生物化学第8章新陈代谢总论与生物氧化
医学生物化学(第八章)生物氧化
* 铁硫蛋白为单电子传递体 ( Fe2+-e Fe3+)
+e
20
3. 泛醌(ubiquinone , Q) 又称辅酶Q (Coenzyme Q , CoQ)
21
**泛醌的特点 1)是双电子传递体 2)不与蛋白结合的游离存在的电子载体 3)是复合物Ⅰ、Ⅱ、Ⅲ之间的连接者,
是多种底物的电子进入呼吸链的中心点
53
四、 ATP与能量的释放、储存和利用
H2O+CO2 ATP
有机物氧化 产能
生物大分子 主动
合成
运输
肌肉 收缩
遗传信 息传递
O2 ADP+Pi
54
一、 ATP分子中的高能磷酸基的来源 (一) 氧化磷酸化: 主要来源 (二) 底物水平磷酸化 概念: 在反应过程中,由于分子内部能 量重新分配,形成高能磷酸化合物,进一 步将高能磷酸基转移给ADP,形成ATP
67
AH2
2H+
2Cu2+
O2-
H2O
A 2Cu+
1/2O2
属氧化酶主要有:细胞色素氧化酶、 酚氧化酶、 抗坏血酸氧化酶等
68
(二)需氧脱氢酶 (aerobic dehydrogenase)
特点: 使作用物氢活化, 受氢体:除氧以外还有其他试剂 产物之一是H2O2
69
AH
FMN(FAD)
H2O2
氧化磷酸化
4
糖
脂肪
葡萄糖 脂肪酸 + 甘油
乙 酰CoA
蛋白质
氨基酸
TCA cycle
CO2
H++e (进 入 呼 吸 链 )
生成H2O 及释 放 出 能 量
5
第8章:生物氧化
HSCoA
H2C COOH H2C COOH
琥珀酸
GTP
O C SCoA
琥珀酰CoA
ATP ADP
琥珀酰CoA合成酶
2. 氧化磷酸化
在线粒体中,代谢物脱下的2H经呼吸链氧为 水时所释放的能量使ADP磷酸化生成ATP的 过程。它是体内生成ATP的主要的方式。
呼 吸 链
1 O2 H2O
实质:每消耗1mol氧原子所产生的ATP的mol数。
线粒体离体实验测得的一些底物的P/O比值
底 物 β-羟丁酸 琥珀酸 抗坏血酸 呼吸链的组成 NAD+→复合体Ⅰ→CoQ→复合体Ⅲ →Cyt c→复合体Ⅳ→O2 复合体Ⅱ→CoQ→复合体Ⅲ →Cyt c→复合体Ⅳ→O2 Cyt c→复合体Ⅳ→O2 复合体Ⅳ→O2 0.88 0.61-0.68 1 1 细胞色素c (Fe2+) 1.7 2 P/O比值 2.4~2.8 可能生成的 ATP数 3
1. 温度: 体温,~37度
高温
2. 反应温和:酶促,逐步氧化,逐步放能,可调节
反应剧烈:短时间内以光、热能形式放能
不能储存,0% 碳和氢直接与氧结合生成。
3. 效率:以高能键储存,40~55%
4. CO2来源:有机羧酸脱羧而来
二、生物氧化的酶类 氧化酶类 需氧脱氢酶 不需氧脱氢酶
R=H: NAD+;
R=H2PO3:NADP+
B: FAD和 FMN
FAD(或FMN)+ 2H FADH2(或 FMNH2)
C: 辅酶Q ( CoQ) 泛醌(辅酶Q, CoQ, Q)由多个异戊烯连接形 成较长的疏水侧链(人CoQ10),脂溶性, 在膜中 可流动。 不固定于复合体,呈游离状态。氧化还 原反应时可生成中间产物半醌型泛醌。
生物化学 第8章 生物氧化
天冬 氨酸
①苹果酸脱氢酶
②天冬氨酸氨基转移酶
存在部位:肝脏、心肌组织
两种穿梭系统的比较
α-磷酸甘油穿梭 穿梭 物质 进入线粒 体后转变 成的物质 进入 呼吸链 α-磷酸甘油 磷酸二羟丙酮 苹果酸-天冬氨酸穿梭 苹果酸、 谷氨酸 天冬aa、α-酮戊二酸
