【精选】高考数学二轮复习第二部分专题一函数与导数不等式第5讲导数与函数零点不等式的综合问题课件理
高考数学二轮复习 专题五 函数与导数、不等式 微点深
【题组训练】
1.(2018·浙江名校联盟联考)已知函数 f(x)=ax+bxln x,其中 a,b∈R.
(1)若函数 f(x)在点(e,f(e))处的切线方程为 y=x+e,求 a,b 的值;
(2)当 b>1 时,f(x)≥1 对任意 x∈12,2恒成立,证明:a>
e+1 2e .
(1)解 由题得 f′(x)=-xa2+b(ln x+1),∴f′(e)=-ea2+2b=1,且 f(e)=ae+eb=2e.
即当 1<x<x0 时,h(x)<0,即 g′(x)<0,
当 x>x0 时,h(x)>0,即 g′(x)>0,
g(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增.
令
h(x0) = x0 - ln
x0 - 2 = 0 , 即
ln
x0
=
x0
-
2
,
g(x)min
=
g(x0)
=
x0(1+ln x0-1
(2)证明:当 a>0 时,f(x)≥2a+aln
2 a.
(1)解 f(x)的定义域为(0,+∞),f ′(x)=2e2x-ax(x>0).由 f ′(x)=0 得 2xe2x=a.令 g(x)=
2xe2x,g′(x)=(4x+2)e2x>0(x>0),从而 g(x)在(0,+∞)上单调递增,所以 g(x)>g(0)=0.
则 φ′(x)=-b(2ln x+3),易知 φ′(x)<0,故 g′(x)在12,2上单调递减,
1
1
1
因为 g′(e-2)=1-b(-e-2+e-2)=1>0,g′(1)=1-b(2ln 1+1)=1-b<0,
导数专题书目录
导数专题书目录第一篇独孤九剑——导数基础专题1总诀式——导数的前世今生第一讲导数基本定义第二讲导数运算法则第三讲复合函数求导第四讲同构函数求导专题2破剑式——数形结合遇导数第一讲导数的几何意义第二讲在点的切线方程第三讲过点的切线方程专题3破刀式——基本性质与应用第一讲单调性问题第二讲极值与最值第三讲恒能分问题专题4破枪式——抽象函数的构造第一讲求导法则与抽象构造第二讲幂函数及其抽象构造第三讲指数函数与抽象构造第四讲对数函数与抽象构造第五讲三角函数与抽象构造第六讲平移与奇偶抽象构造专题5破鞭式——分类讨论的策略第一讲不含参的四类问题第二讲含参数的五类问题专题6破索式——三次函数的探究第一讲基本性质第二讲切线问题第三讲四段论界定第四讲三倍角界定专题7破掌式——指对的破解逻辑第一讲指数模型第二讲对数模型专题8破箭式——六大同构函数论第一讲六大同构函数第二讲外部函数同构第三讲极值底层逻辑专题9破气式——零点与交点问题第一讲零点相关定理第二讲曲线交点问题第三讲零点个数问题第二篇如来神掌——导数选填的奇思妙解专题1心中有佛——秒解抽象函数构造第一讲抽象函数的积分构造第二讲“网红解法”的利弊专题2佛光初现——妙解参数取值范围第一讲零点比大小问题妙解双参比值问题第二讲零点比大小妙解指对单参数的问题第三讲恰到好处的取点妙解双参系列问题专题3金顶佛灯——数轴破整数个数解第一讲对数的取点技巧第二讲指数的取点技巧专题4佛动山河——平口单峰函数探秘第一讲平口二次函数问题第二讲平口对勾函数问题第三讲平口三次函数问题第四讲平口函数万能招数第五讲构造平口单峰函数第六讲必要探路最值界定第七讲倍角定理最值界定专题5佛问伽蓝——拉格朗日插值妙用第一讲三大微分中值定理简述第二讲拉格朗日中值定理应用专题6迎佛西天——构造函数速比大小第一讲构造基本初等函数第二讲构造母函数比大小第三讲构造混阶型比大小专题7天佛降世——琴生不等式破选填第一讲函数的凹凸性第二讲凹凸性的应用专题8佛法无边——极限思想巧妙应用第一讲前世今生论第二讲洛必达法则专题9万佛朝宗——选填压轴同构压制第一讲母函数原理概述第二讲同等双参需同构第三讲同构引出的秒解第三篇无涯剑道——导数三板斧升级篇专题1问剑求生——同类同构第一讲双元同构篇第二讲指对同构篇第三讲朗博同构篇第四讲零点同构篇第五讲同构保值篇第六讲同构导中切专题2持剑逆道——分类同构第一讲分而治之型第二讲端点效应型第三讲志同道合型第四讲分道扬镳型第五讲柳暗花明型专题3迎剑归宗——切点同构第一讲切线问题的进阶处理第二讲公切线问题几何探秘第三讲基本函数的切线找点第四讲跨阶函数的切线找点第五讲双变量乘积处理策略第四篇逍遥功——泰勒与放缩专题1逍遥剑法——泰勒展开第一讲泰勒基本展开式第二讲泰勒与切线找点第三讲泰勒与极值界定第四讲无穷阶极值界定第五讲泰勒与切线界定专题2逍遥刀法——京沪专线第一讲指数型“0”线第二讲对数型“0”线第三讲三角型“0”线专题3逍遥拳法——京九专线第一讲指数型“1”线第二讲对数型“1”线第三讲“e”线放缩论“n”线放缩论第四讲指对混阶放缩论第五讲指对三角放缩论第六讲高阶借位放缩论第七讲充分必要放缩论第八讲数列放缩系统论第五篇武当神功——点睛之笔专题1梯云纵——极点极值第一讲极值点本质第二讲唯一极值点第三讲存在极值点第四讲莫有极值点专题2太和功——隐点代换第一讲直接应用第二讲整体代换第三讲反代消参第四讲降次留参第五讲矛盾区间专题3峰回掌——跨阶找点第一讲找点初步认识第二讲找点策略阐述第三讲高次函数找点第四讲指对函数找点第五讲三角函数找点专题4太极剑——跳阶找点第一讲指对混阶找点第二讲指数三角找点第三讲对数三角找点第四讲终结混阶找点专题5八卦阵——必要探路第一讲端点效应第二讲极点效应第三讲显点效应第四讲隐点效应第五讲内点效应第六讲外点效应第七讲拐点效应第八讲弧点效应第六篇六脉神剑——明元之家专题1少商剑——三三来迟第一讲飘带函数减元第二讲点差法第三讲韦达定理的应用专题2商阳剑——四曾相识第一讲极值点偏移第二讲构造法第三讲拐点偏移第四讲泰勒公式专题3中冲剑——不讲五德第一讲换元构造第二讲对数平均不等式第三讲指数平均不等式第四讲广义对均第五讲深度剖析专题4関冲剑——七晴六遇第一讲零点差模型第二讲极值模型第三讲混合模型专题5少泽剑——第一讲复数三角形式第二讲棣莫弗定理第三讲复数的应用专题6少冲剑——第一讲斜率成等差等比问题第一讲数据逻辑及相关定理第二讲破解逻辑及突破压轴。
导数与不等式的证明及函数零点、方程根的问题
05 总结与展望
导数与不等式证明及函数零点、方程根问题的总结
导数与不等式证明
导数是研究函数性质的重要工具,通过导数可以研究函数的单调性、极值和最值等。不等 式证明则是数学中常见的题型,利用导数可以证明不等式,如AM-GM不等式、CauchySchwarz不等式等。
函数零点问题
函数的零点是指满足$f(x)=0$的$x$值。研究函数的零点对于理解函数的性质和解决方程 的根的问题具有重要意义。通过导数可以研究函数的零点个数和位置,以及零点附近的函 数性质。
感谢您的观看
• 应用领域的拓展:导数与不等式证明及函数零点、方程根的问题不仅在数学领 域有广泛应用,在其他学科和工程领域也有着重要的应用价值。例如,在经济 学、物理学和社会科学等领域,这些问题都可能成为重要的研究课题。
• 与其他数学分支的交叉融合:随着数学各分支之间的交叉融合,导数与不等式 证明及函数零点、方程根的问题可能会与其他数学分支产生更多的交叉点。例 如,与概率论、统计学和复分析等领域的结合可能会产生新的研究方向和应用 场景。
导数在求解函数零点、方程根中的注意事项
注意定义域
在使用导数研究函数性质 时,需要注意函数的定义 域,确保导数在定义域内 连续。
考虑多解情况
在求解函数零点或方程根 时,需要注意多解情况, 全面考虑所有可能的解。
注意函数的奇偶性
在利用导数研究函数性质 时,需要注意函数的奇偶 性,以便更准确地判断函 数的性质。
不等式
不等式是表示两个数或两个量之 间大小关系的数学表达式。
导数与不等式的性质
01
导数大于零,函数在该区间内单 调递增;导数小于零,函数在该 区间内单调递减。
02
不等式的基本性质包括传递性、 加法性质、乘法性质等。
高考数学二轮复习专题五函数与导数不等式第5讲导数与函数零点不等式问题学案201812242188
第5讲 导数与函数零点、不等式问题高考定位 在高考压轴题中,函数与方程、不等式的交汇是考查的热点,常以含指数函数、对数函数为载体考查函数的零点(方程的根)、比较大小、不等式证明、不等式恒成立与能成立问题.真 题 感 悟(2018·浙江卷)已知函数f (x )=x -ln x .(1)若f (x )在x =x 1,x 2(x 1≠x 2)处导数相等,证明:f (x 1)+f (x 2)>8-8ln 2;(2)若a ≤3-4ln 2,证明:对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点. 证明 (1)函数f (x )的导函数f ′(x )=12x -1x ,由f ′(x 1)=f ′(x 2)得12x 1-1x 1=12x 2-1x 2,因为x 1≠x 2,所以1x 1+1x 2=12. 由基本不等式得12x 1x 2=x 1+x 2≥24x 1x 2,因为x 1≠x 2,所以x 1x 2>256.由题意得f (x 1)+f (x 2)=x 1-ln x 1+x 2-ln x 2=12x 1x 2-ln(x 1x 2).设g (x )=12x -ln x ,则g ′(x )=14x (x -4),所以x >0时,g ′(x )、g (x )的变化情况如下表:所以g (x )在g (x 1x 2)>g (256)=8-8ln 2,即f (x 1)+f (x 2)>8-8ln 2. (2)令m =e-(|a |+k ),n =⎝ ⎛⎭⎪⎫|a |+1k 2+1,则f (m )-km -a >|a |+k -k -a ≥0,f (n )-kn -a <n ⎝ ⎛⎭⎪⎫1n -a n -k ≤n ⎝ ⎛⎭⎪⎫|a |+1n -k <0,所以,存在x 0∈(m ,n )使f (x 0)=kx 0+a ,所以,对于任意的a ∈R 及k ∈(0,+∞),直线y =kx +a 与曲线y =f (x )有公共点. 由f (x )=kx +a 得k =x -ln x -ax.设h (x )=x -ln x -ax,则h ′(x )=ln x -x2-1+ax 2=-g (x )-1+ax2, 其中g (x )=x2-ln x .由(1)可知g (x )≥g (16),又a ≤3-4ln 2,故-g (x )-1+a ≤-g (16)-1+a =-3+4ln 2+a ≤0,所以h ′(x )≤0,即函数h (x )在(0,+∞)上单调递减,因此方程f (x )-kx -a =0至多1个实根.综上,当a ≤3-4ln 2时,对于任意k >0,直线y =kx +a 与曲线y =f (x )有唯一公共点.考 点 整 合1.利用导数研究函数的零点函数的零点、方程的实根、函数图象与x 轴的交点的横坐标是三个等价的概念,解决这类问题可以通过函数的单调性、极值与最值,画出函数图象的变化趋势,数形结合求解. 2.三次函数的零点分布三次函数在存在两个极值点的情况下,由于当x →∞时,函数值也趋向∞,只要按照极值与零的大小关系确定其零点的个数即可.存在两个极值点x 1,x 2且x 1<x 2的函数f (x )=ax 3+bx 2+cx +d (a ≠0)的零点分布情况如下:3.(1)利用导数证明不等式.若证明f (x )<g (x ),x ∈(a ,b ),可以构造函数F (x )=f (x )-g (x ),如果能证明F (x )在(a ,b )上的最大值小于0,即可证明f (x )<g (x ),x ∈(a ,b ).(2)利用导数解决不等式的“恒成立”与“存在性”问题. ①f (x )>g (x )对一切x ∈I 恒成立I 是f (x )>g (x )的解集的子集f (x )-g (x )]min >0(x ∈I ).②x ∈I ,使f (x )>g (x )成立I 与f (x )>g (x )的解集的交集不是空集f (x )-g (x )]max >0(x∈I ).③对x 1,x 2∈I 使得f (x 1)≤g (x 2f (x )max ≤g (x )min .④对x 1∈I ,x 2∈I 使得f (x 1)≥g (x 2f (x )min ≥g (x )min .温馨提醒 解决方程、不等式相关问题,要认真分析题目的结构特点和已知条件,恰当构造函数并借助导数研究性质,这是解题的关键.热点一 利用导数研究函数的零点(方程的根)【例1】 (2018·全国Ⅱ卷)已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间; (2)证明:f (x )只有一个零点.(1)解 当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0解得x =3-23或x =3+2 3.当x ∈(-∞,3-23)∪(3+23,+∞)时,f ′(x )>0; 当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )在(-∞,3-23),(3+23,+∞)上单调递增,在(3-23,3+23)上单调递减.(2)证明 由于x 2+x +1>0,所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2(x 2+2x +3)(x 2+x +1)2≥0,仅当x =0时g ′(x )=0,所以g (x )在(-∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a -1)=-6a 2+2a -13=-6⎝ ⎛⎭⎪⎫a -162-16<0,f (3a +1)=13>0,故f (x )有一个零点.综上,f (x )只有一个零点.探究提高 1.三步求解函数零点(方程根)的个数问题.第一步:将问题转化为函数的零点问题,进而转化为函数的图象与x 轴(或直线y =k )在该区间上的交点问题;第二步:利用导数研究该函数在该区间上单调性、极值(最值)、端点值等性质,进而画出其图象;第三步:结合图象求解.2.根据函数零点情况求参数范围:(1)要注意端点的取舍;(2)选择恰当的分类标准进行讨论.【训练1】 设函数f (x )=x 3+ax 2+bx +c . (1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围. 解 (1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b . ∵f (0)=c ,f ′(0)=b ,∴曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c . (2)当a =b =4时,f (x )=x 3+4x 2+4x +c , ∴f ′(x )=3x 2+8x +4.令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.当x 变化时,f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:∴当c >0且c -27<0时,f (-4)=c -16<0,f (0)=c >0,存在x 1∈(-4,-2),x 2∈⎝⎛⎭⎪⎫-2,-3,x 3∈⎝ ⎛⎭⎪⎫-23,0,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎝ ⎛⎭⎪⎫0,3227时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.热点二 利用导数求解不等式问题 [考法1] 证明不等式【例2-1】 (2018·全国Ⅰ卷)已知函数f (x )=1x-x +a ln x .(1)讨论f (x )的单调性;(2)若f (x )存在两个极值点x 1,x 2,证明:f (x 1)-f (x 2)x 1-x 2<a -2.(1)解 f (x )的定义域为(0,+∞),f ′(x )=-1x 2-1+a x =-x 2-ax +1x 2.(ⅰ)若a ≤2,则f ′(x )≤0, 当且仅当a =2,x =1时f ′(x )=0, 所以f (x )在(0,+∞)上单调递减. (ⅱ)若a >2,令f ′(x )=0得,x =a -a 2-42或x =a +a 2-42.当x ∈⎝ ⎛⎭⎪⎫0,a -a 2-42∪⎝ ⎛⎭⎪⎫a +a 2-42,+∞时,f ′(x )<0;当x ∈⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42时,f ′(x )>0.所以f (x )在⎝ ⎛⎭⎪⎫0,a -a 2-42,⎝ ⎛⎭⎪⎫a +a 2-42,+∞上单调递减,在⎝ ⎛⎭⎪⎫a -a 2-42,a +a 2-42上单调递增.(2)证明 由(1)知,f (x )存在两个极值点时,当且仅当a >2. 由于f (x )的两个极值点x 1,x 2满足x 2-ax +1=0, 所以x 1x 2=1,不妨设x 1<x 2,则x 2>1.由于f (x 1)-f (x 2)x 1-x 2=-1x 1x 2-1+a ln x 1-ln x 2x 1-x 2=-2+a ln x 1-ln x 2x 1-x 2=-2+a -2ln x 21x 2-x 2,所以f (x 1)-f (x 2)x 1-x 2<a -2等价于1x 2-x 2+2ln x 2<0.设函数g (x )=1x-x +2ln x ,由(1)知,g (x )在(0,+∞)上单调递减, 又g (1)=0,从而当x ∈(1,+∞)时,g (x )<0. 所以1x 2-x 2+2ln x 2<0,即f (x 1)-f (x 2)x 1-x 2<a -2.[考法2] 不等式恒成立问题【例2-2】 已知函数f (x )=a ln x +1(a >0).(1)设φ(x )=f (x )-1-a ⎝⎛⎭⎪⎫1-1x ,求φ(x )的最小值;(2)在区间(1,e)上f (x )>x 恒成立,求实数a 的取值范围.解 (1)φ(x )=f (x )-1-a ⎝⎛⎭⎪⎫1-1x=a ln x -a ⎝⎛⎭⎪⎫1-1x (x >0).则φ′(x )=a x -ax 2=a (x -1)x 2, 令φ′(x )=0,得x =1.当0<x <1时,φ′(x )<0;当x >1时,φ′(x )>0. ∴φ(x )在(0,1)上是减函数,在(1,+∞)上是增函数. 故φ(x )在x =1处取得极小值,也是最小值. ∴φ(x )min =φ(1)=0.(2)由f (x )>x 得a ln x +1>x ,即a >x -1ln x .令g (x )=x -1ln x (1<x <e),则g ′(x )=ln x -x -1x (ln x )2.令h (x )=ln x -x -1x (1<x <e),则h ′(x )=1x -1x2>0. 故h (x )在区间(1,e)上单调递增,所以h (x )>h (1)=0.因为h (x )>0,所以g ′(x )>0,即g (x )在区间(1,e)上单调递增,则g (x )<g (e)=e -1,即x -1ln x<e -1,所以实数a 的取值范围为[e -1,+∞). [考法3] 存在性不等式成立问题【例2-3】 已知函数f (x )=x -(a +1)ln x -a x (a ∈R 且a <e),g (x )=12x 2+e x -x e x.(1)当x ∈[1,e]时,求f (x )的最小值;(2)当a <1时,若存在x 1∈[e ,e 2],使得对任意的x 2∈[-2,0],f (x 1)<g (x 2)恒成立,求a 的取值范围.解 (1)f (x )的定义域为(0,+∞),f ′(x )=(x -1)(x -a )x2. ①若a ≤1,当x ∈[1,e]时,f ′(x )≥0,则f (x )在[1,e]上为增函数,f (x )min =f (1)=1-a . ②若1<a <e ,当x ∈[1,a ]时,f ′(x )≤0,f (x )为减函数; 当x ∈[a ,e]时,f ′(x )≥0,f (x )为增函数. 所以f (x )min =f (a )=a -(a +1)ln a -1. 综上,当a ≤1时,f (x )min =1-a ;当1<a <e 时,f (x )min =a -(a +1)ln a -1;(2)由题意知:f (x )(x ∈[e ,e 2])的最小值小于g (x )(x ∈[-2,0])的最小值. 由(1)知f (x )在[e ,e 2]上单调递增,f (x )min =f (e)=e -(a +1)-ae,又g ′(x )=(1-e x )x .