a b c a kb ===+ .若a c ⊥,则k =________.(2021·天津·高考真题)38.在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.(2021·北京·高考真题)39.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅=________;=a b ⋅ ________.参考答案:1.错误错误错误错误正确【分析】根据数量积的相关概念逐一判断即可【详解】对于(1):两个向量的数量积是数量,故错误;对于(2):若0a b ⋅= ,除了0a = 或0b = 之外,还有可能a b ⊥,故错误;对于(3):a ,b 共线a ·b =±|a ||b|,故错误;对于(4):数量积是一个整体,这里面b 不能直接约去,故a 与c无固定关系,故错误;对于(5):两个向量的数量积是一个实数,向量的加法、减法、数乘运算的运算结果是向量,符合向量的运算规律,故正确.2.错误【解析】略3.C【分析】由题可得0a b ⋅=,即可求出.【详解】因为()2,1a t =- ,()1,1b t =- ,a b ⊥,所以()210a b t t ⋅=--=,解得1t =-.故选:C.4.A【分析】根据数量积的定义计算可得;【详解】解:()1cos 2222AB BC AB BC B π⎛⎫⋅=⋅-=⨯⨯-=- ⎪⎝⎭故选:A 5.C【分析】根据向量的数量积的运算公式,求得cos 0A <,得到A 为钝角,即可求解.【详解】由向量的数量积的运算公式,可得cos 0AB AC AB AC A ⋅=⋅< ,即cos 0A <,因为(0,)A π∈,所以A 为钝角,所以ABC -定是钝角三角形.故选:C.6.B【分析】由题意作出符合题意的图形,判断出OBAC 为菱形,直接得到向量BA在向量BC 上的投影向量.【详解】如图示:因为△ABC 的外接圆圆心为O ,AO AB AC+=,AO AC = ,所以AO AC CO ==,所以△AOC 为等边三角形,所以OBAC 为菱形,所以OA BC ⊥.所以向量BA 在向量BC 上的投影向量为12BC .故选:B 7.D【分析】利用垂直的向量表示,再利用正射影的数量的意义计算作答.【详解】非零向量a ,b ,c 满足()b a c ⊥- ,则()·0b a c a b c b -=⋅-⋅= ,即c b a b ⋅=⋅ ,又a 与b的夹角为6π,3a = ,所以c 在b 上的正射影的数量||cos ,||cos 62||||c ba b c c b a b b π⋅⋅〈〉====.故选:D 8.A【分析】依题意过点D 作DE AB ⊥交BA 的延长线于点E ,即可求出AE ,设AP 与AB的夹角为θ,结合图形即可得到AP 在AB方向上的投影的取值范围,再根据数量积的几何意义计算可得;【详解】解:依题意过点D 作DE AB ⊥交BA 的延长线于点E ,则3cos 602AE AD =︒=,设AP 与AB的夹角为θ,因为点P 为直角梯形ABCD 内一点(不包含边界),所以AP 在AB方向上的投影cos AP θ ,且3cos 12AP θ-<<,所以3cos cos ,12AB AP AB AP AP θθ⎛⎫⋅=⋅=∈- ⎪⎝⎭故选:A 9.B【分析】易知ABD △是等边三角形,再根据BC 方向相同的单位向量为e ,由2cos 3AB e π⋅⋅求解.【详解】在ABC 中,90BAC ∠=︒,2AD AB AC =+uuu r uu u r uuu r,所以D 为BC 的中点,且|AD |=|BD |,又1AD AB ==,所以ABD △是等边三角形,因为BC方向相同的单位向量为e ,所以向量AB 在BC 上的投影向量为21cos 32AB e e π⋅⋅=-,故选:B 10.D【分析】利用充分、必要性的定义,结合向量数量积的定义及钝角三角形的性质判断题设条件间的推出关系,即可知答案.【详解】由||||cos 0AB BC BA BC BA BC B =-=⋅-⋅<,即cos 0B >,又0B π<<,所以02B π<<,不能推出△ABC 为钝角三角形,充分性不成立;△ABC 为钝角三角形时,若2B ππ<<,则||||cos 0AB BC BA BC BA BC B =-=⋅-⋅>,不能推出0AB BC ⋅<,必要性不成立.所以“0AB BC ⋅<”是“△ABC 为钝角三角形”的既不充分也不必要条件.故选:D 11.8【分析】利用向量的数量积、投影的定义即可求解.【详解】过点O 作OC AB ⊥于点C ,则点C 为AB 的中点,12AC AB =,所以2211cos ,4822AO AB AO AB AO AB AB AC AB ⋅=⋅===⨯= ,故答案为:8.12.[]4,8【分析】由数量积的定义求解【详解】过点P 作AB 的垂线,交AB 于点H 可得||||DP BA DH BA ⋅=⋅当P 在C 点时,DP BA ⋅ 取最小值4,当P 在A 点时,DP BA ⋅取最大值8故答案为:[4,8]13.A【分析】将,DB CD 分别用,BA BC表示,再根据数量积的运算律即可得出答案.【详解】解:,DB DA AB BC BA CD BA =+=--=,则()22221322DB CD BC BA BA BC BA BA a a a ⋅=--⋅=-⋅-=--=- .故选:A.14.C【分析】由题干条件平方得到()0a b λ⋅= ,从而得到0a b ⋅= ,得到a 与b 的夹角.【详解】由()0a b a b λλλ+=-≠,两边平方可得:22222222a a b b a a b b λλλλ+⋅+=-⋅+ ,因为向量a ,b为单位向量,所以221221a b a b λλλλ+⋅+=-⋅+,即()0a b λ⋅= .因为0λ≠,所以0a b ⋅= ,即a 与b 的夹角为π2.故选:C 15.C【分析】首先由数量积的定义求出ab ,再由余弦定理及基本不等式求出c 的最小值;【详解】解:∵92CB CA ⋅= ,∴9cos 2a b C ⋅⋅=,∴15ab =,由余弦定理得22232cos 222110c a b ab C ab ab =+-⋅≥-⨯=,当且仅当a b =时取等号,∵0c >,∴c ≥c ,故选:C .16.C【分析】根据,,C P D 三点共线求出14m =,然后把,AB AC 当基底表示出,AP CD ,从而求出AP CD ⋅的值【详解】 2AD DB =,32AB AD∴= ∴1324AP m AC AB m AC AD=+=+ ,,C P D 三点共线,31144m m ∴+=⇒=1142AP AC AB ∴=+,又23CD AD AC AB AC=-=- 112()()423AP CD AC AB AB AC ∴=+- 22111343AB AC AB AC =--22111πcos 3433AB AC AB AC =--1111169433432=⨯-⨯-⨯⨯⨯1312=故选:C 17.A【分析】根据0a b ⋅= ,设(1,0)a = ,(0,)b t = ,根据()()0a b a b +⋅-= 求出21t =,再根据平面向量的夹角公式计算可得解.【详解】因为0a b ⋅=,所以可设(1,0)a = ,(0,)b t = ,则(1,)a b t += ,(1,)a b t -=- ,因为()()0a b a b +⋅-= ,所以210t -=,即21t =.则()cos ,||||b a b b a b b a b ⋅-<->=⋅-2=2=-,故选:A.18.B【分析】利用向量垂直,向量数量积的定义及运算法则可得1cos ,2a b = ,即得.【详解】因为1a b ==r r ,()2a a b ⊥-,所以()22222cos ,12cos ,0a a b a a b a a b a b a b ⋅-=-⋅=-⋅⋅=-=,所以1cos ,2a b = ,又,0,180a b ⎡⎤∈⎣⎦ ,所以向量a ,b的夹角为60°.故选:B .19.2π##90 【分析】由|22a b a b +=- |两边平方化简分析即可【详解】由22a b a b +=- ,平方得到22224444a a b b a a b b +⋅+=-⋅+ ,即0a b ⋅=,所以a ,b 夹角为2π故答案为:2π.20【分析】先由225a b -= 求得0a b ⋅=,再求得22a b +r r 即可求解.【详解】由2a b -= 222244545a b a a b b a b -=-⋅+=-⋅= ,则0a b ⋅=,又2222445a b a a b b +=+⋅+= ,则2a b +21【分析】根据题意得34AP m AC AD =+ ,求出14m =,所以1142AP AC AB =+ ,即AP = .【详解】因为23AD AB = ,所以32AB AD = ,又12AP mAC AB =+ ,即1324AP m AC AB m AC AD =+=+,因为点P 在线段CD 上,所以P ,C ,D 三点共线,由平面向量三点共线定理得,314m +=,即14m =,所以1142AP AC AB =+,又ABC 是边长为4的等边三角形,所以222211111cos 60421644AP AC AB AC AC AB AB⎛⎫=+=++ ⎪⎝⎭1111164416716424=⨯+⨯⨯⨯+⨯=,故AP = ..22.B【分析】将234PC PA PB =+uu u r uu r uu r 两边平方得可得4916+24cos 2C =+,从而解出1cos 4C =±,然后由条件可得3455PC AC BC =+uu u r uuu r uu u r ,判断出C 与外心P 在AB 的异侧,从而得出答案.【详解】因为P 是ABC 的外心,所以||||||PA PB PC ==uu r uu r uu u r,由题知234PC PA PB =+uu u r uu r uu r,两边平方得222491624PC PA PB PA PB =++⋅uu u r uu r uu r uu r uu r 即222491624cos 2PC PA PB PA PB C +⋅=+uu u r uu r uu r uu r uu r,即4916+24cos 2C =+,所以221cos 22cos 124C C -==-,则1cos 4C =±,又由23433PC PA PB PC CA =+=++uu u r uu r uu r uu u r uu r44PC CB +uu u r uu r ,得3455PC AC BC =+uu u r uuu r uu u r ,因为34155+>,则C 与外心P 在AB 的异侧,即C 在劣弧上,所以C 为钝角,即1cos 4C =-.故选:B 23.C【分析】根据向量的减法运算及共线向量计算,可得出1144CE AB AC →→→=-即可求解.【详解】设62AE AD AB AC λλλ→→→→==+,则16262CE AE AC AD AC AB AC AC AB AC λλλλλ→→→→→→→→→→⎛⎫=-=-=+-=+-⎪⎝⎭,CB AB AC→→→=-,且CE →,CB →共线,则CE kCB = ,162AB AC λλ→→⎛⎫+-= ⎪⎝⎭()k AB AC →→-所以612k k λλ⎧=⎪⎪⎨⎪-=-⎪⎩所以162λλ=-,解得32λ=,此时1144CE AB AC →→→=-,所以14CE CB →→=,故14CE CB =.故选:C 24.23【分析】先用,AC AB 表示向量AD,再利用向量数量积运算求解.【详解】解:因为1,3,90,2AB AC A CD DB ==∠=︒=,所以()22=+=++==- AD AC CD AC AC CD DB AB AD ,即1233AD AC AB =+ ,所以21212233333⎛⎫⋅=+⋅=⋅+= ⎪⎝⎭AD AB AC AB AB AC AB AB ,故答案为:2325.13-【分析】由平面向量基本定理得到13λ=,23μ=,从而求出答案.【详解】由已知2BD D C =,得()2233BD BC AC AB ==- ,所以()212333A A C AB D AB BD AB A A BC -+===++ ,因为(),AD AB AC λμλμ=+∈R uuu r uu u r uuu r ,所以13λ=,23μ=,所以121333λμ-=-=-.故答案为:13-26.(1)15k =(2)0k =或1k =【分析】(1)先求出()()3,512a+2b =,c a =k +,-,再利用向量平行的坐标表示列方程即可求解;(2)先求出(1,2),(2,1)c a k c b k -=+-=- ,再利用向量垂直的坐标表示列方程即可求解;(1)因为(1,1),(2,2),(,3)a b c k =-==,所以()()3,512a+2b =,c a =k +,- .因为(2)//()a b c a +-,所以()32510k ⨯-⨯+=,解得:15k =.(2)因为(1,1),(2,2),(,3)a b c k =-== ,所以(1,2),(2,1)c a k c b k -=+-=-.因为()()c a c b -⊥-,则(1)(2)20k k +⋅-+=,解得:0k =或1k =.27.(1)5;(2)35【分析】(1)利用垂直的坐标表示求出m ,再利用向量线性运算的坐标表示及模的坐标表示计算作答.。
第03讲 等比数列及其前n项和 (精讲)(解析版)-2023年高考数学一轮复习
第03讲 等比数列及其前n 项和(精讲)目录第一部分:知识点精准记忆 第二部分:课前自我评估测试 第三部分:典型例题剖析 题型一:等比数列基本量的运算 题型二:等比数列的判断与证明 题型三:等比数列的性质及其综合应用角度1:等比数列的性质角度2:等比数列与等差数列的综合问题第四部分:高考真题感悟1.等比数列的概念 (1)等比数列的定义一般地,如果一个数列从2项起,每一项与它的前一项的比等于同一常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q (0q ≠)表示.数学语言表达:1(2)nn a q n a -=≥,q 为常数,0q ≠. (2)等比中项如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇔2G ab =. 2.等比数列的有关公式(1)若等比数列{}n a 的首项为1a ,公比是q ,则其通项公式为11n n a a q -=;可推广为n m n m a a q -=.(2)等比数列的前n 项和公式:当1q =时,1n S na =;当1q ≠时,11(1)11n n n a a q a q S q q--==--.3.等比数列的性质设数列{}n a 是等比数列,n S 是其前n 项和.(1)若m n p q +=+,则m n p q a a a a =,其中,,,m n p q N *∈.特别地,若2m n p +=,则2m n p a a a =,其中,,m n p N *∈.(2)相隔等距离的项组成的数列仍是等比数列,即ka ,k ma +,2k ma +,…仍是等比数列,公比为mq(,k m N *∈).(3)若数列{}n a ,{}n b 是两个项数相同的等比数列,则数列{}n ba ,{}n n pa qb ⋅和{}nnpa qb (其中b ,p ,q 是非零常数)也是等比数列.1.(2022·宁夏·平罗中学高一期中(理))已知2、x 、8成等比数列,则x 的值为( ) A .4 B .4- C .4± D .5【答案】C解:因为2、x 、8成等比数列, 所以228x =⨯,解得4x =±; 故选:C2.(2022·辽宁·辽师大附中高二阶段练习)已知一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了4个伙伴;第2天,5只蜜蜂飞出去,各自找回了4个伙伴,……按照这个规律继续下去,第20天所有的蜜蜂都归巢后,蜂巢中一共有蜜蜂( ) A .420只 B .520只C . 20554-只D . 21443-只【答案】B第一天一共有5只蜜蜂,第二天一共有2555⨯=只蜜蜂,……按照这个规律每天的蜜蜂数构成以为5首项,公比为5的等比数列则第n 天的蜜蜂数1555n nn a -=⨯=第20天蜜蜂都归巢后,蜂巢中共有蜜蜂数205 故选:B .3.(2022·北京·昌平一中高二期中)2与8的等比中项是( ) A .4 B .5 C .4± D .5±【答案】C设a 为2与8的等比中项,则22816a =⨯=,解得:4a =±. 故选:C.4.(2022·湖北·蕲春县实验高级中学高二期中)已知2是2m 与n 的等差中项,1是m 与2n 的等比中项,则12m n+=( ) A .2 B .4 C .6 D .8【答案】D由题可知24m n +=,21mn =,所以1228m n m n mn++==. 故选:D .5.(2022·全国·高二单元测试)在下列的表格中,如果每格填上一个数后,每一横行成等差数列,每一纵列成等比数列,那么x y +的值为( ) 2 4 1 2 x yB .3C .4D .5【答案】A 由题意知表格为 2 4 6 12 3 12132故3222x y +=+=. 故选:A题型一:等比数列基本量的运算例题1.(2022·辽宁·沈阳市第八十三中学高二阶段练习)若等比数列{}n a 满足123a a +=,4581a a +=,则数列{}n a 的公比为( )A .﹣2B .2C .