摩擦、磨损与润滑概述

合集下载

摩擦、磨损和润滑

摩擦、磨损和润滑

摩擦、磨损和润滑§1 摩擦在一定的压力下,表面间摩擦阻力的大小与两表面间的摩擦状态有密切关系,不同摩擦状态下,产生摩擦的物理机理是不同的。

一、摩擦状态按摩擦状态,即表面接触情况和油膜厚度,可以将滑动摩擦分为四大类,干摩擦、边界摩擦(润滑)、液体摩擦(润滑)和混合摩擦(润滑),如图所示。

1.干摩擦两摩擦表面间无任何润滑剂或保护膜的纯净金属接触时的摩擦,称为干摩擦。

在工程实际中没有真正的干摩擦,因为暴露在大气中的任何零件的表面,不仅会因氧气而形成氧化膜,且或多或少也会被润滑油所湿润或受到"污染",这时,其摩擦系数将显著降低。

在机械设计中,通常把不出现显著润滑的摩擦,当作干摩擦处理。

2.边界摩擦两摩擦表面各附有一层极薄的边界膜,两表面仍是凸峰接触的摩擦状态称为边界摩擦。

与干摩擦相比,摩擦状态有很大改善,其摩擦和磨损程度取决于边界膜的性质、材料表面机械性能和表面形貌。

3.液体摩擦两摩擦表面完全被液体层隔开、表面凸峰不直接接触的摩擦。

此种润滑状态亦称液体润滑,摩擦是在液体内部的分子之间进行,故摩擦系数极小。

这时的摩擦规律已有了根本的变化,与干摩擦完全不同。

关于液体摩擦(液体润滑)的问题,将在滑动轴承中进一步讨论。

4.混合摩擦两表面间同时存在干摩擦、边界摩擦和液体摩擦的状态称为混合摩擦。

二、干摩擦理论干摩擦理论主要有:(1)机械理论认为摩擦力是两表面凸峰的机械啮合力的总和,因而可解释为什么表面愈粗糙,摩擦力愈大;(2)和表面分子相互吸引分子-机械理论认为摩擦力是由表面凸峰间的机械啮合力F1两部分组成,因而这一理论可解释为什么当接触表面光滑时,摩擦力也会力F2很大。

但上述两种理论不能解释能量是如何被消耗的;(3)粘着理论;(4)能量理论等。

a) 结点b) 界面剪切c) 软金属剪切a) 结点b) 界面剪切c) 软金属剪切大量的试验表明,工程表面的实际接触面积约为名义接触面积的10-2~10-3,这样接触区压力很高,使材料发生塑性变形,表面污染膜遭到破坏,从而使基体金属发生粘着现象,形成冷焊结点(如图a 所示)。

机械设计第四章:摩擦、磨损与润滑概述

机械设计第四章:摩擦、磨损与润滑概述

化学吸附膜(化学键)
度影响较大
反应膜:比较稳定
§4-1 摩擦
三、流体摩擦
流体摩擦:指运动副的摩擦表面被流体膜隔开(λ>3~4) 摩擦性质取决于流体内部分子间粘性阻力的摩擦。 摩擦系数最小(f=0.001-0.008),无磨损产生,是理想的 摩擦状态。
四、混合摩擦
混合摩擦:摩擦表面间处于边界摩擦和流体摩擦的混合状 态(=1~3) 。 混合摩擦能有效降低摩擦阻力,其摩擦系数比边界摩擦时 要小得多。 边界摩擦和混合摩擦在工程实际中很难区分,常统称为 不完全液体摩擦。
汽车的磨合期如同运动员在参赛前的热身运动
目的:汽车磨合也叫走合。汽车磨合期是指新车
或大修后的初驶阶段。机体各部件机能适应环境的 能力得以调整提升。新车、大修车及装用大修发动 机的汽车在初期使用阶段都要经过磨合,以便相互 配合机件的磨擦表面进行吻合加工,从而顺利过渡
到正常使用状态。汽车磨合的优劣,会对汽车寿命、
滴油润滑、浸油润滑、飞溅润滑、喷油润滑、油雾润滑等 用于低速 用于高速
§4-3 润滑剂、添加剂和润滑办法
三、润滑方法
滴油润滑、浸油润滑、飞溅润滑、喷油润滑、油雾润滑等
用于低速
用于高速
浸油与飞溅润滑
喷油润滑
油脂润滑常用于运转速度较低的场合,将润滑脂涂抹于需润 滑的零件上。润滑脂还可以用于简单的密封。

