2018年中考数学专题复习四边形

合集下载

中考数学总复习《四边形》专题基础知识回顾五

中考数学总复习《四边形》专题基础知识回顾五

中考数学总复习专题基础知识回顾五四边形一、单元知识网络:二、考试目标要求:1.探索并了解多边形的内角和与外角和公式,了解正多边形的概念.2.掌握平行四边形、矩形、菱形、正方形、梯形、直角梯形、等腰梯形的概念和性质,了解它们之间的关系;了解四边形的不稳定性.3.探索并掌握平行四边形的有关性质和四边形是平行四边形的条件.4.探索并掌握矩形、菱形、正方形的有关性质和四边形是矩形、菱形、正方形的条件.5.探索并了解等腰梯形的有关性质和四边形是等腰梯形的条件.6.通过探索平面图形的镶嵌,知道任意一个三角形、四边形或正六边形可以镶嵌平面,并能运用这几种图形进行简单的镶嵌设计.三、知识考点梳理知识点一、多边形的有关概念和性质1.多边形的定义:在平面内,由不在同一直线上的一些线段首尾顺次相接组成的封闭图形叫做多边形.2.多边形的性质:(1)多边形的内角和定理:n边形的内角和等于(n-2)·180°;(2)推论:多边形的外角和是360°;(3)对角线条数公式:n边形的对角线有条;(4)正多边形定义:各边相等,各角也相等的多边形是正多边形.知识点二、四边形的有关概念和性质1.四边形的定义:同一平面内,由不在同一条直线上的四条线段首尾顺次相接组成的图形叫做四边形.2.四边形的性质:(1)定理:四边形的内角和是360°;(2)推论:四边形的外角和是360°.知识点三、平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.2.平行四边形的性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等;(3)平行四边形的对角线互相平分;3.平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形(定义);(2)两组对边分别相等的四边形是平行四边形;(3)两组对角分别相等的四边形是平行四边形;(4)一组对边平行且相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.4.面积公式:S=ah(a是平行四边形的一条边长,h是这条边上的高).知识点四、矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形.2.矩形的性质:矩形具有平行四边形的所有性质;(1)矩形的对边平行且相等;(2)矩形的四个角都相等,且都是直角;(3)矩形的对角线互相平分且相等.3.矩形的判定方法:(1)有一个角是直角的平行四边形是矩形(定义);(2)有三个角是直角的四边形是矩形;(3)对角线相等的平行四边形是矩形.4.面积公式:S=ab(a、b是矩形的边长).知识点五、菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形.2.菱形的性质:菱形具有平行四边形的所有性质;(1)菱形的对边平行,四条边都相等;(2)菱形的对角相等;(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角.3.菱形的判定方法:(1)有一组邻边相等的平行四边形是菱形(定义);(2)四条边都相等的四边形是菱形;(3)对角线互相垂直的平行四边形是菱形.4.面积公式:S=ah(a是平行四边形的边长,h是这条边上的高)或s=mn(m、n是菱形的两条对角线长).知识点六、正方形1.正方形的定义:有一组邻边相等的矩形叫做正方形;或有一个角是直角的菱形叫做正方形.2.正方形的性质:正方形具有平等四边形、矩形、菱形的所有性质;(1)正方形的对边平行,四条边都相等;(2)正方形的四个角都是直角;(3)正方形的两条对角线相等,并且互相垂直平分;每条对角线平分一组对角;3.正方形的判定方法:(1)有一组邻边相等的矩形是正方形;(2)有一个角是直角的菱形是正方形;(3)对角线相等的菱形是正方形;(4)对角线互相垂直的矩形是正方形.4.面积公式:S=a2(a是边长)或s=b2(b正方形的对角线长).平行四边形和特殊的平行四边形之间的联系:知识点七、梯形1.梯形的定义:一组对边平行而另一组对边不平行的四边形叫做梯形.(1)互相平行的两边叫做梯形的底;较短的底叫做上底,较长的底叫做下底.(2)不平行的两边叫做梯形的腰.(3)梯形的四个角都叫做底角.2.直角梯形:一腰垂直于底的梯形叫做直角梯形.3.等腰梯形:两腰相等的梯形叫做等腰梯形.4.等腰梯形的性质:(1)等腰梯形的两腰相等;(2)等腰梯形同一底上的两个底角相等.(3)等腰梯形的对角线相等.5. 等腰梯形的判定方法:(1)两腰相等的梯形是等腰梯形(定义);(2)同一底上的两个角相等的梯形是等腰梯形;(3)对角线相等的梯形是等腰梯形.6.梯形中位线:连接梯形两腰中点的线段叫梯形的中位线.7.面积公式:S=(a+b)h(a、b是梯形的上、下底,h是梯形的高).知识点八、平面图形的镶嵌1.平面图形的镶嵌的定义:用形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地铺成一片,这就是平面图形的镶嵌,又称做平面图形的密铺.2.平面图形镶嵌的条件:(1)同种正多边形镶嵌成一个平面的条件:周角是否是这种正多边形的一个内角的整倍数.在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.(2)n种正多边形组合起来镶嵌成一个平面的条件:①n个正多边形中的一个内角的和的倍数是360°;②n个正多边形的边长相等,或其中一个或n个正多边形的边长是另一个或n个正多边形的边长的整数倍.四、规律方法指导1.数形结合思想多边形是反映了数的抽象性与形的直观性这一对矛盾的对立统一,以及在一定条件下的互相转化,由数构形,由形思数的数形结合思想.尤其在平行四边形和矩形、菱形、正方形、梯形中,图形的特点非常鲜明,与我们现实生活的联系很大,利用它们的性质和判定能解决实际中的问题.2.分类讨论思想根据题目中的已知判断是哪种特殊的平行四边形,不同的特殊的平行四边形的性质和判定不同.结合各自的特点进行分类,得出最终的结论.3.化归与转化思想要记清和分清平行四边形及特殊平行四边形的性质与判定,要体会化归思想的应用,如:多边形转化为三角形;平行四边形、梯形及特殊的平行四边形性质的讨论通过对角线转化为全等三角形等.4.注意观察、分析、总结在判断边相等或角相等的问题上,常以平行四边形、梯形及特殊的平行四边形的性质或判定为依据,当条件结论的关系无法找到时,可以通过辅助线将图形适当变化,使条件集中,以便应用条件达到解题的目的,由繁变简,一般与特殊之间的转化.5.四边形知识点间的联系经典例题透析考点一、多边形及镶嵌1.若一个正多边形的内角和是其外角和的倍,则这个多边形的边数是______.考点:本题考查n边形的内角和公式:(n-2)·180°和多边形的外角和是360°.解析:设正多边形边数为n,由题意得:(n-2)·180°=360°×3,解得n=8,∴这个多边形的边数是八边.2.下列正多边形中,能够铺满地面的是( )A、正五边形B、正六边形C、正七边形D、正八边形考点:镶嵌的条件:周角是这种正多边形的一个内角的整倍数.思路点拔:在正多边形里只有正三角形、正四边形、正六边形可以镶嵌.答案:B3.一个多边形从一个顶点共引出三条对角线,此多边形一定是( )A.四边形B. 五边形C.六边形D.三角形思路点拔:n边形的对角线从一个顶点共引(n-3)条对角线.解析:根据题意列式为n-3=3,∴n=6.故选C.4. 一个同学在进行多边形内角和计算时,求得的内角和为1125°,当发现错了之后,重新检查,发现少了一个内角.少了的这个内角是_________度,他求的是_________边形的内角和.思路点拔:一个多边形的内角和能被180°整除,本题内角和1125°除以180°后有余数,则少的内角应和这个余数互补.解析:设这个多边形边数为n,少算的内角度数为x,由题意得:(n-2)·180°=1125°+ x°,∴n=∵n为整数,0°<x<180°,∴符合条件的x只有135°,解得n=9.应填135、九.总结升华:多边形根据内角或外角求边数,或是根据边数求内角或对角线条数等题是重点,只需要记住各公式或之间的联系,并准确计算.举一反三:【变式1】如果一个多边形的每一个内角都相等,且每一个内角的度数为135°,那么这个多边形的边数为( )A.6B.7C.8D.以上答案都不对思路点拔:在本题可利用外角去求边数,每个外角为45°,外角和是360°,有几个外角就有几条边.解析:∵多边形的每个内角度数为135°,∴每个外角为45°又∵多边形外角和为360°,∴边数=360°÷45°=8,故选C.【变式2】多边形的内角和随着边数的增加而______,边数增加一条时,它的内角和增加_____度.解析:多边形每增加一边,内角和就增加180°. 答案:增加、180.考点二、平行四边形5. 平行四边形的周长为40,两邻边的比为2:3,则这一组邻边长分别为________.考点:平行四边形的边的性质.思路点拔:掌握平行四边形的对边相等.解析:∵□ABCD中,AB=CD,BC=AD,周长为40∴AB+BC=20,又∵AB:BC=2:3,令AB=2k,BC=3k,∴2k+3k=20,解得k=4,∴这一组邻边长分别为8和12.6. 已知O是□ABCD的对角线交点,AC=24,BD=38,AD=14,那么△OBC的周长等于_______.考点:平行四边形的对角线互相平分.解析:□ABCD中,OC=AC=12,OB=BD=19,BC=AD=14∴△OBC的周长=OB+OC+BC=19+12+14=45.7. 如图,BD是□ABCD的对角线,点E、F在BD上,要使四边形AECF是平行四边形,还需要增加的一个条件是______________.考点:平行四边形的判定.思路点拔:本题可以利用平行四边形的判定中的一组对边平行且相等;也可以利用对角线互相平分来判定等.答案不唯一.条件一:增加的条件为∠AFE=∠CEF.证明:∵∠AFE=∠CEF,∴AF∥CE,∠AFD=∠CEB∵□ABCD中,AD=BC,AD∥BC,∴∠ADF=∠CBE∴△ADF≌△CBE,∴AF=CE∴四边形AECF是平行四边形.条件二:增加的条件为BE=DF.解法一:可利用SAS证明△ABE≌△CDF,△ADF≌△CBE,得AE=CF,AF=CE∴四边形AECF是平行四边形.解法二:连结AC交BD于O□ABCD中,OA=OC,OB=OD∵BE=DF,∴OB-BE=OD-DF,得OE=OF∴四边形AECF是平行四边形.总结升华:借助平行四边形的性质进行线段或角相等的证明,或利用平行四边形的判定条件确定四边形的形状,是考查的重点.举一反三:【变式1】在平行四边形ABCD中,两条对角线AC、BD相交于点O,如右图,与△ABO面积相等的三角形有( )个.A、1B、2C、3D、4解析:两条对角线分成的四个小三角形面积都相等,等底等高.∴与△ABO面积相等的三角形有△AOD、△COD、△BOC.故选C【变式2】如图,△ABC中∠ACB=90°,点D、E分别是AC,AB的中点,点F在BC的延长线上,且∠CDF=∠A.求证:四边形DECF是平行四边形.考点:本题要求会综合运用所学的知识证明结论:(1)三角形的中位线性质;(2)直角三角形斜边的中线等于斜边的一半;(3)两组对边分别平行的四边形是平行四形.证明:∵D、E分别是AC,AB的中点,∴CE是△ABC的中位线∴AE=AB,DE∥BC 即DE∥CF∵△ABC中∠ACB=90°,E是AB的中点,∴CE=AB∴CE=AE,∴∠A=∠ECD∵∠CDF=∠A,∴∠CDF=∠ECD,∴CE∥DF∴四边形DECF是平行四边形.考点三、矩形8.如图,矩形ABCD的两条对角线相交于O,∠AOB=60°,AB=8,则矩形对角线的长_________.考点:矩形的性质.思路点拔:掌握矩形的对角线相等,会用一个角是60°的等腰三角形是等边三角形解析:在矩形ABCD中,AC=BD,OA=AC,OB=BD∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形∴OA=AB=8,∴AC=2OA=16,故应填16.9. 如右图,把一张矩形纸片ABCD沿BD对折,使C点落在E处且与AD相交于点O.写出一组相等的线段__________.(不包括和).思路点拔:理解折叠前后图形的变化,△BCD≌△BED,也可证出△AOB≌△EOD,找出对应量相等.解析:OD=OB或OE=OA、AB=ED、BE=AD等角形斜边的中线等于斜边的一半这一性质.举一反三:【变式1】四边形ABCD的对角线相交于点O,在下列条件中,不能判定它是矩形的是( )A.AB=CD,AD=BC,∠BAD=90°B.AO=CO,BO=DO,AC=BDC.∠BAD=∠ABC=90°,∠BCD+∠ADC=180°D.∠BAD=∠BCD,∠ABC=∠ADC=90°思路点拔:本题应结合图形去解决,掌握矩形的判定方法.解析:A选项由AB=CD,AD=BC判定是□ABCD,再利用有一个角是直角的平行四边形是矩形可得;B选项由AO=CO,BO=DO判定是□ABCD,再利用对角线相等的平行四边形是矩形;D选项由∠BAD=∠BCD,∠ABC=∠ADC判定是□ABCD,再利用有一个角是直角的平行四边形是矩形可得;而C选项却不能判定,举反例如直角梯形.故选C.【变式2】矩形一个角的平分线分矩形一边成2cm和3cm,则这个矩形的面积为__________.考点:矩形的面积公式思路点拔:在没有图形的题中,画图时应考虑全面,本题体现了分类的思想,被分的两部分长度不确定解析:如图(1)若AE=3,ED=2,则矩形边长分别3和5,面积为15cm2如图(2)若AE=2,ED=3,则矩形边长分别2和5,面积为10cm2则这个矩形面积就为10cm2和15cm2.考点四、菱形10.在菱形ABCD中,对角线AC、BD交于点O,AC、BD的长分别为5厘米、10厘米,则菱形ABCD 的面积为_________厘米2.考点:菱形面积.思路点拔:菱形的对角线互相垂直,面积公式有两个:(1)底乘高;(2)对角线乘积的一半.解:菱形ABCD的面积=AC×BD=×5×10=25cm2.11.能够判别一个四边形是菱形的条件是( )A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角考点:菱形的判定解析:A选项可判定为矩形;B选项不能判定是平行四边形,∴也不能判定是菱形;C选项只能判定是平行四边形;D选项由等角对等边和三角形全等得到四条边都相等.故选D.总结升华:菱形在平行四边形的基础上进一步特殊化,菱形的对角线互相垂直,把菱形分成四个全等的直角三角形,常利用这一性质求线段和角,以及菱形的面积.举一反三:【变式1】已知菱形的一条对角线与边长相等,则菱形的两个邻角度数分别为 ( )A. 45°, 135°B. 60°, 120°C. 90°, 90°D. 30°, 150°思路点拔:菱形的一条对角线与边长相等,则构成等边三角形,从而求出菱形的内角度数.答案:B【变式2】如图,已知AD平分∠BAC,DE∥AC, DF∥AB, AE=5.(1)判断四边形AEDF的形状?(2)它的周长是多少?考点:菱形的判定思路点拔:利用一组邻边相等的平行四边形是菱形的判定方法证明.证明:(1)∵AD平分∠BAC,∴∠BAD=∠CAD∵DE∥AC, DF∥AB∴四边形AEDF是平行四边形,∠CAD=∠ADE∴∠BAD=∠ADE,∴AE=DE∴平行四边形AEDF是菱形.(2)∵平行四边形AEDF是菱形,AE=5∴菱形AEDF的周长=4AE=4×5=20.【变式3】如图,菱形ABCO的边长为2,∠AOC=45°,则点B的坐标为___________.思路点拔:利用数形结合的思想,可先求A点坐标,再向右平移2个单位.解析:过A作AD⊥OC于D,∵∠AOC=45°,OA=2,∴AD=OD=,∴A(,)∵AB=2,∴B(2+,).考点五、正方形12.正方形具有而矩形不一定具有的特征是( )A.四个角都是直角B.对角线互相平分C.对角线互相垂直D.对角线相等思路点拔:正方形是满足矩形和菱形的所有性质.∴正方形的对角线互相垂直,而矩形对角线则不一定互相垂直.答案:C.13.如图,以A、B为顶点作位置不同的正方形,一共可以作( )A.1个B.2个C.3个D.4个思路点拔:本题考查学生解题能力,容易将AB是对角线的情况忽略,而错误的选B.解析:如图,共有3个.14.图中的矩形是由六个正方形组成,其中最小的正方形的面积为1,求这个矩形的长和宽各是多少?思路点拔:本题利用正方形的边长相等,及矩形的对边相等,设某个正方形的边长为x,并用x表示矩形的对这得出相应的方程,求出矩形的长和宽.解:设右下方正方形的边长为,则左下方正方形的边长为+1,左上方正方形的边长为+2,右上方正方形的边长为+3,根据长方形的对边相等可列方程2++1=+2++3,解这个方程得=4,∴长方形的长为13,宽为11.总结升华:正方形的性质很多,往往是在判定矩形或菱形的基础上再进一步判定正方形,∴做正方形的问题时,要考虑全面,有选择的运用正方形的知识解题.举一反三:【变式1】下列选项正确的是( )A.四边相等的四边形是正方形B.对角线互相垂直平分且相等的四边形是正方形C.对角线垂直的平行四边形是正方形D.四角相等的四边形是正方形考点:正方形的判定方法.思路点拔:掌握正方形的判定方法要从边、角、对角线各方面考虑.解析:A、C选项能判定是菱形;D选项能判定是矩形;故应选B.【变式2】正方形ABCD中,对角线BD长为16cm,P是AB上任意一点,则点P到AC、BD的距离之和等于__cm.思路点拔:本题方法很多,(1)可以利用三角形面积去求:连接PO,△ABO的面积等于△APO和△BPO 的面积之和;(2)也可证明矩形PEOF,得PF=EO,再证PE=AE,从而得出结论.总之,P在AB上移动时,点P到AC、BD的距离之和总等于对角线长的一半.解析:PE+PF=OA=8cmA、平行四边形B、矩形C、菱形D、正方形(2)顺次连结对角线相等的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形(3)顺次连结对角线互相垂直的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形(4)顺次连结对角线互相垂直且相等的四边形四边中点所得的四边形一定是( )A、平行四边形B、矩形C、菱形D、正方形考点:中点四边形的判定由原四边形的对角线决定.思路点拔:规律:顺次连结任意四边形四边中点所得的四边形一定是平行四边形;顺次连结对角线相等的四边形四边中点所得的四边形一定是菱形;顺次连结对角线互相垂直的四边形四边中点所得的四边形一定是矩形;顺次连结对角线互相垂直且相等的四边形四边中点所得的四边形一定是正方形.答案:(1)A (2)C (3)B (4)D考点六、梯形15.等腰梯形中,,cm,cm,,则梯形的腰长是_________cm.考点:等腰梯形的性质.思路点拔:梯形常作的辅助线是作梯形的高,将梯形分成一个矩形和两个直角三角形;本题也可平移一腰,将梯形分成一个平行四边形和一个等边三角形.解析:过A作AE∥CD交BC于E∵AD∥EC,∴EC=AD=5,AE=CD,∴BE=BC-EC=9-5=4∵梯形ABCD是等腰梯形,∴AB=CD,∴AB=AE∵∠C=60°,∴△ABE是等边三角形∴AB=BE=4cm,即梯形的腰长是4cm.16. 如图,在梯形ABCD中,AD∥BC,AD=2,BC=8,AC=6,BD=8,则此梯形的面积是( )(A)24 (B)20 (C)16 (D)12思路点拔:梯形常作的辅助线还有就是平移对角线,将梯形分成一个三角形以及一个平行四边形.解析:过D作DE∥AC交BC延长线于E,可得CE=AD,DE=AC,∴BE=10,∴△BDE的三边为6、8、10,∴△BDE为直角三角形,∵△ADB和△CED等底等高,∴梯形ABCD的面积等于△BDE的面积.即梯形ABCD的面积=6×8×=24.17.如图,在等腰梯形ABCD中,AD∥BC,AC,BD相交于点O.•有下列四个结论:①AC=BD;②梯形ABCD是轴对称图形;③∠ADB=∠DAC;④△AOD≌△ABO.其中正确的是( ).(A)①③④ (B)①②④(C)①②③(D)②③④考点:本题考查的是等腰梯形的性质.答案:C总结升华:解决梯形问题时,辅助线是常用的方法,除上述辅助线之外,还可以延长两腰交于一点,构成三角形;若已知一腰中点,可连结一顶点和这个中点,构成两个全等的三角形.举一反三:【变式1】已知梯形的上底长为3,中位线长为6,则下底长为______.考点:梯形的中位线性质.思路点拔:梯形的中位线平行两底,且等于上、下底和的一半.答案:9.【变式2】如图,梯形ABCD中,AD∥BC,E、F分别是AD、BC的中点,∠ABC和∠BCD互余,若AD=4,BC=10,则EF=_________.解析:过E作EM∥AB,EN∥CD,交BC于M、N,可求MN=BC-AD=10-4=6∵∠ABC和∠BCD互余,可得Rt△MEN,再证EF是Rt△MEP斜边上的中线,可求EF的长=MN=×6=3.【变式3】已知等腰梯形ABCD,AD∥BC ,E为梯形内一点,且.求证:.思路点拔:利用梯形的性质可证明三角形全等.证明:在等腰梯形ABCD中,AB=CD,∠BAD=∠CDA∵EA=ED,∴∠EAD=∠EDA∴∠BAD-∠EAD=∠CDA-∠EDA,即∠BAE=∠CDE∴△BAE≌△CDE,∴EB=EC.中考题萃1.(北京市)(4分)若一个多边形的内角和等于720°,则这个多边形的边数是( )A.5B.6C.7D.82.(赤峰市)(3分)分别剪一些边长相同的①正三角形,②正方形,③正五边形,④正六边形,如果用其中一种正多边形镶嵌,可以镶嵌成一个平面图案的有( )A.①②③B.②③④C.①②④D.①②③④都可以3.(湖北省襄樊市)(3分)顺次连接等腰梯形四边中点所得四边形是( )A.菱形B.正方形C.矩形D.等腰梯形4.(衡阳市)(3分)如图,在平行四边形中,,为垂足,如果,那么的度数是( )A. B. C. D.5.(广州)(3分)如图,每个小正方形的边长为1,把阴影部分剪下来,用剪下来的阴影部分拼成一个正方形,那么新正方形的边长是( )A. B.2 C. D.6.(永春县)(3分)四边形的外角和等于__________度.7.如图,在正五边形ABCDE中,连结AC,AD,则∠CAD的度数是__________°.8.(佳木斯市)(3分)一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是__________.9.(江苏省宿迁市)(3分)若一个正多边形的内角和是其外角和的倍,则这个多边形的边数是______.10.(安顺市)(4分)若顺次连接四边形各边中点所得四边形是菱形,则原四边形可能是__________.(写出两种即可)11.(赤峰市)(4分)如图,已知平分,,,则________.12.(佛山市)(3分)如图,已知P是正方形ABCD对角线BD上一点,且BP = BC,则∠ACP度数是__________.13.(湖南省怀化市)(2分)如图,在平行四边形ABCD中,DB=DC、,CE BD于E,则__________.14.(海南省)(3分)如图,在等腰梯形ABCD中,AD∥BC,AE∥DC,AB=6cm,则AE=__________cm.15.(莆田市)(3分)如图,大正方形网格是由16个边长为1的小正方形组成,则图中阴影部分的面积是__________.16.(广州)(3分)如图,在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,AD=6,BC=8,则梯形的高为.17.(莆田市)(3分)如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______________度.18.(湖北省荆门市)(3分)如图,矩形纸片ABCD中,AD=9,AB=3,将其折叠,使点D与点B重合,折痕为EF,那么折痕EF的长为________.19.(江苏省宿迁市)(3分)如图,菱形ABCD的两条对角线分别长6和8,点P是对角线AC上的一个动点,点M、N分别是边AB、BC的中点,则PM+PN的最小值是_________.20.(内蒙古)(6分)如图,在梯形中,AD∥BC,,,AE⊥BD于E,. 求梯形的高.21.(湖北省荆州市)(6分)如图,矩形ABCD中,点E是BC上一点,AE=AD,DF⊥AE于F,连结DE,求证:DF=DC.22.(北京市)(5分)如图,在梯形中,,,,,,求的长.23.(湖北省荆门市)(10分)某人定制了一批地砖,每块地砖(如图(1)所示)是边长为0.4米的正方形ABCD,点E、F分别在边BC和CD上,△CFE、△ABE和四边形AEFD均由单一材料制成,制成△CFE、△ABE 和四边形AEFD的三种材料的每平方米价格依次为30元、20元、10元,若将此种地砖按图(2)所示的形式铺设,且能使中间的阴影部分组成四边形EFGH.(1)判断图(2)中四边形EFGH是何形状,并说明理由;(2)E、F在什么位置时,定制这批地砖所需的材料费用最省?答案与解析1.B2.C3.A4.D5.C6.3607.368.129.八边10.矩形、等腰梯形、正方形、对角线相等的四边形11.3 12.22.5度13.25°14.6 15.1016.7 17.60 18.19.520.解:∵AD∥BC,∴∠2=∠3又AB=AD,∴∠1=∠3.∠ABC=∠C=60°∴∠1=∠2=30°在Rt△ABE中,,,∴AB=2作AF⊥BC垂足为F,在Rt△ABF中,∴梯形的高为.21.证明:∵AD=AE∴∠ADE=∠FED又AD∥BC∴∠ADE=∠DEC∴∠DEC=∠DEF又DF⊥AE,四边形ABCD是矩形∴∠DFE=∠C=90°又DE=DE∴△DEF≌△DEC(AAS)∴DF=DC.22.解法一:如图1,分别过点作于点,于点..又,四边形是矩形..,,,..,在中,,.解法二:如图2,过点作,分别交于点.,.,.在中,,,,在中,,,,..在中,,.23.解:(1) 四边形EFGH是正方形.图(2)可以看作是由四块图(1)所示地砖绕C点按顺(逆)时针方向旋转90°后得到的,故CE=CF=CG.∴△CEF是等腰直角三角形.因此四边形EFGH是正方形.(2) 设CE=x,则BE=0.4-x,每块地砖的费用为y,那么y=x×30+×0.4×(0.4-x)×20+=10(x-0.2x+0.24)=10[(x-0.1)2+0.23] (0<x<0.4).当x=0.1时,y有最小值,即费用为最省,此时CE=CF=0.1.答:当CE=CF=0.1米时,总费用最省.。

中考数学专题复习题:特殊平行四边形

中考数学专题复习题:特殊平行四边形

中考数学专题复习题:特殊平行四边形一、单项选择题(共5小题)1.关于正方形性质的描述:①既是轴对称图形,又是中心对称图形;②对边平行且相等,四条边相等;③四个角相等,且都等于90°;④对角线互相垂直平分且相等,每一条对角线都平分一组对角;⑤若正方形的对角线长为2,则它的面积为2. 其中说法正确的有()A.2个B.3个C.4个D.5个2.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线互相垂直且相等3.如图,下列四组条件中,能判定▱ABCD是正方形的有()①AB=BC,∠BAD=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.A.1个B.2个C.3个D.4个第3题图第4题图第5题图4.如图,在菱形ABCD中,对角线AC与BD相交于点O,添加以下条件,能判定菱形ABCD是正方形的是()A.AB=BD B.OA=OC C.BC⊥CD D.AC⊥BD5.如图,已知四边形ABCD的对角线AC,BD相交于点O,则下列能判断它是正方形的条件是()A.AB=BC=CD=DA B.AO=BO=CO=DO,AC⊥BDC.AO=CO,BO=DO,AC⊥BD D.AB=BC,CD⊥DA二、填空题(共5小题)6.如图,四边形ABCD是正方形,对角线AC与BD相交于点O,AO=2,则正方形的周长为________,面积为________.第6题图第7题图第8题图7.如图,点E在正方形ABCD的对角线AC上.若AE=AB,则∠EBC的度数为_____. 8.如图,在正方形ABCD中,点E,F分别在边BC,CD上,AE=AF,∠EAF=30°,则∠AEB=________.9. 如图,正方形ABCD的边长为4,则图中阴影部分的面积为________.第9题图第10题图10.如图,边长为1的两个正方形互相重合,按住其中一个不动,将另一个绕顶点A顺时针旋转45°,则这两个正方形重叠部分的面积是________.三、解答题(共1小题)11.如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F在对角线BD上,且BE=DF,OE=OA.求证:四边形AECF是正方形.。