﹣3D .3【答案】D设等比数列{an }的公比为q ,由a 4+a 5=(a 1+a 3)q 3,得3q 3=81,解得q =3, 故选:D .例题2.(2022·江西·上饶市第一中学模拟预测(文))在正项等比数列{}n a 中,1236a a a a =,且416a =,则10a =( ) A .1024 B .960 C .768 D .512【答案】A解:依题意设公比为q ,且10a >、0q >,由1236a a a a =,则33511a q a q =,即221a q =,所以1a q =,因为416a =,所以34116a q q ==,所以2q,所以2n n a =,所以101021024a ==;故选:A例题3.(2022·辽宁·鞍山市华育高级中学高二期中)在等比数列{}n a 中,241a a +=,352a a +=,则公比q =( )A .12 B .2 C .1 D .2-【答案】B设等比数列{}n a 的公比为q ,由()2424351,2+=+=+=a a a a a a q ,解得2q .故选:B.例题4.(2022·全国·模拟预测)已知{}n a 是等比数列,0n a >,1329a a a =,12312323a a a ++=. (1)求{}n a 的通项公式;(2)记n S 为数列{}n a 的前n 项和,求使得1n n S na +≥的正整数n 的所有取值.【答案】(1)3nn a =或9n a =;(2)答案见解析.(1)因为{}n a 为等比数列,所以213229a a a a ==,又0n a ≠,所以29a =.设{}n a 的公比为()0q q >,因为12312323aa a ++=, 所以12329993q q++=,化简得24309q q q-+=,解得3q =或1q =. 当3q =时,2933n nn a -=⨯=.当1q =时,9n a =.(2)当3q =时,()1113312n n n a q S q+--==-. 由1n n S na +≥,得23332n n n +-≥⋅,化简得()9233nn -⨯≥.易知,当5n ≥时,不等式显然不成立,检验可知,满足不等式的正整数n 的所有取值为1,2,3,4.当1q =时,9n S n =,由1n n S na +≥,得()919n n +≥,此时n 的取值为一切正整数. 例题5.(2022·北京二中高二学业考试)已知数列{}n a 是等比数列,142,16a a ==, (1)求数列{}n a 的通项公式及其前n 项和n S ;(2)若35,a a 分别为等差数列{}n b 的第3项和第5项,求数列{}n b 的通项公式及其前n 项和n T .【答案】(1)2n n a =,122n n S +=-.(2)1228n b n =-,2622n T n n =-.(1)设数列{}n a 的公比为q ,则41411682a qa -===,得2q ,所以111222n n nn a a q --==⨯=.11(1)2(12)22112n n n n a q S q +--===---.(2)设等差数列{}n b 的公差为d , 33328b a ===,555232b a ===,则5332812532b b d --===-, 所以3(3)812(3)1228n b b n d n n =+-=+-=-,2(161228)6222n n n T n n -+-==-. 方法总结解决等比数列基本量运算的思想方法(1)方程思想:等比数列的基本量为首项1a 和公比q ,通常利用已知条件及通项公式或前n 项和公式列方程(组)求解,等比数列中包含1a ,q ,n ,n a ,n S 五个量,可“知三求二”.(2)整体思想:当所给条件只有一个时,可将已知和所求都用1a ,q 表示,寻求两者间的联系,整体代换即可求解.(3)分类讨论思想:若题目中公比q 未知,则运用等比数列前n 项和公式时要对q 分1q =和1q ≠两种情况进行讨论.题型二:等比数列的判断与证明例题1.(2022·辽宁·抚顺一中高二阶段练习)已知数列{}n a 的前n 项和为n S ,且342n n S a =-. (1)求{}n a 的通项公式;【答案】(1)212n n a -=(1)当1n =时,1113423S a a =-=,解得12a =. 当2n ≥时,()113334242n n n n n a S S a a --=-=---, 整理得14n n a a -=,所以{}n a 是以2为首项,4为公比的等比数列,故121242n n n a --=⨯=.例题2.(2022·重庆巴蜀中学高三阶段练习)已知n S 是数列{}n a 的前n 项和,且231n n S a =-. (1)求数列{}n a 的通项公式; 【答案】(1)13-=n n a(1)当1n =时,1112321S a a =-⇒=, 又231n n S a =-,①当2n ≥时11231n n S a --=-,② ①−②得:1233n n n a a a -=-,即13n n a a -=, ∴数列{}n a 是以1为首项,3为公比的等比数列, ∴ 13-=n n a .例题3.(2022·江西·二模(理))已知正项数列{}n a 的前n 项和为n S ,212S =,且()*,m n m n a a a m n +=∈N .(1)求{}n a 的通项公式;【答案】(1)3n n a =(1)令m =n =1,得221a a =,又21212S a a =+=,解得:13a =或14a =-(负值舍去),令m =1,得11n n a a a +=,所以13n na a +=, 所以{}n a 是以3为首项,3为公比的等比数列,所以3nn a =.证明{}n a 是等比数列 定义法1n na q a +=(n N *∈) (或者1(2)nn a q n a -=≥)等差中项法211(2)n n n a a a n -+=⋅≥判断{}n a 是等比数列{}n a 的通项关于n 的指数函数1n n a cq -=(0c ≠,0q ≠){}n a 的前n 项和 n n S kq k =-(0c ≠,0q ≠,1q ≠)题型三:等比数列的性质及其综合应用角度1:等比数列的性质例题1.(2022·宁夏·平罗中学高一期中(文))已知{}n a 是等比数列,若0n a >,且243546225a a a a a a ++=,则35a a +=( )A .10B .25C .5D .15【答案】C因为{}n a 是等比数列,243546225a a a a a a ++=,所以223355225a a a a ++=,即()23525a a +=,因为0n a >, 所以355a a +=. 故选:C例题2.(2022·江西·九江一中高二阶段练习(理))在正项等比数列{}n a 中,48128a a a =,则22214log log a a +=( ) A .2 B .1C .12D .14【答案】A由4812388a a a a ==,可得82a =则()222142214282228log log log log log log 2222a a a a a a ===+==故选:A例题3.(2022·辽宁沈阳·三模)在等比数列{}n a 中,28,a a 为方程240x x π-+=的两根,则357a a a 的值为( ) A .ππB .π-C .π±D .3π【答案】C解:在等比数列{}n a 中,因为28,a a 为方程240x x π-+=的两根,所以2258a a a π==,所以5a π=± 所以33575a a a a π==±故选:C.例题4.(2022·河南·高二阶段练习(文))在等比数列{}n a 中,2313a a =,则28a a =______.【答案】9设等比数列{}n a 的公比为q ,由2313a a =得:2211()3a q a =,则有4513a a q ==, 所以2285()9a a a ==.故答案为:9例题5.(2022·全国·高三专题练习)在正项等比数列{}n a 中,若484a a =,则22210log log a a +=______. 【答案】2()()2221022102482log log log log log 42a a a a a a +====.故答案为:2例题6.(2022·全国·高二单元测试)等比数列{}n a 中,0n a >且243546225a a a a a a ++=,则35a a +=_______ 【答案】52435462a a a a a a ++()222335535225a a a a a a =++=+=,又等比数列{}n a 中,0n a >, 355a a ∴+=,故答案为:5.角度2:等比数列与等差数列的综合问题例题1.(2022·浙江·杭师大附中模拟预测)数列{}n a 的前n 项和为n S ,数列{}n b 满足()N n n b na n *=∈,且数列{}n b 的前n 项和为(1)2n n S n -+.(1)求12,a a ,并求数列{}n a 的通项公式; 【答案】(1)12a =,24a =,2n n a =(2)证明见解析 (1)由题意得12323(1)2n n a a a na n S n ++++=-+,①当1n =时,12a =;当2n =时,1221222444a a S a a a +=+=++⇒=; 当2n ≥时,1231123(1)(2)2(1)n n a a a n a n S n --++++-=-+-,②①-②得,1(1)(2)2(2)222(2)n n n n n n n na n S n S S n a S a n -=---+=+-+⇒=-≥,当1n =时,12a =,也适合上式,所以()22N n n S a n *=-∈,所以1122n n S a --=-,两式相减得12(2)n n a a n -=≥,所以数列{}n a 是以2为首项,2为公比的等比数列,所以2n n a =.例题2.(2022·江西·南城县第二中学高二阶段练习(文))已知数列{}n a 的前n 项和为n S ,且()21n n S a n *=-∈N .(1)求数列{}n a 的通项公式; 【答案】(1)13n na =(1)当1n =时,111221a S a =-=,解得:113a =;当2n ≥时,1122211n n n n n a S S a a --=-=--+,即113n n a a -=,∴数列{}n a 是以13为首项,13为公比的等比数列,1133nn n a ⎛⎫∴== ⎪⎝⎭. 例题3.(2022·青海·大通回族土族自治县教学研究室三模(理))若n S 为数列{}n a 的前n 项和,12a =,且()()*121n n S S n +=+∈N .(1)求数列{}n a 的通项公式; 【答案】(1)2n n a =(1)解:因为()121n n S S +=+①,*n ∈N , 当2n ≥时,()121n n S S -=+②,由①②可得()()112121n n n n S S S S +--=+-+, 即12(2)n n a a n +=≥.1n =时,122a a S +==112222S a +=+,又12a =,所以24a =, 所以()*12n n a a n +=∈N ,所以12n na a +=, 所以数列{}n a 是等比数列,且首项为2,公比为2. 所以2n n a =.例题4.(2022·四川·树德中学高一竞赛)已知数列{}n a 的前n 项和为n S ,且满足11a =,()*11n n S a n N +=-∈.(1)求数列{}n a 的通项公式; 【答案】(1)12n na(1)解:由题意,数列{}n a 的前n 项和为n S ,且满足11a =,11n n S a +=-, 当2n ≥时,可得11n n S a -=-,两式相减得1n n n a a a +=-,即12n n a a +=,即12(2,)n na n n N a ++=≥∈, 当1n =时,1211S a a =-=,可得22a =,可得212a a =, 所以数列{}n a 表示首项为11a =,公比为2q的等比数列,所以数列{}n a 的通项公式为1112n n n a a q --==.例题5.(2022·福建省福州格致中学模拟预测)在①()12n n n n a T T n ++=,②23n n n S a +=这两个条件中任选一个补充在下面问题中,并解答下列题目.设首项为2的数列{}n a 的前n 项和为n S ,前n 项积为n T ,且___________. (1)求数列{}n a 的通项公式;(2)在数列{}n a 中是否存在连续三项构成等比数列,若存在,请举例说明,若不存在,请说明理由.注:如果选择多个条件分别解答,按第一个解答计分. 【答案】(1)()1n a n n =+(2)不存在,理由见解析 (1)选①:()12nn n n a T T n++=, 即()12nn n a a n++=.∴12n na a n n+=+ 即()()()1211n n a a n n n n +=+++,∴数列()1n a n n ⎧⎫⎪⎪⎨⎬+⎪⎪⎩⎭是常数列,∴()11211n a a n n =⨯+=,故()1n a n n =+选②:因为()32n n S n a =+,所以2n ≥时,()1131n n S n a --=+, 则()()1321n n n a n a n a -=+-+,即()()111n n n a n a --=+,即111n n a n a n -+=-, 所以()114311221n n n a a n n n n +=⋅⋅⋅⋅⋅⋅=+--, 当1n =时,12a =也满足,所以()1n a n n =+.(2)假设在数列中存在连续三项n a ,1n a +,2n a +成等比数列,那么有212n n n a a a ++=成立, 即()()()()()212123n n n n n n ⎡⎤++=+++⎣⎦成立. 即()()()123n n n n ++=+成立,即20=成立,此等式显然不成立,故原命题不成立,即不存在连续三项n a ,1n a +,2n a +成等比数列例题6.(2022·全国·高二单元测试)在①102nn a a ++=,②1661n n a a +=-,③18n n a a n +=+-这三个条件中任选一个,补充在下面的问题中,并解答.问题:设n S 是数列{}n a 的前n 项和,且14a =,______,求{}n a 的通项公式,并判断n S 是否存在最大值,若存在,求出最大值;若不存在,说明理由.【答案】选①:312n n a -⎛⎫=- ⎪⎝⎭,存在,最大值4;选②:12566n a n =-+,存在,最大值50;选③:217242n n n a -+=,不存在,理由见解析.选①:因为102nn a a ++=,即112n n a a +=-,14a =, 所以数列{}n a 是首项为4、公比为12-的等比数列,1311422n n n a --⎛⎫⎛⎫=⨯-=- ⎪ ⎪⎝⎭⎝⎭,当n 为奇数时,141281113212n n nS ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==+ ⎪⎝⎭+, 因为81132n⎛⎫+ ⎪⎝⎭随着n 的增大而减小,所以此时n S 的最大值为14S =; 当n 为偶数时,141281113212n n nS ⎡⎤⎛⎫--⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==- ⎪⎝⎭+,且81814323n n S ⎛⎫=-<< ⎪⎝⎭,综上,n S 存在最大值,且最大值为4.选②:因为1661n n a a +=-,即116n n a a +-=-,14a =,所以{}n a 是首项为4、公差为16-的等差数列,()112541666n a n n ⎛⎫=+-⋅-=-+ ⎪⎝⎭,125066n -+≥,解得25n ≤,240a >,250a =, 故n S 存在最大值,且最大值为25S 或24S ,25252414255026S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭,n S 的最大值为50. 选③:因为18n n a a n +=+-,所以18n n a a n +-=-, 所以217a a -=-,326a a -=-,…,19n n a a n --=-, 则()()()()()2111221791171622n n n n n n n n n a a a a a a a a ----+---+-=-+-+⋅⋅⋅+-==,因为14a =,所以217242n n n a -+=,当16n ≥时,0n a >,故n S 不存在最大值.1.(2022·上海·高考真题)已知{}n a 为等比数列,{}n a 的前n 项和为n S ,前n 项积为n T ,则下列选项中正确的是( ) A .若20222021S S >,则数列{}n a 单调递增 B .若20222021T T >,则数列{}n a 单调递增 C .若数列{}n S 单调递增,则20222021a a ≥ D .