思考题:
4—1 4—5 4—10 4—11
§4-1 摩擦
滑动摩擦分为:
干摩擦、边界摩擦、流体摩擦、混合摩擦
一、干摩擦 表面间无任何润滑剂或保护膜的纯金属接触时的摩擦。通 常将未经人为润滑的摩擦状态当作“干摩擦”处理。
§4-1 摩擦
二、边界摩擦

《机械设计》第三节-摩擦-磨损-润滑

《机械设计》第三节-摩擦-磨损-润滑

t
度不会继续改变,所占时
间比率较小
O
时间t
2、稳定磨损阶段
经磨合的摩擦表面加工硬化,形成了稳定的表面粗糙度,摩擦
条件保持相对稳定,磨损较缓,该段时间长短反映零件的寿命
3、急剧磨损阶段 经稳定磨损后,零件表面破坏,运动副间隙增大→动载振动
→润滑状态改变→温升↑→磨损速度急剧上升→直至零件失效
二、磨损的类型
弹性变形
流体摩擦(润滑)
塑性变形
边界膜
边界摩擦(润滑)—最低要求
边界膜 液体

混合摩擦(润滑)
边界膜
液体
一、干摩擦
摩擦理论: 库仑公式 Ff f () Fn
新理论:分子—机械理论、能量理论、粘着理论
简单粘着理论:
Ff
Ar B
Fn
sy
B
a
n
Ar Ari i 1
f () Ff B Fn sy
(3)条件粘度(相对粘度)—恩氏粘度
3、影响润滑油粘度的主要因素
(1)温度 润滑油的粘度随着温度的升高而降低
粘度指数VI ,35,85,110
(2)压力
p 0 ep
P>10MP时,随P↑→ηP↑
4、配油计算
K v vB vA vB
配油比
1、根据摩擦面间存在润滑剂的状况,滑动摩擦分
为哪几种? 2、获得流体动力润滑的基本条件是什么?
3、典型的磨损分哪三个阶段?磨损按机理分哪几 种类型?
4、什么是流体的粘性定律?
5、粘度的常用单位有哪些?影响粘度的主要因素是 什么?如何影响?
6、评价润滑脂和润滑油性能的指标各有哪几个?
润滑油压分布
v1
v2

第四章 摩擦、磨损及润滑概述

第四章  摩擦、磨损及润滑概述

第四章 摩擦、磨损及润滑概述
第一节 摩擦 一、摩擦效果——能量损耗、发热、磨损
——利用摩擦 二、摩擦分类 内摩擦:发生在物质内部,阻碍分子间相对运动 外摩擦:
静摩擦 动摩擦——滚动摩擦
滑动摩擦——
1.干摩擦 机械传动中不允许
2.边界摩擦 边界油膜(十层分子厚度仅 为0.02μm),金属突峰接触,摩擦系数0.1 左右
油温 3.疲劳磨损(点蚀) 提高表面硬度、减小粗糙度值和控制接触应

4.流体体磨粒磨损、流体侵蚀磨损
流动所夹带的硬物质引起的机械磨损,管道 磨损
流体冲蚀作用引起的机械磨损,燃汽轮机叶 片、火箭发动机尾喷管的磨损。
5.腐蚀磨损
机械化学磨损是指由机械作用及材料与环境 的化学作用或电化学作用共同引起的磨损
2.流体静力润滑 3.弹性流体动力润滑 λ>3~4 4.边界润滑 5.混合润滑
1.如图所示,在 情况下,两相对运动的平 板间粘性流体不能形成油膜压力。
2.摩擦副接触面间的润滑状态判据参数膜厚 比值λ为 时,为混合润滑状态,值λ为 时,可达到流体润滑状态。
A.6.25; B. 1.0;C. 5.2; D. 0.35。
λ≤1——边界摩擦
λ>3——流体摩擦
1≤λ≤3——混合摩擦
第二节 磨损 一、磨损过程 ——磨合、 稳定磨损、 剧烈磨损。 二、磨损分类 1.磨粒磨损 开式齿轮传动 合理选择材料,提高表面硬度
2.粘着磨损 ——轻微磨损、胶合、咬死
齿轮传动、蜗杆传动滑动轴承等 合理选择摩擦副材料、润滑剂,限制压力和
3.各种油杯中, 可用于脂润滑。
A.针阀式油杯;B.油绳式油杯;C.旋盖式油杯。
4.为了减轻摩擦副的表面疲劳磨损,下列措施中, 是不合理的

