涡街流量计
涡街流量计标准
涡街流量计标准涡街流量计的标准主要包括以下几个方面:1.精度等级:液体一般为1.0级,气体为1.5级,在标准流量范围内具有较高的测量精度。
这是涡街流量计的重要性能指标之一,直接影响其测量结果的可靠性。
2.公称压力:涡街流量计的公称压力因通径不同而异,例如通径≥DN200mm时为2.5MPa,通径≤DN150mm时为4.0MPa。
此外,还有6.3 MPa ~ 25 MPa(协议定货)的范围可供选择。
这保证了涡街流量计在不同压力下的稳定性和安全性。
3.被测介质温度:涡街流量计可以测量的介质温度范围广泛,如40℃~200℃、280℃、350℃等。
这使得涡街流量计可以适用于各种高温或低温环境下的流体测量。
4.压力损失:涡街流量计的压力损失较小,阻力系数Cd ≤ 2.4。
这意味着使用涡街流量计时,流体通过流量计的能量损失较小,有利于提高流体的输送效率。
5.可靠性:涡街流量计无可动机械零件,因此具有较高的可靠性。
同时,它采用压电应力式传感器,可靠性高,可在-20℃~+250℃的工作温度范围内工作。
这使得涡街流量计在各种恶劣环境下都能保持较高的测量性能和稳定性。
6.输出信号:涡街流量计具有模拟标准信号和数字脉冲信号输出,容易与计算机等数字系统配套使用。
这使得涡街流量计的测量结果可以方便地进行远程监控和数据处理。
7.适用范围:涡街流量计主要用于工业管道介质流体的流量测量,如气体、液体、蒸汽等多种介质。
这使得涡街流量计具有广泛的应用领域和市场需求。
综上所述,涡街流量计的标准涵盖了精度等级、公称压力、被测介质温度、压力损失、可靠性、输出信号和适用范围等方面,以确保其在实际应用中能够满足各种需求并保持良好的性能。
浅析涡街流量计的优点及缺点 流量计是如何工作的
浅析涡街流量计的优点及缺点流量计是如何工作的涡街流量计的工作原理是在流体中安置一个非流线型旋涡发生体,使流体在发生体两侧交替地分别,释放出两串规定地交叉排列的旋涡的流量计。
在确定范围内旋涡分别频率与流量成正比,通过计算旋涡分别频率可以测得介质的流量。
一、涡街流量计的优点为:1)涡街流量计无可动部件,测量元件结构简单,性能牢靠,使用寿命长。
2)涡街流量计测量范围宽。
量程比一般能达到1:10、3)涡街流量计的体积流量不受被测流体的温度、压力、密度或粘度等热工参数的影响。
一般不需单独标定。
它可以测量液体、气体或蒸汽的流量。
4)它造成的压力损失小。
5)精准度较高,重复性为0.5%,且维护量小。
二、其缺点为:1)涡街流量计工作状态下的体积流量不受被测流体温度、压力、密度等热工参数的影响,但液体或蒸汽的测量结果应是质量流量,对于气体,测量结果应是标准体积流量。
质量流量或标准体积流量都必需通过流体密度进行换算,必需考虑流体工况变化引起的流体密度变化。
2)造成流量测量误差的因素紧要有:管道流速不均造成的测量误差;不能精精准定流体工况变化时的介质密度;将湿饱和蒸汽假设成干饱和蒸汽进行测量。
这些误差假如不加以限制或除去,涡街流量计的总测量误差会很大。
3)抗振性能差。
外来振动会使涡街流量计产生测量误差,甚至不能正常工作。
通道流体高流速冲击会使涡街发生体的悬臂产生附加振动,使测量精度降低。
大管径影响更为明显。
4)对测量脏污介质适应性差。
涡街流量计的发生体极易被介质脏污或被污物缠绕,更改几何体尺寸,对测量精度造成极大影响。
5)直管段要求高。
涡街流量计直管段确定要保证前40D后20D,才能充分测量要求。
6)耐温性能差。
涡街流量计一般只能测量300℃以下介质的流体流量。
平衡流量计的安装注意事项平衡流量计是一种革命性的差压式流量仪表,其工作原理与其他差压式流量计一样,都是基于密封管道中的能量转换原理:在理想流体的情况下管道中的流量与差压的平方根成正比;用测出差压值依据伯努利方程即可计算出管道中的流量。
流量计型号
流量计型号在现代工业生产中,流量计是一种至关重要的仪器设备,用来精确测量流体在管道中的流动速度和量。
不同型号的流量计在工业生产中扮演着不同的角色,满足着各种需求。
本文将对流量计型号进行介绍,希望能够帮助大家更好地了解这些仪器设备。
型号一:涡街流量计涡街流量计是一种常见的流量计型号,它通过涡轮受流体冲击而产生旋涡,根据旋涡频率与流速的线性关系来测量流体速度。
涡街流量计广泛应用于液体和气体的测量,具有测量范围广、精度高、可靠性强的特点。
它适用于高温、高压、腐蚀、粘稠等恶劣工况下的流量测量。
型号二:超声波流量计超声波流量计利用超声波在流体中传播的速度与流速的相关关系来测量流量。
它无需接触流体,不会造成流阻和压力损失,适用于各种流体的测量,特别是污水、腐蚀液体等特殊介质的测量。
超声波流量计具有测量范围广、响应速度快、维护简便等优点,被广泛应用于水处理、化工、石油等领域。
型号三:磁性涡街流量计磁性涡街流量计结合了涡街流量计和磁性感应技术的优势,通过检测涡街频率和流速的关系来测量流量,并且利用磁性感应原理实现非接触测量。
磁性涡街流量计适用于高粘度、污水、液态固体悬浮物含量高的介质测量,具有测量稳定、抗干扰能力强的特点。
型号四:涡轮流量计涡轮流量计是一种利用涡轮叶片在流体中转动产生的脉动信号来测量流速和流量的仪器设备。
涡轮流量计适用于工业、商业和民用等领域的流量测量,具有结构简单、响应速度快、稳定性好的特点。
它在化工、食品、制药等领域有着广泛的应用。
结语不同型号的流量计在工业生产中扮演着不同的角色,满足着各种需求。
本文介绍了涡街流量计、超声波流量计、磁性涡街流量计和涡轮流量计这四种常见的流量计型号,希望能够帮助大家更好地了解这些仪器设备。
在实际应用中,可以根据需求选择合适的流量计型号,实现准确、稳定的流量测量。
国家涡街流量计执行标准
国家涡街流量计执行标准一、结构要求1. 涡街流量计应具有完整的结构,包括传感器、转换器和显示单元。
其设计应符合国家相关标准,并具备可靠、耐用、易于维护的特点。
2. 传感器部分应包括涡街发生器、压力传感器、温度传感器等主要部件,并具备适应各种介质和测量需求的传感器结构。