FADH2
琥珀酸 氧化呼吸链
NADH+ H+
NADH 氧化呼吸链
琥珀酸由琥珀酸脱氢酶催化脱下的2H经复合 体Ⅱ(FAD,Fe—S)使COQ形成COQH2, 再往下传递与NADH氧化呼吸链相同。(见 上图)
NADH氧化呼吸链和琥珀酸氧化呼 吸链总图
FADH2
NADH
FMN
CoQ
Cyt-b c1
c
aa3
O2 H2O
3、分别进入两条呼吸链的底物
苹果酸 异柠檬酸 β -羟丁酸 谷氨酸 NAD+ FMN 琥珀酸 FAD(Fe-S) CoQ b c1 c aa3 O2
10
血红素b、c1 Fe-S 血红素c 血红素a 血红素a3 Cu2+ O2
Q
Cytc
13
1
Cytc Cyta
Ⅳ
细胞色素C氧化酶
13
(一)尼克酰胺核苷酸类(NAD+)
NAD+ 和NADP+的结构
NAD+:R=H NADP+:R=PO32-
尼克酰胺核苷酸的作用原理
H
H H CONH 2
C CONH2 N R
AH2 2H(2H++2e)
吸 链
1 2 O2
H2O
氧化
A
ADP+Pi
能量 ATP 磷酸化
生物化学 代谢总论与生物氧化
~P ~P ATP
~P
~P
~P
6-磷酸葡萄糖 3-磷酸甘油
二 生物氧化
二、生物氧化
有机物质(糖、脂肪和蛋白质)在生
物细胞内进行氧化分解而生成CO2和H2O
并释放出能量的过程称为生物氧化。 生物氧化通常需要消耗氧,所以又称
O NH C N NH CH3
肌酸磷酸
O
O NH
P O
P O NH2
C NH O N CH3 CH2CH2CH2CHCOOH
磷酸精氨酸
CH2COOH
这两种高能化合物在生物体内起储存能量的作用。
3-磷酸腺苷-5’-磷酰硫酸
硫酯键型
酰基辅酶A
O SCoA
R C
甲硫键型
COO CH CH2 CH2 H3C S
(3) 水的生成方式是代谢物脱下的H与O结合
产生的。 (4) CO2的生成方式是有机酸脱羧产生的。
生物氧化的内容
(1)细胞如何在酶的催化下将有机化合物中的C变 成CO2—CO2如何形成? • 脱羧反应
(2)在酶的作用下细胞怎样利用分子氧将有机化 合物中的H氧化成H2O—H2O如何形成? • 电子传递链 (3)当有机物被氧化成CO2和H2O时,释放的能量怎 样转化成ATP—能量如何产生? • 底物水平磷酸化 • 氧化磷酸化
分解代谢与合成代谢
生物小分子合成大分子 • •
合成代谢 •
需要能量
能量代谢
新陈代谢
•
• •
释放能量
分解代谢
生物大分子分解成小分子
物 质 代 谢
新陈代谢的共同特点
生物化学58 第八章 生物氧化
糖异生 葡萄糖
2. 糖代谢的中间产物可氨基化生成某些 非必需氨基酸
丙氨酸
天冬氨酸
糖
丙酮酸
草酰乙酸
乙酰CoA
α -酮戊二酸 谷氨酸
柠檬酸
(三)脂类与氨基酸代谢的相互联系
1. 蛋白质可以转变为脂肪
氨基酸
乙酰CoA
脂肪
2. 氨基酸可作为合成磷脂的原料
丝氨酸
磷脂酰丝氨酸
胆胺
脑磷脂
胆碱
卵磷脂
3. 脂肪的甘油部分可转变为非必需氨基 酸
1. 摄入的糖量超过能量消耗时
合成糖原储存(肝、肌肉)
葡
萄
合成脂肪
糖
乙酰CoA
(脂肪组织)
2. 脂肪的甘油部分能在体内转变为糖
甘油激酶
葡
甘油
磷酸-甘油
萄
肝、肾、肠
糖
脂
肪
脂酸
乙酰CoA
葡萄糖
(二)糖与氨基酸代谢的相互联系
1. 大部分氨基酸脱氨基后,生成相应的α酮酸,可转变为糖。