摩擦磨损及润滑概述.ppt

摩擦磨损及润滑概述.ppt

L-AN68 61.2~74.8 -10 190
L-AN100 90~110
0
210
汽轮机油 L-TSA32 28.8~35.2 -7
180
中G国地B质大1学1专1用20-89 L-TSA46 41.4~50.6
用于重型机床导轨、 矿山机械的润滑
用于汽轮机、发电机等 高速高负荷轴承和各种 小型液体润滑轴作承者: 潘存云教授
▲ “机械-分子说” 两种作用均有
二、摩擦的分类
内 摩 擦——在物质的内部发生的阻碍分子之间相对 运动的现象。
外 摩 擦——在相对运动的物体表面间发生的相互阻 碍作用现象。
静 摩 擦——仅有相对运动趋势时的摩擦。
动 摩 擦——在相对运动进行中的摩擦。
滑动摩擦——物体表面间的运动形式是相对滑动。
滚动摩擦——物体表面间的运动形式是相对滚动。
v
摩擦和流体摩擦的混合状态。混合摩擦
能有效降低摩擦阻力,其摩擦系数比边
潘存云教授研制
界摩擦时要小得多。
边界摩擦和混合摩擦在 工程实际中很难区分,常统 称为不完全液体摩擦。
边界摩擦 f
混合摩擦
在一般机器中,处于后三种情况的混合状态。
称无量纲参数ηn/p为轴承特 性数。 η-动力粘度,p-压强 ,n-每秒转数
节省能源; 观进入微观,由静态进入动态,由定性进入定量,成 为系统综合研究的领域。
减少磨损
降低设备维修次数和费用,节省制造零
件及其所需材料的费用。
中国地质大学专用
ቤተ መጻሕፍቲ ባይዱ
作者: 潘存云教授
§4-1 摩 擦
一、摩擦的机理
▲ “机械说” ——摩擦原因是表面微凸体的相互阻碍作用
▲ “分子说” ——摩擦原因是表面材料分子间的吸力作用

第三章 摩擦、磨损和润滑

第三章  摩擦、磨损和润滑
摩擦是一种不可逆过程,其结果使摩擦表面的物质丧失或转移, 即发生磨损。过度磨损会使机器丧失应有的精度,产生振动和噪 声,缩短使用寿命。
适当的润滑是减小摩擦、减轻磨损和降低能量消耗的有效手 段。
第一节 摩 擦
摩擦的种类 1)内摩擦:发生在物质内部,阻碍分子间相对运动的摩擦。 2)外摩擦:当相互接触的两个物体发生相对滑动或有相对滑
在液体摩擦状态下,其摩擦性能取决于流体内部分子之间的 粘滞阻力,故摩擦因数极小(约为0.001~0.008),是一种理想的 摩擦状态。摩擦规律也已有了根本的变化,与干摩擦完全不同。
四、混合摩擦
当两摩擦表面不能被具有压力的液体层完全分隔开,摩擦表 面间处于既有边界摩擦又有液体摩擦的混合状态称为混合摩擦。
边界膜有两大类:吸附膜和化学反应膜。吸附膜又分为物理 吸附膜与化学吸附膜。
物理吸附膜是由分子引力所 形成的。吸附膜吸附在金属表面 的模型如图2.3.4所示。
化学吸附膜是润滑油分子 以其化学键力作用在金属表面 形成保护膜,它的剪切强度与 抗粘着能力较低,但熔点较高 (约120°C)。所以,能在中等 速度及中等载荷下起润滑作用。
机械零件的磨损过程分为:磨合阶段、稳定磨损阶段和剧烈磨损 阶段。
按照磨损失效的机理,磨损主要有四种基本类型,即磨粒磨损、 粘着磨损、接触疲劳磨损和腐蚀磨损。
(1)磨粒磨损 外界进入摩擦表面间的硬质颗粒或摩擦表面上 的硬质凸峰,在摩擦过程中引起表面材料脱落的现象。特征是摩擦表 面沿着滑动方向形成划痕,在一些脆性材料上还会有崩碎和颗粒。
中心值列于表2.3.1。
此外,常用的还有比较法测定粘度,称为条件粘度(或相对粘 度)。我国常用的条件粘度为恩氏粘度,即在规定温度下200cm3的 油样流过恩氏粘度计的小孔(直径2.8 mm)所需时间(s)与同体积的 蒸馏水在20°C下流过相同小孔时间的比值即为该油样的恩氏粘度, 以符号°Et表示,其角标t表示测定时的温度。美国常用赛氏通用 秒(SUS),英国常用雷氏秒(R)作为条件湿或吸附于金属摩擦表面 形成边界膜的性能称为油性。吸附能力强,则愈有利于边界油膜的 形成,油性愈好。