中考数学专题复习《四边形的折叠问题》测试卷-附带答案

中考数学专题复习《四边形的折叠问题》测试卷-附带答案

中考数学专题复习《四边形的折叠问题》测试卷-附带答案学校:___________班级:___________姓名:___________考号:___________一 单选题1.如图所示 在长方形ABCD 中 610AD AB ==, 若将长方形ABCD 沿DE 折叠 使点C 落在AB 边上的点F 处 则线段CE 的长为( )A .13B .1730C .103D .102.如图 在ABCD 中 将ADC △沿AC 折叠后 点D 恰好落在DC 延长线上的点E 处.若=60B ∠︒ 1AB = 则ABCD 的周长为( )A .4B .43C .6D .33.如图 在ABC 中 已知8AB = 点DE 、分别在边AC AB 、上 现将ADE 沿直线DE 折叠 使点A 恰好落在点F 处 若将线段BC 向左平移刚好可以与线段EF 重合 连接CF 若215BC CF += 则2BC CF -的值为( )A .4B .5C .6D .74.如图 矩形ABCD 中 3AB = 4BC = 点E 是BC 边上一点 连接AE 把B ∠沿AE折叠 使点B 落在点B '处 当CEB '为直角三角形时 BE 的长为( )A .2B .3C .2或3D .3或1.55.如图 将长方形纸片ABCD 沿EF 折叠后 若170=︒∠ 则2∠的度数为( )A .110︒B .115︒C .120︒D .125︒6.如图 在平面直角坐标中 矩形ABCD 的边5,:1:4AD OA OD == 将矩形ABCD 沿直线OE 折叠到如图所示的位置 线段1OD 恰好经过点B 点C 落在y 轴的点1C 位置 点E 的坐标是( )A .()1,2B .1,2C .)1,2D .()12 7.如图 在平面直角坐标系中 已个纸片OACB 顶点10006A B (,),(,)点P 为BC 边上的动点 将OBP 沿OP 折叠得到OPD 连接CD AD 、.则下列结论中:①当45BOP ∠=︒时 四边形OBPD 为正方形 ①当30BOP ∠=︒时 OAD 的面积为15 ①当P 在运动过程中CD 的最小值为5 ①当OD AD ⊥时 2BP =.其中结论正确的有( )A .1个B .2个C .3个D .4个 8.如图 把一张长方形纸片沿对角线折叠 若30EDF ∠= 则长方形纸片的长宽比为( )A .2:1B 2:1C 31D .23二 填空题9.在平行四边形ABCD 中 点E F 在BC 边上 把ABE 沿直线AE 折叠 CDF 沿直线DF 折叠 使点B C 落在对角线AC 上的点G 处 若110AGD ∠=︒ 则B ∠的度数为 .10.如图 点O 是矩形ABCD 的中心 E 是边AB 上的点 沿CE 折叠后 点B 恰好与点O 重合 若9BC = 则折痕CE 长度为 .11.如图 将长方形ABCD 沿EF 折叠得到两个全等的小长方形 1210AB BC ==,, 点G 在AB 上运动 当点 A 关于DG 的对称点A '落在右侧长方形BCEF 内部(含边界)时 则AG 的长度 m 的取值范围为 .12.如图 菱形ABCD 的边5AB = 高4CE = F 是边CD 上一动点 将四边形AEFD 沿直线EF 折叠 A 点的对应点为P 当CP 的长度最小时 CF 的长为 .13.如图 把正方形纸片ABCD 进行如下操作:对折正方形ABCD 得折痕EF 连接CE 将CB 折叠到CE 上 点B 对应点H 得折痕CG .那么AG BG= .三 解答题14.如图1 点E 为矩形ABCD 边BC 上一点 且CE CD = 把ABE 沿着AE 折叠 点B 的对应点F 恰好落在线段DE 上.(1)求证:≌AFD DCE(2)如图2 延长CF 交AE 于点G 交AB 于点H .①求证:GE DF GF CD ⋅=⋅①求:GH GA 的值.15.如图 沿折痕AE 折叠矩形ABCD 的一边 使点D 落在BC 边上一点F 处.若6AB = 且ABF △的面积为24 则:(1)BF 的长为_______________(2)BC 的长为________________(3)求EC 的长.16.如图1 已知长方形纸片ABCD 点E 在边AD 上 F 为AB 上的一个动点 G 为DC 上的一个动点 将长方形ABCD 沿直线EF EG 、折叠 点A D 、的对应点分别是点A '和点D .(1)如图2 当点A '落在ED 上时 求FEG ∠的度数(2)如图3 若54A ED ''∠=︒ 求FEG ∠的度数(3)如图4 若10A ED ''∠=︒ 求FEG ∠的度数(4)若A ED n ''∠=︒直接写出FEG ∠的度数(用含n 的代数式表示)17.如图 在Rt ABC △中 90BAC ∠=︒ 30C ∠=︒ 点D 是ABC 外一点连接AD BD将ABD △沿DB 折叠使点A 落在边BC 上的点1A 处 连接1A D 若1A D AC ⊥.(1)求证:四边形1ABA D 是菱形(2)连接1AA DC 若2AB = 求四边形1ADCA 的面积.18.综合探究:如图 四边形ABCD 是正方形 点M 在边AD 上 直线MN AB ∥.将正方形沿MN 折叠 点A 落在A '处 点B 落在点B '处 MN 与BD 交于点P 连接AP A P ' A P '交CD 与点F .(1)连接PC 猜想PC 与PA '的数量关系为________ A PC '∠=________°(2)连接B D ' CA ' 两线段交于点O 移动直线MN 若CD 平分PCA '∠ 求证:CP B D '∥(3)移动直线MN 若6=BC 2B C '= 直接写出PAD ∠的度数.参考答案:1.C2.C3.B4.D5.D6.D7.C8.C9.75︒10.11.10103m ≤≤ 12.41314.(1)解:证明:CD CE =CDE ∴为等腰直角三角形45CDE FDA ︒∴∠=∠= ABE 沿AE 折叠得到AEF △ 且四边形ABCD 是矩形 AB AF CD ∴== 90AFE AFD B ∠=∠=∠=︒ 在AFD △与ECD 中AFD ECD CDE FDA AF CE ∠=∠⎧⎪∠=∠⎨⎪=⎩()AAS AFD DCE ∴≌.(2)①证明:AFD DCE ≌△△AD DE ∴= AF DF DC CE ===()11804567.52DCF DFC ∴∠=∠=︒-︒=︒ 45DEC ∠=︒ 180135BED DEC167.52AEF AEB BEF ∴∠=∠=∠=︒ GEF DCF ∴∠=∠ GFE DFC ∠=∠GEF DCF ∴∽GE GF DC DF∴= GE DF GF CD ∴⋅=⋅.①在Rt CED 中 45CDE ∠=︒DE ∴=DF DC CE ==)()2121EF DE DF CD CE ∴=-== 21EF CE ∴ 由①知:67.5BEA DFC ∠=∠=︒18067.5112.5EFC GEC ∴∠=∠=︒-︒=︒ECF GCE ∠=∠CEG CFE ∴△∽△21GE EF GC CE∴==. 15.(1)由矩形的性质可得:90B C ∠=∠=︒ 6AB CD == ABF △的面积为24 ①1242ABF S AB BF =⨯⨯= ①24224286BF AB ⨯⨯=== 故答案为:8(2)在(1)中已得8BF =由矩形的性质可得:90B C ∠=∠=︒ 6AB CD == AD BC = 由折叠的性质可得:AF AD BC == 由勾股定理可得:22228610BC AF BF AB =++= 故答案为:10(3)由(1)(2)可得2CF BC BF =-=根据折叠的性质有:EF DE =设CE x = 则6EF DE x ==-在Rt CEF △中 222CE CF EF +=即()22226x x +=- 解得83x = 即83CE =.16.(1)解:由翻折得:12A EF AEA ''∠=∠ 12D EG DED ''∠=∠ ①180AEA DED ''∠+∠=︒ ①()111809022FEG A EF D EG AEA DED ''''∠=∠+∠=∠+∠=⨯︒=︒(2)解:由 (1) 知12A EF AEA ''∠=∠ 12D EG DED ''∠=∠ ①54A ED ''∠=︒①126AEA DED ''∠+∠=︒①()1632A EF D EG AEA DED ''''∠+∠=⨯∠+∠=︒ ①5463117FEG A ED A EF D EG ''''∠=∠+∠+∠=︒+︒=︒ (3)解:①10A ED ''∠=︒ ①()()11180109522A EF D EG AEA DED ''''∠+∠=∠+∠=︒+︒=︒ ①951085FEG A EF D EG A ED ''''∠=∠+∠-∠=︒-︒=︒ (4)解:如图3 ①A ED n ''∠=︒①()180180AEA DED A ED n ''''∠+∠=︒-∠=-︒ ①2A EF AEA ''∠=∠ 2D EG DED ''∠=∠ ①1802n A EF D EG ︒-︒''∠+∠= ①18018022n n FEG A EF D EG A ED n ︒-︒︒+︒''''∠=∠+∠+∠=+︒= 如图4 ①180AEA DED A ED ''''∠+∠-∠=︒ ''A ED n ∠=︒ ①180AEA DED n ''∠+∠=︒+︒①2A EF AEA ''∠=∠ 2D EG DED ''∠=∠ ①1802n A EF D EG ︒+︒''∠+∠= ①18018022n n FEG A EF D EG A ED n ︒+︒︒-︒''''∠=∠+∠-∠=-︒= 综上 FEG ∠的度数为1802n ︒+︒或 1802n ︒-︒. 17.(1)证明:如图1 连接1AA 设1A D 交AC 于点E由折叠的性质得:1AB A B = 1AD A D =90BAC ∠=︒ 30C ∠=︒903060ABC ∴∠=︒-︒=︒1ABA ∴是等边三角形1AB AA ∴= 160BAA ∠=︒11906030CAA BAC BAA ∴∠=∠-∠=︒-︒=︒1A D AC ⊥190AEA ∴∠=︒1903060AA D ∴∠=︒-︒=︒∴1AA D △是等边三角形1AD AA ∴=11AB A B AD A D ∴===∴四边形1ABA D 是菱形(2)解:如图2由(1)可知 四边形1ABA D 是菱形 12A D AB ∴==90BAC ∠=︒ 30ACB ∠=︒24BC AB ∴==22224223AC BC AB ∴--1A D AC ⊥∴四边形1ADCA 的面积=1AA C ADC S S + 111111232232222AC A E AC DE AC A D =⋅+⋅=⋅=⨯= 18.(1)解:①四边形ABCD 是正方形 ①AB BC CD DA === 90BAD ABC BCD CDA ∠∠∠∠====︒ 四边形ABCD 是轴对称图形 BD 所在直线是其一条对称轴①45ADP ∠=︒ PA PC = PAM PCF ∠∠= ①MN AB ∥①90PMD BAD ∠∠==︒①MN AD ⊥18090A DF CDA '∠=︒-∠=︒①将正方形沿MN 折叠 点A 落在A '处 点B 落在点B '处 ①MN AA '⊥①点A D A '三点共线同理:点B C B '三点共线①将正方形沿MN 折叠 点A 落在A '处 点B 落在点B '处 ①PA PA '= PA D PAM PCF '∠=∠=∠ 90CB A B A D ABC BAD ''''∠=∠=∠=∠=︒ ①PC PA '=①90A DF '∠=︒ 180A DF PA M DFA PCF PFC A PC ''''∠+∠+∠=∠+∠+∠=︒ PA M PCF '∠=∠ DFA PFC '∠=∠ ①90A D A PC F '∠=︒'∠=故答案为:PC PA '= 90(2)证明:由(1)得PC PA '= 90A PC '∠=︒ ①45PCA PA C ''∠=∠=︒①CD 平分PCA '∠①22.5OCD PCD ∠=∠=︒①90CB A B A D ''''∠=∠=︒ 90A DF '∠=︒ ①四边形A B CD ''是矩形①OA OD OB OC ''===①ODC OCD ∠∠==22.5︒①45A ODC O A OD PC CD ''∠=︒=∠+∠=∠ ①CP B D '∥(3)解:如图 在AN 上取一点N 使得AN =①四边形A B CD ''是矩形 ①2,A D B C ''=①将正方形沿MN 折叠 点A 落在A '处 点B 落在点B '处 ①MN 垂直平分AA ' ①62MA MA +'== 90PMD PMN ∠∠==︒ ①MN AM AN =-=6232662+-=①45PDM ∠=︒ ①904545MPD PDM ∠∠=︒-︒=︒= ①PM DM AD AM ==-62626+-==①在Rt PMN 中6232tan 326PM PNM MN -∠===-①30PNM ∠=︒ ①262N PN PM A === ①PAD APN ∠∠==130152⨯︒=︒.。

九年级数学中考专题(空间与图形)-第九讲《四边形(一)》课件(北师大版)

九年级数学中考专题(空间与图形)-第九讲《四边形(一)》课件(北师大版)
F D
B
C
E
体验中考
1.(06常州)已知:如图,在四边形ABCD AO CO, 中,AC与BD相交与点O,AB∥CD, 求证:四边形ABCD是平行四边形.
A O B C D
体验中考
2.(06大连西岗)如图,ABCD中, AE⊥BD于E,CF⊥BD于F. 求证:AE = CF
A F E B D
典型例题
E 变式1:顺次连结矩形四边中点所得的四边形是菱形. D 变式2:顺次连结菱形四边中点所得的四边形是矩形. G H 变式3:顺次连结正方形四边中点所得的四边形 是正方形. B F 变式4:顺次连结等腰梯形四边中点所得的四边形 A 是菱形. 变式5:若AC=BD,AC⊥BD,则四边形EFGH是正方形. 变式6:在四边形ABCD中,若AB=CD,E、F、G、H分别为AD、BC、 BD、AC的中点,求证:EFGH是菱形. C 变式7:如图:在四边形ABCD中, M D E为边AB上的一点,△ADE和△ Q BCE都是等边三角形,P、Q、M、 N N分别是AB、BC、CD、DA边上 的中点,求证:四边形PQMN是菱形. B A E P
二、选择题: 1、若□ABCD的周长为28,△ABC的周长为17cm,则AC的长 为( ) A、11cm B、5.5cm C、4cm D、3cm 2、如图,□ABCD和□EAFC的顶点D、E、F、B在同一条直 线上,则下列关系中正确的是( ) C A、DE>BF B、DE=BF D C、DE<BF D、DE=FE=BF E F B
C
典型例题
例3 已知如图,在△ABC中,∠C=900,点M在BC上, 且BM=AC,点N在AC上,且AN=MC,AM和BN相交于 P,求∠BPM的度数.
分析:条件给出的是线段的等量关系,求的却是角的度数,为此,我们由条件中 的直角及相等的线段,可联想到构造等腰直角三角形,从而应该平移AN. 证明:过M作ME∥AN,且ME=AN,连结NE、BE,则四边形AMEN是平行四 边形,得NE=AM,ME∥AN,AC⊥BC ∴ME⊥BC在△BEM和△AMC中, ME=CM,∠EMB=∠MCA=900,BM=AC ∴△BEM≌△AMC A ∴BE=AM=NE,∠1=∠2, ∠3=∠4,∠1+∠3=90° 1 ∴∠2+∠4=90 ° ,且BE=NE N P ∴△BEN是等腰直角三角形 3 C B ∴∠BNE=45 ° ∵AM∥NE M ∴∠BPM=∠BNE =45 ° 2

2018届数学中考第一轮复习-6.四边形与平行四边形 - 副本

2018届数学中考第一轮复习-6.四边形与平行四边形 - 副本

第六章四边形与平行四边形测试卷一、选择题1.(2017山东泰安,19,3分)如图,四边形ABCD是平行四边形,点E是边CD上的一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①B E平分∠CBF②CF平分∠DCB③BC=FB④PF=PC.其中正确的结论个数为()A.1 B.2 C.3 D.42.(2017山东威海,10,3分)如图,在平行四边形ABCD中∠DAB的平分线交CD于点E,交BC的延长线于点G, ∠ABC的平分线交CD于点F,交AD的延长线于点H,交AG与BH成交于点O,连接BE.下列结论错误的是()A.BO=OHB.DF=CEC.DH=CGD.AB=AE3.(2017四川眉山,10,3分)如图,EF过□ABCD对角线的交点O,交AD于E,交BC于F.若□ABCD的周长为18,OE=1.5,则四边形EFCD的周长为()A.14 B.13 C.12 D.104.(2017•江西, 6, 3分)如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B.当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D.当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形5.(2017•宜昌, 10, 3分)如图,将一张四边形纸片沿直线剪开,如果剪开后的两个图形的内角和相等,下列四种剪法中,符合要求的是()A.①②B.①③C.②④D.③④6.(2017•贵阳, 8, 3分)如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.247.(2017•河北, 16, 2分)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.58.(2017•黑龙江, 17, 3分)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22 B.20 C.22或20 D.189.(2017•黄石)如图,已知凸五边形ABCDE的边长均相等,且∠DBE=∠ABE+∠CBD,AC=1,则BD必定满足()A.BD<2 B.BD=2 C.BD>2 D.以上情况均有可能10.(2017•株洲, 9, 3分)如图,点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,则关于四边形EFGH,下列说法正确的为()A.一定不是平行四边形B.一定不是中心对称图形C.可能是轴对称图形D.当AC=BD时它是矩形11.(2017山东德州,11,3分)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a>b),M在BC边上,且BM=b,连接AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF.给出以下五个结论:①∠MAD=∠AND;②CP=b-ab2;③△ABM≌△NGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共圆.其中正确的个数是()A.2 B.3 C.4 D.512.(2017四川攀枝花,10,3分)10.如图5,正方形ABCD中,点E、F分别在边BC、CD上,△AEF是等边三角形,连接AC交EF于点G,过点G作GH丄CE于点H,若S∆EGH=3,则S∆ADF=()A. 6 B. 4 C.3 D.213.(2017山东泰安,14,3分)如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E.若AB=12,BM=5,则DE的长为()A.18 B.1095C.965D.25314.(2017浙江宁波,11,4分)如图,四边形ABCD是边长为6的正方形,点E在边AB上,4BE=,过点E作EF BC∥,分别交BD,CD于G,F两点,若M,N分别是DG,CE的中点,则MN的长为( )A.3 B.23C.13D.415.(2017山东临沂,12,3分)在△ABC中,点D是边BC上的点(与B、C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E、F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形16.(2017•兰州,14,4分)如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=()A.B.C.D.17.(2017•广东,10,3分)如图,已知正方形ABCD,点E是BC边的中点,DE与AC相交于点F,连接BF,下列结论:①S△ABF=S△ADF;②S△CDF=4S△CEF;③S△ADF=2S△CEF;④S△ADF=2S△CDF,其中正确的是()A.①③B.②③C.①④D.②④18.(2017•贵港, 12, 3分)如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与B,C重合),CN⊥DM,CN与AB交于点N,连接OM,ON,MN.下列五个结论:①△CNB≌△DMC;②△CON≌△DOM;③△OMN∽△OAD;④AN2+CM2=MN2;⑤若AB=2,则S△OMN的最小值是,其中正确结论的个数是()CABDNM EFGP19.(2017湖北天门,中,AE⊥BD于点E,CF平分∠BCD,交EA的延长线于点AE=455;④AF=2OAE=,.24.(2017•南通, 10, 3分)如图,矩形ABCD中,AB=10,周长的最小值为(10于点F,G,连接FG.则;④OD=的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD 分)如图为某城市部分街道示意图,四边形为正方形,点G在对角线BD上,1500m,小敏姓周的路线为B,则小聪行走的路程为分) 如图,正方形ABCD中,在DP上,且∠DFE=45°,若分)如图,在正方形ABCD在一次课题学习中,老师让同学们合作编题,某学习小组受赵爽弦图的启发,编写,使得AE CG =,BF DH =,、F 分别是AB 、BC 的中点,CE ⊥AB ,垂足为E ,=BC 上的一点,以BP 为边作正方形BPEF ,使点F 在线的形状,并说明理由;cm214.(2017•海南, 23, 12分)如图,四边形ABCD 是边长为1的正方形,点E 在AD 边上运动,且不与点A 和点D 重合,连结CE ,过点C 作CF ⊥CE 交AB 的延长线于点F ,EF 交BC 于点G . (1)求证:△CDE ≌△CBF ; (2)当DE=时,求CG 的长;(3)连结AG ,在点E 运动过程中,四边形CEAG 能否为平行四边形?若能,求出此时DE 的长;若不能,说明理由.15.(2017•黑龙江, 26, 8分)在四边形ABCD 中,对角线AC 、BD 交于点O .若四边形ABCD 是正方形如图1:则有AC=BD ,AC ⊥BD .旋转图1中的Rt △COD 到图2所示的位置,AC′与BD′有什么关系?(直接写出) 若四边形ABCD 是菱形,∠ABC=60°,旋转Rt △COD 至图3所示的位置,AC′与BD′又有什么关系?写出结论并证明.16.(2017•绥化, 28, 9分)如图,在矩形ABCD 中,E 为AB 边上一点,EC 平分∠DEB ,F 为CE 的中点,连接AF ,BF ,过点E 作EH ∥BC 分别交AF ,CD 于G ,H 两点. (1)求证:DE=DC ; (2)求证:AF ⊥BF ;(3)当AF•GF=28时,请直接写出CE 的长.17.(2017•吉林, 23, 8分)如图①,BD 是矩形ABCD 的对角线,∠ABD=30°,AD=1.将△BCD 沿射线BD 方向平移到△B'C'D'的位置,使B'为BD 中点,连接AB',C'D ,AD',BC',如图②. (1)求证:四边形AB'C'D 是菱形;(2)四边形ABC'D′的周长为 ;(3)将四边形ABC'D'沿它的两条对角线剪开,用得到的四个三角形拼成与其面积相等的矩形,直接写出所有可能拼成的矩形周长.18.(2017•南通, 26, 10分)如图,在矩形ABCD 中,E 是AD 上一点,PQ 垂直平分BE ,分别交AD 、BE 、BC 于点P 、O 、Q ,连接BP 、EQ .(1)求证:四边形BPEQ 是菱形;(2)若AB=6,F 为AB 的中点,OF +OB=9,求PQ 的长.。

初中考数学专题总复习《四边形》矩形、菱形、正方形

初中考数学专题总复习《四边形》矩形、菱形、正方形

∵BE=DF,
∴OE=OF.(2分)
在△AOE和△COF中,
OA=OC
∠AOE=∠COF
OE=OF ∴△AOE≌△COF(SAS), ∴AE=CF;(4分)
第2题图
(2)若AB=6,∠COD=60°,求矩形ABCD的面积.
(2)解:∵OA=OC,OB=OD,AC=BD, ∴OA=OB. ∵∠AOB=∠COD=60°, ∴△AOB是等边三角形, ∴OA=AB=6, ∴AC=2OA=12,(6分) 在Rt△ABC中,由勾股定理得BC= AC 2 AB2 =6 3 , ∴S矩形ABCD=AB·BC=6×6 3 =36 3 .(8分)
第5题图
(1)证明:∵对角线AC的中点为O, ∴AO=CO. ∵AG=CH, ∴AO-AG=CO-CH.即GO=HO. ∵四边形ABCD是矩形, ∴AB∥CD. ∴∠OAE=∠OCF. 又∵∠AOE=∠COF, ∴△OAE≌△OCF(ASA).
第5题图
∴OE=OF. ∴GH与EF互相平分, ∴四边形EHFG是平行四边形;
证明:∵DE∥AC,CE∥BD,
∴四边形OCED是平行四边形,
∵四边形ABCD是矩形,
第1题图
∴AC=BD,OA=OC,OB=OD. ∴OC=OD,∴四边形OCED是菱形.
母题变式 改变条件、增加设问→在矩形基础上构造菱形,增加设问及解题难度. 2. (2020德阳)如图,四边形ABCD为矩形,G是对角线BD的中点,连接GC并延长 至F,使CF=GC,以DC,CF为邻边作菱形DCFE.连接CE. (1)判断四边形CEDG的形状,并证明你的结论;
第6题图
(2)若∠ABE=∠CBE,求证:四边形AFBE为矩形.
(2)∵点D、E分别为AB、AC的中点, ∴DE∥BC,∴∠DEB=∠CBE, ∵∠ABE=∠CBE, ∴∠DEB=∠ABE,∴BD=DE, ∵AD=BD,DF=DE, ∴AD+BD=DE+DF,即AB=EF, ∴四边形AFBE是矩形.

2018年中考数学总复习经典(几何)试题(含答案)

2018年中考数学总复习经典(几何)试题(含答案)

中考数学总复习经典题(几何)(二)几何试题1、 如图,正方形ABCD 的边长为2,点E 在AB 边上.四边形EFGB 也为正方形,设△AFC 的面积为S ,则 ( )A .S=2B .S=2.4C .S=4D .S 与BE 长度有关2、正方形ABCD 、正方形BEFG 和正方形RKPF 的位置如图4所示,点G 在线段DK 上,正方形BEFG 的边长为4,则DEK △的面积为: (A)10 (B)12 (C)14 (D)163、如图,矩形ABCD 中,3AB =cm ,6AD =cm ,点E 为AB 边上的任意一点,四边形EFGB 也是矩形,2EF BE =,则AFC S =△ 2cm .4、 如图,在△ABC 中, ο70=∠CAB . 在同一平面内, 将△ABC 绕点A 旋转到△//C AB 的位置, 使得AB CC ///, 则=∠/BAB ( )A. ο30 B. ο35 C. ο40 D. ο50 5、如图,1P 是一块半径为1的半圆形纸板,在1P 的左下端剪去一个半径为12的半圆后得到图形2P ,然后依次剪去一个更小的半圆(其直径为前一个被剪掉半圆1的半径)得图形34,,,,n P P P L L ,记纸板n P 的面积为n S , 试计算求出2S = ;3S = ;并猜想得到1n n S S --= ()2n ≥。

6、如图,在四边形ABCD 中,P 是对角线BD 的中点,E F ,分别是AB CD ,的中点,18AD BC PEF =∠=o ,,则PFE ∠的度数是 .(第16题)CFD BE A P (第6题)ADCEF GB 3题图 D ABRP F CGK图4E8题10题 12题7、如图,点G 是ABC △的重心,CG 的延长线交AB 于D ,5cm GA =,4cm GC =,3cm GB =,将ADG △绕点D 旋转180o得到BDE △,则DE = cm ,ABC △的面积= cm 2.8、如图,已知梯形ABCD ,AD BC ∥,4AD DC ==,8BC =,点N 在BC 上,2CN =,E 是AB 中点,在AC 上找一点M 使EM MN +的值最小,此时其最小值一定等于( ) A .6B .8C .4D .439、将一副直角三角板按图示方法放置(直角顶点重合),则AOB DOC ∠+∠= o.10、已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP =1,PB = 5 .下列结论:①△APD ≌△AEB ;②点B 到直线AE 的距离为 2 ;③EB ⊥ED ;④S △APD +S △APB =1+ 6 ;⑤S 正方形ABCD =4+ 6 .其中正确结论的序号是()A .①③④B .①②⑤C .③④⑤D .①③⑤11、如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( ) A.5:3 B.3:5 C.4:3 D.3:412、如图,直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=2,将腰CD 以D 为中心逆时针旋转90°至ED ,AE 、DE ,△ADE 的面积为3,则BC 的长为 . 13、如图,四边形OABC 为菱形,点B 、C 在以点O 为为圆心的上,若OA = 3,∠1 = ∠2,则扇形OEF 的面积为_________.14、 如图,点P 是∠AOB 的角平分线上一点,过点P 作PC ∥OA 交OB 于点C.若∠AOB = 60o,OC = 4,则点P 到OA 的距离PD 等于__________. 15、如图,在Rt ABC △中,90ACB ∠=°,3BC =,4AC =,AB 的垂直平分线DE 交BC 的延长线于点E ,则CE 的长为( )A .32 B .76 C .256D .2B AC D O P (第14题) AD B EC (第15题) ABE G CD(第7题)C D AO B30°45°A D EM(第11题(第13题)O A B C F 1 2 E E D(第20题)16、如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且OP AB //.若阴影部分的面积为π9,则弦AB 的长为( )A .3B .4C .6D .917、如图,等腰△ABC 中,底边a BC =,︒=∠36A ,ABC ∠的平分线交AC 于D ,BCD ∠的平分线交BD 于E ,设215-=k ,则=DE ( )A .a k 2B .a k 3C .2k aD .3ka18、如图,在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BD 、CD 、AC 的中点,要使四边形EFGH 是菱形,四边形ABCD 还应满足的一个条件是19、如图,把矩形纸条ABCD 沿EF 、GH 同时折叠,B 、C 两点恰好落在AD 边的P 点处,若∠FPH=90°,PF=8,PH=6,则矩形ABCD 的边BC 长为 . 20、.梯形ABCD 中AB ∥CD ,∠ADC +∠BCD =90°,以AD 、AB 、BC 为斜边向形外作等腰直角三角形,其面积分别是S 1、S 2、S 3 ,且S 1 +S 3 =4S 2,则CD =( )A. 2.5ABB. 3ABC. 3.5ABD. 4AB21、如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .22、如图,已知a ∥b ,∠1=70°,∠2=40°,则∠3= __________。