例如
脱氨基
丙氨酸
丙酮酸
第八章 生物氧化
第八章 生物氧化
与非生物氧化共同之处: 1、反应的本质都是脱氢、 失电子或加氧;2、被氧 化的物质相同,终产物 和释放的能量也相同。
定义:生物氧化过程中从代谢物脱下来的 氢和电子需要经过一系列中间传递体,最 后才与氧气形成水,在其间能量逐步释放。 这种由一系列传递体构成的链状复合体称 为电子传递体系(ETS)或简称为呼吸链。 NADH呼吸链和FADH2呼吸链。
呼吸链的组分
NAD+及与NAD+偶联的脱氢酶:NAD+是一种流 动的电子传递体。
黄素及与黄素偶联的脱氢酶 辅酶Q:属于一种流动的电子传递体。 铁硫蛋白 细胞色素:细胞色素c是一种流动的电子传递体 氧气
生物化学 第八章 生物氧化
第二节 线粒体氧化体系
一、呼吸链(respiratory chain) 二、呼吸链的组成成分和作用 三、呼吸链的蛋白质复合体 四、呼吸链中各组分的排列顺序
Go on~
一、呼吸链(respiratory chain)
• 呼吸链是代谢物上的氢原子被脱氢酶激活 脱落后,经过一系列的传递体,最后传递 给被激活的氧原子,而生成水的全部体系。 • 在真核生物细胞内,它位于线粒体内膜上, 原核生物中,它位于细胞膜上。
功能:将底物上的氢激活
并脱下。
辅酶:NAD+或NADP+
NAD+ 和NADP+的结构
OR
NAD+:R=H NADP+:R=PO32-
尼克酰胺核苷酸的作用原理:
H
H H CONH 2
C CONH2 N R
+
+ H + e + H+
N R
+ H+
H
2H
H
e
H+
NAD(P)+
+2H
-2H
NAD(P)H+H+
Cys Cys
S S
Fe3+
S S
Fe3+S S来自Cys Cys+e-
Cys Cys
S S Fe3+
S S Fe2+
S S
Cys Cys
(4)泛醌(CoQ)
一种脂溶性的醌类化合物,其分子中的苯醌 结构能进行可逆的加氢反应,是氢传递体。
CoQ + 2H
CoQH2
(5)细胞色素(cytochrome,Cyt)
生物化学简明教程第四版第八章生物氧化
磷酸肌酸的功能是保持肌肉,特别是骨骼肌和心肌有较高的ATP水平。
生物化学简明教程第四版第八章生物氧 化
生物氧化 Biological Oxidation
能的化学键称作高能键,具有高能键的化合物 称作高能化合物
生物化学简明教程第四版第八章生物氧 化
生物化学简明教程第四版第八章生物氧 化
ATP
腺苷三磷酸 (ATP)
生物化学简明教程第四版第八章生物氧 化
生物化学简明教程第四版第八章生物氧 化
ATP是能量的携带者和传递者; 但ATP不是能量的贮存者;
3、H +通过ATP合酶上特殊的途径(F0),返回基质,使质子发生 逆向回流。由于H +梯度所释放的自由能, 耦联ADP与Pi合成ATP, 质子的电化学梯度也随之消失。
生物化学简明教程第四版第八章生物氧 化
ATP合酶:F0+F1(EC 3.6.3.14)
F0:a、b、c 3种亚基 (a1、b2、c9-12) F1: α、β、γ、δ、ε5种不同亚基(9条多肽链)
生物化学简明教程第四版第八章生物氧 化
ADP3- ATP4-
H+
胞液侧
H2PO4- H+
基质侧 腺苷酸 转运蛋白
ATP4-
ADP3-
F
0
F1
磷酸 转运蛋白
H2PO4- H+
H+
生物化学简明教程第四版第八章生物氧 化
氧化磷酸化的P/O比
• 每产生1个ATP需消耗多少个质子?