摩擦、磨损及润滑理论

摩擦、磨损及润滑理论
摩擦、磨损及润滑理论
一、摩擦、磨损及润滑三者关系
当在正压力作用下相互接触的两个物体受切向外力的影响而发 生相对滑动,或有相对滑动趋势时,在接触表面上就会产生抵抗滑 动的阻力,这一自然现象叫做摩擦。 其结果必然有能量损耗和摩擦表面物质的丧失或转移,即磨损。 据估计,世界上在工业方面约有30%的能量消耗于摩擦过程中。 所以人们为了控制零件在摩擦中损坏,在摩擦面间加入润滑剂来降
由式(3-10)可知,若将速度V降低,则p/x亦将降低,此时油
膜各点的压力强度也会随之降低。如V降低过多,油膜将无法支持外 载荷,而使两表面直接接触,致使油膜破裂,液体摩擦也就消失。 c)润滑油必须有一定的粘性。 d)有足够充足的供油量。
习题:
第三章 摩擦、磨损及润滑理论
一、选择题
3-1 现在把研究有关摩擦、磨损与润滑的科学与技术统称为 。 (1)摩擦理论;(2)磨损理论;(3)润滑理论;(4)摩擦学; 3-2 两相对滑动的接触表面,依靠吸附的油膜进行润滑的摩擦状态称 为 。 (1)液体摩擦;(2)干摩擦;(3)混合摩擦;(4)边界摩擦; 3-3 两摩擦表面间的膜厚比=0.4~3时,其摩擦状态为 两摩擦表面间的膜厚比<0.4时,其摩擦状态为 两摩擦表面间的膜厚比>3~5时,其摩擦状态为 ; 。 ;
低摩擦,减小磨损的产生,所以说三者互为因果关系。
二、摩擦的种类
干摩擦:粘着、犁刨 边界摩擦(润滑):很薄的油膜, 0.4 摩擦(滑动) 混合摩擦(润滑):膜厚比0.4 3.0 液体摩擦(润滑):被厚的油膜完全隔开, 3 5
N
V 没有润滑剂
N
V 很薄油膜
a)相对运动表面间必须形成油楔;
由上式可见,若两平板平行时,任何截面处的油膜厚度h=h0,

第四章摩擦、磨损及润滑概述§4―1摩擦学发展概况§4―2

第四章摩擦、磨损及润滑概述§4―1摩擦学发展概况§4―2

机械设计教案(68)第四章 摩擦、磨损及润滑概述大纲要求:了解机械零件的润滑状态;了解机械零件的摩擦与磨损规律;掌握常用润滑 材料和润滑方式;了解常用密封方法和密封件的性能与选用。

(2+1 学时) 重点内容:机械零件的摩擦状态、磨损规律。

常用润滑油和润滑脂的主要性能指标及选 用原则。

常用润滑方式。

常用密封方法。

常用密封件的性能及选用。

§4―1 摩擦学发展概况Jost 的报告,Tribology诞生,摩擦学研究得到世界各国的广泛重视,成果丰硕。

§4―2 摩擦静摩擦 滚动摩擦摩擦 摩擦 干摩擦动摩擦 滑动摩擦 边界摩擦流体摩擦 混合摩擦边界摩擦 流体摩擦 混合摩擦膜厚比λ≤ 1 λ > 3 1 ≤λ≤ 3F.P.Bowden ,Tabor在 1945年提出摩擦的粘着理论,1963 年又进一步提出修正的粘着 理论。

