浙江杭州2019中考重点试卷36-数学
2019年浙江省杭州市中考数学试卷及答案解析
2019年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)计算下列各式,值最小的是( )A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣92.(3分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则( )A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣3 3.(3分)如图,P为圆O外一点,PA,PB分别切圆O于A,B两点,若PA=3,则PB=( )A.2B.3C.4D.54.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则( )A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72D.3x+2(30﹣x)=725.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的各位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是( )A.平均数B.中位数C.方差D.标准差6.(3分)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则( )A.=B.=C.=D.=7.(3分)在△ABC中,若一个内角等于另外两个内角的差,则( )A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°8.(3分)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是( )A.B.C.D.9.(3分)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于( )A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x10.(3分)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则( )A.M=N﹣1或M=N+1B.M=n﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣1二、填空题:本大题有6个小题,每小题4分,共24分;11.(4分)因式分解:1﹣x2= .12.(4分)某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于 .13.(4分)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于 cm2(结果精确到个位).14.(4分)在直角三角形ABC中,若2AB=AC,则cos C= .15.(4分)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式 .16.(4分)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G 在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于 .三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)化简:﹣﹣1圆圆的解答如下:﹣﹣1=4x﹣2(x+2)﹣(x2﹣4)=﹣x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表12345序号数据甲组4852474954乙组﹣22﹣3﹣14(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为,,写出与之间的等量关系.②甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.19.(8分)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC =3∠B,求∠B的度数.20.(10分)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.21.(10分)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC 边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.(12分)设二次函数y=(x﹣x1)(x﹣x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=时,y=﹣.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<.23.(12分)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED(m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.2019年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.解:A.2×0+1﹣9=﹣8,B.2+0×1﹣9=﹣7C.2+0﹣1×9=﹣7D.2+0+1﹣9=﹣6,故选:A.2.解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2.故选:B.3.解:连接OA、OB、OP,∵PA,PB分别切圆O于A,B两点,∴OA⊥PA,OB⊥PB,在Rt△AOP和Rt△BOP中,,∴Rt△AOP≌Rt△BOP(HL),∴PB=PA=3,故选:B.4.解:设男生有x人,则女生(30﹣x)人,根据题意可得:3x+2(30﹣x)=72.故选:D.5.解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.6.解:∵DN∥BM,∴△ADN∽△ABM,∴=,∵NE∥MC,∴△ANE∽△AMC,∴=,∴=.故选:C.7.解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.8.解:A、由①可知:a>0,b>0.∴直线②经过一、二、三象限,故A正确;B、由①可知:a<0,b>0.∴直线②经过一、二、三象限,故B错误;C、由①可知:a<0,b>0.∴直线②经过一、二、四象限,交点不对,故C错误;D、由①可知:a<0,b<0,∴直线②经过二、三、四象限,故D错误.故选:A.9.解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a•cos x+b•sin x,故选:D.10.解:∵y=(x+a)(x+b)=x2+(a+b)x+1,∴△=(a+b)2﹣4ab=(a﹣b)2>0,∴函数y=(x+a)(x+b)的图象与x轴有2个交点,∴M=2,∵函数y=(ax+1)(bx+1)=abx2+(a+b)x+1,∴当ab≠0时,△=(a+b)2﹣4ab=(a﹣b)2>0,函数y=(ax+1)(bx+1)的图象与x轴有2个交点,即N=2,此时M=N;当ab=0时,不妨令a=0,∵a≠b,∴b≠0,函数y=(ax+1)(bx+1)=bx+1为一次函数,与x轴有一个交点,即N=1,此时M=N+1;综上可知,M=N或M=N+1.故选:C.二、填空题:本大题有6个小题,每小题4分,共24分;11.解:∵1﹣x2=(1﹣x)(1+x),故答案为:(1﹣x)(1+x).12.解:∵某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于:.故答案为:.13.解:这个冰淇淋外壳的侧面积=×2π×3×12=36π≈113(cm2).故答案为113.14.解:若∠B=90°,设AB=x,则AC=2x,所以BC==x,所以cos C===;若∠A=90°,设AB=x,则AC=2x,所以BC==x,所以cos C===;综上所述,cos C的值为或.故答案为或.15.解:设该函数的解析式为y=kx+b,∵函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,∴解得:,所以函数的解析式为y=﹣x+1,故答案为:y=﹣x+1.16.解:∵四边形ABC是矩形,∴AB=CD,AD=BC,设AB=CD=x,由翻折可知:PA′=AB=x,PD′=CD=x,∵△A′EP的面积为4,△D′PH的面积为1,∴A′E=4D′H,设D′H=a,则A′E=4a,∵△A′EP∽△D′PH,∴=,∴=,∴x2=4a2,∴x=2a或﹣2a(舍弃),∴PA′=PD′=2a,∵•a•2a=1,∴a=1,∴x=2,∴AB=CD=2,PE==2,PH==,∴AD=4+2++1=5+3,∴矩形ABCD的面积=2(5+3).故答案为2(5+3)三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.解:圆圆的解答错误,正确解法:﹣﹣1=﹣﹣===﹣.18.解:(1)乙组数据的折线统计图如图所示:(2)①=50+.②S甲2=S乙2.理由:∵S甲2=[(48﹣50)2+(52﹣50)2+(47﹣50)2+(49﹣50)2+(54﹣50)2]=6.8.S乙2=[(﹣2﹣0)2+(2﹣0)2+(﹣3﹣0)2+(﹣1﹣0)2+(4﹣0)2]=6.8,∴S甲2=S乙2.19.解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴PA=PB,∴∠B=∠BAP,∵∠APC=∠B+∠BAP,∴∠APC=2∠B;(2)根据题意可知BA=BQ,∴∠BAQ=∠BQA,∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,∴∠BQA=2∠B,∵∠BAQ+∠BQA+∠B=180°,∴5∠B=180°,∴∠B=36°.20.解:(1)∵vt=480,且全程速度限定为不超过120千米/小时,∴v关于t的函数表达式为:v=,(0≤t≤4).(2)①8点至12点48分时间长为小时,8点至14点时间长为6小时将t=6代入v=得v=80;将t=代入v=得v=100.∴小汽车行驶速度v的范围为:80≤v≤100.②方方不能在当天11点30分前到达B地.理由如下:8点至11点30分时间长为小时,将t=代入v=得v=>120千米/小时,超速了.故方方不能在当天11点30分前到达B地.21.解:(1)设正方形CEFG的边长为a,∵正方形ABCD的边长为1,∴DE=1﹣a,∵S1=S2,∴a2=1×(1﹣a),解得,(舍去),,即线段CE的长是;(2)证明:∵点H为BC边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG.22.解:(1)当x=0时,y=0;当x=1时,y=0;∴二次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x﹣1)=x2﹣x,当x=时,y=﹣,∴乙说点的不对;(2)对称轴为x=,当x=时,y=﹣是函数的最小值;(3)二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1﹣x1﹣x2+x1x2,∴mn=[﹣][﹣]∵0<x1<x2<1,∴0≤﹣≤,0≤﹣≤,∴0<mn<.23.解:(1)①连接OB、OC,则∠BOD=BOC=∠BAC=60°,∴∠OBC=30°,∴OD=OB=OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=,△ABC面积的最大值=×BC×AD=×2OB sin60°×=;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx=∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.。
【中考真题】浙江省杭州市2019年中考数学试题(解析版)word【推荐】
浙江省杭州市2019年中考数学试题(解析版)浙江省杭州市2019年中考数学试卷一、选择题(本大题有10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求)1.计算下列各式,值最小的是()A. B. C. D.【答案】A【解析】【分析】根据实数的运算法则,遵循先乘除后加减的运算顺序即可得到答案.【详解】根据实数的运算法则可得:A.;B.;C.;D.;故选A.【点睛】本题考查实数的混合运算,掌握实数的混合运算顺序和法则是解题的关键..2.在平面直角坐标系中,点与点关于y轴对称,则()A. ,B. ,C. ,D. ,【答案】B【解析】【分析】根据点关于y轴对称,其横坐标互为相反数,纵坐标相同即可得到答案.【详解】A,B关于y轴对称,则横坐标互为相反数,纵坐标相同,故选B【点睛】本题考查点坐标的轴对称,解题的关键熟练掌握点坐标的轴对称.3.如图,P为⊙外一点,PA、PB分别切⊙于A、B两点,若,则()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】根据切线长定理即可得到答案.【详解】因为PA和PB与⊙相切,根据切线长定理,所以PA=PB=3,故选B.【点睛】本题考查切线长定理,解题的关键是熟练掌握切线长定理.4.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x人,则()A. B. C. D.【答案】D【解析】【分析】先设男生x人,根据题意可得.【详解】设男生x人,则女生有(30-x)人,由题意得:,故选D.【点睛】本题考查列一元一次方程,解题关键是读懂题意,得出一元一次方程.5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数C. 方差D. 标准差【答案】B【解析】【分析】根据平均数、中位数、方差和标准差的概念,结合题意即可解答.【详解】因为这组数据的中位数是36和46的平均数,则这组数据中的中位数是41,与涂污数字无关,故选B.【点睛】本题考查平均数、中位数、方差和标准差,解题的关键是熟悉平均数、中位数、方差和标准差的相关计算.6.如图,在中,D、E分别在AB边和AC边上,,M为BC边上一点(不与B、C重合),连结AM交DE于点N,则()A. B. C. D.【答案】C【分析】根据平行线性质和相似三角形的判定可得△ADN∽△ABM,△ANE∽△AMC,再根据相似三角形的性质即可得到答案.【详解】∵,∴△ADN∽△ABM,△ANE∽△AMC,∴,故选C.【点睛】本题考查平行线的性质、相似三角形的判定和性质,解题的关键是熟练掌握平行线的性质、相似三角形的判定和性质.7.在中,若一个内角等于另外两个角的差,则()A. 必有一个角等于B. 必有一个角等于C. 必有一个角等于D. 必有一个角等于【答案】D【解析】【分析】先设三角形的两个内角分别为x,y,则可得(180°-x-y),再分三种情况讨论,即可得到答案.【详解】设三角形的一个内角为x,另一个角为y,则三个角为(180°-x-y),则有三种情况:①②③综上所述,必有一个角等于90°故选D.【点睛】本题考查三角形内角和的性质,解题的关键是熟练掌握三角形内角和的性质,分情况讨论.8.已知一次函数和,函数和的图象可能是()A. B. C. D.【答案】A【解析】根据一次函数图形的性质,结合题意和,即可得到答案.【详解】①当,、的图象都经过一、二、三象限②当,、的图象都经过二、三、四象限③当,的图象都经过一、三、四象限,的图象都经过一、二、四象限④当,的图象都经过一、二、四象限,的图象都经过一、三、四象限满足题意的只有A.故选A.【点睛】本题考查一次函数图像,解题的关键是熟练掌握一次函数图像的性质.9.如图,一块矩形木板ABCD斜靠在墙边,(,点A、B、C、D、O在同一平面内),已知,,.则点A到OC的距离等于()A. B. C. D.【答案】D【解析】【分析】根据矩形的性质可得BC=AD=b,∠ABC=90°,再根据三角函数可得答案.【详解】过点A作AE⊥OB于点E,因为四边形ABCD是矩形,且AB=a,AD=b所以BC=AD=b,∠ABC=90°所以∠ABE=∠BCO=x因为,所以,所以点A到OC的距离故选D.【点睛】本题考查矩形的性质和三角函数,解题的关键是熟练掌握矩形的性质和三角函数.10.在平面直角坐标系中,已知,设函数的图像与x轴有M个交点,函数的图像与x轴有N个交点,则()A. 或B. 或C. 或D. 或【答案】C【解析】【分析】先根据函数的图像与x轴有M个交点解得,再对a,b分情况讨论,求得答案.【详解】对于函数,当时,函数与x轴两交点为(-a,0)、(-b,0),∵,所以有2个交点,故对于函数①,交点为,此时②,交点为,此时③,交点为,此时综上所述,或故选C.【点睛】本题考查二次函数与坐标轴的交点,解题的关键是分情况讨论a,b.二、填空题(本大题有6小题,每小题4分,共24分)11.因式分解:________.【答案】(1+x)(1-x)【解析】【分析】根据平方差公式即可得到答案.【详解】对用平方差公式,得【点睛】本题考查因式分解,解题的关键是熟练掌握因式分解的方法.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这个数据的平均数等于______.【答案】.【解析】【分析】根据加权平均数的基本求法,平均数等于总和除以个数,即可得到答案.【详解】平均数等于总和除以个数,所以平均数.【点睛】本题考查求加权平均数,解题的关键是掌握加权平均数的基本求法.13.如图,一个圆锥形冰激凌外壳(不计厚度).已知其母线长为,底面圆半径为,则这个冰激凌外壳的侧面积等于______(计算结果精确到个位).