• 每合成1mol ATP需3个质子通过ATP合成 酶,同时产生的每 1个ATP从线粒体基质进 入胞质还需要消耗1个质子
食品生物化学 第8章 生物氧化
目录
NADH+H+
NAD+
FMN
FMNH2
还原型Fe-S 氧化型Fe-S
Q
QH2
复合体Ⅰ的功能
目录
(二)复合体Ⅱ将电子从琥珀酸传递到泛醌
复合体Ⅱ是三羧酸循环中的琥珀酸脱氢酶,又
称琥珀酸-泛醌还原酶。
电子传递:琥珀酸→FAD→几种Fe-S →CoQ
复合体Ⅱ没有H+泵的功能。
目录
目录
(三)复合体Ⅲ将电子从还原型泛醌传递给细 胞色素c
质子的泵出:复合体Ⅰ有质子泵功能,每传递2个电子
可将4个H+从内膜基质侧泵到胞浆侧。
目录
NAD+和NADP+的结构
R=H: NAD+;
R=H2PO3: NADP+
目录
NAD+(NADP+)和NADH(NADPH)相互转变
氧化还原反应时变化发生在五价氮和三价氮之间。
目录
FMN 结构中含核黄素,发挥功能的部位是异咯 嗪环,氧化还原反应时不稳定中间产物是 FMNH· 。 在可逆的氧化还原反应中显示 3种分子状态,属于单、 双电子传递体。
NAD+~CoQ CoQ~Cyt c Cyt aa3~O2
0.36V 0.21V 0.53V
69.5KJ/mol 40.5KJ/mol 102.3KJ/mol
能 能 能
目录
氧化磷酸化偶联部位
琥珀酸
FAD (Fe-S) NADH FMN (Fe-S) CoQ Cyt b→Cyt c1→Cyt c Cyt aa3 O2
复合体Ⅳ
细胞色素
氧化酶
162
13
血红素a,a3,
生物化学--新陈代谢总论与生物氧化
二、生物体内能量代谢的基本规律
1.服从热力学原理。热力学第一定律是能量守恒定律,热力 学第二定律指出,热的传导自高温流向低温。机体内的化 学反应朝着达到其平衡点的方向进行。
2.生化反应最重要的热力学函数是吉布斯自由能G 。自由能
是在恒温、恒压下,一个体系作有用功的能力的度量。用 于判断反应可否自发进行,是放能或耗能反应。 ΔG<0,表示体系自由能减少,反应可以自发进行,但是不 等于说该反应一定发生或以能觉察的速率进行,是放能反 应。 ΔG>0,反应不能自发进行,吸收能量才推动反应进行。 ΔG=0,体系处在平衡状态。
(2)氧化脱羧:在脱羧过程中伴随着氧化(脱氢)
NADP+ NADPH + H+
HOOCCH2CHOHCOOH
苹果酸
苹果酸酶
CH3CCOOH + CO2 O
三、生物氧化中水的生成
代谢物在酶的作用下,将脱下的氢经过氢传递体,传 给氧生成水。
生物氧化体系解决的是有机物脱氢及氢的去路问题, 即解决有机物是如何通过一系列特异性的酶催化的反应脱 氢、递氢和递电子,把氢交给氧生成水,并产生ATP的问 题。
一、新陈代谢的研究方法
代谢途径的研究比较复杂,可从不同水平,主要对中间代 谢进行研究。
新陈代谢途径的阐明凝集了许多科学家的智慧与实验成果。 如1904年德 国化学家Knoop提出的脂肪酸的β氧化学说, 1937年Krebs提出的柠檬酸循环。
1.活体内(in vivo)和活体外(in vitro)实验 2.同位素示踪法和核磁共振波谱法(NMR) 3.代谢途径阻断法 4.突变体研究法
二、生物体内能量代谢的基本规律
3.自由能:生物体(或恒温恒压下)用以作功的能量。在 没有作功条件时,自由能转变为热能丧失。