2018中考数学真题分类汇编解析版-18.1.平行四边形

2018中考数学真题分类汇编解析版-18.1.平行四边形

一、选择题1.(2018安徽,9,4分) □ABCD 中,E ,F 是对角线BD 上不同的两点,下列条件中,不能..得出四边形AECF 一定为平行四边形的是( )A .BE =DFB .AE =CFC .AF ∥CED .∠BAE =∠DCF答案:B ,解析:如图,由□ABCD 得AB =CD ,AB ∥CD ,所以∠ABE =∠CDF ,结合选项A 和D 的条件可得到△ABE ≌△CDF ,进而得到AE =CF ,AE ∥CF ,判断出四边形AECF 一定为平行四边形;结合选项C 的条件可得到△ABF ≌△CDE ,所以AF =CE ,判断出四边形AECF 一定为平行四边形;只有选项B 不能判断出四边形AECF 一定为平行四边形.2.(2018·达州市,8,3分) △ABC 的周长为19,点D 、E 在边BC 上,∠ABC 的平分线垂直于AE ,垂足为N ,∠ACB 的平分线垂直于AD ,垂足为M .若BC =7,则MN 的长为( ) .A .32B .2C .52D .3M DN EB A C第8题图答案:C ,解析:∵△ABC 的周长为19,BC =7, ∴AB +AC =12.∵∠ABC 的平分线垂直于AE ,垂足为N ,∴BA =BE ,N 是AE 的中点. ∵∠ACB 的平分线垂直于AD ,垂足为M ,∴AC =DC ,M 是AD 的中点. ∴DE =AB +AC -BC =5. ∵MN 是△ADE 的中位线,∴MN =12DE =52.故选C.3. (2018·达州市,9,3分)如图,E 、F 是平行四边形ABCD 对角线AC 上两点,AE =CF =14AC ,连接DE 、DF 并延长,分别交AB 、BC 于点G 、H ,连接GH ,则ADG BGHS S的值为( ).A .12 B .23 C .34D .1GH F ECAB D第9题图答案:C ,解析:如图,过点H 作HM ∥AB 交AD 于M ,连接MG .设S 平行四边形ABCD =1.∵AE =CF =14AC ,∴S △ADE =14S △ADC =18S 平行四边形ABCD =18,S △DEC =38.∴S △AEG =19S △DEC =124.∴S △ADG =S △ADE +S △AEG =18+124=16.∵CH AD =13,∴S △AMG =23S △ADG =19.∵AG CD =13,∴S △GBH =2 S △AMG =29.∴ADG BGH S S =1629=34.故选C.M GHFE C AB D4.(2018·泸州,7,3分) 如图2, □ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE +EO =4,则□ABCD 的周长为( )E ODA CBA .20B .16C .12D .8答案:B ,解析:∵四边形ABCD 是平行四边形,∴AO =OC .∵E 是AB 的中点,∴AB =2AE ,OE 是△ABC 的中位线,∴BC =2OE .∵AE +EO =4,∴AB +BC =2×4=8.∴□ABCD 的周长为2×8=16.5.(2018·台州市,8,4) 如图,在▱ABCD 中,AB =2,BC =3,以C 为圆心,适当长为半径画弧, 交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于1/2PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是( ) A .1/2 B.1 C .56 D .23答案:B ,解析:∵由题意可知CE 是∠BCD 的平分线, ∴∠BCE =∠DCE .∵四边形ABCD 是平行四边形,∴AB ∥CD ,AD ∥BC . ∴∠DCE =∠E . ∴∠BCE =∠E . ∴BE =BC . ∵AB =2,BC =3, ∴AE =3−2=1.6. 在ABCD 中,若∠BAD 与∠CDA 的角平分线交于点E ,则△AED 的形状是( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.不能确定答案:B ,解析:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠BAD+∠ADC=180°,∵∠BAD 与∠CDA 的角平分线交于点E ,∴∠EAD 12∠BAD ,∠EDA=12∠CDA ,∴∠EAD+∠EDA=12(∠BAD+∠CDA )=12×180°=90°,∴∠AED=90°,故△AED 是直角三角形.7.(2018·湖州市,8,3分)如图,已知在△ABC 中,∠BAC >90°,点D 为BC 的中点,点E 在AC 上,将△CDE 沿DE 折叠,使得点C 恰好落在BA 是延长线上的点F 出,连接AD ,则下列结论不一定正确的是( )FEDC BA第8题图A .AE =EFB .AB =2DEC . △ADF 和△ADE 的面积相等D . △ADE 和△FDE 的面积相等答案.C 解析:连接CF.由折叠的性质可知CD =DF ,CD =EF ,∴DE 是CF 垂直平分线.又∵DC =DF =DB ,∴△BFC 是直角三角形,∴BF ⊥FC ,∴DE ∥BF.又∵点D 是BC 的中点,∴DE 是△ABC 的中位线,∴AE =EC =EF ,AB =2DE ,S △ADE =S △FDE ,故选项A 、B 、D 正确;由题意无法得出AD 与EF 平行,∴△ADF 与△ADE 的面积不一定相等,故不一定正确的是选项 C.FEDC BA二、填空题1. (2018·山东淄博,15,4分)在如图所示的□ABCD 中,AB =2,AD =3,将△ACD 沿对角线AC 折叠,点D 落在△ABC 所在平面内的点E 处,且AE 过BC 的中点O ,则△ADE 的周长等于__________.DEOBCA答案:10 解析:由题意知AD =AE =3,DC =CE =2,所以△ADE 的周长=10.2.(2018·株洲市,18,3分) 如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠P AB ,则AP =______________.答案.6,解析:S △ABD =21AB ·DN =21BD ·AM ,∵BD =CD ,∴21AB ·DN =21CD ·AM ,∵四边形ABCD 是平行四边形,∴AB =CD ,∴DN =AM ,∵DN =32,∴AM =32.∵∠ABD =∠MAP +∠P AB ,∠ABD =∠MAP +∠P ,∴∠MAP =∠P ,∵AM ⊥BD ,∴∠P =45°,在Rt △APM 中,sinP =AP AM ,∴AP =P AM sin =2223=6.3.(2018·衡阳市,17题,3分) 如图,□ABCD 的对角线相交于点O ,且AD ≠CD ,过点O 作OM ⊥AC ,交AD 于点M ,△CDM 的周长为8,那么□ABCD 的周长是 .(第17题图)答案.16,解析:由平行四边形的性质可知点O 是AC 的中点,又因为OM ⊥AC ,所以OM 是AC 的垂直平分线,进而可知AM =CM ;根据△CDM 的周长为8,即CM +MD +CD =AM +MD +CD =8,而AM +DM =AD ,所以AD +CD =8,故□ABCD 的周长是16.4.(2018·临沂,17,3分)如图,在□ABCD 中,AB =10,AD =6,AC ⊥BC .则BD = .ODC BA第17题图答案.413,解析:过点D 作DE ⊥BC 于点E ,∵□ABCD ,∴AD =BC =6,∵AC ⊥BC ,∴AC=22610-=8=DE ,∵BE =BC +CE =6+6=12,∴BD =13481222=+.5.(2018·泰州市,13,3分)如图,□ABCD 中,AC 、BD 相交于点O ,若AD =6,AC +BD =16,则△BOC的周长为 .13.答案:14,解析:□ABCD 中,BC =AD =6,∵OB =OD ,OA =OC ,AC +BD =16,∴OB +OC =8, ∴△BOC 的周长=OB +OC +BD =14.6.(2018·泰州市,14,3分)如图,四边形ABCD 中,AC 平分∠BAD ,∠ACD =∠ABC =90°,E 、F 分别为AC 、CD 的中点,∠D =α,则∠BEF 的度数为 .(用含α的式子表示)14.答案,270°﹣3α.解析:∵∠ACD =90°,∠D =α,∴∠DAC =90°﹣α,∵AC 平分∠BAD ,∴∠BAC =∠DAC =90°﹣α,∵∠ABC =90°,AE =CE ,∴BE =AE =EC ,∴∠EBA =∠EAB =90°﹣α,∴∠CEB =∠EBA +∠EAB =180°﹣2α,∵AE =CE 、CF =DF ,∴EF ∥AD ,∴∠CEF =∠DAC =90°﹣α,∴∠BEF =∠CEB +∠CEF =180°﹣3α.7.(2018·南京,14,2) 如图,在△ABC 中,用直尺和圆规作AB 、AC 的垂直平分线,分别交AB 、AC 于点D 、E ,连接DE .若BC =10cm ,则DE =cm.答案:5,解析:根据垂直平分线的定义可知D 、E 分别是AB 、AC 的中点,所以DE 是△ABC 的中位线,∴DE =12BC =5.三、解答题 1.(2018·金华市,20,8分)如图,在6×6的网格中,每个小正方形的边长为1,点A 在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.思路分析:利用数形结合的思想,先确定底边长,在确定高的长即可画出题目要求图形. 解答过程:图1:以点A 为顶点的三角形图3:以点A 为对角线交 点的平行四边形图2:以点A 为顶点的 平行四边形AA A2.(2018·重庆B 卷,24,10)如图,在□ABCD 中,∠ACB =45°,点E 在对角线AC 上,BE =BA ,BF ⊥AC 于点F ,BF 的延长线交AD 于点G .点H 在BC 的延长线上,且CH =AG ,连接EH . (1)若BC =122,AB =13,求AF 的长; (2)求证:EB =EH .【思路分析】(1)在Rt △FBC 中,由sin ∠FCB =BFBC,求出BF =122×sin45°=122×22=12;在Rt △ABF 中,由勾股定理,得AF =22221312AB BF -=-=5.(2)本题有两种证法,一是在BF 上取点M ,使AM =AG ,连接ME 、GE .通过证明四边形AMEG 是正方形,进而得到∠AMB =∠HCE =45°,BM =CE ,AM =CH ,于是△AMB ≌△CHE ,从而EH =AB ,进而EB =EH .第二种方法是连接EG ,GH .通过证明△GBE ≌△GHE (SAS )锁定答案. 【解题过程】 解:(1)∵BF ⊥AC ,∴∠BFC =∠AFB =90°.在Rt △FBC 中,sin ∠FCB =BFBC,而∠ACB =45°,BC =122, ∴sin45°=122BF. ∴BF =122×sin45°=122×22=12. 在Rt △ABF 中,由勾股定理,得AF =22221312AB BF -=-=5.(2)方法一:如下图,在BF 上取点M ,使AM =AG ,连接ME 、GE .MABC DEF G H∵∠BFC =90°,∠ACB =45°,∴△FBC 是等腰直角三角形. ∴FB =FC .∵在□ABCD 中,AD ∥BC , ∴∠GAC =∠ACB =45°.24题图HG FEDC BA∴∠AGB =45°.∵AM =AG ,AF ⊥MG ,∴∠AMG =∠AGM =45°,MF =GF . ∴∠AMB =∠ECG =135°. ∵BA =BE ,BF ⊥AE , ∴AF =EF .∴四边形AMEG 是正方形. ∴FM =FE . ∴BM =CE . 又∵CH =AG , ∴CH =AM .∴△AMB ≌△CHE . ∴EH =AB . ∴EH =EB .方法二:如下图,连接EG ,GH .A BC DE FGH∵BF ⊥AC 于点F ,BA =BE , ∴∠ABF =∠EBF . ∵GB =GB ,∴△GBA ≌△GBE (SAS ). ∴∠AGB =∠EGB .在△FBC 中,∵∠BFC =90°,∠ACB =45°, ∴∠FBC =45°.∵在□ABCD 中,AD ∥BC ,∴∠GAC =∠ACB =45°,∠AGB =∠FBC =45°. ∴∠EGB =45°. ∵CH =AG ,∴四边形AGHC 是平行四边形. ∴∠BHG =∠GAC =45°. ∴∠BHG =∠GBH =45°. ∴GB =GH ,∠BGH =90°. ∴∠HGE =∠BGE =45°. ∵GE =GE ,∴△GBE ≌△GHE (SAS ). ∴EH =EB .【知识点】勾股定理 等腰三角形的性质 全等三角形 平行四边形 3.(2018·无锡市,21,8)如图,平行四边形ABCD 中,E 、F 分别是边BC 、AD 的中点, 求证:∠ABF =∠CDE .思路分析:先根据平行四边形性质以及中点的定义证明AF =CE ,再证△ABF ≌△CDE ,得到∠ABF =∠CDE .解答过程:证明:∵四边形 ABCD 为平行四边形 ,∴AB =CD ,AD =AB ,∠C =∠A , ∵E 、F 分别是边BC 、AD 的中点,∴CE =12BC , AF =12AD ,∴AF =CE , ∴△ABF ≌△CDE (SAS ),∴∠ABF =∠CDE .4.(2018江苏宿迁,22,8分)(本小题满分8分)如图,在□ABCD 中,点E ,F 分别在边CB 、AD 的延长线上,且BE=DF ,EF 分别与AB ,CD 交于点G ,H ,求证:AG=CH .HGFED BCA思路分析:由□ABCD 可知AD=BC ,AD ∥BC ,∠A=∠C ,再根据BE=DF ,可证得:AF=CE ,根据ASA 证明△AGF ≌△CHE 得证.解:证明:∵四边形ABCD 是平行四边形 ∴AD=BC ,AD ∥BC ,∠A=∠C , ∴∠F=∠E ∵BE=DF∴AD+DF=CB+BE ,即AF=CE在△AGF 和△CHE 中⎪⎩⎪⎨⎧∠=∠=∠=∠E F CE AF CA∴△AGF ≌△CHE (AAS ) ∴AG=CH5.(2018·连云港,22,10分)如图,矩形ABCD 中,E 是AD 的中点,延长CE 、BA 交于点F ,连接AC 、DF .(1)求证:四边形ACDF 是平行四边形;(2)当CF 平分∠BCD 时,写出BC 与CD 的数量关系,并说明理由.思路分析:(1)因为四边形ACDF 已经具备AF ∥DC 或AE =ED ,根据平行四边形的判定条件,必须证明△F AE ≌△CDE 即可;(2)因为CF 平分∠BCD ,所以∠DCE =45°,可得△CDE 是等腰直角三角形,从而BC =BF =2AB =2CD .解答过程:(1)证明:因为四边形ABCD 是矩形,所以AB ∥CD ,所以∠F AE =∠CDE . 因为E 是AD 的中点,所以AE =DE .又因为∠FEA =∠CED ,所以△F AE ≌△CDE ,所以CD =F A . 又因为CD ∥F A ,所以四边形ACDF 是平行四边形. (2)BC =2CD .因为CF 平分∠BCD ,所以∠DCE =45°. 因为∠CDE =90°,所以△CDE 是等腰直角三角形, 所以CD =DE .因为E 是AD 的中点,所以AD =2CD . 因为AD =BC ,所以BC =2CD .6.(2018·黄冈市,20,8分)如图,在□ABCD 中,分别以BC ,CD 作等腰△BCF ,△CDE ,使BC =BF ,CD =DE ,∠CBF =∠CDE ,连接AF ,AE . (1)求证:△ABF ≌△EDA ;(2)延长AB 与CF 相交于G ,若AF ⊥AE ,求证:BF ⊥BC .GFADBCE思路分析:(1)要证△ABF ≌△EDA ,需具备三个条件,由条件易证AB =ED 、BF =DA 、∠ABF =∠EDA ,故运用“SAS ”证明即可;(2)要证BF ⊥BC ,只需证明∠FBC =90°,而AF ⊥AE ,则∠F AE =90°,问题转化为证∠FBC=∠F AE ,即证明∠CBG +∠GBF =∠EAD +∠DAB +∠BAF ,而∠CBG =∠DAB 可通过AD ∥BC 证出,最终只需证明∠GBF =∠EAD +∠BAF ,这个可以由(1)中的全等证出.解答过程:(1)∵四边形ABCD 是平行四边形∴AD ∥BC ,AD =BC ,AB =CD ,∠ABC =∠ADC ∵BC =BF ,CD =DE ∴AB =DE ,BF =AD又∠ABC =∠ADC ,∠CBF =∠CDE ∴∠ABF =∠ADE在△ABF 和△EDA 中,AB =DE ,∠ABF =∠ADE ,BF =AD ∴△ABF ≌△EDA ;(2)由(1)知∠EAD =∠AFB ,∠GBF =∠AFB +∠BAF 由平行四边形ABCD 可知:AD ∥BC ∴∠DAG =∠CBG∴∠FBC =∠FBG +∠CBG =∠EAD +∠F AB +∠DAG =∠EAF =90° ∴BF ⊥BC .7.(2018·永州市,22,10分)如图,在△ABC 中,∠ACB =90°,∠CAB =30°,以线段AB 为边向外作等边△ABD ,点E 是线段AB 的中点,连接CE 并延长交线段AD 于点F . (1)求证:四边形BCFD 为平行四边形; (2)若AB =6,求平行四边形BCFD 的面积.思路分析:(1)利用同旁内角互补,两直线平行证明BC ∥AD ,利用内错角相等,两直线平行证明BD ∥CE ,于是可得四边形BCFD 为平行四边形;(2)过B 作BG ⊥CF ,垂足为G ,在Rt △BEG 中,利用∠BEG 的正弦可求得BG 的长,根据等边三角形的性质可求得BD 的长,再根据平行四边形的面积等于底乘以高计算即可.解答过程:证明:∵△ABD 是等边三角形,∴∠ABD =∠BAD =60°,又∠CAB =30°,∴∠CAD =∠CAB +∠BAD =30°+60°=90°,∵∠ACB =90°,∴∠CAD +∠ACB =90°+90°=180°,∴BC ∥AD .在Rt △ABC 中,∠ACB =90°,E 是线段AB 的中点,∴CE =AE ,∴∠ACE =∠CAB ,∵∠CAB =30°,∴∠ACE =∠CAB =30°,∴∠BEC =∠ACE +∠CAB =30°+30°=60°,∵∠ABD =60°,∴∠ABD =∠BEC ,∴BD ∥CE ,又BC ∥AD ,∴四边形BCFD 为平行四边形;(2)过B 作BG ⊥CF ,垂足为G ,∵AB =6,点E 是线段AB的中点,∴BE =3,在Rt △BEG中,∠BEG =60°,sin ∠BEG =BEBG,∴BG =BE ·sin ∠BEG =3×sin60°=3×23=233.∵△ABD 是等边三角形,∴BD =AB =6,∴平行四边形BCFD 的面积为BD ·BG =6×233=93.。

中考数学一轮复习《四边形》综合复习练习题(含答案)

中考数学一轮复习《四边形》综合复习练习题(含答案)

中考数学一轮复习《四边形》综合复习练习题(含答案)一、单选题1.一个多边形的内角和为900°,则这个多边形是( )A .七边形B .八边形C .九边形D .十边形 2.如图,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE 的外角和的度数分别为α,β,则正确的是( )A .0αβ-=B .0αβ-<C .0αβ->D .无法比较α与β的大小3.如图,把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,若∠EFB =65°,则∠AED ′等于( )A .50°B .55°C .60°D .65°4.若一个正多边形的一个外角是60°,则这个正多边形的边数是( )A .10B .9C .8D .65.如图,四边形ABCD 是平行四边形,下列结论中正确的是( )A .当ABCD 是矩形时,90BAC ∠=︒B .当ABCD 是菱形时,AB BC ⊥ C .当ABCD 是正方形时,AC BD = D .当ABCD 是菱形时,AB AC =6.如图,在正方形ABCD 中,AE 平分BAC ∠交BC 于点E ,点F 是边AB 上一点,连接DF ,若BE AF =,则CDF ∠的度数为( )A .45︒B .60︒C .67.5︒D .775︒.7.如图,要拧开一个边长为()=6mm a a 的正六边形,扳手张开的开口b 至少为( )A .43mmB .63mmC . 42mmD . 12mm8.如图,菱形ABCD 中,∠BAD = 60°,AB = 6,点E ,F 分别在边AB ,AD 上,将△AEF 沿EF 翻折得到△GEF ,若点G 恰好为CD 边的中点,则AE 的长为( )A .34B .214C 3154D .39.以下说法不正确的是( )A .平行四边形是抽对称图形B .矩形对角线相等C .正方形对角线互相垂直平分D .菱形四条边相等10.陈师傅应客户要求加工4个长为4cm 、宽为3cm 的矩形零件.在交付客户之前,陈师傅需要对4个零件进行检测.根据零件的检测结果,图中有可能不合格的零件是( )A.B.C.D.11.如图,AB是半圆O的直径,以弦AC为折痕折叠AC后,恰好经过点O,则AOC∠等于()A.120°B.125°C.130°D.145°12.如图,在平面直角坐标系中,矩形ABCD的对角线AC经过坐标原点O,矩形的边分别平行于坐标轴,点B在函数kyx=(k≠0,x>0)的图像上,点D的坐标为(﹣3,1),则k的值为()A.53B.3-C.3D.53-二、填空题13.如果一个多边形的每一个外角都是60︒,那么这个多边形的边数是_______.14.如图,在矩形ABCD中,E是AD边上一点,且2AE DE=,BD与CE相交于点F,若DEF 的面积是3,则BCF △的面积是______.15.如果正多边形的一个外角是45︒,则这个正多边形的内角和是________︒.16.巧板是我国古代劳动人民的一项发明,被誉为“东方魔板”,它由五块等腰直角三角形、一块正方形和一块平行四边形组成.如图是利用七巧板拼成的正方形,随机向该图形内抛一枚小针,则针尖落在阴影部分的概率为 _____.17.如图,四边形ABCD 是菱形,42BD =,26AD =,点E 是CD 边上的一动点,过点E 作EF ⊥OC 于点F ,EG ⊥OD 于点G ,连接FG ,则FG 的最小值为_________.18.如图,矩形ABCD 的对角线AC 、BD 相交于点O ,过点O 作OE AC ⊥交AD 于点E ,若4AB =,8BC =,则DE 的长为______.19.已知ABC 中,65A ∠=︒,将B C ∠∠、按照如图所示折叠,若35ADB '∠=︒,则123∠+∠+∠=_____︒.CE ,F 20.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,5为DE的中点.若CEF△的周长为18,则OF的长为______.三、解答题21.如图,一组正多边形,观察每个正多边形中a的变化情况,解答下列问题.(1)将表格补充完整.正多边形的边数 3 4 5 6α的度数(2)观察上面表格中α的变化规律,角α与边数n的关系为.(3)根据规律,当α=18°时,多边形边数n=.22.如图,在ABCD中,AC=BC,M、N分别是AB和CD的中点.(1)求证:四边形AMCN是矩形;(2)若∠B=60°,BC=8,求ABCD的面积.23.如图,在平行四边形ABCD中,对角线AC与BD相交于点O,点E,F分别为OB,OD 的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.24.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.25.如图,点E为矩形ABCD外一点,AE = DE.求证:△ABE≌△DCE26.如图,已知四边形ABCD为正方形,AB=2,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:①CE与CG有怎样的位置关系?请说明理由.②CE+CG的值为.27.某数学兴趣小组在数学课外活动中,对多边形内两条互相垂直的线段做了如下探究:【现察与猜想】(1)如图1,在正方形ABCD中,点E,F分别是AB,AD上的两点,连接DE,CF,DE⊥CF,则DECF的值为______.(2)如图2,在矩形ABCD中,AD=7,CD=4,点E是AD上的一点,连接CE,BD,且CE⊥BD,则CEBD的值______.【类比探究】(3)如图3,在四边形ABCD中,∠A=∠B=90°,点E为AB上一点,连接DE,过点C作DE 的垂线交ED的延长线于点G,交AD的延长线于点F,求证:DE•AB=CF•AD.28.在矩形ABCD中,AB=6,AD=4,点M为AB边上一个动点,连接DM,过点M作MN⊥DM,且MN=32DM,连接DN.(1)如图1,连接BD与BN,BD交MN于点E.①求证:△ABD∽△MND;②求证:∠CBN=∠DNM.(2)如图2,当AM=4BM时,求证:A,C,N三点在同一条直线上.参考答案1.A2.A3.A4.D5.C6.C7.B8.B9.A10.C11.A12.B13.614.2715.108016.381718.319.265︒20.7221.(1)正多边形每个内角的度数为180(2)n n -. 1803,603n α===; 904,452n α===; 正五边形的内角180(52)1085-=,1801085,362n α-===; 正五边形的内角180(62)1206-=,1801206,302n α-===.(2)观察(1)中结论,1803,603n == 1804,454n == 1805,365n == 1806,306n == 总结规律,则有180n α=. (3)借助(2)中公式,有180n α=,即18018n= 解得10n =.22.(1)证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD ,∵M 、N 分别是AB 和CD 的中点, ∴AM =BM ,AM ∥CN ,AM =CN , ∴四边形AMCN 是平行四边形,又∵AC =BC ,AM =BM ,∴CM ⊥AB ,∴∠CMA =90°,∴四边形AMCN 是矩形;(2)解:∵∠B =60°,BC =8,∠BMC =90°, ∴∠BCM =30°,∴Rt △BCM 中,BM =12BC =4,CM∵AC =BC ,CM ⊥AB ,∴AB =2BM =8,∴ABCD 的面积为AB ×CM23.(1)证明:∵四边形ABCD 是平行四边形, ∴AB =CD ,AB ∥CD ,OB =OD ,OA =OC , ∴∠ABE =∠CDF ,∵点E ,F 分别为OB ,OD 的中点, ∴BE =12OB ,DF =12OD ,∴BE =DF ,在△ABE 和△CDF 中,AB CD ABE CDF BE DF ⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△CDF (SAS ) .(2)当AB =12AC 时,四边形EGCF 是矩形;理由如下: 当AB =12AC 时,∵AC =2OA ,AC =2AB ,∴AB =OA ,∵E 是OB 的中点,∴AG⊥OB,∴∠OEG=90°,同理:CF⊥OD,∴AG∥CF,∴EG∥CF,由(1)得:△ABE≌△CDF,∴AE=CF,∵EG=AE,∴EG=CF,∴四边形EGCF是平行四边形,∵∠OEG=90°,∴四边形EGCF是矩形.24.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE,∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形,又∵CE=FE,∴四边形CEFG是菱形;(2)解:∵矩形ABCD 中,AB =6,AD =10,BC =BF ,∴∠BAF =90°,AD =BC =BF =10,∴AF =8,∴DF =2,设EF =x ,则CE =x ,DE =6-x ,∵∠FDE =90°,∴22+(6-x )2=x 2,解得,x =103, ∴CE =103, ∴四边形CEFG 的面积是:CE •DF =103×2=203. 25.解:四边形ABCD 是矩形,AB DC ∴=,90BAD CDA ∠=∠=︒,AE DE =,EAD EDA ∴∠=∠,EAB BAD EAD CDA EDA EDC ∴∠=∠+∠=∠+=∠, 在ABE ∆和DCE ∆中,AE DE EAB EDC AB DC =⎧⎪∠=∠⎨⎪=⎩()ABE DCE SAS ∴∆∆≌.26.(1)如图,作EM ⊥BC 于M ,EN ⊥CD 于N ,又∠BCD =90°,∴∠MEN =90°,∵点E 是正方形ABCD 对角线上的点,∴EM =EN ,∵∠DEF =90°,∴∠DEN =∠MEF =90°﹣∠FEN ,∵∠DNE =∠FME =90°,在△DEN 和△FEM 中,DNE FME EN EMDEN FEM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DEN ≌△FEM (ASA ),∴EF =DE ,∵四边形DEFG 是矩形,∴矩形DEFG 是正方形;(2)①CE ⊥CG ,理由如下:∵正方形DEFG 和正方形ABCD ,∴DE =DG ,AD =DC ,∵∠CDG +∠CDE =∠ADE +∠CDE =90°,∴∠CDG =∠ADE ,在△ADE 和△CDG 中,AD CD ADE CDG DE DG =⎧⎪∠=∠⎨⎪=⎩,∴△ADE ≌△CDG (SAS ),∴∠DAE =∠DCG ,∵∠ACD +∠CAD +∠ADC =180°,∠ADC =90°,∴∠ACG =∠ACD +∠DCG =∠ACD +∠CAD =90°, ∴CE ⊥CG ;②由①知,△ADE ≌△CDG ,∴AE =CG ,∴CE +CG =CE +AE =ACAB=2,故答案为:2.27.(1)解:设DE与CF的交点为G,∵四边形ABCD是正方形,∴∠A=∠FDC=90°,AD=CD,∵DE⊥CF,∴∠DGF=90°,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,在△AED与△DFC中,A FDCCFD AEDAD CD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AED≌△DFC(AAS),∴DE=CF,∴DECF=1,故答案为:1;(2)解:如图,设DB与CE交于点G,∵四边形ABCD是矩形,∴∠A=∠EDC=90°,∵CE⊥BD,∴∠DGC=90°,∴∠CDG +∠ECD =90°,∠ADB +∠CDG =90°,∴∠ECD =∠ADB ,∵∠CDE =∠A ,∴△DEC ∽△ABD , ∴47CE DC BD AD ==, 故答案为:47; (3)证明:如图,过点C 作CH ⊥AF 交AF 的延长线于点H ,∵CG ⊥EG ,∴∠G =∠H =∠A =∠B =90°,∴四边形ABCH 为矩形,∴AB =CH ,∠FCH +∠CFH =∠DFG +∠FDG =90°,∴∠FCH =∠FDG =∠ADE ,∠A =∠H =90°,∴△AED ∽△HFC ,∴DE AD CF CH =, ∴DE AD CF AB=, ∴DE •AB =CF •AD .28.(1)①证明:∵四边形ABCD 是矩形,DM ⊥MN ∴∠A =∠DMN =90°∵AB =6,AD =4,MN =32DM ∴23AD DM AB MN == ∴△ABD ∽△MND .②证明:∵四边形ABCD 是矩形,DM ⊥MN ∴∠ABC =∠DMN =90°∴∠ABD +∠CBD =90°由①得△ABD ∽△MND∴∠ABD =∠DNM又∵∠MEB =∠DEN∴△MBE ∽△DNE ∴ME BE DE NE = ∴ME DE BE NE= 又∠MED =∠BEN∴△DME ∽△NBE∴∠NBE =∠DME =90°∴∠CBN +∠CBD =90°又∠ABD +∠CBD =90°,∠ABD =∠DNM ∴∠CBN =∠DNM .(2) 如图②,过点N 作NF ⊥AB 于点F ,连接AC ,AN ∴∠NF A =90°∵四边形ABCD 是矩形,AD =4,AB =6 ∴∠A =∠ABC =90°,BC =AD =4∴23BC AB =,∠ADM +∠AMD =90° ∵AM =4BM ,AB =6∴42455AM AB ==又DM ⊥MN∴∠AMD +∠FMN =90° ∴∠ADM =∠FMN∴△ADM ∽△FMN ∴AD AM DM MF FN MN== 又MN =32DM ∴24425=3DM MF FN MN == ∴MF =6,FN =365∴AF =AM +MF =2454655+= ∴23NF AF = ∴NF BC AF AB = ∵∠ABC =∠AFN =90° ∴△ABC ∽△AFN∴∠BAC =∠F AN∴A ,C ,N 三点在同一条直线.。