【答案】113.【解析】【分析】根据圆锥侧面积公式,代入题中数据,即可得到答案.【详解】根据题中数据,结合圆锥侧面积公式得:【点睛】本题考查求圆锥侧面积,解题的关键是熟练掌握圆锥侧面积公式.14.在直角三角形ABC中,若,则_______.【答案】或.【解析】【分析】对AC分两种情况讨论,根据三角函数即可得到答案.【详解】如图所示,分两种情况讨论,AC可以是直角边,也可以是斜边①当AC是斜边,设AB=x,则AC=2x,由勾股定理可得:BC=x,则②当AC是直角边,设AB=x,则AC=2x,由勾股定理可得:BC=x,则综上所述,或.【点睛】本题考查三角函数,解题的关键是对AC分情况讨论.15.某函数满足当自变量时,函数值;当自变量时,函数值,写出一个满足条件的函数表达式_____.【答案】或或等.【解析】【分析】由于题中没有指定是什么具体的函数,可以从一次函数,二次函数等方面考虑,只要符合题中的两个条件即可.【详解】符合题意的函数解析式可以是或或等,(本题答案不唯一)故答案为:如或或等.【点睛】本题考查一次函数、二次函数的解析式,解题的关键是知道一次函数、二次函数的定义.16.如图,把某矩形纸片ABCD沿EF、GH折叠(点E、H在AD边上,点F、G在BC边上),使得点B、点C落在AD边上同一点P处,A点的对称点为点,D点的对称点为点,若,的面积为4,的面积为1,则矩形ABCD的面积等于_____.【答案】.【解析】【分析】根据相似三角形的判断得到△A'EP~△D'PH,由三角形的面积公式得到S△A'EP,再由折叠的性质和勾股定理即可得到答案.【详解】∵A'E∥PF∴∠A'EP=∠D'PH又∵∠A=∠A'=90°,∠D=∠D'=90°∴∠A'=∠D'∴△A'EP~△D'PH又∵AB=CD,AB=A'P,CD=D'P∴A'P= D'P设A'P=D'P=x∵S△A'EP:S△D'PH=4:1∴A'E=2D'P=2x∴S△A'EP=∵∴∴A'P=D'P=2∴A'E=2D'P=4∴∴∴∴∴∴【点睛】本题考查矩形的性质、折叠的性质,解题的关键是掌握矩形的性质、折叠的性质.三、解答题(本大题有7个小题,共66分)17.化简:圆圆的解答如下:圆圆的解答正确吗?如果不正确,写出正确的解答.【答案】圆圆的解答不正确.正确解为,解答见解析.【解析】【分析】根据完全平方差公式先对分式进行通分,再化简,即可得到答案.【详解】圆圆的解答不正确.正确解答如下:原式.【点睛】本题考查分式化简,解题的关键是掌握完全平方差公式.18.称重五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称重读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克)实际称量读数折线统计图 记录数据折线统计图⑴补充完整乙组数据的折线统计图; ⑵①甲、乙两组数据的平均数分别为、,写出与之间的等量关系; ②甲、乙两组数据的平均数分别为、,比较与的大小,并说明理由.【答案】(1)补全折线统计图,如图所示.见解析;(2)①,②,理由见解析.【解析】【分析】(1)根据统计表中的信息即可得出答案;(2)①先求出甲、乙的平均数,即可得出与之间的等量关系; ②先计算、,再对与的大小进行比较.【详解】(1)补全折线统计图,如图所示.(2)①. ②,理由如下: 因为222221[(4850)(5250)(4750)(4950)(5450)]5x x x x x =--+--+--+--+--乙乙乙乙乙, 所以 【点睛】本题结合折线统计图和统计表考查平均数和方差,解题的关键是读懂题中统计图表所给出的信息.19.如图,在中,.⑴已知线段AB的垂直平分线与BC边交于点P,连结AP,求证:;⑵以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连结AQ,若,求的度数.【答案】(1)见解析;(2)∠B=36°.【解析】【分析】(1)根据垂直平分线的性质,得到PA=PB,再由等腰三角形的性质得到∠PAB=∠B,从而得到答案;(2)根据等腰三角形的性质得到∠BAQ=∠BQA,设∠B=x,由题意得到等式∠AQC=∠B+∠BAQ=3x,即可得到答案.【详解】(1)证明:因为点P在AB的垂直平分线上,所以PA=PB,所以∠PAB=∠B,所以∠APC=∠PAB+∠B=2∠B.(2)根据题意,得BQ=BA,所以∠BAQ=∠BQA,设∠B=x,所以∠AQC=∠B+∠BAQ=3x,所以∠BAQ=∠BQA=2x,在△ABQ中,x+2x+2x=180°,解得x=36°,即∠B=36°.【点睛】本题考查垂直平分线的性质、等腰三角形的性质,解题的关键是掌握垂直平分线的性质、等腰三角形的性质.20.方方驾驶小汽车匀速地从A地行使到B地,行驶里程为480千米,设小汽车的行使时间为t(单位:小时),行使速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.⑴求v关于t的函数表达式;⑵方方上午8点驾驶小汽车从A出发①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v范围.②方方能否在当天11点30分前到达B地?说明理由.【答案】(1);(2)①,②方方不能在11点30分前到达B地.【解析】【分析】(1)根据题意,得,由题意,得,从而得到答案;(2)①根据一元一次不等式,结合题意即可得到答案;②根据不等式,即可求解答案.【详解】(1)根据题意,得,所以,因为,所以当时,,所以(2)①根据题意,得,因为,所以,所以②方方不能在11点30分前到达B地.理由如下:若方方要在11点30分前到达B地,则,所以,所以方方不能在11点30分前到达B地.【点睛】本题考查反比例函数的解析式、一元一次不等式,解题的关键是掌握反比例函数、一元一次不等式.21.如图,已知正方形ABCD的边长为1,正方形CEFG的面积为,点E在CD边上,点G 在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为,且.⑴求线段CE的长;⑵若点H为BC边的中点,连结HD,求证:.【答案】(1)CE=;(2)见解析.【解析】【分析】根据正方形的性质,(1)先设CE=x(0<x<1),则DE=1-x,由S1=S2,列等式即可得到答案.(2)根据勾股定理得到HD,再由H,C,G在同一直线上,得证HD=HG.【详解】根据题意,得AD=BC=CD=1,∠BCD=90°.(1)设CE=x(0<x<1),则DE=1-x,因为S1=S2,所以x2=1-x,解得x=(负根舍去),即CE=(2)因为点H为BC边的中点,所以CH=,所以HD=,因为CG=CE=,点H,C,G在同一直线上,所以HG=HC+CG=+=,所以HD=HG【点睛】本题考查正方形的性质、勾股定理和一元二次函数,解题的关键是根据题意列出一元二次函数.22.设二次函数(、是实数).⑴甲求得当时,;当时,,乙求得当时,.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由;⑵写出二次函数的对称轴,并求出该函数的最小值(用含、的代数式表示);⑶已知二次函数的图像经过,两点(m、n是实数),当时,求证:.【答案】(1)乙求得的结果不正确,理由见解析;(2)对称轴为,;(3)见解析.【解析】【分析】(1)将当时,;当时,的数据代入二次函数,列方程得到二次函数解析式,再代入乙得数据,即可得出答案;(2)根据二次函数轴对称公式,判断函数最低点,即可解答;(3)由题意得到,,则得到的等式,由,并结合函数的图象,得到.【详解】(1)乙求得的结果不正确,理由如下:根据题意,知图象经过点(0,0),(1,0),所以,当时,,所以乙求得的结果不正确.(2)函数图象的对称轴为,当时,函数有最小值M,(3)因为,所以,,所以因为,并结合函数的图象,所以,所以,因为,所以【点睛】本题考查二次函数综合,解题的关键是熟练掌握二次函数的相关概念和计算.23.如图,已知锐角内接于⊙O,于点D,连结AO.⑴若.①求证:;②当时,求面积的最大值;⑵点E在线段OA上,,连接DE,设,(m、n是正数),若,求证:【答案】(1)①见解析;②△ABC面积的最大值是;(2)见解析.【解析】【分析】(1)①连接OB,OC,由圆的性质可得答案;②先作AF⊥BC,垂足为点F,要使得面积最大,则当点A,O,D在同一直线上时取到再根据三角形的面积公式即可得到答案;(2)先设∠OED=∠O DE=α,∠COD=∠BOD=β,由锐角三角形性质得到即,再结合题意及三角形内角和的性质得到两式联立即可得到答案.【详解】(1)①证明:连接OB,OC,因为OB=OC,OD⊥BC,所以∠BOD=∠BOC=×2∠BAC=60°,所以OD=OB=OA②作AF⊥BC,垂足为点F,所以AF≤AD≤AO+OD=,等号当点A,O,D在同一直线上时取到由①知,BC=2BD=,所以△ABC的面积即△ABC面积的最大值是(2)设∠OED=∠ODE=α,∠COD=∠BOD=β,因为△ABC是锐角三角形,所以∠AOC+∠AOB+2∠BOD=360°,即(*)又因为∠ABC<∠ACB,所以∠EOD=∠AOC+∠DOC因为∠OED+∠ODE+∠EOD=180°,所以(**)由(*),(**),得,即【点睛】本题综合考查圆的性质、三角形内角和的性质勾股定理,解题的关键是熟练掌握圆的性质、三角形内角和的性质勾股定理.2019年浙江省杭州市中考语文试题()浙江省杭州市2019年中考语文试题一、积累(20分)阅读下面的文字,完成1—3题。
2019浙江杭州_中考_数学_试题卷及答案共6页word资料
2019年杭州市各类高中招生文化考试数学参考答案一、选择题 题号 12 3 4 5 6 7 8 9 10 答案ABDBDDACCC选择题解析 1、A 2、B解析:如图624cm cm cm ∴-=,则两圆关系为内含3、D4、B解析:如图:4180A A ∠+∠=o Q ,36C A ∴∠=∠=o5、D解析:2363:()A p q p q -=-,232:(12)(6)2B a b c ab abc ÷=,223:3(31)31m C m m m ÷-=-6、D7、A 解析:2213272803m ⨯===>,A 中2536m <<,B 中1625m <<,C 和D 直接排除8、C解析:如图因为在RT ABO ∆中,//OC BA ,36AOC ∠=o,所以36BAO ∠=o,54OBA ∠=o如图做BE OC ⊥,sin sin36BO BAO AB AB=∠⋅=⋅o ,而sin sin 54BE BOE OB OB =∠⋅=⋅o ,而1AB =,sin36sin54BE ∴=o o ,即点A 到OC 的距离。
9、C解析:如图由所给的抛物线解析式可得A ,C 为定值(1,0)A -,(0,3)C -则10AC =,而3(,0)B k , ⑴ 0k >,则可得① AC BC =,则有223()310k +=,可得3k =② AC AB =,则有3110k +=,可得3101k =-, ③ AB BC =,则有23319()k k +=+,可得34k =⑵ 0k <,B 只能在A 的左侧④ 只有AC AB =,则有3110k --=,可得3101k =-+10、C解析:对方程组进行化简可得211x a y a =+⎧⎨=-⎩①31a -≤≤Q ,5213a ∴-≤+≤,仅从x 的取值范围可得知①错误②当2a =-时,33x y =-⎧⎨=⎩,则,x y 的值互为相反数,则②正确③当1a =时,30x y =⎧⎨=⎩,而方程43x y a +=-=,则,x y 也是此方程的解,则③正确⑤ 1x ≤,则211a +≤,则0a ≤,而题中所给31a -≤≤,则30a -≤≤,114a ≤-≤ 则14y ≤≤,选项④正确二、填空题11、2,1; 12、43m +,1; 13、6.56; 14、232b -≤≤; 15、15,1或9; 16、(1,1),(2,3),(0,2),(2,2)-----填空题解析 11、(1)2,(2)112、(1)43m +,(2)1解析:原代数式=(4)(4)43(4)3m m m m +-+=-,代入1m =-得原式=113、6.56解析:设年利率为%x ,由题可得不等式1000(1%)1065.6x +≥,解得 6.56x ≥ 解析:因为0a > 则0a >,而要使得不等式的值小于0,则只有30a -<,所以可得03a <<,可得2322a -<-<,则232b -≤≤14、 (1)15,(2)1或9解析:由题意可知, V Sh =,代入可易得下底面积为215cm而2200cm 为总的侧面积,则每一条底边所在的侧面积为250cm ,因为高为10cm ,所以菱形底边长为5cm ,而底面积为215cm ,所以高3AE cm =① 如图,E 在菱形内部EC BC BE =-,222594BE AB BE =-=-=,所以1EC =② 如图,E 在菱形外部EC BC BE =+,9EC =解析:如图三、解答题17、解:原式=2222232()()2228m m m m m m m m m m m -++---=-⨯⋅=-观察38m -,则原式表示一个能被8整除的数18、 解:k 只能-1,当1k =,函数为44y x =-+,是一次函数,一次函数无最值, 当2k =,函数为243y x x =-+,为二次函数,而此函数开口向上, 则无最大值当1k =-,函数为2246y x x =--+,为二次函数,此函数开口向下,有最大值,变形为22(1)8y x =-++,则当1x =-时,max 8y =19、解:(1)作图略(2)如图作外接圆由题可得,222(3)(4)(5)a a a +=, 222AB BC AC ∴+=,则ABC ∆为直角三角形,而=90ABC ∠o ,则AC 为外接圆的直径2=62ABC AB BC S a ∆⋅=,而2225=()24AC S aππ=圆 20、解:(1)第三边长为6,(212<<边长中,任意整数边长即可);(2)设第三边长为L ,由三角形的性质可得7575L -<<+,即212L <<,而组中最多有n 个三角形 =34567891011L ∴,,,,,,,,,则=9n ;(3)在这组三角形个数最多时,即=9n ,而要使三角形周长为偶数,且两条定边的和为12, 则第三边也必须为偶数, 则=46810L ,,,21、解:(1)在梯形ABCD 中,AD//BC ,AB CD =,而在正ABE ∆和正DCF ∆中,AB AE =,DC DF =且60BAE CDF ∠=∠=oAE DF ∴=且EAD FDA ∠=∠且AD 公共(2)如图作BH AD ⊥,CK AD ⊥,则有BC HK =同理22CD CK KD ==而234AEB DCF S S a ∆∆==而由题得AEB DCF S S S ∆∆+=梯22、解:(1)当2k =-时,(1,2)A -A Q 在反比例函数图像上∴设反比例函数为ky x =, 代入A 点坐标可得2k =-(2)要使得反比例函数与二次函数都是y 随着x 的增大而增大, 而对于二次函数2y kx kx k =+-,其对称轴为12x =-,要使二次函数满足上述条件,在0k <的情况下, 则x 必须在对称轴的左边,即12x <-时,才能使得y 随着x 的增大而增大∴ 综上所述,则0k <,且12x <-(3)由(2)可得15(,)24Q k --ABQ ∆Q 是以AB 为斜边的直角三角形A Q 点与B 点关于原点对称,所以原点O 平分AB 又Q 直角三角形中斜边上的中线是斜边的一半 作AD OC ⊥,QC OC ⊥ 而2221OA AD OD k =+=+则233k =,或233k =- 23、解:(1)OB AT ⊥Q ,且AE CE ⊥Q∴在CAE ∆和COB ∆中,90AEC CBO ∠=∠=o(图为一种可能的情况)而BCO ACE ∠=∠(2)33AE =Q ,30A ∠=o连结OM在MOB ∆中,OM R =,222MNMB ==, 而在COB ∆中,332BO BC OC == 又OC EC OM R +==Q 整理得2181150R R +-=23R ∴=-(不符合题意,舍去),或5R = 则5R =(3)在EF 同一侧,COB ∆经过平移、旋转和相似变换(无轴对称变换)后这样的三角形有3个,如图, 顶点在圆上的三角形如图所示,连结FO 过圆心交O e 于D ,连结DE 5EF =Q ,直径10FD =,可得30FDE ∠=o53ED ∴=,则510531553EFD C ∆=++=+ 由(2)可得33COB C ∆=+,1553533EFD OBC C C ∆∆+∴==+ (此问也可以通过相似比得出答案)。
浙江杭州2019中考试题数学卷(解析版)