当x ∈[-2,0]时,g ′(x )≤0,g (x )为减函数, 则g (x )min =g (0)=1,所以e -(a +1)-ae <1,解得a >e 2-2ee +1,所以a 的取值范围为⎝ ⎛⎭⎪⎫e 2-2e e +1,1 .探究提高 1.(1)涉及不等式证明或恒成立问题,常依据题目特征,恰当构建函数,利用导数研究函数性质,转化为求函数的最值、极值问题,在转化过程中,一定要注意等价性. (2)对于含参数的不等式,如果易分离参数,可先分离参数、构造函数,直接转化为求函数的最值;否则应进行分类讨论,在解题过程中,必要时,可作出函数图象草图,借助几何图形直观分析转化.2.“恒成立”与“存在性”问题的求解是“互补”关系,即f (x )≥g (a )对于x ∈D 恒成立,应求f (x )的最小值;若存在x ∈D ,使得f (x )≥g (a )成立,应求f (x )的最大值.应特别关注等号是否取到,注意端点的取舍.【训练2】 (2018·全国Ⅱ卷)已知函数f (x )=e x -ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1; (2)若f (x )在(0,+∞)只有一个零点,求a .(1)证明 当a =1时,f (x )≥1等价于(x 2+1)e -x-1≤0. 设函数g (x )=(x 2+1)e -x-1,则g ′(x )=-(x 2-2x +1)e -x=-(x -1)2e -x.当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)单调递减. 而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1. (2)解 设函数h (x )=1-ax 2e -x.f (x )在(0,+∞)只有一个零点当且仅当h (x )在(0,+∞)只有一个零点.(ⅰ)当a ≤0时,h (x )>0,h (x )没有零点; (ⅱ)当a >0时,h ′(x )=ax (x -2)e -x.当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)单调递减,在(2,+∞)单调递增. 故h (2)=1-4ae 2是h (x )在[0,+∞)的最小值.①若h (2)>0,即a <e24,h (x )在(0,+∞)没有零点;②若h (2)=0,即a =e24,h (x )在(0,+∞)只有一个零点;③若h (2)<0,即a >e24,由于h (0)=1,所以h (x )在(0,2)有一个零点.由(1)知,当x >0时,e x >x 2,所以h (4a )=1-16a 3e 4a =1-16a 3(e 2a )2>1-16a 3(2a )4=1-1a>0.故h (x )在(2,4a )有一个零点.因此h (x )在(0,+∞)有两个零点. 综上,f (x )在(0,+∞)只有一个零点时,a =e24.1.重视转化思想在研究函数零点中的应用,如方程的解、两函数图象的交点均可转化为函数零点,充分利用函数的图象与性质,借助导数求解.2.对于存在一个极大值和一个极小值的函数,其图象与x 轴交点的个数,除了受两个极值大小的制约外,还受函数在两个极值点外部函数值的变化的制约,在解题时要注意通过数形结合找到正确的条件.3.利用导数方法证明不等式f (x )>g (x )在区间D 上恒成立的基本方法是构造函数h (x )=f (x )-g (x ),然后根据函数的单调性或者函数的最值证明函数h (x )>0.其中找到函数h (x )=f (x )-g (x )的零点是解题的突破口. 4.不等式恒成立、能成立问题常用解法(1)分离参数后转化为最值,不等式恒成立问题在变量与参数易于分离的情况下,采用分离参数转化为函数的最值问题,形如a >f (x )max 或a <f (x )min .(2)直接转化为函数的最值问题,在参数难于分离的情况下,直接转化为含参函数的最值问题,伴有对参数的分类讨论.(3)数形结合,构造函数,借助函数图象的几何直观性求解,一定要重视函数性质的灵活应用.一、选择题1.函数f (x )的定义域为R ,f (-1)=3,对任意x ∈R ,f ′(x )<3,则f (x )>3x +6的解集为( )A .{x |-1<x <1}B .{x |x >-1}C .{x |x <-1}D .R解析 设g (x )=f (x )-(3x +6),则g ′(x )=f ′(x )-3<0,所以g (x )为减函数,又g (-1)=f (-1)-3=0,所以根据单调性可知g (x )>0的解集是{x |x <-1}. 答案 C2.若关于x 的不等式x 3-3x 2-9x +2≥m 对任意x ∈[-2,2]恒成立,则m 的取值范围是( ) A .(-∞,7] B .(-∞,-20] C .(-∞,0]D .[-12,7]解析 令f (x )=x 3-3x 2-9x +2,则f ′(x )=3x 2-6x -9,令f ′(x )=0得x =-1或x =3(舍去).∵f (-1)=7,f (-2)=0,f (2)=-20, ∴f (x )的最小值为f (2)=-20,故m ≤-20. 答案 B3.(2018·宁波联考)已知函数f (x )的定义域为[-1,4],部分对应值如下表:f (x )的导函数y 的零点的个数为( )A .1B .2C .3D .4解析 根据导函数图象,知2是函数的极小值点,函数y =f (x )的大致图象如图所示.由于f (0)=f (3)=2,1<a <2,所以y =f (x )-a 的零点个数为4.答案 D4.(2018·金华十校联考)已知函数f (x )=ln x x,则( )A .f (2)>f (e)>f (3)B .f (3)>f (e)>f (2)C .f (3)>f (2)>f (e)D .f (e)>f (3)>f (2)解析 f (x )的定义域(0,+∞),且f ′(x )=1-ln xx, 令f ′(x )=0,得x =e. 当x ∈(0,e)时,f ′(x )>0; 当x ∈(e ,+∞)时,f ′(x )<0. ∴f (x )max =f (e)=1e.又f (2)=ln 22=ln 86,f (3)=ln 33=ln 96所以f (e)>f (3)>f (2). 答案 D5.已知y =f (x )为R 上的可导函数,当x ≠0时,f ′(x )+f (x )x >0,若g (x )=f (x )+1x,则函数g (x )的零点个数为( ) A .1B .2C .0D .0或2解析 令h (x )=xf (x ),因为当x ≠0时,xf ′(x )+f (x )x >0,所以h ′(x )x>0,因此当x >0时,h ′(x )>0,当x <0时,h ′(x )<0,又h (0)=0,易知当x ≠0时,h (x )>0,又g (x )=h (x )+1x,所以g (x )≠0,故函数g (x )的零点个数为0. 答案 C6.已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则实数a 的取值范围是( ) A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)解析 由题意知a ≠0,f ′(x )=3ax 2-6x =3ax ⎝ ⎛⎭⎪⎫x -2a ,令f ′(x )=0,解得x =0或x =2a.当a >0时,x ∈(-∞,0),f ′(x )>0;x ∈⎝⎛⎭⎪⎫0,2a ,f ′(x )<0;x ∈⎝ ⎛⎭⎪⎫2a ,+∞,f ′(x )>0,且f (0)=1>0,故f (x )有小于0的零点,不满足.当a <0时,需使x 0>0且唯一,只需f ⎝ ⎛⎭⎪⎫2a>0,则a 2>4,所以a <-2.答案 C 二、填空题7.(2018·湖州模拟)关于x 的方程x 3-3x 2-a =0有三个不同的实数解,则实数a 的取值范围是________.解析 由题意知使函数f (x )=x 3-3x 2-a 的极大值大于0且极小值小于0即可,又f ′(x )=3x 2-6x =3x (x -2),令f ′(x )=0,得x 1=0,x 2=2.当x <0时,f ′(x )>0;当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0,所以当x =0时,f (x )取得极大值,即f (x )极大值=f (0)=-a ;当x =2时,f (x )取得极小值,即f (x )极小值=f (2)=-4-a ,所以⎩⎪⎨⎪⎧-a >0,-4-a <0,解得-4<a <0. 答案 (-4,0)8.(2018·舟山调研)定义域为R 的可导函数y =f (x )的导函数为f ′(x ),满足f (x )>f ′(x ),且f (0)=1,则不等式f (x )ex<1的解集为________.解析 令g (x )=f (x )ex,则g ′(x )=e x·f ′(x )-(e x)′·f (x )(e x )2=f ′(x )-f (x )e x. 由题意得g ′(x )<0恒成立,所以函数g (x )=f (x )ex在R 上单调递减.又g (0)=f (0)e=1,所以f (x )ex<1,即g (x )<g (0),所以x >0,所以不等式的解集为{x |x >0}. 答案 {x |x >0}9.(2018·绍兴调研)已知f (x )=-x 2-6x -3,g (x )=2x 3+3x 2-12x +9,设m <-2,若x 1∈[m ,-2),x 2∈(0,+∞),使得f (x 1)=g (x 2)成立,则实数m 的最小值为________. 解析 ∵g (x )=2x 3+3x 2-12x +9,∴g ′(x )=6x 2+6x -12=6(x +2)(x -1). 则当0<x <1时,g ′(x )<0,函数g (x )递减;当x >1时,g ′(x )>0,函数g (x )递增, ∴g (x )min =g (1)=2.∵f (x )=-x 2-6x -3=-(x +3)2+6≤6,结合函数图象知,当f (x )=2时,方程两根分别为-5和-1,则m 的最小值为-5. 答案 -5 三、解答题10.(2018·全国Ⅲ卷)已知函数f (x )=ax 2+x -1ex.(1)求曲线y =f (x )在点(0,-1)处的切线方程; (2)证明:当a ≥1时,f (x )+e≥0.(1)解 f ′(x )=-ax 2+(2a -1)x +2ex,f ′(0)=2.因此曲线y =f (x )在(0,-1)处的切线方程是 2x -y -1=0.(2)证明 当a ≥1时,f (x )+e≥(x 2+x -1+e x +1)e -x. 令g (x )=x 2+x -1+ex +1,则g ′(x )=2x +1+ex +1.当x <-1时,g ′(x )<0,g (x )单调递减;当x >-1时,g ′(x )>0,g (x )单调递增;所以g (x )≥g (-1)=0.因此f (x )+e≥0.11.设函数f (x )=x 22-k ln x ,k >0.(1)求f (x )的单调区间和极值;(2)证明:若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点.(1)解 由f (x )=x 22-k ln x (k >0),得x >0且f ′(x )=x -k x =x 2-kx.由f ′(x )=0,解得x=k (负值舍去).f (x )与f ′(x )在区间(0,+∞)上的变化情况如下表:所以,f f (x )在x =k 处取得极小值f (k )=k (1-ln k )2.(2)证明 由(1)知,f (x )在区间(0,+∞)上的最小值为f (k )=k (1-ln k )2.因为f (x )存在零点,所以k (1-ln k )2≤0,从而k ≥e,当k =e 时,f (x )在区间(1,e)上单调递减,且f (e)=0, 所以x =e 是f (x )在区间(1,e]上的唯一零点.当k >e 时,f (x )在区间(1,e)上单调递减,且f (1)=12>0,f (e)=e -k 2<0,所以f (x )在区间(1,e]上仅有一个零点.综上可知,若f (x )存在零点,则f (x )在区间(1,e]上仅有一个零点. 12.(2018·北京东城区质检)已知函数f (x )=x -1x-ln x .(1)求f (x )的单调区间;(2)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值和最小值(其中e 是自然对数的底数); (3)求证:ln e 2x ≤1+xx.(1)解 f (x )=x -1x -ln x =1-1x-ln x , f (x )的定义域为(0,+∞).∵f ′(x )=1x 2-1x =1-xx2,∴f ′(x x <1,f ′(x x >1,∴f (x )=1-1x-ln x 在(0,1)上单调递增,在(1,+∞)上单调递减.(2)解 由(1)得f (x )在⎣⎢⎡⎦⎥⎤1e ,1上单调递增,在(1,e]上单调递减, ∴f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为f (1)=1-11-ln 1=0. 又f ⎝ ⎛⎭⎪⎫1e =1-e -ln 1e =2-e ,f (e)=1-1e -ln e =-1e ,且f ⎝ ⎛⎭⎪⎫1e <f (e).∴f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值为f ⎝ ⎛⎭⎪⎫1e =2-e.综上,f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为0,最小值为2-e.(3)证明 要证ln e 2x ≤1+x x ,即证2-ln x ≤1+1x,即证1-1x-ln x ≤0.由(1)可知,f (x )=1-1x-ln x 在(0,1)上单调递增,在(1,+∞)上单调递减,∴f (x )在(0,+∞)上的最大值为f (1)=1-1-ln 1=0,即f (x )≤0, ∴1-1x-ln x ≤0恒成立.原不等式得证.13.(2018·台州模拟)已知函数f (x )=x ln x ,g (x )=-x 2+ax -2(e 为自然对数的底数,a ∈R ).(1)判断曲线y =f (x )在点(1,f (1))处的切线与曲线y =g (x )的公共点个数;(2)当x ∈⎣⎢⎡⎦⎥⎤1e ,e 时,若函数y =f (x )-g (x )有两个零点,求a 的取值范围.解 (1)f ′(x )=ln x +1,所以切线斜率k =f ′(1)=1.又f (1)=0,∴曲线在点(1,0)处的切线方程为y =x -1.由⎩⎪⎨⎪⎧y =-x 2+ax -2,y =x -1x 2+(1-a )x +1=0.由Δ=(1-a )2-4=a 2-2a -3=(a +1)(a -3)可知: 当Δ>0时,即a <-1或a >3时,有两个公共点; 当Δ=0时,即a =-1或a =3时,有一个公共点; 当Δ<0时,即-1<a <3时,没有公共点. (2)y =f (x )-g (x )=x 2-ax +2+x ln x , 由y =0,得a =x +2x+ln x ,则由题意知函数y =a 与y =x +2x +ln x 的图象在x ∈⎣⎢⎡⎦⎥⎤1e ,e 上有两个交点. 令h (x )=x +2x +ln x ,则h ′(x )=(x -1)(x +2)x2. 当x ∈⎣⎢⎡⎦⎥⎤1e ,e 时,由h ′(x )=0,得x =1.所以h (x )在⎣⎢⎡⎦⎥⎤1e ,1上单调递减,在[1,e]上单调递增, 因此h (x )min =h (1)=3.由h ⎝ ⎛⎭⎪⎫1e =1e+2e -1,h (e)=e +2e +1,比较可知h ⎝ ⎛⎭⎪⎫1e >h (e),所以,结合函数图象可得,当3<a ≤e+2e +1时,函数y =a 与y =x+2x +ln x 的图象在x ∈⎣⎢⎡⎦⎥⎤1e ,e 上有两个交点,即函数y =f (x )-g (x )有两个零点.14.(2017·稽阳联谊学校高三联考)设f (x )=x -a -1x-a ln x (a ∈R ). (1)当a =1时,求曲线y =f (x )在点⎝ ⎛⎭⎪⎫12,f ⎝ ⎛⎭⎪⎫12处的切线方程; (2)当a <1时,在⎣⎢⎡⎦⎥⎤1e ,e 内是否存在一实数x 0,使f (x 0)>e -1成立? 解 (1)当a =1时,f (x )=x -ln x ,f ⎝ ⎛⎭⎪⎫12=12+ln 2,f ′(x )=1-1x,所以曲线y =f (x )在点⎝ ⎛⎭⎪⎫12,12+ln 2处的切线的斜率为f ′⎝ ⎛⎭⎪⎫12=1-112=-1. 故所求切线方程为y -⎝ ⎛⎭⎪⎫12+ln 2=-⎝ ⎛⎭⎪⎫x -12, 即x +y -ln 2-1=0.(2)假设当a <1时,在⎣⎢⎡⎦⎥⎤1e ,e 内存在一实数x 0,使f (x 0)>e -1成立, 则只需证明当x ∈⎣⎢⎡⎦⎥⎤1e ,e 时,f (x )max >e -1即可. f ′(x )=1+a -1x 2-a x =x 2-ax +(a -1)x 2=(x -1)[x -(a -1)]x2(x >0), 令f ′(x )=0得,x 1=1,x 2=a -1,当a <1时,a -1<0,∴当x ∈⎝ ⎛⎭⎪⎫1e ,1时,f ′(x )<0;当x ∈(1,e)时 ,f ′(x )>0.∴函数f (x )在⎣⎢⎡⎦⎥⎤1e ,1上单调递减,在[1,e]上单调递增, ∴f (x )max =max ⎩⎨⎧⎭⎬⎫f ⎝ ⎛⎭⎪⎫1e ,f (e ).于是,只需证明f (e)>e -1或f ⎝ ⎛⎭⎪⎫1e >e -1即可.∵f (e)-(e -1)=e -a -1e -a -(e -1)=(e +1)(1-a )e>0,∴f (e)>e -1成立. 所以假设正确,即当a <1时,在x ∈⎣⎢⎡⎦⎥⎤1e ,e 内至少存在一实数x 0,使f (x 0)>e -1成立.精美句子1、善思则能“从无字句处读书”。
高三数学二轮复习讲义专题一函数性质与图象
专题一 集合,常用逻辑用语,不等式,函数与导数(讲案)第二讲 函数的基本性质与图象【最新考纲透析】预计时间:3.13---3.18函数与基本初等函数的主要考点是:函数的表示方法、分段函数、函数的定义域和值域、函数的单调性、函数的奇偶性、指数函数与对数函数的图象与性质、幂函数的图象与性质。
本部分一般以选择题或填空题的形式出现,考查的重点是函数的性质和图象的应用,重在检测对该部分的基础知识和基本方法的掌握程度。
复习该部分以基础知识为主,注意培养函数性质和函数图象分析问题和解决问题的能力。
【考点精析】题型一 函数的概念与表示例1 (1)函数21sin()(10)()0x x x f x e x π-⎧-<<=⎨≥⎩,若(1)()2f f a +=,则的所有可能值为( ) A .1,2- B.2- C .1,2- D .1,2(2)根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为 ⎪⎪⎩⎪⎪⎨⎧≥<=Ax A c A x x c x f ,,,)((A ,C 为常数)。
已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是A .75,25B .75,16C .60,25D .60,16(3)已知集合A 到集合{}0,1,2,3B =的映射1:1f x x →-,则集合A 中的元素最多有 个。
解析:1:1f x x →-是集合A 到集合B 的映射,∴A 中的每一个元素在集合B 中都应该有象。
令101x =-,该方程无解,所以0无原象,分别令11,2,3,1x =-解得:342,,23x x x =±=±=±。
故集合A 中的元素最多为6个。
(4)如图,已知底角为450的等腰梯形ABCD ,底边BC 长为7cm,腰长为cm ,当一条垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF x =,试写出左边部分的面积y 与x 的函数解析式。
模块二讲重点 第5讲 导数公开课课件导数小题-2021届高考数学二轮复习课件(新高考版)
函数的单调性与导数的关系
在区间(a,b)内,f′(x)
大于零→f(x)在(a,b)内单调递增, 等于零→f(x)在(a,b)内为常函数, 小于零→f(x)在(a,b)内单调递减.