3. 转换器和显示单元应具备实时数据处理和显示功能,并能够将测量结果以标准信号输出,以便于远程传输和监控。
二、尺寸要求1. 涡街流量计的尺寸应符合国家相关标准,具备适合安装于各种管道和容器的尺寸规格。
2. 传感器的尺寸应合理,以确保其能够准确反映流体流量和流速的变化。
同时,传感器应具备抵抗压力和温度变化的能力,以保持测量的稳定性。
3. 转换器和显示单元的尺寸应适中,方便操作和维护,同时应具备足够的显示面积和分辨率,以便于观察和记录测量结果。
三、精度要求1. 涡街流量计的测量精度应符合国家相关标准,并应在使用过程中保持稳定的测量精度。
2. 传感器的精度应经过严格的质量控制和测试,以确保其对流体流量和流速的测量准确性。
同时,传感器应具备抵抗流体物性变化和流体压力、温度变化的能力,以保持测量的稳定性。
3. 转换器和显示单元的精度应与传感器相匹配,并应经过严格的质量控制和测试,以确保其对传感器信号的处理和显示的准确性。
四、可靠性要求1. 涡街流量计应具备可靠的密封性能,能够抵抗各种化学物质和环境的腐蚀。
同时,应具备在高温、低温、高压等极端环境下的可靠运行能力。
2. 传感器应具备在各种流体介质和测量需求下的可靠性和稳定性,以保证其对流体流量和流速的准确测量。
同时,传感器应具备自我检测和故障预警功能,以便于及时发现并处理故障。
3. 转换器和显示单元应具备高可靠性和稳定性,能够实时准确地处理和显示测量结果。
同时,转换器和显示单元应具备故障自诊断功能,以便于及时发现并处理故障。
4. 涡街流量计在运输、安装、使用和维护过程中应具备相应的安全保护措施,以保障人员和设备的安全。
涡街流量计
涡街流量计中文名称:涡街流量计英文名称:vortex-shedding flowmeter定义:在流体中安放一个非流线型旋涡发生体,使流体在发生体两侧交替地分离,释放出两串规则地交错排列的旋涡,且在一定范围内旋涡分离频率与流量成正比的流量计。
应用学科:机械工程(一级学科);工业自动化仪表与系统(二级学科);流量测量仪表-流量测量仪表名称(二级学科)涡街流量计是根据卡门(Karman)涡街原理研究生产的,主要用于工业管道介质流体的流量测量,如气体、液体、蒸气等多种介质。
其特点是压力损失小,量程范围大,精度高,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响。
无可动机械零件,因此可靠性高,维护量小。
仪表参数能长期稳定。
涡街流量计采用压电应力式传感器,可靠性高,可在-20℃~+250℃的工作温度范围内工作。
有模拟标准信号,也有数字脉冲信号输出,容易与计算机等数字系统配套使用,是一种比较先进、理想的测量仪器。
简介涡街流量计也称之为旋涡流量计或卡门涡街流量计。
综合吸收发达国家先进技术和总结多年研究生产经验的基础上进行精心设计的产品,实现了产品智能化、标准化、系列化、通用化、生产模具化、确保产品质量的美观性。
该产品具有电路先进、功耗微低、量程比宽、结构简单、阻力损失小、坚固耐用、用途广、使用寿命长、工作稳定、便于安装调试等特点。
技术指标◆测量介质:气体、液体、蒸气◆连接方式:法兰卡装式、法兰式、插入式◆口径规格法兰卡装式口径选择25,32,50,80,100◆法兰连接式口径选择100,150,200◆流量测量范围正常测量流速范围雷诺数1.5×104~4×106;气体5~50m/s; 液体0.5~7m/s 正常测量流量范围液体、气体流量测量范围见表2;蒸气流量范围见表3◆测量精度1.0级1.5级◆被测介质温度:常温–25℃~100℃,高温–25℃~150℃-25℃~250℃◆输出信号脉冲电压输出信号高电平8~10V 低电平0.7~1.3V◆脉冲占空比约50%,传输距离为100m◆脉冲电流远传信号4~20 mA,传输距离为1000m◆仪表使用环境温度:-25℃~+55℃湿度:5~90% RH50℃◆材质不锈钢, 铝合金◆电源DC24V或锂电池3.6V◆防爆等级本安型iaIIbT3-T6,防护等级IP65原理在流体中设置三角柱型旋涡发生体,则从旋涡发生体两侧交替地产生有规则的旋涡,这种漩涡称为卡门旋涡,旋涡列在旋涡发生体下游非对称地排列。
涡街流量计口径与测量范围
涡街流量计口径与测量范围摘要:一、涡街流量计简介二、涡街流量计的口径范围三、涡街流量计的测量范围四、涡街流量计在不同介质下的应用五、如何选择合适的涡街流量计六、涡街流量计的维护与保养正文:一、涡街流量计简介涡街流量计是一种基于涡街现象的流量测量仪器,广泛应用于工业领域的流量计量。
它具有较高的测量精度、稳定性好、可靠性高、抗干扰能力强等优点。
二、涡街流量计的口径范围涡街流量计的口径范围较广泛,适用于DN15-DN1000的管道。
其中,DN15-DN300算是小口径涡街流量计,DN400以上的基本上就要使用插入式涡街流量计。
三、涡街流量计的测量范围涡街流量计的测量范围根据介质不同和传感器通径不同而有所差异。
液体测量范围为0.35~7.0m/s,气体测量范围为5.0~60.0m/s,蒸汽测量范围为6.0~70.0m/s。
四、涡街流量计在不同介质下的应用涡街流量计可应用于液体、气体和蒸汽等介质的流量测量。
在实际应用中,需根据介质的特性和流量要求选择合适的涡街流量计。
五、如何选择合适的涡街流量计在选择涡街流量计时,需考虑以下因素:1.介质类型:根据测量介质的不同,选择相应类型的涡街流量计。
2.口径规格:根据管道口径要求,选择合适口径的涡街流量计。
3.测量范围:根据实际流量需求,选择能满足测量范围的涡街流量计。
4.功能需求:根据智能化、通信等功能需求,选择具备相应功能的涡街流量计。
六、涡街流量计的维护与保养1.定期检查涡街流量计的运行状态,确保正常工作。
2.保持涡街流量计清洁,避免杂质影响测量精度。
3.对于插入式涡街流量计,注意安装过程中的管道震动和损伤。
4.定期校准涡街流量计,确保测量精度。
综上所述,涡街流量计在工业领域具有广泛的应用。