一、选择题1. =( )A .2B .3C .4D .5 【答案】B【解析】试题分析:算术平方根的概念:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根.依此即可求解考点:算术平方根2.如图,已知直线a ∥b ∥c ,直线m 交直线a ,b ,c 于点A ,B ,C ,直线n 交直线a ,b ,c 于点D ,E ,F ,若21 BC AB ,则EFDE =( )A .B .C .32 D .1 【答案】B考点:平行线分线段成比例3.下列选项中,如图所示的圆柱的三视图画法正确的是( )A .B .C .D .【答案】A【解析】试题分析:根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,可得答案.该圆柱体的主视图、俯视图均为矩形,左视图为圆,考点:简单几何体的三视图4.如图是某市2016年四月每日的最低气温(℃)的统计图,则在四月份每日的最低气温这组数据中,中位数和众数分别是()A .14℃,14℃B .15℃,15℃C .14℃,15℃D .15℃,14℃【答案】A【解析】考点:(1)、众数;(2)、条形统计图;(3)、中位数5.下列各式变形中,正确的是( )A .x 2•x 3=x 6B .=|x| C .(x 2﹣)÷x=x ﹣1 D .x 2﹣x+1=(x ﹣)2+41 【答案】B【解析】试题分析:直接利用二次根式的性质以及同底数幂的乘法运算法则和分式的混合运算法则分别化简求出答案.A 、x 2•x 3=x 5,故此选项错误;B 、=|x|,正确;C 、(x 2﹣)÷x=x ﹣,故此选项错误;D 、x 2﹣x+1=(x ﹣)2+,故此选项错误;考点:(1)、二次根式的性质与化简;(2)、同底数幂的乘法;(3)、多项式乘多项式;(4)、分式的混合运算6.已知甲煤场有煤518吨,乙煤场有煤106吨,为了使甲煤场存煤是乙煤场的2倍,需要从甲煤场运煤到乙煤场,设从甲煤场运煤x 吨到乙煤场,则可列方程为( )A .518=2B .518﹣x=2×106C .518﹣x=2D .518+x=2 【答案】C【解析】试题分析:设从甲煤场运煤x 吨到乙煤场,根据题意列出方程解答即可.设从甲煤场运煤x 吨到乙煤场,可得:518﹣x=2,考点:由实际问题抽象出一元一次方程7.设函数y=x k(k ≠0,x >0)的图象如图所示,若z=y1,则z 关于x 的函数图象可能为( )A.B.C.D.【答案】D【解析】考点:反比例函数的图象8.如图,已知AC是⊙O的直径,点B在圆周上(不与A、C重合),点D在AC的延长线上,连接BD交⊙O于点E,若∠AOB=3∠ADB,则()A.DE=EB B.2DE=EB C.3DE=DO D.DE=OB【答案】D【解析】考点:圆周角定理9.已知直角三角形纸片的两条直角边长分别为m和n(m<n),过锐角顶点把该纸片剪成两个三角形,若这两个三角形都为等腰三角形,则()A.m2+2mn+n2=0 B.m2﹣2mn+n2=0 C.m2+2mn﹣n2=0 D.m2﹣2mn﹣n2=0【答案】C【解析】试题分析:如图,根据等腰三角形的性质和勾股定理可得m2+m2=(n﹣m)2,整理即可求解m2+m2=(n﹣m)2, 2m2=n2﹣2mn+m2, m2+2mn﹣n2=0.考点:(1)、等腰直角三角形;(2)、等腰三角形的性质10.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③【答案】C【解析】试题分析:根据新定义可以计算出啊各个小题中的结论是否成立,从而可以判断各个小题中的说法是否正确,从而可以得到哪个选项是正确的.考点:(1)、因式分解的应用;(2)、整式的混合运算;(3)、二次函数的最值二、填空题(每题4分)11.tan60°= .【答案】【解析】试题分析:根据特殊角的三角函数值直接得出答案即可考点:特殊角的三角函数值12.已知一包糖果共有5种颜色(糖果只有颜色差别),如图是这包糖果分布百分比的统计图,在这包糖果中任意取一粒,则取出糖果的颜色为绿色或棕色的概率是 .【答案】21 【解析】试题分析:先求出棕色所占的百分比,再根据概率公式列式计算即可得解.棕色所占的百分比为:1﹣20%﹣15%﹣30%﹣15%=1﹣80%=20%, 所以,P (绿色或棕色)=30%+20%=50%=21. 考点: (1)、概率公式;(2)、扇形统计图13.若整式x 2+ky 2(k 为不等于零的常数)能在有理数范围内因式分解,则k 的值可以是 (写出一个即可).【答案】-1【解析】试题分析:令k=﹣1,使其能利用平方差公式分解即可.令k=﹣1,整式为x2﹣y2=(x+y)(x ﹣y),考点:因式分解-运用公式法14.在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.【答案】105°或45°【解析】考点:(1)、菱形的性质;(2)、等腰三角形的性质15.在平面直角坐标系中,已知A(2,3),B(0,1),C(3,1),若线段AC与BD互相平分,则点D关于坐标原点的对称点的坐标为.【答案】(﹣5,﹣3)【解析】试题分析:直接利用平行四边形的性质得出D点坐标,进而利用关于原点对称点的性质得出答案.如图所示:∵A(2,3),B(0,1),C(3,1),线段AC与BD互相平分,∴D点坐标为:(5,3),∴点D关于坐标原点的对称点的坐标为:(﹣5,﹣3).考点:(1)、关于原点对称的点的坐标;(2)、平行四边形的判定与性质16.已知关于x 的方程=m 的解满足(0<n <3),若y >1,则m 的取值范围是 . 【答案】52<m <32 【解析】考点:(1)、分式方程的解;(2)、二元一次方程组的解;(3)、解一元一次不等式三、解答题17.计算6÷(﹣3121 ),方方同学的计算过程如下,原式=6÷(-21)+6÷31=﹣12+18=6.请你判断方方的计算过程是否正确,若不正确,请你写出正确的计算过程.【答案】-36【解析】试题分析:根据有理数的混合运算顺序,先算括号里面的,再根据除法法则进行计算即可 试题解析:方方的计算过程不正确,正确的计算过程是:原式=6÷(﹣21+)=6÷(﹣)=6×(﹣6)=﹣36. 考点:有理数的除法18.某汽车厂去年每个季度汽车销售数量(辆)占当季汽车产量(辆)百分比的统计图如图所示.根据统计图回答下列问题:(1)若第一季度的汽车销售量为2100辆,求该季的汽车产量;(2)圆圆同学说:“因为第二,第三这两个季度汽车销售数量占当季汽车产量是从75%降到50%,所以第二季度的汽车产量一定高于第三季度的汽车产量”,你觉得圆圆说的对吗?为什么?【答案】(1)、3000辆;(2)、说法不对,理由见解析【解析】考点:折线统计图19.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.【答案】(1)、证明过程见解析;(2)、1.【解析】考点:相似三角形的判定与性质20.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式h=20t ﹣5t 2(0≤t ≤4).(1)当t=3时,求足球距离地面的高度;(2)当足球距离地面的高度为10米时,求t ;(3)若存在实数t 1,t 2(t 1≠t 2)当t=t 1或t 2时,足球距离地面的高度都为m (米),求m 的取值范围.【答案】(1)、15米;(2)、t=2+2或t=2-2;(3)、0≤m <20【解析】试题分析:(1)、将t=3代入解析式可得;(2)、根据h=10可得关于t 的一元二次方程,解方程即可;(3)、由题意可得方程20t ﹣t 2=m 的两个不相等的实数根,由根的判别式即可得m 的范围.试题解析:(1)、当t=3时,h=20t ﹣5t 2=20×3﹣5×9=15(米),∴当t=3时,足球距离地面的高度为15米;(2)、∵h=10, ∴20t ﹣5t 2=10,即t 2﹣4t+2=0, 解得:t=2+2或t=2﹣2, 故经过2+2或2﹣2时,足球距离地面的高度为10米;(3)、∵m ≥0,由题意得t 1,t 2是方程20t ﹣5t 2=m 的两个不相等的实数根,∴b 2﹣4ac=202﹣20m >0, ∴m <20, 故m 的取值范围是0≤m <20.考点:(1)、一元二次方程的应用;(2)、二次函数的应用21.如图,已知四边形ABCD 和四边形DEFG 为正方形,点E 在线段DE 上,点A ,D ,G 在同一直线上,且AD=3,DE=1,连接AC ,CG , AE ,并延长AE 交CG 于点H .(1)求sin ∠EAC 的值.(2)求线段AH 的长.【答案】(1)、55;(2)、1056 【解析】考点:(1)、正方形的性质;(2)、全等三角形的判定与性质;(3)、解直角三角形22.已知函数y1=ax2+bx,y2=ax+b(ab≠0).在同一平面直角坐标系中.(1)若函数y1的图象过点(﹣1,0),函数y2的图象过点(1,2),求a,b的值.(2)若函数y2的图象经过y1的顶点.①求证:2a+b=0;②当1<x<时,比较y1,y2的大小.【答案】(1)、a=1,b=1;(2)、①、证明过程见解析;②、当a>0时,y1<y2;当a<0时,y1>y2.【解析】试题解析:(1)、由题意得:,解得:,故a=1,b=1.(2)、①、∵y1=ax2+bx=a,∴函数y1的顶点为(﹣,﹣),∵函数y2的图象经过y1的顶点,∴﹣=a(﹣)+b,即b=﹣,∵ab≠0,∴﹣b=2a,∴2a+b=0.②、∵b=﹣2a,∴y1=ax2﹣2ax=ax(x﹣2),y2=ax﹣2a,∴y1﹣y2=a(x﹣2)(x﹣1).∵1<x<,∴x﹣2<0,x﹣1>0,(x﹣2)(x﹣1)<0.当a>0时,a(x﹣2)(x﹣1)<0,y1<y2;当a<0时,a(x﹣1)(x﹣1)>0,y1>y2.考点:二次函数综合题23.在线段AB的同侧作射线AM和BN,若∠MAB与∠NBA的平分线分别交射线BN,AM于点E,F,AE和BF交于点P.如图,点点同学发现当射线AM,BN交于点C;且∠ACB=60°时,有以下两个结论:①∠APB=120°;②AF+BE=AB.那么,当AM∥BN时:(1)点点发现的结论还成立吗?若成立,请给予证明;若不成立,请求出∠APB的度数,写出AF,BE,AB长度之间的等量关系,并给予证明;(2)设点Q为线段AE上一点,QB=5,若AF+BE=16,四边形ABEF的面积为32,求AQ 的长.【答案】(1)、∠APB=90°,AF+BE=2AB;理由见解析;(2)、AQ=43﹣3或43+3【解析】(2)、如图1,过点F作FG⊥AB于G,∵AF=BE,AF∥BE,∴四边形ABEF是平行四边形,∵AF+BE=16,∴AB=AF=BE=8,∵323=8×FG,∴FG=43,在Rt△FAG中,AF=8,∴∠FAG=60°,当点G在线段AB上时,∠FAB=60°,当点G在线段BA延长线时,∠FAB=120°,①如图2,当∠FAB=60°时,∠PAB=30°,∴PB=4,PA=43,∵BQ=5,∠BPA=90°,∴PQ=3,∴AQ=43﹣3或AQ=43+3.考点:四边形综合题。
2019年浙江杭州中考数学试题(解析版)
{来源}2019年德州中考数学{适用范围:3.九年级}{标题}2019年杭州市中考数学试卷考试时间:120分钟满分:120分{题型:1-选择题}一、选择题(本大题有10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求){题目}1.(2019年杭州)计算下列各式,值最小的是()A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣9{答案}A{解析}本题考查了有理数的混合运算,有理数混合运算顺序为:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的运算.计算得:2×0+1﹣9=﹣8,2+0×1﹣9=﹣7,2+0﹣1×9=﹣7,2+0+1﹣9=﹣6,比较可知-8最小,因此本题选A.{分值}3{章节:[1-1-4-1]有理数的乘法}{考点:有理数的乘法法则}{类别:常考题}{难度:1-最简单}{题目}2.(2019年杭州)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣3{答案}B{解析}本题考查了关于坐标轴对称的点的坐标的关系,A,B关于y轴对称,则横坐标互为相反数,纵坐标相同.∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2.因此本题选B.{分值}3{章节:[1-13-1-1]轴对称}{考点:坐标与图形的性质}{类别:常考题}{难度:1-最简单}{题目}3.(2019年杭州)如图,P为⊙O外一点,P A,PB分别切⊙O于A,B两点,若P A=3,则PB=()A.2B.3C.4D.5{答案}B{解析}本题考查了切线长定理.因为P A和PB与⊙O相切,所以根据切线长定理可知P A=PB=3,因此本题选B.{分值}3{章节:[1-24-2-2]直线和圆的位置关系} {考点:切线长定理} {类别:常考题} {难度:1-最简单}{题目}4.(2019年杭州)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x 人,则( ) A .2x +3(72﹣x )=30 B .3x +2(72﹣x )=30 C .2x +3(30﹣x )=72 D .3x +2(30﹣x )=72 {答案}D{解析}本题考查了列一元一次方程解应用题,设男生x 人,则女生有(30-x )人,由题意得:3x +2(30﹣x )=72,因此本题选D . {分值}3{章节:[1-3-3]实际问题与一元一次方程} {考点:一元一次方程的应用(工程问题)} {类别:常考题} {难度:1-最简单}{题目}5.(2019年杭州)点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数被墨水涂污看不到了,则计算结果与被涂污数字无关的是( )A .平均数B .中位数C .方差D .标准差 {答案}B{解析}本题考查了平均数、中位数、方差、标准差的概念,因为将6个数从小到大排列后,被涂的数总是排在第5或第6的位置,最中间两个数始终是36、46,故其中位数不变,始终是41,因此本题选B . {分值}3{章节:[1-20-2-1]方差} {考点:标准差}{考点:统计量的选择} {类别:常考题} {难度:2-简单}{题目}6.(2019年杭州)如图,在△ABC 中,点D ,E 分别在AB 和AC 上,DE ∥BC ,M 为BC 边上一点(不与点B ,C 重合),连接AM 交DE 于点N ,则( ) A .ADAN ANAE B .BDMN MNCE C .DNNE BMMC D .DNNEMCBM{答案}C{解析}本题考查了相似三角形的判定与性质,∵DE ∥BC ,∴△ADN ∽△ABM ,△ANE ∽△AMCE N MD CBA∴DN AN BM AM ,ANNE AM MC ,∴DNNEBM MC,因此本题选C . {分值}3{章节:[1-27-1-1]相似三角形的判定} {考点:由平行判定相似} {类别:常考题} {难度:3-中等难度}{题目}7.(2019年杭州)在△ABC 中,若一个内角等于另外两个内角的差,则( ) A .必有一个内角等于30° B .必有一个内角等于45° C .必有一个内角等于60° D .必有一个内角等于90° {答案}D{解析}本题考查了三角形的内角和,不妨设在△ABC 中,有∠A =∠C ﹣∠B ,所以∠C =∠A +∠B ,根据三角形内角和定理得∠A +∠B +∠C =180°,∴2∠C =180°,∴∠C =90°,∴△ABC 是直角三角形,因此本题选D . {分值}3{章节:[1-11-2]与三角形有关的角} {考点:三角形内角和定理} {类别:常考题} {难度:2-简单}{题目}8.(2019年杭州)已知一次函数y 1=ax +b 和y 2=bx +a (a ≠b ),函数y 1和y 2的图象可能是( )A .B .C .D . {答案}A{解析}本题考查了一次函数图象象限分布与系数的关系,从增减性以及直线与y 轴的交点位置来进行判断比较快捷,可列表分析如下:{分值}3{章节:[1-19-2-2]一次函数} {考点:一次函数的图象} {类别:常考题} {难度:3-中等难度}{题目}9.(2019年杭州)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O 在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.asinx+bsinx B.acosx+bcosx C.asinx+bcosx D.acosx+bsinx{答案}D{解析}本题考查了锐角三角函数的简单实际应用,过点A作AE⊥OB于点E,在矩形ABCD中,且AB=a,AD=BC=b,∵∠COB=∠ABC=90°,∴∠ABE+∠OBC=∠BCO+∠OBC=90°,∴∠ABE=∠BCO=x,∴sinOBxBC=,cosBExAB=,∴sinOB b x=,cosBE a x=,所以点A到OC的距离OE=BE+OB=acosx+bsinx,因此本题选D.{分值}3{章节:[1-28-3]锐角三角函数}{考点:余弦}{类别:常考题}{难度:3-中等难度}{题目}10.(2019年杭州)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x 轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣1{答案}C{解析}本题考查了二次函数、一次函数图象与x轴交点的求解,当y=(x+a)(x+b)=0时,x=-a 或x=-b,∵a≠b,∴函数y=(x+a)(x+b)的图象与x轴有两个交点(-a,0)、(-b,0),∴M=2.当ab≠0时,同法可得函数y=(ax+1)(bx+1)的图象与x轴有两个交点(-1a,0)、(-1b,0),此时N=2,故M=N=2;当ab=0时,∵a≠b,∴a与b只能有一个为0,不能同时为0,此时函数为一次函数,其图象与x轴有唯一的交点(-1a,0)或(-1b,0),此时N=1,故M=N+1.综上可知,M=N或M=N+1.因此本题选C.{分值}3{章节:[1-22-2]二次函数与一元二次方程}{考点:抛物线与一元二次方程的关系} }{类别:常考题} {类别:易错题} {难度:3-中等难度}{题型:2-填空题}二、填空题(本大题有6小题,每小题4分,共24分) {题目}11.(2019年杭州)因式分解:1﹣x 2= . {答案}(1﹣x )(1+x ){解析}本题考查了利用平方差公式进行因式分解,1﹣x 2=12﹣x 2=(1﹣x )(1+x ),因此本题答案为:(1﹣x )(1+x ). {分值}4{章节:[1-14-3]因式分解} {考点:因式分解-平方差} {类别:常考题} {难度:1-最简单}{题目}12.(2019年杭州)某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m +n 个数据的平均数等于 . {答案}mx nym n++{解析}本题考查了加权平均数,平均数等于总和除以个数,所以平均数mx nym n+=+,因此本题答案为:mx nym n++.{分值}4{章节:[1-20-1-1]平均数}{考点:加权平均数(频数为权重)} {类别:常考题} {难度:2-简单}{题目}13.(2019年杭州)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 cm 2(结果精确到个位).