生物化学简明教程第四版08新陈代谢总论和生物氧化
ATP在能量转运中地位和作用
★ ATP是细胞内的“能量通货” ★ ATP是细胞内磷酸基团转移的中间载体
14 磷酸烯醇式丙酮酸 磷 酸 基 团 转 移 能 12 10 3-磷酸甘 油酸磷酸 8 6 4 2 0
~P ~P
磷酸肌酸(磷酸基团储备物)ຫໍສະໝຸດ ~PATP~P ~P
• 3)放射性同位素示踪法。常用的有氚(3H)、碳14 (14C)、磷32(32P)、硫34(34S)35(35S) 碘131(131I) 等。
7
• (3)代谢途径阻断法 • 使用抗代谢物或酶的抑制剂 • 碘乙酸抑制甘油醛-3-磷酸脱氢酶;
• 丙二酸抑制琥珀酸脱氢酶。
• (4)突变体或遗传缺欠症研究法:
8 新陈代谢总论与生物氧化
主要内容:介绍新陈代谢的概念和研究方法, 生物能力学的基本内容和高能化合物的概念和特 点。重点讨论线粒体电子传递体系的组成、电子 传递机理和氧化磷酸化机理。
1
新陈代谢的概念
新陈代谢(metabolism)是生命最基本的特征之一,泛 指生物与周围环境进行物质交换、能量交换和信息交换的 过程。生物一方面不断地从周围环境中摄取能量和物质, 通过一系列生物反应转变成自身组织成分,即所谓同化作
9
物理意义:-Δ G=W* (体系中能对环境作功的能量)
自由能的变化能预示某一过程能否自发进行,即: Δ G<0,反应能自发进行 Δ G>0,反应不能自发进行 Δ G=0,反应处于平衡状态。
自由能的概念对于研究生物化学过程的力能学具有很重要的意义,生物
体用于作功的能量正是体内化学反应释放的自由能,生物氧化释放的能量也
复合体
复合体 Ⅰ
酶名称
第八章生物氧化
第八章生物氧化一、填空题:1.电子传递链在原核细胞中存在于上,在真核细胞中存在于上。
2.鱼藤酮能阻断电子由向的传递,利用这种毒性作用,可作为重要的。
3.在动物体中形成ATP 的方式有和,但在绿色植物中还能进行。
4.电子传递链上的电子传递是一种反应,而ATP的合成过程则是一种反应。
5.电子传递链上电子传递与氧化磷酸化之间的偶联部位是之间,之间,______________之间。
6.解释氧化磷酸化作用机制被公认的学说是,是英国生物化学家于1961年首先提出的。
7.典型的呼吸链包括和两种,这是根据接受代谢物脱下的氢的不同而区分的。
8.动物体内高能磷酸化合物的生成方式有和两种。
9.NADH呼吸链中氧化磷酸化发生的部位是在之间;之间;之间。
10.磷酸甘油与苹果酸经穿梭后进入呼吸链氧化,其P/O比分别为和。
11.线粒体内膜外侧的α-磷酸甘油脱氢酶的辅酶是;而线粒体内膜内侧的α-磷酸甘油脱氢酶的辅酶是。
12.用特殊的抑制剂可将呼吸链分成许多单个反应,这是一种研究氧化磷酸化中间步骤的有效方法,常用的抑制剂及作用如下:①鱼藤酮抑制电子由向的传递。
②抗霉素A抑制电子由向的传递。
③氰化物、CO抑制电子由向的传递。
13、在生物氧化过程中,四种常用的氢载体为:_________、_________、、。
二、选择题(只有一个最佳答案):2.下列化合物中不是电子传递链成员的是( )①CoQ ②Cytb ③CoA ④NAD+4.不属于电子传递抑制剂的是( )①一氧化碳②抗霉素③2,4-二硝基苯酚④氰化物5.属于解偶联剂的是( )①2,4-二硝基苯酚②硫化氢③叠氮化合物④抗霉素A8.电子传递链上的未端氧化酶是( )①NADH脱氢酶②琥珀酸脱氢酶③细胞色素b ④细胞色素a3 10.关于电子传递链的下列叙述中哪个是不正确的?()①线粒体内有NADH+H+呼吸链和FADH2呼吸链。