若数列{}n T 单调递增,则20222021a a ≥ 【答案】DA :由20222021S S >,得20220a >,即202110a q>,则1a 、q 取值同号, 若100a q <<,,则{}n a 不是递增数列,故A 错误;B :由20222021T T >,得20221a >,即202111a q >,则1a 、q 取值同号,若100a q <<,,则数列{}n a 不是递增数列,故B 错误;C :若等比数列11a =,公比12q =,则11()122(1)1212nn nS -==--, 所以数列{}n S 为递增数列,但20222021a a <,故C 错误;D :由数列{}n T 为递增数列,得1n n T T ->,所以1n a >, 即1q ≥,所以20222021a a ≥,故D 正确. 故选:D2.(2022·上海·高考真题)已知数列{}n a ,21a =,{}n a 的前n 项和为n S .(1)若{}n a 为等比数列,23S =,求lim n n S →∞; (2)若{}n a 为等差数列,公差为d ,对任意*n ∈N ,均满足2n S n ≥,求d 的取值范围. 【答案】(1)4;(2)[]0,1.(1)解:2123S a a =+=,则12a =,所以,等比数列{}n a 的公比为2112a q a ==, ()1114112n n n a q S q-⎡⎤⎛⎫∴==-⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦,因此,()111lim lim lim 44412n nn n n n a q S q →∞→∞→∞-⎡⎤⎛⎫==-⋅=⎢⎥ ⎪-⎝⎭⎢⎥⎣⎦.(2)解:由已知可得()()12222122n n n n a a S n a a n -+==+≥,则2211n a a -+≥, 即()22231a n d +-≥,可得()231n d -≥-. 当1n =时,可得1d ≤;当2n ≥时,则231n -≥,所以,132d n≥-, 因为数列()1232n n ⎧⎫≥⎨⎬-⎩⎭为单调递增数列,而11032n -≤<-,故0d ≥. 综上所述,01d ≤≤.3.(2021·浙江·高考真题)已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-.(1)求数列{}n a 的通项;【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤.(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a += 122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列,1933()3()444n n n a -∴=-⋅=-⋅;4.(2021·全国·高考真题(文))设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列. (1)求{}n a 和{}n b 的通项公式; 【答案】(1)11()3n n a -=,3n nn b =; (1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==.。
《创新设计》2022高考数学(浙江专用理科)二轮专题精练:专题四 立体几何4-3 Word版含解析
第3讲 立体几何中的向量方法(建议用时:60分钟) 一、选择题1.已知平面ABC ,点M 是空间任意一点,点M 满足条件OM→=34OA →+18OB →+18OC →,则直线AM( ).A .与平面ABC 平行B .是平面ABC 的斜线 C .是平面ABC 的垂线D .在平面ABC 内解析 由已知得M ,A ,B ,C 四点共面,所以AM 在平面ABC 内,选D. 答案 D2.如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,M ,N 分别为A 1B 和AC 上的点,A 1M =AN =2a3,则MN 与平面BB 1C 1C 的位置关系是 ( ).A .相交B .平行C .垂直D .不能确定解析 MN →=MB →+BC →+CN →=23A 1B →+BC →+23CA → =23(A 1B 1→+B 1B →)+BC →+23(CD →+DA →) =23B 1B →+BC →+23DA →, 又CD →是平面BB 1C 1C 的一个法向量,且MN →·CD →=23B 1B →+BC →+23DA →·CD →=0,∴MN →⊥CD →,又MN ⊄面BB 1C 1C ,∴MN ∥平面BB 1C 1C . 答案 B3.如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下列结论中不正确的是 ( ).A .AC ⊥SB B .AB ∥平面SCDC .SA 与平面SBD 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角解析 选项A 正确,由于SD 垂直于底面ABCD ,而AC ⊂平面ABCD ,所以AC ⊥SD ;再由四边形ABCD 为正方形,所以AC ⊥BD ;而BD 与SD 相交,所以,AC ⊥平面SBD ,AC ⊥SB . 选项B 正确,由于AB ∥CD ,而CD ⊂平面SCD ,AB ⊄平面SCD ,所以AB ∥平面SCD . 选项C 正确,设AC 与BD 的交点为O ,易知SA 与平面SBD 所成的角就是∠ASO ,SC 与平面SBD 所成的角就是∠CSO ,易知这两个角相等.选项D 错误,AB 与SC 所成的角等于∠SCD ,而DC 与SA 所成的角是∠SAB ,这两个角不相等. 答案 D4.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦等于 ( ).A.64B.104C.22D.32解析 如图所示建立空间直角坐标系,设正三棱柱的棱长为2,O (0,0,0),B (3,0,0),A (0,-1,0),B 1(3,0,2),则AB 1→=(3,1,2),则BO →=(-3,0,0)为侧面ACC 1A 1的法向量,由sin θ=|AB 1→·BO →||AB1→||BO →|=64.答案 A5.(2022·新课标全国Ⅱ卷)直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为 ( ). A.110 B.25 C.3010D.22解析 法一 由于∠BCA =90°,三棱柱为直三棱柱,且BC =CA =CC 1,可将三棱柱补成正方体.建立如图(1)所示空间直角坐标系.设正方体棱长为2,则可得A (0,0,0),B (2,2,0),M (1,1,2),N (0,1,2),∴BM→=(1,1,2)-(2,2,0)=(-1,-1,2),AN →=(0,1,2).∴cos 〈BM →,AN →〉=BM →·AN →|BM →||AN →|=-1+4(-1)2+(-1)2+22×02+12+22=36×5=3010. 法二 如图(2),取BC 的中点D ,连接MN ,ND ,AD ,由于MN 綉12B 1C 1綉BD ,因此有ND 綉BM ,则ND 与NA 所成角即为异面直线BM 与AN 所成角.设BC =2,则BM =ND =6,AN =5,AD =5,因此cos ∠AND =ND 2+NA 2-AD 22ND ·NA =3010.答案 C6.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB→的值为( ).A .0B .1C .0或1D .任意实数 解析 AP→可为下列7个向量:AB →,AC →,AD →,AA 1→,AB 1→,AC 1→,AD 1→. 其中一个与AB →重合,AP →·AB →=|AB →|2=1; AD →,AD 1→,AA 1→与AB →垂直, 这时AP →·AB→=0; AC →,AB 1→与AB →的夹角为45°, 这时AP →·AB→=2×1×cos π4=1, 最终AC 1→·AB →=3×1×cos ∠BAC 1=3×13=1,故选C. 答案 C7.(2021·浙江卷)如图,已知△ABC ,D 是AB 的中点,沿直线CD 将△ACD 翻折成△A ′CD ,。
2024届高考数学一轮总复习第四章数列第三讲等比数列及其前n项和课件
【题后反思】等比数列常见性质的应用 (1)通项公式的变形. (2)等比中项的变形. (3)前 n 项和公式的变形.根据题目条件,认真分析,发现具体 的变化特征即可找出解决问题的突破口.
【变式训练】
1.(2021 年江淮十校月考)已知等比数列{an}的公比 q=-21,该
数列前 9 项的乘积为 1,则 a1 等于(
ቤተ መጻሕፍቲ ባይዱ
考点三 等比数列性质的应用
[例 2](1)在各项不为零的等差数列{an}中,2a2 019-a22 020+ 2a2 021=0,数列{bn}是等比数列,且 b2 020=a2 020,则 log2(b2 019·b2 021) 的值为( )
A.1
B.2
C.4
D.8
解析:因为等差数列{an}中 a2 019+a2 021=2a2 020, 所以 2a2 019-a22 020+2a2 021=4a2 020-a22 020=0, 因为数列{an}各项不为零,所以 a2 020=4,因为数列{bn}是等 比数列,所以 b2 019·b2 021=a22 020=16.所以 log2(b2 019·b2 021)=log216 =4.C 正确.
【题后反思】等比数列基本量运算的解题策略 (1)等比数列基本量的运算是等比数列中的一类基本问题,等 比数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通 过列方程(组)便可迎刃而解.
(2)等比数列的前 n 项和公式涉及对公比 q 的分类讨论,当 q=1 时,{an}的前 n 项和 Sn=na1;当 q≠1 时,{an}的前 n 项和 Sn=a1(11--qqn)=a11--aqnq,当 q>1 时,用公式 Sn=a1(qq-n-11)代入计 算,当 q<1 时,用公式 Sn=a1(11--qqn)代入计算,可避免出现符号 错误.
高考数学解析几何专题讲义第3讲--抛物线的定义及其应用
MA MF 的最小值为
.
7.过抛物线 y2 x 焦点的直线与该抛物线交于 A 、 B 两点,若 AB 4 ,则弦 AB 的中点到直线 x 1 0 的距 2
离等于( )
A. 7 4
B. 9 4
C. 4
D.2
8.过抛物线 y2 4x 的焦点 F 的直线交抛物线于 A 、 B 两点,则 1 1
【证明】如图,设抛物线的准线为 l ,过 A 、B 两点分别作 AC 、BD 垂直于 l ,垂足分别为 C 、D .取 线段 AB 中点 M ,作 MH 垂直 l 于 H .
由抛物线的定义有: AC AF , BD BF ,所以 AB AC BD .
∵ ABDC 是直角梯形, MH 1 AC BD 1 AB
以开口向右的抛物线为例,设抛物线 C : y2 2 px p 0 的焦点为 F,准线为 l ,点 M x0, y0 为抛物线
C 上的动点.则有:
焦半径 MF
x0
p 2
;过焦点的弦
AB
长为
AB
xA xB p .
(二)抛物线定义的应用
与抛物线焦点、准线有关的问题一般情况下都与拋物线的定义有关,解决这类问题一定要注意点到点 的距离与点到直线的距离的转化:
(2)如图,设 AFK .
∵
AF
AA1
AK
p
AF
sin
p
,∴
AF
p 1 sin
,
又
BF
BB1
p
BF
sin
,∴
BF
p 1 sin
,
∴ 1 1 1 sin 1 sin 2 (定值).
AF BF
p
pp
【变式训练】求证:以抛物线 y2 2 px p 0 过焦点的弦为直径的圆,必与此抛物线的准线相切.
高考数学一轮复习 第六章 数列 第3讲 等比数列及其前n项和配套课时作业 理(含解析)新人教A版-新
第3讲 等比数列及其前n 项和配套课时作业1.(2019·某某某某模拟)已知等比数列{a n }中,a 2=2,a 6=8,则a 3a 4a 5=( ) A .±64 B .64 C .32 D .16答案 B解析 因为a 2=2,a 6=8,所以由等比数列的性质可知a 2·a 6=a 24=16,而a 2,a 4,a 6同号,所以a 4=4,所以a 3a 4a 5=a 34=64.故选B.2.(2019·某某调研)设等比数列{a n }的前n 项和为S n ,若a 1=3,a 4=24,则S 6=( ) A .93 B .189 C .99 D .195答案 B解析 ∵a 4=a 1q 3=3q 3=24,∴q =2,∴S 6=a 11-q 61-q=189.故选B.3.已知正项等比数列{a n }中,a n +1<a n ,a 2·a 8=6,a 4+a 6=5,则a 5a 7=( ) A.56 B.65 C.23 D.32答案 D解析 由等比数列性质可知a 2a 8=a 4a 6=6,故a 4,a 6分别是方程x 2-5x +6=0的两根.因为a n +1<a n ,所以a 4=3,a 6=2,故a 5a 7=a 4a 6=32.故选D.4.(2019·某某模拟)设a 1=2,数列{1+2a n }是公比为2的等比数列,则a 6=( ) A .31.5 B .160 C .79.5 D .159.5答案 C解析 因为1+2a n =(1+2a 1)·2n -1,则a n =5·2n -1-12,a n =5·2n -2-12. a 6=5×24-12=5×16-12=80-12=79.5.5.(2019·某某某某中学调研)等比数列{a n }的前n 项和为S n ,已知a 2a 5=2a 3,且a 4与2a 7的等差中项为54,则S 5=( )A .29B .31C .33D .36答案 B解析 由a 2a 5=a 3a 4=2a 3,得a 4= 2.又a 4+2a 7=2×54,所以a 7=14,又因为a 7=a 4q 3,所以q =12,所以a 1=16,所以S 5=16×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫1251-12=31.故选B.6.已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63 D .84答案 B解析 设等比数列{a n }的公比为q ,a 1+a 3+a 5=a 1(1+q 2+q 4)=21,即q 4+q 2+1=7,解得q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)×q 2=21×2=42.故选B.7.在递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64(n >2),且前n 项和S n =42,则n =( )A .3B .4C .5D .6答案 A解析 由a 1+a n =34,a 1a n =a 3a n -2=64及{a n }为递增数列,得a 1=2,a n =32=a 1qn -1,又S n =a 11-q n1-q=42,∴q =4,n =3.故选A.8.(2019·某某模拟)设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( ) A .2 B .73 C .310 D .1或2答案 B解析 设S 2=k ,S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,S 4=3k ,∴S 6S 4=7k 3k =73.故选B.9.(2019·延庆模拟)等差数列{a n }的公差为2,若a 2,a 4,a 8成等比数列,则{a n }的前n 项和S n =( )A .n (n +1)B .n (n -1)C .n n +12D .n n -12答案 A解析 ∵a 2,a 4,a 8成等比数列,∴a 24=a 2·a 8,即(a 1+3d )2=(a 1+d )(a 1+7d ), 将d =2代入上式,解得a 1=2, ∴S n =2n +n n -1·22=n (n +1).故选A.10.(2019·北大附中模拟)若正项数列{a n }满足a 1=2,a 2n +1-3a n +1a n -4a 2n =0,则数列{a n }的通项公式为( )A .a n =22n -1B .a n =2nC .a n =22n +1D .a n =22n -3答案 A解析 ∵a 2n +1-3a n +1a n -4a 2n =(a n +1-4a n )(a n +1+a n )=0,又a n +1+a n >0,∴a n +1=4a n ,∴a n =2×4n -1=22n -1.故选A.11.设等比数列{a n }的前n 项和为S n ,若a 8=2a 4,S 4=4,则S 8的值为( ) A .4 B .8 C .10 D .12答案 D解析 设等比数列{a n }的公比为q ,由题意知q ≠1.因为a 8=2a 4,S 4=4,所以⎩⎪⎨⎪⎧a 1q 7a 1q 3=2,a 11-q 41-q=4,解得q 4=2,a 1=-4(1-q ),所以S 8=a 11-q 81-q=-41-q 1-221-q=12.故选D.12.记等比数列{a n }的前n 项积为T n (n ∈N *),已知a m -1·a m +1-2a m =0,且T 2m -1=128,则m 的值为( )A .4B .7C .10D .12答案 A解析 因为{a n }是等比数列,所以a m -1a m +1=a 2m .又a m -1a m +1-2a m =0,则a 2m -2a m =0,所以a m =2.