{答案}113{解析}本题考查了圆锥的侧面积的计算,圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,半径等于圆锥的母线长.设圆锥的底面半径为r ,母线长为l ,则其侧面积3123636 3.14113.04113S rl πππ==⨯⨯==⨯=≈侧,因此本题答案为113.{分值}4{章节:[1-24-4]弧长和扇形面积}{考点:圆锥侧面展开图}{类别:常考题}{难度:2-简单}{题目}14.(2019年杭州)在直角三角形ABC中,若2AB=AC,则cosC=.{答案{解析}本题考查了锐角的余弦值的计算,如图所示,分两种情况讨论,AC可以是直角边,也可以是斜边. ①当AC是斜边,设AB=x,则AC=2x,则BC,则cosBCCAC===②当AC是直角边,设AB=x,则AC=2x,则BCx,则cosACCBC====综上,cos C={分值}4{章节:[1-28-3]锐角三角函数}{考点:余弦}{类别:常考题}{类别:易错题}{难度:3-中等难度}{题目}15.(2019年杭州)某函数满足当自变量x=1时,函数值y=0;当自变量x=0时,函数值y =1.写出一个满足条件的函数表达式.{答案}y=﹣x+1,或y=x2-2x+1,或y=-x2+1,或y=-x3+1,y=-x4+1,1y x=-等等(答案不限,合理即可).{解析}本题考查了根据条件列函数关系式,由于x、y可以取0,所以三种常见函数中不能取反比例3x2x函数,只能取一次函数或二次函数.①若取一次函数,可设其解析式为设该函数的解析式为y =kx +b , 由题知01k b b +=⎧⎨=⎩,解得11k b =-⎧⎨=⎩,所以函数的解析式为y =﹣x +1;②若取二次函数,可设其解析式为y =ax 2+bx +c ,由题知01a b c c ++=⎧⎨=⎩,可得11b ac =--⎧⎨=⎩,比如取a =1,则b =-2,函数为y =x 2-2x +1;取a =-1,则b =0,函数为y =-x 2+1等等;③若取其它函数,还可以是y =-x 3+1,y =-x 4+1,1y x =-等等.因此本题答案为:y =﹣x +1,或y =x 2-2x +1,或y =-x 2+1,或y =-x 3+1,y =-x 4+1,1y x =-等等(答案不限,合理即可).{分值}4{章节:[1-22-1-4]二次函数y =ax 2+bx +c 的图象和性质} {考点:其他二次函数综合题} {类别:发现探究} {难度:3-中等难度}{题目}16.(2019年杭州)如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A ′点,D 点的对称点为D ′点.若∠FPG =90°,△A ′EP 的面积为4,△D ′PH 的面积为1,则矩形ABCD 的面积等于 .{答案}{解析}本题考查了矩形的折叠问题,涉及相似三角形的判定与性质,在矩形ABCD 中,设AB =x ,由折叠知P A ′=AB =x ,PD ′=CD =x ,A ′E =AE ,D ′H =DH ,∠A ′=∠A =90°,∠D ′=∠D =90°,∠A ′PF =∠B =90°,∠D ′PG =∠C =90°,∵∠FPG =90°,∴∠FPG+∠D ′PG =180°,∴D ′、P 、F 三点共线.∵△A ′EP 的面积为4,△D ′PH 的面积为1,∴12A ′E ·x =4,12D ′H ·x =1,∴A ′E =4D ′H ,设D ′H =a ,则A ′E =4a .由折叠知A 'E ∥PF ,∴∠A 'EP =∠D 'PH ,又∵∠A '=∠D '=90°,∴△A 'EP ∽△D 'PH ,∴''''A E A P D P D H =,∴4a xx a=,∴x =2a ,∴P A ′=PD ′=2a , ∵12•a •2a =1,∴a =1(负值舍去),∴x =2,∴AB =CD =2,,A ′E =AE =4,D ′H =DH =1,∴=AD ==∴矩形ABCD 的面积=2×(因此本题答案为:{分值}4{章节:[1-27-1-1]相似三角形的判定} {考点:相似三角形的判定(两角相等)} {考点:矩形的性质} {考点:折叠问题} {类别:发现探究} {类别:常考题} {难度:4-较高难度}{题型:4-解答题}三、解答题(本大题有7个小题,共66分) {题目}17.(2019年杭州)(本题满分6分)化简:242142x x x .圆圆的解答如下: 2224214224422x x x x x x x x圆圆的解答正确吗?如果不正确,写出正确的解答.{解析}本题考查了异分母分式的加减运算,异分母分式相加减,先通分,再加减.而圆圆的做法丢失了分母,改变了原来式子的值,所以圆圆的做法是错误的. {答案}解:圆圆的解答不正确.正确解答如下:原式242(2)4(2)(2)(2)(2)(2)(2)x x x x x x x x x +-=--+-+-+-24(24)(4)(2)(2)x x x x x -+--=+-(2)(2)(2)x x x x --=+-2xx =-+. {分值}6{章节:[1-15-2-2]分式的加减} {难度:2-简单}{类别:常考题}{类别:易错题}{类别:新定义} {考点:两个分式的加减}{题目}18.(2019年杭州)(本题满分8分)称重五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数.甲组为实际称重读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).(1)补充完整乙组数据的折线统计图;(2)①甲、乙两组数据的平均数分别为x 甲、x 乙,写出x 甲与x 乙之间的等量关系;②甲、乙两组数据的平均数分别为2S 甲、2S 乙,比较2S 甲与2S 乙的大小,并说明理由.{解析}本题考查了统计表、折线统计图、平均数和方差,第(1)问先描点再连线即可,画出来的图形应该与前图一致;第(2)问根据平均数的简化计算公式'x x a =+容易得到结果;第(3)问根据方差的公式计算即可. {答案}解:(1)补全折线统计图,如图所示.(2)①50x x =+甲乙. ②22S S =甲乙,理由如下:因为2222221[(2)(2)(3)(1)(4)]5S x x x x x =--+-+--+--+-乙乙乙乙乙乙 实际称重读数和记录数据统计表4-1-32-2544947524854321乙组甲组数据序号222221[(4850)(5250)(4750)(4950)(5450)]5x x x x x =--+--+--+--+--乙乙乙乙乙 222221[(48)(52)(47)(49)(54)]5x x x x x =-+-+-+-+-甲甲甲甲甲 2S =甲,所以22S S =甲乙. {分值}{章节:[1-20-2-1]方差} {难度:3-中等难度} {类别:常考题} {考点:方差的性质}{题目}19.(2019年杭州)(本题满分8分)如图,在△ABC 中,AC <AB <BC .(1)已知线段AB 的垂直平分线与BC 边交于点P ,连接AP ,求证:∠APC =2∠B .(2)以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连接AQ .若∠AQC =3∠B ,求∠B 的度数.(第19题(1)) (第19题(2)){解析}本题考查了线段的垂直平分线的性质和等腰三角形的性质.第(1)问现根据垂直平分线条件证出P A =PB ,在利用等边对等角及三角形外角的性质可证;第(2)问根据作图得出AB =BQ ,从而得到相等的角,列方程即可求解. {答案}解:(1)证明:∵点P 在AB 的垂直平分线上,∴P A =PB ,∴∠P AB =∠B ,∵∠APC =∠P AB +∠B ,∴∠APC =2∠B ;(2)根据题意,得BQ =BA ,∠BAQ =∠BQA ,设∠B =x ,则∠AQC =∠B +∠BAQ =3x ,∴∠BAQ =∠BQA =2x ,在△ABQ 中,x +2x +2x =180°, 解得x =36°,∴∠B =36°. {分值}8{章节:[1-13-2-1]等腰三角形} {难度:3-中等难度} {类别:常考题} {考点:等边对等角}{题目}20.(2019年杭州)(本题满分10分)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时. (1)求v 关于t 的函数表达式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围;②方方能否在当天11点30分前到达B 地?说明理由.{解析}本题考查了反比例函数的实际应用问题.第(1)问根据题意直接列式即可;第(2)问第一小问利用极端值可以确定速度的范围;第二小问可以用两种方法:一是时间相同比速度,二是速度相同比时间.{答案}解: (1)根据题意,得480vt =,所以480v t=,因为4800>,所以当120v ≤时,4t ≥, 综上,v 关于t 的函数表达式为480(4)v t t=≥; (2)①根据题意,得4.86t ≤≤,当t =4.8时,v =10;当t =6时,v =8. ∴小汽车行驶速度v 的范围是80100v ≤≤; ②方方不能在11点30分前到达B 地.理由如下: 法一:若方方要在11点30分前到达B 地,则 3.5t <, 所以4801203.5v >>,所以方方不能在11点30分前到达B 地; 法二:方方按最快的速度行驶,那么v =120,当v =120时,可得t =480120=4,8+4=12,∴方方最早也要12点才能到达,不能在当天11点30分前到达B 地. {分值}10{章节:[1-26-2]实际问题与反比例函数} {难度:3-中等难度} {类别:常考题}{考点:生活中的反比例函数的应用}{题目}21.(2019年杭州)(本题满分10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为S 1,点E 在DC 边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为S 2,且S 1=S 2.(1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD =HG .{解析}本题考查了在正方形条件下列一元二次方程解决问题.第(1)问设小正方形边长为未知数,根据S 1=S 2即可列方程求解;第(2)问在第一问的基础上利用勾股定理计算即可. {答案}解:(1)在正方形ABCD 和正方形CEFG 中,AD =BC =CD =1,∠BCD =90°.设CE =x (0<x <1),则DE =1-x ,因为S 1=S 2,所以x 2=1-x ,解得x 1x 2,∴CEGFE H DCBA(2)因为点H 为BC 边的中点,所以CH =12,所以HD ,因为CG =CE H ,C ,G在同一直线上,所以HG =HC +CG =12,所以HD =HG .{分值}10{章节:[1-21-4]实际问题与一元二次方程} {难度:3-中等难度} {类别:常考题}{考点:一元二次方程的应用—面积问题} {考点:正方形的性质}{题目}22.(2019年杭州)(本题满分12分)设二次函数y =(x ﹣x 1)(x ﹣x 2)(x 1,x 2是实数). (1)甲求得当x =0时,y =0;当x =1时,y =0;乙求得当x=12时,y=12-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x 1,x 2的代数式表示). (3)已知二次函数的图象经过(0,m )和(1,n )两点(m ,n 是实数),当0<x 1<x 2<1时,求证:0<mn <116. {解析}本题考查了二次函数的有关性质,重点考查了二次函数与一元二次方程的关系.第(1)问根据甲的结果求出函数解析式,再通过代入比较判断乙的结果是否正确;第(2)问注意不能再利用(1)的结论,而是要用含x 1,x 2的代数式来进行计算,算的时候抓住抛物线的轴对称性就比较方便了;第(3)问需要先用含x 1,x 2的代数式来表示出m 、n 以及mn ,然后再通过配方法变形来证出结论,难度 较大. {答案}解:(1)乙求得的结果不正确,理由如下:根据题意,知图象经过点(0,0),(1,0),所以(1)y x x =-,当12x =时,1111(1)2242y =⨯-=-≠-,所以乙求得的结果不正确. (2)函数图象的对称轴为122x x x +=,当122x x x +=时,设函数有最小值M ,则212121212()224x x x x x x M x x ++-⎛⎫⎛⎫=--=- ⎪⎪⎝⎭⎝⎭;(3)因为12()()y x x x x =--, 所以12m x x =,12(1)(1)n x x =--,所以2212121122(1)(1)()()mn x x x x x x x x =--=-- 22121111[()][()]2424x x =--+⋅--+因为1201x x <<<,并结合函数(1)y x x =-的图象,所以211110()244x <--+≤,221110()244x <--+≤所以1016mn <≤,因为12x x ≠,所以1016mn <<.{分值}12{章节:[1-22-2]二次函数与一元二次方程} {难度:5-高难度} {类别:高度原创}{考点:抛物线与一元二次方程的关系}{题目}23.(2019年杭州)(本题满分12分)如图,已知锐角三角形ABC 内接于⊙O ,OD ⊥BC 于点D ,连接OA .(1)若∠BAC =60°, ①求证:OD =12OA . ②当OA =1时,求△ABC 面积的最大值. (2)点E 在线段OA 上,OE =OD .连接DE ,设∠ABC =m ∠OED ,∠ACB =n ∠OED (m ,n 是正数),若∠ABC <∠ACB ,求证:m ﹣n +2=0.{解析}本题考查了垂径定理,圆周角、圆心角、弧的关系等相关圆的知识.(1)①连接OB 、OC ,将OD 与OA 的关系探究转化为OD 与OB (或OC )的关系来进行探究即可;②BC 长度为定值,要使△ABC 面积取得最大值,就要要求BC 边上的高最大,即可求解;(2)设∠OED =x ,则∠BAC =180°﹣∠ABC ﹣∠ACB =180°﹣mx ﹣nx=12∠BOC =∠DOC ,而∠AOD =∠COD +∠AOC =180°﹣mx ﹣nx +2mx =180°+mx ﹣nx ,即可求解. {答案}解:(1)①证明:如图1,连接OB ,OC ,因为OB =OC ,OD ⊥BC , 所以∠BOD =12∠BOC =12×2∠BAC =60°,∵cos ∠BOD =OD OB =12,所以OD =12OB =12OA ;②作AF ⊥BC ,垂足为点F ,所以AF ≤AD ≤AO +OD =32,等号当点A ,O ,D 在同一直线上时取到由①知,BC =2BD ,所以△ABC 的面积113222BC AF =⋅≤=,即△ABC(2)如图2,连接OC ,设∠OED =x ,则∠ABC =mx ,∠ACB =nx , 则∠BAC =180°﹣∠ABC ﹣∠ACB =180°﹣mx ﹣nx=12∠BOC =∠DOC , ∵∠AOC =2∠ABC =2mx ,∴∠AOD =∠COD +∠AOC =180°﹣mx ﹣nx +2mx =180°+mx ﹣nx , ∵OE =OD ,∴∠AOD =180°﹣2x ,即:180°+mx ﹣nx =180°﹣2x , 化简即可得:m ﹣n +2=0. {分值}12{章节:[1-24-1-4]圆周角} {难度:5-高难度} {类别:高度原创} {考点:垂径定理}{考点:圆心角、弧、弦的关系} {考点:圆周角定理}。
浙江省杭州市2019年中考数学真题试题(含解析)
中考干货大提醒考前提前20分钟到场,稳定一下情绪!考试一定一定一定要放松,大考前深呼吸,做五组深呼吸,真的超级有用!可以让紧张感变淡好多!不用在意别人的想法,你只需要自己学好、把自己变得更优秀!!!不要太过于关注排名,它只能反映你目前的情况,不会决定你下一场考试的结果。
一定要有错题本!!一定!!!!注意知识点总结和归纳,形成网状知识结构!考前一个月每天每科一份卷子保持手感!浙江省杭州市2019年中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分。