中考数学压轴题专题复习—平行四边形的综合附详细答案

中考数学压轴题专题复习—平行四边形的综合附详细答案

一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M 沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.(1)P点的坐标为多少(用含x的代数式表示);(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.【答案】(1)P点坐标为(x,3﹣x).(2)S的最大值为,此时x=2.(3)x=,或x=,或x=.【解析】试题分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求;②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB﹣PQ来求出PM的长.得出OM和PM的长,即可求出P点的坐标.(2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC﹣BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式.(3)本题要分类讨论:①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值;②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN﹣CQ求出QN的表达式,根据题设的等量条件即可得出x的值.③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN 的长,联立CN的表达式即可求出x的值.试题解析:(1)过点P作PQ⊥BC于点Q,有题意可得:PQ∥AB,∴△CQP∽△CBA,∴∴解得:QP=x,∴PM=3﹣x,由题意可知,C(0,3),M(x,0),N(4﹣x,3),P点坐标为(x,3﹣x).(2)设△NPC的面积为S,在△NPC中,NC=4﹣x,NC边上的高为,其中,0≤x≤4.∴S=(4﹣x)×x=(﹣x2+4x)=﹣(x﹣2)2+.∴S的最大值为,此时x=2.(3)延长MP交CB于Q,则有PQ⊥BC.①若NP=CP,∵PQ⊥BC,∴NQ=CQ=x.∴3x=4,∴x=.②若CP=CN,则CN=4﹣x,PQ=x,CP=x,4﹣x=x,∴x=;③若CN=NP,则CN=4﹣x.∵PQ=x,NQ=4﹣2x,∵在Rt△PNQ中,PN2=NQ2+PQ2,∴(4﹣x)2=(4﹣2x)2+(x)2,∴x=.综上所述,x=,或x=,或x=.考点:二次函数综合题.2.已知:在菱形ABCD中,E,F是BD上的两点,且AE∥CF.求证:四边形AECF是菱形.【答案】见解析【解析】【分析】由菱形的性质可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可证△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四边形的判定和菱形的判定可得四边形AECF是菱形.【详解】证明:∵四边形ABCD是菱形∴AB∥CD,AB=CD,∠ADF=∠CDF,∵AB=CD,∠ADF=∠CDF,DF=DF∴△ADF≌△CDF(SAS)∴AF=CF,∵AB∥CD,AE∥CF∴∠ABE=∠CDF,∠AEF=∠CFE∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD∴△ABE≌△CDF(AAS)∴AE=CF,且AE∥CF∴四边形AECF是平行四边形又∵AF=CF,∴四边形AECF 是菱形【点睛】本题主要考查菱形的判定定理,首先要判定其为平行四边形,这是菱形判定的基本判定.3.如图,四边形ABCD 中,∠BCD =∠D =90°,E 是边AB 的中点.已知AD =1,AB =2. (1)设BC =x ,CD =y ,求y 关于x 的函数关系式,并写出定义域;(2)当∠B =70°时,求∠AEC 的度数;(3)当△ACE 为直角三角形时,求边BC 的长.【答案】(1)()22303y x x x =-++<<;(2)∠AEC =105°;(3)边BC 的长为2117+. 【解析】试题分析:(1)过A 作AH ⊥BC 于H ,得到四边形ADCH 为矩形.在△BAH 中,由勾股定理即可得出结论.(2)取CD 中点T ,连接TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∠AET =∠B =70°.又AD =AE =1,得到∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,即可得到结论.(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 解△ABH 即可得到结论.②当∠CAE =90°时,易知△CDA ∽△BCA ,由相似三角形对应边成比例即可得到结论. 试题解析:解:(1)过A 作AH ⊥BC 于H .由∠D =∠BCD =90°,得四边形ADCH 为矩形. 在△BAH 中,AB =2,∠BHA =90°,AH =y ,HB =1x -,∴22221y x =+-, 则()22303y x x x =-++<<(2)取CD 中点T ,联结TE ,则TE 是梯形中位线,得ET ∥AD ,ET ⊥CD ,∴∠AET =∠B =70°.又AD =AE =1,∴∠AED =∠ADE =∠DET =35°.由ET 垂直平分CD ,得∠CET =∠DET =35°,∴∠AEC =70°+35°=105°.(3)分两种情况讨论:①当∠AEC =90°时,易知△CBE ≌△CAE ≌△CAD ,得∠BCE =30°, 则在△ABH 中,∠B =60°,∠AHB =90°,AB =2,得BH =1,于是BC =2.②当∠CAE =90°时,易知△CDA ∽△BCA ,又2224AC BC AB x =--则22411724AD CA x x AC CB x x -±=⇒=⇒=-(舍负) 易知∠ACE <90°,所以边BC 的长为117+. 综上所述:边BC 的长为2或117+.点睛:本题是四边形综合题.考查了梯形中位线,相似三角形的判定与性质.解题的关键是掌握梯形中常见的辅助线作法.4.如图①,四边形ABCD 是知形,1,2AB BC ==,点E 是线段BC 上一动点(不与,B C 重合),点F 是线段BA 延长线上一动点,连接,,,DE EF DF EF 交AD 于点G .设,BE x AF y ==,已知y 与x 之间的函数关系如图②所示.(1)求图②中y 与x 的函数表达式;(2)求证:DE DF ⊥;(3)是否存在x 的值,使得DEG △是等腰三角形?如果存在,求出x 的值;如果不存在,说明理由【答案】(1)y =﹣2x +4(0<x <2);(2)见解析;(3)存在,x =5455-32. 【解析】【分析】(1)利用待定系数法可得y 与x 的函数表达式;(2)证明△CDE ∽△ADF ,得∠ADF =∠CDE ,可得结论;(3)分三种情况:①若DE =DG ,则∠DGE =∠DEG ,②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,③若DG =EG ,则∠GDE =∠GED ,分别列方程计算可得结论.【详解】(1)设y =kx +b ,由图象得:当x =1时,y =2,当x =0时,y =4,代入得:24k b b +=⎧⎨=⎩,得24k b =-⎧⎨=⎩, ∴y =﹣2x +4(0<x <2);(2)∵BE =x ,BC =2∴CE =2﹣x , ∴211,4222CE x CD AF x AD -===-, ∴CE CD AF AD=, ∵四边形ABCD 是矩形,∴∠C =∠DAF =90°,∴△CDE ∽△ADF ,∴∠ADF =∠CDE ,∴∠ADF +∠EDG =∠CDE +∠EDG =90°,∴DE ⊥DF ;(3)假设存在x 的值,使得△DEG 是等腰三角形,①若DE =DG ,则∠DGE =∠DEG ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DGE =∠GEB ,∴∠DEG =∠BEG ,在△DEF 和△BEF 中,FDE B DEF BEF EF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△BEF (AAS ),∴DE =BE =x ,CE =2﹣x ,∴在Rt △CDE 中,由勾股定理得:1+(2﹣x )2=x 2,x =54;②若DE =EG ,如图①,作EH ∥CD ,交AD 于H ,∵AD ∥BC ,EH ∥CD ,∴四边形CDHE 是平行四边形,∴∠C =90°,∴四边形CDHE 是矩形,∴EH =CD =1,DH =CE =2﹣x ,EH ⊥DG ,∴HG =DH =2﹣x ,∴AG =2x ﹣2,∵EH ∥CD ,DC ∥AB ,∴EH ∥AF ,∴△EHG ∽△FAG , ∴EH HG AF AG =, ∴124222x x x -=--, ∴125555x x -+==(舍), ③若DG =EG ,则∠GDE =∠GED ,∵AD ∥BC ,∴∠GDE =∠DEC ,∴∠GED =∠DEC ,∵∠C =∠EDF =90°,∴△CDE ∽△DFE , ∴CE DE CD DF=, ∵△CDE ∽△ADF , ∴12DE CD DF AD ==, ∴12CE CD =, ∴2﹣x =12,x =32, 综上,x =54或5-52或32.【点睛】本题是四边形的综合题,主要考查了待定系数法求一次函数的解析式,三角形相似和全等的性质和判定,矩形和平行四边形的性质和判定,勾股定理和逆定理等知识,运用相似三角形的性质是解决本题的关键.5.在ABC 中,ABC 90∠=,BD 为AC 边上的中线,过点C 作CE BD ⊥于点E ,过点A 作BD 的平行线,交CE 的延长线于点F ,在AF 的延长线上截取FG BD =,连接BG ,DF .()1求证:BD DF =;()2求证:四边形BDFG 为菱形;()3若AG 5=,CF 7=,求四边形BDFG 的周长.【答案】(1)证明见解析(2)证明见解析(3)8【解析】【分析】()1利用平行线的性质得到90CFA ∠=,再利用直角三角形斜边上的中线等于斜边的一半即可得证,()2利用平行四边形的判定定理判定四边形BDFG 为平行四边形,再利用()1得结论即可得证,()3设GF x =,则5AF x =-,利用菱形的性质和勾股定理得到CF 、AF 和AC 之间的关系,解出x 即可.【详解】()1证明:AG //BD ,CF BD ⊥,CF AG ∴⊥,又D 为AC 的中点,1DF AC 2∴=, 又1BD AC 2=, BD DF ∴=, ()2证明:BD//GF ,BD FG =,∴四边形BDFG 为平行四边形,又BD DF =,∴四边形BDFG 为菱形,()3解:设GF x =,则AF 5x =-,AC 2x =,在Rt AFC 中,222(2x)(7)(5x)=+-,解得:1x 2=,216x (3=-舍去), GF 2∴=,∴菱形BDFG 的周长为8.【点睛】本题考查了菱形的判定与性质直角三角形斜边上的中线,勾股定理等知识,正确掌握这些定义性质及判定并结合图形作答是解决本题的关键.6.(1)问题发现:如图①,在等边三角形ABC 中,点M 为BC 边上异于B 、C 的一点,以AM 为边作等边三角形AMN ,连接CN ,NC 与AB 的位置关系为 ;(2)深入探究:如图②,在等腰三角形ABC 中,BA=BC ,点M 为BC 边上异于B 、C 的一点,以AM 为边作等腰三角形AMN ,使∠ABC=∠AMN ,AM=MN ,连接CN ,试探究∠ABC 与∠ACN 的数量关系,并说明理由;(3)拓展延伸:如图③,在正方形ADBC 中,AD=AC ,点M 为BC 边上异于B 、C 的一点,以AM 为边作正方形AMEF ,点N 为正方形AMEF 的中点,连接CN ,若BC=10,CN=2,试求EF 的长.【答案】(1)NC ∥AB ;理由见解析;(2)∠ABC=∠ACN ;理由见解析;(3)41【解析】分析:(1)根据△ABC ,△AMN 为等边三角形,得到AB=AC ,AM=AN 且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM ,即∠BAM=∠CAN ,证明△BAM ≌△CAN ,即可得到BM=CN .(2)根据△ABC ,△AMN 为等腰三角形,得到AB :BC=1:1且∠ABC=∠AMN ,根据相似三角形的性质得到AB AC AM AN=,利用等腰三角形的性质得到∠BAC=∠MAN ,根据相似三角形的性质即可得到结论;(3)如图3,连接AB ,AN ,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出BM AB CN AC=,得到BM=2,CM=8,再根据勾股定理即可得到答案. 详解:(1)NC ∥AB ,理由如下:∵△ABC 与△MN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN =60°,∴∠BAM=∠CAN ,在△ABM 与△ACN 中, AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩, ∴△ABM ≌△ACN (SAS ),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN ∥AB ;(2)∠ABC=∠ACN ,理由如下:∵AB AM BC MN==1且∠ABC=∠AMN , ∴△ABC ~△AMN ∴AB AC AM AN=, ∵AB=BC , ∴∠BAC=12(180°﹣∠ABC ), ∵AM=MN∴∠MAN=12(180°﹣∠AMN ), ∵∠ABC=∠AMN ,∴∠BAC=∠MAN ,∴∠BAM=∠CAN ,∴△ABM ~△ACN ,∴∠ABC=∠ACN ;(3)如图3,连接AB ,AN , ∵四边形ADBC ,AMEF 为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC即∠BAM=∠CAN ,∵2AB AM BC AN ==, ∴AB AC AM AN =, ∴△ABM ~△ACN∴BM AB CN AC =, ∴CN AC BM AB ==cos45°=22, ∴222BM =, ∴BM=2,∴CM=BC ﹣BM=8,在Rt △AMC ,AM=2222108241AC MC +=+=,∴EF=AM=241.点睛:本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.7.如图1,若分别以△ABC 的AC 、BC 两边为边向外侧作的四边形ACDE 和BCFG 为正方形,则称这两个正方形为外展双叶正方形.(1)发现:如图2,当∠C =90°时,求证:△ABC 与△DCF 的面积相等.(2)引申:如果∠C ≠90°时,(1)中结论还成立吗?若成立,请结合图1给出证明;若不成立,请说明理由;(3)运用:如图3,分别以△ABC 的三边为边向外侧作的四边形ACDE 、BCFG 和ABMN 为正方形,则称这三个正方形为外展三叶正方形.已知△ABC 中,AC =3,BC =4.当∠C =_____°时,图中阴影部分的面积和有最大值是________.【答案】(1)证明见解析;(2)成立,证明见解析;(3)18.【解析】试题分析:(1)因为AC=DC ,∠ACB=∠DCF=90°,BC=FC ,所以△ABC ≌△DFC ,从而△ABC 与△DFC 的面积相等;(2)延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q .得到四边形ACDE ,BCFG 均为正方形,AC=CD ,BC=CF ,∠ACP=∠DCQ .所以△APC ≌△DQC . 于是AP=DQ .又因为S △ABC =12BC•AP ,S △DFC =12FC•DQ ,所以S △ABC =S △DFC ; (3)根据(2)得图中阴影部分的面积和是△ABC 的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC 的面积最大,当△ABC 是直角三角形,即∠C 是90度时,阴影部分的面积和最大.所以S 阴影部分面积和=3S △ABC =3×12×3×4=18. (1)证明:在△ABC 与△DFC 中, ∵{AC DCACB DCF BC FC∠∠===,∴△ABC ≌△DFC .∴△ABC 与△DFC 的面积相等;(2)解:成立.理由如下:如图,延长BC 到点P ,过点A 作AP ⊥BP 于点P ;过点D 作DQ ⊥FC 于点Q . ∴∠APC=∠DQC=90°.∵四边形ACDE ,BCFG 均为正方形,∴AC=CD ,BC=CF ,∠ACP+∠PCD=90°,∠DCQ+∠PCD=90°,∴∠ACP=∠DCQ .∴{APC DQCACP DCQ AC CD∠∠∠∠===,△APC ≌△DQC (AAS ),∴AP=DQ .又∵S△ABC=12BC•AP,S△DFC=12FC•DQ,∴S△ABC=S△DFC;(3)解:根据(2)得图中阴影部分的面积和是△ABC的面积三倍,若图中阴影部分的面积和有最大值,则三角形ABC的面积最大,∴当△ABC是直角三角形,即∠C是90度时,阴影部分的面积和最大.∴S阴影部分面积和=3S△ABC=3×12×3×4=18.考点:四边形综合题8.如图,点E是正方形ABCD的边A B上一点,连结CE,过顶点C作CF⊥CE,交AD延长线于F.求证:BE=DF.【答案】证明见解析.【解析】分析:根据正方形的性质,证出BC=CD,∠B=∠CDF,∠BCD=90°,再由垂直的性质得到∠BCE=∠DCF,然后根据“ASA”证明△BCE≌△BCE即可得到BE=DF详解:证明:∵CF⊥CE,∴∠ECF=90°,又∵∠BCG=90°,∴∠BCE+∠ECD =∠DCF+∠ECD∴∠BCE=∠DCF,在△BCE与△DCF中,∵∠BCE=∠DCF,BC=CD,∠CDF=∠EBC,∴△BCE≌△BCE(ASA),∴BE=DF.点睛:本题考查的是正方形的性质,熟知正方形的性质及全等三角形的判定与性质是解答此题的关键.9.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式;(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.【答案】(1)见解析(2)∠PAG =45°,PG=OG+BP.理由见解析(3)y=x﹣3.(4)、.【解析】试题分析:(1)由AO=AD,AG=AG,根据斜边和一条直角边对应相等的两个直角三角形全等,判断出△AOG≌△ADG即可.(2)首先根据三角形全等的判定方法,判断出△ADP≌△ABP,再结合△AOG≌△ADG,可得∠DAP=∠BAP,∠1=∠DAG;然后根据∠1+∠DAG+∠DAP+∠BAP=90°,求出∠PAG的度数;最后判断出线段OG、PG、BP之间的数量关系即可.(3)首先根据△AOG≌△ADG,判断出∠AGO=∠AGD;然后根据∠1+∠AGO=90°,∠2+∠PGC=90°,判断出当∠1=∠2时,∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,求出∠1=∠2=30°;最后确定出P、G两点坐标,即可判断出直线PE的解析式.(4)根据题意,分两种情况:①当点M在x轴的负半轴上时;②当点M在EP的延长线上时;根据以M、A、G为顶点的三角形是等腰三角形,求出M点坐标是多少即可.试题解析:(1)在Rt△AOG和Rt△ADG中,(HL)∴△AOG≌△ADG.(2)在Rt△ADP和Rt△ABP中,∴△ADP≌△ABP,则∠DAP=∠BAP;∵△AOG≌△ADG,∴∠1=∠DAG;又∵∠1+∠DAG+∠DAP+∠BAP=90°,∴2∠DAG+2∠DAP=90°,∴∠DAG+∠DAP=45°,∵∠PAG=∠DAG+∠DAP,∴∠PAG=45°;∵△AOG≌△ADG,∴DG=OG,∵△ADP≌△ABP,∴DP=BP,∴PG=DG+DP=OG+BP.(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠PGC,又∵∠AGO=∠AGD,∴∠AGO=∠AGD=∠PGC,又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=180°÷3=60°,∴∠1=∠2=90°﹣60°=30°;在Rt△AOG中,∵AO=3,∴OG=AOtan30°=3×=,∴G点坐标为(,0),CG=3﹣,在Rt△PCG中,PC===3(﹣1),∴P点坐标为:(3,3﹣3 ),设直线PE的解析式为:y=kx+b,则,解得:,∴直线PE的解析式为y=x﹣3.(4)①如图1,当点M在x轴的负半轴上时,,∵AG=MG,点A坐标为(0,3),∴点M坐标为(0,﹣3).②如图2,当点M在EP的延长线上时,,由(3),可得∠AGO=∠PGC=60°,∴EP与AB的交点M,满足AG=MG,∵A点的横坐标是0,G点横坐标为,∴M的横坐标是2,纵坐标是3,∴点M坐标为(2,3).综上,可得点M坐标为(0,﹣3)或(2,3).考点:几何变换综合题.10.(本题满分10分)如图1,已知矩形纸片ABCD中,AB=6cm,若将该纸片沿着过点B的直线折叠(折痕为BM),点A恰好落在CD边的中点P处.(1)求矩形ABCD的边AD的长.(2)若P为CD边上的一个动点,折叠纸片,使得A与P重合,折痕为MN,其中M在边AD上,N在边BC上,如图2所示.设DP=x cm,DM=y cm,试求y与x的函数关系式,并指出自变量x的取值范围.(3)①当折痕MN的端点N在AB上时,求当△PCN为等腰三角形时x的值;②当折痕MN的端点M在CD上时,设折叠后重叠部分的面积为S,试求S与x之间的函数关系式【答案】(1)AD=3;(2)y=-其中,0<x<3;(3)x=;(4)S=.【解析】试题分析:(1)根据折叠图形的性质和勾股定理求出AD的长度;(2)根据折叠图形的性质以及Rt△MPD的勾股定理求出函数关系式;(3)过点N作NQ⊥CD,根据Rt△NPQ 的勾股定理进行求解;(4)根据Rt△ADM的勾股定理求出MP与x的函数关系式,然后得出函数关系式.试题解析:(1)根据折叠可得BP=AB=6cm CP=3cm 根据Rt△PBC的勾股定理可得:AD=3.(2)由折叠可知AM=MP,在Rt△MPD中,∴∴y=-其中,0<x<3.(3)当点N在AB上,x≥3,∴PC≤3,而PN≥3,NC≥3.∴△PCN为等腰三角形,只可能NC=NP.过N点作NQ⊥CD,垂足为Q,在Rt△NPQ中,∴解得x=.(4)当点M在CD上时,N在AB上,可得四边形ANPM为菱形.设MP=y,在Rt△ADM中,,即∴ y=.∴ S=考点:函数的性质、勾股定理.。

中考数学总复习《四边形的综合题》练习题附带答案

中考数学总复习《四边形的综合题》练习题附带答案

中考数学总复习《四边形的综合题》练习题附带答案一、单选题1.如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a、b (a>b),则(a−b)等于()A.3B.4C.5D.6 2.如图,在矩形ABCD中,对角线AC、BD相交于点O,∠ABD=60°,则∠BOC的大小为()A.30°B.60°C.90°D.120°3.若一个多边形的内角和是外角和的2.5倍,则该多边形为()A.五边形B.六边形C.七边形D.八边形4.如图,矩形ABCD对角线相交于点O,∠AOB=60°,AB=4,则矩形的对角线AC 为()A.4 B.8 C.4√3D.10 5.一个长方形的周长为28厘米,长的2倍比宽的3倍多3厘米,则这个长方形的面积是()A.45平方厘米B.35平方厘米C.25平方厘米D.20平方厘米6.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE垂直平分BO,AE=√3cm,则OD=()A.1cm B.1.5cm C.2cm D.3cm 7.如图,矩形纸片ABCD中,AB=4,AD=8 ,将纸片沿EF折叠使点B与点D 重合,折痕EF与BD相交于点O,则DF的长为()A.3B.4C.5D.6 8.如图,⊙O的半径为4,点P是⊙O外的一点PO=10,点A是⊙O上的一个动点,连接PA,直线l垂直平分PA,当直线l与⊙O相切时PA的长度为()A.10B.212C.11D.434 9.已知平行四边形一边长为8,一条对角线长为6,则另一条对角线α满足()A.10<α<22B.4<α<20C.4<α<28D.2<α<1410.如图,两张等宽的纸条交又重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为6cm,点B,D之间的距离为8cm,则线段AB的长为()A.a2B.5cm C.2√7cm D.6cm 11.如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF,将∠BCE绕着正方形的中心O按逆时针方向旋转到∠CDF的位置,则旋转角是( )A .45°B .60°C .90°D .120°12.Rt∠ABC 两直角边的长分别为6cm 和8cm ,则连接这两条直角边中点的线段长为( ) A .10cmB .3cmC .4cmD .5cm二、填空题13.如图,点E 在边长为2的正方形ABCD 内,满足∠AEB =90°,若∠DAE =30°,则图中阴影部分的面积为 .14.把一把直尺和一块三角板如图放置,若∠1=42°,则∠2的度数为 °.15.已知 ▱ABCD 中一条对角线分 ∠A 为35°和45°,则 ∠B = 度. 16.如图,在一块长AB =26m ,宽BC =18m 的长方形草地上,修建三条宽均为3m 的长方形小路,则这块草地的绿地面积(图中空白部分)为 m 217.如图,在∠ABC 中,∠ABC =90°,E 为AC 的中点,AD∠BE 交BC 于D ,若AD=152,BE =5,则BD = .18.如图,在四边形ABCD中,∠A=90°,AB=12,AD=5.点M、N分别为线段BC、AB上的动点(含端点,但点M不与点B重合),点E、F分别为DM、MN的中点,则EF长度的最大值是.三、综合题19.如果抛物线C1:y=ax2+bx+c与抛物线C2:y=−ax2+dx+e的开口方向相反,顶点相同,我们称抛物线C2是C1的“对顶”抛物线.(1)求抛物线y=x2−4x+7的“对顶”抛物线的表达式;(2)将抛物线y=x2−4x+7的“对顶”抛物线沿其对称轴平移,使所得抛物线与原抛物线y=x2−4x+7形成两个交点M、N,记平移前后两抛物线的顶点分别为A、B,当四边形AMBN是正方形时求正方形AMBN的面积.(3)某同学在探究“对顶”抛物线时发现:如果抛物线C1与C2的顶点位于x轴上,那么系数b与d,c与e之间的关系是确定的,请写出它们之间的关系.20.解答题(1)如图1,在平行四边形ABCD 中,已知点E 在AB 上,点F 在CD 上,且AE=CF .求证:DE=BF ;(2)如图2,AB 是∠O 的直径,点C 在AB 的延长线上,CD 与∠O 相切于点D ,若∠C=20°,求∠CDA 的度数.21.如图,▱ABCD 放置在平面直角坐标系申,已知点A (-2,0)、B (-6,0)、D(0,3).点C 在反比例函数y=k x的图象上。

中考数学专题复习:几何综合题

中考数学专题复习:几何综合题

【考点总结】四、全等三角形的性质与判定
1.概念:能够完全重合的两个三角形叫做全等三角形. 2.性质:全等三角形的对应边、对应角分别相等. 3.判定:(1)有三边对应相等的两个三角形全等,简记为(SSS); (2)有两边和它们的夹角对应相等的两个三角形全等,简记为(SAS); (3)有两角和它们的夹边对应相等的两个三角形全等,简记为(ASA); (4)有两角和其中一角的对边对应相等的两个三角形全等,简记为(AAS); (5)有斜边和一条直角边对应相等的两个直角三角形全等,简记为(HL).
三角形专题
1,掌握三角形相关基础知识(2课时)
目标
2,掌握三角形有关模型的全等或相似证明(3课时) 3,完成三角形有关模型的全等或相似证明(3课时)
三角形
模型
手拉手模型
三垂直模型
相似模型
三角形有关的知识
【考点总结】一、三角形中的重要线段 1.三角形的高线:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做 三角形的高线,简称高. 特性:三角形的三条高线相交于一点. 2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.特性:三角 形的三条中线交于一点. 3.三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线. 定理:三角形的中位线平行于第三边,且等于它的一半 4.三角形的角平分线:三角形一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线 段叫做三角形的角平分线. 特性:三角形的三条角平分线交于一点,这点叫做三角形的内心. 性质:角平分线上的点到角的两边的距离相等.
小组合作
1.在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.
(1)如图1,点M,N分别在AD,AB上,且∠BMN=90°,当∠AMN=30°,AB=2时,求线段

人教版初中数学中考总复习:特殊的四边形--知识讲解(基础)

人教版初中数学中考总复习:特殊的四边形--知识讲解(基础)