选择合适的涡街流量计,需充分考虑介质类型、口径规格、测量范围和功能需求等因素。
涡街流量计使用范围
涡街流量计使用范围【原创版】目录一、涡街流量计的原理与特点二、涡街流量计的应用范围三、涡街流量计的测量范围及适用条件四、涡街流量计对于特定流体的适用性五、涡街流量计的使用建议正文一、涡街流量计的原理与特点涡街流量计是一种根据卡门涡街理论研制而成的速度式流量仪表,它利用流体的自然振动原理来测量流量。
涡街流量计具有无可动部件、结构简单牢固、使用寿命长、运行费用低等优点。
其电路采用表面贴装工艺,结构紧凑,可靠性高。
差压补偿型的涡街流量计可以直接测量质量流量,不会受到介质组分或干度的变化影响,具有较高的精准度。
此外,涡街流量计还具有多点线性修正功能,大幅提高了测量精度。
二、涡街流量计的应用范围涡街流量计的应用范围非常广泛,它适用于大多数流体的测量,包括气体、液体和气液两相流等。
在工业生产中,涡街流量计广泛应用于石油、化工、冶金、电力、水处理等领域,可以测量各种管道直径和流速的流体。
三、涡街流量计的测量范围及适用条件涡街流量计的测量范围主要取决于管道的直径。
对于大口径的管道,口径测量范围为 DN15-DN1000 之间,其中 DN15-DN300 算是管道小口径涡街流量计,口径超过 DN400 以上的基本上就要用插入式涡街流量计。
在测量过程中,涡街流量计需要满足一定的雷诺数范围,通常要求在使用临界限雷诺数之上,以保证仪表的线性度。
四、涡街流量计对于特定流体的适用性1.低雷诺流体:涡街流量计不适用于测量低雷诺数(Re<2104)的流体。
在这种情况下,流体的斯特劳哈尔数 Sr 会随着雷诺数而变,导致仪表线性度变差。
此外,高粘度流体会显著影响甚至阻碍旋涡的产生。
2.含固体微粒流体:对于含有固体微粒的流体,需要特别注意。
固体微粒会对漩涡发生体产生冲刷,导致无关的噪声并磨损漩涡发生体。
为解决这个问题,可以在上游安装过滤器或定期对仪表进行校验。
3.气液两相流体:对于含分散、均匀的微小气泡的气液两相流,其容积含气率应小于 7%。
涡街流量计说明书
涡街流量计说明书涡街流量计是一种常见的流量测量仪器,被广泛应用于工业生产和科学研究领域。
本文将详细介绍涡街流量计的原理、结构、工作原理以及应用领域。
一、涡街流量计的原理涡街流量计是利用了流体通过管道时产生的涡街效应来测量流量的。
当流体通过具有特殊结构的管道时,会在管道上形成一系列的涡街,这种涡街的频率与流体的速度成正比。
通过对涡街的频率进行测量,可以间接地得到流体的流量信息。
二、涡街流量计的结构涡街流量计主要由测量管、传感器和信号处理器组成。
测量管是涡街流量计的核心部件,其内部的结构可以使流体产生涡街效应。
传感器负责测量涡街的频率,并将其转化为电信号。
信号处理器对传感器输出的信号进行处理和转换,最终得到流体的流量值。
三、涡街流量计的工作原理涡街流量计的工作原理可以分为两个步骤:涡街产生和涡街测量。
1. 涡街产生:当流体通过测量管时,由于测量管的特殊结构,流体会在管道内形成涡街。
涡街的频率与流体的速度成正比,流体速度越大,涡街的频率就越高。
2. 涡街测量:传感器负责测量涡街的频率,并将其转化为电信号。
通常采用的传感器是霍尔传感器或磁敏传感器,它们可以感应到涡街通过时产生的磁场变化。
传感器输出的电信号经过信号处理器的处理和转换,最终得到流体的流量值。
四、涡街流量计的应用领域涡街流量计广泛应用于工业领域的流体控制和计量系统中。
其优点是测量范围广、精度高、可靠性好,适用于多种流体介质的测量。
涡街流量计可用于测量液体、气体和蒸汽等多种介质的流量,被广泛应用于化工、石油、冶金、电力等行业。
在石油工业中,涡街流量计可用于油田采油、炼油厂的流量计量和流程控制。
在化工工业中,涡街流量计可用于化工生产中的流程控制和计量。
在电力工业中,涡街流量计可用于锅炉的供水和排污系统的流量测量。
在冶金工业中,涡街流量计可用于高温和高压条件下的流量测量。
总结:涡街流量计是一种常见的流量测量仪器,利用流体通过管道时产生的涡街效应来测量流量。
涡街流量计的原理
涡街流量计的原理一、涡街流量计概述涡街流量计是一种常用的温度、压力和流量测量仪表,广泛应用于石油、化工、冶金、电力等工业领域。
它利用流体流经流量计时产生的涡旋,通过检测涡旋频率来测量流体的流量。
本文将详细介绍涡街流量计的原理、工作方式以及其在工业生产中的应用。
二、涡街流量计工作原理涡街流量计利用流体通过管道时产生的涡旋来测量流体的流量。
其主要由涡街传感器和信号处理器组成。
1. 涡街传感器涡街传感器是涡街流量计的核心部分,它利用流体流经传感器时产生的涡旋来测量流量。
传感器由一个线圈和一个薄膜板组成。
当流体通过传感器时,流体对薄膜板施加压力,导致薄膜板振动。
这种振动产生的涡旋频率与流体的流速成正比。
2. 信号处理器信号处理器用于测量和处理传感器产生的涡旋信号。
传感器产生的涡旋信号通过线圈传递给信号处理器。
信号处理器通过计算涡旋的频率来测量流体的流速,并将结果转换为标准的电信号输出。
三、涡街流量计的工作方式涡街流量计是一种被动式的测量仪表,其工作不需要外部能量输入。
它通过检测流体流经传感器时产生的涡旋来测量流量。
具体工作方式如下:1. 流体流经传感器流体通过管道流经涡街流量计的传感器。
流体对传感器的薄膜板施加压力,导致薄膜板振动。
振动产生的涡旋沿着流体的流向形成,涡旋的频率与流体的流速成正比。
2. 信号采集与处理涡街传感器产生的涡旋信号通过线圈传递给信号处理器。
信号处理器对涡旋信号进行采集和处理。
它根据涡旋的频率计算出流体的流速,并将结果转换为标准的电信号输出。
3. 流量计显示与记录流量计的输出信号可以通过显示装置直接显示流体的流量信息。
同时,流量信息也可以通过数据记录仪进行记录和储存,以供后续分析和处理。
四、涡街流量计的优势和应用涡街流量计具有以下优点,使其在工业生产中得到广泛应用:1. 高精度涡街流量计具有较高的测量精度,测量范围广,适用于不同介质的流量测量。