由等比数列的性质可知前2m -1项积T 2m -1=a 2m -1m ,即22m -1=128,故m =4.故选A.13.(2019·某某模拟)设数列{a n }的前n 项和为S n ,且a 1=1,a n +1=2S n +3,则S 4=________.答案 66解析 依题意有a n =2S n -1+3(n ≥2),与原式作差,得a n +1-a n =2a n ,n ≥2,即a n +1=3a n ,n ≥2,可见,数列{a n }从第二项起是公比为3的等比数列,a 2=5,所以S 4=1+5×1-331-3=66.14.设S n 为等比数列{a n }的前n 项和.若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________. 答案 3n -1解析 由3S 1,2S 2,S 3成等差数列可得4S 2=3S 1+S 3,所以3(S 2-S 1)=S 3-S 2,即3a 2=a 3,a 3a 2=3.所以q =3,所以a n =3n -1. 15.已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式为a n =________.答案 2n解析 ∵a 25=a 10,∴(a 1q 4)2=a 1q 9,∴a 1=q ,∴a n =q n.∵2(a n +a n +2)=5a n +1,∴2a n (1+q 2)=5a n q ,∴2(1+q 2)=5q ,解得q =2或q =12(舍去).∴a n =2n.16.(2019·启东模拟)已知等比数列{a n }中,a 2>a 3=1,则使不等式⎝ ⎛⎭⎪⎫a 1-1a 1+⎝ ⎛⎭⎪⎫a 2-1a 2+⎝ ⎛⎭⎪⎫a 3-1a 3+…+⎝ ⎛⎭⎪⎫a n -1a n ≥0成立的最大自然数n 是________.答案 5解析 设公比为q ,由a 2>a 3=1知0<q <1,a n =q n -3,∴不等式的左端=q -21-q n1-q-q 21-q -n 1-q -1=1-q n1-q q2·(1-q 5-n)≥0,∵0<q <1,∴n ≤5. 17.(2018·高考)设{a n }是等差数列,且a 1=ln 2,a 2+a 3=5ln 2. (1)求{a n }的通项公式; (2)求e a 1+e a 2+…+e an . 解 (1)设{a n }的公差为d .因为a 2+a 3=5ln 2,所以2a 1+3d =5ln 2. 又a 1=ln 2,所以d =ln 2. 所以a n =a 1+(n -1)d =n ln 2. (2)因为ea 1=eln 2=2,eane a n -1=e an -an -1=eln 2=2,所以{e an }是首项为2,公比为2的等比数列. 所以ea 1+ea 2+…+e an =2×1-2n1-2=2(2n-1).18.已知数列{a n }中,a 1=1,a 2=2,a n +1=3a n -2a n -1(n ≥2,n ∈N *).设b n =a n +1-a n . (1)证明:数列{b n }是等比数列; (2)设=b n4n 2-12n,求数列{}的前n 项和S n .解 (1)证明:因为a n +1=3a n -2a n -1(n ≥2,n ∈N *),b n =a n +1-a n , 所以b n +1b n =a n +2-a n +1a n +1-a n =3a n +1-2a n -a n +1a n +1-a n =2a n +1-a na n +1-a n=2, 又b 1=a 2-a 1=2-1=1,所以数列{b n }是以1为首项,以2为公比的等比数列. (2)由(1)知b n =1×2n -1=2n -1,因为=b n4n 2-12n,所以=122n +12n -1=14⎝ ⎛⎭⎪⎫12n -1-12n +1,所以S n =c 1+c 2+…+=14⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=14⎝ ⎛⎭⎪⎫1-12n +1=n4n +2.19.(2019·某某省实验中学模拟)已知等比数列{a n }的前n 项和为S n ,公比q >0,S 2=2a 2-2,S 3=a 4-2.(1)求数列{a n }的通项公式; (2)设b n =n a n,求{b n }的前n 项和T n . 解 (1)设等比数列{a n }的公比为q , 因为S 2=2a 2-2,①S 3=a 4-2,②所以由①②两式相减得a 3=a 4-2a 2,即q 2-q -2=0. 又因为q >0,所以q =2.又因为S 2=2a 2-2,所以a 1+a 2=2a 2-2,所以a 1+a 1q =2a 1q -2, 代入q =2,解得a 1=2,所以a n =2n. (2)由(1)得b n =n2n ,所以T n =12+222+323+…+n -12n -1+n2n ,①将①式两边同乘12,得12T n =122+223+324+…+n -12n +n2n +1,②由①②两式错位相减得12T n =12+122+123+124+…+12n -n 2n +1=12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12-n 2n +1=1-12n -n2n +1,整理得T n =2-n +22n.20.(2019·正定模拟)已知数列{a n }的前n 项和为S n ,a 1=1,且3a n +1+2S n =3(n ∈N *). (1)求数列{a n }的通项公式;(2)若对任意n ∈N *,k ≤S n 恒成立,某某数k 的最大值. 解 (1)因为3a n +1+2S n =3,① 所以当n ≥2时,3a n +2S n -1=3.②由①-②,得3a n +1-3a n +2a n =0(n ≥2),所以a n +1a n =13(n ≥2). 因为a 1=1,3a 2+2a 1=3,解得a 2=13,所以a 2a 1=13.所以数列{a n }是首项为1,公比为13的等比数列.所以a n =⎝ ⎛⎭⎪⎫13n -1.(2)由(1)知S n =32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n .由题意,可知对于任意n ∈N *,恒有k ≤32⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 成立.因为数列⎩⎨⎧⎭⎬⎫1-⎝ ⎛⎭⎪⎫13n 单调递增,所以数列⎩⎨⎧⎭⎬⎫1-⎝ ⎛⎭⎪⎫13n 中的最小项为23,所以k ≤32×23=1,故实数k 的最大值为1.。
高考数学热点必会题型第3讲 函数与方程和零点问题与嵌套函数(原卷及答案)
高考数学热点必会题型第3讲 函数与方程和零点问题与嵌套函数 ——每天30分钟7天轻松掌握一、重点题型目录【题型】一、零点存在定理法判断函数零点所在区间 【题型】二、方程法判断函数零点个数 【题型】三、数形结合法判断函数零点个数 【题型】四、转化法判断函数零点个数 【题型】五、利用函数的零点或方程有根求参数 【题型】六、利用函数的交点或交点个数求参数 【题型】七、一元二次不等式恒成立问题 【题型】八、一元二次不等式能成立问题 二、题型讲解总结第一天学习及训练【题型】一、零点存在定理法判断函数零点所在区间 例1.(2023·全国·高三专题练习)函数()2ln 1f x x x =--的零点所在的区间是( ) A .()1,2B .()2,3C .()3,4D .()4,5例2.(2023·全国·高三专题练习)已知函数()f x 的定义域为(0,)+∞,对任意,()0x ∈+∞,都有()2()log 20f f x x -=.现已知()()17f a f a +'=,那么( ) A .(1,1.5)a ∈B .(1.5,2)a ∈C .(2,2.5)a ∈D .(2.5,3)a ∈例3.(2023·全国·高三专题练习)已知()=ln f x x ,()e xg x =,若()()f s g t =,则当s t-取得最小值时,()g t 所在区间是( ) A .11,3e ⎛⎫ ⎪⎝⎭B .11,e 2⎛⎫ ⎪⎝⎭C .()ln 2,1D .1,ln 22⎛⎫ ⎪⎝⎭例4.(2023·全国·高三专题练习)已知函数()()2e 0-=->x af x x a 有两个极值点1x 和2x ,且12x x <,则下列结论正确的是( ) A .101x << B .2101xx e << C .()101f x <<D .()1ln 2,a ∈-+∞【题型】二、方程法判断函数零点个数例5.(2023·全国·高三专题练习)关于函数()ln ||ln |2|f x x x =+-有下述四个结论: ①()f x 的图象关于直线1x =对称 ②()f x 在区间(2,)+∞单调递减 ③()f x 的极大值为0 ④()f x 有3个零点 其中所有正确结论的编号为( ) A .①③B .①④C .②③④D .①③④例6.(2023·全国·高三专题练习)若()f x 为奇函数,且0x 是()2e x y f x =-的一个零点,则0x -一定是下列哪个函数的零点( ) A .()e 2x y f x -=-- B .()e 2x y f x =+C .()e 2x y f x =-D .()e 2x y f x =-+例7.(2023·全国·高三专题练习)已知函数()cos 2cos f x x x =+,且[]0,2πx ∈,则()f x 的零点个数为( ) A .1个B .2个C .3个D .4个例8.(2023·全国·高三专题练习)()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x =在区间[]6,6-内解的个数的最小值是_______.第二天学习及训练【题型】三、数形结合法判断函数零点个数例9.(2023·全国·高三专题练习)已知函数()33f x x x =-,则函数()()h x f f x c =-⎡⎤⎣⎦,[]2,2c ∈-的零点个数( )A .5或6个B .3或9个C .9或10个D .5或9个例10.(2023·全国·高三专题练习)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( ) A .1B .2C .3D .4例11.(2023·全国·高三专题练习)已知函数()()e 2,1ln 1,1xx f x x x -⎧-≤⎪=⎨->⎪⎩,则函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是( )A .4B .5C .6D .7例12.(2023·上海·高三专题练习)对于给定的正整数n (n ≥2),定义在区间[0,n ]上的函数y =f (x )满足:当01x ≤≤时,2()2f x x x =-+,且对任意的x ∈[1,n ],都成立f (x )=f (x ﹣1)+1.若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解,则关于x 的方程f (x )=knx 的实数解的个数为____. 【题型】四、转化法判断函数零点个数例13.(2022·全国·高三专题练习)已知()f x 的定义域为[)0,∞+,且满足()[)()[)1,0,121,1,xe xf x f x x ⎧-∈⎪=⎨-∈+∞⎪⎩,若()()g x f x π=-,则()g x 在[]0,10内的零点个数为( )A .8B .9C .10D .11例14.(2022·全国·高三专题练习(文))已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<-例15.(2022·全国·高三专题练习)高斯被人认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列结论正确的是( ) A .函数()f x 是R 上的单调递增函数 B .函数2()()3g x f x x =-有2个零点 C .()f x 是R 上的奇函数D .对于任意实数,a b ,都有()()()f a f b f a b +≤+第三天学习及训练【题型】五、利用函数的零点或方程有根求参数例16.(2023·全国·高三专题练习)函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的值为( )A .-14B .0C .14D .0或-14例17.(2023·全国·高三专题练习)已知函数1,1()1()1,12x a x f x x -=⎧⎪=⎨+≠⎪⎩,若方程22()(23)()30-++=f x a f x a 有5个不同的实数解,则a 的范围是( )A .33(1,)(,2)22⋃B .(1,2)(2,3)C .(1,)+∞D .(1,3)例18.(2023·全国·高三专题练习)已知函数()2ln ,043,0x x f x x x x >⎧=⎨---≤⎩,若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是( ) A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦例19.(2023·全国·高三专题练习)已知函数()2221,0log ,0x x f x x x +⎧-≤⎪=⎨>⎪⎩,若关于x 的方程2[()]()40f x mf x ++=有6个不同的实数根,则m 的取值范围是( )A .13(,5),43⎡⎫-∞-⋃--⎪⎢⎣⎭B .13,43⎡⎫--⎪⎢⎣⎭ C .134,(5,)3⎛⎤⋃+∞ ⎥⎝⎦ D .134,3⎛⎤ ⎥⎝⎦ 例20.(2023·全国·高三专题练习)已知函数()()23,0,3,0,x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩以下结论正确的是( )A .()f x 在区间[7,9]上是增函数B .()()220222f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619i i x ==∑D .若方程()1f x kx =+恰有3个实根,则11,3k ⎛⎫∈-- ⎪⎝⎭例21.(2023·全国·高三专题练习)若函数()()2e 2xf x x x a =-++在区间(),1a a +上存在最大值,则实数a 的取值范围为_______【题型】六、利用函数的交点或交点个数求参数例22.(2023·全国·高三专题练习)已知定义在R 上的奇函数,满足()()20f x f x -+=,当(]0,1x ∈时,()2log f x x =-,若函数()()sin()F x f x x π=-,在区间[]1,m -上有10个零点,则m 的取值范围是( ) A .[)3.5,4B .(]3.5,4C .(]3,4D .[)3,4例23.(2023·全国·高三专题练习)已知函数()2cos()1(0,0π)f x x ωϕωϕ=+-><<经过(0,0)点,且()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136例24.(2023·全国·高三专题练习)已知函数π()2cos()1(0,0)2f x x ωϕωϕ=+-><<,在0x =处的切线斜率为,若()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136例25.(2023·全国·高三专题练习)定义在R 上的偶函数()f x 满足()22)(f x f x -+=,当[0,2]x ∈时,()xf x =,若在区间[0,10]x ∈内,函数()()(1)mg x f x x =-+有个5零点,则实数m 的取值范围是( ) A .()110,log e B .(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭C .111log e,2⎛⎫ ⎪⎝⎭D .11711log e,,log e 22⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭例26.(2023·全国·高三专题练习)已知函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩,若函数()()g x f x kx k =-+恰好有两个零点,则实数k 的取值范围是( )A .[)1,+∞B .0,1C .()1,+∞D .()(),00,1-∞⋃例27.(2023·全国·高三专题练习)已知()e xx f x =.则下列说法正确的有( )A .函数()y f x =有唯一零点0x =B .函数()y f x =的单调递减区间为()(),01,-∞⋃+∞C .函数()y f x =有极大值1eD .若关于x 的方程()f x a =有三个不同的根.则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭第四天学习及训练【题型】七、一元二次不等式恒成立问题例28.(2023·全国·高三专题练习)已知m 是区间[]0,4内任取的一个数,那么函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率是( )A .14B .13C .12D .23例29.