第十九讲特殊的四边形【考纲要求】1. 会识别矩形、菱形、正方形以及梯形;2.掌握矩形、菱形、正方形的概念、判定和性质,会用矩形、菱形、正方形的性质和判定解决问题.3.掌握梯形的概念以及了解等腰梯形、直角梯形的性质和判定,会用性质和判定解决实际问题.【知识网络】【考点梳理】考点一、几种特殊四边形性质、判定四边形性质判定边角对角线矩形对边平行且相等四个角是直角相等且互相平分1、有一个角是直角的平行四边形是矩形;2、有三个角是直角的四边形是矩形;3、对角线相等的平行四边形是矩形中心、轴对称图形菱形四条边相等对角相等,邻角互补垂直且互相平分,每一条对角线平分一组对角1、有一组邻边相等的平行四边形是菱形;2、四条边都相等的四边形是菱形;3、对角线互相垂直的平行四边形是菱中心、轴对称图形.形正方形四条边相等四个角是直角相等、垂直、平分,并且每一条对角线平分一组对角1、邻边相等的矩形是正方形2、对角线垂直的矩形是正方形3、有一个角是直角的菱形是正方形4、对角线相等的菱形是正方形中心、轴对称图形等腰梯形两底平行,两腰相等同一底上的两个角相等相等1、两腰相等的梯形是等腰梯形;2、在同一底上的两个角相等的梯形是等腰梯形;3、对角线相等的梯形是等腰梯形.轴对称图形【要点诠释】矩形、菱形、正方形都是特殊的平行四边形,它们具有平行四边形的一切性质.考点二、梯形1.解决梯形问题常用的方法:(1)“平移腰”:把梯形分成一个平行四边形和一个三角形(图1);(2)“作高”:使两腰在两个直角三角形中(图2);(3)“平移对角线”:使两条对角线在同一个三角形中(图3);(4)“延腰”:构造具有公共角的两个三角形(图4);(5)“等积变形”,连结梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形(图5).图1 图2 图3 图4 图5【要点诠释】解决梯形问题的基本思想和方法就是通过添加适当的辅助线,把梯形问题转化为已经熟悉的平行四边形和三角形问题来解决.在学习时注意它们的作用,掌握这些辅助线的使用对于学好梯形内容很有帮助.2.特殊的梯形1)等腰梯形:两腰相等的梯形叫做等腰梯形.性质:(1)等腰梯形的同一底边上的两个角相等;等腰梯形的两条对角线相等.(2)同一底边上的两个角相等的梯形是等腰梯形.(3)等腰梯形是轴对称图形,它的对称轴是经过两底中点的一条直线.2)直角梯形:有一个角是直角的梯形叫做直角梯形.考点三、中点四边形相关问题1.中点四边形的概念:把依次连接任意一个四边形各边中点所得的四边形叫做中点四边形.2.若中点四边形为矩形,则原四边形满足条件对角线互相垂直;若中点四边形为菱形,则原四边形满足条件对角线相等;若中点四边形为正方形,则原四边形满足条件对角线互相垂直且相等.【要点诠释】中点四边形的形状由原四边形的对角线的位置和数量关系决定.【典型例题】类型一、特殊的平行四边形的应用1. 在平行四边形ABCD中,AC、BD交于点O,过点O作直线EF、GH,分别交平行四边形的四条边于E、G、F、H四点,连结EG、GF、FH、HE.(1)如图①,试判断四边形EGFH的形状,并说明理由;(2)如图②,当EF⊥GH时,四边形EGFH的形状是;(3)如图③,在(2)的条件下,若AC=BD,四边形EGFH的形状是;(4)如图④,在(3)的条件下,若AC⊥BD,试判断四边形EGFH的形状,并说明理由.【思路点拨】中点四边形的形状由原四边形的对角线的位置和数量关系决定.【答案与解析】(1)四边形EGFH是平行四边形;证明:∵平行四边形ABCD的对角线AC、BD交于点O,∴点O是平行四边形ABCD的对称中心;∴EO=FO,GO=HO;∴四边形EGFH是平行四边形;(2)菱形;(提示:菱形的对角线垂直平分)(3)菱形;(提示:当AC=BD时,对四边形EGFH的形状不会产生影响,故结论同(2))(4)四边形EGFH是正方形;证明:∵AC=BD,∴平行四边形ABCD是矩形;又∵AC⊥BD,∴平行四边形ABCD是正方形,∴∠BOC=90°,∠GBO=∠FCO=45°,OB=OC;∵EF⊥GH,∴∠GOF=90°;∴∠BOG=∠COF;∴△BOG≌△COF(ASA);∴OG=OF,∴GH=EF;由(3)知四边形EGFH是菱形,又EF=GH,∴四边形EGFH是正方形.【总结升华】主要考查了平行四边形、菱形、矩形、正方形的判定和性质以及全等三角形的判定和性质;熟练掌握各特殊四边形的联系和区别是解答此类题目的关键.2.动手操作:在一张长12cm、宽5cm的矩形纸片内,要折出一个菱形.小颖同学按照取两组对边中点的方法折出菱形EFGH(见方案一),小明同学沿矩形的对角线AC折出∠CAE=∠CAD,∠ACF=∠ACB 的方法得到菱形AECF(见方案二).(1)你能说出小颖、小明所折出的菱形的理由吗?(2)请你通过计算,比较小颖和小明同学的折法中,哪种菱形面积较大?【思路点拨】(1)、要证所折图形是菱形,只需证四边相等即可.(2)、按照图形用面积公式计算S=30和S=35.21,可知方案二小明同学所折的菱形面积较大. 【答案与解析】(1)小颖的理由:依次连接矩形各边的中点所得到的四边形是菱形, 小明的理由:∵ABCD 是矩形, ∴AD ∥BC ,则∠DAC=∠ACB , 又∵∠CAE=∠CAD ,∠ACF=∠ACB , ∴∠CAE=∠CAD=∠ACF=∠ACB , ∴AE=EC=CF=FA , ∴四边形AECF 是菱形. (2)方案一:S 菱形=S 矩形-4S △AEH =12×5-4×12×6×52=30(cm )2, 方案二:设BE=x ,则CE=12-x , ∴AE=22BE AB +=225x +由AECF 是菱形,则AE 2=CE 2∴x 2+25=(12-x )2, ∴x=11924, S 菱形=S 矩形-2S △ABE =12×5-2×12×5×11924≈35.21(cm )2, 比较可知,方案二小明同学所折的菱形面积较大.【总结升华】本题考查了矩形的性质和菱形的判定,以及图形面积的计算与比较. 举一反三:【变式】如图,点O 是矩形ABCD 的中心,E 是AB 上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC=3,则折痕CE 的长为 ( ).A.B.C.4 D.5【答案】A.类型二、梯形的应用3.(•黄州区校级模拟)如图,△ABC中,∠BAC=90°,延长BA至D,使AD=AB,点E、F分别是边BC、AC的中点.(1)判断四边形DBEF的形状并证明;(2)过点A作AG∥BC交DF于G,求证:AG=DG.【思路点拨】(1)利用梯形的判定首先得出四边形DBEF为梯形,进而得出四边形HFEB是平行四边形,得出BE=FD进而得出答案;(2)利用四边形DBEF为等腰梯形,得出∠B=∠D,利用AG∥BG,∠B=∠DAG,得出答案.【答案与解析】(1)解:四边形DBEF为等腰梯形,理由如下:如图,过点F作FH∥BC,交AB于点H,∵FH∥BC,点F是AC的中点,点E是BC的中点,∴AH=BH=AB,EF∥AB,显然EF<AB<AD,∴EF≠AD,∴四边形DBEF为梯形,∵AD=AB,∴AD=AH,∴CA是DH的中垂线,∴DF=FH,∵FH∥BC,EF∥AB,∴四边形HFEB是平行四边形,∴FH=BE,∴BE=FD,故四边形DBEF为等腰梯形;(2)证明:∵四边形DBEF为等腰梯形,∴∠B=∠D,∵AG∥BG,∠B=∠DAG,∴∠D=∠DAG,∴AG=D G.【总结升华】此题主要考查了等腰梯形的判定以及其性质和平行四边形的判定与性质等知识,得出BE=FD 是解题关键.举一反三:【变式】如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF⊥AB,若AD=2.7,AF=4,AB=6,则CE的长为().C. 2.5D.2.3A.22B. 231类型三、特殊四边形与其他知识结合的综合运用4. (•北京)在▱ABCD中,过点D作DE⊥AB于点E,点F 在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.【思路点拨】(1)根据平行四边形的性质,可得AB与CD的关系,根据平行四边形的判定,可得BFDE 是平行四边形,再根据矩形的判定,可得答案;(2)根据平行线的性质,可得∠DFA=∠FAB,根据等腰三角形的判定与性质,可得∠DAF=∠DFA,根据角平分线的判定,可得答案.【答案与解析】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD.∵BE∥DF,BE=DF,∴四边形BFDE是平行四边形.∵DE⊥AB,∴∠DEB=90°,∴四边形BFDE是矩形;(2)解:∵四边形ABCD是平行四边形,∴AB∥DC,∴∠DFA=∠FAB.在Rt△BCF中,由勾股定理,得BC===5,∴AD=BC=DF=5,∴∠DAF=∠DFA,∴∠DAF=∠FAB,即AF平分∠DAB.【总结升华】本题考查了平行四边形的性质,利用了平行四边形的性质,矩形的判定,等腰三角形的判定与性质,利用等腰三角形的判定与性质得出∠DAF=∠DFA是解题关键.5.已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.【思路点拨】(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠2,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;(2)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF 全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证.【答案与解析】(1)解:∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠2,∴∠ACD=∠2,∴MC=MD,∵ME⊥CD,∴CD=2CE,∵CE=1,∴CD=2,∴BC=CD=2;(2)证明:如图,∵F为边BC的中点,∴BF=CF=12BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵CE CFACB ACDCM CM=⎧⎪∠=∠⎨⎪=⎩,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF于点G,∵AB∥CD,∴∠G=∠2,∵∠1=∠2,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵2GBFG CFDBF CF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.【总结升华】本题考查了菱形的性质,全等三角形的判定与性质,等角对等边的性质,作出辅助线构造出全等三角形是解题的关键.6 . 如图,己知ABC的顶点B、C为定点,A为动点(不在直线BC上).是点B关于直线AC的对称点,是点C关于直线AB的对称点.连结、、、.(1)猜想线段与'的数量关系,并证明你的结论;(2)当点A运动到怎样的位置时,四边形为菱形?这样的位置有几个?请用语言对这样的位置进行描述;(不用证明)(3)当点A在线段BC的垂直平分线l(BC的中点及到BC的距离为的点除外)上运动时,判断以点B、C、、为顶点的四边形的形状,画出相应的示意图.(不用证明)【思路点拨】本题考查轴对称的基本性质,综合考查菱形、正方形、等腰梯形的判定.在运动变化过程中,认识图形之间的内在联系.【答案与解析】(1)猜想:BC′=CB′∵B′是点B关于直线AC的对称点∴AC垂直平分B B′∴BC= CB′同理BC= BC′∴B C′=C B′(2)要使BCB′C′是菱形,根据菱形的性质,对角线互相垂直平分∵B′是点B关于直线AC的对称点,C′是点C关于直线AB的对称点∴AC垂直平分B B′,AB垂直平分C C′,∴B B′、C C′应该同时过A点∴∠BAC=90°∴只要AB⊥AC即可满足要求,这样的位置有无数个.(3)如图,当A是BC的中点时,没有形成四边形;当A到BC时,∵l是BC的垂直平分线,∴∠ACB=∠ABC=30°,∴∠BAC=120°,∴∠BOC=60°,∴BC=C B′= B′C′=B C′.∴BC B′C′为菱形,当BC的中点及到BC BC的点除外时,∵∠BOC= B′O C′,OB=OC O B′=O C′,∴∠OBC=∠OCB=∠O B′C′=∠O C′B′,∴BC∥B′C′.∵B C′不平行C B′,B C′=C B′,四边形BC B′ C′为等腰梯形.【总结升华】本题可以很好的培养观察推理能力,按照要求画出图形可以更清楚的解题.举一反三:【变式】(2012•襄阳)如图,在梯形ABCD中,AD∥BC,E为BC的中点,BC=2AD,EA=ED=2,AC与ED相交于点F.(1)求证:梯形ABCD是等腰梯形;(2)当AB与AC具有什么位置关系时,四边形AECD是菱形?请说明理由,并求出此时菱形AECD的面积.【答案】(1)证明:∵AD∥BC,∴∠DEC=∠EDA,∠BEA=∠EAD,又∵EA=ED,∴∠EAD=∠EDA,∴∠DEC=∠AEB,又∵EB=EC,∴△DEC≌△AEB,∴AB=CD,∴梯形ABCD是等腰梯形.(2)当AB⊥AC时,四边形AECD是菱形.证明:∵AD∥BC,BE=EC=AD,∴四边形ABED和四边形AECD均为平行四边形.∴AB=ED,∵AB⊥AC,∴AE=BE=EC,∴四边形AECD是菱形.过A作AG⊥BE于点G,∵AE=BE=AB=2,∴△ABE是等边三角形,∴∠AEB=60°,∴AG=3,∴S菱形AECD=EC•AG=2×3=23.第十九讲特殊的四边形一、选择题1.(•天水)如图,将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,若AB=1,BC=2,则△ABE和BC′F的周长之和为()A.3 B.4 C.6 D.82.如图,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,折痕为AE,再将△AED以DE为折痕向右折叠,AE与BC交于点F,则△CEF面积为( ).A.4 B.6 C.8 D.103.如图所示,在矩形ABCD中,AB=3,AD=4,P是AD上的一点,PE⊥AC,垂足为E,PF⊥BD,垂足为F,则PE+PF的值为( ).A.B.C.2 D.第3题第4题4.如图,E、F、G、H分别是四边形ABCD四条边的中点,要使EFGH为矩形,四边形应该具备的条件是().A.一组对边平行而另一组对边不平行B.对角线相等C.对角线相互垂直 D.对角线互相平分5.如图,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于().A.7B.5C.4D.3第5题第6题6.如图,在矩形ABCD中,DE⊥AC于E,且∠ADE:∠EDC=3:2,则∠BDE的度数为().A.15° B.18° C.36° D.54°二、填空题7.(春•西城区期末)直角△ABC中,∠BAC=90°,D、E、F分别为AB、BC、AC的中点,已知DF=3,则AE= .8. 如图,菱形ABCD中,于E,于F,,则等于___________.9. 正方形ABCD中,E为BC上一点,BE=,CE=,P在BD上,则PE+PC的最小值可能为__________.10.如图,M为正方形ABCD中BC边的中点,将正方形折起,使点A与M重合,设折痕为EF,若正方形的面积为64,则△AEM的面积为____________.11.如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC 于F,则线段EF长度的最小值是_______________.第10题第11题第12题12.如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,∠C=60°,BC=2AD=23,点E是BC边的中点,△DEF是等边三角形,DF交AB于点G,则△BFG的周长为________.三、解答题13.如图1,图2,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与∠CBM的平分线BF相交于点F.(1)如图1,当点E在AB边的中点位置时:①猜想DE与EF满足的数量关系是__________;②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是__________;③请证明你的上述两个猜想.(2)如图2,当点E在AB边上的任意位置时,请你在AD边上找到一点N,使得NE=BF,进而猜想此时 DE 与EF有怎样的数量关系.14. 如图,在梯形ABCD中,AD//BC,AB=CD=3cm,∠A=120°,BD⊥CD,(1)求BC、AD的长度;(2)若点P从点B开始沿BC边向点C以2cm/秒的速度运动,点Q从点C开始沿CD边向点D以1cm/秒的速度运动,当P、Q分别从B、C同时出发时,写出五边形ABPQD的面积S与运动时间t之间的关系式,并写出t的取值范围(不包含点P在B、C两点的情况);(3)在(2)的前提下,是否存在某一时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5?若存在,求出t的值;若不存在,请说明理由.15. (•青岛模拟)已知正方形ABCD的边长为a,两条对角线AC、BD相交于点O,P是射线AB上任意一点,过P点分别作直线AC、BD的垂线PE、PF,垂足为E、F.(1)如图1,当P点在线段AB上时,PE+PF的值是否为定值?如果是,请求出它的值;如果不是,请加以说明.(2)如图2,当P点在线段AB的延长线上时,求PE﹣PF的值.16.如图,十三个边长为正整数的正方形纸片恰好拼成一个大矩形(其中有三个小正方形的边长已标出字母x,y,z).试求满足上述条件的矩形的面积最小值.【答案与解析】一.选择题1.【答案】C.【解析】将矩形纸片ABCD折叠,使点D与点B重合,点C落在C′处,折痕为EF,由折叠特性可得,CD=BC′=AB,∠FC′B=∠EAB=90°,∠EBC′=∠ABC=90°,∵∠ABE+∠EBF=∠C′BF+∠EBF=90°∴∠ABE=∠C′BF在△BAE和△BC′F中,∴△BAE≌△BC′F(ASA),∵△ABE的周长=AB+AE+EB=AB+AE+ED=AB+AD=1+2=3,△ABE和△BC′F的周长=2△ABE的周长=2×3=6.故选:C.2.【答案】C.3.【答案】A.4.【答案】C.5.【答案】B.【解析】可证△OEB≌△OFC,则EB=FC=3,AE=BF=4,32346.【答案】B.【解析】由题意∠ADE=54°,∠CDE=36°,∠DCE=54°,∠BDE=54°-36°=18°.二.填空题7.【答案】3.【解析】如图,∵在直角△ABC中,∠BAC=90°,D、F分别为AB、AC的中点,∴DF是△ABC的中位线,∴DF=BC.又∵点E是直角△ABC斜边BC的中点,∴AE=BC,∵DF=3,∴DF=AE.故填:3.8.【答案】60°.9.【答案】.10.【答案】10.【解析】提示:设AE=x=EM ,BE=8-x,MB=4,在Rt△BEM中由勾股定理解得x=5,从而算出面积.11.【答案】125.【解析】连接PC.∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°;又∵∠ACB=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=4,BC=3,∴AB=5,∴12AC•BC=12AB•PC,∴PC=125.∴线段EF长的最小值为125;故答案是:125.12.【答案】3+3.【解析】首先由已知AD∥BC,∠ABC=90°点E是BC边的中点,推出四边形ABED是矩形,所以得到直角三角形CED,所以能求出CD和DE,又由△DEF是等边三角形,得出DF,由直角三角形AGD可求出AG、DG,进而求得FG,再证△AGD≌△BGF,得到BF=AD,从而求出△BFG的周长.三.综合题13.【解析】(1)①DE=EF;②NE=BF;③∵四边形ABCD为正方形,∴AD=AB,∠DAB=∠ABC=90°,∵N,E分别为AD,AB中点,∴AN=DN=12AD,AE=EB=12AB,∴DN=BE,AN=AE,∵∠DEF=90°,∴∠AED+∠FEB=90°,又∵∠ADE+∠AED=90°,∴∠FEB=∠ADE,又∵AN=AE,∴∠ANE=∠AEN,又∵∠A=90°,∴∠ANE=45°,∴∠DNE=180°-∠ANE=135°,又∵∠CBM=90°,BF平分∠CBM,∴∠CBF=45°,∠EBF=135°,∴△DNE≌△EBF(ASA),∴DE=EF,NE=BF.(2)在DA上截取DN=EB(或截取AN=AE),连接NE,则点N可使得NE=BF.此时DE=EF.证明方法同(1),证△DNE≌△EBF.14.【解析】(1)在Rt△BCD中,CD=3cm,∠C=60°, ∴∠DBC=30°,∴BC=2CD=6cm.由已知得:梯形ABCD是等腰梯形,∴∠ABC=∠C=60°,∴∠ABD=∠ABC-∠DBC=30°.∵AD∥BC,∴∠ADB=∠DBC=30°,∴∠ABD=∠ADB,∴AD=AB=3cm.(2)当P、Q分别从B、C同时出发运动t秒时,BP=2t,CQ=t, ∴PC=6-2t,过Q作QE⊥BC于E,则QE=CQsin60°=32t,∴S梯形ABCD-S△PCQ=2734-34(6-2t)t=34(2t2-6t+27)(0<t<3).(3)存在时刻t,使线段PQ把梯形ABCD分成两部分的面积比为1:5.∵S梯形ABCD=2734,S△ABD=12×3×32×3,∴S△ABD=13×S梯形ABCD,∴五边形ABPQD的面积不可能是梯形ABCD面积的16.∴S△PCQ:S五边形ABPQD=1:5,即S五边形ABPQD=56S梯形ABCD∴34(2t2-6t+27)=56×2734,整理得:4t2-12t+9=0,∴t=32,即当t=32秒时,PQ把梯形ABCD分成两部分的面积比为1:5.15.【解析】解:(1)是定值,∵四边形ABCD为正方形,∴AC⊥BD.∵PF⊥BD,∴PF∥AC,同理PE∥BD.∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE+PF=OF+FB=OB=acos45°=a.(2)∵四边形ABCD为正方形,∴AC⊥BD.∵PF⊥BD,∴PF∥AC,同理PE∥BD.∴四边形PFOE为矩形,故PE=OF.又∵∠PBF=45°,∴PF=BF.∴PE﹣PF=OF﹣BF=OB=acos45°=a.16.【解析】已有三个小正方形的边长为x,y,z,我们通过x,y,z表示其余正方形的边长依次填在每个正方形中,它们是x+y,x+2y,x+3y,4y,x+7y,2x+y,2x+y+z,4x+4y-z,4x+4y-2x及5x-2y+z.因矩形对边相等,所以得11x+3y=7x+16y-z及8x+8y-3z=6x+5y+z.化简上述的两个方程得到z=13y-4x,4z=2x+3y,消去z得18x=49y.因为18与49互质,所以x、y的最小自然数解是x=49,y=18,此时z=38.以x=49,y=18,z=38代入矩形长、宽的表达式11x+3y及8x+8y-3z,得长、宽分别为593和422.此时得最小面积值是593×422=250246.。

中考数学复习专题之平行四形的性质与判定,考点过关与基础练习题

中考数学复习专题之平行四形的性质与判定,考点过关与基础练习题

24.平行四边形➢考点分类考点1平行四边形的性质例1如图所示,在ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF(2)连接DE,若AD=2AB,求证:DE⟂AF.考点2平行四边形的判定例2如图所示,DE是ABC的中位线,延长DE至F,使EF=DE,连接BF.(1)求证:BF=DC(2)求证:四边形ABFD是平行四边形.考点3平行四边形综合探究例3如图1,在平行四边形ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于F.(1)当∠ABC=90°时,G是EF的中点,联结DB,DG(如图2),请直接写出∠BDG 的度数(2)当∠ABC=120°时,FG∥CE,且FG=CE,分别联结DB、DG(如图3),求∠BDG 的度数.➢真题演练1.如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是()A.20B.21C.22D.232.在平行四边形ABCD中,已知∠A+∠C=200°,则∠A=()A.40°B.60°C.80°D.100°3.如图,平行四边形ABCD的对角线AC,BD相交于点O.点E为BC的中点,连接EO 并延长交AD于点F,∠ABC=60°,BC=2AB.下列结论:①S▱ABCD=AB•AC;②AD=4OE;③EF⊥AC;④S△BOE=14S△ABC.其中正确结论的个数是()A.4B.3C.2D.14.如图,在Rt △ABC 中,∠B =90°,BC =4,AC =5,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是( )A .3B .6C .8D .105.如图,在▱ABCD 中,AD =BD ,∠ADC =105°,点E 在AD 上,∠EBA =60°,则ED AE的值是( )A .23B .√3C .√32D .√336.如图,⟂ABCD 的对角线AC ,BD 交于点O ,AE 平分⟂BAD ,交BC 于点E ,且⟂ADC =60°,AD =2AB ,连接OE ,下列结论:⟂⟂CAD =30°;⟂OD =AB ;⟂S 平行四边形ABCD =AC •CD ;⟂S 四边形OECD =32S ⟂AOD :⟂OE =14AD .其中成立的个数是( )A .1个B .2个C .3个D .4个7.如图,点O 是平行四边形ABCD 对角线的交点,EF 过点O 分别交AD ,BC 于点E ,F .下列结论:①OE =OF ;②AB =BF ;③∠DOC =∠OCD ;④∠CFE =∠DEF ,其中正确结论的个数是( )A .4个B .3个C .2个D .1个8.如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=3,AO=2,BC=5,则AE的长为.9.如图,在平行四边形ABCD中,AD=5,AB=3,∠BAD的平分线AE交BC于E点,则EC的长为.10.如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=3BG,S▱BEPG =1.5,则S▱AEPH=.11.如图,在平行四边形ABCD中,E,F分别是AB,BC的中点,EH⊥AC,垂足为H,与AF交于点G,若AC=24,GF=6√5,则EG的长为.12.在平行四边形ABCD中,∠C=45°,AD=BD,点P为边CD上的动点(点P不与点D重合),连接AP,过点P作EP⊥AP交直线BD于点E.(1)如图①,当点P为线段CD的中点时,求证:P A=PE;(2)如图②,当点P在线段CD上时,求证:DE﹣DA=√2DP.13.已知:如图,▱ABCD 中,F 是AB 中点,连接DF ,DF 延长线交CB 的延长线于点E ,连接AE . 求证:(1)△AFD ≌△BFE ;(2)若BF =BC ,∠EDC =60°,判断四边形AEBD 的形状,并证明你的结论.➢ 课后练习1.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,AE 平分∠BAD ,分别交BC ,BD 于点E 、P .连接OE ,∠ADC =60°,AB =12BC =1,则下列结论: ①∠CAD =30°;②BD =2√3;③S 平行四边形ABCD =AB •AC ; ④AD =4OE .其中结论正确的个数是( )A .1个B .2个C .3个D .4个2.如图,平行四边形ABCD 中,对角线AC 、BD 相交于O ,过点O 作OE ⊥AC 交AD 于点E ,若AE =4,DE =3,AB =5,则AC 的长为( )A .3√2B .4√2C .5√2D .5√223.如图,已知在▱ABCD中,E为AD的中点,CE的延长线交BA的延长线于点F,则下列结论正确的有()个.①F A:FB=1:2;②BE:CF=1:2;③AE:BC=1:2;④S△ABE:S△FBC=1:4.A.1个B.2个C.3个D.4个4.如图,在平行四边形ABCD中,CE平分∠BCD,交AB于点E,AE=3,EB=5,ED=4.则CE的长是()A.2√2B.6√2C.5√5D.4√55.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上(E 不与A、B重合),连接EF、CF,则下列结论中正确个数是()①∠DCF=12∠BCD;②EF=CF;③S△BEC<2S△CEF;④∠DFE=4∠AEFA.4B.3C.2D.16.如图,在平行四边形ABCD中,E为CD上一点,且CE=BC,AE=DE,AE=4,∠DAE =60°,则下列结论:①∠AEB=90°;②平行四边形ABCD周长是24;③∠ABE=∠EBC=30°;④BE2=48;⑤E为CD中点.正确的结论有()A.2个B.3个C.4个D.5个7.如图,平行四边形ABCD中,AE平分∠BAD交BC边于E,EF⊥AE交CD边于G,交AD延长线于F,若BC=6,DF=4,EF=2AE,则△ABE的面积为.8.如图,在▱ABCD中,AE⊥BC于E,AF⊥DC交DC的延长线于点F,且∠EAF=60°,BE=1,平行四边形ABCD面积为6√3.则AF=.9.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有(填序号).10.如图,在平行四边形ABCD中,AD=12,AB=6,以AD为底边向右作腰长为10的等腰△ADP,Q为边BC上一点,BQ=4,连接PQ,则PQ的最小值为.11.在平面直角坐标系中,O为原点,点A(√3,0),点B(0,1),点E是边AB中点,把△ABO绕点A顺时针旋转,得△ADC,点O,B旋转后的对应点分别为D,C.记旋转角为α.(1)如图①,当点D恰好在AB上时,求点D的坐标;(2)如图②,若α=60°时,求证:四边形OECD是平行四边形.12.如图,在▱ABCD中,AE平分∠BAD交对角线BD于点E,CF平分∠DCB交对角线BD 于点F,连接AF,CE.(1)若∠BCF=50°,求∠ADC的度数;(2)求证:四边形AECF为平行四边形.➢冲击A+如图,在△ABC中,AB=BC,AB为⊙O的直径,AC与⊙O相交于点D,过点D做DE⊥BC于点E,CB延长线交⊙O于点F.(1)求证:DE为⊙O的切线;(2)若BE=1,BF=2,求AD的长.。

人教中考数学压轴题专题复习——平行四边形的综合含答案解析

人教中考数学压轴题专题复习——平行四边形的综合含答案解析

一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.2.如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合),将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(1)求证:∠APB=∠BPH;(2)当点P在边AD上移动时,求证:△PDH的周长是定值;(3)当BE+CF 的长取最小值时,求AP 的长.【答案】(1)证明见解析.(2)证明见解析.(3)2.【解析】试题分析:(1)根据翻折变换的性质得出∠PBC=∠BPH ,进而利用平行线的性质得出∠APB=∠PBC 即可得出答案;(2)首先证明△ABP ≌△QBP ,进而得出△BCH ≌△BQH ,即可得出PD+DH+PH=AP+PD+DH+HC=AD+CD=8;(3)过F 作FM ⊥AB ,垂足为M ,则FM=BC=AB ,证明△EFM ≌△BPA ,设AP=x ,利用折叠的性质和勾股定理的知识用x 表示出BE 和CF ,结合二次函数的性质求出最值. 试题解析:(1)解:如图1,∵PE=BE ,∴∠EBP=∠EPB .又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP .即∠PBC=∠BPH .又∵AD ∥BC ,∴∠APB=∠PBC .∴∠APB=∠BPH .(2)证明:如图2,过B 作BQ ⊥PH ,垂足为Q .由(1)知∠APB=∠BPH ,又∵∠A=∠BQP=90°,BP=BP ,在△ABP 和△QBP 中,{90APB BPHA BQP BP BP∠=∠∠=∠=︒=,∴△ABP ≌△QBP (AAS ),∴AP=QP ,AB=BQ ,又∵AB=BC ,∴BC=BQ .又∠C=∠BQH=90°,BH=BH ,在△BCH 和△BQH 中,{90BC BQC BQH BH BH=∠=∠=︒=,∴△BCH ≌△BQH (SAS ),∴CH=QH .∴△PHD 的周长为:PD+DH+PH=AP+PD+DH+HC=AD+CD=8.∴△PDH 的周长是定值.(3)解:如图3,过F 作FM ⊥AB ,垂足为M ,则FM=BC=AB .又∵EF 为折痕,∴EF ⊥BP .∴∠EFM+∠MEF=∠ABP+∠BEF=90°,∴∠EFM=∠ABP .又∵∠A=∠EMF=90°,在△EFM 和△BPA 中,{EFM ABPEMF A FM AB∠=∠∠=∠=,∴△EFM ≌△BPA (AAS ).∴EM=AP .设AP=x在Rt △APE 中,(4-BE )2+x 2=BE 2.解得BE=2+28x , ∴CF=BE-EM=2+28x -x ,∴BE+CF=24x -x+4=14(x-2)2+3. 当x=2时,BE+CF 取最小值,∴AP=2.考点:几何变换综合题.3.如图,在正方形ABCD 中,E 是边BC 上的一动点(不与点B 、C 重合),连接DE 、点C 关于直线DE 的对称点为C ′,连接AC ′并延长交直线DE 于点P ,F 是AC ′的中点,连接DF . (1)求∠FDP 的度数;(2)连接BP ,请用等式表示AP 、BP 、DP 三条线段之间的数量关系,并证明; (3)连接AC ,若正方形的边长为2,请直接写出△ACC ′的面积最大值.【答案】(1)45°;(2)BP +DP 2AP ,证明详见解析;(32﹣1.【解析】【分析】(1)证明∠CDE =∠C 'DE 和∠ADF =∠C 'DF ,可得∠FDP '=12∠ADC =45°; (2)作辅助线,构建全等三角形,证明△BAP ≌△DAP '(SAS ),得BP =DP ',从而得△PAP '是等腰直角三角形,可得结论;(3)先作高线C 'G ,确定△ACC ′的面积中底边AC 为定值2,根据高的大小确定面积的大小,当C '在BD 上时,C 'G 最大,其△ACC ′的面积最大,并求此时的面积.【详解】(1)由对称得:CD =C 'D ,∠CDE =∠C 'DE ,在正方形ABCD 中,AD =CD ,∠ADC =90°,∴AD =C 'D ,∵F 是AC '的中点,∴DF ⊥AC ',∠ADF =∠C 'DF ,∴∠FDP =∠FDC '+∠EDC '=12∠ADC =45°; (2)结论:BP +DP 2AP ,理由是:如图,作AP '⊥AP 交PD 的延长线于P ',∴∠PAP'=90°,在正方形ABCD中,DA=BA,∠BAD=90°,∴∠DAP'=∠BAP,由(1)可知:∠FDP=45°∵∠DFP=90°∴∠APD=45°,∴∠P'=45°,∴AP=AP',在△BAP和△DAP'中,∵BA DABAP DAP AP AP'=⎧⎪∠=∠⎨='⎪⎩,∴△BAP≌△DAP'(SAS),∴BP=DP',∴DP+BP=PP'=2AP;(3)如图,过C'作C'G⊥AC于G,则S△AC'C=12AC•C'G,Rt△ABC中,AB=BC2,∴AC22(2)(2)2+=,即AC为定值,当C'G最大值,△AC'C的面积最大,连接BD,交AC于O,当C'在BD上时,C'G最大,此时G与O重合,∵CD =C 'D =2,OD =12AC =1, ∴C 'G =2﹣1,∴S △AC 'C =112(21)2122AC C G '•=⨯-=-. 【点睛】 本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.4.在△ABC 中,AB=BC ,点O 是AC 的中点,点P 是AC 上的一个动点(点P 不与点A ,O ,C 重合).过点A ,点C 作直线BP 的垂线,垂足分别为点E 和点F ,连接OE ,OF . (1)如图1,请直接写出线段OE 与OF 的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE 与OF 之间的数量关系和位置关系,并说明理由(3)若|CF ﹣AE|=2,EF=23,当△POF 为等腰三角形时,请直接写出线段OP 的长.【答案】(1)OF =OE ;(2)OF ⊥EK ,OF=OE ,理由见解析;(3)OP 62233. 【解析】【分析】(1)如图1中,延长EO 交CF 于K ,证明△AOE ≌△COK ,从而可得OE=OK ,再根据直角三角形斜边中线等于斜边一半即可得OF=OE ;(2)如图2中,延长EO 交CF 于K ,由已知证明△ABE ≌△BCF ,△AOE ≌△COK ,继而可证得△EFK 是等腰直角三角形,由等腰直角三角形的性质即可得OF ⊥EK ,OF=OE ; (3)分点P 在AO 上与CO 上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO 交CF 于K ,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,3AE=CK,∴FK=2,在Rt△EFK中,tan∠FEK=33,∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=12EK=2, ∵△OPF 是等腰三角形,观察图形可知,只有OF=FP=2, 在Rt △PHF 中,PH=12PF=1,HF=3,OH=2﹣3, ∴OP=()2212362+-=-.如图4中,点P 在线段OC 上,当PO=PF 时,∠POF=∠PFO=30°,∴∠BOP=90°,∴OP=33OE=233, 综上所述:OP 的长为62-或233. 【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.5.如图,在菱形ABCD 中,AB=4,∠BAD=120°,△AEF 为正三角形,E 、F 在菱形的边BC ,CD 上.(1)证明:BE=CF .(2)当点E ,F 分别在边BC ,CD 上移动时(△AEF 保持为正三角形),请探究四边形AECF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF 的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)33)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.由(2)得,S △CEF =S 四边形AECF ﹣S △AEF =﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE ≌△ACF 是解题的关键.6.如图,在正方形ABCD 中,E 是边AB 上的一动点,点F 在边BC 的延长线上,且CF AE =,连接DE ,DF ,EF . FH 平分EFB ∠交BD 于点H .(1)求证:DE DF ⊥;(2)求证:DH DF =:(3)过点H 作HM EF ⊥于点M ,用等式表示线段AB ,HM 与EF 之间的数量关系,并证明.【答案】(1)详见解析;(2)详见解析;(3)22EF AB HM =-,证明详见解析.【解析】【分析】(1)根据正方形性质, CF AE =得到DE DF ⊥.(2)由AED CFD △△≌,得DE DF =.由90ABC ∠=︒,BD 平分ABC ∠,得45DBF ∠=︒.因为FH 平分EFB ∠,所以EFH BFH ∠=∠.由于45DHF DBF BFH BFH ∠=∠+∠=︒+∠,45DFH DFE EFH EFH ∠=∠+∠=︒+∠, 所以DH DF =.(3)过点H 作HN BC ⊥于点N ,由正方形ABCD 性质,得BD ==.由FH 平分,EFB HM EF HN BC ∠⊥⊥,,得HM HN =.因为4590HBN HNB ∠=︒∠=︒,,所以sin 45HN BH ===︒.由cos 45DF EF ===︒,得22EF AB HM =-. 【详解】(1)证明:∵四边形ABCD 是正方形,∴AD CD =,90EAD BCD ADC ∠=∠=∠=︒.∴90EAD FCD ∠=∠=︒.∵CF AE =。