2. 可靠稳定涡街流量计结构简单、稳定可靠,无可动部件,几乎不需要维护。
涡街流量计口径与测量范围
涡街流量计口径与测量范围【原创版】目录一、涡街流量计的概述二、涡街流量计的口径范围1.管道式涡街流量计的口径范围2.插入式涡街流量计的口径范围三、涡街流量计的测量范围1.液体的测量范围2.气体的测量范围3.蒸汽的测量范围四、涡街流量计的特点与应用场合正文一、涡街流量计的概述涡街流量计是一种常见的流量计量设备,主要用于测量液体、气体和蒸汽的流量。
它具有较高的测量精度和较宽的测量范围,因此在工业生产中得到了广泛的应用。
二、涡街流量计的口径范围1.管道式涡街流量计的口径范围管道式涡街流量计是根据管道的公称直径(DN)来划分口径范围的。
一般来说,涡街流量计的口径范围为 DN15 至 DN4000,其中 DN15 至DN300 属于小口径涡街流量计,DN400 以上则属于大口径涡街流量计。
大口径的管道口径测量范围是 DN15-DN1000 之间,其中 DN15-DN300 算是管道小口径涡街流量计了,口径超过 DN400 以上的基本上就要用插入式涡街流量计了,因为大口径的不便用于管道式涡街流量计,只要是符合上述口径参数范围就可以使用涡街流量计来测量。
2.插入式涡街流量计的口径范围插入式涡街流量计的口径范围相对较小,通常为 DN200 至 DN1500。
对于超过 DN1500 的管道,可以采用特殊订货的方式来满足需求。
三、涡街流量计的测量范围1.液体的测量范围涡街流量计在测量液体流量时,通常能够覆盖 0.35~7.0m/s 的流速范围。
2.气体的测量范围在测量气体流量时,涡街流量计可以覆盖 5.0~60.0m/s 的流速范围。
3.蒸汽的测量范围对于蒸汽的测量,涡街流量计可以覆盖 6.0~70.0m/s 的流速范围。
四、涡街流量计的特点与应用场合涡街流量计具有较高的测量精度、较宽的测量范围和良好的抗干扰性能,适用于各种复杂的工业生产环境。
涡街流量计常见故障及处理方法
涡街流量计常见故障及处理方法
1.涡街流量计读数异常
-检查涡街流量计是否正确安装在合适的位置,满足标准要求。
-检查涡街流量计传感器的连接是否良好,排除接触不良的可能性。
-检查管道是否有漏水或阻塞等情况,清除障碍物。
-检查涡街流量计的电源是否正常,替换电池或修复电源线路故障。
2.涡街流量计计量不准
-定期进行涡街流量计的校准和调试,保证其准确性。
-检查涡街流量计中的磁感应元件是否损坏,如有需要及时更换。
-检查涡街流量计输出信号的稳定性,如有需要调整放大器的增益和
零点。
-如果发现设备老化,可以考虑更换新的涡街流量计。
3.涡街流量计传感器结构损坏
-检查涡街流量计传感器的外观和内部零部件,如有需要更换或修复。
-注意使用环境的温度和压力范围,避免超出涡街流量计的额定参数。
-做好涡街流量计的维护工作,定期清洁和保养。
4.涡街流量计运行不稳定
-分析流体条件的变化,调整涡街流量计参数和稳定器的控制模式。
-定期检查和清洁涡街流量计传感器和附件,保持其正常工作。
涡街流量计
摘要涡街流量计是主要用于工业管道介质流体的流量测量,如气体、液体、蒸气等多种介质。
其特点是压力损失小,量程范围大,精度高,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响。
无可动机械零件,因此可靠性高,维护量小,仪表参数能长期稳定。
可在-20℃~+250℃的工作温度范围内工作。
有模拟标准信号,也有数字脉冲信号输出,容易与计算机等数字系统配套使用,是一种比较先进、理想的流量仪表。
本文主要讨论其工作原理,基本结构,信号采集及处理和安装方法等。
关键词:涡街流量计工作原理基本结构信号采集安装方法涡街流量计涡街流量计,主要用于工业管道介质流体的流量测量,如气体、液体、蒸气等多种介质。
其特点是压力损失小,量程范围大,精度高,在测量工况体积流量时几乎不受流体密度、压力、温度、粘度等参数的影响。
无可动机械零件,因此可靠性高,维护量小。
仪表参数能长期稳定。
本仪表采用压电应力式传感器,可靠性高,可在-20℃~+250℃的工作温度范围内工作。
有模拟标准信号,也有数字脉冲信号输出,容易与计算机等数字系统配套使用,是一种比较先进、理想的流量仪表。
涡街流量计原理涡街流量传感器是以卡门(Kaman )和斯特劳哈(Streusel )有关旋涡的产生和旋涡与流速关系的理论来测量流量的。
把一个非流线型阻流体(Bluff Body )垂直插入管道中,随着流体绕过阻流体流动,产生附面层分离现象,形成有规则的旋涡列,左右两侧旋涡的旋转方向相反。
这种旋涡称为卡门涡街。
根据卡门的研究,这些涡列多数是不稳定的,只有形成相互交替的内旋的两排涡列,且涡列宽度h 与同列相邻的两旋涡的间距l 之比满足lh =0.281(对圆柱形旋涡发生体)时,这样的涡列才是稳定的。
生产旋涡分离的阻流体称为旋涡发生体。
涡街流量计是根据旋涡脱离旋涡发生体的频率与流量之间的关系来测量流量的仪表。
1.卡门涡街的产生与现象为说明卡门涡街的产生,我们来考虑粘性流体绕流圆柱体的流动.当流体速度很低时,流体在前驻点速度为零,来流沿圆柱左右两侧流动,在圆柱体前半部分速度逐渐增大,压力下降,后半部分速度下降,压力升高,在后驻点速度又为零.这时的流动与理想流体统流圆柱体相同,无旋涡产生,如图1—1a 所示.图1-1 圆柱绕涡街产生示意图随着来流速度增加,圆柱体后半部分的压力梯度增大,引起流体附面层的分离,如图1—1b 所示.当来流的雷诺数Re 再增大,达到40左右时,由于圆柱体后半部附面层中的流体微团受到更大的阻滞,就在附面层的分离点S 处产生一对旋转方面相反的对称旋涡.如图1-1c 所示.在一定的雷诺数Re 范围内,稳定的卡门涡街的及旋涡脱落频率与流体流速成正比.2.卡门涡街的稳定条件并非在任何条件下产生的涡街都是稳定的.冯·卡门在理论上已证明稳定的涡街条件是:涡街两列旋涡之间的距离为h ,单列两涡之间距离为l ,若两者之间关系满足1)/sinh(=l h π或/h l =0. 281 (1-1) 时所产生的涡街是稳定的。