判断函数极值的方法 一般地,当函数f(x)在点x0处连续时, (1)如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0) 是极大值; (2)如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0) 是极小值; (3)“极值点”不是点,若函数f(x)在x1处取得极大值,则x1 即为极大值点,极大值为f(x1);在x2处取得极小值,则x2为极小 值点,极小值为f(x2).
求可导函数f(x)的极值的步骤 (1)求导函数f′(x); (2)求方程f′(x)=0的根; (3)检验f′(x)在方程f′(x)=0的根的左右两侧的函数值的符 号,如果左正右负,那么函数y=f(x)在这个根处取得极大值; 如果左负右正,那么函数y=f(x)在这个根处取得极小值,可列 表完成.
单调函数没有极值,如果一个函数没有极值,则该函数 是单调函数或者常数函数.
D.ecosθ=1
【分析】 本题考查导数的几何意义及其应用、函数的图 像.y=ex的图像绕原点O顺时针旋转角θ第一次与x轴相切,相当于 x轴绕原点O逆时针旋转角θ后第一次与y=ex相切,即θ应为y=ex过 原点切线的倾斜角.
【解析】 由题意,设y=f(x)=ex的图像的切线(过原点O)
的斜率为k,切点坐标为(x0,y0),则由题意可得,切线的斜率为
(3)求函数极值时,不要误把极值点代入导函数中. (4)对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值 的必要不充分条件. (5)
新高考数学二轮复习知识点总结与题型归纳 第5讲 基本初等函数、函数与方程(解析版)
第5讲 基本初等函数、函数与方程[考情分析] 1.基本初等函数的图象、性质是高考考查的重点,利用函数性质比较大小是常见题型.2.函数零点的个数判断及参数范围是高考的热点,常以压轴题形式出现.基本初等函数(Ⅰ)本节复习的基本初等函数包括:一次函数、二次函数、指数函数、对数函数和幂函数,三角函数在三角部分复习.函数的图象上直观地反映着函数的性质,学习函数的“捷径”是熟知函数的图象.熟知函数图象包括三个方面:作图,读图,用图.掌握初等函数一般包括以下一些内容:首先是函数的定义,之后是函数的图象和性质.函数的性质一般包括定义域,值域,图象特征,单调性,奇偶性,周期性,零点、最值以及值的变化特点等,研究和记忆函数性质的时候应全面考虑.函数的定义(通常情况下是解析式)决定着函数的性质,我们可以通过解析式研究函数的性质,也可以通过解析式画出函数的图象,进而直观的发现函数的性质. 【知识要点】1.一次函数:y =kx +b (k ≠0)(1)定义域为R ,值域为R ; (2)图象如图所示,为一条直线;(3)k >0时,函数为增函数,k <0时,函数为减函数;(4)当且仅当b =0时一次函数是奇函数.一次函数不可能是偶函数. (5)函数y =kx +b 的零点为⋅-kb2.二次函数:y =ax 2+bx +c (a ≠0)通过配方,函数的解析式可以变形为⋅-++=a b ac ab x a y 44)2(22 (1)定义域为R :当a >0时,值域为),44[2+∞-a b ac ;当a <0时,值域为]44,(2ab ac --∞;(2)图象为抛物线,抛物线的对称轴为abx 2-=,顶点坐标为)44,2(2a b ac a b --.当a >0时,抛物线开口向上;当a <0时,抛物线开口向下. (3)当a >0时,]2,(a b --∞是减区间,),2[+∞-ab是增区间; 当a <0时,]2,(a b --∞是增区间,),2[+∞-ab是减区间. (4)当且仅当b =0时,二次函数是偶函数;二次函数不可能是奇函数.(5)当判别式∆=b 2-4ac >0时,函数有两个变号零点aacb b 242-±-;当判别式∆=b 2-4ac =0时,函数有一个不变号零点ab 2-; 当判别式∆=b 2-4ac <0时,函数没有零点. 3.指数函数y =a x(a >0且a ≠1) (1)定义域为R ;值域为(0,+∞).(2)a >1时,指数函数为增函数;0<a <1时,指数函数为减函数; (3)函数图象如图所示.不具有奇偶性、周期性,也没有零点.4.对数函数y =log a x (a >0且a ≠1),对数函数y=log a x与指数函数y=a x互为反函数.(1)定义域为(0,+∞);值域为R.(2)a>1时,对数函数为增函数;0<a<1时,对数函数为减函数;(3)函数图象如图所示.不具有奇偶性、周期性,(4)函数的零点为1.5.幂函数y=xα(α∈R)幂函数随着α的取值不同,它们的定义域、性质和图象也不尽相同,但它们有一些共同的性质:(1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数的图象通过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地接近y轴,当x趋于+∞时,图象在x轴上方无限地接近x轴.要注意:因为所有的幂函数在(0,+∞)都有定义,并且当x∈(0,+∞)时,xα>0,所以所有的幂函数y=xα(α∈R)在第一象限都有图象.根据幂函数的共同性质,可以比较容易的画出一个幂函数在第一象限的图象,再根据幂函数的定义域和奇偶性,我们可以得到这个幂函数在其他象限的图象,这样就能够得到这个幂函数的大致图象.6.指数与对数(1)如果存在实数x ,使得x n =a (a ∈R ,n >1,n ∈N +),则x 叫做a 的n 次方根. 负数没有偶次方根.),1()(+∈>=N n n a a n n ;⎩⎨⎧=为偶数时当为奇数时当n a n a a nn|,|,)( (2)分数指数幂,)0(1>=a a a n n;,0()(>==a a a a n m m n nm n ,m ∈N *,且nm为既约分数). *N ,,0(1∈>=-m n a aanm nm ,且nm为既约分数). (3)幂的运算性质a m a n =a m +n ,(a m )n =a mn ,(ab )n =a n b n ,a 0=1(a ≠0).(4)一般地,对于指数式a b=N ,我们把“b 叫做以a 为底N 的对数”记为log a N , 即b =log a N (a >0,且a ≠1). (5)对数恒等式:Na alog =N .(6)对数的性质:零和负数没有对数(对数的真数必须大于零!); 底的对数是1,1的对数是0. (7)对数的运算法则及换底公式:N M NMN M MN a a aa a a log log log ;log log )(log -=+=; M M a a log log αα=; bNN a a b log log log =.(其中a >0且a ≠1,b >0且b ≠1,M >0,N >0).【复习要求】1.掌握基本初等函数的概念,图象和性质,能运用这些知识解决有关的问题;其中幂函数主要掌握y =x ,y =x 2,y =x 3,21,1x y xy ==这五个具体的幂函数的图象与性质.2.准确、熟练的掌握指数、对数运算;3.整体把握函数的图象和性质,解决与函数有关的综合问题.函数的图象 在函数图象上,定义域、值域、对应关系、单调性、奇偶性和周期性一览无遗.因此,快速准确地作出函数图象成为学习函数的一项基本功,而读图也从“形”的角度成为解决函数问题及其他相关问题的一种重要方法.【知识要点】作函数图象最基本的方法是列表描点作图法.常用的函数图象变换有:1.平移变换y=f(x+a):将y=f(x)的图象向左(a>0)或向右(a<0)平移|a|个单位可得.y=f(x)+a:将y=f(x)的图象向上(a>0)或向下(a<0)平移|a|个单位可得.2.对称变换y=-f(x):作y=f(x)关于x轴的对称图形可得.y=f(-x):作y=f(x)关于y轴的对称图形可得.3.翻折变换y=|f(x)|:将y=f(x)的图象在x轴下方的部分沿x轴翻折到x轴的上方,其他部分不变即得.y=f(|x|):此偶函数的图象关于y轴对称,且当x≥0时图象与y=f(x)的图象重合.【复习要求】1.能够在对函数性质作一定的讨论之后,用描点法作出函数的图象.2.能够对已知函数y=f(x)的图象,经过适当的图象变换得到预期函数的图象.3.通过读图能够分析出图形语言所表达的相关信息(包括函数性质及实际意义),运用数形结合的思想解决一些与函数有关的问题.考点一基本初等函数的图象与性质核心提炼1.指数函数y=a x(a>0,a≠1)与对数函数y=log a x(a>0,a≠1)互为反函数,其图象关于y=x对称,它们的图象和性质分0<a<1,a>1两种情况,着重关注两函数图象的异同.2.幂函数y=xα的图象和性质,主要掌握α=1,2,3,12,-1五种情况.【例题分析】1.=()A.2B.C.D.﹣2【考点】有理数指数幂及根式.【专题】转化思想;定义法;函数的性质及应用;数学运算.【答案】B【分析】利用根式与有理指数幂的互化以及有理指数幂的运算性质求解即可.【解答】解:原式=.故选:B.【点评】本题考查了有理数指数幂及根式的运算,主要考查了有理指数幂的互化以及有理指数幂的运算性质,属于基础题.2.函数y=2x(x≤0)的值域是()A.(0,1)B.(﹣∞,1)C.(0,1]D.[0,1)【考点】指数函数的定义、解析式、定义域和值域.【专题】函数思想;转化法;函数的性质及应用.【答案】C【分析】本题可利用指数函数的值域.【解答】解:∵y=2x(x≤0)为增函数,且2x>0,∴20=1,∴0<y≤1.∴函数的值域为(0,1].故选:C.【点评】本题考查的是函数值域的求法,关键是要熟悉指数函数的单调性,本题计算量极小,属于容易题.3.如果函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,则()A.b<﹣1B.﹣1<b<0C.0<b<1D.b>1【考点】指数函数的图象与性质.【专题】计算题;函数思想;转化法;函数的性质及应用;数学运算.【答案】B【分析】利用函数图象的平移变换,得到关于b的不等式,再求出b的范围.【解答】解:∵函数f(x)=3x+b的图象经过第一、二、三象限,不经过第四象限,∴函数f(x)=3x+b是由函数f(x)=3x的图象向下平移|b|个单位长度得到,且|b|<1,又∵图象向下平移,∴b<0,∴﹣1<b<0,故选:B.【点评】本题主要考查了函数图象的平移变换,是基础题.函数的最值最大值与最小值是研究变量问题时常需要考虑的问题,也是高中数学中最重要的问题之一.函数的最大值、最小值问题常与实际问题联系在一起.函数的最值与值域在概念上是完全不同的,但对于一些简单函数,其求法是相通的. 【知识要点】本节主要讨论两类常见的函数最值的解决方法及其应用.1.基本初等函数在特定区间上的最值(或值域)问题.解决这类问题的方法是:作出函数图象,观察单调性,求出最值(或值域).2.一些简单的复合函数的最值问题.解决这类问题的方法通常有: (1)通过作出函数图象变成第1类问题; (2)通过换元法转化成第1类问题; (3)利用平均值定理求最值;(4)通过对函数单调性进行讨论进而求出最值.其中讨论单调性的方法可以用单调性定义或导数的知识(导数的方法在后面相应章节复习); (5)转化成几何问题来求解,如线性规划问题等. 【复习要求】从整体上把握求函数最值的方法,明确求最值的一般思路.函数与方程【知识要点】1.如果函数y =f (x )在实数a 处的值等于零,即f (a )=0,则a 叫做这个函数的零点. 函数零点的几何意义:如果a 是函数y =f (x )的零点,则点(a ,0)一定在这个函数的函数图象上,即这个函数与x 轴的交点为(a ,0). 2.零点的判定如果函数y =f (x )在区间[a ,b ]上的图象是不间断的,而且f (a )f (b ),则这个函数在区间[a ,b ]上至少有一个零点.这也是二分法的依据.注意:上述判定零点的方法只是判断零点存在的充分条件.这种判定零点方法主要适用于在无法对函数进行作图而且也不易对函数所对应的方程求根的情况下.如果可以画出函数的图象(这时判断函数零点的方法将是非常直观的),如果函数所对应的方程可以求根,那么就可以用“作图”和“求根”的方法判断零点. 3.用二分法求函数y =f (x ),x ∈D 零点的一般步骤为:第一步、确定初始区间,即在D 内取一个闭区间[a ,b ],使得f (a )f (b )<0; 第二步、求中点及其对应的函数值,即求)(21b a x +=<0以及f (x )的值,如果f (x )=0,则计算终止,否则进一步确定零点所在的区间;第三步、计算精确度,即计算区间的两个端点按给定的精确度取近似值时是否相等,若相等,则计算终止,否则重复第二步.【复习要求】1、结合二次函数的图象,了解函数的零点与方程根的联系,判断一元二次方程根的存在性及根的个数.2、能够用二分法求相应方程的近似解.考点二函数的零点核心提炼判断函数零点个数的方法:(1)利用零点存在性定理判断法.(2)代数法:求方程f(x)=0的实数根.(3)几何法:对于不易求根的方程,将它与函数y=f(x)的图象联系起来,利用函数的性质找出零点或利用两个函数图象的交点求解.在利用函数性质时,可用求导的方法判断函数的单调性.规律方法利用函数零点的情况求参数值(或取值范围)的三种方法【例题分析】1.函数f(x)=﹣lnx的零点所在的大致区间是()A.(1,2)B.(2,3)C.(3,4)D.(e,+∞)【考点】函数的零点.【专题】函数的性质及应用.【答案】B【分析】由函数的解析式可得f(2)•f(3)<0,再利用函数的零点的判定定理可得函数的零点所在的大致区间.【解答】解:∵函数满足f(2)=>0,f(3)=1﹣ln3<0,∴f (2)•f(3)<0,根据函数的零点的判定定理可得函数的零点所在的大致区间是(2,3),故选:B .【点评】本题主要考查函数的零点的判定定理的应用,属于基础题. 2.已知函数f (x )=﹣log 2x ,在下列区间中,函数f (x )有零点的是( ) A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【考点】函数的零点.【专题】计算题;函数思想;试验法;函数的性质及应用. 【答案】B【分析】首先判断函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续;从而由零点的判定定理判断即可.【解答】解:易知函数f (x )=﹣log 2x 在(0,+∞)上是减函数,且连续; f (1)=1﹣0=1>0,f (2)=﹣1=﹣<0; 故函数f (x )有零点的区间是(1,2); 故选:B .【点评】本题考查了函数的性质的判断与应用及零点的判定定理的应用,注意掌握基本初等函数的性质.3.函数24,0()(),0x x f x g x x ⎧->=⎨<⎩是奇函数,则函数()f x 的零点是 2± .【答案】2±.【考点】函数的零点;函数奇偶性的性质与判断【专题】整体思想;综合法;函数的性质及应用;数学运算 【分析】由已知函数解析式及奇函数的对称性即可求解. 【解答】解:当0x >时,()240x f x =-=, 解得,2x =,根据奇函数的对称性可知,2x =-也是函数()f x 的零点, 故答案为:2±.【点评】本题主要考查了函数零点的求解,属于基础题.考点3 函数零点的判定定理 【例题分析】1.在下列区间中,存在函数3()2f x lnx x =-+的零点的是( )A .1(0,)2B .1(,1)2C .(1,2)D .(2,3)【答案】AD【考点】函数零点的判定定理【专题】计算题;方程思想;转化思想;综合法;函数的性质及应用;数学运算【分析】根据题意,求出函数的导数,分析()f x 的单调区间,由函数零点判断定理依次分析选项,综合即可得答案.【解答】解:根据题意,3()2f x lnx x =-+,其定义域为(0,)+∞,其导数11()1xf x x x -'=-=,在区间(0,1)上,()0f x '>,()f x 为增函数, 在区间(1,)+∞上,()0f x '<,()f x 为减函数, 依次分析选项:对于A ,()f x 在1(0,)2上递增,2222111311()022f ln e e e e =-+=--<,1113()12022222ef ln ln ln =-+=-=>,在()f x 在1(0,)2上存在零点,A 正确,对于B ,()f x 在1(2,1)上递增,1()1202f ln =->,f (1)3111022ln =-+=>,在()f x 在1(2,1)上不存在零点,B 错误,对于C ,()f x 在(1,2)上递减,f (1)102=>,f (2)31222022ln ln =-+=->, 在()f x 在(1,2)上不存在零点,C 错误, 对于D ,()f x 在(2,3)上递减,f (2)1202ln =->,f (3)33333022ln ln =-+=-<, 在()f x 在(2,3)上存在零点,D 正确, 故选:AD .【点评】本题考查函数的零点判断定理,解题的关键是确定区间端点对应的函数值异号,属于基础题.2.函数2()2log f x x x =-+的零点所在的一个区间是( ) A .(4,5) B .(3,4)C .(2,3)D .(1,2)【答案】D【考点】函数零点的判定定理【专题】转化思想;定义法;函数的性质及应用;逻辑推理【分析】由函数解析式,判断f (1)f (2)0<,由零点的存在性定理进行分析求解即可. 【解答】解:因为2()2log f x x x =-+, 所以f (1)212log 110=-+=-<, f (2)222log 210=-+=>,所以f (1)f (2)0<,由零点的存在性定理可得,函数2()2log f x x x =-+的零点所在的一个区间是(1,2). 故选:D .【点评】本题考查了函数零点的问题,主要考查了函数零点的存在性定理的应用,属于基础题.3.利用二分法求方程20lnx x +-=的近似解,已求得()2f x lnx x =+-的部分函数值的数据如表:A .1.55B .1.62C .1.71D .1.76【答案】A【考点】函数零点的判定定理【专题】函数思想;定义法;函数的性质及应用;逻辑推理【分析】利用表格中的数据,在结合零点的存在性定理进行分析求解即可. 【解答】解:根据表中的数据可得,(1.5)0.0945f =-,(1.5625)0.0088f =, 故函数()f x 的零点在区间(1.5,1.5625)之间, 只有1.55符合要求. 故选:A .【点评】本题考查了函数零点的求解,涉及了零点存在性定理的应用,解题的关键是熟练掌握函数零点的存在性定理,属于基础题. 函数零点与方程根的关系 【例题分析】1.已知函数2,12()1,21log x x f x x x <⎧⎪=⎨>⎪-⎩,若方程()0f x a -=至少有两个实数根,则实数a 的取值范围为( ) A .(0,1)B .(0,1]C .[0,2)D .[0,2]【答案】A【考点】函数的零点与方程根的关系【专题】计算题;数形结合;转化思想;演绎法;函数的性质及应用;逻辑推理;数学运算【分析】首先将问题转化为两个函数交点个数的问题,然后数形结合即可确定实数a的取值范围.【解答】解:原问题等价于函数y a与函数()f x至少有两个交点,绘制函数图象如图所示,观察可得,实数a的取值范围是(0,1).故选:A.【点评】本题主要考查由函数的零点个数求参数的方法,等价转化的数学思想,数形结合的数学思想等知识,属于基础题.2.若方程|2x﹣2|=b有一个零点,则实数b的取值范围是.【考点】函数的零点;函数的零点与方程根的关系.【专题】数形结合;数形结合法;函数的性质及应用;逻辑推理.【答案】(2,+∞)∪{0}..【分析】根据函数与方程之间的关系,作出两个函数的图象,利用数形结合进行求解即可.【解答】解:作出函数y=|2x﹣2|的图象如图:要使方程|2x﹣2|=b有一个零点,则函数y=|2x﹣2|与y=b有一个交点,则b>2或b=0,故实数b的取值范围是b>2或b=0,即(2,+∞)∪{0}.故答案为:(2,+∞)∪{0}.【点评】本题主要考查函数与方程的应用,作出函数图象,利用数形结合是解决本题的关键,是基础题.3.已知关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =,则实数a 的值是() A .5 B .6 C .7 D .15【答案】B【考点】函数的零点与方程根的关系【专题】方程思想;转化法;高考数学专题;函数的性质及应用;数学运算【分析】根据条件可得3log (10)(010)x a a =±<<,然后由212x x =,得到33log (10)2log (10)a a +=-或33log (10)2log (10)a a -=+,再求出a 的值.【解答】解:关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,∴由|310|x a -=,可知010a <<,3log (10)(010)x a a ∴=±<<,关于x 的方程|310|x a -=有两个不同的实根1x ,2x ,且212x x =, 33log (10)2log (10)a a ∴+=-或33log (10)2log (10)a a -=+ 210(10)a a ∴+=-或210(10)a a -=+,6a ∴=±或15a =±,又010a <<, 6a ∴=.故选:B .【点评】本题考查了函数的零点与方程根的关系,考查了方程思想和转化思想,属基础题.。
全国高考数学备考二轮专题二 函数与导数 第5讲 函数的综合应用(八省新高考)解析版