目前可以解释很多摩擦现象。

边界摩擦理论认为:边界膜 吸附膜 物理吸附膜 (靠润滑油中的极性分子形成――油性)化学吸附膜 (靠润滑油中的化学键结合形成)反应膜(靠润滑油中的 S、P、Cl等与金属表面的化学反应形成――极压性)维持边界膜是相互运动的摩擦表面所必需的,否则将会产生剧烈摩擦。

吸附膜 只在较低温度下存在。

反应膜 只在较高温度下(通常 150 o C~200 o C)才能生成。

反应膜牢固,但有腐蚀性。

添加剂的合理应用 ,见图4-10流体润滑(液体润滑) 动压液体润滑 (滑动轴承中讲述)静压液体润滑§4―3 磨损磨损的一般规律 ,图 4-6 ――磨合阶段、稳定磨损阶段、剧烈磨损阶段 跑合(磨合)的重要性――有合适的磨合期,按一定的规程进行缓慢、逐级加载,并注 意润滑油的清洁,防止磨粒磨损。

磨损按其机理可分为:粘附磨损磨粒磨损机械设计教案(68)疲劳磨损冲蚀磨损(流体磨粒磨损和流体侵蚀磨损)腐蚀磨损(机械化学磨损)§4-3 润滑剂、添加剂和润滑方法(一)润滑剂1.润滑油润滑油的种类润滑油的主要性质指标:⑴ 粘度――表征润滑油流动时的内部阻力。

第四章-摩擦磨损和润滑概述

第四章-摩擦磨损和润滑概述
二、摩擦的分类 内摩擦
1、按摩擦机理不同分为: 外摩擦
内摩擦:在物质的内部发生的阻碍分子之间相对运动的现象。 外摩擦:在相对运动的物体表面间发生的相互阻碍作用现象。
静摩擦 2、按运动的状态不同分为:
动ቤተ መጻሕፍቲ ባይዱ擦
滑动摩擦 3、按运动的形式不同分为:
滚动摩擦
干摩擦
4、滑动摩擦按润滑状态不同分为: 边界摩擦 流体摩擦
二、磨损的分类:
磨损类型
按磨损机理分
按磨损表面外 观可分为
磨粒磨损 粘附磨损 疲劳磨损 冲蚀磨损 腐蚀磨损 微动磨损
点蚀磨损 胶合磨损 擦伤磨损
三、磨损的机理:
磨粒磨损
磨损类型:
粘附磨损 疲劳磨损 冲蚀磨损
腐蚀磨损
微动磨损
磨粒磨损—也简称磨损,外部进入摩擦面间的游离硬颗粒(如 空气中的尘土或磨损造成的金属微粒)或硬的轮廓峰尖在软材 料表面上犁刨出很多沟纹时被移去的材料,一部分流动到沟纹 两旁,一部分则形成一连串的碎片脱落下来成为新的游离颗粒, 这样的微粒切削过程就叫磨粒磨损。
三、磨损的机理:
磨粒磨损
磨损类型:
粘附磨损 疲劳磨损 冲蚀磨损
腐蚀磨损
微动磨损
粘附磨损—也称胶合,当摩擦表面的轮廓峰在相互作用的各点 处由于瞬时的温升和压力发生“冷焊”后,在相对运动时,材 料从一个表面迁移到另一个表面,便形成粘附磨损。严重的粘 附磨损会造成运动副咬死。
三、磨损的机理:
磨粒磨损
磨损类型:
(1)润滑是减小摩擦、减小磨损的最有效的方法; (2)合理选择摩擦副材料; (3)进行表面处理; (4)注意控制摩擦副的工作条件等。
§4-3 润滑剂、添加剂和润滑方法
润滑:在两个摩擦表面之间加入润滑剂,以减小摩擦和磨损。 此外,润滑还可起到散热降温,防锈、防尘,缓冲吸振等作 用一。、 润滑剂 凡是能减小摩擦阻力,减小磨损的物质都可作为润滑剂。 1、润滑剂的分类

第04章 摩擦

第04章  摩擦
一、流体动力润滑 流体动力润滑是指两个作相对运动物体的摩擦表面,借助于相对速度而产 生的粘性流体膜将两摩擦表面完全隔开,由流体膜产生的压力来平衡外载荷。
流体润滑1