(2023·全国·高三专题练习)当13x ≤≤时,关于x 的不等式210ax x -<+恒成立,则实数a 的取值范围是( ) A .1,4⎛⎤-∞- ⎥⎝⎦B .,⎛⎫-∞- ⎪⎝⎭14C .,1,4∞⎛⎫-+ ⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭例30.(2023·全国·高三专题练习)已知函数()312x f x x +=+,()()42e xg x x =-,若[)120,x x ∀∈+∞,,不等式()()()()2221e e t g x t f x +≤+恒成立,则正数t 的取值可以是( )A .6eB .(2eC .(2eD .2e【题型】八、一元二次不等式能成立问题例31.(2023·全国·高三专题练习)已知命题:R p x ∀∈,20x x a -+>,若p ⌝是真命题,则实数a 的取值范围是( ) A .1,4⎛⎤-∞ ⎥⎝⎦B .1,)4-∞( C .11,42⎛⎫ ⎪⎝⎭D .1,2⎡⎫+∞⎪⎢⎣⎭例32.(2023·全国·高三专题练习)若1,22x ⎡⎤∃∈⎢⎥⎣⎦,使2210x x λ-+<成立,则实数λ的取值范围是______________.高考数学热点必会题型第3讲 函数与方程和零点问题与嵌套函数 ——每天30分钟7天轻松掌握一、重点题型目录【题型】一、零点存在定理法判断函数零点所在区间 【题型】二、方程法判断函数零点个数 【题型】三、数形结合法判断函数零点个数 【题型】四、转化法判断函数零点个数 【题型】五、利用函数的零点或方程有根求参数 【题型】六、利用函数的交点或交点个数求参数 【题型】七、一元二次不等式恒成立问题 【题型】八、一元二次不等式能成立问题 二、题型讲解总结第一天学习及训练【题型】一、零点存在定理法判断函数零点所在区间 例1.(2023·全国·高三专题练习)函数()2ln 1f x x x =--的零点所在的区间是( ) A .()1,2 B .()2,3 C .()3,4 D .()4,5【答案】B【分析】利用零点存在性定理求解即可 【详解】函数()2ln 1f x x x =--在()1,+∞ 上单调递增,且在()1,+∞上连续. 因为()22ln 2ln 22021f =-=-<-,()23ln 3ln 31031f =-=->-, 所以()()230f f <,所以函数的零点所在的区间是()2,3. 故选:B例2.(2023·全国·高三专题练习)已知函数()f x 的定义域为(0,)+∞,对任意,()0x ∈+∞,都有()2()log 20f f x x -=.现已知()()17f a f a +'=,那么( ) A .(1,1.5)a ∈ B .(1.5,2)a ∈C .(2,2.5)a ∈D .(2.5,3)a ∈【答案】D【分析】先由()2()log 20f f x x -=求出2()16log f x x =+,再由()()17f a f a +'=得到21log 10ln 2a a --=,结合单调性和零点存在定理进行判断即可. 【详解】不妨设2()log f x x m -=,则()20f m =,所以2log 2016m m m +=⇒=,得2()16log f x x =+,1()ln 2f x x '=, 因为()()17f a f a +'=,所以21log 10ln 2a a --=.令21()log 1ln 2g a a a =--,易得()g a 在(0,)+∞上单调递增,因为227ln118(3)log 3103ln 23ln 2g -=--=>,52531255ln 2ln 25ln 21ln 42410244(2.5)log 2.5102.5ln 25ln 25ln 25ln 25ln 2g ⎛⎫--- ⎪-⎝⎭=--===<<, 由零点存在定理知:(2.5,3)a ∈. 故选:D .例3.(2023·全国·高三专题练习)已知()=ln f x x ,()e xg x =,若()()f s g t =,则当s t-取得最小值时,()g t 所在区间是( ) A .11,3e ⎛⎫ ⎪⎝⎭B .11,e 2⎛⎫ ⎪⎝⎭C .()ln 2,1D .1,ln 22⎛⎫ ⎪⎝⎭【答案】D【分析】由已知条件构造函数()e ln ah a a =-,利用导数求出最值,由零点存在性定理验证001e 0a a -=的根的范围即可. 【详解】令()()f s g t a ==,即e ln 0t s a ==>, ∴ln t a =,e a s =, ∴e ln (0)a s t a a -=->,令()e ln a h a a =-,则()1e ah a a'=-,令()1e am a a =-,则()21e a m a a '=+, ∴()m a 在()0,∞+上单调递增,且()1e 10m =->,1202m ⎛⎫=< ⎪⎝⎭∴存在唯一0a a =使得()0h a '=,当00a a <<时,1e a a <, ()0h a '<,当0a a >时,1e aa>, ()0h a '>,∴()0()min h h a a =,即s t -取得最小值时,0()f s a a ==,由零点的存在定理验证01e 0aa -=的根的范围,当012a =时,001e 0a a -<,当0ln2a =时,001e 0aa ->,故01(,ln 2)2a ∈, 故选:D .例4.(2023·全国·高三专题练习)已知函数()()2e 0-=->x af x x a 有两个极值点1x 和2x ,且12x x <,则下列结论正确的是( ) A .101x << B .2101xx e << C .()101f x << D .()1ln 2,a ∈-+∞【答案】ACD 【分析】函数()()2e0-=->x af x x a 有两个极值点1x 和2x ,令()0f x '=,则e2e =x a x判断函数()e x g x x =的单调性,由题知()e xg x x=与2e =a y 有两个交点,借助图像求出a 的取值范围,判断D ;再根据零点存在性定理判断A ;又根据11e 2-=x ax ,求出()1f x 的取值范围,判断C ;由()()1200f x f x ⎧'=='⎪⎨⎪⎩,得2112e e x xx x =,由于101x <<,21x >,所以12e 1>x x ,从而判断B.【详解】已知()2e -=-x a f x x ,则()e 2-'=-x af x x ,令()0f x '=,则e2e =x a x考虑函数()e xg x x =,则()()2e 1x x g x x -'=,当(),0x ∈-∞时,()0g x '<,即()g x 在(),0∞-上单调递减; 当()0,1x ∈时,()0g x '<,即()g x 在()0,1上单调递减; 当()1,x ∈+∞时,()0g x '>,即()g x 在()1,+∞上单调递增;故()g x 的图象大致如图:依题意,若()f x 有两个极值点,则2e e >a ,即1ln 2a >-,因此选项D 正确; 由图易知,101x <<,21x >,故选项A 正确; 又11e 2-=x ax ,故()()122211111e 211-=-=-=--x a f x x x x x ,因为101x <<,所以()101f x <<,故选项C 正确; 因为()()1200f x f x ⎧'=='⎪⎨⎪⎩,即1212e 2e 2x a x a x x --⎧=⎨=⎩,故1212e e =x x x x ,即2112e e x xx x =. 由于101x <<,21x >,所以12e 1>x x ,从而21e 1>xx ,故选项B 错误.故答案为:ACD.【题型】二、方程法判断函数零点个数例5.(2023·全国·高三专题练习)关于函数()ln ||ln |2|f x x x =+-有下述四个结论: ①()f x 的图象关于直线1x =对称 ②()f x 在区间(2,)+∞单调递减 ③()f x 的极大值为0 ④()f x 有3个零点 其中所有正确结论的编号为( ) A .①③ B .①④C .②③④D .①③④【答案】 D【分析】根据给定函数,计算(2)-f x 判断①;探讨()f x 在(2,)+∞上单调性判断②;探讨()f x 在(0,1)和(1,2)上单调性判断③;求出()f x 的零点判断④作答.【详解】函数()ln ||ln |2|f x x x =+-的定义域为(,0)(0,2)(2,)-∞⋃⋃+∞, 对于①,(,0)(0,2)(2,)x ∈-∞⋃⋃+∞,则2(,0)(0,2)(2,)x -∈-∞⋃⋃+∞, (2)ln |2|ln ||()f x x x f x -=-+=,()f x 的图象关于直线1x =对称,①正确;对于②,当2x >时,()ln ln(2)f x x x =+-,()f x 在(2,)+∞单调递增,②不正确; 对于③,当0x <时,()ln()ln(2)f x x x =-+-,()f x 在(,0)-∞单调递减,当02x <<时,2()ln ln(2)ln[(1)1]f x x x x =+-=--+,()f x 在(0,1)上单调递增,在(1,2)上单调递减,又()f x 在(2,)+∞单调递增,因此()f x 在1x =处取极大值(1)0f =,③正确;对于④,由()0f x =得:2|2|1x x -=,即2210x x --=或2210x x -+=,解得1x =1x =,于是得()f x 有3个零点,④正确, 所以所有正确结论的编号为①③④. 故选:D【点睛】结论点睛:函数()y f x =的定义域为D ,x D ∀∈,存在常数a 使得()(2)()()f x f a x f a x f a x =-⇔+=-,则函数()y f x =图象关于直线x a =对称.例6.(2023·全国·高三专题练习)若()f x 为奇函数,且0x 是()2e x y f x =-的一个零点,则0x -一定是下列哪个函数的零点( ) A .()e 2x y f x -=-- B .()e 2x y f x =+ C .()e 2x y f x =- D .()e 2x y f x =-+【答案】B【分析】根据()f x 是奇函数可得()()f x f x -=-,因为0x 是()2e =-xy f x 的一个零点,代入得()002e xf x =,利用这个等式对A 、B 、C 、D 四个选项进行一一判断可得答案.【详解】()f x 是奇函数,()()f x f x ∴-=-且0x 是()2e =-xy f x 的一个零点,所以()002e xf x =,把0x -分别代入下面四个选项,对于A ,()()0020e e 222-=-x x f x ,不一定为0,故A 错误;对于B ,()()0000e 2e x xf x f x ---+=-0012e e 20x x -+=-⋅⋅+=,所以0x -是函数()e 2x y f x =+的零点,故B 正确;对于C ,()000224e 2e ---=--=-x f x ,故C 不正确;对于D ,()0000e22e e +24--+==x x x f x ,故D 不正确;故选:B.例7.(2023·全国·高三专题练习)已知函数()cos 2cos f x x x =+,且[]0,2πx ∈,则()f x 的零点个数为( ) A .1个 B .2个 C .3个 D .4个【答案】C【分析】解三角方程求得()f x 的零点即可解决【详解】由()()2cos 2cos 2cos cos 1cos 12cos 10x x x x x x +=+-=+-=可得cos 1x =-或1cos 2x =,又[]0,2πx ∈,则πx =,或π3x =,或5π3x =则()f x 的零点个数为3 故选:C例8.(2023·全国·高三专题练习)()f x 是定义在R 上的以3为周期的奇函数,且()20f =,则方程()0f x =在区间[]6,6-内解的个数的最小值是_______. 【答案】13【分析】根据函数周期性和奇偶性的性质,进行递推即可. 【详解】()f x 是定义在R 上的以3为周期的奇函数,()()3f x f x ∴+=,且()()f x f x -=-,则()00f =,则()()()()()()36600330f f f f f f ==-==-=-=,,()20f =,()()()()514050f f f f ∴=-=-=-=,,()10f =,()40f =,()20f -=,方程的解至少有0,3,6,6-,3-,2,5,5-,2-,1-,1,4,4-,共13个. 故答案为:13第二天学习及训练【题型】三、数形结合法判断函数零点个数例9.(2023·全国·高三专题练习)已知函数()33f x x x =-,则函数()()h x f f x c =-⎡⎤⎣⎦,[]2,2c ∈-的零点个数( )A .5或6个B .3或9个C .9或10个D .5或9个【答案】D【分析】设()t f x =,求导分析()33f x x x =-的最值与极值,画出图形,再分析()f t c =与()t f x =的根的范围与个数即可【详解】设()t f x =,则由()()0h x f f x c =-=⎡⎤⎣⎦, 得()f f x c =⎡⎤⎣⎦,即()f t c =,()t f x = 又()()()233311f x x x x '=-=-+, 由0fx得1x <-或1x >,此时函数单调递增,由()0f x '<得11x -<<,此时函数单调递减,即函数在=1x -处取得极大值()()()311312f -=--⨯-=,函数在1x =处取得极小值()311312f =-⨯=-,又由()()()322322f -=--⨯-=-,()322322f =-⨯=可得图象:若()f t c =,()2,2c ∈-,则方程有三个解, 满足121t -<<-,211t -<<,312t <<, 则当121t -<<-时,方程()t f x =,有3个根, 当211t -<<时,方程()t f x =,有3个根, 当312t <<时,方程()t f x =,有3个根, 此时共有9个根,若()f t c =,2c =,则方程有两个解, 满足11t =-,22t =,则当11t =-时,方程()t f x =,有3个根, 当22t =,有2个根, 此时共有5个根,同理()f t c =,2c =-,也共有5个根 故选:D .例10.(2023·全国·高三专题练习)若定义在R 上的偶函数f (x )满足f (x +2)=f (x ),且当x ∈[0,1]时,f (x )=x ,则函数y =f (x )-log 3|x |的零点个数是( ) A .1 B .2C .3D .4【答案】D【分析】由题意知,f (x )是周期为2的偶函数,将函数零点转化为求两个函数图象交点的个数即可,作出图象观察得出结论.【详解】由题意知,f (x )是周期为2的偶函数.在同一坐标系内作出函数y =f (x )及y =log 3|x |的图象,如下:观察图象可以发现它们有4个交点, 即函数y =f (x )-log 3|x |有4个零点. 故选:D.例11.(2023·全国·高三专题练习)已知函数()()e 2,1ln 1,1x x f x x x -⎧-≤⎪=⎨->⎪⎩,则函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是( )A .4B .5C .6D .7【答案】B【分析】令()t f x =,()0g x =,则()21f t t =-,分别作出函数()y f t =和直线21y t =-的图象,得到10t =,212t <<,再分别作出函数()y f x =和直线y t =的图象,得到方程()0f x =和方程()2t f x =的根的个数,进而得到函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数. 【详解】令()t f x =,()0g x =,则()210f t t -+=,即()21f t t =-, 分别作出函数()y f t =和直线21y t =-的图象,如图所示,由图象可得有两个交点,横坐标设为1t ,2t , 则10t =,212t <<,对于()t f x =,分别作出函数()y f x =和直线2y t =的图象,如图所示,由图象可得,当()10f x t ==时,即方程()0f x =有两个不相等的根, 当()2t f x =时,函数()y f x =和直线2y t =有三个交点, 即方程()2t f x =有三个不相等的根, 综上可得()0g x =的实根个数为5,即函数()()()21g x f f x f x =-+⎡⎤⎣⎦的零点个数是5. 故选:B.例12.(2023·上海·高三专题练习)对于给定的正整数n (n ≥2),定义在区间[0,n ]上的函数y =f (x )满足:当01x ≤≤时,2()2f x x x =-+,且对任意的x ∈[1,n ],都成立f (x )=f (x ﹣1)+1.若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解,则关于x 的方程f (x )=knx 的实数解的个数为____. 【答案】2n ﹣1##12-+n【分析】数形结合,画出y =f (x )在区间[0,n ]上的图象,根据y =knx 与y =f (x )的图象交点分析即可.【详解】由题意,画出y =f (x )在区间[0,1]上的图象, 又对任意的[1,n ],都成立f (x )=f (x ﹣1)+1.