第5讲 函数的综合应用考点1 函数与方程例 1.(1)已知函数2,0,(),0.x a x f x x x ⎧->=⎨-<⎩若()y f x =的图象上存在两个点,A B 关于原点对称,则实数a 的取值范围是( ) A .[1,)-+∞ B .(1,)-+∞ C .[1,)+∞D .(1,)+∞【答案】D【解析】设00x >,则00x -<,()y f x =的图象上存在两个点,A B 关于原点对称, 则0020xa x -+=在()0,∞+上有解,即002xa x =+在()0,∞+上有解,由002xy x =+在()0,∞+上的值域为(1,)+∞,则实数a 的取值范围是(1,)+∞.故选:D .(2)已知函数()()22log ,2log 4,2x x f x x x ≥⎧=⎨-<⎩,若函数()y f x k =-有两个零点,则k 的取值范围是( ) A .(),2-∞ B .(),1-∞ C .()2,+∞D .()1,+∞【答案】D【解析】由函数2log y x =与()2log 4y x =-的图象关于直线2x =对称, 可得()f x 的图象如图所示,所以当1k >时,直线y k =与函数()y f x =的图象有两个交点.故选:D . 【点睛】解决函数零点(方程有根)的问题常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 【跟踪演练】1.(1)对于函数()y f x =与()y g x =,若存在0x ,使()()00f x g x =-,则称()()00,M x f x ,0(,N x -()0)g x -是函数()f x 与()g x 图象的一对“隐对称点”.已知函数()()1f x m x =+,()ln xg x x=,函数()f x 与()g x 的图象恰好存在两对“隐对称点”,则实数m 的取值范围为( ) A .()1,0- B .(),1-∞- C .()()0,11,+∞D .()(),11,0-∞--【答案】A【解析】由题意函数()1y m x =--与ln xy x=的图象有两个交点, 令()ln x h x x =,则()21ln xh x x-'=,∴当()0,x e ∈时,()0h x '>,()h x 单调递增; 当(),x e ∈+∞时,()0h x '<,()h x 单调递减; 又()1y m x =--恒过点()1,0,当1x >时,()0h x >, 在同一坐标系中作出函数()1y m x =--、()ln xh x x=的图象,如图,由图象可知,若函数()1y m x =--与ln xy x=的图象有两个交点,则0m >, 当直线()1y m x =--为函数ln xy x=图象的切线时,由()11h '=可得1m -=, ∴01m <-<即()1,0m ∈-.故选:A .(2)已知函数2(0)()ln (0)x x f x x x ⎧≤=⎨>⎩,且关于x 的方程()0f x x a +-=有且只有一个实数根,则实数a 的取值范围( ) A .[0,)+∞ B .(1,)+∞ C .(0,)+∞D .[,1)-∞【答案】B【解析】若要使方程()0f x x a +-=即()f x x a =-+有且只有一个实数根, 则函数()y f x =的图象与直线y x a =-+有且仅有一个交点, 在同一坐标系中作出函数()y f x =及y x a =-+的图象,如图,数形结合可得,若函数()y f x =的图象与直线y x a =-+有且仅有一个交点, 则1a >,所以实数a 的取值范围为(1,)+∞.故选:B .考点2 函数性质的综合例2.(1)已知函数()f x 是定义在R 上的奇函数,()()22f x f x +=-,且()2,0x ∈-时,()()2log 31f x x =-+,则()2021f =( )A .4B .2log 7C .2D .-2【答案】D【解析】因为()()22f x f x +=-,所以函数()f x 是周期为4的周期函数, 则(2021)(50541)f f f =⨯+=(1)22(1)log (31)log 42f =--=-+=-=-,故选:D .(2)已知函数()13xbf x a a=--(0a >且1a ≠)是奇函数,且(1)2f =. ①求,a b 的值及()f x 的定义域;②设函数()()2g x kf x =-有零点,求常数k 的取值范围; ③若2(2)(3)0f t f t ++->,求t 的取值范围. 【答案】①3a =,6b =-, ()f x 的定义域为(,0)(0,)-∞+∞;②(2,0)(0,2)-;③(2,1)(1,2)--⋃.【解析】①由(1)2f = 得12ba =-又()f x 是奇函数, (1)(1)2f f ∴-=-=- 即233aba=-,注意到0a > 解得3a =,6b =- 2()131x f x =+- ,由310x -≠ 得0x ≠∴()f x 的定义域为(,0)(0,)-∞+∞②3,6a b ==-,∴31()()2231x x g x kf x k +=-=--()g x ∴有零点,即关于x 的方程312031x x k +-=-有实数解 ∴2(31)31x x k -=+ (0)x ≠有实数解 2(31)423131x x x-=-++ , 311x +>且312x +≠ ∴2(31)2231x x --<<+且2(31)031xx -≠+ ∴k 的取值范围是(2,0)(0,2)-③先证明函数2()131x f x =+-在(0,)+∞上单调递减 设0m n >>,则331m n >>31310m n ∴->->223131m n ∴<--,22113131m n+<+--即()()f m f n <∴函数2()131xf x =+-在(0,)+∞上单调递减 由2(2)(3||)0f t f t ++->得2(2)(3||)f t f t +>-- 又()f x 是奇函数2(2)(3||)f t f t ∴+> 223||t t ∴+< ∴1||2t <<所以t 的取值范围是(2,1)(1,2)--⋃【点睛】本题考查了奇函数的性质和单调性的应用以及函数的零点,考查了利用函数的单调性解不等式. 【跟踪演练】2.(1)设()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x f x -=+,已知当02x <<时,1()21x f x -=+,则(2022)(2023)f f +=( )A .2B .2-C .1D .1-【答案】B【解析】根据题意,()f x 是定义域为(,)-∞+∞的奇函数,则()()f x f x -=-,且(0)0f =;又由(1)(1)f x f x -=+即有(2)()f x f x +=-,则(2)()f x f x +=-,进而得到(4)(2)()f x f x f x +=-+=,()f x 为周期为4的函数, 则(2022)(24505)(2)f f f =+⨯=(0)0f =-=,(2023)(12024)(1)(1)f f f f =-+=-=-,当02x <<时,1()21x f x -=+,则f (1)11212-=+=,则(2023)(1)f f =-2=-,故(2022)(2023)0(2)2f f +=+-=-,故选:B .(2)已知函数()f x 是定义在R 上的偶函数,且()00f =,当0x <时,()f x 单调递增.若实数a 满足()13a f f -+⎛> ⎝⎭,则a 的取值范围是( )A .31,22⎛⎫-- ⎪⎝⎭ B .31,,22⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭C .42,33⎛⎫-- ⎪⎝⎭D .42,,33⎛⎫⎛⎫-∞--+∞ ⎪ ⎪⎝⎭⎝⎭【答案】B【解析】由题意可知()f x 为偶函数,且在(),0-∞上单调递增,所以()f x 在()0,+∞上单调递减,所以()f x 的图象越靠近y 轴对应的函数值越大,因为()13a f f -+⎛> ⎝⎭,所以13a -+<,所以11233a -+-<, 所以112a -+<-,所以112a +>,所以31,,22a ⎛⎫⎛⎫∈-∞--+∞ ⎪⎪⎝⎭⎝⎭,故选:B . 【点睛】本题考查了利用函数的奇偶性和单调性求解抽象不等式的解集,常见利用函数性质求解抽象不等式的方法:(1)根据奇偶性分析出函数在对称区间上的单调性;(2)将关于函数值的不等式中的自变量通过奇偶性转变到同一单调区间内; (3)通过单调性得到自变量的大小关系,由此求解出不等式的解集.考点3 函数的极值与极值点个数例3.(1)已知函数()f x 的导函数()()()1f x a x x a '=+-,若()f x 在x a =处取得极大值,则实数a 的取值范围是( ) A .()1,0- B .()2,+∞C .()0,1D .(),3-∞-【答案】A【解析】由()f x 在x a =处取得极大值可知,当x a <时,()0f x '>;当x a >时,()0f x '<,其等价于①存在(),,b x b a ∀∈,使得(1)()0a x x a +->, 且②存在(),,c x a c ∀∈,使得(1)()0a x x a +-<;若0a >时,(1)()0a x x a +->的解集为(,1)(,)a -∞-⋃+∞,不满足②即不存在(,)x a c ∈,使得(1)()0a x x a +-<,故0a >时()f x 在x a =不是极大值;若10a -<<时,(1)()0a x x a +->的解集为(1,)a -,(1)()0a x x a +-<的解集为(,1)(,)a -∞-⋃+∞,满足①②,故10a -<<时,()f x 在x a =处取得极大值;若1a =-,(1)()a x x a +-恒小于等于0,不满足①,故1a =-时,()f x 在x a =取不到极大值;若1a <-时,(1)()0a x x a +->的解集为(,1)a -,不满足②,故1a <-时,()f x 在x a =处取不到极大值.综上,a 的取值范围是()1,0-.故选:A.【点睛】本题考查了利用导数极值求参数取值范围,其中求函数()f x 极值的步骤:(1) 确定函数的定义域;(2) 求导数()f x ';(3) 解方程()0,f x '=求出函数定义域内的所有根;(4)检查()f x '在()0f x '=的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值。
2014届高考数学文二轮专题突破:专题一 第5讲导数及其应用
第5讲 导数及其应用【高考考情解读】 1.本讲主要考查导数的几何意义,导数的四则运算及利用导数研究函数的单调性,求函数的极值、最值等.2.常与直线、圆锥曲线、分式、含参数的一元二次不等式等结合在一起考查,题型多样,属中高档题目.1.导数的几何意义函数y =f (x )在点x =x 0处的导数值就是曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率,其切线方程是y -f (x 0)=f ′(x 0)(x -x 0). 2.导数与函数单调性的关系(1)f ′(x )>0是f (x )为增函数的充分不必要条件,如函数f (x )=x 3在(-∞,+∞)上单调递增,但f ′(x )≥0.(2)f ′(x )≥0是f (x )为增函数的必要不充分条件,当函数在某个区间内恒有f ′(x )=0时,则f (x )为常数,函数不具有单调性. 3.函数的极值与最值(1)函数的极值是局部范围内讨论的问题,函数的最值是对整个定义域而言的,是在整个范围内讨论的问题.(2)函数在其定义区间的最大值、最小值最多有一个,而函数的极值可能不止一个,也可能没有.(3)闭区间上连续的函数一定有最值,开区间内的函数不一定有最值,若有唯一的极值,则此极值一定是函数的最值.4.四个易误导数公式及两个常用的运算法则(1)(sin x )′=cos x . (2)(cos x )′=-sin x .(3)(a x )′=a x ln a (a >0,且a ≠1). (4)(log a x )′=1x ln a (a >0,且a ≠1).(5)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x ). (6)⎣⎡⎦⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).考点一 导数几何意义的应用例1 (1)过点(1,0)作曲线y =e x 的切线,则切线方程为________.(2)(2013·南京模拟)在平面直角坐标系xOy 中,设A 是曲线C 1:y =ax 3+1(a >0)与曲线C 2:x 2+y 2=52的一个公共点,若C 1在A 处的切线与C 2在A 处的切线互相垂直,则实数a 的值是________. 答案 (1)e 2x -y -e 2=0 (2)4解析 (1)设切点为P (x 0,e x 0),则切线斜率为e x 0, 切线方程为y -e x 0=e x 0(x -x 0),又切线经过点(1,0),所以-e x 0=e x 0(1-x 0), 解得x 0=2,切线方程为y -e 2=e 2(x -2), 即e 2x -y -e 2=0.(2)设A (x 0,y 0),则C 1在A 处的切线的斜率为f ′(x 0)=3ax 20,C 2在A 处的切线的斜率为-1k OA =-x 0y 0, 又C 1在A 处的切线与C 2在A 处的切线互相垂直, 所以(-x 0y 0)·3ax 20=-1,即y 0=3ax 30, 又ax 30=y 0-1,所以y 0=32, 代入C 2:x 2+y 2=52,得x 0=±12,将x 0=±12,y 0=32代入y =ax 3+1(a >0),得a =4.(1)求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.(1)直线y =kx +b 与曲线y =ax 2+2+ln x 相切于点P (1,4),则b 的值为( )A .3B .1C .-1D .-3(2)若曲线f (x )=x sin x +1在x =π2处的切线与直线ax +2y +1=0互相垂直,则实数a 等于( )A .-2B .-1C .1D .2答案 (1)C (2)D解析 (1)由点P (1,4)在曲线上,可得a ×12+2+ln 1=4, 解得a =2,故y =2x 2+2+ln x .所以y ′=4x +1x .所以曲线在点P 处的切线斜率k =y ′|x =1=4×1+11=5.所以切线的方程为y =5x +b .由点P 在切线上, 得4=5×1+b ,解得b =-1. (2)f ′(x )=sin x +x cos x ,f ′(π2)=1,即函数f (x )=x sin x +1在点x =π2处的切线的斜率是1,直线ax +2y +1=0的斜率是-a2,所以(-a2)×1=-1,解得a =2.考点二 利用导数研究函数的性质例2 (2013·广东)设函数f (x )=x 3-kx 2+x (k ∈R ).(1)当k =1时,求函数f (x )的单调区间;(2)当k <0时,求函数f (x )在[k ,-k ]上的最小值m 和最大值M . 解 f ′(x )=3x 2-2kx +1, (1)当k =1时,f ′(x )=3x 2-2x +1=3⎝⎛⎭⎫x -132+23>0, ∴f (x )在R 上单调递增.(2)当k <0时,f ′(x )=3x 2-2kx +1,其图象开口向上,对称轴x =k3,且过(0,1)点.①当Δ=4k 2-12=4(k +3)(k -3)≤0, 即-3≤k <0时,f ′(x )≥0,f (x )在[k ,-k ]上单调递增. ∴m =f (x )min =f (k )=k , M =f (x )max =f (-k )=-2k 3-k . ②当Δ=4k 2-12>0,即k <-3时,令f ′(x )=0得x 1=k +k 2-33,x 2=k -k 2-33,且k<x2<x1<0.∴m=min{f(k),f(x1)},M=max{f(-k),f(x2)}.又f(x1)-f(k)=x31-kx21+x1-k=(x1-k)(x21+1)>0,∴m=f(k)=k,又f(x2)-f(-k)=x32-kx22+x2-(-k3-k·k2-k)=(x2+k)[(x2-k)2+k2+1]<0,∴M=f(-k)=-2k3-k.综上,当k<0时,f(x)的最小值m=k,最大值M=-2k3-k.利用导数研究函数性质的一般步骤:(1)确定函数的定义域;(2)求导函数f′(x);(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f′(x)>0或f′(x)<0.②若已知函数的单调性,则转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题来求解.(4)①若求极值,则先求方程f′(x)=0的根,再检查f′(x)在方程根的左右函数值的符号.②若已知极值大小或存在情况,则转化为已知方程f′(x)=0根的大小或存在情况来求解.(5)求函数f(x)在闭区间[a,b]的最值时,在得到极值的基础上,结合区间端点的函数值f(a),f(b)与f(x)的各极值进行比较得到函数的最值.(2013·浙江)已知a∈R,函数f(x)=2x3-3(a+1)x2+6ax.(1)若a=1,求曲线y=f(x)在点(2,f(2))处的切线方程;(2)若|a|>1,求f(x)在闭区间[0,2|a|]上的最小值.解(1)当a=1时,f′(x)=6x2-12x+6,所以f′(2)=6.又因为f(2)=4,所以切线方程为6x-y-8=0.(2)记g(a)为f(x)在闭区间[0,2|a|]上的最小值.f′(x)=6x2-6(a+1)x+6a=6(x-1)(x-a).令f′(x)=0,得到x1=1,x2=a.当a>1时,g (a )=⎩⎪⎨⎪⎧0, 1<a ≤3,a 2(3-a ), a >3.当a <-1时,综上所述,f (x )在闭区间[0,2|a |]上的最小值为 g (a )=⎩⎪⎨⎪⎧3a -1, a <-1,0, 1<a ≤3,a 2(3-a ), a >3.考点三 利用导数解决与方程、不等式有关的问题 例3 (2013·陕西)已知函数f (x )=e x ,x ∈R .(1)求f (x )的反函数的图象上点(1,0)处的切线方程; (2)证明:曲线y =f (x )与曲线y =12x 2+x +1有唯一公共点;(3)设a <b ,比较f ⎝⎛⎭⎫a +b 2与f (b )-f (a )b -a 的大小,并说明理由.本题主要考查导数在解决方程、不等式问题等方面的应用,构造函数是解决问题的关键.(1)解 f (x )的反函数为g (x )=ln x, 设所求切线的斜率为k , ∵g ′(x )=1x,∴k =g ′(1)=1.于是在点(1,0)处的切线方程为x -y -1=0.(2)证明 方法一 曲线y =e x 与曲线y =12x 2+x +1公共点的个数等于函数φ(x )=e x -12x 2-x -1零点的个数.∵φ(0)=1-1=0,∴φ(x )存在零点x =0.又φ′(x )=e x -x -1,令h (x )=φ′(x )=e x -x -1, 则h ′(x )=e x -1,当x <0时,h ′(x )<0,∴φ′(x )在(-∞,0)上单调递减;当x >0时,h ′(x )>0,∴φ′(x )在(0,+∞)上单调递增, ∴φ′(x )在x =0处有唯一的极小值φ′(0)=0, 即φ′(x )在R 上的最小值为φ′(0)=0. ∴φ′(x )≥0(当且仅当x =0时等号成立), ∴φ(x )在R 上是单调递增的, ∴φ(x )在R 上有唯一的零点,故曲线y =f (x )与曲线y =12x 2+x +1有唯一的公共点.方法二 ∵e x >0,12x 2+x +1>0,∴曲线y =e x 与曲线y =12x 2+x +1公共点的个数等于曲线y =12x 2+x +1e x 与y =1公共点的个数,设φ(x )=12x 2+x +1e x,则φ(0)=1,即当x =0时,两曲线有公共点.又φ′(x )=(x +1)e x -(12x 2+x +1)e x e 2x=-12x 2e x ≤0(当且仅当x =0时等号成立), ∴φ(x )在R 上单调递减, ∴φ(x )与y =1有唯一的公共点,故曲线y =f (x )与曲线y =12x 2+x +1有唯一的公共点.(3)解 f (b )-f (a )b -a -f⎝⎛⎭⎫a +b 2=e b -e a b -a -e a +b2 =e b -e a -b e a +b 2+a ea +b2b -a=e a +b 2b -a [e b -a 2-e a -b 2-(b -a )].设函数u (x )=e x -1e x -2x (x ≥0),则u ′(x )=e x +1ex -2≥2e x ·1ex -2=0, ∴u ′(x )≥0(当且仅当x =0时等号成立), ∴u (x )单调递增. 当x >0时,u (x )>u (0)=0.令x =b -a 2,则得e b -a 2-e a -b 2-(b -a )>0,∴f (b )-f (a )b -a>f⎝⎛⎭⎫a +b 2.研究方程及不等式问题,都要运用函数性质,而导数是研究函数性质的一种重要工具.基本思路是构造函数,通过导数的方法研究这个函数的单调性、极值和特殊点的函数值,根据函数的性质推断不等式成立的情况以及方程实根的个数,必要时画出函数的草图辅助思考.(1)(2013·天津)设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则 ( )A .g (a )<0<f (b )B .f (b )<0<g (a )C .0<g (a )<f (b )D .f (b )<g (a )<0答案 A解析 对于f (x )=e x +x -2,f ′(x )=e x +1>0,f (x )在R 上递增, 由于f (0)=e 0-2=-1<0, f (1)=e +1-2=e -1>0, ∴由f (a )=0知0<a <1;对于g (x )=ln x +x 2-3(x >0),g ′(x )=1x +2x >0,∴g (x )在(0,+∞)上也递增, 由于g (1)=-2<0,g (2)=ln 2+1>0, ∴由g (b )=0知1<b <2. 故f (b )>f (1)>0,g (a )<g (1)<0, ∴g (a )<0<f (b ).(2)已知函数f (x )=ax -1-ln x (a ∈R ). ①讨论函数f (x )在定义域内的极值点的个数;②若函数f (x )在x =1处取得极值,∀x ∈(0,+∞),f (x )≥bx -2恒成立,求实数b 的取值范围;③当0<x <y <e 2且x ≠e 时,试比较y x 与1-ln y1-ln x 的大小.