流体动力润滑形成的必要条件: 楔形空间; 相对运动(保证流体由大口进入); 连续不断地供油。
(动画)
流体润滑原理简介
二、弹性流体动力润滑
返回目录
干摩擦特点:摩擦系数一般在f干=0.1数量级,阻力大、 磨损重、发热高、易胶合、寿命短。
前一页
后一页
退 出
2、边界摩擦: 两金属表面间由于润滑油与金属表面的吸附作用, 在金属表面形成极薄的油膜(边界膜)将金属表面隔 开,但高峰部分仍将相互搓削,此时的摩擦称为边界 摩擦。
返回目录
摩擦系数一般在 f边=10-2 数量级,边界膜厚度<1微米。
在规定的加热条件下,润滑脂从标准测量杯的孔口 滴下第一滴时的温度叫润滑脂的滴点。
滴点决了润滑油的工作温度。返 Nhomakorabea目录前一页
后一页
退 出
3、固体润滑剂
如石墨、二硫化钼、氮化硼、石蜡、聚四氟乙烯、 酚醛树脂等。石墨和二硫化相应用最广。 固体润滑剂一般用于不宜使用润滑油和润滑脂的 特殊条件下。此外,它还可以作为润滑油或润滑脂的 添加剂使用,以及与金属或塑料等混合制成自润滑复 合材料使用。 三、添加剂 有时为了改善某些性能还加入一些添加剂,添 加剂可以改变润滑剂的各种性能,起到提高承载能 力、降低摩擦和减少磨损的目的。目前世界各国都 普遍使用加有添加剂的润滑油。
阻力大小。 单位:国际单位: Pa.s(帕.秒) 绝对单位:称为1P(泊)P=0.1Pa.s=100cP(厘泊)
后一页
退 出
② 运动粘度

摩擦磨损与润滑

摩擦磨损与润滑

摩擦、磨损与润滑摩擦―、概述相互接触的物体、在接触面间产生的租止物体相对运动的现象称为摩擦。

由于摩擦而产生的阻力,称为摩擦力。

我们可以观察在机械运动中产生的摩擦,同时存在摩擦力、摩擦热和磨损三个现象。

其中:摩擦力属于运动副的一种力学特征;摩擦热是能量转换的一种形式。

磨损是摩擦表面物质转移的一种形式。

在机械运动中,发生相对运动的零件或部件统称为运动副,如轴与轴承、齿轮啮合、平面导轨、蜗杆与蜞轮、链条与链轮、带传动等。

这些运动剃在相对运动的同时都会发生摩擦,因此我们也称这些运动副为摩擦副。

摩擦是自然界普遍存在的现象,对人们的生活和生产都有着重要的作用。

如人们利用摩擦振动使提琴、胡琴发音。

有了摩擦人们才能走路,汽车、火车才能行驶,等等。

某些机械利用摩擦力来传递动力和运动,如摩擦压力机、摩擦离合器、带传动等。

但是,摩擦力也有它有害的方面,它对某些机械运动副起不良作用,主要有以下几点。

(1)消耗大量的功,机械运动中克服摩擦面间的摩擦力所作的功称为无用功,它大约占总消耗功的三分之一,从而降低了机械效率。

(2)造成磨损由于摩擦表面的直接接触,零件表面产生严重磨损。

降低机械的运动精度,间隙变大,出现振动和噪声,不仅影响机械的正常运转,同时还缩短了机械的寿命。

据统计,大约有80%的损坏零件是由于磨损造成的。

⑶产生热量,机槭设备运行中用来克服摩擦力损失的那部分能量转换成热能的形式散发出来。

其中一部分散发到空气中,另一部分来不及散发就使机械零件温度升高,降低机械强度,甚至产生热变形、热疲劳、热磨损,导致破坏机件精度,影响机械正常运转。

特别是在要求运动灵敏度高的部位,如数控机床的导轨,丝杠螺母、測量仪器等,热变形更会影响机械的工作精度和寿命。

摩擦会导致磨损,最终将破坏机槭的正常运转,这是一个客观规律。

滚动摩擦两接触物体沿接触表面滚动时的摩擦称为滚动摩擦。

滚动摩擦时,其接触处常常表现为点与点(如球形滚动轴承)或线与线(如圆柱滚子轴承)的摩擦。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章 摩擦、磨损与润滑概述
§4-1 摩 §4-2 磨
擦 损
§4-3 润滑剂、添加剂和润滑方法
§4-4 流体润滑原理简介
ቤተ መጻሕፍቲ ባይዱ