可理解为区间[n ﹣1,n ]的图象由区间[n ﹣2,n ﹣1]的图象向右平移一个单位所得, 即可画出y =f (x )在区间[0,n ]上的图象,如图所示,故若与n 有关的实数kn 使得方程f (x )=knx 在区间[n ﹣1,n ]上有且仅有一个实数解, 则y =knx 与y =f (x )在区间[n ﹣1,n ]上的图象相切,且易得y =f (x )的图象在y =x 与区间[0,1],[1,2],[2,3],⋯[n ﹣1,n ]上的公切线之间,故y =knx 与y =f (x )在区间[0,1],[1,2],[2,3],⋯[n ﹣1,n ]上均有2个交点, 故关于x 的方程f (x )=knx 的实数解的个数为2(n ﹣1)+1=2n ﹣1个.故答案为:2n ﹣1.【题型】四、转化法判断函数零点个数例13.(2022·全国·高三专题练习)已知()f x 的定义域为[)0,∞+,且满足()[)()[)1,0,121,1,xe xf x f x x ⎧-∈⎪=⎨-∈+∞⎪⎩,若()()g x f x π=-,则()g x 在[]0,10内的零点个数为( ) A .8 B .9 C .10 D .11【答案】B【分析】求出函数()f x 在区间[)(),109,n n n n N +≤≤∈值域及单调性,由此可得出结论.【详解】当[)0,1x ∈时,()[)10,1xf x e e =-∈-,当[)1,2x ∈时,[)10,1x -∈,则()()[)210,22f x f x e =-∈-,当[)2,3x ∈时,[)20,1x -∈,则()()()[)21420,44f x f x f x e =-=-∈-,以此类推,当[)(),109,x n n n n N ∈+≤≤∈时,()()())20,21n nf x f x n e ⎡=-=-⎣,且函数()f x 在区间[)(),109,n n n n N +≤≤∈上为增函数,122e e π-<<-,所以,函数()g x 在区间[)(),119,n n n n N +≤≤∈上有且只有一个零点,且()()()101010200g f f ππ=-=-<,因此,()g x 在[]0,10内的零点个数为9. 故选:B.【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.例14.(2022·全国·高三专题练习(文))已知函数()()3log 911x f x x+=-,下列说法正确的是( )A .()f x 既不是奇函数也不是偶函数B .()f x 的图象与sin y x =有无数个交点C .()f x 的图象与2y =只有一个交点D .()()21f f -<- 【答案】C【分析】A 根据函数奇偶性的定义即可判断()f x 的奇偶性;B 利用放缩法,当0x >易证()1f x >,由奇函数的对称性知0x <时()1f x <-,即可知()f x 与sin y x =的交点情况;C :由()2f x =变形可得112713xx⎛⎫+= ⎪⎝⎭⎛⎫ ⎪⎝⎭,设()11327xxg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭只需判断()1g x =解得个数即可;D 根据函数解析式求出()()2,1f f --比较大小即可. 【详解】A :()f x 定义域为{|0}x x ≠且()()()()()()333391log log 91log 91log 9191120x x x x x f x f x x x x x -⎛⎫+ ⎪+++⎝⎭-+=-+-=--=-,故()f x 为奇函数,错误;B :当0x >时有()3log 91211xf x x>-=-=,又()f x 为奇函数,则当0x <时,()1f x <-,即在R 上()f x ∈()(),11,-∞-⋃+∞,则()f x 的图象与sin y x =没有交点,错误, C :若()2f x =,则有()3log 9112x x+-=,即()3log 913x x +=,变形得9127x x+=,即112713x x⎛⎫+= ⎪⎝⎭⎛⎫ ⎪⎝⎭, 设()11327x xg x ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭,则()g x 为减函数且其值域为0,,则()1g x =有且只有一个解,即()f x 的图象与2y =只有一个交点,正确,D :()()2333182log 1log 2log 918181211222f -⎛⎫⎛⎫++ ⎪+ ⎪⎝⎭-=-=--=- ⎪- ⎪⎝⎭3182log 29=-⨯3log =-,而()333110101log 11log 1log 993f ⎛⎫⎛⎫-=-+-=-+=- ⎪ ⎪⎝⎭⎝⎭,则有()()21f f ->-,错误.故选:C.【点睛】关键点点睛:A 利用奇偶性定义判断函数的奇偶性,B 放缩法及奇函数的对称性,结合正弦函数的性质判断交点情况,C 将交点问题,通过恒等变形转化为方程是否有解的问题,D 通过函数解析式求函数值,进而比较大小.例15.(2022·全国·高三专题练习)高斯被人认为是历史上最重要的数学家之一,并享有“数学王子”之称.有这样一个函数就是以他名字命名的:设x ∈R ,用[]x 表示不超过x 的最大整数,则()[]f x x =称为高斯函数,又称为取整函数.如:(2.3)2f =,( 3.3)4f -=-.则下列结论正确的是( ) A .函数()f x 是R 上的单调递增函数 B .函数2()()3g x f x x =-有2个零点 C .()f x 是R 上的奇函数D .对于任意实数,a b ,都有()()()f a f b f a b +≤+ 【答案】BD【分析】对于AC ,举例判断,对于B ,利用取整函数和零点的定义判断即可,对于D ,定义{}[]a a a -=这样一个函数,就会有{}10a >≥,然后结合高斯函数的定义判断即可【详解】对于A ,(1.1)1f =,(1.2)1f =,(1.1)(1.2)f f =,()f x ∴在R 上不是单调增函数,所以A 错.对于B ,由()[]f x x =,可得1()x f x x -<≤,所以1()33x xg x -<≤,若函数()g x 要有零点,则1033x x -<≤,得[0,3)x ∈,因为()g x 要想为0,必须23x 也为整数,在这个范围内,只有30,2x x ==两个点,所以B 正确, 对于C ,(1.1)1f =,( 1.1)2(1.1)f f -=-≠-,()f x ∴不是奇函数,所以C 错, 对于D ,如果我们定义{}[]a a a -=这样一个函数,就会有{}10a >≥,同时有{}{}{}{}()([][])[[][]]f a b f a b a b a b a b +=+++=+++,当{}{}1a b +≥时,会有()[][]()()f a b a b f a f b +=+=+,当{}{}01a b <+<时,()[][]()()f a b a b f a f b +>+=+,所以D 正确,故选:BD.第三天学习及训练【题型】五、利用函数的零点或方程有根求参数例16.(2023·全国·高三专题练习)函数f (x )=ax 2-x -1有且仅有一个零点,则实数a 的值为( )A .-14B .0C .14D .0或-14【答案】D【分析】通过a 是否为0,然后求解函数的零点即可.【详解】解:当0a =时,函数()1f x x =--仅有一个零点,满足题意;当0a ≠时,函数2()1f x ax x =--仅有一个零点,可得140a ∆=+=,解得14a =-.故选:D例17.(2023·全国·高三专题练习)已知函数1,1()1()1,12x a x f x x -=⎧⎪=⎨+≠⎪⎩,若方程22()(23)()30-++=f x a f x a 有5个不同的实数解,则a 的范围是( )A .33(1,)(,2)22⋃B .(1,2)(2,3)C .(1,)+∞D .(1,3)【答案】A【分析】解方程22()(23)()30-++=f x a f x a 得()f x a =或3()2f x =,根据a 的取值分类讨论即可.【详解】方程22()(23)()30-++=f x a f x a ,解得()f x a =或3()2f x =, 若32a =,13,132()12()1,12x x f x x -⎧=⎪⎪==⎨⎪+≠⎪⎩, 解得1x =或0或2,不符合题意,所以32a ≠, 由3()2f x =,可得原方程有3个不等实根1x =或0或2; 所以只要|1|1()12x a -+=有2个不等实根即可.由|1|0x ->可得|1|10()12x -<<,即有12a <<,综上可得33(1,)(,2)22a ⋃∈.故选:A .例18.(2023·全国·高三专题练习)已知函数()2ln ,043,0x x f x x x x >⎧=⎨---≤⎩,若函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,则m 的取值范围是( ) A .102,3⎛⎫- ⎪⎝⎭B .102,3⎛⎤- ⎥⎝⎦C .102,3⎛⎫⎪⎝⎭D .102,3⎛⎤ ⎥⎝⎦【答案】D【分析】画出()f x 的图像,结合函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点,结合图像列不等式来求得m 的取值范围.【详解】当0x ≤时,()f x 是开口向下的二次函数,对称轴为2x =-,()()24831,03f f -=-+-==-.由243=0x x ---解得=1x -或3x =-. 由此画出()f x 的图像如下图所示,依题意,函数()()21y f x mf x =++⎡⎤⎣⎦有6个零点, 令()t f x =,则21y t mt =++,根据图像可知,函数21y t mt =++在区间[)3,1-上有两个不相等的实数根,则()222Δ403310110312m m m m ⎧=->⎪--+≥⎪⎪⎨++>⎪⎪-<-<⎪⎩,解得1023m <≤,所以m 的取值范围是102,3⎛⎤ ⎥⎝⎦.故选:D例19.(2023·全国·高三专题练习)已知函数()2221,0log ,0x x f x x x +⎧-≤⎪=⎨>⎪⎩,若关于x的方程2[()]()40f x mf x ++=有6个不同的实数根,则m 的取值范围是( )A .13(,5),43⎡⎫-∞-⋃--⎪⎢⎣⎭B .13,43⎡⎫--⎪⎢⎣⎭ C .134,(5,)3⎛⎤⋃+∞ ⎥⎝⎦ D .134,3⎛⎤ ⎥⎝⎦【答案】A【分析】画出()f x 的图象,令()t f x =,则先讨论240t mt ++=的零点,根据二次函数判别式与韦达定理,结合()f x 的图象可得240t mt ++=的较小根的范围,进而根据m 与较小根的关系式结合函数的单调性求解即可.【详解】画出()f x 的图象如图,令()t f x =,则先讨论240t mt ++=的零点. 当2440m ∆=-⨯<,即44m -<<时,不合题意;当2440m ∆=-⨯=,即4m =±时,易得2t =或2t =-,此时当()2f x =或()2f x =-时均不满足有6个零点,不合题意;故2440m ∆=-⨯>,4m >或4m <-,设240t mt ++=的两根为12,t t ,不妨设12t t <,由韦达定理124t t =,且12,2t t ≠.①当12,0t t <时,()1f x t =与()2f x t =均无零点,不合题意; ②当12,0t t >时:1. 若101t <<,则24t >,此时()1f x t =有4个零点,()2f x t =有2个零点,合题意;2. 若112t ≤<,此时()1f x t =有3个零点,则()2f x t =有且仅有3个零点,此时223t <≤,故1423t ≤<; 综上可得101t <<或1423t ≤<. 又12t t m +=-,故()12114m t t t t ⎛⎫=-+=-+ ⎪⎝⎭,结合4y t t =+在()0,2上为减函数可得114m t t ⎛⎫=-+ ⎪⎝⎭在()0,1,4,23⎡⎫⎪⎢⎣⎭上为增函数.故13(,5),43m ⎡⎫∈-∞-⋃--⎪⎢⎣⎭故选:A【点睛】本题主要考查了数形结合解决复合函数零点的问题,需要换元先分析二次函数的零点情况,数形结合判断零点所在的区间,进而得出()f x 零点所在的区间,并结合二次函数的性质与韦达定理求解.属于难题.例20.(2023·全国·高三专题练习)已知函数()()23,0,3,0,x x x f x f x x ⎧--<⎪=⎨-≥⎪⎩以下结论正确的是( )A .()f x 在区间[7,9]上是增函数B .()()220222f f -+=C .若函数()y f x b =-在(),6-∞上有6个零点()1,2,3,4,5,6i x i =,则619i i x ==∑D .若方程()1f x kx =+恰有3个实根,则11,3k ⎛⎫∈-- ⎪⎝⎭【答案】BC【分析】A 根据()f x 的周期性判断区间单调性;B 利用周期性求得()() 202230f f =-=即可判断;C 转化为y b =与()y f x =的交点问题,应用数形结合法及对称性求零点的和;D 根据函数图象求得1y kx =+与()y f x =交点个数为2或3时的临界值,即可得范围. 【详解】A :由题意,当3x ≥-时()f x 以3为周期的函数,故()f x 在[7,9]上的单调性与()f x 在[-2,0]上的单调性相同,而当0x <时()23924x x f ⎛⎫=-++ ⎪⎝⎭,∴()f x 在[-2,0]上不单调,错误;B :()22f -=,()() 202230f f =-=,故()()2 20222f f -+=,正确;C :作出()y f x =的函数图象如图所示:由于()y f x b =-在(),6-∞上有6个零点,故直线y b =与()y f x =在(),6-∞上有6个交点,不妨设1i i x x +<,i =1,2,3,4,5,由图象知:1x ,2x 关于直线32x =-对称,3x ,4x 关于直线32x =对称,5x ,6x 关于直线92x =对称,∴513392229222i i x ==-⨯+⨯+⨯=∑,正确;D :若直线1y kx =+经过(3,0),则13k =-,若直线1y kx =+与()230y x x x =--<相切,则消元可得:()2103x k x ++=+,令Δ0=可得()2340k +-=,解得k =-1或k =-5(舍),若直线1y kx =+与()y f x =在(0,3)上的图象相切,由对称性得:k =1. 因为()1f x kx =+恰有3个实根,故直线1y kx =+与()y f x =有3个交点, ∴113k -<<-或k =1,错误,故选:BC .例21.(2023·全国·高三专题练习)若函数()()2e 2xf x x x a =-++在区间(),1a a +上存在最大值,则实数a 的取值范围为_______【答案】2⎫⎪⎪⎝⎭【分析】根据开区间上连续函数的最值点必为导函数的零点,然后求导,数形结合,根据零点存在性定理建立不等式即可求解【详解】因为()()()22e 222e 2x xf x x x a x x a '=-++-+=-++,且函数()f x 在区间(),1a a +上存在最大值, 故只需()22h x x a =-++满足()()>0+1<0h a h a ⎧⎪⎨⎪⎩,所以()22++2>0+1++2<0a a a a --⎧⎪⎨⎪⎩,2a <<.故答案为:2⎫⎪⎪⎝⎭【题型】六、利用函数的交点或交点个数求参数例22.(2023·全国·高三专题练习)已知定义在R 上的奇函数,满足()()20f x f x -+=,当(]0,1x ∈时,()2log f x x =-,若函数()()sin()F x f x x π=-,在区间[]1,m -上有10个零点,则m 的取值范围是( ) A .[)3.5,4 B .(]3.5,4C .(]3,4D .[)3,4【答案】A【分析】由已知得出函数()f x 是周期函数,周期为2,函数()F x 的零点个数转化为函数()f x 的图象与sin()y x π=的图象的交点个数,作出函数的图象(其中()f x 的图象由奇偶性与周期性结合作出),然后分析交点个数得出参数范围. 【详解】由(2)()0f x f x -+=得(2)()f x f x +=--,又()f x 是奇函数,所以(2)()()f x f x f x +=--=,即()f x 是周期函数,周期为2,sin()y x π=也是周期函数,且最小正周期是22ππ=,由奇偶性和周期性作出函数()f x 的图象,再作出sin()y x π=的图象,如图,函数()()sin()F x f x x π=-的零点个数即为函数()y f x =的图象与函数sin()y x π=的图象交点个数,()f x 是R 上的奇函数,所以(0)0f =,从而20()f k =,Z k ∈,易知它们在[1,1)-上有4个交点,从而在[1,3)上也有4个交点,而4x =时,点(4,0)是一个交点,所以4m <,在(0,1)上,2()log f x x =-,11()1sin 22f π==,即1(,1)2是(0,1)上交点,从而在(1,0)-上交点上交点为1(,1)2--,由周期性在(3,4)上两函数图象交点为7(,1)2-,所以72m ≥. 综上,724m ≤<.故选:A .例23.