1.计算下列各式,值最小的是()A. 2×0+1-9B. 2+0×1-9C. 2+0-1×9D. 2+0+1-9【答案】 A【考点】有理数的加减乘除混合运算【解析】【解答】解:A.∵原式=0+1-9=-8,B.∵原式=2+0-9=-7,C.∵原式=2+0-9=-7,D.∵原式=2+1-9=-6,∵-8<-7<-6,∴值最小的是-8.故答案为:A.【分析】先分别计算出每个代数式的值,再比较大小,从而可得答案.2.在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A. m=3,n=2B. m=-3,n=2 C. m=3,n=2 B.m=-2,n=3【答案】 B【考点】关于坐标轴对称的点的坐标特征【解析】【解答】解:∵A(m,2)与B(3,n)关于y轴对称,∴m=-3,n=2.故答案为:B.【分析】关于y轴对称的点的特征:横坐标互为相反数,纵坐标不变,依此即可得出答案.3.如图,P为⊙O外一点,PA,PB分别切⊙O于A,B两点,若PA=3,则PB=()A. 2B. 3C. 4D. 5【答案】 B【考点】切线长定理【解析】【解答】解:∵PA、PB分别为⊙O的切线,∴PA=PB,又∵PA=3,∴PB=3.故答案为:B.【分析】根据切线长定理可得PA=PB,结合题意可得答案.4.已知九年级某班30位学生种树72株,男生每人种3棵树,女生每人种2棵树.设e男生有人,则()A. 2x+3(72-x)=30B. 3x+2(72-x)=30C. 2x+3(30-x)=72 D. 3x+2(30-x)=72【答案】 D【考点】一元一次方程的其他应用【解析】【解答】解:依题可得,3x+2(30-x)=72.故答案为:D.【分析】男生种树棵数+女生种树棵数=72,依此列出一元一次方程即可.5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数的个位数字被墨水涂污看不到了,则计算结果与被涂污数字无关的是()A. 平均数B. 中位数C. 方差 D. 标准差【答案】 B【考点】中位数【解析】【解答】解:依题可得,这组数据的中位数为:=41,∴计算结果与被涂污数字无关的是中位数.故答案为:B.【分析】中位数:将一组数据从小到大或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位数;依此可得答案.6.如图,在△ABC中,点D,E分别在AB和AC边上,DE∥BC,M为BC边上一点(不与点B、C重合),连接AM交DE于点N,则()A. B. C.D.【答案】 C【考点】平行线分线段成比例【解析】【解答】解:A.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,A不符合题意;B.∵DE∥BC,∴,,∴,,∵≠ ,∴≠ ,故错误,B不符合题意;C.∵DE∥BC,∴,,∴= ,故正确,C符合题意;D.∵DE∥BC,∴,,∴= ,即= ,故错误,D不符合题意;故答案为:C.【分析】根据平行线截线段成比例逐一分析即可判断对错,从而可得答案.7.在△ABC中,若一个内角等于另两个内角的差,则()A. 必有一个内角等于30°B. 必有一个内角等于45°C. 必有一个内角等于60°D. 必有一个内角等于90°【答案】 D【考点】三角形内角和定理【解析】【解答】解:设△ABC的三个内角分别为A、B、C,依题可得,A=B-C ①,又∵A+B+C=180°②,②-①得:2B=180°,∴B=90°,∴△ABC必有一个内角等于90°.故答案为:D.【分析】根据题意列出等式A=B-C①,再由三角形内角和定理得A+B+C=180°②,由②-①可得B=90°,由此即可得出答案.8.已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A B C D【答案】 A【考点】一次函数图象、性质与系数的关系【解析】【解答】解:A.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、三象限,∴b>0,a>0,故正确,A符合题意;B.∵y1=ax+b图像过一、二、三象限,∴a>0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,B不符合题意;C.∵y1=ax+b图像过一、二、四象限,∴a<0,b>0,又∵y2=bx+a图像过一、二、四象限,∴b<0,a>0,故矛盾,C不符合题意;D.∵y1=ax+b图像过二、三、四象限,∴a<0,b<0,又∵y2=bx+a图像过一、三、四象限,∴b>0,a<0,故矛盾,D不符合题意;故答案为:A.【分析】根据一次函数图像与系数的关系:k>0,b>0时,图像经过一、二、三象限;k>0,b<0时,图像经过一、三、四象限;k<0,b<0时,图像经过二、三、四象限;k>0,b>0时,图像经过一、二、四象限;依此逐一分析即可得出答案.9.如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内).已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A. asinx+bsinxB. acosx+bcosxC. asinx+bcosx.D. acosx+bsin x【答案】 D【考点】解直角三角形的应用【解析】【解答】解:作AG⊥OC交OC于点G,交BC于点H,如图,∵四边形ABCD为矩形,AD=b,∴∠ABH=90°,AD=BC=b,∵OB⊥OC,∴∠O=90°,又∵∠HCG+∠GHC=90°,∠AHB+∠BAH=90°,∠GHC=∠AHB,∠BC0=x,∴∠HCG=∠BAH=x,在Rt△ABH中,∵cos∠BAH=cosx= ,AB=a,∴AH= ,∵tan∠BAH=tanx= ,∴BH=a·tanx,∴CH=BC-BH=b-a·ta nx,在Rt△CGH中,∵sin∠HCG=sinx= ,∴GH=(b-a·tanx)·sinx=bsinx-atanxsinx,∴AG=AH+HG= +bsinx-atanxsinx,= +bsinx- ,=bsinx+acosx.故答案为:D.【分析】作AG⊥OC交OC于点G,交BC于点H,由矩形性质得∠ABH=90°,AD=BC=b,根据等角的余角相等得∠HCG=∠BAH=x,在Rt△ABH中,根据锐角三角函数余弦定义cosx= 得AH= ,根据锐角三角函数正切定义tanx= 得BH=a·tanx,从而可得CH长,在Rt△CGH中,根据锐角三角函数正弦定义sinx= 得GH=bsinx-atanxsinx,由AG=AH+HG计算即可得出答案.10.在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A. M=N-1或M=N+1B. M=N-1或M=N+2C. M=N或M=N+1 D. M=N或M=N-1【答案】 C【考点】二次函数图象与坐标轴的交点问题【解析】【解答】解:∵y=(x+a)(x+b),∴函数图像与x轴交点坐标为:(-a,0),(-b,0),又∵y=(ax+1)(bx+1),∴函数图像与x轴交点坐标为:(- ,0),(- ,0),∵a≠b,∴M=N,或M=N+1.故答案为:C.【分析】根据函数解析式分别得出图像与x轴的交点坐标,根据题意a≠b分等于0和不等于0的情况即可得出两个交点个数之间的关系式,从而得出答案.二、填空题:本大题有6个小题,每小题4分,共24分,11.因式分解:1-x2=________.【答案】(1+x)(1-x)【考点】因式分解﹣运用公式法【解析】【解答】解:∵原式=(1+x)(1-x).故答案为:(1+x)(1-x).【分析】根据因式分解的方法——公式法因式分解即可得出答案.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于________。
2019年浙江省杭州市中考数学试卷附分析答案
平面内),已知 AB=a,AD=b,∠BCO=x,则点 A 到 OC 的距离等于( )
A.asinx+bsinx
B.acosx+bcosx
C.asinx+bcosx
D.acosx+bsinx
10.(3 分)在平面直角坐标系中,已知 a≠b,设函数 y=(x+a)(x+b)的图象与 x 轴有 M
个交点,函数 y=(ax+1)(bx+1)的图象与 x 轴有 N 个交点,则( )
C.4
, tt ∴Rt△AOP≌Rt△BOP(HL),
第 7页(共 20页)
D.5
∴PB=PA=3,
故选:B.
4.(3 分)已知九年级某班 30 位学生种树 72 棵,男生每人种 3 棵树,女生每人种 2 棵树,
设男生有 x 人,则( )
A.2x+3(72﹣x)=30
B.3x+2(72﹣x)=30
C.M=N 或 M=N+1
D.M=N 或 M=N﹣1
第 10页(共 20页)
【解答】解:∵y=(x+a)(x+b),a≠b,
∴函数 y=(x+a)(x+b)的图象与 x 轴有 2 个交点,
∴M=2,
∵函数 y=(ax+1)(bx+1)=abx2+(a+b)x+1,
∴当 ab≠0 时,△=(a+b)2﹣4ab=(a﹣b)2>0,函数 y=(ax+1)(bx+1)的图象与
B.2+0×1﹣9=﹣7
C.2+0﹣1×9=﹣7
) C.2+0﹣1×9
D.2+0+1﹣9
2019年浙江杭州中考数学试卷及详细答案解析(word版)
2019年浙江省杭州市中考数学试卷一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)计算下列各式,值最小的是()A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣92.(3分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣3 3.(3分)如图,P为圆O外一点,P A,PB分别切圆O于A,B两点,若P A=3,则PB=()A.2B.3C.4D.54.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72D.3x+2(30﹣x)=725.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差6.(3分)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.ADAN =ANAEB.BDMN=MNCEC.DNBM=NEMCD.DNMC=NEBM7.(3分)在△ABC中,若一个内角等于另外两个内角的差,则()A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°8.(3分)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.9.(3分)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x10.(3分)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M 个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣1二、填空题:本大题有6个小题,每小题4分,共24分;11.(4分)因式分解:1﹣x2=.12.(4分)某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于.13.(4分)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm,底面圆半径为3cm,则这个冰淇淋外壳的侧面积等于cm2(结果精确到个位).14.(4分)在直角三角形ABC中,若2AB=AC,则cos C=.15.(4分)某函数满足当自变量x=1时,函数值y=0,当自变量x=0时,函数值y=1,写出一个满足条件的函数表达式.16.(4分)如图,把某矩形纸片ABCD沿EF,GH折叠(点E,H在AD边上,点F,G在BC边上),使点B和点C落在AD边上同一点P处,A点的对称点为A′点,D点的对称点为D′点,若∠FPG=90°,△A′EP的面积为4,△D′PH的面积为1,则矩形ABCD的面积等于.三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤.17.(6分)化简:4xx2−4−2x−2−1圆圆的解答如下:4x x2−4−2x−2−1=4x﹣2(x+2)﹣(x2﹣4)=﹣x2+2x圆圆的解答正确吗?如果不正确,写出正确的答案.18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号数据12345甲组4852474954乙组﹣22﹣3﹣14(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x甲,x乙,写出x甲与x乙之间的等量关系.②甲,乙两组数据的方差分别为S甲2,S乙2,比较S甲2与S乙2的大小,并说明理由.19.(8分)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC =3∠B,求∠B的度数.20.(10分)方方驾驶小汽车匀速地从A地行驶到B地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v关于t的函数表达式;(2)方方上午8点驾驶小汽车从A地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B地,求小汽车行驶速度v的范围.②方方能否在当天11点30分前到达B地?说明理由.21.(10分)如图,已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC 边上,点G在BC的延长线上,设以线段AD和DE为邻边的矩形的面积为S2,且S1=S2.(1)求线段CE的长;(2)若点H为BC边的中点,连接HD,求证:HD=HG.22.(12分)设二次函数y=(x﹣x1)(x﹣x2)(x1,x2是实数).(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x=12时,y=−12.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x1,x2的代数式表示).(3)已知二次函数的图象经过(0,m)和(1,n)两点(m,n是实数),当0<x1<x2<1时,求证:0<mn<1 16.23.(12分)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=12OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED (m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.2019年浙江省杭州市中考数学试卷参考答案与试题解析一、选择题:本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的;1.(3分)计算下列各式,值最小的是()A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣9【解答】解:A.2×0+1﹣9=﹣8,B.2+0×1﹣9=﹣7C.2+0﹣1×9=﹣7D.2+0+1﹣9=﹣6,故选:A.2.(3分)在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则()A.m=3,n=2B.m=﹣3,n=2C.m=2,n=3D.m=﹣2,n=﹣3【解答】解:∵点A(m,2)与点B(3,n)关于y轴对称,∴m=﹣3,n=2.故选:B.3.(3分)如图,P为圆O外一点,P A,PB分别切圆O于A,B两点,若P A=3,则PB=()A.2B.3C.4D.5【解答】解:连接OA、OB、OP,∵P A,PB分别切圆O于A,B两点,∴OA⊥P A,OB⊥PB,在Rt△AOP和Rt△BOP中,{OA=OBOP=OP,∴Rt△AOP≌Rt△BOP(HL),∴PB=P A=3,故选:B.4.(3分)已知九年级某班30位学生种树72棵,男生每人种3棵树,女生每人种2棵树,设男生有x人,则()A.2x+3(72﹣x)=30B.3x+2(72﹣x)=30C.2x+3(30﹣x)=72D.3x+2(30﹣x)=72【解答】解:设男生有x人,则女生(30﹣x)人,根据题意可得:3x+2(30﹣x)=72.故选:D.5.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.6.(3分)如图,在△ABC中,点D,E分别在AB和AC上,DE∥BC,M为BC边上一点(不与点B,C重合),连接AM交DE于点N,则()A.ADAN =ANAEB.BDMN=MNCEC.DNBM=NEMCD.DNMC=NEBM【解答】解:∵DN∥BM,∴△ADN∽△ABM,∴DNBM =AN AM,∵NE∥MC,∴△ANE∽△AMC,∴NEMC =ANAM,∴DNBM =NE MC.故选:C.7.(3分)在△ABC中,若一个内角等于另外两个内角的差,则()A.必有一个内角等于30°B.必有一个内角等于45°C.必有一个内角等于60°D.必有一个内角等于90°【解答】解:∵∠A+∠B+∠C=180°,∠A=∠C﹣∠B,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故选:D.8.(3分)已知一次函数y1=ax+b和y2=bx+a(a≠b),函数y1和y2的图象可能是()A.B.C.D.【解答】解:A、由①可知:a>0,b>0.∴直线②经过一、二、三象限,故A正确;B、由①可知:a<0,b>0.∴直线②经过一、二、三象限,故B错误;C、由①可知:a<0,b>0.∴直线②经过一、二、四象限,交点不对,故C错误;D、由①可知:a<0,b<0,∴直线②经过二、三、四象限,故D错误.故选:A.9.(3分)如图,一块矩形木板ABCD斜靠在墙边(OC⊥OB,点A,B,C,D,O在同一平面内),已知AB=a,AD=b,∠BCO=x,则点A到OC的距离等于()A.a sin x+b sin x B.a cos x+b cos xC.a sin x+b cos x D.a cos x+b sin x【解答】解:作AE⊥OC于点E,作AF⊥OB于点F,∵四边形ABCD是矩形,∴∠ABC=90°,∵∠ABC=∠AEC,∠BCO=x,∴∠EAB=x,∴∠FBA=x,∵AB=a,AD=b,∴FO=FB+BO=a•cos x+b•sin x,故选:D.10.(3分)在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M 个交点,函数y=(ax+1)(bx+1)的图象与x轴有N个交点,则()A.M=N﹣1或M=N+1B.M=N﹣1或M=N+2C.M=N或M=N+1D.M=N或M=N﹣1【解答】解:∵y =(x +a )(x +b )=x 2+(a +b )x +1, ∴△=(a +b )2﹣4ab =(a ﹣b )2>0,∴函数y =(x +a )(x +b )的图象与x 轴有2个交点, ∴M =2,∵函数y =(ax +1)(bx +1)=abx 2+(a +b )x +1,∴当ab ≠0时,△=(a +b )2﹣4ab =(a ﹣b )2>0,函数y =(ax +1)(bx +1)的图象与x 轴有2个交点,即N =2,此时M =N ;当ab =0时,不妨令a =0,∵a ≠b ,∴b ≠0,函数y =(ax +1)(bx +1)=bx +1为一次函数,与x 轴有一个交点,即N =1,此时M =N +1; 综上可知,M =N 或M =N +1. 