涡街流量计误差原因
涡街流量计误差原因1.流体性质变化:涡街流量计是通过流体的涡街频率来测量流量的,而流体的密度、黏度、温度等因素会对涡街流量计的测量结果产生影响。
例如,高温、高粘度的流体会降低涡街频率的变化,从而导致流量计的误差。
2.安装位置不当:涡街流量计的安装位置对其测量结果也有影响。
如若安装在管道上游有管道弯头、阀门、凸缩等流体不稳定的地方,会导致涡街流量计测量不准确。
此外,涡街流量计要求在水平管段上进行安装,如果安装位置有管道倾斜或上下方向变化,也会产生误差。
3.涡街流量计零点漂移:涡街流量计的零点漂移是指在一段时间内,流量计在零点位置的输出信号发生变化。
零点漂移可能是由于流体中微小的气泡、悬浮物等导致传感器受到干扰,或者是由于传感器老化、磨损等原因造成的。
零点漂移会导致涡街流量计无法准确测量流量。
4.管道尺寸、形状不匹配:涡街流量计的测量精度与管道尺寸和形状有关。
当涡街流量计的管道尺寸与实际流量管道尺寸不匹配时,会导致流体流速不均匀,从而影响涡街流量计的测量精度。
5.电磁干扰:涡街流量计是一种电子仪表,会受到电磁干扰的影响。
如果周围环境存在较强的电磁干扰源,如强电流、强磁场等,会导致涡街流量计的测量结果出现偏差。
6.传感器故障:涡街流量计中的传感器是测量流体涡街频率的关键部件,如果传感器出现老化、损坏或松动等问题,会导致涡街流量计的测量结果不准确。
此外,如果传感器的精度不高,也会影响涡街流量计的测量精度。
7.温度补偿不准确:涡街流量计需要对流体的温度进行补偿,以消除温度变化对涡街频率的影响。
如果温度补偿不准确,会导致涡街流量计的测量结果产生误差。
8.校准不准确:涡街流量计在出厂前需要进行校准,以确保其测量结果准确可靠。
然而,如果校准不准确或者校准周期过长,会导致涡街流量计的测量误差增大。
总之,涡街流量计误差的原因主要包括流体性质变化、安装位置不当、涡街流量计零点漂移、管道尺寸形状不匹配、电磁干扰、传感器故障、温度补偿不准确以及校准不准确等。
涡街流量计口径与测量范围
涡街流量计口径与测量范围摘要:I.涡街流量计简介A.涡街流量计的工作原理B.涡街流量计的优势II.涡街流量计的口径A.口径的定义与选择B.不同口径的适用范围III.涡街流量计的测量范围A.测量范围的概念与计算B.测量范围的影响因素C.测量范围的常见应用IV.涡街流量计的安装与维护A.安装前的准备工作B.安装步骤与要求C.维护与保养方法正文:涡街流量计是一种常用的流量测量仪表,它通过测量流体通过涡街流量计时产生的旋涡频率来确定流量大小。
涡街流量计具有测量精度高、可靠性好、抗干扰能力强等优点,广泛应用于各个行业领域。
涡街流量计的口径是指流量计的管道内径,通常由流量计的使用要求来确定。
口径的选择应考虑流量计的测量范围、工作压力、介质性质等因素,以确保流量计能够正常工作并达到预期的测量精度。
不同口径的涡街流量计适用于不同的流量范围,因此在选择口径时需要根据具体应用场景进行合理选择。
涡街流量计的测量范围是指流量计能够测量的最大流量值。
测量范围的大小取决于涡街流量计的口径、工作压力、介质密度等因素。
一般来说,涡街流量计的测量范围越宽,其测量精度就越高。
在实际应用中,需要根据流量计的使用要求来选择合适的测量范围。
涡街流量计的安装与维护对保证流量计的正常工作和延长使用寿命具有重要意义。
在安装前,需要对流量计进行认真的检查和准备,确保流量计及其附件齐全、无损坏。
安装过程中,需要遵循安装说明书的要求,确保流量计与管道之间的连接正确、紧密。
在维护与保养方面,需要定期对流量计进行清洗和检查,及时发现并排除故障,以保证流量计的稳定运行。
总之,涡街流量计在流量测量领域具有广泛的应用前景。
了解涡街流量计的口径与测量范围对于正确选择和使用流量计具有重要意义。
涡街流量计口径与测量范围
涡街流量计口径与测量范围【原创版】目录一、涡街流量计的口径范围二、涡街流量计的测量范围三、涡街流量计的优点和应用场合正文一、涡街流量计的口径范围涡街流量计是一种常见的流量计量设备,其口径范围通常为 DN15~DN4000。
其中,DN 表示管道的公称直径,单位为毫米。
这个口径范围涵盖了绝大部分的工业流量计量场合,可以满足大多数工业场合对流量计的需求。
需要注意的是,不同厂家的涡街流量计口径范围可能会略有不同,具体应根据实际产品参数进行选择。
二、涡街流量计的测量范围涡街流量计的测量范围根据介质不同和传感器通径不同,会有不同的测量范围。
对于液体,测量范围通常为 0.35~7.0m/s;对于气体,测量范围为 5.0~60.0m/s;对于蒸汽,测量范围为 6.0~70.0m/s。
此外,涡街流量计还能测量介质温度,范围为 -40~300;对于介质压力,其范围为1.6mpa、2.5mpa 和 4.0mpa。
在选型时,还需考虑工作温度、介质特性、压力等因素,以确保流量计良好的工作性能和长期的使用寿命。
三、涡街流量计的优点和应用场合涡街流量计具有高精度、高稳定性、抗干扰能力强等优点,广泛应用于工业生产中各种液体、气体和蒸汽的流量测量。
其优点和应用场合包括:1.测量范围广:涡街流量计可以测量不同介质的流量,适用于多种工业场合。
2.高精度:涡街流量计的测量精度高,可以满足工业生产对流量精确控制的需求。
3.抗干扰能力强:涡街流量计不受介质密度、粘度、温度等因素的影响,具有较强的抗干扰能力。
4.适用于高温、高压工况:涡街流量计可以测量高温、高压介质的流量,满足特殊工况的需求。
5.安装维护方便:涡街流量计安装简便,维护成本低,可以降低企业的运行成本。
总之,涡街流量计凭借其优点和广泛的应用场合,在工业生产中具有重要的作用。
涡街流量计检定规程 jjg 1029-2007
涡街流量计检定规程jjg 1029-2007介绍如下:
1.范围:本规程适用于新制造、使用中和修理后的涡街流量计的
检定。