解 ①f ′(x )=a -1x =ax -1x,当a ≤0时,f ′(x )<0在(0,+∞)上恒成立,函数f (x )在(0,+∞)上单调递减, ∴f (x )在(0,+∞)上没有极值点;当a >0时,f ′(x )<0得0<x <1a ,f ′(x )>0得x >1a,∴f (x )在(0,1a )上单调递减,在(1a ,+∞)上单调递增,即f (x )在x =1a处有极小值.∴当a ≤0时,f (x )在(0,+∞)上没有极值点; 当a >0时,f (x )在(0,+∞)上有一个极值点. ②∵函数f (x )在x =1处取得极值,∴a =1, ∴f (x )≥bx -2⇔1+1x -ln xx ≥b ,令g (x )=1+1x -ln xx ,则g ′(x )=-2x 2+ln xx2,∴g ′(e 2)=0,从而可得g (x )在(0,e 2]上单调递减,在[e 2,+∞)上单调递增, ∴g (x )min =g (e 2)=1-1e 2,即b ≤1-1e2.③由②知g (x )=1+1-ln xx 在(0,e 2)上单调递减,∴0<x <y <e 2时,g (x )>g (y ), 即1-ln x x >1-ln yy. 当0<x <e 时,1-ln x >0, ∴y x >1-ln y 1-ln x; 当e<x <e 2时,1-ln x <0, ∴y x <1-ln y 1-ln x.1.函数单调性的应用(1)若可导函数f (x )在(a ,b )上单调递增,则f ′(x )≥0在区间(a ,b )上恒成立; (2)若可导函数f (x )在(a ,b )上单调递减,则f ′(x )≤0在区间(a ,b )上恒成立; (3)可导函数f (x )在区间(a ,b )上为增函数是f ′(x )>0的必要不充分条件. 2.可导函数极值的理解(1)函数在定义域上的极大值与极小值的大小关系不确定,也有可能极小值大于极大值; (2)对于可导函数f (x ),“f (x )在x =x 0处的导数f ′(x )=0”是“f (x )在x =x 0处取得极值”的必要不充分条件;(3)注意导函数的图象与原函数图象的关系,导函数由正变负的零点是原函数的极大值点,导函数由负变正的零点是原函数的极小值点. 3.导数在综合应用中转化与化归思想的常见类型(1)把不等式恒成立问题转化为求函数的最值问题; (2)把证明不等式问题转化为函数的单调性问题; (3)把方程解的问题转化为函数的零点问题.1.已知函数f (x )=x -1x +1,g (x )=x 2-2ax +4,若任意x 1∈[0,1],存在x 2∈[1,2],使f (x 1)≥g (x 2),则实数a 的取值范围是__________. 答案 ⎣⎡⎭⎫94,+∞解析 由于f ′(x )=1+1(x +1)2>0,因此函数f (x )在[0,1]上单调递增, 所以x ∈[0,1]时,f (x )min =f (0)=-1. 根据题意可知存在x ∈[1,2], 使得g (x )=x 2-2ax +4≤-1,即x 2-2ax +5≤0,即a ≥x 2+52x 能成立,令h (x )=x 2+52x,则要使a ≥h (x )在x ∈[1,2]能成立,只需使a ≥h (x )min , 又函数h (x )=x 2+52x 在x ∈[1,2]上单调递减,所以h (x )min =h (2)=94,故只需a ≥94.2.设函数f (x )=1-a 2x 2+ax -ln x (a ∈R ).(1)当a =1时,求函数f (x )的极值; (2)当a ≥2时,讨论函数f (x )的单调性;(3)若对任意a ∈(2,3)及任意x 1,x 2∈[1,2],恒有ma +ln 2>|f (x 1)-f (x 2)|成立,求实数m 的取值范围.解 (1)函数的定义域为(0,+∞),当a =1时,f (x )=x -ln x ,f ′(x )=1-1x =x -1x .令f ′(x )=0,得x =1.当0<x <1时,f ′(x )<0;当x >1时,f ′(x )>0. ∴f (x )在(0,1)上单调递减,在(1,+∞)上单调递增, ∴f (x )极小值=f (1)=1,无极大值.(2)f ′(x )=(1-a )x +a -1x =(1-a )x 2+ax -1x=[(1-a )x +1](x -1)x =(1-a )(x -1a -1)(x -1)x .当1a -1=1,即a =2时,f ′(x )=-(x -1)2x ≤0,f (x )在(0,+∞)上是减函数; 当1a -1<1,即a >2时, 令f ′(x )<0,得0<x <1a -1或x >1; 令f ′(x )>0,得1a -1<x <1.当1a -1>1,a <2时,与已知矛盾舍, 综上,当a =2时,f (x )在(0,+∞)上单调递减;当a >2时,f (x )在(0,1a -1)和(1,+∞)上单调递减,在(1a -1,1)上单调递增.(3)由(2)知,当a ∈(2,3)时,f (x )在[1,2]上单调递减, 当x =1时,f (x )有最大值,当x =2时,f (x )有最小值. ∴|f (x 1)-f (x 2)|≤f (1)-f (2)=a 2-32+ln 2,∴ma +ln 2>a 2-32+ln 2.而a >0经整理得m >12-32a ,由2<a <3得-14<12-32a<0,∴m ≥0.(推荐时间:60分钟)一、选择题1.(2012·辽宁)函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞) 答案 B解析 由题意知,函数的定义域为(0,+∞), 又由y ′=x -1x ≤0,解得0<x ≤1,所以函数的单调递减区间为(0,1].2.已知直线y =kx 是y =ln x 的切线,则k 的值是( )A .eB .-eC.1eD .-1e答案 C解析 设切点坐标为(x 0,y 0). 因为y ′=(ln x )′=1x (x >0),所以切线斜率为k =1x 0,所以切线方程为y -ln x 0=1x 0(x -x 0)由已知直线y =kx 是y =ln x 的切线,得 0-ln x 0=1x 0(0-x 0),即x 0=e ,所以,答案选C.3.(2013·浙江)已知函数y =f (x )的图象是下列四个图象之一,且其导函数y=f ′(x )的图象如图所示,则该函数的图象是( )答案 B解析 从导函数的图象可以看出,导函数值先增大后减小,x =0时最大,所以函数f (x )的图象的变化率也先增大后减小,在x =0时变化率最大.A 项,在x =0时变化率最小,故错误;C 项,变化率是越来越大的,故错误;D 项,变化率是越来越小的,故错误.B 项正确.4.若函数y =f (x )在R 上可导,且满足不等式xf ′(x )>-f (x )恒成立,且常数a ,b 满足a >b ,则下列不等式一定成立的是( )A .af (b )>bf (a )B .af (a )>bf (b )C .af (a )<bf (b )D .af (b )<bf (a )答案 B解析 令g (x )=xf (x ),∴g ′(x )=xf ′(x )+f (x )>0. ∴g (x )在R 上为增函数,∵a >b , ∴g (a )>g (b ),即af (a )>bf (b ). 5.函数y =x3+sin x 的图象大致是( )答案 C解析 因为f (-x )=-x3+sin(-x )=-(x3+sin x )=-f (x ),所以函数为奇函数,它的图象关于原点对称,则可以排除B. 当x 接近于正无穷大时,x3接近于正无穷大,而-1≤sin x ≤1,所以x3+sin x 也接近于正无穷大,则可以排除D.由y ′=(x 3+sin x )′=13+cos x ,令y ′=0得13+cos x =0,它有无数个解,可知极值点有无数个,所以排除A. 故答案选C.6.(2013·湖北)已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是( )A .(-∞,0)B .(0,12)C .(0,1)D .(0,+∞)答案 B解析 f ′(x )=(ln x -ax )+x (1x -a )=ln x +1-2ax (x >0) 令f ′(x )=0得2a =ln x +1x ,设φ(x )=ln x +1x ,则φ′(x )=-ln xx2易知φ(x )在(0,1)上递增,在(1,+∞)上递减,大致图象如右图 若f (x )有两个极值点,则y =2a 和y =φ(x )图象有两个交点, ∴0<2a <1,∴0<a <12.二、填空题7.已知函数f (x ) (x ∈R )满足f (1)=1,且f (x )的导函数f ′(x )<12,则f (x )<x 2+12的解集为__________. 答案 {x |x >1}解析 φ(x )=f (x )-x 2-12,则φ′(x )=f ′(x )-12<0,∴φ(x )在R 上是减函数. φ(1)=f (1)-12-12=1-1=0,∴φ(x )=f (x )-x 2-12<0的解集为{x |x >1}.8.设函数f (x )=x 3+2ax 2+bx +a ,g (x )=x 2-3x +2(其中x ∈R ,a ,b 为常数).已知曲线y=f (x )与y =g (x )在点(2,0)处有相同的切线l ,则a ,b 的值分别为________. 答案 -2,5解析 f ′(x )=3x 2+4ax +b ,g ′(x )=2x -3, 由于曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线, 故有f (2)=g (2)=0,f ′(2)=g ′(2)=1, 由此解得a =-2,b =5.9.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则a 的取值范围为________.答案 (-∞,-1)解析 y ′=e x +a ,又函数y =e x +ax 在x ∈R 上有大于零的极值点,即y ′=e x +a =0有正根.当e x +a =0时,e x =-a ,∴-a >1,即a <-1.10.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是____________.答案 0<t <1或2<t <3解析 f ′(x )=-x +4-3x =-x 2+4x -3x =-(x -1)(x -3)x,由f ′(x )=0得函数的两个极值点1,3,则只要这两个极值点在区间(t ,t +1)内,函数在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,解得0<t <1或2<t <3. 三、解答题11.已知函数f (x )=(x 2+ax +2)e x (x ,a ∈R ).(1)当a =0时,求函数f (x )的图象在点A (1,f (1))处的切线方程; (2)若函数y =f (x )为单调函数,求实数a 的取值范围; (3)当a =-52时,求函数f (x )的极小值.解 f ′(x )=e x [x 2+(a +2)x +a +2](1)当a =0时,f (x )=(x 2+2)e x ,f ′(x )=e x (x 2+2x +2), f (1)=3e ,f ′(1)=5e ,∴函数f (x )的图象在点A (1,f (1))处的切线方程为y -3e =5e(x -1),即5e x -y -2e =0. (2)f ′(x )=e x [x 2+(a +2)x +a +2], 考虑到e x >0恒成立且x 2系数为正,∴f (x )在R 上单调等价于x 2+(a +2)x +a +2≥0恒成立. ∴(a +2)2-4(a +2)≤0,∴-2≤a ≤2,即a 的取值范围是[-2,2]. (3)当a =-52时,f (x )=⎝⎛⎭⎫x 2-52x +2e x , f ′(x )=e x ⎝⎛⎭⎫x 2-12x -12, 令f ′(x )=0,得x =-12或x =1,令f ′(x )>0,得x <-12或x >1,令f ′(x )<0,得-12<x <1,x ,f ′(x ),f (x )的变化情况如下表:所以,函数f (x )的极小值为f (1)=12e.12.已知函数f (x )=x 2e,g (x )=2a ln x (e 为自然对数的底数).(1)求F (x )=f (x )-g (x )的单调区间,若F (x )有最值,请求出最值;(2)是否存在正常数a ,使f (x )与g (x )的图象有且只有一个公共点,且在该公共点处有共同的切线?若存在,求出a 的值,以及公共点坐标和公切线方程;若不存在,请说明理由.解 (1)F ′(x )=2(x 2-e a )e x(x >0).①当a ≤0时,F ′(x )>0恒成立,F (x )在(0,+∞)上是增函数,F (x )只有一个单调递增区间(0,+∞),没有最值.②当a >0时,F ′(x )=2(x +e a )(x -e a )e x (x >0),若0<x <e a ,则F ′(x )<0,F (x )在(0,e a )上单调递减; 若x >e a ,则F ′(x )>0,F (x )在(e a ,+∞)上单调递增, ∴当x =e a 时,F (x )有极小值,也是最小值, 即F (x )min =F (e a )=a -2a ln e a =-a ln a .∴当a >0时,F (x )的单调递减区间为(0,e a ),单调递增区间为(e a ,+∞),最小值为-a ln a ,无最大值.(2)若f (x )与g (x )的图象有且只有一个公共点, 则方程f (x )-g (x )=0有且只有一解, ∴函数F (x )有且只有一个零点.由(1)的结论可知F (x )min =-a ln a =0,得a =1. 此时,F (x )=f (x )-g (x )=x 2e -2ln x ≥0,F (x )min =F (e)=0, ∴f (e)=g (e)=1,∴f (x )与g (x )的图象的唯一公共点坐标为(e ,1). 又∵f ′(e)=g ′(e)=2e, ∴f (x )与g (x )的图象在点(e ,1)处有共同的切线, 其方程为y -1=2e (x -e),即y =2ex -1.综上所述,存在a =1,使f (x )与g (x )的图象有且只有一个公共点(e ,1),且在该点处的公切线方程为y =2ex -1. 13.已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x 千件并全部销售完,每千件的销售收入为R (x )万元,且R (x )=⎩⎨⎧10.8-130x 2(0<x ≤10),108x -1 0003x 2(x >10).(1)写出年利润W (万元)关于年产量x (千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本) 解 (1)当0<x ≤10时,W =xR (x )-(10+2.7x )=8.1x -x 330-10;当x >10时,W =xR (x )-(10+2.7x ) =98-1 0003x-2.7x .∴W =⎩⎨⎧8.1x -x 330-10 (0<x ≤10),98-1 0003x-2.7x (x >10).(2)①当0<x <10时,由W ′=8.1-x 210=0,得x =9,且当x ∈(0,9)时,W ′>0; 当x ∈(9,10)时,W ′<0, ∴当x =9时,W 取最大值, 且W max =8.1×9-130·93-10=38.6.②当x >10时,W =98-⎝⎛⎭⎫1 0003x +2.7x ≤98-2 1 0003x·2.7x =38, 当且仅当1 0003x =2.7x ,即x =1009时,W =38,故当x =1009时,W 取最大值38.综合①②知当x =9时,W 取最大值38.6万元,故当年产量为9千件时,该公司在这一品牌服装的生产中所获年利润最大.。
高考数学理科二轮复习讲义专题一 第1讲 函数与导数 不等式
第1讲 函数图象与性质及函数与方程高考定位 1.高考仍会以分段函数、二次函数、指数函数、对数函数为载体,考查函数的定义域、函数的最值与值域、函数的奇偶性、函数的单调性,或者综合考查函数的相关性质.2.对函数图象的考查主要有两个方面:一是识图,二是用图,即利用函数的图象,通过数形结合的思想解决问题.3.以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理、数形结合思想,这是高考考查函数的零点与方程的根的基本方式.真 题 感 悟1.(2015·安徽卷)下列函数中,既是偶函数又存在零点的是( ) A .y =cos x B .y =sin x C .y =ln xD .y =x 2+1解析 由于y =sin x 是奇函数;y =ln x 是非奇非偶函数;y =x 2+1是偶函数但没有零点;只有y =cos x 是偶函数又有零点. 答案 A2.(2015·全国Ⅱ卷)设函数f (x )=⎩⎨⎧1+log 2(2-x ),x <1,2x -1,x ≥1,则f (-2)+f (log 212)=( )A .3B .6C .9D .12解析 因为-2<1,log 212>log 28=3>1,所以f (-2)=1+log 2[2-(-2)]=1+log 24=3,f (log 212)=1212log 2-=122log 2×2-1=12×12=6,故f (-2)+f (log 212)=3+6=9,故选C.答案 C3.(2015·北京卷)如图,函数f (x )的图象为折线ACB ,则不等式f (x )≥log 2(x +1)的解集是( )A .{x |-1<x ≤0}B .{x |-1≤x ≤1}C .{x |-1<x ≤1}D .{x |-1<x ≤2}解析 如图,由图知:f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.答案 C4.(2015·山东卷)已知函数f (x )=a x +b (a >0,a ≠1) 的定义域和值域都是[-1,0],则a +b =________.解析 当a >1时,f (x )=a x +b 在定义域上为增函数,∴⎩⎪⎨⎪⎧a -1+b =-1,a 0+b =0,方程组无解;当0<a <1时,f (x )=a x +b 在定义域上为减函数, ∴⎩⎪⎨⎪⎧a -1+b =0,a 0+b =-1,解得⎩⎨⎧a =12,b =-2.∴a +b =-32.答案 -32考 点 整 合1.函数的性质(1)单调性:证明函数的单调性时,规范步骤为取值、作差、变形、判断符号和下结论.可以用来比较大小,求函数最值,解不等式,证明方程根的唯一性;(2)奇偶性:①若f (x )是偶函数,那么f (x )=f (-x );②若f (x )是奇函数,0在其定义域内,则f (0)=0;③奇函数在对称的单调区间内有相同的单调性,偶函数在对称的单调区间内有相反的单调性;(3)周期性:①若y =f (x )对x ∈R ,f (x +a )=f (x -a )或f (x -2a )=f (x )(a >0)恒成立,则y =f (x )是周期为2a 的周期函数;②若y =f (x )是偶函数,其图象又关于直线x =a 对称,则f (x )是周期为2|a |的周期函数;③若y =f (x )是奇函数,其图象又关于直线x =a 对称,则f (x )是周期为4|a |的周期函数;④若f (x +a )=-f (x )⎝ ⎛⎭⎪⎫或f (x +a )=1f (x ),则y =f (x )是周期为2|a |的周期函数.2.函数的图象对于函数的图象要会作图、识图和用图,作函数图象有两种基本方法:一是描点法;二是图象变换法,其中图象变换有平移变换、伸缩变换和对称变换. 3.函数的零点与方程的根 (1)函数的零点与方程根的关系函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标. (2)零点存在性定理 注意以下两点:①满足条件的零点可能不唯一; ②不满足条件时,也可能有零点.热点一 函数性质的应用[微题型1] 单一考查函数的奇偶性、单调性、对称性【例1-1】 (1)(2015·全国Ⅰ卷)若函数f (x )=x ln(x +a +x 2)为偶函数,则a =________. (2)(2015·济南三模)已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( ) A.1x 2+1>1y 2+1B .ln(x 2+1)>ln(y 2+1)C .sin x >sin yD .x 3>y 3(3)设f (x )=⎩⎨⎧2x +2,x <1,-ax +6,x ≥1(a ∈R )的图象关于直线x =1对称,则a 的值为( )A .-1B .1C .2D .3解析(1)f(x)为偶函数,则ln(x+a+x2)为奇函数,所以ln(x+a+x2)+ln(-x+a+x2)=0,即ln(a+x2-x2)=0,∴a=1.(2)∵a x<a y,0<a<1,∴x>y,∴x3>y3.(3)由函数f(x)的图象关于直线x=1对称,得f(0)=f(2),即2=-2a+6,解得a=2.故选C. 答案(1)1(2)D(3)C探究提高第(3)小题将对称问题转化为点的对称,从而很容易地解决问题,本题也可借助于图象的斜率解决.[微题型2]综合考查函数的奇偶性、单调性、周期性【例1-2】(1)(2015·湖南卷)设函数f(x)=ln(1+x)-ln(1-x),则f(x)是()A.奇函数,且在(0,1)上是增函数B. 奇函数,且在(0,1)上是减函数C. 偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数(2)(2015·文登模拟)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x-1)>0,则x的取值范围是________.解析(1)易知函数定义域为(-1,1),f(-x)=ln(1-x)-ln(1+x)=-f(x),故函数f(x)为奇函数,又f(x)=ln 1+x1-x=ln⎝⎛⎭⎪⎫-1-2x-1,由复合函数单调性判断方法知,f(x)在(0,1)上是增函数,故选A.