故选:C .二、填空题:本大题有6个小题,每小题4分,共24分; 11.(4分)因式分解:1﹣x 2= (1﹣x )(1+x ) . 【解答】解:∵1﹣x 2=(1﹣x )(1+x ), 故答案为:(1﹣x )(1+x ).12.(4分)某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m +n 个数据的平均数等于mx+ny m+n.【解答】解:∵某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m +n 个数据的平均数等于:mx+ny m+n.故答案为:mx+ny m+n.13.(4分)如图是一个圆锥形冰淇淋外壳(不计厚度),已知其母线长为12cm ,底面圆半径为3cm ,则这个冰淇淋外壳的侧面积等于 113 cm 2(结果精确到个位).【解答】解:这个冰淇淋外壳的侧面积=12×2π×3×12=36π≈113(cm 2).故答案为113.14.(4分)在直角三角形ABC 中,若2AB =AC ,则cos C =√32或2√55. 【解答】解:若∠B =90°,设AB =x ,则AC =2x ,所以BC =√(2x)2−x 2=√3x ,所以cos C =BC AC =√3x 2x =√32; 若∠A =90°,设AB =x ,则AC =2x ,所以BC =√(2x)2+x 2=√5x ,所以cos C =ACBC =2x √5x=2√55; 综上所述,cos C 的值为√32或2√55. 故答案为√32或2√55. 15.(4分)某函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1,写出一个满足条件的函数表达式 y =﹣x +1 . 【解答】解:设该函数的解析式为y =kx +b ,∵函数满足当自变量x =1时,函数值y =0,当自变量x =0时,函数值y =1, ∴{k +b =0b =1 解得:{k =−1b =1,所以函数的解析式为y =﹣x +1, 故答案为:y =﹣x +1.16.(4分)如图,把某矩形纸片ABCD 沿EF ,GH 折叠(点E ,H 在AD 边上,点F ,G 在BC 边上),使点B 和点C 落在AD 边上同一点P 处,A 点的对称点为A ′点,D 点的对称点为D ′点,若∠FPG =90°,△A ′EP 的面积为4,△D ′PH 的面积为1,则矩形ABCD 的面积等于 2(5+3√5) .【解答】解:∵四边形ABC 是矩形, ∴AB =CD ,AD =BC ,设AB =CD =x ,由翻折可知:P A ′=AB =x ,PD ′=CD =x , ∵△A ′EP 的面积为4,△D ′PH 的面积为1, ∴A ′E =4D ′H ,设D ′H =a ,则A ′E =4a , ∵△A ′EP ∽△D ′PH , ∴D′H PA′=PD′EA′,∴a x=x 4a,∴x 2=4a 2,∴x =2a 或﹣2a (舍弃), ∴P A ′=PD ′=2a , ∵12•a •2a =1,∴a =1, ∴x =2,∴AB =CD =2,PE =√22+42=2√5,PH =√12+22=√5, ∴AD =4+2√5+√5+1=5+3√5, ∴矩形ABCD 的面积=2(5+3√5). 故答案为2(5+3√5)三、解答题:本小题7个小题,共66分,解答应写出文字说明、证明过程或演算步骤. 17.(6分)化简:4x x 2−4−2x−2−1圆圆的解答如下:4x x 2−4−2x−2−1=4x ﹣2(x +2)﹣(x 2﹣4)=﹣x 2+2x圆圆的解答正确吗?如果不正确,写出正确的答案. 【解答】解:圆圆的解答错误, 正确解法:4x x 2−4−2x−2−1=4x(x−2)(x+2)−2(x+2)(x−2)(x+2)−(x−2)(x+2)(x−2)(x+2)=4x−2x−4−x 2+4(x−2)(x+2)=2x−x 2(x−2)(x+2) =−x x+2. 18.(8分)称量五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称量读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克).实际称量读数和记录数据统计表序号 数据 12345甲组 48 52 47 49 54 乙组﹣22﹣3﹣14(1)补充完成乙组数据的折线统计图.(2)①甲,乙两组数据的平均数分别为x 甲,x 乙,写出x 甲与x 乙之间的等量关系. ②甲,乙两组数据的方差分别为S 甲2,S 乙2,比较S 甲2与S 乙2的大小,并说明理由. 【解答】解:(1)乙组数据的折线统计图如图所示:(2)①x甲=50+x乙.②S甲2=S乙2.理由:∵S甲2=15[(48﹣50)2+(52﹣50)2+(47﹣50)2+(49﹣50)2+(54﹣50)2]=6.8.S乙2=15[(﹣2﹣0)2+(2﹣0)2+(﹣3﹣0)2+(﹣1﹣0)2+(4﹣0)2]=6.8,∴S甲2=S乙2.19.(8分)如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC =3∠B,求∠B的度数.【解答】解:(1)证明:∵线段AB的垂直平分线与BC边交于点P,∴P A=PB,∴∠B=∠BAP,∵∠APC =∠B +∠BAP , ∴∠APC =2∠B ;(2)根据题意可知BA =BQ , ∴∠BAQ =∠BQA ,∵∠AQC =3∠B ,∠AQC =∠B +∠BAQ , ∴∠BQA =2∠B ,∵∠BAQ +∠BQA +∠B =180°, ∴5∠B =180°, ∴∠B =36°.20.(10分)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t (单位:小时),行驶速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数表达式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围.②方方能否在当天11点30分前到达B 地?说明理由.【解答】解:(1)∵vt =480,且全程速度限定为不超过120千米/小时, ∴v 关于t 的函数表达式为:v =480t ,(0≤t ≤4). (2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时将t =6代入v =480t 得v =80;将t =245代入v =480t 得v =100. ∴小汽车行驶速度v 的范围为:80≤v ≤100.②方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480t 得v =9607>120千米/小时,超速了.故方方不能在当天11点30分前到达B 地.21.(10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为S 1,点E 在DC边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为S 2,且S 1=S 2.(1)求线段CE 的长;(2)若点H 为BC 边的中点,连接HD ,求证:HD =HG .【解答】解:(1)设正方形CEFG 的边长为a , ∵正方形ABCD 的边长为1, ∴DE =1﹣a , ∵S 1=S 2,∴a 2=1×(1﹣a ),解得,a 1=−√52−12(舍去),a 2=√52−12, 即线段CE 的长是√52−12; (2)证明:∵点H 为BC 边的中点,BC =1, ∴CH =0.5,∴DH =√12+0.52=√52, ∵CH =0.5,CG =√52−12, ∴HG =√52, ∴HD =HG .22.(12分)设二次函数y =(x ﹣x 1)(x ﹣x 2)(x 1,x 2是实数).(1)甲求得当x =0时,y =0;当x =1时,y =0;乙求得当x =12时,y =−12.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由.(2)写出二次函数图象的对称轴,并求该函数的最小值(用含x 1,x 2的代数式表示). (3)已知二次函数的图象经过(0,m )和(1,n )两点(m ,n 是实数),当0<x 1<x 2<1时,求证:0<mn <116.【解答】解:(1)当x=0时,y=0;当x=1时,y=0;∴二次函数经过点(0,0),(1,0),∴x1=0,x2=1,∴y═x(x﹣1)=x2﹣x,当x=12时,y=−14,∴乙说点的不对;(2)对称轴为x=x1+x2 2,当x=x1+x22时,y=−(x1−x2)24是函数的最小值;(3)二次函数的图象经过(0,m)和(1,n)两点,∴m=x1x2,n=1﹣x1﹣x2+x1x2,∴mn=[−(x1−12)2+14][−(x2−12)2+14]∵0<x1<x2<1,∴0≤−(x1−12)2+14≤14,0≤−(x2−12)2+14≤14,∴0<mn<1 16.23.(12分)如图,已知锐角三角形ABC内接于圆O,OD⊥BC于点D,连接OA.(1)若∠BAC=60°,①求证:OD=12OA.②当OA=1时,求△ABC面积的最大值.(2)点E在线段OA上,OE=OD,连接DE,设∠ABC=m∠OED,∠ACB=n∠OED (m,n是正数),若∠ABC<∠ACB,求证:m﹣n+2=0.【解答】解:(1)①连接OB、OC,则∠BOD=12BOC=∠BAC=60°,∴∠OBC=30°,∴OD=12OB=12OA;②∵BC长度为定值,∴△ABC面积的最大值,要求BC边上的高最大,当AD过点O时,AD最大,即:AD=AO+OD=3 2,△ABC面积的最大值=12×BC×AD=12×2OB sin60°×32=3√34;(2)如图2,连接OC,设:∠OED=x,则∠ABC=mx,∠ACB=nx,则∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣mx﹣nx=12∠BOC=∠DOC,∵∠AOC=2∠ABC=2mx,∴∠AOD=∠COD+∠AOC=180°﹣mx﹣nx+2mx=180°+mx﹣nx,∵OE=OD,∴∠AOD=180°﹣2x,即:180°+mx﹣nx=180°﹣2x,化简得:m﹣n+2=0.。
2019年浙江省杭州市中考数学试卷-答案
2019年浙江省杭州市中考试卷数学答案解析1.【答案】A【解析】8A =-7B =- 7C =- 6D =-【考点】实数2.【答案】B【解析】A ,B 关于y 轴对称,则横坐标互为相反数,纵坐标相同【考点】直角坐标系3.【答案】B【解析】因为P A 和PB 与⊙O 相切,所以P A =PB =3【考点】圆与切线长4.【答案】D【解析】设男生x 人,则女生有(30)x -人,由题意得:()323072x x +-=【考点】一元一次方程5.【答案】B【解析】这组数据中的中位数是41,与涂污数字无关【考点】数据6.【答案】C 【解析】∵//DE BC ,∴ADN ABM △∽△,ANE AMC △∽△ ∴,DN AN AN NE DN NE BM AM AM MC BM MC==⇒= 【考点】相似三角形7.【答案】D【解析】设三角形的一个内角为x ,另一个角为y ,则三个角为(180)x y ︒--,则有三种情况: ①(180)9090x y x y y x y =-︒--⇒=+= 或 ②(180)9090y x x y x x y =---⇒=+= 或 ③(180)9090x y x y x y --=-⇒== 或综上所述,必有一个角等于90°【考点】三角形内角和8.【答案】A【解析】①当0,0a b >>,1y 、2y 的图象都经过一、二、三象限②当0,0a b <<,1y 、2y 的图象都经过二、三、四象限③当0,0a b ><,1y 的图象都经过一、三、四象限,2y 的图象都经过一、二、四象限④当0,0a b <>,1y 的图象都经过一、二、四象限,2y 的图象都经过一、三、四象限满足题意的只有A【考点】一次函数的图象9.【答案】D【解析】过点A 作AE OB ⊥于点E ,因为四边形ABCD 是矩形,且ABa ADb =,= 所以90BCAD b ABC ∠︒==,= 所以ABEBCO x ∠∠== 因为sin OB x BC =,cos BE x AB= 所以sin OB b x =,cos BE a x =所以点A 到OC 的距离cos sin d BE OB a x b x =+=+【考点】三角函数、矩形的性质10.【答案】C【解析】对于函数()()y x a x b =++,当0y =时,函数与x 轴两交点为0,a -()、0,b -(),∵a b ≠,所以有2个交点,故2M =对于函数()()11y ax bx =++①0a b ≠≠,交点为11(,0),(,0)a b--,此时2N M N =⇒= ②0,0a b =≠,交点为1(,0)b-,此时11N M N =⇒=+ ③0,0b a =≠,交点为1(,0)a-,此时11N M N =⇒=+ 综上所述,M N =或1M N =+【考点】二次函数与x 轴交点问题11.【答案】(1)(1)x x +-【解析】二项用平方差公式,22211(1)(1)x x x x -=-=+-【考点】因式分解12.【答案】mx nym n ++ 【解析】平均数等于总和除以个数,所以平均数mx nym n +=+【考点】数据统计13.【答案】113【解析】3123636 3.14113.04113S rl πππ==⨯⨯==⨯=≈【考点】圆锥的侧面积14【解析】如图所示,分两种情况讨论,AC 可以是直角边,也可以是斜边①当AC 是斜边,设AB x =,则2AC x =,由勾股定理可得:BC =,则cos BC C AC ===②当AC 是直角边,设AB x =,则2AC x =,由勾股定理可得:BC =,则cos ACC BC ===综上所述,cos C =【考点】解直角三角形15.【答案】1y x =-+或21y x =-+或1y x =-等【解析】答案不唯一,可以是一次函数,也可以是二次函数【考点】函数的解析式16.【答案】10+【解析】∵'A E PF∴''A EP D PH ∠=∠又∵'90A A ∠=∠=︒,'90D D ∠=∠=︒∴''A D ∠=∠∴''A EP D PH △~△又∵''AB CD AB A P CD D P ===,,∴' 'A P D P =2设''A P D P x ==∵''41A EP D PH S S =△△::∴'2'2A E D P x == ∴2'112422A EP A E A P x x S x ''⨯⨯=⨯⨯===△ ∵0x >∴2x =∴''2A P D P ==∴'2'4A E D P ==∴EP ===∴1=2PH EP = ∴112DH D H A P ''===∴415AD AE EP PH DH =+++=+++=+∴2AB A P '==∴25)10ABCD S AB AD =⨯=⨯+=+矩形【考点】矩形性质,折叠17.【答案】圆圆的解答不正确.正确解答如下: 原式242(2)4(2)(2)(2)(2)(2)(2)x x x x x x x x x +-=--+-+-+- 24(24)(4)(2)(2)x x x x x -+--=+- (2)(2)(2)x x x x --=+- 2x x =-+. 【考点】分式的加减运算18.【答案】(1)补全折线统计图,如图所示.(2)①50x x =+甲乙.②22S S =乙甲,理由如下: 因为2222221[(2)(2)(3)(1)(4)]5S x x x x x =--+-+--+--+-乙乙乙乙乙乙 222221[(4850)(5250)(4750)(4950)(5450)]5x x x x x =--+--+--+--+--乙乙乙乙乙 222221[(48)(52)(47)(49)(54)]5x x x x x =-+-+-+-+-甲甲甲甲甲 2S =甲, 所以22S S =乙甲. 【考点】平均数和方差19.【答案】(1)证明:因为点P 在AB 的垂直平分线上,所以PA PB =,所以PAB B ∠=∠,所以2APC PAB B B ∠=∠+∠=∠.(2)根据题意,得BQ BA =,所以BAQ BQA ∠=∠,设B x ∠=,所以3AQC B BAQ x ∠=∠+∠=,所以2BAQ BQA x ∠=∠=,在ABQ △中,22180x x x ++=︒,解得,,即36B ∠=︒. 【考点】垂直平分线性质,三角形外角,内角的性质,等腰三角形性质,方程思想20.【答案】(1)根据题意,得480vt =, 所以480v t=, 因为4800>,所以当120v ≤时,4t ≥, 所以480(4)v t t=≥ (2)①根据题意,得4.86t ≤≤,因为4800>, 所以4804806 4.8v ≤≤, 所以80100v ≤≤②方方不能在11点30分前到达B 地.理由如下:若方方要在11点30分前到达B 地,则 3.5t <, 所以4801203.5v >>,所以方方不能在11点30分前到达B 地. 【考点】反比例函数及其应用,不等式性质21.【答案】根据题意,得1AD BC CD ===,90BCD ∠=︒.(1)设01CE x x =(<<),则1DE x =-, 因为12S S =,所以21x x =-,解得x =(负根舍去),即CE (2)因为点H 为BC 边的中点,所以12CH =,所以HD =因为CG CE ==,点H ,C ,G 在同一直线上,所以12HG HC CG +===,所以HD HG = 【考点】方程思想,勾股定理22.【答案】(1)乙求得的结果不正确,理由如下:根据题意,知图象经过点(0,0),(1,0),所以(1)y x x =-, 当12x =时,1111(1)2242y =⨯-=-≠-,所以乙求得的结果不正确.(2)函数图象的对称轴为122x x x +=, 当时,函数有最小值M , 212121212()224x x x x x x M x x ++-⎛⎫⎛⎫=--=- ⎪⎪⎝⎭⎝⎭(3)因为12()()y x x x x =--,所以12m x x =,12(1)(1)n x x =--,所以2212121122(1)(1)()()mn x x x x x x x x =--=-- 22121111[()][(2424x x =--+⋅--+ 因为1201x x <<<,并结合函数(1)y x x =-的图象, 所以211110()244x --+≤<,221110()244x --+<≤ 所以1016mn ≤<, 因为12x x ≠,所以1016mn << 【考点】二次函数,待定系数法求二次函数解析式,二次函数的图像和性质,点在函数图像上的运用、判断23.【答案】(1)①证明:连接OB ,OC ,因为OB OC =,OD BC ⊥, 所以1126022BOD BOC BAC ∠=∠=⨯∠=︒, 所以1122OD OB OA == ②作AF BC ⊥,垂足为点F , 所以32AF AD AO OD ≤≤+=,等号当点A ,O ,D 在同一直线上时取到由①知,2BC BD ==,所以ABC △的面积113222BC AF =⋅≤=即ABC △(2)设OED ODE α∠=∠=,COD BOD β∠=∠=,因为ABC △是锐角三角形,所以2360AOC AOB BOD ∠+∠+∠=︒,即()180m n αβ++= (*)又因为ABC ACB ∠∠<,所以EOD AOC DOC ∠=∠+∠2m αβ=+因为180OED ODE EOD ∠+∠+∠=︒,所以2(1)180m αβ++= (**)由(*),(**),得2(1)m n m +=+,即20m n -+=【考点】圆周角定理,等腰三角形性质,含30°角的直角三角形,不等式性质,三角形内角和定理,代数式变形能力,设元方程思想等综合运用。