2.概述:涡街流量计是一种利用流体在管道中自然形成的漩涡来
测量流量的仪表。
3.检定条件:环境温度为(5~35)℃,相对湿度不大于85%,大气
压力为(86~106)kPa。
4.检定项目:外观检查、基本误差检定、重复性检定、压力损失
值检定、脉冲输出检查、数据接口检查、安全性能检查等。
5.检定方法:采用标准表法或标准体积管法进行检定。
6.检定周期:对于新制造的涡街流量计,应在出厂前进行检定;
对于使用中的涡街流量计,每年至少进行一次检定;对于修理后的涡街流量计,应在修理后进行检定。
涡街流量计和涡轮流量计的区别
涡街流量计和涡轮流量计的区别涡街流量计和涡轮流量计是两种常见的流量计,它们在流量测量方面的应用广泛,但是它们之间有很多的区别。
本文将会对涡街流量计和涡轮流量计进行详细的介绍,包括它们的定义、原理、优缺点、适用范围以及适应环境等方面,以便我们更好地了解它们之间的区别。
涡街流量计涡街流量计是一种基本的、常见的、高精度的流量计,它是由一个涡轮和一个流量传感器组成的。
在涡街流量计中,涡轮被放置在流体管道中心,当流体通过管道时,涡轮受到流体的力作用,同时产生旋转运动。
涡街流量计的流量传感器通过检测涡轮的旋转速度来确定流量大小。
涡街流量计的优点是精度高、稳定性好、测量范围广、反应速度快。
同时,它使用方法简单,不需要施加外部电源即可工作,并且可以进行远距离信号传输和控制。
然而,涡街流量计在高温、高压、高粘度、高含气量、高腐蚀等特殊环境下的实际应用效果并不理想。
涡轮流量计涡轮流量计是一种以涡轮旋转作为测量原理的流量计,它是由一个涡轮和传感器组成的。
当流体通过管道的时候,涡轮开始旋转,通过检测涡轮的旋转速度,涡轮流量计可以确定流体的流量大小。
涡轮流量计的优点是精度高、可靠性强、响应时间快、使用寿命长。
同时,它还可以测量高温、高压、高粘度、高含气量、高腐蚀等特殊环境下的流量值,具有广泛的适用范围和极大的实用性。
然而,涡轮流量计使用时需要外部电源的供电,而且由于传感器灵敏度较高,受管道形状、气泡、波纹等因素的影响较大,因此精度并不如涡街流量计。
涡街流量计和涡轮流量计之间的区别1. 测量原理涡街流量计是基于涡轮旋转来测量流量的,当流体通过涡轮时,涡轮受到流体的力作用,并且产生旋转运动。
涡街流量计通过检测涡轮旋转的速度来确定流量的大小。
涡轮流量计也是基于涡轮旋转来测量流量的,当流体通过涡轮时,涡轮受到流体的力作用,并且产生旋转运动。
涡轮流量计通过检测涡轮旋转速度来确定流量大小。
2. 精度和稳定性涡街流量计的精度较高,稳定性也较好,但是受管道形状、气泡、波纹等因素影响较大。
7.5涡街流量计讲解
选频放大器
恒流放大器
电荷放大器
调谐-振动放 大器
光电放大器
低频放大器
图5 转换器原理框图
仪表本体
仪表表体可分为夹持型和法兰型,如图6所示。
图6 仪表表体
Rosemount 涡街
双头型
分体型
法兰型 缩径型
夹持型
多参数型
三、优点与局限性
3.1 优点
VSF构造简洁坚固,安装维护便利〔与节流式差压流量计 相比较,无需导压管和三阀组等,削减泄漏、堵塞和冻结 等〕。
转换器 检测元件把涡街信号转换成电信号,该信号既微弱又含 有不同成分的噪声,必需进展放大、滤波、整形等处理 才能得出与流量成比例的脉冲信号。
不同检测方式应配备不同特性的前置放大器,如表1所列。 表1 检测方式与前置放大器
检测方法 热敏式 超声式 应变式 应力式 电容式 光电式 电磁式
前置放大器
恒流放大器
涡街流体振动现象用于测量争论始于20世纪50年月,如风 速计和船速计等。60年月末开头研制封闭管道流量计--涡街流 量计,诞生了热丝检测法及热敏检测法VSF。
70、80年月涡街流量计进展特别快速,开发出众多类型阻 流体及检测法的涡街流量计,并大量生产投放市场,像这样在 短短几年时间内就到达从试验室样机到批量生产过程的流量计 还绝无仅有。
涡街流量计
一、流量计 概 述
在特定的流淌条件下, 一局部流体动能转化为 流体振动,其振动频率 与流速〔流量〕有确定 的比例关系,依据这种 原理工作的流量计称为 流体振动流量计。
涡街流量计讲解课件
涡街流量计的安装与使用
安装注意事 项
选址
选择流量计安装位置时,应考虑 方便日常维护和操作的位置,同 时要避免安装在振动较大或磁场
干扰较强的位置。
管道连接
确保流量计的进出口与管道连接牢 固,避免出现泄漏情况。
传感器安装
传感器应按照说明书上的安装要求 进行安装,确保安装角度正确,以 获得准确的测量结果。
涡街流量计讲解 课件
目录
• 涡街流量计的发展趋势与前沿技 • 涡街流量计的案例分析与应用实
涡街流量计概述
定义与工作原理
定义
涡街流量计是一种常用的流量测量仪表,它通过测量流体在管道中旋转形成的涡 街信号来测量流量。
工作原理
涡街流量计的工作原理基于流体动力学原理,当流体流经管道时,在某些特定的 流速下,流体在管道中会形成旋转的涡街信号,涡街信号的频率与流速成正比。 通过测量涡街信号的频率,可以推算出流体的流速,从而得到流量。
THANKS
流体动力学基础
流体动力学的基本概念
流体的定义、流体的性质、流体的流 动状态等。
流体动力的基本方程
Navier-Stokes方程、连续性方程、能 量方程等。
涡街流量计的测量原理
涡街流量计的结构
包括传感器、信号处理电路和显示装置等。
涡街流量计的测量原理
利用流体通过涡街时产生的频率与流体流量成正比的原理进行测量。
以自来水为例,假设涡街流量计的C值为0.75,管道直径为DN100mm,Δh为0.1m,则可计算出流量 Q = 0.75 * π * (0.1m)^2 * sqrt(2*9.8m/s^2*0.1m) = 0.33m^3/s。
误差分析与优化方法
误差来源
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
LUGB-2型涡街流量计系列法兰连接涡街流量计法兰卡装涡街流量计温压一体化涡街流量计插入式涡街流量计卫生型卡箍涡街流量计工作原理LUCB-2型涡街流量传感器是以卡门和斯特罗哈尔有关旋涡的产生和流量关系的理论为依据来测量蒸汽,气体及低粘度液体的流量。