(2)∵f(x)是偶函数,∴图象关于y轴对称.又f(2)=0,且f(x)在[0,+∞)单调递减,则f(x)的大致图象如图所示,由f(x-1)>0,得-2<x-1<2,即-1<x<3.答案(1)A(2)(-1,3)探究提高函数的性质主要是函数的奇偶性、单调性和周期性以及函数图象的对称性,在解题中根据问题的条件通过变换函数的解析式或者已知的函数关系,推证函数的性质,根据函数的性质解决问题.【训练1】(2015·天津卷)已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为()A.a<b<c B.a<c<bC.c<a<b D.c<b<a解析因为函数f(x)=2|x-m|-1为偶函数可知,m=0,所以f(x)=2|x|-1,当x>0时,f(x)为增函数,log0.53=-log23,∴log25>|log0.53|>0,∴b=f(log25)>a=f(log0.53)>c=f(2m),故选C.答案 C热点二函数图象与性质的融合问题[微题型1]函数图象的识别【例2-1】(1)(2015·安徽卷)函数f(x)=ax+b(x+c)2的图象如图所示,则下列结论成立的是()A.a>0,b>0,c<0 B.a<0,b>0,c>0 C.a<0,b>0,c<0 D.a<0,b<0,c<0(2)(2014·江西卷)在同一直角坐标系中,函数y=ax2-x+a2与y=a2x3-2ax2+x+a(a∈R)的图象不可能的是()解析 (1)函数定义域为{x |x ≠-c },结合图象知-c >0,∴c <0;令x =0,得f (0)=bc 2,又由图象知f (0)>0,∴b >0;令f (x )=0,得x =-b a ,结合图象知-ba >0,∴a <0.故选C.(2)当a =0时,两个函数的解析式分别为y =-x ,y =x ,故选项D 中的图象是可能的.当a ≠0时,二次函数y =ax 2-x +a 2的对称轴方程为x =12a ,三次函数y =a 2x 3-2ax 2+x +a (a ∈R )的导数为y ′=3a 2x 2-4ax +1=(3ax -1)(ax -1),令y ′=0,得其极值点为x 1=13a ,x 2=1a .由于13a <12a <1a (a >0),或者13a >12a >1a (a <0),即三次函数的极值点在二次函数的对称轴两侧,选项A 、C 中的图象有可能,选项B 中的图象不可能. 答案 (1)C (2)B探究提高 识图时,可从图象与x 轴的交点及左、右、上、下分布范围、变化趋势、对称性等方面找准解析式与图象的对应关系.在探究两个函数的图象位置关系时,要善于根据函数解析式中字母的变化研究函数性质的变化,从而确定两个函数图象的可能位置关系. [微题型2] 函数图象的应用【例2-2】 (1)已知函数f (x )的图象向左平移1个单位后关于y 轴对称,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,设a =f ⎝ ⎛⎭⎪⎫-12,b =f (2),c =f (3),则a ,b ,c 的大小关系为( )A .c >a >bB .c >b >aC .a >c >bD .b >a >c(2)(2015·全国Ⅰ卷)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫-32e ,1B.⎣⎢⎡⎭⎪⎫-32e ,34 C.⎣⎢⎡⎭⎪⎫32e ,34 D.⎣⎢⎡⎭⎪⎫32e ,1 解析 (1)由于函数f (x )的图象向左平移1个单位后得到的图象关于y 轴对称,故函数y =f (x )的图象本身关于直线x =1对称,所以a =f ⎝ ⎛⎭⎪⎫-12=f ⎝ ⎛⎭⎪⎫52,当x 2>x 1>1时,[f (x 2)-f (x 1)](x 2-x 1)<0恒成立,等价于函数f (x )在(1,+∞)上单调递减,所以b >a >c .选D.(2)设g (x )=e x (2x -1),y =ax -a ,由题知存在唯一的整数x 0,使得g (x 0)在直线y =ax -a 的下方,因为g ′(x )=e x (2x +1),所以当x <-12时,g ′(x )<0,当x >-12时,g ′(x )>0,所以当x =-12时,[g (x )]min =-2e -12,当x =0时,g (0)=-1,当x =1时,g (1)=e>0,直线y =a (x -1)恒过(1,0),则满足题意的唯一整数x 0=0, 故-a >g (0)=-1,且g (-1)=-3e -1≥-a -a ,解得32e ≤a <1,故选D.答案 (1)D (2)D探究提高 (1)运用函数图象解决问题时,先要正确理解和把握函数图象本身的含义及其表示的内容,熟悉图象所能够表达的函数的性质.(2)在研究函数性质特别是单调性、最值、零点时,要注意用好其与图象的关系,结合图象研究.【训练2】 (2015·泰安诊断)已知f (x )=2x -1,g (x )=1-x 2,规定:当|f (x )|≥g (x )时,h (x )=|f (x )|;当|f (x )|<g (x )时,h (x )=-g (x ),则h (x )( )A .有最小值-1,最大值1B .有最大值1,无最小值C .有最小值-1,无最大值D .有最大值-1,无最小值解析 由题意得,利用平移变化的知识画出函数|f (x )|,g (x )的图象如图,而h (x )=⎩⎪⎨⎪⎧|f (x )|,|f (x )|≥g (x ),-g (x ),|f (x )|<g (x ),故h (x )有最小值-1,无最大值. 答案 C热点三 以函数零点为背景的函数问题 [微题型1] 函数零点个数的求解【例3-1】 (2015·广东卷)设a 为实数,函数f (x )=(x -a )2+|x -a |-a (a -1). (1)若f (0)≤1,求a 的取值范围; (2)讨论f (x )的单调性;(3)当a ≥2时,讨论f (x )+4x 在区间(0,+∞)内的零点个数.解 (1)f (0)=a 2+|a |-a 2+a =|a |+a ,因为f (0)≤1,所以|a |+a ≤1,当a ≤0时,|a |+a =-a +a =0≤1,显然成立; 当a >0时,则有|a |+a =2a ≤1, 所以a ≤12,所以0<a ≤12, 综上所述,a 的取值范围是a ≤12.(2)f (x )=⎩⎪⎨⎪⎧x 2-(2a -1)x ,x ≥a ,x 2-(2a +1)x +2a ,x <a .对于u 1=x 2-(2a -1)x ,其对称轴为x =2a -12=a -12<a ,开口向上,所以f (x )在(a ,+∞)上单调递增;对于u 2=x 2-(2a +1)x +2a ,其对称轴为x =2a +12=a +12>a ,开口向上,所以f (x )在(-∞,a )上单调递减,综上,f (x )在(a ,+∞)上单调递增,在(-∞,a )上单调递减.(3)由(2)得f (x )在(a ,+∞)上单调递增,在(0,a )上单调递减,所以f (x )min =f (a )=a -a 2. (ⅰ)当a =2时,f (x )min =f (2)=-2,f (x )=⎩⎪⎨⎪⎧x 2-3x ,x ≥2,x 2-5x +4,x <2,令f (x )+4x =0,即f (x )=-4x (x >0),因为f (x )在(0,2)上单调递减,所以f (x )>f (2)=-2, 而y =-4x 在(0,2)上单调递增,y <f (2)=-2, 所以y =f (x )与y =-4x 在(0,2)无交点.当x ≥2时,f (x )=x 2-3x =-4x ,即x 3-3x 2+4=0,所以x 3-2x 2-x 2+4=0,所以(x -2)2(x +1)=0,因为x ≥2,所以x =2,即当a =2时,f (x )+4x 有一个零点x =2. (ⅱ)当a >2时,f (x )min =f (a )=a -a 2,当x ∈(0,a )时,f (0)=2a >4,f (a )=a -a 2,而y =-4x 在x ∈(0,a )上单调递增, 当x =a 时,y =-4a ,下面比较f (a )=a -a 2与-4a 的大小,因为a -a 2-⎝ ⎛⎭⎪⎫-4a =-(a 3-a 2-4)a=-(a -2)(a 2+a +2)a <0,所以f (a )=a -a 2<-4a .结合图象不难得当a >2时,y =f (x )与y =-4x 有两个交点,综上,当a =2时,f (x )+4x 有一个零点x =2;当a >2时,y =f (x )与y =-4x 有两个零点. 探究提高 在解决函数与方程问题中的函数的零点问题时,要学会掌握转化与化归思想的运用.如本题直接根据已知函数求函数的零点个数难度很大,也不是初等数学能轻易解决的,所以遇到此类问题的第一反应就是转化已知函数为熟悉的函数,再利用数形结合求解. [微题型2] 由函数零点(或方程根)的情况求参数【例3-2】(2015·天津卷)已知函数f (x )=⎩⎨⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( ) A.⎝ ⎛⎭⎪⎫74,+∞ B.⎝ ⎛⎭⎪⎫-∞,74 C.⎝ ⎛⎭⎪⎫0,74 D.⎝ ⎛⎭⎪⎫74,2 解析 记h (x )=-f (2-x )在同一坐标系中作出f (x )与h (x )的图象如图,直线AB :y =x -4,当直线l ∥AB 且与f (x )的图象相切时,由⎩⎪⎨⎪⎧y =x +b ′,y =(x -2)2,解得b ′=-94,-94-(-4)=74,同理,y 轴左侧也有相同的情况.所以曲线h (x )向上平移74个单位后,y 轴左右各有2个交点,所得图象与f (x )的图象有四个公共点,平移2个单位时,两图象有无数个公共点,因此,当74<b <2时,f (x )与g (x )的图象有四个不同的交点,即y =f (x )-g (x )恰有4个零点.选D.答案 D探究提高 利用函数零点的情况求参数值或取值范围的方法 (1)利用零点存在的判定定理构建不等式求解. (2)分离参数后转化为函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解. 【训练3】 (2015·德州模拟)已知函数f (x )=1x +2-m |x |有三个零点,则实数m 的取值范围为________.解析 函数f (x )有三个零点等价于方程1x +2=m |x |有且仅有三个实根.∵1x +2=m |x |⇔1m =|x |(x +2),作函数y =|x |(x +2)的图象,如图所示,由图象可知m 应满足0<1m <1,故m >1. 答案 (1,+∞)1.解决函数问题忽视函数的定义域或求错函数的定义域,如求函数f (x )=1x ln x 的定义域时,只考虑x >0,忽视ln x ≠0的限制.2.函数定义域不同,两个函数不同;对应关系不同,两个函数不同;定义域和值域相同,也不一定是相同的函数.3.如果一个奇函数f (x )在原点处有意义,即f (0)有意义,那么一定有f (0)=0.4.奇函数在两个对称的区间上有相同的单调性,偶函数在两个对称的区间上有相反的单调性. 5.函数的图象和解析式是函数关系的主要表现形式,它们的实质是相同的,在解题时经常要互相转化.在解决函数问题时,尤其是较为繁琐的(如分类讨论求参数的取值范围等)问题时,要注意充分发挥图象的直观作用.6.不能准确把握基本初等函数的形式、定义和性质.如讨论指数函数y =a x (a >0,a ≠1)的单调性时,不讨论底数的取值;忽视a x >0的隐含条件;幂函数的性质记忆不准确等. 7.判断函数零点个数的方法有:(1)直接求零点;(2)零点存在性定理;(3)数形结合法. 8.对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个函数图象,然后数形结合,看其交点的个数有几个,其中交点的横坐标有几个不同的值,就有几个不同的零点.一、选择题1.(2015·广东卷)下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =x +e x B .y =x +1x C .y =2x +12xD .y =1+x 2解析 令f (x )=x +e x ,则f (1)=1+e ,f (-1)=-1+e -1,即f (-1)≠f (1),f (-1)≠-f (1),所以y =x +e x 既不是奇函数也不是偶函数,而B ,C ,D 依次是奇函数、偶函数、偶函数,故选A. 答案 A2.函数f (x )=log 2x -1x 的零点所在的区间为( ) A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫12,1 C .(1,2)D .(2,3)解析 函数f (x )的定义域为(0,+∞),且函数f (x )在(0,+∞)上为增函数. f ⎝ ⎛⎭⎪⎫12=log 212-112=-1-2=-3<0,f (1)=log 21-11=0-1<0, f (2)=log 22-12=1-12=12>0,f (3)=log 23-13>1-13=23>0,即f (1)·f (2)<0, ∴函数f (x )=log 2x -1x 的零点在区间(1,2)内. 答案 C3.(2014·山东卷)已知函数f (x )=|x -2|+1,g (x )=kx .若方程f (x )=g (x )有两个不相等的实根,则实数k 的取值范围是( ) A.⎝ ⎛⎭⎪⎫0,12 B.⎝ ⎛⎭⎪⎫12,1 C .(1,2)D .(2,+∞)解析 由f (x )=g (x ),∴|x -2|+1=kx ,即|x -2|=kx -1,所以原题等价于函数y =|x -2|与y =kx -1的图象有2个不同交点. 如图:∴y =kx -1在直线y =x -1与y =12x -1之间, ∴12<k <1,故选B. 答案 B4.(2015·山东卷)设函数f (x )=⎩⎨⎧3x -1,x <1,2x ,x ≥1,则满足f (f (a ))=2f (a )的a 取值范围是( )A.⎣⎢⎡⎦⎥⎤23,1 B .[0,1] C.⎣⎢⎡⎭⎪⎫23,+∞ D .[1,+∞)解析 当a =2时,f (a )=f (2)=22=4>1,f (f (a ))=2f (a ),∴a =2满足题意,排除A ,B 选项;当a =23时,f (a )=f ⎝ ⎛⎭⎪⎫23=3×23-1=1,f (f (a ))=2f (a ),∴a =23满足题意,排除D 选项,故答案为C. 答案 C5.(2015·全国Ⅱ卷)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x .将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则y =f (x )的图象大致为( )解析 当点P 沿着边BC 运动,即0≤x ≤π4时,在Rt △POB 中,|PB |=|OB |tan ∠POB =tan x ,在Rt △P AB 中,|P A |=|AB |2+|PB |2=4+tan 2x ,则f (x )=|P A |+|PB |=4+tan 2x +tan x ,它不是关于x 的一次函数,图象不是线段,故排除A 和C ; 当点P 与点C 重合,即x =π4时,由上得f ⎝ ⎛⎭⎪⎫π4=4+tan 2π4+tan π4=5+1,又当点P 与边CD的中点重合,即x =π2时,△P AO 与△PBO 是全等的腰长为1的等腰直角三角形,故f ⎝ ⎛⎭⎪⎫π2=|P A |+|PB |=2+2=22,知f ⎝ ⎛⎭⎪⎫π2<f ⎝ ⎛⎭⎪⎫π4,故又可排除D.综上,选B.答案 B 二、填空题6.(2015·福建卷)若函数f (x )=⎩⎨⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a的取值范围是________.解析 由题意f (x )的图象如图,则⎩⎪⎨⎪⎧a >1,3+log a 2≥4,∴1<a ≤2.答案 (1,2]7.(2015·青州模拟)若函数f (x )=⎩⎨⎧2x-a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________.解析 当x >0时,由f (x )=ln x =0,得x =1. 因为函数f (x )有两个不同的零点,则当x ≤0时, 函数f (x )=2x -a 有一个零点,令f (x )=0得a =2x , 因为0<2x ≤20=1,所以0<a ≤1, 所以实数a 的取值范围是0<a ≤1. 答案 (0,1]8.已知函数y =f (x )是R 上的偶函数,对∀x ∈R 都有f (x +4)=f (x )+f (2)成立.当x 1,x 2∈[0,2],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2<0,给出下列命题:①f (2)=0;②直线x =-4是函数y =f (x )图象的一条对称轴; ③函数y =f (x )在[-4,4]上有四个零点; ④f (2 014)=0.其中所有正确命题的序号为________.解析 令x =-2,得f (-2+4)=f (-2)+f (2),解得f (-2)=0,因为函数f (x )为偶函数,所以f (2)=0,①正确;因为f (-4+x )=f (-4+x +4)=f (x ),f (-4-x )=f (-4-x +4)=f (-x )=f (x ),所以f (-4+x )=f (-4-x ),即x =-4是函数f (x )的一条对称轴,②正确;当x 1,x 2∈[0,2],且x 1≠x 2时,都有f (x 1)-f (x 2)x 1-x 2<0,说明函数f (x )在[0,2]上是单调递减函数,又f (2)=0,因此函数f (x )在[0,2]上只有一个零点,由偶函数知函数f (x )在[-2,0]上也只有一个零点,由f (x +4)=f (x ),知函数的周期为4,所以函数f (x )在(2,4]与[-4,-2)上也单调,因此,函数在[-4,4]上只有2个零点,③错;对于④,因为函数的周期为4,即有f (2)=f (6)=f (10)=…=f (2 014)=0,④正确. 答案 ①②④ 三、解答题9.定义在[-1,1]上的奇函数f (x ),已知当x ∈[-1,0]时,f (x )=14x -a2x (a ∈R ). (1)写出f (x )在[0,1]上的解析式; (2)求f (x )在[0,1]上的最大值.解 (1)∵f (x )是定义在[-1,1]上的奇函数, ∴f (0)=0,∴a =1,∴当x ∈[-1,0]时,f (x )=14x -12x . 设x ∈[0,1],则-x ∈[-1,0], ∴f (-x )=14-x -12-x =4x -2x , ∵f (x )是奇函数,∴f (-x )=-f (x ),∴f (x )=2x -4x . ∴f (x )在[0,1]上的解析式为f (x )=2x -4x . (2)f (x )=2x -4x ,x ∈[0,1],令t =2x,t ∈[1,2],g (t )=t -t 2=-⎝ ⎛⎭⎪⎫t -122+14,∴g (t )在[1,2]上是减函数,∴g (t )max =g (1)=0,即x =0,f (x )max =0.10.(2015·太原模拟)已知函数f (x )=ax 2-2ax +2+b (a ≠0)在区间[2,3]上有最大值5,最小值2.(1)求a ,b 的值;(2)若b <1,g (x )=f (x )-2m x 在[2,4]上单调,求m 的取值范围. 解 (1)f (x )=a (x -1)2+2+b -a . ①当a >0时,f (x )在[2,3]上为增函数, 故⎩⎨⎧f (3)=5,f (2)=2⇒⎩⎨⎧9a -6a +2+b =5,4a -4a +2+b =2⇒⎩⎨⎧a =1,b =0. ②当a <0时,f (x )在[2,3]上为减函数,故⎩⎨⎧f (3)=2,f (2)=5⇒⎩⎨⎧9a -6a +2+b =2,4a -4a +2+b =5⇒⎩⎨⎧a =-1,b =3. 故⎩⎨⎧a =1,b =0或⎩⎨⎧a =-1,b =3.(2)∵b <1,∴a =1,b =0,即f (x )=x 2-2x +2, g (x )=x 2-2x +2-2m x =x 2-(2+2m )x +2.若g (x )在[2,4]上单调,则2+2m 2≤2或2m +22≥4, ∴2m ≤2或2m ≥6,即m ≤1或m ≥log 26. 故m 的取值范围是(-∞,1]∪[log 26,+∞).11.已知函数f (x )=-x 2+2e x +m -1,g (x )=x +e 2x (x >0).(1)若g (x )=m 有实根,求m 的取值范围;(2)确定m 的取值范围,使得g (x )-f (x )=0有两个相异实根. 解 (1)∵x >0,∴g (x )=x +e 2x ≥2e 2=2e , 等号成立的条件是x =e.故g (x )的值域是[2e ,+∞),因而只需m ≥2e ,则g (x )=m 就有实根.故m ∈[2e ,+∞).(2)若g (x )-f (x )=0有两个相异的实根,即g (x )=f (x )中函数g (x )与f (x )的图象有两个不同的交点,作出g (x )=x +e 2x (x >0)的大致图象.∵f (x )=-x 2+2e x +m -1=-(x -e)2+m -1+e 2.其对称轴为x=e,开口向下,最大值为m-1+e2. 故当m-1+e2>2e,即m>-e2+2e+1时,g(x)与f(x)有两个交点,即g(x)-f(x)=0有两个相异实根.∴m的取值范围是(-e2+2e+1,+∞).。
【状元之路】高考数学二轮复习 专题知识突破 1-1-5 导数及其应用课件(文、理)新人教A版
所以当 x∈0,1e时,g′(x)<0; 当 x∈1e,+∞时,g′(x)>0. 故 g(x)在0,1e上单调递减,在1e,+∞上单调递增,从而 g(x) 在(0,+∞)上的最小值为 g1e=-1e. 设函数 h(x)=xe-x-2e,则 h′(x)=e-x(1-x).