②电子从NADH传递到氧的过程中有3个ATP生成。
③呼吸链上的递氢体和递电子体完全按其标准氧化还原电位从低到高排列。
生物化学第八章 生物氧化
1 O2 2
H2O
实测得FADH2呼吸链: P/O~ 2
FADH2
线粒体是真核细胞的一种细胞器,是生物氧化和能 量转换的主要场所。是组织细胞的“发电厂”。 线粒体内,外膜的化学组成有显著的区别; 外膜:磷脂,胆固醇含量高,蛋白质含量低 内外膜间隙:腺苷酸激酶,核苷酸激酶等 内膜:有些脱氢酶,氧化呼吸链有关的酶, ATP 合成酶 基质: 催化糖有氧分解,脂肪酸氧化,氨基酸分 解和蛋白质生物合成的酶
3
二、生物氧化的一般过程
主要解决三个问题:
1.代谢物中C如何在酶催化下生成CO2;
2.细胞如何利用O2将代谢物中的H氧化成H2O;
3.氧化产生的自由能怎样被收集、转换和储存。
4
生物氧化的三个阶段
脂肪 多糖 蛋白质
大分子降解 成基本结构 单位
脂肪酸、甘油
葡萄糖、 其它单糖
氨基酸
乙酰CoA
小分子化合物 分解成共同的 中间产物(如 丙酮酸、乙酰 CoA等)
31
2. 高能化合物
生化反应中,在水解时或基团转移反应中可释
放出大量自由能( >20 千焦 / 摩尔)的化合物称为 高能化合物。
32
高 能 化 合 物 类 型
33
3. ATP的特点
在 pH=7 环 境 中 , ATP 分子中的三个磷 酸基团完全解离成带 4个负电荷的离子形 式 ( ATP4-), 具 有 较大势能,加之水解 产物稳定,因而水解 自由能很大( ΔG°′= -30.5千焦/摩尔)。
34
4.ATP的特殊作用
在机体的能量代谢中, ATP 就好像能量通币, 高能化合物虽有多种,只有 ATP 可为一切生 理机能与生物合成反应提供能量; ATP是细胞内磷酸基团转移的中间载体
生物化学判断题【可编辑】
生物化学判断题【可编辑】第一章蛋白质化学1、蛋白质的变性是其构象发生变化的结果。
T2、蛋白质构象的改变是由于分子共价键的断裂所致。
F3、组成蛋白质的20种氨基酸分子中都含有不对称的α-碳原子。
F4、蛋白质分子的亚基就是蛋白质的结构域。
F5、组成蛋白质的氨基酸都能与茚三酮生成紫色物质。
F6、Pro不能维持α-螺旋,凡有Pro的部位肽链都发生弯转。
T7、利用盐浓度的不同可提高或降低蛋白质的溶解度。
T8、蛋白质都有一、二、三、四级结构。
F9、在肽键平面中,只有与α-碳原子连接的单键能够自由旋转。
T 10、处于等电点状态时,氨基酸的溶解度最小。
T11、蛋白质的四级结构可认为是亚基的聚合体。
T12、蛋白质中的肽键可以自由旋转。
F第二章核酸化学1、脱氧核糖核苷中的糖环3’位没有羟基。
F2、若双链DNA中的一条链碱基顺序为CTGGAC,则另一条链的碱基顺序为GACCTG。
F3、在相同条件下测定种属A和种属B的T值,若种属A的DNA Tmm值低于种属B,则种属A的DNA比种属B含有更多的A-T碱基对。
T4、原核生物和真核生物的染色体均为DNA与组蛋白的复合体。
F5、核酸的紫外吸收与溶液的pH值无关。
F6、mRNA是细胞内种类最多,含量最丰富的RNA。
F7、基因表达的最终产物都是蛋白质。
F8、核酸变性或降解时,出现减色效应。