如图-所示,在表体中垂直插入一根三角柱即旋涡的发生体,当表体中有介质流过时,在三角柱的后面交替产生方向相反有规律的卡门旋涡,其旋涡的分离频率F与介质的流动速度V成正比。
通过传感头检测出旋涡的个数,就可以测算出流体流速,再根据表体口径计算出被测介质的体积流量。
计算公式如下:F=Sr*V/(1-1.27*d/D)……………………………formula1Q=3600*F/K…………………………………………….formula2M=Q*p…………………………………………..formula3F…..液体流过涡街三角柱产生的涡旋频率(单位:Hz)Sr…..斯特罗哈尔数(单位:无量纲)V…….管道内流体流速(单位:m/s)d…….涡街表体内三角柱宽度(单位:m)D…….涡街表体内径(单位:m)Q……..瞬时体积流量(单位:m3/h)K………涡街的仪表系数(单位:脉冲个数/立方米)M………瞬时质量流量(单位:kg/h)p………流体密度(单位:kg/m3)不同口径的涡街流量传感器,仪表系数K值是不同的,其具体数值是通过流量标定装置实际标定得到的。
意义为每立方米产生的脉冲数。
即流过一立方米流体三角柱一侧所产生的旋涡个数。
技术指标:1.准确度等级:1.02公称压力:1.6MPa2.5MPa4.0MPa及以上3.被测介质温度:-40℃~350℃4.压力损失:阻力系数C D≤2.45.供电电源:12~24VDC6.防爆等级:ExiallCT6(本安防爆)7.输出信号:电压脉冲低电平≤IV高电压≥6V标准电流信号4~20mA流量计口径和可用流量范围的确定(一)气体,液体涡街流量计的上限流量一般不受介质压力,温度等的影响,下限流量则取决于介质的工况密度和粘度。
因此,确定流量范围实际上是确定实际可用的下限流量。
最佳工作流量处于传感器量程的1/2~2/3处步骤一:根据实际使用流量查表3初步确定流量计口径。
常用流量宜选择在流量上限的50%~70%。
注意气体是指工况流量,如为标况流量请用式(3)将其换算成工况流量。
式中:Q—工况流量Q N—标况流量P N---标准大气压(0.101325MPa)P----工况下介质绝对压力(表压+大气压)T------工况下介质绝对温度【(273.15+t)K】t-------工况下介质温度(℃)T n-----标况绝对温度(273.15K)步骤二:按式(4)计算由介质工况密度决定的下限流量Q p式中:Q p------工况密度下介质的可测下限流量Q0----表中所列的水或空气的下限流量(液体查水,气体查空气)P0----参比介质的密度,水为1000kg/m3,空气为1.205kg/m3p-----被测介质工况密度。
(kg/m3)介质密度较大时,可测下限流量较低步骤三:按式(5)计算由介质工况运动粘度决定的下限流量Q v式中:Qv----工况运动粘度下介质的可测下限流量Q0----表中所列的水或空气的下限流量(液体查水,气体查空气)v-----被测介质工况运动粘度。
V0----参比介质的运动粘度,水为1x10-6m2/s,空气为15x10-6m2/s,运动粘度与动力粘度的换算公式如下:式中:V----运动粘度(m2/s)n----动力粘度[kg/(m.s)]p---密度(kg/m3)介质运动粘度较小时,可测下限流量较低。
步骤四:比较Qp和Qv,确定可用下限流量和线性下限流量。
若Qp<Qv,可测流量范围是Qp~Qmax,线性流量范围是Qp~Qmax若Qp≥Qv,可测流量范围和线性流量范围都是Qp~QmaxQmax是指表3中规定的上限流量。
液体的最大流速一般应小于10m/s,气体的最大流速一般应小于70m/s。
高粘度液体的线性下限流量比水要高出很多,如要求下限流量较低,则不适合使用涡街流量计。
(二)蒸汽当用户的测量介质为蒸汽时,常用质量流量计量单位,如t/h或kg/h等。
由于蒸汽在不同温度和压力下的密度不同,因此蒸汽流量范围可由式(7)进行计算得出。
步骤一:由表3查出相应口径流量计的空气流量范围。
步骤二:根据蒸汽的压力温度参数,查有关资料得到蒸汽的密度。
步骤三:由式(7)计算流量计的下限流量。
式中:Q,p—被测蒸汽的流量和密度Q0,P0—参比空气的流量和密度(1.205kg/m3)步骤四:确定上限流量。
蒸汽的上限流速应小于70m/s用户也可查表4得知不同口径流量计测饱和蒸汽的流量范围,或者将过热蒸汽的密度代入表5中算出不同口径流量计测过蒸汽的流量范围。
测量蒸汽的质量流量时,传感器必须与测温和测压元件共同组成质量流量测量系统。
测量饱和蒸汽应加装铂电阻或压力变送器;测量过热蒸汽应同时加装铂电阻和压力变送器。
注:Note:1.p为过热蒸汽工况密度。
过热蒸汽的上限流速一般不应大于70m/s2传感器在不同流量下的压力损失可按下式计算:式中:△P---压力损失(Pa)p----被测介质工况密度(kg/m3)V----管内平均流速(m/s)3.被测介质为液体时,为防止气化或气蚀现象,应使工作状态下传感器内的绝对压力满足下式要求:式中:P—被测介质绝对压力(Pa)P b---被测介质工作温度下对应的饱和气体绝对压力(Pa)插入式涡街流量计主要用于各种行业工业管道中大口径气体,液体,蒸汽介质的流量测量,其特点是结构简单,无可动机械零件,压力损失小,量程比范围宽,范围度达10~15,性价比高。
安装中应注意的事项:1.安装基座插入管道部分不得超过管道内壁;2基座在管道上的位置应端正,不偏斜;3.去毛刺,去除焊渣;4.基座的法兰平面与管道轴线平行;5.保证介质流动方向与流向指示杆一致,严禁扳动流向指示杆。
传感器应安装在水平,垂直,倾斜(液体流向自下而上)的与其通径相应的管道上。
传感器的上游和下游应配置一定长度的直管段安装液体传感器的附近管道内应充满被测液体传感器应避免安装在有强烈机械振动的管道上。
直管段的内径尽可能与传感器通径一致,若不能一致,应采用比传感器通径略大的管道。