答案 D
1.(文)已知函数 f(x)的导函数为 f′(x),且满足 f(x)=2xf′(1)
+lnx,则 f′(1)=( )
A.-e
B.-1
C.1
D.e
解析 f′(x)=2f′(1)+1x,令 x=1,得 f′(1)=2f′(1)+1, ∴f′(1)=-1.
答案 B
Байду номын сангаас
2.设曲线 y=ax-ln(x+1)在点(0,0)处的切线方程为 y=2x,
课堂笔记 (1)由题意知 a=0 时,f(x)=xx- +11,x∈(0,+∞). 此时 f′(x)=x+2 12.可得 f′(1)=12,又 f(1)=0, 所以曲线 y=f(x)在(1,f(1))处的切线方程为 x-2y-1=0. (2)函数 f(x)的定义域为(0,+∞). f′(x)=xa+x+2 12=ax2+x2xa++122x+a.
2.牢记四个易误导数公式 (1)(sinx)′=cosx. (2)(cosx)′=-sinx. (3)(ax)′=axlna(a>0). (4)(logax)′=xl1na(a>0,且 a≠1).
3.把握三个概念 (1)在某个区间(a,b)内,如果 f′(x)>0,那么函数 y=f(x)在这 个区间内单调递增;如果 f′(x)<0,那么函数 y=f(x)在这个区间内 单调递减. (2)设函数 f(x)在点 x0 附近有定义,如果对 x0 附近所有的点 x, 都有 f(x)<f(x0),那么 f(x0)是函数的一个极大值,记作 y 极大值=f(x0); 如果对 x0 附近的所有的点都有 f(x)>f(x0),那么 f(x0)是函数的一个极 小值,记作 y 极小值=f(x0),极大值与极小值统称为极值.
高考数学二轮复习第二部分专题一函数与导数不等式第5讲导数与函数零点不等式的综合问题课件理
2.三次函数的零点分布
三次函数在存在两个极值点的情况下,由于当 x→∞ 时,函数值也趋向∞,只要按照极值与零的大小关系确 定其零点的个数即可.存在两个极值点 x1,x2 且 x1<x2 的函数 f(x)=ax3+bx2+cx+d(a≠0)的零点分布情况如 下:
a的符号
a>0 (f(x1)为极大值, f(x2)为极小值)
ax(e=2.718 28…是自然对数的底数). (1)若函数 f(x)在区间-e,-1上是减函数,求 a 的
取值范围; (2)若函数 F(x)=f(x)-(ex-2ax+2ln x+a)在区间
0,121)由 f(x)=ex-ax,得 f′(x)=ex-a 且 f′(x)在 R 上递增.
解得 x1=- 2-1,x2= 2-1.
令 f′(x)>0,则 x∈(- 2-1, 2-1),令 f′(x)<0, 则 x∈(-∞,- 2-1)∪( 2-1,+∞). 所以 f(x)在区间(-∞,- 2-1),( 2-1,+∞)上 单调递减,在区间(- 2-1, 2-1)上单调递增. (2)f(x)=(1+x)(1-x)ex. 当 a≥1 时,设函数 h(x)=(1-x)ex,h′(x)=-xex< 0(x>0),因此 h(x)在[0,+∞)上单调递减.
专题一 函数与导数、不等式
第 5 讲 导数与函数零点、 不等式的综合问题
1.(2017·全国卷Ⅱ)设函数 f(x)=(1-x2)ex. (1)讨论 f(x)的单调性; (2)当 x≥0 时,f(x)≤ax+1,求 a 的取值范围. 解:(1)f′(x)=-2xex+(1-x2)ex=(1-2x-x2)ex. 令 f′(x)=0,得 x2+2x-1=0,
由 f′(x0)=0 得 ln x0=2(x0-1), 故 f(x0)=x0(1-x0). 由 x0∈0,1得 f(x0)<14. 因为 x=x0 是 f(x)在(0,1)上的最大值点, 由 e-1∈(0,1),f′(e-1)≠0 得 f(x0)>f(e-1)=e-2. 所以 e-2<f(x0)<2-2.
高考数学二轮复习 第二部分 专题一 函数与导数、不等式 第5讲 导数与函数零点、不等式的综合问题课时
第5讲 导数与函数零点、不等式的综合问题一、选择题1.若不等式2x ln x ≥-x 2+ax -3恒成立,则实数a 的取值范围为( ) A .(-∞,0) B .(-∞,4] C .(0,+∞)D .[4,+∞)解析:条件可转化为a ≤2ln x +x +3x恒成立.设f (x )=2ln x +x +3x ,则f ′(x )=(x +3)(x -1)x2(x >0). 当x ∈(0,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增, 所以f (x )min =f (1)=4.所以a ≤4. 答案:B2.(2017·贵阳联考)已知函数f (x )的定义域为[-1,4],部分对应值如下表:f (x )的导函数y =f y =f (x )-a 的零点的个数为( )A .1B .2C .3D .4解析:根据导函数图象知2是函数的极小值点,函数y =f (x )的大致图象如图所示. 由于f (0)=f (3)=2,1<a <2,所以y =f (x )-a 的零点个数为4.答案:D3.(2017·山东省实验中学诊断)若函数f (x )在R 上可导,且满足f (x )-xf ′(x )>0,则( )A .3f (1)<f (3)B .3f (1)>f (3)C .3f (1)=f (3)D .f (1)=f (3)解析:由于f (x )>xf ′(x ),则⎣⎢⎡⎦⎥⎤f (x )x ′=xf ′(x )-f (x )x 2<0恒成立,因此f (x )x 在R 上是单调递减函数,所以f (3)3<f (1)1,即3f (1)>f (3).答案:B4.(2014·全国卷Ⅰ)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( )(导学号 55410101)A .(2,+∞)B .(1,+∞)C .(-∞,-2)D .(-∞,-1)解析:由题意知a ≠0,f ′(x )=3ax 2-6x ,令f ′(x )=0,解得x =0或x =2a.当a >0时,x ∈(-∞,0),f ′(x )>0,x ∈⎝⎛⎭⎪⎫0,2a ,f ′(x )<0,x ∈⎝ ⎛⎭⎪⎫2a ,+∞,f ′(x )>0,且f (0)=1>0,故f (x )有小于0的零点,不满足.当a <0时,需使x 0>0且唯一,只需f ⎝ ⎛⎭⎪⎫2a >0,则a 2>4,所以a <-2.答案:C5.(2017·佛山调研)已知y =f (x )为R 上的连续可导函数,且xf ′(x )+f (x )>0,则函数g (x )=xf (x )+1(x >0)的零点个数为( )A .0B .1C .0或1D .无数个解析:由g (x )=xf (x )+1=0得,xf (x )=-1(x >0),设h (x )=xf (x ),则h ′(x )=f (x )+xf ′(x ), 因为xf ′(x )+f (x )>0,所以h ′(x )>0,即函数在(0,+∞)上为增函数, 因为h (0)=0·f (0)=0, 所以当x >0时,h (x )>h (0)=0, 故h (x )=-1无解,故函数g (x )=xf (x )+1(x >0)的零点个数为0个. 答案:A 二、填空题6.做一个无盖的圆柱形水桶,若要使其体积是27π dm 3,且用料最省,则圆柱的底面半径为________dm.解析:设圆柱的底面半径为R dm ,母线长为l dm ,则V =πR 2l =27π,所以l =27R2,要使用料最省,只需使圆柱形水桶的表面积最小.S 表=πR 2+2πRl =πR 2+2π·27R ,所以S ′表=2πR -54πR2.令S ′表=0,得R =3,则当R =3时,S 表最小. 答案:37.(2017·长沙调研)定义域为R 的可导函数y =f (x )的导函数f ′(x ),满足f (x )>f ′(x ),且f (0)=1,则不等式f (x )ex<1的解集为________. 解析:构造函数g (x )=f (x )ex ,则g ′(x )=e x·f ′(x )-e x·f (x )(e x )2=f ′(x )-f (x )e x. 由题意得g ′(x )<0恒成立, 所以函数g (x )=f (x )ex在R 上单调递减.又g (0)=f (0)e=1,所以f (x )ex<1,即g (x )<1,所以x >0, 所以不等式的解集为(0,+∞). 答案:(0,+∞)8.(2017·德州二模)若对任意的x ∈D ,均有g (x )≤f (x )≤h (x )成立,则称函数f (x )为函数g (x )到函数h (x )在区间D 上的“任性函数”.已知函数f (x )=kx ,g (x )=x 2-2x ,h (x )=(x +1)(ln x +1),且f (x )是g (x )到h (x )在区间[1,e]上的“任性函数”,则实数k的取值范围是________.(导学号 54850101)解析:依题意,∀x ∈[1,e],x 2-2x ≤kx ≤(x +1)(ln x +1)恒成立.所以x -2≤k ≤⎝⎛⎭⎪⎫1+1x (ln x +1)在x ∈[1,e]上恒成立.又y =x -2在[1,e]上是增函数, 所以(x -2)max =e -2,则k ≥e -2.①设φ(x )=⎝⎛⎭⎪⎫1+1x (ln x +1),x ∈[1,e].则φ′=-1x2(ln x +1)+⎝ ⎛⎭⎪⎫1+1x 1x=x -ln x x2≥0,所以φ(x )在[1,e]上是增函数, 则φ(x )min =φ(1)=2. 所以k ≤2,②由①②知,当e -2≤k ≤2时,x 2-2x ≤kx ≤(x +1)(ln x +1)在x ∈[1,e]上恒成立. 答案:[e -2,2] 三、解答题9.(2017·贵阳质检)已知函数f (x )=x -1x-ln x . (1)求f (x )的单调区间;(2)求函数f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值和最小值(其中e 是自然对数的底数); (3)求证:ln e 2x ≤1+xx.(1)解:f (x )=x -1x -ln x =1-1x-ln x , f (x )的定义域为(0,+∞).因为f ′(x )=1x 2-1x =1-xx2,所以f ′(x )>0⇒0<x <1,f ′(x )<0⇒x >1.所以f (x )=1-1x-ln x 在(0,1)上单调递增,在(1,+∞)上单调递减.(2)解:由(1)得f (x )在⎣⎢⎡⎦⎥⎤1e ,1上单调递增,在(1,e]上单调递减, 所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为f (1)=1-11-ln 1=0. 又f ⎝ ⎛⎭⎪⎫1e =1-e -ln 1e =2-e ,f (e)=1-1e -ln e =-1e ,且f ⎝ ⎛⎭⎪⎫1e <f (e).所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最小值为f ⎝ ⎛⎭⎪⎫1e =2-e.所以f (x )在⎣⎢⎡⎦⎥⎤1e ,e 上的最大值为0,最小值为2-e. (3)证明:要证ln e 2x ≤1+xx,即证2-ln x ≤1+1x,即证1-1x-ln x ≤0.由(1)可知,f (x )=1-1x-ln x 在(0,1)上单调递增,在(1,+∞)上单调递减,所以f (x )在(0,+∞)上的最大值为f (1)=1-1-ln 1=0,即f (x )≤0,所以1-1x-ln x ≤0恒成立,原不等式得证.10.(2017·西安调研)已知函数f (x )=ln x +a2x 2-(a +1)x .(导学号 54850102)(1)若曲线y =f (x )在x =1处的切线方程为y =-2,求f (x )的单调区间; (2)若x >0时,f (x )x <f ′(x )2恒成立,求实数a 的取值范围. 解:(1)由已知得f ′(x )=1x+ax -(a +1), 则f ′(1)=0.而f (1)=ln 1+a 2-(a +1)=-a2-1,所以曲线y =f (x )在x =1处的切线方程为y =-a2-1.所以-a2-1=-2,解得a =2.所以f (x )=ln x +x 2-3x ,f ′(x )=1x+2x -3.由f ′(x )=1x +2x -3=2x 2-3x +1x >0,得0<x <12或x >1,由f ′(x )=1x +2x -3<0,得12<x <1,所以f (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12和(1,+∞),f (x )的单调递减区间为⎝ ⎛⎭⎪⎫12,1.(2)若f (x )x <f ′(x )2,则ln x x +a 2x -(a +1)<12x +ax 2-a +12, 即ln x x -12x <a +12在区间(0,+∞)上恒成立. 设h (x )=ln x x -12x,则h ′(x )=1-ln x x 2+12x 2=3-2ln x2x2,由h ′(x )>0,得0<x <e 32,所以h (x )在(0,e 32)上单调递增, 由h ′(x )<0,得x >e 32,所以h (x )在(e 32,+∞)上单调递减. 所以h (x )的最大值为h (e 32)=e -32,所以a +12>e -32,故a >2e -32-1.从而实数a 的取值范围为{a |a >2e -32-1}.11.(2017·沈阳质检)函数f (x )=ax +x ln x 在x =1处取得极值. (1)求f (x )的单调区间;(2)若y =f (x )-m -1在定义域内有两个不同的零点,求实数m 的取值范围. 解:(1)f ′(x )=a +ln x +1,f ′(1)=a +1=0,解得a =-1,当a =-1时, f (x )=-x +x ln x ,即f ′(x )=ln x ,令f ′(x )>0,解得x >1; 令f ′(x )<0,解得0<x <1.所以f (x )在x =1处取得极小值,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y =f (x )-m -1在(0,+∞)内有两个不同的零点,可转化为f (x )=m +1在(0,+∞)内有两个不同的根,也可转化为y =f (x )与y =m +1的图象有两个不同的交点.由(1)知,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,f (x )min =f (1)=-1, 由题意得,m +1>-1即m >-2,① 当0<x <1时,f (x )=x (-1+ln x )<0; 当x >0且x →0时,f (x )→0;当x →+∞时,显然f (x )→+∞(或者举例:当x =e 2,f (e 2)=e 2>0).如图,由图象可知,m +1<0,即m <-1,② 故①②可得-2<m <-1.故实数m 的取值范围是(-2,-1).[典例] (本小题满分12分)(2016·全国卷Ⅰ)已知函数f (x )=(x -2)e x+a (x -1)2有两个零点.(1)求a 的取值范围;(2)设x 1,x 2是f (x )的两个零点,证明:x 1+x 2<2.规范解答:(1)f ′(x )=(x -1)e x+2a (x -1)=(x -1)·(e x+2a ).(1分) ①设a =0,则f (x )=(x -2)e x,f (x )只有一个零点.(2分) ②设a >0,则当x ∈(-∞,1)时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0,所以f (x )在(-∞,1)内单调递减,在(1,+∞)上单调递增. 又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a2,则f (b )>a 2(b -2)+a (b -1)2=a ⎝⎛⎭⎪⎫b 2-32b >0,故f (x )存在两个零点.③设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a ≥-e2,则ln(-2a )≤1,故当x ∈(1,+∞)时,f ′(x )>0,因此f (x )在(1,+∞)上单调递增.又当x ≤1时,f (x )<0,所以f (x )不存在两个零点.若a <-e2,则ln(-2a )>1,故当x ∈(1,ln(-2a ))时,f ′(x )<0;当x ∈(ln(-2a ),+∞)时,f ′(x )>0.因此f (x )在(1,ln(-2a ))内单调递减,在(ln(-2a ),+∞)上单调递增.(6分) 又当x ≤1时,f (x )<0,所以f (x )不存在两个零点. 综上可知,a 的取值范围为(0,+∞).(7分)(2)不妨设x 1<x 2,由(1)知,x 1∈(-∞,1),x 2∈(1,+∞),(8分) 2-x 2∈(-∞,1),f (x )在(-∞,1)上单调递减, 所以x 1+x 2<2等价于f (x 1)>f (2-x 2), 即f (2-x 2)<0.由于f (2-x 2)=-x 2e2-x 2+a (x 2-1)2, 又f (x 2)=(x 2-2)e x 2+a (x 2-1)2=0,所以f (2-x 2)=-x 2e2-x 2-(x 2-2)e x 2.(10分) 设g (x )=-x e2-x-(x -2)e x ,则g ′(x )=(x -1)·(e2-x-e x).(11分)所以当x >1时,g ′(x )<0,而g (1)=0,故当x >1时,g (x )<0.从而g (x 2)=f (2-x 2)<0,故x 1+x 2<2.(12分)1.牢记求导法则,正确求导:在函数与导数类解答题中,通常都会涉及求导,正确的求导是解题关键,因此要牢记求导公式,做到正确求导,如本题第(1)问就涉及对函数的求导.2.注意利用第(1)问的结果:在题设条件下,如果第(1)问的结果第(2)问能用得上,可以直接用,有些题目不用第(1)问的结果甚至无法解决,如本题即是在第(1)问的基本上求解.3.注意分类讨论:高考函数与导数解答题,一般都会涉及分类讨论,并且讨论的步骤也是得分点,所以一定要重视分类讨论.4.写全得分关键:在函数与导数问题中,求导的结果、分类讨论的条件、极值、最值、题目的结论等一些关键式子和结果都是得分点,在解答时一定要写清楚.[解题程序] 第一步,准确求出函数f (x )的导数.第二步,讨论a 的取值,分情况讨论函数的单调性、极值、从而判断函数零点,确定a 的取值范围.第三步,将结论x 1+x 2<2转化为判定f (2-x 2)<0=f (x 1). 第四步,构造函数g (x )=-x e2-x-(x -2)e x,判定x >1时,g (x )<0.第五步,写出结论,检验反思,规范步骤.[跟踪训练] 设函数f (x )=a e xln x +b e x -1x,曲线y =f (x )在点(1,f (1))处的切线方程为y =e(x -1)+2.(导学号 54850027)(1)求a ,b ; (2)证明:f (x )>1.(1)解:函数f (x )的定义域为(0,+∞),f ′(x )=a e xln x +axe x-b x2e x -1+b xex -1,由题意可得f (1)=2,f ′(1)=e. 故a =1,b =2.(2)证明:由(1)知,f (x )=e x ln x +2x e x -1,从而f (x )>1等价于x ln x >x e -x-2e .设函数g (x )=x ln x ,则g ′(x )=1+ln x .所以当x ∈⎝ ⎛⎭⎪⎫0,1e 时,g ′(x )<0; 当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,g ′(x )>0,故g (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增. 从而g (x )在区间(0,+∞)上的最小值为g ⎝ ⎛⎭⎪⎫1e=1e.设函数h (x )=x e -x-2e ,则h ′(x )=e -x(1-x ).所以当x ∈(0,1)时,h ′(x )>0;当x ∈(1,+∞)时,h ′(x )<0.故h (x )在(0,1)上单调递增,在(1,+∞)上单调递减,从而h (x )在(0,+∞)上的最大值为h (1)=-1e.综上可知,当x >0时,g (x )>h (x ), 即f (x )>1.。
2019届高考数学二轮复习导数与函数的零点及参数范围课件(35张)(全国通用)
3
即满足���ቤተ መጻሕፍቲ ባይዱ�� '(������ 0 )
e������ 0
=
23(t-1)2
的
x0
的个数为
2.