(2023·全国·高三专题练习)已知函数()2cos()1(0,0π)f x x ωϕωϕ=+-><<经过(0,0)点,且()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136【答案】C【分析】运用代入法,结合余弦型函数的性质、函数零点的定义进行求解即可. 【详解】因为()2cos()1f x x ωϕ=+-经过(0,0)点, 所以12cos 10cos 2ϕϕ-=⇒=,因为0πϕ<<,所以π3ϕ=,即π()2cos()13f x x ω=+-,令ππ1()2cos()10cos()332f x x x ωω=+-=⇒+=,因为π()0,x ∈,所以πππ(,π)333x ωω+∈+,因为()f x 在(0,π)上只有一个零点0x ,所以有5πππ43327ππ3π33ωωω⎧<+⎪⎪⇒<≤⎨⎪≤+⎪⎩,所以ω的最大值为2, 故选:C例24.(2023·全国·高三专题练习)已知函数π()2cos()1(0,0)2f x x ωϕωϕ=+-><<,在0x =处的切线斜率为,若()f x 在(0,π)上只有一个零点0x ,则ω的最大值为( )A .43B .12C .2D .136【答案】C【分析】求出函数()f x 的导数,利用导数的几何意义求出ϕ,再由零点信息列出不等式,求解作答.【详解】依题意,()2sin()f x x ωωϕ'=-+,则(0)2sin f ωϕ'=-=,即sin ϕ=,而π02ϕ<<,解得π3ϕ=, 因此,π()2cos()13f x x ω=+-,由()0f x =得:π1cos()32x ω+=,又π()0,x ∈,有πππ(,π)333x ωω+∈+,因()f x 在(0,π)上只有一个零点0x ,于是得5ππ7ππ333ω<+≤,解得423ω<≤, 所以ω的最大值为2. 故选:C例25.(2023·全国·高三专题练习)定义在R 上的偶函数()f x 满足()22)(f x f x -+=,当[0,2]x ∈时,()xf x =,若在区间[0,10]x ∈内,函数()()(1)mg x f x x =-+有个5零点,则实数m 的取值范围是( ) A .()110,log e B .(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭C .111log e,2⎛⎫ ⎪⎝⎭D .11711log e,,log e 22⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭【答案】B【分析】根据函数的奇偶性求出函数在[2,0]-上的解析式,将问题转化为函数图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点,结合图形即可得出结果.【详解】由题意知,函数()f x 为偶函数,且(2)(2)f x f x -=+,令2x x →+,则(22)()(4)()f x f x f x f x --=-=+=, 所以函数()f x 是以4为周期的函数. 当[2,0]x ∈-时,[0,2]x -∈,所以()x f x --=,即当[2,0]x ∈-时()x f x -=, 因为函数()()(1)m g x f x x =-+在[0,10]上有5个零点, 所以方程()(1)0m f x x -+=在[0,10]上有5个根,即函数图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点,如图,当[0,2]x ∈时,()xf x =,()121e 2x f x '=,()102f '=,设()(1)mp x x =+,则()1(1)m p x m x -'=+,()0p m '=,当12m ≤,()()00p f '≤', 所以在[0,2]x ∈时,函数()()(1)m g x f x x =-+只有一个零点,此时,若要使图象()y f x =与(1)m y x =+在[0,10]上有5个不同的交点, 则()()11010mf +≤,11log e m ≤,所以110log e m <≤; 当12m >时,()()00p f '>', 所以在[0,2]x ∈时,函数()()(1)m g x f x x =-+有两个零点, 所以()()166mf +<且()()11010mf +>,即7e 11em m ⎧<⎨>⎩,解得71log e 2m <<,故m 的取值范围为(]11710,log e ,log e 2⎛⎫⋃ ⎪⎝⎭.故选:B.例26.(2023·全国·高三专题练习)已知函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩,若函数()()g x f x kx k =-+恰好有两个零点,则实数k 的取值范围是( )A .[)1,+∞B .0,1C .()1,+∞D .()(),00,1-∞⋃【答案】C【分析】根据已知条件画出函数()f x 的图象,将函数()()g x f x kx k =-+恰好有两个零点转化为函数()f x 与直线()1y k x =-图象恰有两个交点即可求解.【详解】由题意知,画出函数()31,21()1,2x x f x x x ⎧≥⎪-=⎨⎪-<⎩的简图,如图所示由()()g x f x kx k =-+恰好有两个零点转化为()f x 与直线()1y k x =-有两个不同的交点, 由图知,当直线经过点()()1,0,0,1-两点的斜率为10101k --==-,则1k >. 所以实数k 的取值范围为()1,+∞. 故选:C.例27.(2023·全国·高三专题练习)已知()e xx f x =.则下列说法正确的有( )A .函数()y f x =有唯一零点0x =B .函数()y f x =的单调递减区间为()(),01,-∞⋃+∞C .函数()y f x =有极大值1eD .若关于x 的方程()f x a =有三个不同的根.则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭【答案】ACD【分析】根据零点的定义判断A ,利用导数分析函数的单调性,作出函数()f x 的图象,根据图象判断其余选项.【详解】由()0f x =得:0x =,即0x =,故函数()f x 有唯一零点0x = 由题可知:(),0e e ,0e xx xxx x f x x x ⎧≥⎪⎪==⎨⎪-<⎪⎩设()e e xxx g x x -==⋅,x ∈R ,则()()1x g x x e -'=-⋅,由()()1e 0x g x x -⋅'=-≥得:1x ≤;由()()1e 0xg x x -⋅'=-≤得;1x ≥;故()g x 在(],1-∞上单调递增﹐在[)1,+∞上单调递减,作出()y g x =图象,并将0x <的部分图象关于x 轴对称可得()y f x =的图象如下:观察图象可得函数()y f x =的单调递减区间为(),0∞-,()1,+∞,B 错, 函数()y f x =在1x =时有极大值1e,C 对,方程()f x a =有三个不同的根,则实数a 的取值范围是10,e ⎛⎫⎪⎝⎭,D 对,故选:ACD.第四天学习及训练【题型】七、一元二次不等式恒成立问题例28.(2023·全国·高三专题练习)已知m 是区间[]0,4内任取的一个数,那么函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率是( )A .14B .13C .12D .23【答案】C【分析】首先得到220()4f x x x m '=-≥+恒成立,则解出m 的范围,再根据其在[0,4]内取数,利用几何概型公式得到答案. 【详解】22()4f x x x m '=-+,3221()233f x x x m x =-++在x ∈R 上是增函数22()40f x x x m '∴=-+≥恒成立21640m ∴∆=-≤解得2m ≥或2m ≤- 又m 是区间[0,4]内任取的一个数24m ∴≤≤由几何概型概率公式得函数3221()233f x x x m x =-++在x ∈R 上是增函数的概率42142P -== 故选:C .例29.(2023·全国·高三专题练习)当13x ≤≤时,关于x 的不等式210ax x -<+恒成立,则实数a 的取值范围是( ) A .1,4⎛⎤-∞- ⎥⎝⎦B .,⎛⎫-∞- ⎪⎝⎭14C .,1,4∞⎛⎫-+ ⎪⎝⎭D .1,2⎛⎫-+∞ ⎪⎝⎭【答案】B【分析】分离参变量得211a x x ⎛⎫<- ⎪⎝⎭恒成立,只用2min 11a x x ⎡⎤⎛⎫<-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦可求解.【详解】当13x ≤≤时,由210ax x -<+恒成立可得,。
2025届高考数学二轮复习函数典型例题第3讲函数的单调性含解析
第3讲函数的单调性典型例题【例1】求函数()f x x=的值域.【答案】99⎡-⎢⎣⎦. 【解析】()()f x xf x ==--,()f x 是奇函数.t =,则01t ,即10t -.()222f x x =()()()()()22112111t t t t t =-+=+-+()()()1122t t t =++-()()()3112264327t t t ⎡⎤++++-=⎢⎥⎣⎦, 当且仅当31t =,即3x =±时,上式取等号. 因为()00f =,所以()()01y f x x=的值大于或等于0,其值域为0,9⎡⎢⎣⎦.由奇函数的性质可得原函数的值域为99⎡-⎢⎣⎦. 【例2】求函数()4321x y x =+的值域.【答案】40,27⎡⎤⎢⎥⎣⎦.【解析】令tan ,,22x ππθθ⎛⎫=∈-⎪⎝⎭, 则()44232tan sin cos 1tan y θθθθ==+2221sin sin 2cos 2θθθ=⋅32221sin sin 2cos 42327θθθ⎛⎫++= ⎪⎝⎭, 当且仅当2tan2θ=时等号成立,所以函数()4321x y x =+的值域为40,27⎡⎤⎢⎥⎣⎦. 【例3】已知函数()22,11,1ax x x f x ax x ⎧+=⎨-+>⎩≤在R 上为增函数,则实数a 的取值范围为。
【答案】11,2⎡⎤--⎢⎥⎣⎦【解析】函数()22,1,1,1ax x x f x ax x ⎧+=⎨-+>⎩在R 上为增函数,则有11,0,21,a a a a ⎧-⎪⎪<⎨⎪+-+⎪⎩解得112a --.故答案为11,2⎡⎤--⎢⎥⎣⎦.【例4】已知函数()2f x x x m m =-+.(1)若函数()f x 在[]1,2上单调递增,求实数m 的取值范围;(2)若函数()f x 在[]1,2上的最小值为7,求实数m 的值.【答案】(1)][()(),14,;22m ∞∞-⋃+=-或1【解析】(1)()2222,,,.x mx m x m f x x mx m x m ⎧-+=⎨-++<⎩ (i)当0m =且0x 时,()2f x x =,此时()f x 在[]1,2上单调递增,可取0m =.(ii)当0m <时,][)1,2,m ∞⎡⊆+⎣,且当x m 时,()22f x x mx m =-+.二次函数22y x mx m =-+的图象开口向上,对称轴为直线02mx =<,如图()1,f x 在[]1,2上单调递增,可取0m <.(iii)当0m >时,如图2,若()f x 在[]1,2上单调递增,则22m或1m ,得01m <或4m .综上所述,实数m 的取值范围是(],1∞-[)4,∞⋃+.图1 图2(2)(i)当1m 时,()f x 在[]1,2上单调递增,()2min ()117f x f m m ==-+=,即260m m --=,解得3m =(舍去)或2m =-.(ii)同(2)(i),当4m 时,()f x 在[]1,2上单调递增,可解得m =均舍去); 当34m <时,可解得12m -±=(均舍去); 当23m <<时,可解得1m =;当12m <时,可解得m =均舍去).综上,2m =-或1.【例5】已知函数()([]11,2,42f x x x x=-∈,求函数()f x 的值域.【答案】11,44⎡⎤⎢⎥⎣⎦.【解析】解法1:()(112f x x x =-+1112x ⎛=-+ ⎝1112x ⎡⎢=-+⎢⎣. 令1m x =,则11,42m ⎡⎤∈⎢⎥⎣⎦, 构造函数()1g m m =-+()1m =-=,则()g m 是11,42⎡⎤⎢⎥⎣⎦上的增函数,从而()11,22g m ⎡⎤∈⎢⎥⎣⎦,因此()11,44f x ⎡⎤∈⎢⎥⎣⎦. 解法()112:12f x x ⎡⎢=-⎢⎣.令1311tan ,,42x θθ⎡⎤-=∈--⎢⎥⎣⎦为第四象限角,则sin 12cos y θθ+=,可看作图中单位圆上一点P 与点()0,1A -连线斜率的一半的改变范围,如图,将1x =2和4x =代人可得所求函数的值域为11,44⎡⎤⎢⎥⎣⎦.【例6】设函数()f x m =,若存在实数,()a b a b <,使()f x 在[],a b 上的值域为1⎤++⎥⎣⎦,则正实数m 的取值范围是_______.21m << 【解析】因为()f x m m ==+933m +>,所以3a b <<.由函数的性质知()f x 在[)3,∞+上是增函数,所以()()1,21,f a a f b ⎧=+⎪⎪⎨⎪=+⎪⎩即1,21,m a m ⎧+=+⎪⎪⎨⎪+=+⎪⎩所以1m -=-=即方程12m x -=[)3,∞+上有两个不等的实数根,a b . 设()2g x x =则()2g x '=3x -=6x x -=当()3,6x ∈时,()()0,g x g x '>单调递增;当()6,x ∞∈+时,()()0,g x g x '<单调递减.又()()33,60g g ==, 由于()2g x x =()231322x x x ⎛⎫--=-+ ⎪⎪⎝⎭,所以()lim x g x ∞∞→+=-,从而3102m -<-<, 故212m -<<. 【例7】(多选题)已知函数()231,11,1x x f x x x +⎧=⎨->⎩若n m >,且()()f n f m =,设t n m =-,则()A.t 没有最小值B.t 1C.t 没有最大值D.t 的最大值为1712【答案】BD【解析】如图,作出函数()f x 的图象.因为()()f n f m =且n m >,则1,1m n >,所以2311m n +=-,即223n m -=.由21,014,n n >⎧⎨<-⎩解得15n <,又()22213233n n m n n n --=-=---213173212n ⎛⎫=--+ ⎪⎝⎭,故当n =,min ()1n m -,当32n =时,max 17()12n m -=. 故选BD.【例8】对于函数()f x ,若在定义域内存在实数0x 满意()()00f x f x -=-,则称函数()f x 为“倒戈函数”.设()()31,0x f x m m R m =+-∈≠是定义在[]1,1-上的“倒戈函数”,则实数m 的取值范围是()A.2,03⎡⎫-⎪⎢⎣⎭B.21,33⎡⎤--⎢⎥⎣⎦C.2,03⎡⎤-⎢⎥⎣⎦D.(),0-∞【答案】A【解析】若()31xf x m =+-是定义在[]1,1-上的“倒戈函数”,则存在[]01,1x ∈-满意()()00f x f x -=-,即003131x x m m -+-=--+,得002332x x m -=--+.构造函数[]000332,1,1x x y x -=--+∈-,令013,,33x t t ⎡⎤=∈⎢⎥⎣⎦, 则1122y t t tt ⎛⎫=--+=-+ ⎪⎝⎭在1,13⎡⎤⎢⎥⎣⎦上单调递增,在(]1,3上单调递减,当1t =时取得最大值0,当13t =或3t =时取得最小值44,,033y ⎡⎤-∈-⎢⎥⎣⎦.又0m ≠,所以实数m 的取值范围是2,03⎡⎫-⎪⎢⎣⎭. 故选A.【例10】已知221x y +=,则22x y x y +--+的最大值_______.2.【解析】解法()221:1222x y y x y x y +--=+⋅-+--()1121112y xy =+⋅---,2y x-的几何意义为单位圆上的点(),x y 与定点()0,2连线的斜率,如图.设过点()0,2的切线为2y kx =+,1=,解得k =结合图象,得23y x--或23y x-,则211121212112x y xx y y +-=+⋅+⋅-+--2=, 所以22x y x y +--+2.解法2:令,x y m x y n -=+=,则22222,22x y n m n x y m +--+==-++,同上,转化为圆上的点(),m n 与点()2,2-连线的斜率,易得223232n m ---++,则22x y x y +--+2.解法3:圆221x y +=上的点(),P x y 到直线x 20y +-=的距离为1d =,又点(),P x y 在直线20x y +-=的下方,=同理,圆221x y +=上的点(),P x y 到直线x -20y +=的距离为2d =,则22x y x y +--+12d d =-如图,设12,,PQ d PS d PAQ ∠α===,则tan α12d d =.结合图形可知,当直线AP 与圆221x y +=相切时,α取最小值,30OAP ∠=,则min?4530α=-=15,从而tan tan152α=所以22x y x y +--+2.解法4:设22x y t x y +-=-+,整理得()1t x --()()1210t y t +++=,由题意,圆221x y +=与直线()()()11210t x t y t --+++=有交点,则圆心到直线的距离小于等于半径,即1,解得2323t --+所以22x y x y+--+2.:【例11】已知实数0a >,函数()23f x x x a =+--在区间[]1,1-上的最大值是2,则a =_______.