(10)2018-2020年北京中考数学复习各地区模拟试题分类(10)——四边形参考答案

(10)2018-2020年北京中考数学复习各地区模拟试题分类(10)——四边形参考答案

∵四边形 ABCD 是平行四边形,
∴AB∥CD,AD=BC=10,
∴∠BAF=∠DFA,
∵DC=16,
∴DF=DC﹣CF=16﹣6=10,
∴AD=DF,
∴∠DAF=∠DFA,
∴∠BAF=∠DAF,
∴AF 平分∠DAB.
13.【解答】(1)证明:∵四边形 ABCD 是平行四边形,
∴AD=BC,AD∥BC,
∴MA=ME<BM, ∴点 M 不在 AB 的垂直平分线上, ∴点 M 不在∠AOB 的角平分线上,故②错误, ③如图 3 中,作 PM∥OA 交 AB 于 M.
∵PM∥OA, ∴∠BMP=∠BAO=60°,∠BPM=∠AOB=60°, ∴△PMB 是等边三角形, ∴PB=PM=AQ, ∵PE⊥BM, ∴EM=BM, ∵∠AQD=∠MPD,∠ADQ=∠MQP,AQ=PM, ∴△ADQ≌△MDP(AAS), ∴AD=DM, ∴DE=DM+ME= 12AM+ 12BM= 12(AM+BM)= 12AB,故③正确, 故答案为①③. 6.【解答】解:①如图 1,
故存在两个中点四边形 MNPQ 是正方形. 故答案为:①②③④.
8.【解答】解:①如图,连接 AC,BD 交于 O, ∵四边形 ABCD 是菱形,连接 AC,BD 交于 O, 过点 O 直线 MP 和 QN,分别交 AB,BC,CD,AD 于 M,N,P,Q, 则四边形 MNPQ 是平行四边形, 故存在无数个四边形 MNPQ 是平行四边形;故正确; ②如图,当 PM=QN 时,四边形 MNPQ 是矩形,故存在无数个四边形 MNPQ 是矩形;故正确; ③如图,当 PM⊥QN 时,存在无数个四边形 MNPQ 是菱形;故正确; ④当四边形 MNPQ 是正方形时,MQ=PQ, 则△AMQ≌△DQP(AAS), ∴AM=QD,AQ=PD, ∵PD=BM, ∴AB=AD, ∴四边形 ABCD 是正方形, 当四边形 ABCD 为正方形时,四边形 MNPQ 是正方形,故存在无数个四边形 MNPQ 是正方形;故④错 误; 故答案为①②③.

中考数学二轮复习压轴专题:四边形

中考数学二轮复习压轴专题:四边形

精品基础教育教学资料,仅供参考,需要可下载使用!中考数学二轮复习压轴专题《四边形》1.【习题再现】课本中有这样一道题目:如图1,在四边形ABCD中,E,F,M分别是AB,CD,BD的中点,AD=BC.求证:∠EFM =∠FEM.(不用证明)【习题变式】(1)如图2,在“习题再现”的条件下,延长AD,BC,EF,AD与EF交于点N,BC与EF 交于点P.求证:∠ANE=∠BPE.(2)如图3,在△ABC中,AC>AB,点D在AC上,AB=CD,E,F分别是BC,AD的中点,连接EF并延长,交BA的延长线于点G,连接GD,∠EFC=60°.求证:∠AGD=90°.【习题变式】解:(1)∵F,M分别是CD,BD的中点,∴MF∥BP,,∴∠MFE=∠BPE.∵E,M分别是AB,BD的中点,∴ME∥AN,,∴∠MEF=∠ANE.∵AD=BC,∴ME=MF,∴∠EFM=∠FEM,∴∠ANE=∠BPE.(2)连接BD,取BD的中点H,连接EH,FH.∵H,F分别是BD和AD的中点,∴HF∥BG,,∴∠HFE=∠FGA.∵H,E分别是BD,BC的中点,∴HE∥AC,,∴∠HEF=∠EFC=60°.∵AB=CD,∴HE=HF,∴∠HFE=∠EFC=60°,∴∠A GF=60°,∵∠AFG=∠EFC=60°,∴△AFG为等边三角形.∴AF=GF,∵AF=FD,∴GF=FD,∴∠FGD=∠FDG=30°,∴∠AGD=60°+30°=90°.2.(1)问题:如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D为BC边上一点(不与点B,C重合),连接AD,过点A作AE⊥AD,并满足AE=AD,连接CE.则线段BD和线段CE的数量关系是BD=CE,位置关系是BD⊥CE.(2)探索:如图2,当D点为BC边上一点(不与点B,C重合),Rt△ABC与Rt△ADE均为等腰直角三角形,∠BAC=∠DAE=90°,AB=AC,AD=AE.试探索线段BD2、CD2、DE2之间满足的等量关系,并证明你的结论;(3)拓展:如图3,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=3,CD=1,请直接写出线段AD的长.解:(1)问题:在Rt△ABC中,AB=AC,∴∠B=∠ACB=45°,∵∠BAC=∠DAE=90°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),故答案为:BD=CE,BD⊥CE;(2)探索:结论:DE2=BD2+CD2,理由是:如图2中,连接EC.∵∠BAC=∠DAE=90°,∴∠BAD=∠CAE,在△ABD和△ACE中,∵,∵△BAD≌△CAE(SAS),∴BD=CE,∠B=∠ACE=45°,∴∠BCE=∠ACB+∠ACE=45°+45°=90°,∴DE2=CE2+CD2,∴DE2=BD2+CD2;(3)拓展:如图3,将AD绕点A逆时针旋转90°至AG,连接CG、DG,则△DAG是等腰直角三角形,∴∠ADG=45°,∵∠ADC=45°,∴∠GDC=90°,同理得:△BAD≌△CAG,∴CG=BD=3,Rt△CGD中,∵CD=1,∴DG===2,∵△DAG是等腰直角三角形,∴AD=AG=2.3.如图1,正方形ABCD的边CD在正方形ECGF的边CE上,连接BE、DG.(1)BE和DG的数量关系是BE=DG,BE和DG的位置关系是BE⊥DG;(2)把正方形ECGF绕点C旋转,如图2,(1)中的结论是否还成立?若成立,写出证明过程,若不成立,请说明理由;(3)设正方形ABCD的边长为4,正方形ECGF的边长为3,正方形ECGF绕点C旋转过程中,若A、C、E三点共线,直接写出DG的长.解:(1)BE=DG.BE⊥DG;理由如下:∵四边形ABCD和四边形CEFG为正方形,∴CD=BC,CE=CG,∠BCE=∠DCG=90°,在△BEC和△DGC中,,∴△BEC≌△DGC(SAS),∴BE=DG;如图1,延长GD交BE于点H,∵△BEC≌△DGC,∴∠DGC=∠BEC,∴∠DGC+∠EBC=∠BEC+∠EBC=90°,∴∠BHG=90°,即BE⊥DG;故答案为:BE=DG,BE⊥DG.(2)成立,理由如下:如图2所示:同(1)得:△DCG≌△BCE(SAS),∴BE=DG,∠CDG=∠CBE,∵∠DME=∠BMC,∠CBE+∠BMC=90°,∴∠CDG+∠DME=90°,∴∠DOB=90°,∴BE⊥DG;(3)由(2)得:DG=EB,分两种情况:①如图3所示:∵正方形ABCD的边长为4,正方形ECGF的边长为3,∴AC⊥BD,BD=AC=AB=4,OA=OC=OB=AC=2,CE=3,∴AE=AC﹣CE=,∴OE=OA﹣AE=,在Rt△BOE中,由勾股定理得:DG=BE==;②如图4所示:OE =CE +OC =2+3=5,在Rt △BOE 中,由勾股定理得:DG =BE ==;综上所述,若A 、C 、E 三点共线,DG 的长为或.4.如图,在△ABC 中,∠B =90°,AB =6cm ,BC =8cm ,动点D 从点C 出发,沿CA 方向匀速运动,速度为2cm /s ;同时,动点E 从点A 出发,沿AB 方向匀速运动,速度为1cm /s ;当一个点停止运动,另一个点也停止运动.设点D ,E 运动的时间是t (s )(0<t <5).过点D 作DF ⊥BC 于点F ,连接DE ,EF . (1)t 为何值时,DE ⊥AC ?(2)设四边形AEFC 的面积为S ,试求出S 与t 之间的关系式;(3)是否存在某一时刻t ,使得S 四边形AEFC :S △ABC =17:24,若存在,求出t 的值;若不存在,请说明理由;(4)当t 为何值时,∠ADE =45°?解:(1)∵∠B =90o ,AB =6 cm ,BC =8 cm , ∴AC ===10(cm ),若DE ⊥AC ,∴∠EDA =90°, ∴∠EDA =∠B , ∵∠A =∠A , ∴△ADE ∽△ABC , ∴=,即:=,∴t =,∴当t =s 时,DE ⊥AC ;(2)∵DF ⊥BC , ∴∠DFC =90°, ∴∠DFC =∠B , ∵∠C =∠C , ∴△CDF ∽△CAB , ∴=,即=,∴CF =, ∴BF =8﹣,BE =AB ﹣AE =6﹣t ,∴S =S △ABC ﹣S △BEF =×AB •BC ﹣×BF •BE =×6×8﹣×(8﹣t )×(6﹣t )=﹣t 2+t ;(3)若存在某一时刻t ,使得S 四边形AEFC :S △ABC =17:24, 根据题意得:﹣t 2+t =××6×8,解得:t 1=,t 2=(不合题意舍去),∴当t =s 时,S 四边形AEFC :S △ABC =17:24; (4)过点E 作EM ⊥AC 与点M ,如图所示: 则∠EMA =∠B =90°, ∵∠A =∠A , ∴△AEM ∽△ACB ,∴==,即==,∴EM=t,AM=t,∴DM=10﹣2t﹣t=10﹣t,在Rt△DEM中,当DM=ME时,∠ADE=45°,∴10﹣t=t,∴t=∴当t=s时,∠ADE=45°.5.我们定义:如果两个等腰三角形的顶角相等,且项角的顶点互相重合,则称此图形为“手拉手全等模型”.因为顶点相连的四条边,形象的可以看作两双手,所以通常称为“手拉手模型”.例如,如图(1),△ABC与△ADE都是等腰三角形,其中∠BAC=∠DAE,则△ABD≌△ACE(SAS)(1)熟悉模型:如图(2),已知△ABC与△ADE都是等腰三角形,AB=AC,AD=AE,且∠BAC=∠DAE,求证:BD=CE;(2)运用模型:如图(3),P为等边△ABC内一点,且PA:PB:PC=3:4:5,求∠APB 的度数.小明在解决此问题时,根据前面的“手拉手全等模型”,以BP为边构造等边△BPM,这样就有两个等边三角形共顶点B,然后连结CM,通过转化的思想求出了∠APB的度数,则∠APB的度数为150 度;(3)深化模型:如图(4),在四边形ABCD中,AD=4,CD=3,∠ABC=∠ACB=∠ADC =45°,求BD的长.(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE;(2)解:以BP为边构造等边△BPM,连接CM,如图(3)所示:∵△ABC与△BPM都是等边三角形,∴AB=BC,BP=BM=PM,∠ABC=∠PBM=∠BMP=60°,∴∠ABC﹣∠PBC=∠PBM﹣∠PBC,即∠ABP=∠CBM,在△ABP和△CBM中,,∴△ABP≌△CBM(SAS),∴AP=CM,∠APB=∠CMB,∵PA:PB:PC=3:4:5,∴CM:PM:PC=3:4:5,∴PC2=CM2+PM2,∴△CMP是直角三角形,∴∠PMC=90°,∴∠CMB=∠BMP+∠PMC=60°+90°=150°,∴∠APB=150°,故答案为:150;(3)解:过点A作EA⊥AD,且AE=AD,连接CE,DE,如图(4)所示:则△ADE是等腰直角三角形,∠EAD=90°,∴DE=AD=4,∠EDA=45°,∵∠ADC=45°,∴∠EDC=45°+45°=90°,在Rt△DCE中,CE===,∵∠ACB=∠ABC=45°,∴∠BAC=90°,AB=AC,∵∠BAC+∠CAD=∠EAD+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS),∴BD=CE=.6.(1)某学校“学习落实”数学兴趣小组遇到这样一个题目如图,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO =2:1,求AB的长经过数学小组成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2)请回答:∠ADB=75 °,AB=3(2)请参考以上解决思路,解决问题:如图3在四边形ABCD中对角线AC与BD相交于点0,AC⊥AD,AO=,∠ABC=∠ACB =75°,BO:OD=2:1,求DC的长解:(1)如图2中,过点B作BD∥AC,交AO的延长线于点D,∵BD∥AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴==2,.又∵AO=,∴OD=2AO=2,∴AD=AO+OD=3.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°﹣∠BAD﹣∠ADB=75°=∠ADB,∴AB=AD=3;故答案为75,3.(2)如图3中,过点B作BE∥AD交AC于点E.∵AC⊥AD,BE∥AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴===2.∵BO:OD=1:3,∵AO=,∴EO=2,∴AE=3.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4BE2)2+BE2=(2BE)2,解得:BE=3,∴AB=AC=6,AD=在Rt△CAD中,AC2+AD2=CD2,即62+()2=CD2,解得:CD=(负根已经舍弃).7.正方形ABCD中,AB=4,点E、F分别在AB、BC边上(不与点A、B重合).(1)如图1,连接CE,作DM⊥CE,交CB于点M.若BE=3,则DM= 5 ;(2)如图2,连接EF,将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;再将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…,①如图3,线段EF经过两次操作后拼得△EFD,其形状为等边三角形,在此条件下,求证:AE=CF;②若线段EF经过三次操作恰好拼成四边形EFGH,(3)请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF;(4)以1中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.解:(1)如图1中,∵四边形ABCD是正方形,∴∠B=∠DCM=90°,∵BE=3,BC=4,∴CE===5,∵DM⊥EC,∴∠DMC+∠MCE=90°,∠MCE+∠CEB=90°,∴∠DMC=∠CEB,∵BC=CD,∴△BCE≌△CDM(AAS),∴DM=EC=5.故答案为5.(2)如题图3,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.故答案为等边三角形.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:连接EG、FH,作HN⊥BC于N,GM⊥AB于M.由旋转性质可知,EF=FG=GH=HE,∴四边形EFGH 是菱形, 由△EGM ≌△FHN ,可知EG =FH , ∴四边形EFGH 的形状为正方形. ∴∠HEF =90°∵∠1+∠2=90°,∠2+∠3=90°, ∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°, ∴∠2=∠4. 在△AEH 与△BFE 中,,∴△AEH ≌△BFE (ASA ) ∴AE =BF .故答案为正方形,AE =BF .(4)利用①中结论,易证△AEH 、△BFE 、△CGF 、△DHG 均为全等三角形, ∴BF =CG =DH =AE =x ,AH =BE =CF =DG =4﹣x .∴y =S 正方形ABCD ﹣4S △AEH =4×4﹣4×x (4﹣x )=2x 2﹣8x +16. ∴y =2x 2﹣8x +16(0<x <4) ∵y =2x 2﹣8x +16=2(x ﹣2)2+8,∴当x =2时,y 取得最小值8;当x =0时,y =16, ∴y 的取值范围为:8≤y <16.8.已知:如图1,在平面直角坐标系中,长方形OABC 的顶点B 的坐标是(6,4).(1)直接写出A 点坐标( 6 , 0 ),C 点坐标( 0 , 4 );(2)如图2,D 为OC 中点.连接BD ,AD ,如果在第二象限内有一点P (m ,1),且四边形OADP 的面积是△ABC 面积的2倍,求满足条件的点P 的坐标;(3)如图3,动点M 从点C 出发,以每钞1个单位的速度沿线段CB 运动,同时动点N 从点A 出发.以每秒2个单位的速度沿线段AO 运动,当N 到达O 点时,M ,N 同时停止运动,运动时间是t 秒(t >0),在M ,N 运动过程中.当MN =5时,直接写出时间t 的值. 解:(1)∵四边形OABC 是长方形, ∴AB ∥OC ,BC ∥OA , ∵B (6,4),∴A (6,0),C (0,4), 故答案为:6,0,0,4;(2)如图2,由(1)知,A (6,0),C (0,4), ∴OA =6,OC =4, ∵四边形OABC 是长方形, ∴S 长方形OABC =OA •OC =6×4=24, 连接AC ,∵AC 是长方形OABC 的对角线, ∴S △OAC =S △ABC =S 长方形OABC =12, ∵点D 是OC 的中点, ∴S △OAD =S △OAC =6,∵四边形OADP 的面积是△ABC 面积的2倍, ∴S 四边形OADP =2S △ABC =24,∵S 四边形OADP =S △OAD +S △ODP =6+S △ODP =24, ∴S △ODP =18,∵点D 是OC 的中点,且OC =4, ∴OD =OC =2, ∵P (m ,1),∴S=OD•|m|=×2|m|=18,△ODP∴m=18(由于点P在第二象限,所以,m小于0,舍去)或m=﹣18,∴P(﹣18,1);(3)如图3,由(2)知,OA=6,OC=4,∵四边形OABC是长方形,∴∠AOC=∠OCB=90°,BC=6,由运动知,CM=t,AN=2t,∴ON=OA﹣AN=6﹣2t,过点M作MH⊥OA于H,∴∠OHM=90°=∠AOC=∠OCB,∴四边形OCMH是长方形,∴MH=OC=4,OH=CM=t,∴HN=|ON﹣CM|=6﹣2t﹣t|=|6﹣3t|,在Rt△MHN中,MN=5,根据勾股定理得,HN2=MN2﹣MH2,∴|6﹣3t|2=52﹣42=9,∴t=1或t=3,即:t的值为1或3.9.综合与实践问题情境数学课上,李老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB =2,PC=3.你能求出∠APB的度数吗?(1)小敏与同桌小聪通过观察、思考、讨论后,得出了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP',求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP'B,连接PP',求出∠APB的度数.请参考以上思路,任选一种写出完整的解答过程.类比探究(2)如图2,若点P是正方形ABCD外一点,PA=3,PB=1,,求∠APB的度数.拓展应用(3)如图3,在边长为的等边三角形ABC内有一点O,∠AOC=90°,∠BOC=120°,则△AOC的面积是.解:(1)思路一,如图1,将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP',则△ABP'≌△CBP,AP'=CP=3,BP'=BP=2,∠PBP'=90°∴∠BPP'=45°,根据勾股定理得,,∵AP=1,∴AP2+P'P2=1+8=9,又∵P'A2=32=9,∴AP2+P'P2=P'A2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'+∠BPP'=90°+45°=135°.思路二、同思路一的方法.(2)如图2,将△BPC绕点B逆时针旋转90°,得到△BP'A,连接PP'.则△ABP'≌△CBP,,BP'=BP=1,∠PBP'=90°∴∠BPP'=45°,根据勾股定理得,,∵AP=3,∴AP2+P'P2=9+2=11,又∵,∴AP2+P'P2=P'A2,∴△APP'是直角三角形,且∠APP'=90°,∴∠APB=∠APP'﹣∠BPP'=90°﹣45°=45°.(3)如图,将△ABO绕点B顺时针旋转60°,得到△BCE,连接OE.则△BAO≌△BCE,∠AOB=∠BEC=360°﹣90°﹣120°=150°,∵△BOE是等边三角形,∴∠BEO=∠BOE=60°,∴∠OEC=90°,∠OEC=120°﹣60°=60°,∴sin60°==,设EC=k,OC=2k,则OA=EC=k,∵∠AOC=90°,∴OA2+OC2=AC2,∴3k2+4k2=7,∴k=1或﹣1(舍弃),∴OA=,OC=2,=•OA•OC=××2=.∴S△AOC故答案为.10.如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,BP=BE.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.(1)求证:∠BAP=∠BGN;(2)若AB=6,BC=8,求;(3)如图2,在(2)的条件下,连接CF,求tan∠CFM的值.(1)证明:如图1中,∵四边形ABCD是矩形,∴∠ABC=90°,∴∠BAP=∠APB=90°∵BP=BE,∴∠APB∠BEP=∠GEF,∵MN垂直平分线段AP,∴∠GFE=90°,∴∠BGN+∠GEF=90°,∴∠BAP=∠BGN.(2)解:∵四边形ABCD是矩形,∴∠BAD=∠ABP=90°,AD∥BC,AD=BC=8,∴BD===10,∵AD∥BC,∴∠DAE=∠APB,∵∠APB=∠BEP=∠DEA,∴∠DAE=∠DEA,∴DA=DE=8,∴BE=BP=BD﹣DE=10﹣8=2,∴PA===2,∵MN垂直平分线段AP,∴AF=PF=,∵PB∥AD,∴===,∴PE=PA=,∴EF=PF﹣PE=﹣=,∴==.(3)解:如图3中,连接AM,MP.设CM=x.∵四边形AB CD是矩形,∴∠ADM=∠MCP=90°,AB=CD=6,AD=BC=8,∵MN垂直平分线段AP,∴MA=MP,∴AD2+DM2=PC2+CM2,∴82+(6﹣x)2=62+x2,∴x=,∵∠PFM=∠PCM=90°,∴P,F,M,C四点共圆,∴∠CFM=∠CPM,∴tan∠CFM=tan∠CFM===.11.在利用构造全等三角形来解决的问题中,有一种典型的利用倍延中线的方法,例如:在△ABC中,AB=8,AC=6,点D是BC边上的中点,怎样求AD的取值范围呢?我们可以延长AD到点E,使AD=DE,然后连接BE(如图①),这样,在△ADC和△EDB中,由于,∴△ADC≌△EDB,∴AC=EB,接下来,在△ABE中通过AE的长可求出AD的取值范围.请你回答:(1)在图①中,中线AD的取值范围是1<AD<7 .(2)应用上述方法,解决下面问题①如图②,在△ABC中,点D是BC边上的中点,点E是AB边上的一点,作DF⊥DE交AC边于点F,连接EF,若BE=4,CF=2,请直接写出EF的取值范围.②如图③,在四边形ABCD中,∠BCD=150°,∠ADC=30°,点E是AB中点,点F在DC上,且满足BC=CF,DF=AD,连接CE、ED,请判断CE与ED的位置关系,并证明你的结论.解:(1)延长AD到点E,使AD=DE,连接BE,如图①所示:∵点D是BC边上的中点,∴BD=CD,在△A DC和△EDB中,,∴△ADC≌△EDB(SAS),∴AC=EB=6,在△ABE中,AB﹣BE<AE<AB+BE,∴8﹣6<AE<8+6,即2<AE<14,∴1<AD<7,故答案为:1<AD<7;(2)①延长ED到点N,使ED=DN,连接CN、FN,如图②所示:∵点D是BC边上的中点,∴BD=CD,在△NDC和△EDB中,中,,∴△NDC≌△EDB(SAS),∴BE=CN=4,∵DF⊥DE,ED=DN,∴EF=FN,在△CFN中,CN﹣CF<FN<CN+CF,∴4﹣2<FN<4+2,即2<FN<6,∴2<EF<6;②CE⊥ED;理由如下:延长CE与DA的延长线交于点G,如图③所示:∵点E是AB中点,∴BE=AE,∵∠BCD=150°,∠ADC=30°,∴DG∥BC,∴∠GAE=∠CBE,在△GAE和△CBE中,,∴△GAE≌△CBE(ASA),∴GE=CE,AG=BC,∵BC=CF,DF=AD,∴CF+DF=BC+AD=AG+AD,即:CD=GD,∵GE=CE,12.如图,在平行四边形ABCD中,AB⊥AC,对角线AC、BD相交于点O,将直线AC绕点O 顺时针旋转一个角度α(0°<α≤90°),分别交线段BC、AD于点E、F,已知AB=1,,连接BF.(1)如图①,在旋转的过程中,请写出线段AF与EC的数量关系,并证明;(2)如图②,当α=45°时,请写出线段BF与DF的数量关系,并证明;(3)如图③,当α=90°时,求△BOF的面积.解:(1)AF=CE;理由如下:∵四边形ABCD是平行四边形,∴AD∥BC,AO=CO,∴∠FAO=∠ECO,∴在△AFO与△CEO中,,∴△AFO≌△CEO(ASA),(2)BF=DF;理由如下:∵AB⊥AC,∴∠BAC=90°,∴AC===2,∵四边形ABCD是平行四边形,∴BO=DO,AO=CO=AC=1,∴AB=AO,又∵AB⊥AC,∴∠AOB=45°,∵α=45°,∠AOF=45°,∴∠BOF=∠AOB+∠AOF=45°+45°=90°,∴EF⊥BD,∵BO=DO,∴BF=DF;(3)∵AB⊥AC,∴∠CAB=90°,∴∠CAB=∠AOF=α=90°,∴AB∥EF,∵四边形ABCD是平行四边形,∴AF∥BE,∴四边形ABEF是平行四边形,∴AB=EF=1,由(1)得:△AFO≌△CEO,∴OF=OE=EF=,由(2)得:AO=1,∵AB∥EF,AO⊥EF,∴S△BOF =S△AOF=AO•OF=×1×=.13.综合与实践(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.请写出∠AEB的度数及线段AD,BE之间的数量关系,并说明理由.(2)类比探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE.填空:①∠AEB的度数为90°;②线段CM,AE,BE之间的数量关系为AE=BE+2CM.(3)拓展延伸在(2)的条件下,若BE=4,CM=3,则四边形ABEC的面积为35 .解:(1)∠AEB=60°,AD=BE,理由如下:∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.AD=BE,∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.(2)猜想:①∠AEB=90°,②AE=BE+2CM.理由如下:∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.故答案为:90°,AE=BE+2CM;(3)由(2)得:∠AEB=90°,AD=BE=4,∵△DCE均为等腰直角三角形,CM为△DCE中DE边上的高,∴CM⊥AE,DE=2CM=6,∴AE=AD+DE=4+6=10,∴四边形ABEC的面积=△ACE的面积+△ABE的面积=AE×CM+AE×BE=×10×3+×10×4=35;故答案为:35.14.如图,正方形OABC的边长为8,P为OA上一点,OP=2,Q为OC边上的一个动点,分别以OP\PQ为边在正方形OABC内部作等边三角形OPD和等边三角形PQE.(1)证明:DE=OQ;(2)直线ED与OC交于点F,点Q在运动过程中.①∠EFC的度数是否发生改变?若不变,求出这个角的度数;若改变,说明理由;②连结AE,求AE的最小值.(1)证明:如图1中,∵△OPD和△PQE是等边三角形,∴PO=PD,PQ=PE,∠OPD=∠QPE=60°,∴∠OPQ=∠DPE,∴△OPQ≌△DPE(SAS),∴DE=OQ.(2)①∵△OPQ≌△DPE,∴∠EDP=∠POQ=90°,∵∠DOP=∠ODP=60°∴∠FDO=∠FDO=30°,∴∠EFC=∠FOC+∠FDO=60°.②如图2中,当点Q与点C重合时,以PQ为边作正三角形PQM.∵∠EFC=60°为定值,点E的运动路径为线段DM,过点P作PH⊥EA,垂足为H,∴当AE⊥DE时,AE的值最小∵∠PDE=∠DEH=∠PHE=90°,∴四边形PDEH是矩形,∴∠DPH=90°,EH=PD=2,∴EH=DP=2,在△PHA中,∠AHP=90°,∠HPA=30°∴AH=PA=3,∴AE=EH+AH=2+3=5.15.我们把对角线互相垂直的四边形叫做垂直四边形.(1)如图1,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂直四边形吗?请说明理由;(2)如图2,四边形ABCD是垂直四边形,求证:AD2+BC2=AB2+CD2;(3)如图3,Rt△ABC中,∠ACB=90°,分别以AC、AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,BC=3,求GE长.(1)解:四边形ABCD是垂直四边形;理由如下:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂直四边形;(2)证明:设AC、BD交于点E,如图2所示:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得:AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+DE2+CE2,∴AD2+BC2=AB2+CD2;(3)解:连接CG、BE,如图3所示:∵正方形ACFG和正方形ABDE,∴AG=AC,AB=AE,CG=AC=4,BE=AB,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∵∠AEC+∠CEB+∠ABE=90°,∴∠ABG+∠CEB+∠ABE=90°,即CE⊥BG,∴四边形CGEB是垂直四边形,由(2)得,CG2+BE2=BC2+GE2,∵AC=4,BC=3,∴AB===5,BE=AB=5,∴GE2=CG2+BE2﹣BC2=(4)2+(5)2﹣32=73,∴GE=.。