F9、酮式与烯醇式两种互变异构体碱基在细胞中同时存在。
T 10、毫无例外,从结构基因中的DNA序列可以推出相应的蛋白质序列。
F11、目前为止发现的修饰核苷酸大多存在于tRNA中。
T 12、核糖体不仅存在于细胞质中,也存在于线粒体和叶绿体中。
T 13、核酸变性过程导致对580nm波长的光吸收增加。
F 14、核酸分子中的含氮碱基都是嘌呤和嘧啶的衍生物。
T 15、组成核酸的基本单位叫做核苷酸残基。
T16、RNA和DNA都易于被碱水解。
F17、核小体是DNA与组蛋白的复合物。
T第三章糖类化学1、单糖是多羟基醛或多羟基酮类。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.4.1 生物氧化的特点
P210
① 在体温条件下、近于中性水溶液中进行,在一系列酶 催化作用,
②有机分子发生一系列化学变化,逐步氧化并释放能量, ATP捕获能量;
❖ 这种逐步分次的放能方式,不会引起体温突然升高,且 可使能量得到有效利用;
③生物氧化中CO2的生成是由于糖、脂类、蛋白质等有机 物转变成含羧基的化合物进行脱羧反应所致:
❖ 详见第11章。
④生物氧化中水的生成是代谢物脱下的氢经一系列传递 与氧结合而生成;
❖ 详见8.1.1 。 ⑤生物氧化有严格的细胞定位: ❖ 真核细胞:线粒体内; ❖ 原核细胞:细胞膜上;
呼吸链
8.2.2 呼吸链的组成及电子传递顺序 P210
生物体内电子转移主要形式
❖ 氧化还原本质是电子的转移; 1 .直接进行电子转移:
❖ 乙酰-CoA是代谢过程中的枢纽物质;
❖ 乙酰-CoA分子式:
高能硫酯键
↓
8.2 生物氧化
P209
❖ 生物体所需能量来自糖、脂肪、蛋白质等有机物的氧化; ❖ 生物氧化和外界的燃烧的终产物都是H2O和CO2 ,释放
的能量也完全相等,但二者所进行的方式大不相同; ❖ 生物氧化又称:细胞氧化、细胞呼吸、组织呼吸等;是
分解代谢 放能
合成代谢 吸 能
新陈代谢的功能
① 从周围环境中获得营养物质; ② 将外界引入的营养物质转变为自身需要的结构元件,
即大分子的组成前体; ③ 将结构元件装配成自身的大分子,例如蛋白质、核
酸、脂类以及其他组分; ④ 形成或分解生物体特殊功能所需的生物分子 ⑤ 提供生命活动所需的一切能量。
新陈代谢的特点
分解代谢与合成代谢
(1) 分解代谢(catabolism): ❖ 有机营养物(外界环境获得和自身贮存)通过一系列反
应转变为较小的、较简单的物质的过程; ❖ 分解代谢途径(catabolic pathways):
分解代谢所经过的反应途径称分解代谢途径; ❖ 分解代谢途径与能量代谢相伴随,将蕴藏在有机大分子
❖ 在分解代谢中起捕获和贮存能量作用,是能量的携带者 或传递者;
❖ ATP和ADP的往复循环是生物机体利用能量的基本方法
❖ ATP、ADP和无机磷酸广泛存在于生物体各个细胞内;
ATP高能键的水解 图8-2
❖ ATP含有一个磷脂键和两个磷酸基团;
8.1.4 肌酸磷酸是高能磷酸键的贮存形式
❖ 肌酸磷酸是高能磷酸键的贮存形式,生物体不能直接利
中的化学能量释放出来(产能或放能);
(2) 合成代谢(anabolism )
❖ 也称生物合成(biosynthesis); ❖ 生物体利用小分子或大分子的结构元件建造成自身大分