【答案】54或3【解析】解法1;因为函数()23f x x x a =+--在区间[]1,1-上的最大值是2, 取0x =,可得()02f ,又0a >,得32a -,解得15a ,即有()23,11f x x x a x =-+--,故()f x 的最大值在顶点或端点处取得.由()12f -=,即12a -=,解得3a =或a =1-(舍去);由()12f =,即32a -=,解得5a =或1a =; 由122f ⎛⎫= ⎪⎝⎭,即1324a -=,解得54a =或a =214(舍去).当1a =时,()22f x x x =--,因为12f ⎛⎫= ⎪⎝⎭924>,故不符合题意,舍去;当5a =时,()22f x x x =-+,因为()1f -=42>,故不符合题意,舍去;当3a =时,()2f x x x =-,明显当1x =-时,()f x 取得最大值2,符合题意; 当54a =时,()()277,144f x x x f =--=,()111,242f f ⎛⎫-== ⎪⎝⎭,符合题意. 所以54a =或3a =.解法()2:f x 在[]1,1-上的最大值为2,等价于()232f x x x a =+--在[]1,1-上恒成立,且等号可取到, 即2232x x a -+--在[]1,1-上恒成立,且至少一处等号可取到,即2215x x a x ---在[]1,1-上恒成立,且至少一处等号可取到.在同一个坐标系里画出函数21,y x y =-=2,5x a y x -=-的图象,如图.肯定值函数的图象过25y x =-图象上的点()1,4-,或者与21y x =-的图象相切,得14a +=或210x x a -+-=.对于后者,由Δ0=得54a =,所以3a =或54a =.【例12】对于定义域为D 的函数()y f x =,假如存在区间[,]m n D ⊆, 同时满意:①()f x 在[],m n 上是单调函数,②[],m n 上()f x 的值域也是[],m n ,则称[],m n 是该函数的“美丽区间”.已知函数()()()221,0a a x y h x a R a a x +-==∈≠有“美丽区间”[],m n ,当a 改变时,求n m -的最大值_______.【解析】设[],m n 是已知函数定义域的子集. 由于0x ≠,则[](),,0m n ∞⊆-或[],m n ⊆()0,∞+. 而函数()222111a a x a y a x a a x+-+==-在[],m n 上单调递增,若[],m n 是已知函数的“美丽区间”,则()(),,h m m h n n ⎧=⎪⎨=⎪⎩ 所以,m n 是方程211a x a a x+-=即22a x -()210a a x ++=的两个同号且不等的实数根. 因为210mn a =>,所以,m n 同号, 只要()()()2222Δ4310a a a a a a =+-=+->,解得3a <-或1a >.n m -===当3a =时,n m -【例13】已知在ABC ∆中,内角,,A B C 所对的边长分别为,,a b c ,若AB 边上的高为14AB ,则当sin sin sin sin A B B A+取得最大值时,sin C =_______.【答案】5 【解析】设AB 边上的高为c h ,即14c h c =, 由面积公式得11sin 22c ch ab C =,即24sin c ab C =. 22sin sin sin sin A B a b a b B A b a ab++=+=, 由余弦定理得2222cos c a b ab C =+-,则22cos 4sin 2cos c ab C ab C ab C ab ab++=()4sin 2cos C C C ϕ=+=+, 其中1tan 2ϕ=. 当2C πϕ+=时,上式取到最大值此时2C πϕ=-,故sin sin cos 2C πϕϕ⎛⎫=-===⎪⎝⎭【例14】在平面直角坐标系xOy 中,设定点(),,A a a P 是函数1(0)y x x=>图象上的一个动点,若,P A之间的最短距离为,则满意条件的实数a 的值为______.【答案】1-【解析】1设1,(0)P x x x ⎛⎫> ⎪⎝⎭, 则2222211||()AP x a a x x x ⎛⎫=-+-=+- ⎪⎝⎭2222a ax a x -+. 令[)12,t x x∞=+∈+,则222||222AP t at a =-+-. 记()()222222g t t at a t =-+-,其图象的对称轴为t a =,最小值为28=,所以()2min?2,()22428,a g t g a a <⎧⎨==-+=⎩或()2min?2,()28,a g t g a a ⎧⎨==-=⎩解得1a =-或a =.【解析】2由题意可知,若0a <,则1a =-满意题意.若0a >,则圆22()()8x a y a -+-=与曲线1(0)y x x=>相切,联立方程组, 消去y 得22221228a x ax a a x x-++-+=, 即()221122100?*x a x a x x ⎛⎫⎛⎫+-++-= ⎪ ⎪⎝⎭⎝⎭. 由()22Δ(2)42100a a =--=,得a =, 此时方程()*的解为2x =,满意题意. 综上,1a =-或a =.【例15】已知函数()21,1,{ln ,1,x x f x x x x-<=>若关于x 的方程()()212202f x tf x t ++-=有5个不同的实数根,则实数t 的取值范围是 A.111,22e ⎛⎫- ⎪⎝⎭ B.111,22e ⎛⎫- ⎪⎝⎭ C.113,22e ⎛⎫- ⎪⎝⎭ D.113,22e ⎛⎫- ⎪⎝⎭【答案】A 【解析】设ln x y x =,则21ln x y x-='. 当()0,e x ∈时,0y '>,函数单调递增;当()e,x ∞∈+时,0y '<,函数单调递减.所以当e x =时,函数取得极大值, 1ey =极大值.方程()()212202f x tf x t ++-=可化为()()12102f x t f x ⎡⎤⎡⎤+-+=⎣⎦⎢⎥⎣⎦,解得()12f x t =-+或()12f x =-.画出函数()f x 的大致图象,如图.要使得关于x 的方程()()21222f x tf x t ++-0=有5个不同的实数根, 应满意1102e t <-+<,解得1112e 2t -<<,即实数t 的取值范围是111,2e 2⎛⎫- ⎪⎝⎭.故选A.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
配套作业1.(2018·全国卷Ⅲ)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m . 解 (1)设{a n }的公比为q ,由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1. (2)若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m =-188,此方程没有正整数解. 若a n =2n -1,则S n =2n -1. 由S m =63得2m =64,解得m =6. 综上,m =6.2.(2018·哈尔滨模拟)设数列{a n }的前n 项和是S n ,若点A n ⎝ ⎛⎭⎪⎫n ,S n n 在函数f (x )=-x +c 的图象上运动,其中c 是与x 无关的常数,且a 1=3.(1)求数列{a n }的通项公式;(2)记b n =aan ,求数列{b n }的前n 项和T n 的最小值.解 (1)因为点A n ⎝ ⎛⎭⎪⎫n ,S n n 在函数f (x )=-x +c 的图象上运动,所以S n n =-n +c ,所以S n =-n 2+cn .因为a 1=3,所以c =4,所以S n =-n 2+4n ,所以a n =S n -S n -1=-2n +5(n ≥2).又a 1=3满足上式,所以a n =-2n +5(n ∈N *).(2)由(1)知,b n =aan =-2a n +5=-2(-2n +5)+5=4n -5,所以{b n }为等差数列,所以T n =n (b 1+b n )2=2n 2-3n ,当n =1时,T n 取最小值, 所以T n 的最小值是T 1=-1.3.(2018·南昌模拟)若等差数列{a n }的前n 项和S n 满足S 10=100,数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1的前5项和为9.(1)求数列{a n }的通项公式;(2)若数列{b n }的前n 项和为T n ,b n =a n +3(n 2+2n )2,求证:T n <58. 解 (1)设{a n }的公差为d ,∵数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1的前5项和为9,∴a 5=9. ∵S 10=5(a 5+a 6)=100,∴a 6=11,∴d =2,a 1=1. ∴a n =2n -1(n ∈N *). (2)证明:∵b n =a n +3n 2·(n +2)2=2n +2n 2·(n +2)2=12×4n +4n 2·(n +2)2=12⎣⎢⎡⎦⎥⎤1n 2-1(n +2)2,∴T n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-19+⎝ ⎛⎭⎪⎫14-116+⎝ ⎛⎭⎪⎫19-125+…+⎝ ⎛⎭⎪⎫1n 2-1(n +2)2=12⎣⎢⎡⎦⎥⎤1+14-1(n +1)2-1(n +2)2<12×⎝⎛⎭⎪⎫1+14=58. 4.已知数列{a n }的前n 项和为S n ,若a 1=13,3S n +1=S n +1. (1)求数列{a n }的通项公式;(2)若b n =log 13a n ,数列{a n ·b n }的前n 项和为T n ,求T n .解 (1)当n =1时,3S 2=43,a 2=19,∴3a 2=a 1;当n ≥2时,3S n =S n -1+1,∴3a n +1=a n (n ≥2),故数列{a n }是以13为首项,13为公比的等比数列,则a n =13×⎝ ⎛⎭⎪⎫13n -1=⎝ ⎛⎭⎪⎫13n.(2)由(1)知b n =log 13a n =n ,则a n ·b n =n ·⎝ ⎛⎭⎪⎫13n. 从而T n =1×13+2×⎝ ⎛⎭⎪⎫132+…+(n -1)×⎝ ⎛⎭⎪⎫13n -1+n ·⎝ ⎛⎭⎪⎫13n,① 13T n =1×⎝ ⎛⎭⎪⎫132+2×⎝ ⎛⎭⎪⎫133+…+(n -1)×⎝ ⎛⎭⎪⎫13n +n ·⎝ ⎛⎭⎪⎫13n +1,②由①-②得,23T n =13+⎝ ⎛⎭⎪⎫132+…+⎝ ⎛⎭⎪⎫13n -n ·⎝ ⎛⎭⎪⎫13n +1=13×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫13n 1-13-n ·⎝ ⎛⎭⎪⎫13n +1, 因此T n =34-14(2n +3)·⎝ ⎛⎭⎪⎫13n. 5.(2018·青海西宁二模)已知正项数列{a n }的前n 项和为S n ,且满足4S n -1=a 2n +2a n ,n ∈N *.(1)求数列{a n }的通项公式; (2)设b n =1a n (a n +2),数列{b n }的前n 项和为T n ,证明:13≤T n <12.解 (1)当n =1时,4a 1=4S 1=a 21+2a 1+1,解得a 1=1. 当n ≥2时,4S n =a 2n +2a n +1,4S n -1=a 2n -1+2a n -1+1, 两式相减得4a n =a 2n +2a n -(a 2n -1+2a n -1), 即a 2n -a 2n -1=2(a n +a n -1),又a n >0,所以a n +a n -1≠0,则a n -a n -1=2, 所以数列{a n }是首项为1,公差为2的等差数列, 所以a n =1+(n -1)×2=2n -1.因为a 1=1也满足,综上,a n =2n -1(n ∈N *). (2)证明:b n =1a n (a n +2)=1(2n -1)(2n +1)=12⎝ ⎛⎭⎪⎫12n -1-12n +1, 所以数列{b n }的前n 项和T n =12⎝ ⎛⎭⎪⎫1-13+13-15+…+12n -1-12n +1=12⎝ ⎛⎭⎪⎫1-12n +1<12, (T n )min =T 1=12⎝ ⎛⎭⎪⎫1-12×1+1=13, 所以13≤T n <12.6.(2018·四川模拟)设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ; (2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a nb n 的前n 项和T n .解 (1)由已知得,b 7=2a 7,b 8=2a 8=4b 7,有2a 8=4×2a 7=2a 7+2.解得d =a 8-a 7=2.所以,S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n .(2)f ′(x )=2x ln 2,f ′(a 2)=2a 2ln 2,故函数f (x )=2x 在(a 2,b 2)处的切线方程为y -2a 2=2a 2ln 2(x -a 2),它在x 轴上的截距为a 2-1ln 2.由题意得,a 2-1ln 2=2-1ln 2,解得a 2=2. 所以d =a 2-a 1=1. 从而a n =n ,b n =2n ,a n b n=n2n .所以T n =12+222+323+…+n -12n -1+n 2n ,2T n =11+22+322+…+n 2n -1.因此,2T n -T n =1+12+122+…+12n -1-n2n=2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n.7.(2018·天津模拟)数列{a n }的前n 项和为S n ,且a 1=1,a n +1=2S n +1,数列{b n }为等差数列,且b 3=3,b 5=9.(1)求数列{a n },{b n }的通项公式;(2)若对任意的n ∈N *,⎝ ⎛⎭⎪⎫S n +12·k ≥b n 恒成立,求实数k 的取值范围.解 (1)由a n +1=2S n +1,① 得a n =2S n -1+1(n ≥2).② ①-②得,a n +1-a n =2(S n -S n -1). ∴a n +1=3a n (n ≥2).又a 1=1,a 2=2S 1+1=2a 1+1=3,也满足上式, ∴{a n }是首项为1,公比为3的等比数列. ∴a n =3n -1.∵{b n }为等差数列,∴b 5-b 3=2d =6,∴d =3. ∴b n =3+(n -3)×3=3n -6. (2)S n =a 1(1-q n )1-q =1-3n 1-3=3n -12,∴⎝ ⎛⎭⎪⎫3n-12+12·k ≥3n -6对任意的n ∈N *恒成立, ∴k ≥6n -123n=2⎝ ⎛⎭⎪⎫3n -63n 对任意的n ∈N *恒成立. 令c n =3n -63n ,c n -c n -1=3n -63n -3n -93n -1=-2n +73n -1,当n ≤3时,c n >c n -1,当n ≥4时,c n <c n -1, ∴(c n )max =c 3=19.所以实数k 的取值范围是k ≥29.8.(2018·重庆模拟)已知等比数列{a n }的前n 项和为S n ,公比q >0,S 2=2a 2-2,S 3=a 4-2.(1)求数列{a n }的通项公式; (2)设b n =⎩⎪⎨⎪⎧log 2a nn 2(n +2),n 为奇数,na n ,n 为偶数,T n 为{b n }的前n 项和,求T 2n .解 (1)已知S 2=2a 2-2,① S 3=a 4-2,②②-①得,a 3=a 4-2a 2,即q 2-q -2=0. 又∵q >0,∴q =2.∵S 2=2a 2-2,∴a 1+a 2=2a 2-2, ∴a 1+a 1q =2a 1q -2,∴a 1=2. ∴数列{a n }的通项公式为a n =2n .(2)由(1)知b n =⎩⎪⎨⎪⎧log 22nn 2(n +2),n 为奇数,n 2n ,n 为偶数,即b n =⎩⎪⎨⎪⎧1n (n +2),n 为奇数,n2n ,n 为偶数.∴T 2n =b 1+b 2+b 3+…+b 2n=(b 1+b 3+…+b 2n -1)+(b 2+b 4+…+b 2n )=12⎝ ⎛⎭⎪⎫11-13+13-15+…+12n -1-12n +1+[2×2-2+4×2-4+6×2-6+…+(2n )·2-2n ]=n2n +1+[2×2-2+4×2-4+6×2-6+…+(2n )·2-2n ]. 设A =2×2-2+4×2-4+6×2-6+…+(2n )·2-2n ,则2-2A =2×2-4+4×2-6+6×2-8+…+(2n -2)·2-2n +(2n )·2-2n -2,两式相减得34A=12+2(2-4+2-6+2-8+…+2-2n)-(2n)·2-2n-2,解得A=89-6n+89×22n.∴T2n=89-6n+89×22n+n2n+1.古今中外有学问的人,有成就的人,总是十分注意积累的。