中考数学专题复习——与四边形有关的综合题集(含压轴题)带答案

中考数学专题复习——与四边形有关的综合题集(含压轴题)带答案

中考专题复习——与四边形有关的综合题集(含压轴题)带答案一.选择题(共9小题)1.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=CG2;③若AF=2DF,则BG=6GF;④CG与BD 一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.12.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF =2S△ABE,其中结论正确的个数为()A.2个 B.3个 C.4个 D.5个3.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH 与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•D G,其中正确结论的个数为()A .2B .3C .4D .54.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE=BF ;②AE ⊥BF ;③sin ∠BQP=;④S 四边形ECFG =2S △BGE .A .4B .3C .2D .15.如图,在矩形ABCD 中,BC=AB ,∠ADC 的平分线交边BC 于点E ,AH ⊥DE 于点H ,连接CH 并延长交边AB 于点F ,连接AE 交CF 于点O ,给出下列命题:(1)∠AEB=∠AEH (2)DH=2EH (3)OH=AE (4)BC ﹣BF=EH其中正确命题的序号( )A .(1)(2)(3)B .(2)(3)(4)C .(2)(4)D .(1)(3)6.如图,在边长为1的正方形ABCD 中,动点F ,E 分别以相同的速度从D ,C 两点同时出发向C 和B 运动(任何一个点到达即停止),过点P 作PM ∥CD 交BC 于M 点,PN ∥BC 交CD 于N 点,连接MN ,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个 B.3个 C.4个 D.5个7.如图,正方形ABCD中,以AD为底边作等腰△ADE,将△ADE沿DE折叠,点A落到点F处,连接EF刚好经过点C,再连接AF,分别交DE于G,交CD于H.在下列结论中:①△ABM≌△DCN;②∠DAF=30°;③△AEF是等腰直角三角形;④EC=CF;⑤S△HCF=S△ADH,其中正确的结论有()A.2个 B.3个 C.4个 D.5个8.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC于点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④S四边形CDEF =S△AEF,其中正确的结论有()个.A .①②B .①②③C .①②④D .①②③④9.如图,正方形ABCD 的边CD 与正方形CGFE 的边CE 重合,O 是EG 的中点,∠EGC 的平分线GH 过点D ,交BE 于H ,连接OH 、FH 、EG 与FH 交于M ,对于下面四个结论:①GH ⊥BE ;②HO BG ;③点H 不在正方形CGFE 的外接圆上;④△GBE ∽△GMF . 其中正确的结论有( )A .1个B .2个C .3个D .4个评卷人 得 分二.填空题(共7小题)10.如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE=AP=1,PB=.下列结论:①△APD ≌△AEB ;②EB ⊥ED ;③点B 到直线AE 的距离为;④S △APD +S △APB =1+;⑤S 正方形ABCD =4+.其中正确结论的序号是 .11.如图,已知正方形ABCD 的边长为2,E 是边BC 上的动点,BF ⊥AE 交CD 于点F ,垂足为G ,连结CG .下列说法:①AG >GE ;②AE=BF ;③点G 运动的路径长为π;④CG 的最小值为﹣1.其中正确的说法是 .(把你认为正确的说法的序号都填上)12.如图,在菱形ABCD 中,AB=6,∠DAB=60°,AE 分别交BC 、BD 于点E 、F ,CE=2,连接CF ,以下结论:①△ABF ≌△CBF ;②点E 到AB 的距离是2;③tan ∠DCF=;④△ABF 的面积为.其中一定成立的是 (把所有正确结论的序号都填在横线上).13.如图,在矩形ABCD 中,AB=2,AD=,在边CD 上有一点E ,使EB 平分∠AEC .若P 为BC 边上一点,且BP=2CP ,连接EP 并延长交AB 的延长线于F .给出以下五个结论:①点B 平分线段AF ;②PF=DE ;③∠BEF=∠FEC ;④S 矩形ABCD =4S △BPF ;⑤△AEB是正三角形.其中正确结论的序号是 .14.如图,在矩形ABCD 中,AD=AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论: ①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有 .15.如图所示,在正方形ABCD的对角线上取点E,使得∠BAE=15°,连结AE,CE.延长CE到F,连结BF,使得BC=BF.若AB=1,则下列结论:①AE=CE;②F 到BC的距离为;③BE+EC=EF;④;⑤.其中正确的是.16.如图,Rt△ABC中,∠C=90°,BC=3cm,AB=5cm.点P从点A出发沿AC以1.5cm/s的速度向点C匀速运动,到达点C后立刻以原来的速度沿CA返回;点Q 从点B出发沿BA以1cm/s的速度向点A匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线PC﹣CB﹣BQ于点E.点P、Q同时出发,当点Q到达点A时停止运动,点P也随之停止.设点P、Q运动的时间是t 秒(t>0),则当t=秒时,四边形BQDE为直角梯形.评卷人得分三.解答题(共34小题)17.在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图1,当点E在边DC上自D向C移动,同时点F在边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出△ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最大值.18.如图,在△ABC中,∠C=90°,AC=BC=6.点P在边AC上运动,过点P作PD ⊥AB于点D,以AP、AD为邻边作▱PADE.设□PADE与△ABC重叠部分图形的面积为y,线段AP的长为x(0<x≤6).(1)求线段PE的长(用含x的代数式表示).(2)当点E落在边BC上时,求x的值.(3)求y与x之间的函数关系式.(4)直接写出点E到△ABC任意两边所在直线距离相等时x的值.19.问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM=CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为2的菱形ABCD的对角线,∠ABC=60°.点M和N 分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM 和BN,交于点P.求△APB周长的最大值.20.如图1,在边长为4的菱形ABCD中,AC为其对角线,∠ABC=60°点M、N 分别是边BC、边CD上的动点,且MB=NC.连接AM、AN、MN.MN交AC于点P.(1)△AMN是什么特殊的三角形?说明理由.并求其面积最小值;(2)求点P到直线CD距离的最大值;(3)如图2,已知MB=NC=1,点E、F分别是边AM、边AN上的动点,连接EF、PF,EF+PF是否存在最小值?若存在,求出最小值及此时AE、AF的长;若不存在,请说明理由.21.如图①,正方形ABCD边长为1,将正方形ABCD绕点A逆时针旋转α度后得到正方形AB'C'D'(0°<α<90°),C'D'与直线CD相交于点E,C'B'与直线CD相交于点F.问题发现:(1)试猜想∠EAF=;三角形EC'F的周长.问题探究:如图②,连接B'D'分别交AE,AF于P,Q两点.(2)在旋转过程中,若D'P=a,QB'=b,试用a,b来表示PQ,并说明理由.(3)在旋转过程中△APQ的面积是否存在最小值,若存在,请求出这个值;若不存在,请说明理由.22.如图,在矩形ABCD中,AB=CD=4cm,AD=BC=6cm,AE=DE=3cm,点P从点E出发,沿EB方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CD方向匀速运动,速度为2cm/s,连接PQ,设运动时间为t(s)(0<t<2),解答下列问题:(1)当t为何值时,PQ⊥CD?(2)设四边形PBCQ的面积为y(cm2),求y与t的函数关系式;(3)是否存在某一时刻t,使S四边形PBCQ :S四边形PQDE=22:5?若存在,求出t的值;若不存在,说明理由.(4)是否存在某一时刻t,使A,P,Q三点在同一直线上?若存在,求出t的值;若不存在,说明理由.23.已知,在梯形ABCD中,AD∥BC,∠A=90°,AD=2,AB=4,BC=5,在射线BC任取一点M,联结DM,作∠MDN=∠BDC,∠MDN的另一边DN交直线BC 于点N(点N在点M的左侧).(1)当BM的长为10时,求证:BD⊥DM;(2)如图(1),当点N在线段BC上时,设BN=x,BM=y,求y关于x的函数关系式,并写出它的定义域;(3)如果△DMN是等腰三角形,求BN的长.24.如图,在边长为2的正方形ABCD中,点P是边AD上的动点(点P不与点A、点D重合),点Q是边CD上一点,联结PB、PQ,且∠PBC=∠BPQ.(1)当QD=QC时,求∠ABP的正切值;(2)设AP=x,CQ=y,求y关于x的函数解析式;(3)联结BQ,在△PBQ中是否存在度数不变的角?若存在,指出这个角,并求出它的度数;若不存在,请说明理由.25.已知在矩形ABCD中,AB=2,AD=4.P是对角线BD上的一个动点(点P不与点B、D重合),过点P作PF⊥BD,交射线BC于点F.联结AP,画∠FPE=∠BAP,PE交BF于点E.设PD=x,EF=y.(1)当点A、P、F在一条直线上时,求△ABF的面积;(2)如图1,当点F在边BC上时,求y关于x的函数解析式,并写出函数定义域;(3)联结PC,若∠FPC=∠BPE,请直接写出PD的长.26.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG ≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.27.已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE :S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.28.如图1,矩形OABC顶点B的坐标为(8,3),定点D的坐标为(12,0),动点P从点O出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,动点Q从点D出发,以每秒1个单位长度的速度沿x轴的负方向匀速运动,PQ两点同时运动,相遇时停止.在运动过程中,以PQ为斜边在x轴上方作等腰直角三角形PQR.设运动时间为t秒.(1)当t=时,△PQR的边QR经过点B;(2)设△PQR和矩形OABC重叠部分的面积为S,求S关于t的函数关系式;(3)如图2,过定点E(5,0)作EF⊥BC,垂足为F,当△PQR的顶点R落在矩形OABC的内部时,过点R作x轴、y轴的平行线,分别交EF、BC于点M、N,若∠MAN=45°,求t的值.29.△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C 重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.30.已知:四边形ABCD中,对角线的交点为O,E是OC上的一点,过点A作AG⊥BE于点G,AG、BD交于点F.(1)如图1,若四边形ABCD是正方形,求证:OE=OF;(2)如图2,若四边形ABCD是菱形,∠ABC=120°.探究线段OE与OF的数量关系,并说明理由;(3)如图3,若四边形ABCD是等腰梯形,∠ABC=α,且AC⊥BD.结合上面的活动经验,探究线段OE与OF的数量关系为(直接写出答案).31.如图,矩形ABCD中,AB=3,AD=4,E为AB上一点,AE=1,M为射线AD 上一动点,AM=a(a为大于0的常数),直线EM与直线CD交于点F,过点M 作MG⊥EM,交直线BC于点G.(1)若M为边AD中点,求证△EFG是等腰三角形;(2)若点G与点C重合,求线段MG的长;(3)请用含a的代数式表示△EFG的面积S,并指出S的最小整数值.32.已知,在△ABC中,∠BAC=90°,∠ABC=45°,点D为直线BC上一动点(点D不与点B,C重合).以AD为边作正方形ADEF,连接CF(1)如图1,当点D在线段BC上时.求证:CF+CD=BC;(2)如图2,当点D在线段BC的延长线上时,其他条件不变,请直接写出CF,BC,CD三条线段之间的关系;(3)如图3,当点D在线段BC的反向延长线上时,且点A,F分别在直线BC 的两侧,其他条件不变;①请直接写出CF,BC,CD三条线段之间的关系;②若正方形ADEF的边长为2,对角线AE,DF相交于点O,连接OC.求OC 的长度.33.已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF :S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t 的值;若不存在,请说明理由.34.如图1,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H.(1)如图2,将△ADF绕点A顺时针旋转90°得到△ABG.①求证:△AGE≌△AFE;②若BE=2,DF=3,求AH的长.(2)如图3,连接BD交AE于点M,交AF于点N.请探究并猜想:线段BM,MN,ND之间有什么数量关系?并说明理由.35.给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.①求证:△BCE是等边三角形;②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.36.如图1,直角梯形ABCD中,AD∥BC,∠ADC=90°,AD=8,BC=6,点M从点D出发,以每秒2个单位长度的速度向点A运动,同时,点N从点B出发,以每秒1个单位长度的速度向点C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP⊥AD于点P,连接AC交NP于点Q,连接MQ.设运动时间为t秒.(1)AM=,AP=.(用含t的代数式表示)(2)当四边形ANCP为平行四边形时,求t的值(3)如图2,将△AQM沿AD翻折,得△AKM,是否存在某时刻t,①使四边形AQMK为为菱形,若存在,求出t的值;若不存在,请说明理由②使四边形AQMK为正方形,则AC=.37.已知,如图1,BD是边长为1的正方形ABCD的对角线,BE平分∠DBC交DC于点E,延长BC到点F,使CF=CE,连接DF,交BE的延长线于点G.(1)求证:△BCE≌△DCF;(2)求CF的长;(3)如图2,在AB上取一点H,且BH=CF,若以BC为x轴,AB为y轴建立直角坐标系,问在直线BD上是否存在点P,使得以B、H、P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的P点坐标;若不存在,说明理由.38.如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,E点F点分别为AB,AC的中点.(1)求证:四边形AEDF是菱形;(2)求菱形AEDF的面积;(3)若H从F点出发,在线段FE上以每秒2cm的速度向E点运动,点P从B 点出发,在线段BC上以每秒3cm的速度向C点运动,问当t为何值时,四边形BPHE是平行四边形?当t取何值时,四边形PCFH是平行四边形?39.如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连接CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M 作MN∥OA,交BO于点N,连接ND、BM,设OP=t.(1)求点M的坐标(用含t的代数式表示).(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由.(3)当t为何值时,四边形BNDM的面积最小.40.如图(1),E是正方形ABCD的边BC上的一个点(E与B、C两点不重合),过点E作射线EP⊥AE,在射线EP上截取线段EF,使得EF=AE;过点F作FG⊥BC交BC的延长线于点G.(1)求证:FG=BE;(2)连接CF,如图(2),求证:CF平分∠DCG;(3)当=时,求sin∠CFE的值.41.如图,已知在矩形ABCD中,AD=10,CD=5,点E从点D出发,沿线段DA以每秒1个单位长的速度向点A方向移动,同时点F从点C出发,沿射线CD方向以每秒2个单位长的速度移动,当B、E、F三点共线时,两点同时停止运动,此时BF⊥CE.设点E移动的时间为t(秒).(1)求当t为何值时,两点同时停止运动;(2)求当t为何值时,EC是∠BED的平分线;(3)设四边形BCFE的面积为S,求S与t之间的函数关系式,并写出t的取值范围;(4)求当t为何值时,△EFC是等腰三角形.(直接写出答案)42.如图1,将矩形ABCD绕点A顺时针旋转至矩形B点正好落在CD上的点E 处,连结BE.(1)求证:∠BAE=2∠CBE;(2)如图2,连BG交AE于M,点N为BE的中点,连MN、AF,试探究AF与MN的数量关系,并证明你的结论;(3)若AB=5,BC=3,直接写出BG的长.43.将一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10.(1)如图(1),在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点,求E点的坐标;(2)如图(2),在OA、OC边上选取适当的点E′、F,将△E′OF沿E′F折叠,使O点落在AB边上D′点,过D′作D′G∥AO交E′F于T点,交OC于G点,求证:TG=AE′;(3)在(2)的条件下,设T(x,y).①探求:y与x之间的函数关系式.②指出变量x的取值范围.44.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,动点P从点B出发,沿射线BC的方向以每秒2cm的速度运动,动点Q从点A 出发,在线段AD上以每秒1cm的速度向点D运动,点P,Q分别从点B,A同时出发,当点Q运动到点D时,点P随之停止运动,设运动的时间为t(秒).(1)当t为何值时,四边形PQDC是平行四边形.(2)当t为何值时,以C,D,Q,P为顶点的梯形面积等于60cm2?(3)是否存在点P,使△PQD是等腰三角形(不考虑QD=PD)?若存在,请求出所有满足要求的t的值,若不存在,请说明理由.45.如图,在平面直角坐标系中,四边形OABC是矩形,其中点A在x轴的正半轴上,点B的坐标为(4,2),点D为对角线OB上一个动点(不包括端点),∠BCD的平分线交OB于点E.(1)求线段OB所在直线的函数表达式,并写出CD的取值范围.(2)当∠BCD的平分线经过点A时,求点D的坐标.(3)点P是线段BC上的一个动点,求CD十DP的最小值.46.如图,在四边形ABCD中,∠A=90°,AD∥BC,E为AB的中点,连接CE,BD,过点E作FE⊥CE于点E,交AD于点F,连接CF,已知2AD=AB=BC.(1)求证:CE=BD;(2)若AB=4,求AF的长度;(3)求sin∠EFC的值.47.如图①,在长方形ABCD中,AB=DC=3cm,BC=5cm,点P从点B出发,以1cm/s的速度沿BC向点C运动,设点P的运动时间为ts.(1)PC=cm.(用含t的代数式表示);(2)当t为何值时,△ABP≌△DCP,请说明理由;(3)如图②,当点P从点B开始运动时,点Q从点C出发,以acm/s的速度沿CD向点D运动,是否存在这样a的值,使得△ABP与△PCQ全等?若存在,请求出a的值,若不存在,请说明理由.48.如图,在平面直角坐标系中,四边形ABCD是平行四边形,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求OA、OB的长.(2)若点E为x轴上的点,且S=,试判断△AOE与△AOD是否相似?并△AOE说明理由.(3)在直线AB上是否存在点F,使以A、C、F为顶点的三角形是等腰三角形?如果存在,请直接写出点F的坐标.49.如图,已知四边形ABCD中,AB∥DC,AB=DC,且AB=6cm,BC=8cm,对角线AC=l0cm.(1)求证:四边形ABCD是矩形;(2)如图(2),若动点Q从点C出发,在CA边上以每秒5cm的速度向点A匀速运动,同时动点P从点B出发,在BC边上以每秒4cm的速度向点C匀速运动,运动时间为t秒(0≤t<2),连接BQ、AP,若AP⊥BQ,求t的值;(3)如图(3),若点Q在对角线AC上,CQ=4cm,动点P从B点出发,以每秒1cm的速度沿BC运动至点C止.设点P运动了t 秒,请你探索:从运动开始,经过多少时间,以点Q、P、C为顶点的三角形是等腰三角形?请求出所有可能的结果.50.如图,点E为正方形ABCD的边BC所在直线上的一点,连接AE,过点C作CF⊥AE于F,连接BF.(1)如图1,当点E在CB的延长线上,且AC=EC时,求证:BF=;(2)如图2,当点E在线段BC上,且AE平分∠BAC时,求证:AB+BE=AC;(3)如图3,当点E继续往右运动到BC中点时,过点D作DH⊥AE于H,连接BH.求证:∠BHF=45°.四边形综合题集参考答案与试题解析一.选择题(共9小题)1.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:=CG2;③若AF=2DF,则BG=6GF;④CG与BD ①△AED≌△DFB;②S四边形BCDG一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.1【分析】①先证明△ABD为等边三角形,根据“SAS”证明△AED≌△DFB;②证明∠BGE=60°=∠BCD,从而得点B、C、D、G四点共圆,因此∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N.证明△CBM≌△CDN,所以S=S四边形BCDG,易求后者的面积;四边形CMGN③过点F作FP∥AE于P点,根据题意有FP:AE=DF:DA=1:3,则FP:BE=1:6=FG:BG,即BG=6GF;④因为点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,当点E,F分别是AB,AD中点时,CG⊥BD;⑤∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°.【解答】解:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED ≌△DFB ,故本选项正确;②∵∠BGE=∠BDG +∠DBF=∠BDG +∠GDF=60°=∠BCD ,即∠BGD +∠BCD=180°,∴点B 、C 、D 、G 四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C 作CM ⊥GB 于M ,CN ⊥GD 于N (如图1),则△CBM ≌△CDN (AAS ),∴S 四边形BCDG =S 四边形CMGN ,S 四边形CMGN =2S △CMG ,∵∠CGM=60°,∴GM=CG ,CM=CG ,∴S 四边形CMGN =2S △CMG =2××CG ×CG=CG 2,故本选项错误;③过点F 作FP ∥AE 交DE 于P 点(如图2),∵AF=2FD ,∴FP :AE=DF :DA=1:3,∵AE=DF ,AB=AD ,∴BE=2AE ,∴FP :BE=FP :2AE=1:6,∵FP ∥AE ,∴PF ∥BE ,∴FG :BG=FP :BE=1:6,即BG=6GF ,故本选项正确;④当点E ,F 分别是AB ,AD 中点时(如图3),由(1)知,△ABD ,△BDC 为等边三角形,∵点E ,F 分别是AB ,AD 中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选:B.【点评】此题综合考查了菱形的性质,等边三角形的判定与性质,全等三角形的判定和性质,作出辅助线构造出全等三角形,把不规则图形的面转化为两个全等三角形的面积是解题的关键.2.如图,正方形ABCD中,点E,F分别在BC,CD上,△AEF是等边三角形,连接AC交EF于点G,下列结论:①CE=CF,②∠AEB=75°,③AG=2GC,④BE+DF=EF,⑤S△CEF =2S△ABE,其中结论正确的个数为()A.2个 B.3个 C.4个 D.5个【分析】通过条件可以得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,得到CE=CF;由正方形的性质就可以得出∠AEB=75°;设EC=x,由勾股定理得到EF,表示出BE,利用三角形的面积公式分别表示出S△CEF 和2S△ABE,再通过比较大小就可以得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,Rt△ABE≌Rt△ADF(HL),∴BE=DF,∴CE=CF,故①正确;∵∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°,∴∠AEB=75°,故②正确;设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AG≠2GC,③错误;∵CG=x,AG=x,∴AC=x∴AB=AC•=x,∴BE=x﹣x=x,∴BE+DF=(﹣1)x,∴BE+DF≠EF,故④错误;∵S△CEF=x2,S△ABE=×BE×AB=x×x=x2,∴2S△ABE ═S△CEF,故⑤正确.综上所述,正确的有3个,故选:B.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.3.如图,边长为2的正方形ABCD中,AE平分∠DAC,AE交CD于点F,CE⊥AE,垂足为点E,EG⊥CD,垂足为点G,点H在边BC上,BH=DF,连接AH、FH,FH 与AC交于点M,以下结论:①FH=2BH;②AC⊥FH;③S△ACF=1;④CE=AF;⑤EG2=FG•DG,其中正确结论的个数为()A.2 B.3 C.4 D.5【分析】①②、证明△ABH≌△ADF,得AF=AH,再得AC平分∠FAH,则AM既是中线,又是高线,得AC⊥FH,证明BH=HM=MF=FD,则FH=2BH;所以①②都正确;≠1,错误;③可以直接求出FC的长,计算S△ACF④根据正方形边长为2,分别计算CE和AF的长得结论正确;还可以利用图2证明△ADF≌△CDN得:CN=AF,由CE=CN=AF;⑤利用相似先得出EG2=FG•CG,再根据同角的三角函数列式计算CG的长为1,则DG=CG,所以⑤也正确.【解答】解:①②如图1,∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∠BAD=90°,∵AE平分∠DAC,∴∠FAD=∠CAF=22.5°,∵BH=DF,∴△ABH≌△ADF,∴AH=AF,∠BAH=∠FAD=22.5°,∴∠HAC=∠FAC,∴HM=FM,AC⊥FH,∵AE平分∠DAC,∴DF=FM,∴FH=2DF=2BH,故选项①②正确;③在Rt△FMC中,∠FCM=45°,∴△FMC是等腰直角三角形,∵正方形的边长为2,∴AC=2,MC=DF=2﹣2,∴FC=2﹣DF=2﹣(2﹣2)=4﹣2,S△AFC=CF•AD≠1,所以选项③不正确;④AF===2,∵△ADF∽△CEF,∴,∴,∴CE=,∴CE=AF,故选项④正确;⑤延长CE和AD交于N,如图2,∵AE⊥CE,AE平分∠CAD,∴CE=EN,∵EG∥DN,∴CG=DG,在Rt△FEC中,EG⊥FC,∴EG2=FG•CG,∴EG2=FG•DG,故选项⑤正确;本题正确的结论有4个,故选:C.【点评】本题是四边形的综合题,综合考查了正方形、相似三角形、全等三角形的性质和判定;求边时可以利用三角形相似列比例式,也可以直接利用同角三角函数列式计算;同时运用了勾股定理求线段的长,勾股定理在正方形中运用得比较多.4.如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将△BCF 沿BF 对折,得到△BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE=BF ;②AE ⊥BF ;③sin ∠BQP=;④S 四边形ECFG =2S △BGE .A .4B .3C .2D .1【分析】首先证明△ABE ≌△BCF ,再利用角的关系求得∠BGE=90°,即可得到①AE=BF ;②AE ⊥BF ;△BCF 沿BF 对折,得到△BPF ,利用角的关系求出QF=QB ,解出BP ,QB ,根据正弦的定义即可求解;根据AA 可证△BGE 与△BCF 相似,进一步得到相似比,再根据相似三角形的性质即可求解.【解答】解:∵E ,F 分别是正方形ABCD 边BC ,CD 的中点,∴CF=BE ,在△ABE 和△BCF 中,,∴Rt △ABE ≌Rt △BCF (SAS ),∴∠BAE=∠CBF ,AE=BF ,故①正确;又∵∠BAE +∠BEA=90°,∴∠CBF +∠BEA=90°,∴∠BGE=90°,∴AE ⊥BF ,故②正确;根据题意得,FP=FC ,∠PFB=∠BFC ,∠FPB=90°∵CD ∥AB ,∴∠CFB=∠ABF ,∴∠ABF=∠PFB ,∴QF=QB ,令PF=k (k >0),则PB=2k在Rt △BPQ 中,设QB=x ,∴x 2=(x ﹣k )2+4k 2,∴x=,∴sin=∠BQP==,故③正确; ∵∠BGE=∠BCF ,∠GBE=∠CBF ,∴△BGE ∽△BCF ,∵BE=BC ,BF=BC , ∴BE :BF=1:,∴△BGE 的面积:△BCF 的面积=1:5,∴S 四边形ECFG =4S △BGE ,故④错误.故选:B.【点评】本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.5.如图,在矩形ABCD中,BC=AB,∠ADC的平分线交边BC于点E,AH⊥DE 于点H,连接CH并延长交边AB于点F,连接AE交CF于点O,给出下列命题:(1)∠AEB=∠AEH (2)DH=2EH(3)OH=AE (4)BC﹣BF=EH其中正确命题的序号()A.(1)(2)(3)B.(2)(3)(4)C.(2)(4)D.(1)(3)【分析】(1)根据矩形的性质得到AD=BC=AB=CD,由DE平分∠ADC,得到△ADH是等腰直角三角形,△DEC是等腰直角三角形,得到DE=CD,得到等腰三角形求出∠AED=67.5°,∠AEB=67.5°,得到(1)正确;(2)设DH=1,则AH=DH=1,AD=DE=,求出HE=﹣1,得到2HE≠1,所以(2)不正确;(3)通过角的度数求出△AOH和△OEH是等腰三角形,从而得到(3)正确;(4)由△AFH≌△CHE,到AF=EH,由△ABE≌△AHE,得到BE=EH,于是得到BC﹣BF=(BE+CE)﹣(AB﹣AF)=(CD+EH)﹣(CD﹣EH)=2EH,从而得到(4)不正确.【解答】解:(1)在矩形ABCD中,AD=BC=AB=CD,∠ADC=∠BCD=90°,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∵AH⊥DE,∴△ADH是等腰直角三角形,∴AD=AH,∴AH=AB=CD,∵△DEC是等腰直角三角形,∴DE=CD,∴AD=DE,∴∠AED=67.5°,∴∠AEB=180°﹣45°﹣67.5°=67.5°,∴∠AEH=∠AEB,所以(1)结论正确;(2)设DH=1,则AH=DH=1,AD=DE=,∴HE=DE﹣DH=﹣1,∴2HE=2(﹣1)=4﹣2≠1,所以(2)结论不正确;(3)∵∠AEH=67.5°,∴∠EAH=22.5°,∵DH=CD,∠EDC=45°,∴∠DHC=67.5°,∴∠OHA=180°﹣90°﹣67.5°=22.5°,∴∠OAH=∠OHA=22.5°,∴OA=OH,∴∠AEH=∠OHE=67.5°,∴OH=OE=OA,∴OH=AE,所以(3)正确;(4)∵AH=DH,CD=CE,在△AFH与△CHE中,,∴△AFH≌△CHE,∴AF=EH,在Rt△ABE与Rt△AHE中,,∴△ABE≌△AHE,∴BE=EH,∴BC﹣BF=(BE+CE)﹣(AB﹣AF)=(CD+EH)﹣(CD﹣EH)=2EH,所以(2)不正确,故选:D.【点评】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.6.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C 两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC 于M点,PN∥BC交CD于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个 B.3个 C.4个 D.5个。