子的过程; ❖ 由小分子建造成大分子使分子结构变得更为复杂,这种
过程需要消耗能量(耗能或吸能);
合成代谢与分解代谢的关系 图8-1
学反应网络;
8.1.1 新陈代谢的研究方法 P202
(1)活体内与活体外实验 (2)同位素示踪法 (3)代谢途径阻断法 (4)突变体研究法
8.1.2 生物体内能量代谢的基本规律 P203
❖ 能量代谢(energetic metabolism):伴随生物体的物 质代谢所发生的一系列能量转变;
❖ 蕴藏在化学物质中的化学能转化为生物体生物能过程; ❖ 生物体能量代谢服从热力学定律。
量自由能,这类化合物为~; ❖ 磷酸化合物在生物体的换能过程中占有重要地位; ❖ 高能磷酸化合物及其他高能化合物举例:P205表8-1; ❖ 其中ATP最重要;
P206表81
(2)ATP(腺嘌呤核苷三磷酸)是生物细胞内能量代谢
的偶联剂
P206
❖ ATP是直接提供自由能推动生物体多种化学反应的高能 核苷酸类分子;
❖ 高能化合物: 随水解反应或基团转移反应放出大量自 由能(每摩尔30 ~ 60kJ)的化合物;
❖ 高能化合物一般对酸、碱和热不稳定; ❖ 高能键(~):
化合物分子中水解时能放出大量自由能的键为“高能 键”,用符号“~”表示;
(1)生物体中常见的高能磷酸化合物 ❖ 机体内有许多磷酸化合物,当其磷酸基水解时释放出大
8.1 新陈代谢总论
新陈代谢概念
P201
1. 代谢(新陈代谢,metabolism) ❖ 泛指生物与周围环境进行的物质交换和能量交换; ❖ 是营养物质在生物体内所经历的一切化学变化的总称;
新陈代谢
同化作用:生物体把从环境中摄取的营养物质,通过一 系列生化反应转变为自身化合物的过程;
异化作用:生物体将体内物质经一系列生化反应分解为 不能再利用的物质排出体外的过程;
第8章 新陈代谢总论与生物氧化
8.1 新陈代谢总论
8.1.1 新陈代谢的研究方法 8.1.2 生物体内能量代谢的基本规律 8.1.3 高能化合物与ATP的作用 8.1.4 肌酸磷酸是高能磷酸键的贮存形式 8.1.5 辅酶A的递能作用
8.2 生物氧化
8.2.1 生物氧化的特点 8.2.2 呼吸链的组成及电子传递顺序 8.2.3 氧化磷酸化作用 8.2.4 胞液中NADH的跨膜运转
能量代谢在新陈代谢中的重要地位
❖ 生物体的一切生命活动都需要提供能量; 生长、发育、机体运动(肌肉的收缩、生物膜的传递、 运输功能等),都需消耗能量;
太阳能是所有生物能量最根本的来源
❖ 具有叶绿素的生物进行光合作用时,将光能转化为化学 能(如由CO2合成葡萄糖);
8.1.3 高能化合物与ATP的作用 P204
用;
当ATP急剧消耗时,肌酸磷酸将能量转移
给ADP生成ATP:
ATP
8.1.5 辅酶A的递能作用
❖ 辅酶A(CoA, CoA - SH) :酰基的载体,起提供和 接受酰基作用;(-SH:巯基,是辅酶A 的功能基团。)
❖ 乙酰辅酶A(乙酰-CoA) :辅酶A与乙酰基通过硫酯键 结合而成,是高能键,乙酰基团是活泼基团;
P202
①生物体内的新陈代谢是在温和条件下由酶催化进行; ②生物体内反应相互配合,有条不紊,彼此协调,有严格
顺序; ③生物体对内外环境条件有高度适应性和灵敏的自动调节
机制,包括分子水平、细胞水平和整体水平调节机制; ④新陈代谢反应途径一般有严格的细胞定位; ❖ 新陈代谢过程是对环境高度适应、高度整合在一起的化