摩擦学
摩擦学是研究相对运动的作用表面间的摩擦、磨损和润滑,以及三者 间相互关系的理论与应用的一门边缘学科。

摩擦 磨损 润滑
是相对运动的物体表面间的相互阻碍作用现象; 是由于摩擦而造成的物体表面材料的损失或转移; 是减轻摩擦和磨损所应采取的措施。
(详细介绍)
在设计或使用机器时,应该力求缩短磨合期,延长稳定磨损期,推迟剧烈 磨损的到来。为此就必须对形成磨损的机理有所了解。
关于磨损机理与分类的见解颇不一致,大体上可概括为: 磨
损2
磨粒磨损 也简称磨损,是外部进入摩擦表面的游离硬颗粒或硬的轮廓峰 尖所引起的磨损。 疲劳磨损 也称点蚀,是由于摩擦表面材料微体积在交变的摩擦力作用下, 反复变形所产生的材料疲劳所引起的磨损。 粘附磨损 也称胶合,当摩擦表面的轮廓峰在相互作用的各点处由于瞬时 的温升和压力发生“冷焊”后,在相对运动时,材料从一个表面迁移到另一 个表面,便形成粘附磨损。 冲蚀磨损 流体中所夹带的硬质物质或颗粒,在流体冲击力作用下而在摩 擦表面引起的磨损。
的主要方程结合起来,以求解油膜压力分布、润滑膜厚度分布等问题。
三、流体静力润滑
(详细说明)
流体静力润滑是指借助外部供入的压力油形成的流体膜来承受外载荷的 润滑方式。
(详细说明)
采用流体静力润滑可在两个静止且平行的摩擦表面间形成流体膜,其
承载能力不依赖于流体粘度,故能用粘度极低的润滑剂,且既可使摩擦副有
关于摩擦、磨损与润滑的学科构成了摩擦学(Tribology)。 世界上使用的能源大约有 1/3~1/2 消耗于摩擦。如果能够尽力减少 无用的摩擦消耗,便可大量节省能源。另外,机械产品的易损零件大部分 是由于磨损超过限度而报废和更换的,如果能控制和减少磨损,则既减少 设备维修次数和费用,又能节省制造零件及其所需材料的费用。 随着科学技术的发展,摩擦学的理论和应用必将由宏观进入微观,由 静态进入动态,由定性进入定量,成为系统综合研究的领域。
§4-4流体润滑原理简介
英国的雷诺于1886年继前人观察到的流体动压现象,总结出流体动压 润滑理论。20世纪50年代普遍应用电子计算机之后,线接触弹性流体动压润滑 的理论开始有所突破。
一、流体动力润滑 流体动力润滑是指两个作相对运动物体的摩擦表面,借助于相对速度而产 生的粘性流体膜将两摩擦表面完全隔开,由流体膜产生的压力来平衡外载荷。
2. 边界摩擦是指摩擦表面被吸附在表面的边界膜隔开,其摩擦性质取决于 边界膜和表面的吸附性能时的摩擦。 (详细介绍)

擦3
3.流体摩擦是指摩擦表面被流体膜隔开,摩擦性质取决于流体内部分子间 粘性阻力的摩擦。流体摩擦时的摩擦系数最小,且不会有磨损产生,是理想 的摩擦状态。 4.混合摩擦是指摩擦表面间处于边界摩擦和流体摩擦的混合状态。混合摩 擦能有效降低摩擦阻力,其摩擦系数比边界摩擦时要小得多。 边界摩擦和混合摩擦在工程实际中很难区分,常统称为不完全液体摩擦。 随着科学技术的发展,关于摩擦学的研究已逐渐深入到微观研究领域, 形成了微-纳米摩擦学理论,引发出许多新的概念,比如提出了超润滑的概 念等。从理论上讲,超润滑是实现摩擦系数为零的摩擦状态,但在实际研究 中,一般认为摩擦系数在0.001量级(或更低)的摩擦状态即可认为属于超 润滑。关于这方面的研究也是目前微-纳米摩擦学研究的一个重要方面,同 学们应对此给予关注。
较高的承载能力,又可使摩擦力矩降低。
流体润滑1