2019浙江省杭州市中考数学试题(解析版)
2019年杭州市中考数学试卷一、选择题(本大题有10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个符合题目要求) 1.计算下列各式,值最小的是 ( )A .20+19?B .2019+?C .2019+-?D .2019++- 【考点】实数【解析】8A =- 7B =- 7C =- 6D =- 【答案】故选A2.在平面直角坐标系中,点(),2A m 与点()3,b n 关于y 轴对称,则 ( )A . 3m =,2n =B .3m =-,2n =C .2m =,3n =D .2m =-,3n =【考点】直角坐标系【解析】A ,B 关于y 轴对称,则横坐标互为相反数,纵坐标相同 【答案】故选B3.如图,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B 两点,若3PA =,则PB = ( ) A .2 B .3 C .4 D .5【考点】圆与切线长【解析】因为PA 和PB 与⊙O 相切,所以PA =PB =3 【答案】故选B4.已知九年级某班30位同学种树72棵,男生每人种3棵,女生每人种2棵,设男生x 人,则 ( )A .()237230x x +-=B .()327230x x +-=C .()233072x x +-=D .()323072x x +-=【考点】一元一次方程【解析】设男生x 人,则女生有(30-x )人,由题意得:()323072x x +-=【答案】故选D5.点点同学对数据26,36,36,46,5■,52进行统计分析,发现其中一个两位数被墨水涂污看不到了,则计算结果与被涂污数字无关的是 ( ) A .平均数 B .中位数 C .方差 D .标准差 【考点】数据【解析】这组数据中的中位数是41,与涂污数字无关 【答案】故选B6.如图,在ABC △中,D 、E 分别在AB 边和AC 边上,//DE BC ,M 为BC 边上一点(不与B 、C 重合),连结AM 交DE 于点N ,则 ( ) A .AD AN AN AE = B .BD MN MN CE = C .DN NE BM MC = D .DN NE MC BM=P【考点】相似三角形【解析】∵//DE BC ,∴△ADN ∽△ABM ,△ANE ∽△AMC ∴,DN AN AN NE DN NE BM AM AM MC BM MC ==? 【答案】故选C7.在ABC △中,若一个内角等于另外两个角的差,则 ( ) A .必有一个角等于30° B . 必有一个角等于45° C . 必有一个角等于60° D . 必有一个角等于90° 【考点】三角形内角和【解析】设三角形的一个内角为x ,另一个角为y ,则三个角为(180°-x -y ),则有三种情况: ①(180)9090x y x y y x y =-︒--⇒=+=oo或 ②(180)9090y x x y x x y =---⇒=+=o o o 或 ③(180)9090x y x y x y --=-⇒==ooo或 综上所述,必有一个角等于90° 【答案】故选D8.已知一次函数1y a x b =+和2y bx a =+()a b ≠,函数1y 和2y 的图象可能是( )A .B .C .D .【考点】一次函数的图象【解析】①当0,0a b >>,1y 、2y 的图象都经过一、二、三象限 ②当0,0a b <<,1y 、2y 的图象都经过二、三、四象限③当0,0a b ><,1y 的图象都经过一、三、四象限,2y 的图象都经过一、二、四象限④当0,0a b <>,1y 的图象都经过一、二、四象限,2y 的图象都经过一、三、四象限满足题意的只有A【答案】故选A9.如图,一块矩形木板ABCD 斜靠在墙边,(OC OB ^,点A 、B 、C 、D 、O 在同一平面内),已知AB a =,AD b =,BCO x ?.则点A 到OC 的距离等于( ) A . sin sin a x b x + B .cos cos a x b x + C .sin cos a x b x + D .cos sin a x b x +E N MD CBA【考点】三角函数、矩形的性质 【解析】过点A 作AE ⊥OB 于点E ,因为四边形ABCD 是矩形,且AB =a ,AD =b 所以BC =AD =b ,∠ABC =90° 所以∠ABE =∠BCO =x因为sin OB x BC =,cos BEx AB= 所以sin OB b x =,cos BE a x =所以点A 到OC 的距离cos sin d BE OB a x b x =+=+【答案】故选D10.在平面直角坐标系中,已知a b ¹,设函数()()y x a x b =++的图像与x 轴有M 个交点,函数()()11y ax bx =++的图像与x 轴有N 个交点,则 ( )A . 1M N =-或1M N =+B . 1M N =-或2M N =+C . M N =或1M N =+D . M N =或1M N =- 【考点】二次函数与x 轴交点问题【解析】对于函数()()y x a x b =++,当0y =时,函数与x 轴两交点为(-a ,0)、(-b ,0),∵a b ≠,所以有2个交点,故2M = 对于函数()()11y ax bx =++①0a b ≠≠,交点为11(,0),(,0)a b --,此时2N M N =⇒= ②0,0a b =≠,交点为1(,0)b -,此时11N M N =⇒=+③0,0b a =≠,交点为1(,0)a-,此时11N M N =⇒=+综上所述,M N =或1M N =+【答案】故选C二、填空题(本大题有6小题,每小题4分,共24分) 11.因式分解:21x -= . 【考点】因式分解【解析】二项用平方差公式,22211(1)(1)x x x x -=-=+-【答案】(1)(1)x x +-12.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这()m n +个数据的平均数等于 . 【考点】数据统计【解析】平均数等于总和除以个数,所以平均数mx nym n+=+【答案】mx nym n++E13.如图,一个圆锥形冰激凌外壳(不计厚度).已知其母线长为12cm ,底面圆半径为3cm ,则这个冰激凌外壳的侧面积等于 2cm (计算结果精确到个位).【考点】圆锥的侧面积【解析】3123636 3.14113.04113S rl πππ==⨯⨯==⨯=≈侧 【答案】11314.在直角三角形ABC 中,若2AB AC =,则cos C = . 【考点】解直角三角形【解析】如图所示,分两种情况讨论,AC 可以是直角边,也可以是斜边 ①当AC 是斜边,设AB =x ,则AC =2x ,由勾股定理可得: BCx,则cos 22BC C AC x === ①当AC 是直角边,设AB =x ,则AC =2x ,由勾股定理可得: BC,则cos 5AC C BC ====综上所述,cos C =15.某函数满足当自变量1x =时,函数值0y =;当自变量0x =时,函数值1y =,写出一个满足条件的函数表达式 . 【考点】函数的解析式【解析】答案不唯一,可以是一次函数,也可以是二次函数【答案】1y x =-+或21y x =-+或1y x =-等16.如图,把某矩形纸片ABCD 沿EF 、GH 折叠(点E 、H 在AD 边上,点F 、G 在BC 边上),使得点B 、点C 落在AD 边上同一点P 处,A 点的对称点为A ¢点,D 点的对称点为D ¢点,若90FPG ??,A EP ¢△的面积为4,D PH ¢△的面积为1,则矩形ABCD 的面积等于.32x【考点】矩形性质、折叠 【解析】∵A'E ∥PF∴∠A'EP=∠D'PH又∵∠A=∠A'=90°,∠D=∠D'=90° ∴∠A'=∠D'∴△A'EP ~△D'PH又∵AB=CD ,AB=A'P ,CD=D'P∴A'P= D'P 设A'P=D'P=x∵S △A'EP :S △D'PH =4:1 ∴A'E=2D'P=2x ∴S △A'EP =2112422A E A P x x x ''⨯⨯=⨯⨯== ∵0x > ∴2x =∴A'P=D'P=2 ∴A'E=2D'P=4∴EP ===∴1=2PH EP =∴112DH D H A P ''===∴415AD AE EP PH DH =+++=+=+∴2AB A P '==∴25)10ABCD S AB AD =⨯=⨯=矩形【答案】10三、解答题(本大题有7个小题,共66分) 17.(本题满分6分)化简:242142x x x ----圆圆的解答如下: ()()2224214224422x x x x x x x x--=-+----=-+ 圆圆的解答正确吗?如果不正确,写出正确的解答. 【解析】圆圆的解答不正确.正确解答如下:原式242(2)4(2)(2)(2)(2)(2)(2)x x x x x x x x x +-=--+-+-+-D 1A 1G PFECDB AH24(24)(4)(2)(2)x x x x x -+--=+-(2)(2)(2)x x x x --=+-2x x =-+.18.(本题满分8分)称重五筐水果的质量,若每筐以50千克为基准,超过基准部分的千克数记为正数,不足基准部分的千克数记为负数,甲组为实际称重读数,乙组为记录数据,并把所得数据整理成如下统计表和未完成的统计图(单位:千克)⑴补充完整乙组数据的折线统计图;⑵①甲、乙两组数据的平均数分别为x 甲、x 乙,写出x 甲与x 乙之间的等量关系;②甲、乙两组数据的平均数分别为2S 甲、2S 乙,比较2S 甲与2S 乙的大小,并说明理由.【解析】(1)补全折线统计图,如图所示.(2)①50x x =+甲乙.②22S S =甲乙,理由如下:因为2222221[(2)(2)(3)(1)(4)]5S x x x x x =--+-+--+--+-乙乙乙乙乙乙222221[(4850)(5250)(4750)(4950)(5450)]5x x x x x =--+--+--+--+--乙乙乙乙乙 222221[(48)(52)(47)(49)(54)]5x x x x x =-+-+-+-+-甲甲甲甲甲 2S =甲,实际称重读数和记录数据统计表4-1-32-2544947524854321乙组甲组数据序号实际称量读数折线统计图 记录数据折线统计图所以22S S =甲乙.19.(本题满分8分)如图,在ABC △中,AC AB BC <<.⑴已知线段AB 的垂直平分线与BC 边交于点P ,连结AP ,求证:2APC B ??;⑵以点B 为圆心,线段AB 的长为半径画弧,与BC 边交于点Q ,连结AQ ,若3A Q C B ??,求B Ð的度数.【解析】(1)证明:因为点P 在AB 的垂直平分线上, 所以PA=PB , 所以∠PAB=∠B ,所以∠APC=∠PAB+∠B=2∠B. (2)根据题意,得BQ=BA , 所以∠BAQ=∠BQA , 设∠B=x ,所以∠AQC=∠B+∠BAQ=3x , 所以∠BAQ=∠BQA=2x , 在△ABQ 中,x +2x +2x =180°, 解得x =36°,即∠B=36°.20.(本题满分10分)方方驾驶小汽车匀速地从A 地行使到B 地,行驶里程为480千米,设小汽车的行使时间为t (单位:小时),行使速度为v (单位:千米/小时),且全程速度限定为不超过120千米/小时.⑴求v 关于t 的函数表达式;⑵方方上午8点驾驶小汽车从A 出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围.②方方能否在当天11点30分前到达B 地?说明理由.【解析】(1)根据题意,得480vt =, 所以480v t=, 因为4800>,所以当120v ≤时,4t ≥, 所以480(4)v t t=≥ PCBAQABC(2)①根据题意,得4.86t ≤≤, 因为4800>, 所以4804806 4.8v ≤≤, 所以80100v ≤≤②方方不能在11点30分前到达B 地.理由如下: 若方方要在11点30分前到达B 地,则 3.5t <, 所以4801203.5v >>,所以方方不能在11点30分前到达B 地.21.(本题满分10分)如图,已知正方形ABCD 的边长为1,正方形CEFG 的面积为1S ,点E 在CD边上,点G 在BC 的延长线上,设以线段AD 和DE 为邻边的矩形的面积为2S ,且12S S =.⑴求线段CE 的长;⑵若点H 为BC 边的中点,连结HD ,求证:HD HG =.【解析】根据题意,得AD=BC=CD=1,∠BCD=90°. (1)设CE=x (0<x <1),则DE=1-x , 因为S 1=S 2,所以x 2=1-x , 解得x=12(负根舍去), 即CE=12(2)因为点H 为BC 边的中点, 所以CH=12,所以因为,点H ,C ,G 在同一直线上, 所以HG=HC+CG=12HD=HG22.(本题满分12分)设二次函数()()12y x x x x =--(1x 、2x 是实数).GFE H DCBA⑴甲求得当0x =时,0y =;当1x =时,0y =,乙求得当12x =时,12y =-.若甲求得的结果都正确,你认为乙求得的结果正确吗?说明理由;⑵写出二次函数的对称轴,并求出该函数的最小值(用含1x 、2x 的代数式表示);⑶已知二次函数的图像经过()0,m ,()1,n 两点(m 、n 是实数),当1201x x <<<时, 求证:1016mn <<.【解析】(1)乙求得的结果不正确,理由如下: 根据题意,知图象经过点(0,0),(1,0), 所以(1)y x x =-, 当12x =时,1111(1)2242y =⨯-=-≠-, 所以乙求得的结果不正确. (2)函数图象的对称轴为122x x x +=, 当122x x x +=时,函数有最小值M , 212121212()224x x x x x x M x x ++-⎛⎫⎛⎫=--=- ⎪⎪⎝⎭⎝⎭(3)因为12()()y x x x x =--, 所以12m x x =,12(1)(1)n x x =--,所以2212121122(1)(1)()()mn x x x x x x x x =--=--22121111[()][()]2424x x =--+⋅--+因为1201x x <<<,并结合函数(1)y x x =-的图象, 所以211110()244x <--+≤,221110()244x <--+≤ 所以1016mn <≤, 因为12x x ≠,所以1016mn <<23.(本题满分12分)如图,已知锐角ABC △内接于⊙O , OD BC ^于点D ,连结AO . ⑴若60BAC ??.①求证:12OD OA =;②当1OA =时,求ABC △面积的最大值; ⑵点E 在线段OA 上,OE OD =,连接DE ,设A B C m O E D??,ACB n OED ??(m 、n 是正数),若ABC ACB ??,求证:20m n -+=【解析】(1)①证明:连接OB ,OC , 因为OB=OC ,OD ⊥BC , 所以∠BOD=12∠BOC=12×2∠BAC=60°, 所以OD=12OB=12OA ②作AF ⊥BC ,垂足为点F , 所以AF ≤AD ≤AO+OD=32,等号当点A ,O ,D 在同一直线上时取到 由①知,所以△ABC的面积113222BC AF =⋅≤= 即△ABC(2)设∠OED=∠ODE=α,∠COD=∠BOD=β, 因为△ABC 是锐角三角形, 所以∠AOC+∠AOB+2∠BOD=360°,即()180m n αβ++=o(*)又因为∠ABC<∠ACB , 所以∠EOD=∠AOC+∠DOC 2m αβ=+ 因为∠OED+∠ODE+∠EOD=180°,所以2(1)180m αβ++=o(**)由(*),(**),得2(1)m n m +=+, 即20m n -+=。
浙江杭州地区2019中考重点试题36-数学