中考数学专题复习:四边形(一)

中考数学专题复习:四边形(一)

中考数学专题复习:四边形(一)1.如图1,图形A、图形B是含60°内角的全等的平行四边形纸片(非菱形),先后按图2(2B)、图3(1A1B)的方式放置在同一个含60°内角的菱形中.若知道图形②与图形⑤的面积差,则一定能求出()A.图形①与图形③的周长和B.图形④与图形⑥的周长和C.图形②与图形⑤的周长和D.图形④与图形⑥的周长差2.如图,矩形ABCD中,AE⊥BD交CD于点E,点F在AD上,连接CF交AE于点G,且CG=GF=AF,若BD=4,则CD的值为()A.B.4 C.D.3.如图,矩形ABCD中,点E在BC上,且AE平分∠BAC,AE=CE,BE=2,则矩形ABCD 的面积为()A.24B.24 C.12D.124.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF,AF.若AB=2,AD=3,则∠AEF的大小为()A.30°B.45°C.60°D.不能确定5.如图,在矩形ABCD中,AB=14,BC=7,M、N分别为AB、CD的中点,P、Q均为CD边上的动点(点Q在点P左侧),点G为MN上一点,且PQ=NG=5,则当MP+GQ =13时,满足条件的点P有()A.4个B.3个C.2个D.1个6.如图,以长方形ABCD的顶点A为圆心,AD长为半径画弧,交AB于点F;再以顶点C 为圆心,CD长为半径画弧,交AB于点E.若AD=5,CD=,则EF的长度为()A.2 B.3 C.D.17.如图,点P是矩形ABCD的边上一动点,矩形两边长AB、BC长分别为15和20,那么P到矩形两条对角线AC和BD的距离之和是()A.6 B.12 C.24 D.不能确定8.如图,将矩形纸片ABCD沿BE折叠,使点A落在对角线BD上的A'处.若∠DBC=24°,则∠A'EB等于()A.66°B.60°C.57°D.48°9.如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则ED的长为()A.B.2C.2 D.10.矩形ABCD中,点M在对角线AC上,过M作AB的平行线交AD于E,交BC于F,连接DM和BM,已知,DE=2,ME=4,则图中阴影部分的面积是()A.12 B.10 C.8 D.611.如图,矩形纸片ABCD中,AD=6,E是CD上一点,连结AE,△ADE沿直线AE翻折后点D落到点F,过点F作FG⊥AD,垂足为G.若AD=3GD,则DE的值为()A.B.C.D.12.如图,在直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点B的坐标为(﹣1,0),∠BCD=120°,则点D的坐标为()A.(2,2)B.(,2)C.(3,)D.(2,)13.将矩形纸片ABCD按如图方式折叠,若△DFG刚好是等边三角形,则矩形的两边AD,AB的比为()A.2:1 B.C.D.14.如图,正方形ABCD的边长为6,AC为对角线,取AB中点E,DE与AC交于点F.则sin∠DFC=()A.B.C.D.15.如图,矩形ABCD(AD>AB),分别以AD、BC为边向内作等边三角形(图1);分别以AB、CD为边向内作等边三角形(图2),两个等边三角形的重叠部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.若=8,则的值为()A.B.C.D.16.如图,在△ABC中,∠ACB=90°,作CD⊥AB于点D,以AB为边作矩形ABEF,使得AF=AD,延长CD,交EF于点G,作AN⊥AC交GF于点N,作MN⊥AN交CB的延长线于点M,MN分别交BE,DG于点H,P,若NP=HP,NF=2,则四边形ABMN的面积为()A.8 B.9 C.10 D.1117.如图,线段AB的长为8,点D在AB上,△ACD是边长为3的等边三角形,过点D作与CD垂直的射线DP,过DP上一动点G(不与D重合)作矩形CDGH,记矩形CDGH 的对角线交点为O,连接OB,则线段BO的最小值为()A.5 B.4 C.D.18.如图,矩形ABCD中,对角线AC,BD交于点O,点E是边AB上一点,且OE⊥AC.设∠AOD=α,∠AEO=β,则α与β间的关系正确的是()A.α=βB.α+β=180°C.2α+β=180°D.α+2β=180°19.如图,四边形ABCD是菱形,对角线AC,BD交于点O,E是边AD的中点,过点E 作EF⊥BD,EG⊥AC,点F,G为垂足,若AC=10,BD=24,则FG的长为()A.5 B.6.5 C.10 D.1220.如图,在菱形ABCD中,AB=BD,AE=DF,BF与DE相交于点G,CG与BD相交于点H.下列结论中:①∠DBC=60°;②△AED≌△DFB;③∠BGE=60°,正确的是()A.①②B.②③C.①③D.①②③参考答案1.解:设平行四边形较长的一边为x,较短的一边为y,菱形的边长为a,图形②的面积S2=sin60°(2x﹣a)(2y﹣a)=(4xy﹣2ax﹣2ay+a2),图形⑤的面积S5=sin60°(x+y﹣a)(x+y﹣a)=(x2+y2+2xy+a2﹣2ax﹣2ay),∴S5﹣S2=(x2+y2+2xy+a2﹣2ax﹣2ay)﹣(4xy﹣2ax﹣2ay+a2)=(x2+y2﹣2xy)=(x﹣y)2,图形②的C2=2(2x﹣a)+2(2y﹣a)=4x+4y﹣4a,图形⑤的C5=2(x+y﹣a)+2(x+y﹣a)=4x+4y﹣4a,∴C2+C5=(4x+4y﹣4a)+(4x+4y﹣4a)=8x+8y﹣8a,故C选项不符合题意;图形①的周长C1=2(a﹣y)+2(a﹣x)=4a﹣2y﹣2x,图形③的周长C3=2(a﹣y)+2(a﹣x)=4a﹣2y﹣2x,∴C1+C3=4a﹣2y﹣2x+4a﹣2y﹣2x=8a﹣4y﹣4x,故A选项不符合题意;图形④的周长C4=4(a﹣x),图形⑥的周长C6=4(a﹣y),∴C4+C6=4(a﹣x)+4(a﹣y)=8a﹣4y﹣4x,故B选项不符合题意;∴C4﹣C6=4(a﹣x)﹣4(a﹣y)=4(y﹣x),根据题意S5﹣S2=(x﹣y)2,为已知,即(x﹣y)为已知,故D选项符合题意,故选:D.2.解:连接AC交BD于点O,连接OG,令BD与CF交于点M,∵GF=AF,∴∠FAG=∠FGA,∵四边形ABCD为矩形,∴BD=AC=4,OB=OD,∵CG=GF,∴OG为△CAF的中位线,∴AF=2OG,OG∥AD,∴∠FDM=∠MOG,∵AE⊥BD,∴∠FGA+∠GMO=90°,∠MDF+∠FAG=90°,∴∠GMO=∠MDF,∴∠GMO=∠MDF=∠MOG=∠FMD,∴OG=GM,FM=FD,设OG=GM=x,则CG=GF=AF=2x,∴FD=FM=FG﹣MG=2x﹣x=x,∴CF=4x,AD=3x,在Rt△DCF中,由勾股定理得,CD==x,在Rt△ADC中,由勾股定理得,DC2+AD2=AC2,即15x2+9x2=48,解得x=,∴CD=x=,故选:D.3.解:∵四边形ABCD是矩形,∴∠B=90°,∴∠BAC+∠BCA=90°,∵AE平分∠BAC,AE=CE,∴∠BAE=∠EAC=∠ECA,∴∠BAE+∠EAC+∠ECA=90°,∴∠BAE=∠EAC=∠ECA=30°,∴AE=CE=2BE=4,AB=2,∴BC=BE+CE=6,∴矩形ABCD面积=AB×BC=2×6=12;故选:C.4.解:∵四边形ABCD是矩形,AD=3,AB=2,∴∠B=∠C=90°,CD=AB=2,BC=AD=3,∵点E是CD的中点,FC=2BF,∴CE=DE=1,BF=1,CF=2,∴AB=CF=2,CE=BF=1,在△ABF和△FCE中,,∴△ABF≌△FCE(SAS),∴AF=EF,∠BAF=∠CFE,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠CFE+∠AFB=90°,∴∠AFE=180°﹣(∠CFE+∠AFB)=180°﹣9°=90°,∴△AFE是等腰直角三角形,∴∠AEF=45°,故选:B.5.解:如图,当P、Q在N的两侧时,设QN=x,则PN=5﹣x,∵四边形ABCD是矩形,M、N分别为AB、CD的中点,∴四边形ADNM、四边形MNCB都是矩形,∵PQ=NG=5,BC=7,AB=14,∴MN=BC=7,由勾股定理得:PM2=49+(5﹣x)2,QG2=25+x2,∴PM2﹣QG2=(PM+QG)(PM﹣QG)=49﹣10x,∵MP+GQ=13,∴PM﹣QG=,∴2PM=13+,∴PM=,QG=,∴()2=25+x2,整理得:144x2﹣600x+625=0,解得:x1=x2=;当P、Q在N的右侧时,设QN=x,同理可得:PM=,QG=,∴()2=25+x2,整理得:144x2﹣600x+625=0,解得:x1=x2=﹣(不合题意,舍去);综上,满足条件的点P只有1个.故选:D.6.解:如图,连接CE,则CE=CD=,BC=AD=5,∵△BCE为直角三角形,∴BE==,∵BF=AB﹣AF=﹣5=,∴EF=BE﹣BF=﹣=2.故选:A.7.解:连接OP,如图所示:∵四边形ABCD是矩形,∴AC=BD,OA=OC=AC,OB=OD=BD,∠ABC=90°,S△AOD=S矩形ABCD,∴OA=OD=AC,∵AB=15,BC=20,∴AC===25,S△AOD=S矩形ABCD=×15×20=75,∴OA=OD=,∴S△AOD=S△APO+S△DPO=OA•PE+OD•PF=OA•(PE+PF)=×(PE+PF)=75,∴PE+PF=12.∴点P到矩形的两条对角线AC和BD的距离之和是12.故选:B.8.解:∵四边形ABCD是矩形,∴∠A=∠ABC=90°,由折叠的性质得:∠BA'E=∠A=90°,∠A'BE=∠ABE,∴∠A'BE=∠ABE=(90°﹣∠DBC)=(90°﹣24°)=33°,∴∠A'EB=90°﹣∠A'BE=90°﹣33°=57°.故选:C.9.解:∵四边形ABCD是矩形,∴∠ADC=90°,BD=AC,OD=BD,OC=AC,∴OC=OD,∵EO=2DE,∴设DE=x,OE=2x,∴OD=OC=3x,∵CE⊥BD,∴∠DEC=∠OEC=90°,在Rt△OCE中,∵OE2+CE2=OC2,∴(2x)2+52=(3x)2,解得:x=∴DE=;故选:A.10.解:过M作MP⊥AB于P,交DC于Q,如图所示:则四边形DEMQ,四边形QMFC,四边形AEMP,四边形MPBF都是矩形,∴S△DEM=S△DQM,S△QCM=S△MFC,S△AEM=S△APM,S△MPB=S△MFB,S△ABC=S△ADC,∴S△ABC﹣S△AMP﹣S△MCF=S△ADC﹣S△AEM﹣S△MQC,∴S=S四边形MPBF,四边形DEMQ∵DE=CF=2,∴S△DEM=S△MFB=×2×4=4,∴S=4+4=8,故选:C.阴11.解:过点E作EH⊥FG,交FG于点H,如图,由题意:△AEF≌△AED,则AF=AD=6,DE=EF.∵AD=6,AD=3GD,∴GD=2.∴AG=AD﹣DG=6﹣2=4.∵FG⊥AD,∴FG=.∵四边形ABCD是矩形,∴∠D=90°,∵FG⊥AD,EH⊥FG,∴四边形GHED为矩形.∴GH=DE,HE=GD=2.设DE=x,则GH=EF=x,HF=2﹣x,在Rt△HEF中,∵HF2+HE2=EF2,∴.解得:x=.∴DE=.故选:C.12.解:∵菱形ABCD,∠BCD=120°,∴∠ABC=60°,∵B(﹣1,0),∴OB=1,OA=,AB=2,∴A(0,),∴BC=AD=2,∴C(1,0),D(2,),故选:D.13.解:设AD,BC边长为a,AB,CD边长为b,∵△DFG为等边三角形,∴∠FDG=∠DGF=∠DGC=60°,∴∠CDG=30°,∵tan∠DGC==,∴GC=CD=b.∵cos∠DGC==,∴GD=2GC=b,由翻折可得BG=GD=b,∴BC=BG+GC=b+b=b,即a=b,∴==.故选:B.14.解:连接BD与AC交于点O,∵四边形ABCD为正方形,∴∠EAD=90°,AC⊥BD,OD=,AB∥CD,AD=AB=CD=6,∴∠DOF=90°,∠EAF=∠DCF,OD=3,∵E为AB中点,∴AE=AB==3,由勾股定理得,DE==3,∵∠EAF=∠DCF,∠AFE=∠DFC,∴△AFE∽△CFD,∴==,∴DF=DE=2,∴sin∠DFC===,故选:A.15.解:设AD=BC=a,AB=CD=b,如图1,由题意:∠ADN=∠BCH=60°,∴∠NDC=∠HCD=30°.∴FD=FC.∵四边形ABCD是矩形,∴AD∥BC,∴∠FNC=∠ADN=60°.∴△FNC为等边三角形.∴FN=FC,∴FN=FD.∴.在Rt△DNC中,∵tan∠NDC=,∴NC=.∴=×=.同理:S△DHF=S△AGE=S△ABE=S△BEM=.∴S1=S矩形ABCD﹣S△NFC﹣S△DFC﹣S△DHF﹣S△MBE﹣S△ABE﹣S△AGE=ab﹣;如图2,过点H作HM⊥AD于M,过点G作GN⊥AB于点N,由题意:∠E=∠G=∠GAB=∠EDC=60°,GA=AB=CD=ED=EC=GB.∴∠HAD=∠HDA=30°,∴HA=HD.∵HM⊥AD,∴AM=AD=a.∵tan∠MAH=,∴MH=AM×tan30°=,∴AD×MH=.同理:.∵△GAB为等边三角形,GN⊥AB,∴AN=AB=b,∵AG=AB=b,∴GN=.∴.同理:.∴S2=S△ABG+S△CDE+S△ADH+S△BFC﹣S矩形ABCD=.∵=8,∴.∴.解得:a=或a=.由题意可知:a<2b,∴a=.∴.故选:B.16.解:∵CD⊥AB,∠F=90°,∴∠ADC=∠F=90°,∵AN⊥AC,∠DAF=90°,∴∠FAN+∠DAN=∠DAC+∠DAN=90°,∴∠FAN=∠DAC.在△ADC和△AFN中,,∴△ADC≌△AFN(ASA),∴CD=FN=2,AC=AN.∵AN⊥AC,MN⊥AN,∴∠ACB=∠CAN=∠ANM=90°,∴四边形ACMN是矩形,∴四边形ACMN是正方形,∵∠CDB=∠DBE=90°,∴CG∥BE,又∵NP=PH,∴NG=GE,设NG=GE=x,则FG=2+x=AD,DB=GE=x,∵Rt△ACB中,CD⊥AB,∴△ADC∽△CDB,∴.∴CD2=AD×DB,∴22=(2+x)x,即x2+2x=4.四边形ABMN的面积=S正方形ACMN﹣S△ABC =AC2﹣=(AD2+CD2)﹣=(2+x)2+22﹣=x2+2x+6=4+6=10,故选:C.17.解:连接AO,∵四边形CDGH是矩形,∴CG=DH,OC=CG,OD=DH,∴OC=OD,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°,在△ACO和△ADO中,,∴△ACO≌△ADO(SSS),∴∠OAB=∠CAO=30°,∴点O一定在∠CAB的平分线上运动,∴当OB⊥AO时,OB的长度最小,∵∠OAB=30°,∠AOB=90°,∴OB=AB=×8=4,即OB的最小值为4.故选:B.18.解:∵四边形ABCD是矩形,∴OA=OD,∴∠OAD=∠ODA,∵∠AOD=α,∴∠OAD=(180°﹣α),∵OE⊥AC,∴∠AOE=90°,∵∠AEO=β,∠DAE=90°,∴∠OAD=∠AEO,∴(180°﹣α)=β,∴α+2β=180°.故选:D.19.解:∵四边形ABCD是菱形,∴OA=OC=5,OB=OD=12,AC⊥BD,在Rt△AOD中,AD=,又∵E是边AD的中点∴,∵EF⊥BD,EG⊥AC,AC⊥BD,∴四边形EFOG为正方形,∴FG=OE=6.5.故选:B.20.解:∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°=∠DBC,又∵AE=DF,AD=BD,∴△AED≌△DFB,故①、②正确;当点E,F分别是AB,AD中点时,∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故③正确;综上所述,正确的结论有①②③,故选:D.。

2018年中考数学三角形与四边形习题汇总

2018年中考数学三角形与四边形习题汇总

海璧:2018全国中考三角形与四边形题【2018北京】在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE ⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形(2)若AB=5,BD=2,求OE的长【2018福建】□ABCD中,对角线AC与BD相交于点O,EF过点O,交AD于点E,交BC于点F.求证:OE=OF【2018福建】已知Rt△ABC中,∠B=90°,AC=8,AB=10.将AD是由AB绕点A逆时针旋转90°得到的,再将△ABC沿射线CB平移得到△EFG,使射线FE经过点D,连接BD、BG.(1)求∠BDF的度数(2)求CG的长D【2018兰州】如图,在∆ABC 中,过点C 作CD AB,E 是AC 的中点,连接DE 并延长,交AB 于点F ,交CB 的延长线于点G.连接AD 、CF.(1)求证:四边形AFCD 是平行四边形 (2)若GB=3,BC=6,BF=32,求AB 的长.【2018广州】如图,AB 与CD 相交于点E ,AE=CE ,DE=BE .求证:∠A=∠C .【2018广东】如图,矩形ABCD 中,AD AB >,把矩形沿对角线AC 所在直线折叠,使点B 落在点E 处,AE 交CD 于点F ,连接DE . (1)求证:△ADF ≌△CED (2)求证:△DEF 是等腰三角形.【2018深圳】如果菱形的一个角与三角形的一个角重合,这个角的对角顶点在这个重合角的对边上,则这个菱形则称为这个三角形的亲密菱形。

如图,在CFE ∆中,6,12,45CF CE FCE ==∠=。

以点C 为圆心,以小于CF 的长为半径画弧,交AF 、CE 于点A 、D 。

若再分别以点A 、D 为圆心,大于12AD 长为半径作弧,两弧恰好交EF 于点B ,且满足AB ∥CD .(1)求证:四边形ACDB 是CFE ∆的亲密菱形 (2)求四边形ACDB 的面积【2018贵阳】如图,在平行四边形ABCD 中,AE 是BC 边上的高,点F 是DE 的中点,AB 与AG 关于AE 对称,AE 与AF 关于AG 对称. (1)求证:△AEF 是等边三角形 (2)若AB=2,求△AFD 的面积.【2018安顺】如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF . (1)求证:AF=DC(2)若AC ⊥AB ,试判断四边形ADCF 的形状,并证明你的结论.CαN MPDC BA图13【2018铜仁】如图,点A 、D 、C 、B 在同一条直线上,AD=BC ,AE=BF ,CE=DF ,求证:AE ∥BF .【2018遵义】如图,正方形ABCD 的对角线交于点O ,点E 、F 分别在AB 、BC 上(AE <BE ),且∠EOF=90°,OE 、DA 的延长线交于点M ,OF 、AB 的延长线交于点N ,连接MN . (1)求证:OM=ON(2)若正方形ABCD 的边长为4,E 为OM 的中点,求MN 的长【2018河北】如图,∠A=∠B=50°,P 为AB 中点,点M 为射线AC 上(不与点A 重合)的任意一点,连接MP ,并使MP 的延长线交射线BD 于点N ,设∠BPN=α. (1)求证:△APM ≌△BPN(2)当MN=2BN 时,求α的度数(3)若△BPN 的外心在该三角形的内部,直接写出α的取值范围【2018大庆】如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度【2018黄冈】如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.【2018荆门】如图,在Rt△ABC中,∠BAC=30°,E为AB边的中点,以BE为边作等边△BDE,连接AD,CD.(1)求证:△ADE≌△CDB(2)若BC=,在AC边上找一点H,使得BH+EH最小,并求出这个最小值【2018武汉】如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF【2018孝感】如图,B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.求证:四边形ABED 是平行四边形.【2018郴州】如图,在▱ABCD中,作对角线BD的垂直平分线EF,垂足为O,分别交AD,BC于E,F,连接BE,DF.求证:四边形BFDE是菱形.【2018衡阳】如图,已知线段AC,BD相交于点E,AE=DE,BE=CE.(1)求证:△ABE≌△DCE;(2)当AB=5时,求CD的长.【2018娄底】如图,已知四边形ABCD中,对角线AC、BD相交于点O,且OA=OC,OB=OD,过O点作EF ⊥BD,分别交AD、BC于点E、F.(1)求证:△AOE≌△COF(2)判断四边形BEDF的形状,并说明理由【2018湘潭】如图,在正方形ABCD中,AF=BE,AE与DF相交于于点O.(1)求证:△DAF≌△ABE(2)求∠AOD的度数【2018永州】如图,在△ABC中,∠ACB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB 的中点,连接CE并延长交线段AD于点F.(1)求证:四边形BCFD为平行四边形;(2)若AB=6,求平行四边形BCFD的面积.【2018岳阳】如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.【2018张家界】在矩形ABCD中,点E在BC上,AE=AD,DF⊥AE,垂足为F.(1)求证.DF=AB(2)若∠FDC=30°,且AB=4,求ADN【2018株洲】如图,在Rt △ABM 和Rt △ADN 的斜边分别为正方形的边AB 和AD ,其中AM=AN 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考复习——平行四边形、菱形、矩形、正方形考点一:多边形内角和、外角和公式例1、若一个多边形的内角和小于其外角和,则这个多边形的边数是()A.3 B.4 C.5 D.6对应训练1.下列多边形中,内角和与外角和相等的是()A.四边形B.五边形C.六边形D.八边形考点二:平行四边形的性质例2、如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.AB=CD D.AC⊥BD对应训练1、已知□ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.80°D.60°2、在△ABC中,AB=AC,点D、E、F分别是AC、BC、BA延长线上的点,四边形ADEF为平行四边形.求证:AD=BF.考点三:平行四边形的判定例3、四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A.3种B.4种C.5种D.6种对应训练1、四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BC B.AB=DC,AD=BCC.AO=CO,BO=DO D.AB∥DC,AD=BC【中考名题赏析】1、如图,小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是()A.①,②B.①,④C.③,④D.②,③2、下列语句正确的是()A.对角线互相垂直的四边形是菱形B.有两边及一角对应相等的两个三角形全等C.矩形的对角线相等D.平行四边形是轴对称图形3、如图,在□ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8 B.10 C.12 D.144、如图,□ABCD的对角线AC、BD相交于点O,且AC+BD=16,CD=6,则△ABO的周长是()A.10 B.14 C.20 D.225、如图,在□ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为.6、一个多边形的内角和是外角和的2倍,则这个多边形的边数为.第14题图EOB ACD7、已知:在平行四边形ABCD 中,点E 在直线AD 上,AE=AD ,连接CE 交BD 于点F ,则EF :FC 的值是 .8、如图,在Rt △ABC 中,∠B =90°,AB =4,BC >AB ,点D 在BC 上,以AC 为对角线 的所有平行四边形ADCE 中,DE 的最小值是_____________.9、如图,在△ABC 中,∠ACB=90°,M 、N 分别是AB 、AC 的中点,延长BC 至点D ,使CD=BD ,连接DM 、DN 、MN .若AB=6,则DN= .10、如图,在□ABCD 中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD ′E 处,AD ′与CE 交于点F .若∠B =52°,∠DAE =20°,则∠FED ′的大小为_______. 11、如图所示,在□ABCD 中,∠C=40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF的度数为 .考点四:与矩形有关的折叠问题例1、如图,点E 是矩形ABCD 的边CD 上一点,把△ADE 沿AE 对折,点D 的对称点F 恰好落在BC 上,已知折痕AE=105cm ,且tan ∠EFC=34,那么该矩形的周长为( ) A .72cm B .36cm C .20cm D .16cm 对应训练1、如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :AC=3:5,则ADAB的值为( ) A .12B .33 C .23D .22考点五:和菱形有关的对角线、周长、面积的计算问题例2、如图,菱形ABCD 的周长为85,对角线AC 和BD 相交于点O ,AC :BD=1:2,则AO :BO= ,菱形ABCD 的面积S= . 对应训练 2、如图,菱形ABCD ,∠B=60°,AB=4,则以AC 为边长的正方形ACEF 的周长为( ) A .14 B .15 C .1 D .17考点六:和正方形有关的证明题例3、在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l 上,如图1,他连结AD 、CF ,经测量发第9题图第10题图第11题图现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.对应训练3.、如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE= 度.考点六:四边形综合性题目例4、在一个边长为a(单位:cm)的正方形ABCD中,点E、M分别是线段AC,CD上的动点,连结DE并延长交正方形的边于点F,过点M作MN⊥DF于H,交AD于N.(1)如图1,当点M与点C重合,求证:DF=MN;(2)如图2,假设点M从点C出发,以1cm/s的速度沿CD向点D运动,点E同时从点A出发,以2cm/s速度沿AC向点C运动,运动时间为t(t>0);①判断命题“当点F是边AB中点时,则点M是边CD的三等分点”的真假,并说明理由.②连结FM、FN,△MNF能否为等腰三角形?若能,请写出a,t之间的关系;若不能,请说明理由.第10题图FEDB CA【中考名题赏析】1、如图,在正方形ABCD 中,AC 为对角线,E 为AB 上一点,过点E 作EF ∥AD ,与AC 、DC 分别交于点G ,F ,H 为CG 的中点,连接DE ,EH ,DH ,FH .下列结论:①EG=DF ;②∠AEH+∠ADH=180°;③△EHF ≌△DHC ;④若=,则3S △EDH =13S △DHC ,其中结论正确的有( )A .1个B .2个C .3个D .4个2、如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan ∠CAD =2.其中正确的结论有( )A.4个 B .3个 C .2个 D .1个3、在□ABCD 中,AB=3,BC=4,当□ABCD 的面积最大时,下列结论正确的有( ) ①AC=5;②∠A+∠C=180°;③AC ⊥BD ;④AC=BD .A .①②③B .①②④C .②③④D .①③④ 4、如图,正方形ABCD 的边长为9,将正方形折叠,使顶点D 落在BC 边上的点E 处,折痕为 GH .若BE :EC=2:1,则线段CH 的长是( )A.3 B .4 C .5 D .65、如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,∠1=60°,则∠2的度数为( ) A .30° B .45° C .60° D .75°6、关于□ABCD 的叙述,正确的是( )A .若AB ⊥BC ,则□ABCD 是菱形 B .若AC ⊥BD ,则□BCD 是正方形 C .若AC =BD ,则□ABCD 是矩形 D .若AB =AD ,则□ABCD 是正方形7、如图,已知菱形OABC 的顶点O (0,0),B (2,2),若菱形绕点O 逆时针旋转,每秒旋转45°,则第60秒时,菱形的对角线交点D 的坐标为( )A .(1,﹣1)B .(﹣1,﹣1)C .(,0)D .(0,﹣)8、如图,在周长为12的菱形ABCD 中,AE=1,AF=2,若P 为对角线BD 上一动点,则EP+FP 的最小值为( ) A .1 B .2 C .3 D .49、如图,在正方形ABCD 中,连接BD ,点O 是BD 的中点,若M 、N 是边AD 上的两点,连接MO 、NO ,并分别延长交边BC 于两点M ′、N ′,则图中的全等三角形共有( )A .2对B .3对C .4对D .5对第4题图 第5题图 第7题图 第8题图 第9题图10、把边长为3的正方形ABCD 绕点A 顺时针旋转45°得到正方形AB ′C ′D ′,边BC 与D ′C ′ 交于点O ,则四边形ABOD ′的周长是( ) A .26 B .6 C .23 D .23311、如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD 的面积是( ) A .12 B .24 C .123 D .16312、如图,将矩形ABCD 沿对角线BD 折叠,使点C 和点C′重合,若AB=2,则C′D 的长为( ) A .1 B .2 C .3 D .413、如图,AB=AC ,AD=AE ,DE=BC ,且∠BAD=∠CAE .求证:四边形BCDE 是矩形.14、如图,正方形ABCD 的对角线AC ,BD 相交于点O ,延长CB 至点F ,使CF=CA ,连接AF ,∠ACF 的平分线分别交AF ,AB ,BD 于点E ,N ,M ,连接EO .(1)已知BD=,求正方形ABCD 的边长;(2)猜想线段EM 与CN 的数量关系并加以证明.15、如图,BD 是△ABC 的角平分线,它的垂直平分线分别交AB ,BD ,BC 于点E ,F ,G ,连接ED ,DG .(1)请判断四边形EBGD 的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H 是BD 上的一个动点,求HG+HC 的最小值.第10题图 第11题图 第12题图 AB CE D G F16、如图,在菱形ABCD中,AC为对角线,点E、F分别是边BC、AD的中点.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=4,求线段AE的长.17、已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC;(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?说明理由.18、如图,点E在正方形ABCD的边AB上,连接DE,过点C作CF⊥DE于F,过点A作AG∥CF交DE于点G.(1)求证:△DCF≌△ADG.(2)若点E是AB的中点,设∠DCF=α,求sinα的值.。

相关文档
最新文档