流体动力润滑形成的必要条件: 楔形空间; 相对运动(保证流体由大口进入); 连续不断地供油。
(动画)
流体润滑2
二、弹性流体动力润滑 弹性流体动力润滑理论是研究在点、线接触条件下,两弹性物体间的 流体动力润滑膜的力学性质。这时的计算必须把在油膜压力下,摩擦表面的 变形的弹性方程、表述润滑剂粘度与压力间关系的粘压方程与流体动力润滑
动 摩 擦:在相对运动进行中的摩擦。
滑动摩擦:物体表面间的运动形式是相对滑动。 滚动摩擦:物体表面间的运动形式是相对滚动。
三、 4种滑动摩擦状态

擦2
1. 干摩擦是指表面间无任何润滑剂或保护膜的纯金属接触时的摩擦。
1785年,法国的库仑用机械啮合概念解释干摩擦,提出摩擦理论。后来 又有人提出分子吸引理论和静电力学理论。1935年,英国的鲍登等人开始用 材料粘附概念研究干摩擦,1950年,鲍登提出了粘附理论。 (详细介绍)
抗氧化添加剂
降凝剂 增粘剂
三、润滑方法 润滑油润滑在工程中的应用最普遍,常用的供油方式有: 滴油润滑、浸油润滑、飞溅润滑、喷油润滑、油雾润滑等
用于低速 用于高速
润滑方法
浸油与飞溅润滑 件上。润滑脂还可以用于简单的密封。 常用的润滑装臵
喷油润滑
油脂润滑常用于运转速度较低的场合,将润滑脂涂抹于需润滑的零
§4-1 摩
一、摩擦的机理


“机械说” 产生摩擦的原因是表面微凸体的相互阻碍作用;
“分子说” 产生摩擦的原因是表面材料分子间的吸力作用;
“机械-分子说” 两种作用均有。
二、摩擦的分类 内 摩 擦:在物质的内部发生的阻碍分子之间相对运动的现象。 外 摩 擦:在相对运动的物体表面间发生的相互阻碍作用现象。 静 摩 擦:仅有相对运动趋势时的摩擦。
腐蚀磨损 当摩擦表面材料在环境的化学或电化学作用下引起腐蚀,在摩 擦副相对运动时所产生的磨损即为腐蚀磨损。
微动磨损 是指摩擦副在微幅运动时,由上述各磨损机理共同形成的复合 磨损。微幅运动可理解为不足以使磨粒脱离摩擦副的相对运动。
(更多介绍)
§4-3 润滑剂、添加剂和润滑方法
一、润滑剂 润滑油:动植物油、矿物油、合成油。
应用矿物油作润滑剂的记载最早见于西晋张华所著《博物志》,书中提
到酒泉延寿和高奴有石油,并且用于“膏车及水碓甚佳”。

润滑脂:润滑油+稠化剂
润滑脂的主要质量指标是:锥入度,反映其稠度大小。

滴点,决定工作温度。 固体润滑剂:石墨、二硫化钼、聚四氟乙烯等。
二、添加剂
添加剂
为了提高油的品质和性能,常在润滑油或润滑脂中加入一些分量虽小 但对润滑剂性能改善其巨大作用的物质,这些物质叫添加剂。 添加剂的作用 提高油性、极压性 延长使用寿命 改善物理性能 油性添加剂 极压添加剂 分散净化剂 添加剂的种类 消泡添加剂
润滑剂、添加剂和润滑方 法
粘度是润滑油的主要质量指标,粘度值越高,油越稠,反之越稀;
粘度的种类有很多,如:动力粘度、运动粘度、条件粘度等。 (具体说明) 工程中常用运动粘度,单位是:St(斯)或 cSt(厘斯),量纲为(m2/s); 润滑油的牌号与运动粘度有一定的对应关系,如:牌号为L-AN10的油在 40℃时的运动粘度大约为10 cSt。
§4-2 磨

摩 擦2
对磨损的研究开展较晚,20世纪50年代提出粘着理论后,60年代在相 继研制出各种表面分析仪器的基础上,磨损研究才得以迅速开展。
磨 损1
磨损是运动副之间的摩擦而导致零件表面材料的逐渐丧失或迁移。磨损会
影响机器的效率,降低工作的可靠性,甚至促使机器提前报废。 一个零件的磨损过程大致可分为三个阶段,即: 磨合阶段 新的零件在开始使用时一般处于这一阶段,磨损率较高。 稳定磨损阶段 属于零件正常工作阶段,磨损率稳定且较低。 剧烈磨损阶段 属于零件即将报废的阶段,磨损率急剧升高。
相关文档
最新文档