-7-
考向一 考向二 考向三
解题策略二 分类讨论法
例2已知函数f(x)=x3+ax+
1 4
,g(x)=-ln
x.
(1)当a为何值时,x轴为曲线y=f(x)的切线;
(2)用min{m,n}表示m,n中的最小值,设函数
存在性定理进行判断.
(2)证明
f(x)≥2a+aln2⇔证明
������
f(x)min≥2a+aln���2��� .
-3考向一 考向二 考向三
(1)解:f(x)的定义域为(0,+∞),f'(x)=2e2 ������
−
������ ������
(x>0).
当 a≤0 时,f'(x)>0,f'(x)没有零点,
有一个零点.
考向一 考向二 考向三
-14-
综上所述,当 0≤a≤1 或 a=-12时,f(x)有一个零点; 当 a<-12时,f(x)无零点;当-12<a<0 时,f(x)有两个零点.
考向一 考向二 考向三
-15-
已知零点个数求参数范围
解题策略一 最小值法
例 3 已知函数 f(x)=x2-���2���ln x 在点
(2)当x∈(1,+∞)时,g(x)=-ln x<0,从而h(x)=min{f(x),g(x)}≤g(x)<0,
故h(x)在(1,+∞)无零点. 当 x=1 时,若 a≥-54,则 f(1)=a+54≥0,h(1)=min{f(1),g(1)}=g(1)=0,故
高考数学二轮总复习层级三专题二函数导数与不等式第一讲导数与函数的零点问题学案理含解
学习资料专题二函数、导数与不等式第一讲导数与函数的零点问题1.(2018·全国卷Ⅱ)已知函数f(x)=e x-ax2.(1)若a=1,证明:当x≥0时,f(x)≥1;(2)若f(x)在(0,+∞)只有一个零点,求a.解:(1)证明:当a=1时,f(x)≥1等价于(x2+1)e-x-1≤0。
设函数g(x)=(x2+1)e-x-1,则g′(x)=-(x2-2x+1)e-x=-(x-1)2e-x。
当x≠1时,g′(x)<0,所以g(x)在(0,+∞)单调递减.而g(0)=0,故当x≥0时,g(x)≤0,即f(x)≥1。
(2)设函数h(x)=1-ax2e-x。
f(x)在(0,+∞)只有一个零点等价于h(x)在(0,+∞)只有一个零点.①当a≤0时,h(x)〉0,h(x)没有零点;②当a〉0时,h′(x)=ax(x-2)e-x.当x∈(0,2)时,h′(x)<0; 当x∈(2,+∞)时,h′(x)〉0.所以h(x)在(0,2)单调递减,在(2,+∞)单调递增.故h(2)=1-错误!是h(x)在(0,+∞)的最小值.(ⅰ)若h(2)〉0,即a〈错误!,h(x)在(0,+∞)没有零点.(ⅱ)若h(2)=0,即a=e24,h(x)在(0,+∞)只有一个零点.(ⅲ)若h(2)〈0,即a〉错误!,因为h(0)=1,所以h(x)在(0,2)有一个零点;由(1)知,当x〉0时,e x〉x2,所以h(4a)=1-错误!=1-错误!〉1-错误!=1-错误!〉0,故h(x)在(2,4a)有一个零点.因此h(x)在(0,+∞)有两个零点.综上,当f(x)在(0,+∞)只有一个零点时,a=错误!。
2.(2017·全国卷Ⅰ)已知函数f(x)=a e2x+(a-2)e x-x。
(1)讨论f(x)的单调性;(2)若f(x)有两个零点,求a的取值范围.解:(1)f(x)的定义域为(-∞,+∞),f′(x)=2a e2x+(a-2)e x-1=(a e x-1)(2e x+1).①若a≤0,则f′(x)〈0,所以f(x)在(-∞,+∞)上单调递减.②若a〉0,则由f′(x)=0得x=-ln a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①当 a≤0 时,F′(x)<0,F(x)在区间(0,+∞)上单调 递减,
结合 F(1)=0 知,当 x∈0,12时, F(x)>0. 所以 F(x)在0,12内无零点.
①当 a≤0 时,F′(x)<0,F(x)在区间(0,+∞)上单调
递减, 结合 F(1)=0 知,当 x∈0,12时,F(x)>0. 所以 F(x)在0,12内无零点. ②当 a>0 时,令 F′(x)=0,得 x=2a. 若2a≥12时,即 a∈(0,4]时,F(x)在0,12上是减函数. 又 x→0 时,F(x)→+∞.
5-4a-1 取 x0= 2 ,则 x0∈(0,1),(1-x0)(1+x0)2 -ax0-1=0,故 f(x0)>ax0+1.
5-1 当 a≤0 时,取 x0= 2 ,则 x0∈(0,1),f(x0)>(1 -x0)(1+x0)2=1≥ax0+1, 综上可知,a 的取值范围是[1,+∞).
2.(2017·全国卷Ⅱ)已知函数 f(x)=ax2-ax-xln x,
令 φ(a)=2-a-2ln 2a,则 φ′(a)=-1+2a=2-a a<0. 所以 φ(a)在(4,+∞)上是减函数,
则 φ(a)<φ(4)=2ln 2-2<0.
因此
2 Fa<0,所以
F(x)在
x∈0,12内一定有零点,
不合题意,舍去.
综上可知,函数 F(x)在0,12内无零点,应有 a≤4ln 2,
又 h(0)=1,故 h(x)≤1,所以 f(x)=(x+1)h(x)≤x+ 1≤ax+1,
当 0<a<1 时,设函数 g(x)=ex-x-1,g′(x)=ex-1 >0(x>0),所以 g(x)在[0,+∞)上单调递增,而 g(0)=0,
故 ex≥x+1. 当 0<x<1 时,f(x)>(1-x)(1+x)2,(1-x)(1+x)2 -ax-1=x(1-a-x-x2),
解得 x1=- 2-1,x2= 2-1.
令 f′(x)>0,则 x∈(- 2-1, 2-1),令 f′(x)<0, 则 x∈(-∞,- 2-1)∪( 2-1,+∞). 所以 f(x)在区间(-∞,- 2-1),( 2-1,+∞)上 单调递减,在区间(- 2-1, 2-1)上单调递增. (2)f(x)=(1+x)(1-x)ex. 当 a≥1 时,设函数 h(x)=(1-x)ex,h′(x)=-xex< 0(x>0),因此 h(x)在[0,+∞)上单调递减.
若 f(x)在区间(-e,-1)上是减函数,只需 f′(x)≤0 恒成立.
因此只需 f′(-1)=e-1-a≤0,解之得 a≥1e.
又当 a=1e时,f′(x)=ex-1e≤0 当且仅当 x=-1 时取 等号.
所以实数 a 的取值范围是1e,+∞. (2)法一 由已知得 F(x)=a(x-1)-2ln x, 且 F(1)=0, 则 F′(x)=a-2x=ax-x 2,x>0.
ax(e=2.718 28…是自然对数的底数). (1)若函数 f(x)在区间-e,-1上是减函数,求 a 的
取值范围; (2)若函数 F(x)=f(x)-(ex-2ax+2ln x+a)在区间
0,12内无零点,求实数 a 的最大值.
解:(1)由 f(x)=ex-ax,得 f′(x)=ex-a 且 f′(x)在 R 上递增.
当 a≤0 时,f′(x)>0,f′(x)没有零点; 当 a>0 时,设 u(x)=e2x,v(x)=-ax, 因为 u(x)=e2x 在(0,+∞)上单调递增, v(x)=-ax在(0,+∞)上单调递增, 所以 f′(x)在(0,+∞)上单调递增. 又 f′(a)>0,
且 f(x)≥0.(导学号 54850024) (1)求 a; (2)证明:f(x)存在唯一的极大值点 x0,且 e-2<f(x0)
<2-2. (1)解:f(x)的定义域为(0,+∞),
设 g(x)=ax-a-ln x,
则 f(x)=xg(x),f(x)≥0 等价于 g(x)≥0.
因为 g(1)=0,g(x)≥0,故 g′(1)=0, 而 g′(x)=a-1x,g′(1)=a-1,得 a=1. 若 a=1,则 g′(x)=1-1x. 当 0<x<1 时,g′(x)<0,g(x)单调递减; 当 x>1 时,g′(x)>0,g(x)单调递增, 所以 x=1 是 g(x)的极小值点,故 g(x)≥g(1)=0. 综上可知,a=1.
2.利用导数解决不等式的“恒成立”与“存在性” 问题.
(1)f(x)>g(x)对一切 x∈I 恒成立⇔I 是 f(x)>g(x)的解集 的子集⇔[f(x)-g(x)]min>0(x∈I).
(2)∃x∈I,使 f(x)>g(x)成立⇔I 与 f(x)>g(x)的解集的 交集不是空集⇔[f(x)-g(x)]max>0(x∈I).
要使 F(x)在0,12内无零点,只需
F12=-a2-2ln
1 2
≥0,则 0<a≤4ln 2.
若2a<12时,即 a>4 时,则 F(x)在0,2a上是减函数, 在2a,12上是增函数. 所以 F(x)min=F2a=2-a-2ln 2a,
专题一 函数与导数、不等式
第 5 讲 导数与函数零点、 不等式的综合问题
1.(2017·全国卷Ⅱ)设函数 f(x)=(1-x2)ex. (1)讨论 f(x)的单调性; (2)当 x≥0 时,f(x)≤ax+1,求 a 的取值范围. 解:(1)f′(x)=-2xex+(1-x2)ex=(1-2x-x2)ex. 令 f′(x)=0,得 x2+2x-1=0,
2.三次函数的零点分布
三次函数在存在两个极值点的情况下,由于当 x→∞ 时,函数值也趋向∞,只要按照极值与零的大小关系确 定其零点的个数即可.存在两个极值点 x1,x2 且 x1<x2 的函数 f(x)=ax3+bx2+cx+d(a≠0)的零点分布情况如 下:
a的符号
a>0 (f(x1)为极大值, f(x2)为极小值)
只需 F12=-a2-2ln 12≥0, 则 2<a≤4ln 2. 综上可知,函数 F(x)在0,12内无零点,应有 a≤4ln 2,所以实数 a 的最大值是 4ln 2.
[规律方法] 1.三步求解函数零点(方程根)的个数问题. 第一步:将问题转化为函数的零点问题,进而转化为 函数的图象与 x 轴(或直线 y=k)在该区间上的交点问题; 第二步:利用导数研究该函数在该区间上单调性、极 值(最值)、端点值等性质, 进而画出其图象;
得 f′(x)=3x2+2ax+b.
因为 f(0)=c,f′(0)=b,
所以曲线 y=f(x)在点(0,f(0))处的切线方程为 y=bx +c.
(2)当 a=b=4 时,f(x)=x3+4x2+4x+c, 所以 f′(x)=3x2+8x+4. 令 f′(x)=0,得 3x2+8x+4=0,解得 x=-2 或 x= -23.
又 h(e-2)>0,h12<0,h(1)=0, 所以 h(x)在0,12上有唯一零点 x0,在12,+∞上有 唯一零点 1,当 x∈(0,x0)时,h(x)>0;当 x∈(x0,1)时, h(x)<0;当 x∈(1,+∞)时,h(x)>0. 因为 f′(x)=h(x),所以 x=x0 是 f(x)的唯一极大值点.
当 a>0 时,x∈0,2a,F′(x)<0, x∈2a,+∞,F′(x)>0. 所以 F(x)在0,2a上单调递减,在2a,+∞上单调递 增. 因此 F(x)min=F2a≤F(1)=0.
若2a≥1,即 0<a≤2 时,F(x)在0,12内是减函数. 因此,当 x∈0,12时,F(x)>F(1)=0,所以 F(x)在 0,12内无零点. 若2a<1,即 a>2 时,F(x)min=F2a≤F(1)=0. 要使函数 F(x)在0,12内无零点,
【命题透视】 函数与方程、不等式的交汇是考查的 热点,常以含指数函数、对数函数的情形为载体考查函数 的零点(方程的根)、比较大小、不等式证明以及根据不等 式恒成立与能成立求参数的值(或范围).主要以解答题的 形式呈现,能力要求高.
热点 1 利用导数研究函数的零点(方程的根) 1.利用导数研究函数的零点 函数的零点、方程的实根、函数图象与 x 轴的交点 的横坐标是三个等价的概念,解决这类问题可以通过函 数的单调性、极值与最值,画出函数图象的变化趋势, 数形结合求解.
a<0 (f(x1)为极小值, f(x2)为极大值)
零点个 数 一个
两个
三个 一个
两个
三个
充要条件
f(x1)<0 f(x1)=0或者f(x2)=
0
f(x1)>0且f(x2)<0 f(x2)<0
f(x1)=0或者f(x2)= 0
f(x1)<0且f(x2)>0
[例 1] (2017·郑州调研)已知 a∈R,函数 f(x)=ex-
由 f′(x0)=0 得 ln x0=2(x0-1), 故 f(x0)=x0(1-x0). 由 x0∈0,1得 f(x0)<14. 因为 x=x0 是 f(x)在(0,1)上的最大值点, 由 e-1∈(0,1),f′(e-1)≠0 得 f(x0)>f(e-1)=e-2. 所以 e-2<f(x0)<2-2.
第三步:结合图象求解. 2.根据函数零点情况求参数范围:(1)要注意端点的 取舍;(2)选择恰当的分类标准进行讨论.
[变式训练] (2016·北京卷节选)设函数 f(x)=x3+ax2 +bx+c.
(1)求曲线 y=f(x)在点(0,f(0))处的切线方程; (2)设 a=b=4,若函数 f(x)有三个不同零点,求 c 的 取值范围. (1)解:由 f(x)=x3+ax2+bx+c,