浙江杭州地区2019中考重点试题36-数学考生须知:1、本科目试卷分试题卷和答题卷两部分.总分值为120分,考试时间100分钟.2、答题前,必须在答题卷的密封区内填写校名、姓名和准考证号.3、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4、考试结束后,试题卷和答题卷一并上交.一、认真选一选(此题有10个小题,每题3分,共30分)下面每题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在 答题卷中相应的格子内.注意能够用多种不同的方法来选取正确答案.在哪两个整数之间〔〕A.1与2B.2与3C.3与4D.4与52、沿圆柱体上面直径截去一部分的物体如下图,它的俯视图是()ABCD3.2017年爆发的世界金融危机,是自上世纪三十年代以来世界最严峻的一场金融危机,西方资本主义国家至今仍未完全走出其妨碍,进入经济衰退期。
受金融危机的妨碍,某商品原价为200元,连续两次降价%a 后售价为148元,下面所列方程正确的选项是〔〕A 、2200(1%)148a +=B 、2200(1%)148a -= C 、200(12%)148a -=D 、2200(1%)148a -=4.我校数学教研组有25名教师,将他们的年龄分成3组,在24~36岁组内有8名教师,那么那个小组的频率是〔〕 A.0.12B.3.125C.0.38D.0.325.关于函数y =-k 2x 〔k 是常数,k ≠0〕的图像,以下说法不.正确的选项是......〔〕 A 、是一条直线B 、过点),1(k k-C 、通过【一】三象限或【二】四象限D 、y 随着x 增大而减小6、将一张正方形纸片对折一次,沿直线剪切一刀后,再将剩余部分摊平,那么那个摊平的图形不可能...是〔〕 A.正方形B.等腰三角形C.直角三角形D.长方形7、假设二次函数2()1y x m =--,当x ≤1时,y 随x 的增大而减小,那么m 的取值范围是〔〕A 、m=1B 、m >1C 、m ≥1D 、m ≤18、如图,正方形ABCD 内接于⊙O ,直径MN ∥AD ,那么阴影面积占圆面积的() A 、21B 、41C 、61D 、81C9.描点法是研究函数图像的重要方法。
浙江杭州2019中考重点试题-数学3
浙江杭州2019中考重点试题-数学3【一】选择题(此题共10小题,每题4分,共40分 )1、在ABC △中,假设2sin (1tan )0A B +-=,那么C ∠的度数是〔 〕A 、45︒B 、 60︒C 、75︒D 、105︒2、如图,AB 是⊙O 的直径,C ,D 为圆上两点,∠AOC =130°,那么∠D 等于〔 〕A 、25°B 、30°C 、35°D 、50°3、二次函数c bx ax y ++=2的图象如下图,那么以下关系式中错误的选项是......〔 〕 A 、a <0 B 、c >0 C 、ac b 42->0 D 、b a +4、现有A 、B 两枚均匀的小立方体〔立方体的每个面上分别标有1、2、3、4学掷A 立方体朝上的数字记为x ,乙同学掷B 立方体朝上的数字记为y ,现用P 〔x,y 〕,那么他们各掷一次确定的点P 落在直线7+-=x y 上的概率为〔181 B 、121 C 、91 D 、615、抛物线5422---=x x y 通过平移得到22x y -=,平移方法是〔 〕 A 、向左平移1个单位,再向下平移3个单位B 、向左平移1个单位,再向上平移3个单位C 、向右平移1个单位,再向下平移3个单位D 、向右平移1个单位,再向上平移3个单位6、如图,E 〔-4,2〕,F 〔-1,-1〕,以O 为位似中心,按比例尺1:2,把△EOF 缩小,那么点E 的对应点E ′的坐标为〔 〕、A 、〔2,-1〕或〔-2,1〕B 、〔8,-4〕或〔-8,4〕C 、〔2,-1〕D 、〔8,-4〕①假设a+b+c=0,那么b 2-4ac ≥0;②假设方程ax 2+bx+c=0两根为-1和2,那么2a+c=0;③假设方程ax 2+c=0有两个不相等的实根,那么方程ax 2+bx+c=0必有两个不相等的实根。
A 、1B 、2C 、3D 、08、点P 关于y 轴对称的点的坐标是(sin60cos60)-︒︒,,那么点P 关于x 轴的对称点的坐标为〔〕A 、,12-〕B 、〔,12〕C 、〔,12-〕D 、〔12-,32-〕 9、如图,边长为4的正方形OABC 放置在平面直角坐标系中,OA 在x 轴正半轴上,OC 在y 轴正半轴上,当直线b x y +-=中的系数b 从0开始逐渐变大时,在正方形上扫过的面积记为S 、那么S 关于b 的函数图像是()第9题图x10、ABC △中,90C ∠=︒,30BAC ∠=︒,AD 是中线,那么=∠CDA tan 〔〕A、、【二】填空题(此题共5小题,每题5分,共25分)11、1O ⊙与2O ⊙相切,它们的半径分别为方程x 2-5x+6=0的两根,那么圆心距12O O 的长是12、将一个矩形纸片ABCD 沿AD 和BC 的中点的连线对折,要使矩形AEFB 与原矩形相似,那么原矩形的长和宽的比应为 13、开口向下的抛物线y m x mx =-++()22221的对称轴通过点〔-1,3〕,那么m=14、在ABC ∆中,三边之比为a b c =::,那么sin tan A A +=15、AE CF 、是锐角ABC △的两条高,假如:3:2AE CF =,那么sin :sin A C =【三】(此题共4小题,16、17每题8分,18、19每题10分,共36分)16.〔8分〕计算:)151(60tan 330sin 2122-+-+- 017、〔8分〕实数a ,b 分别满足222=+a a ,222=+b b ,且a ≠b ,求ba 11+的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江杭州2019中考重点试卷36-数学考生须知:1、本科目试卷分试题卷和答题卷两部分.总分值为120分,考试时间100分钟.2、答题前,必须在答题卷的密封区内填写校名、姓名和准考证号.3、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4、考试结束后,试题卷和答题卷一并上交.一、认真选一选(此题有10个小题,每题3分,共30分)下面每题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在 答题卷中相应的格子内.注意能够用多种不同的方法来选取正确答案.在哪两个整数之间〔〕A.1与2B.2与3C.3与4D.4与52、沿圆柱体上面直径截去一部分的物体如下图,它的俯视图是()ABCD3.2017年爆发的世界金融危机,是自上世纪三十年代以来世界最严峻的一场金融危机,西方资本主义国家至今仍未完全走出其妨碍,进入经济衰退期。
受金融危机的妨碍,某商品原价为200元,连续两次降价%a 后售价为148元,下面所列方程正确的选项是〔〕A 、2200(1%)148a +=B 、2200(1%)148a -=C 、200(12%)148a -=D 、2200(1%)148a -=4.我校数学教研组有25名教师,将他们的年龄分成3组,在24~36岁组内有8名教师,那么那个小组的频率是〔〕 A.0.12B.3.125C.0.38D.0.325.关于函数y =-kx 〔k 是常数,k ≠0〕的图像,以下说法不.正确的选项是......〔〕 A 、是一条直线B 、过点),1(k k-C 、通过【一】三象限或【二】四象限D 、y 随着x 增大而减小6、将一张正方形纸片对折一次,沿直线剪切一刀后,再将剩余部分摊平,那么那个摊平的图形不可能...是〔〕 A.正方形B.等腰三角形C.直角三角形D.长方形7、假设二次函数2()1y x m =--,当x ≤1时,y 随x 的增大而减小,那么m 的取值范围是〔〕A 、m=1B 、m >1C 、m ≥1D 、m ≤18、如图,正方形ABCD 内接于⊙O ,直径MN ∥AD ,那么阴影面积占圆面积的() A 、21B 、41C 、61D 、81C9.描点法是研究函数图像的重要方法。
那么对函数xx y 1+=,你假如采纳描点法的话,能得到该函数的正确性质是〔〕A 、该函数图像与y 轴相交B 、该函数图像与y 轴相交C 、该函数图像关于原点成中心对称D 、该函数图像是轴对称图形10、在正方形ABCD 中,将∠ADC 绕点D 顺时针旋转一定角度,使角的一边与BC 的交点为点F ,且BFCF 21=,另一边与BA 的延长线交于点E ,连结EF ,与BD 交于点M 。
∠BEF 的角平分线交BD 于点G ,过点G 作GH ⊥AB 于H 。
在以下结论中: 〔1〕97=∆∆BFD BME S S ;〔2〕DG=DF ;〔3〕∠BME =90°;〔4〕HG+21EF=AD正确的个数有〔〕A 、4B 、3C 、2D 、10. 二.认真填一填〔此题有6个小题,每题4分,共24分〕 要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11、关于样本数据1,2,3,2,2,以下判断:①平均数为2;②中位数为2;③众数为2;④极差为2;⑤方差为2。
正确的有▲、〔只要求填序号〕 12、在实数范围内分解因式:x x 23-=▲、 13、假设分式方程11)1)(1(6=---+x mx x 有增根,那么m=▲它的增根是▲ 14.在△ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,那么AM 的最小值为▲、15、如图,M 为双曲线y =x1上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m 于D 、C 两点,假设直线y=-x+m 与y轴交于点A,与x轴相交于点B 、那么AD ·BC 的值为▲、16、如图,△ABC 内接于⊙O ,∠A 所对弧的度数为120°、∠ABC 、∠ACB 的角平分线分别交于AC 、AB 于点D 、E ,CE 、BD 相交于点F 、以下四个结论:①cos21=∠BFE ;②BC =BD ;③EF =FD ;④BF =2DF 、其中结论一定正确的序号数是▲、 三、全面答一答〔此题有8个小题,共66分〕解承诺写出文字说明、证明过程或推演步骤.假如觉得有的题目有点困难,那么把自己能写出的解答写出一部分也能够. 17.〔本小题总分值6分〕试确定实数a 的取值范围,使不等式组123x x ++>0恰有两个整数解. 544133a x x a++≥(+)+18、〔此题总分值6分〕ABC △在平面直角坐标系中的位置如下图、 〔1〕分别写出图中点A C 和点的坐标; 〔2〕画出ABC △绕点C 按顺时针方向旋转90°后再绕点B 按逆时针方向旋转90°的△A ′B ′C ′;〔3〕求点A 旋转到点A '所通过的路线长〔结果保留π〕、 19.〔本小题总分值6分〕 某中学为促进课堂教学,提高教学质量,对九年级学生进行了一次“你最喜爱的课堂教学方式”的问卷调查、依照收回的问卷,学校绘制了如下图表,请你依照图表中提供的信息,解答以下问题、〔1〕请把三个图表中的空缺部分都补充完整;〔2〕你最喜爱以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由〔字数在20字以内〕、2320.〔本小题总分值8分〕如图,在△AOB 中,8OA OB ==,90AOB ∠=︒,矩形CDEF 的顶点C 、D 、F 分别在边AO 、OB 、AB 上。
〔1〕假设C 、D 恰好是边AO ,OB 的中点,求矩形CDEF 的面积; 〔2〕假设4tan 3CDO =,求矩形CDEF 面积的最大值。
21.〔本小题总分值8分〕关于x 的方程2(32)(3)0mx m x m +-+-=。
〔1〕求证:方程总有两个不相等的实数根;〔2〕设方程的两个实数根分别为1x ,2x ,其中12x x >,假设2113xy x -=,求y 与m 的函数关系式;〔3〕在〔2〕的条件下,请依照函数图象,直截了当写出使不等式y m ≤-成立的m 的取值范围。
〔其中m >0〕22.〔本小题总分值10分〕依照给出的以下两种情况,请用直尺和圆规找到一条直线,把△ABC 恰好分割成两个等腰三角形〔不写做法,但需保留作图痕迹〕;并依照每种情况分别猜想:∠A 与∠B 有怎么样的数量关系时才能完成以上作图?并举例验证猜想所得结论、 〔1〕如图①△ABC 中,∠C=90°,∠A=24°第18题图①作图: ②猜想: ③验证:〔2〕如图②△ABC 中,∠C=84°,∠A=24°、①作图: ②猜想: ③验证: 23、〔本小题总分值10分〕在平面直角坐标系xOy 中,O 是坐标原点,等边三角形OAB 的一个顶点为A 〔2,0〕,另一个顶点B 在第一象限内。
〔1〕求通过O 、A 、B 三点的抛物线的解析式; 〔2〕假如一个四边形是以它的一条对角线为对称轴的轴对称图形,那么我们称如此的四边形为“筝形”。
点Q 在〔1〕的抛物线上,且以O 、A 、B 、Q 为顶点的四边形是“筝形,求点Q 的坐标;〔3〕设△OAB 的外接圆⊙M ,试判断〔2〕中的点Q 与⊙M 的位置关系,并通过计算说明理由。
24.〔本小题总分值12分〕某课题研究小组就图形面积问题进行专题研究,他们发明如下结论:〔1〕有一条边对应相等的两个三角形面积之比等于这条边上的对应高之比;〔2〕有一个角对应相等的两个三角形面积之比等于夹那个角的两边乘积之比;…现请你接着对下面问题进行探究,探究过程可直截了当应用上述结论、〔S 表示面积〕问题1:如图1,现有一块三角形纸板ABC ,P 1,P 2三等分边AB ,R 1,R 2三等分边AC 、经探究知2121R R P P S 四边形=13 S △ABC ,请证明、问题2:假设有另一块三角形纸板,可将其与问题1中的拼合成四边形ABCD ,如图2,Q 1,Q 2三等分边DC 、请探究2211P Q Q P S 四边形与S 四边形ABCD 之间的数量关系、问题3:如图3,P 1,P 2,P 3,P 4五等分边AB ,Q 1,Q 2,Q 3,Q 4五等分边DC 、假设S 四边形ABCD =1,求3322P Q Q P S 四边形、问题4:如图4,P 1,P 2,P 3四等分边AB ,Q 1,Q 2,Q 3四等分边DC ,P 1Q 1,P 2Q 2,P 3Q 3将四边形ABCD 分成四个部分,面积分别为S 1,S 2,S 3,S 4、请直截了当写出含有S 1,S 2,S 3,S 4的一个等式、考察部分 具体知识点分值小计数与代数 第一题:用有理数可能一个无理数的大致范围〔3分〕第三题:依照问题中的数量关系,会列出简单的一元二次方程〔3分〕 第五题:〔原创〕点的坐标和一次函数性质的理解〔3分〕 第七题:〔原创〕二次函数对称轴和不等式的结合〔3分〕 第九题:〔原创〕对新函数图像会依照提示来进行分析〔3分〕 第十二题:〔原创〕因式分解〔4分〕第十三题:〔依照杭州2017中考试卷第14题改编〕分式解法和增根〔4分〕 第十五题:反比例函数和一次函数的综合〔4分〕 第十七题:〔依照2017荆门中考模试卷改编〕不等式组的解的问题-----求字母取值范围〔6分〕第二十题:〔依照北京二模改编〕三角函数、二次函数综合〔4分〕 第二十一题:一元二次方程根的判别式、解法、反比例函数、数形结合思想。
〔8分〕第二十三题:〔原创〕二次函数、轴对称、分类讨论思想〔10分〕 55分几何图形 第二题:简单物体的三视图〔3分〕第六题:〔依照杭州2018中考试卷第2题改编〕简单图形的实验操作〔3分〕第八题:图形面积的转化〔3分〕第十题:〔依照中考模拟试卷改编〕几何问题的综合〔3分〕 第十四题:〔原创〕动点问题和有关RT △和矩形对角线性质〔4分〕第十六题:〔依照数学实验班〔学生提问〕改编〕圆的差不多性质、相似三角形以及圆的有关计算〔4分〕第十八题:〔原创〕直角坐标系、图形的旋转变换、弧长计算〔6分〕第二十题:〔依照北京二模改编〕特别角直角三角形、勾股定理综合〔4分〕第二十二题:垂直平分线的作法以及垂直平分线的性质和三角形内角和定理〔10分〕第二十四题:平行的判定,相似三角形的判定和性质〔12分〕52分数据统计和概率 第四题:频数的计算〔3分〕第十一题:〔原创〕数据的分析〔4分〕第十九题:〔原创〕频率分布表、扇形统计图、条形统计图〔6分〕13分2018年杭州市各类高中招生文化模拟考试数学参考答案及评分标准一、认真选一选〔此题有10个小题,每题3分,共30分、〕 题号 1 2 3 4 5 6 7 8 9 10 答案BCBDCACBCC二、认真填一填(此题有6个小题,每题4分,共24分、)11、①②③④;12、)2)(2(-+x x x (没完全得2分〕13、m=3,x=1〔每空各2分〕14、2.4;15、2;16、①③、三、全面答一答(此题有8个小题,共66分、)17.〔此题6分〕解:不等式组的解为225x a -<≤…….……………………..2分恰有两个整数解,那么这两个整数解必为x=0,1…….……………………..1分 那么1≤2a <2∴…….……………………..3分18.〔此题6分〕 解:〔1〕100,0.5,0.15,50〔每空0.5分〕;〔图略〕〔每图2分〕〔2〕2分,无建议与理由得1分 19.〔此题6分〕〔1〕A 〔0,4〕C 〔3,1〕…….……………………..2分 〔2〕略…….……………………..2分 〔3〕7π…….……………………..2分20、〔此题8分〕 解:〔1〕如图,当C 、D 是边AO ,OB 的中点时,点E 、F 都在边AB 上,且CF AB ⊥. ∵OA =OB =8,∴OC =AC=OD=4. ∵90AOB ∠=︒,∴CD =. …….……………………..1分在Rt ACF △中, ∵45A ∠=︒,∴CF =.∴16CDEF S ==矩形. …….……………………..2分〔2〕设,CD x CF y ==.过F 作FH AO ⊥于H .在Rt COD △中,∵4tan 3CDO ∠=,C112a ≤<∴43sin ,cos 55CDO CDO ∠=∠=.∴45CO x=.\∵90FCH OCD ∠+∠=︒, ∴FCH CDO ∠=∠. ∴3cos .5HC y FCH y =⋅∠=∴45FH y==.∵AHF △是等腰直角三角形, ∴45AH FH y==.∴AO AH HC CO =++. ∴74855yx+=. ∴1(404)7y x =-.…….……………………..3分易知2214(404)[(5)25]77CDEFS xy x x x ==-=---矩形, ∴当5x =时,矩形CDEF 面积的最大值为1007.…….……………………..2分21、〔此题8分〕解:〔1〕由题意可知,∵(32)4(3)90m m m ∆=---=>错误!未找到引用源。