当测量的介质需要温度和压力进行修正时,应该传感器后3~5DN处作取压点,5~8DN处取温点。
被测介质含有较多杂质时,应在传感器上游直管段要求的长度以外加装过滤器。
传感器应避免安装在有较强电磁场干扰,空间小和维修不方便的场合。
LUGB-2Vortex Flowmeter seriesVortex Flowmeter(Flange connection type)Vortex Flowmeter(Flange card installed type)Vortex Flowmeter(tempersture-pressure integration type)Vortex Flowmeter(inserted type)Vortex Flowmeter(Sanitary-clamp type)Working principle:LUCB-type2vortex flow sensor measuring the flow of liquid of steam,gas and low viscosity according to Carmen and Strouhal relevant spiral produce and on the theory of the flow relationship.As shown in picture,In the meter body vertical insert a triangular prism root namely the happening of the body,when eddies of medium flow through the table body,in triangular prism behind the alternate produce in opposite directions regular karman swirl,its spiral separation and the flow of the medium frequency F speed by sensing head is proportional to the V detected the number of spiral,can measure the flow velocity,again according to the table body mouthcomputational formula as follows:F=Sr*V/(1-1.27*d/D)……………………………formula1Q=3600*F/K…………………………………………….formula2M=Q*p…………………………………………..formula3F……The liquid flow through the vortex triangular prism produce the vortex frequency (unit:Hz)Sr…..Strouhal number(unit:dimensionless)V…….internal of pipe fluid flow rate(unit:m/s)d……the width of Vortex meter internal triangular prism(unit:m)D…….Vortex meter inner diameter(unit:m)Q……..Instantaneous volume flow rate(unit:m3/h)K………Vortex of meter coefficient(unit:pulse number/m3)M………Instantaneous quality flow rate(unit:kg/h)P…………Fluid density(unit:kg/m3)Different caliber of vortex flow sensor,instrument coefficient K value is different,theconcrete numerical is through the flow calibration equipment calibration get real.The significance as the number of pulses per cubic meter of produce.That is through a cubic meters fluid triangular prism side produces spiral number.echnology index1.The accuracy level:1.02.Nominal pressure:1.6MPa2.5MPa4.0MPa etc more than3.Be measured medium temperature:-40℃~350℃4.The pressure loss:resistance coefficient C D≤2.45.power supply:12~24VDC6.EX-proof Class:ExiallCT6(intrinsically safe explosion-proof)7.output signal:Voltage pulse low level≤IV high voltage≥6V standard current signal4 ~20mAFlowmeter caliber and determine can be useful for flow range:(one)gas,liquidVortex flowmeter high limit flow general can not be affected by medium pressure, temperature and etc,low limit flow depends on the operation condition of the medium density and viscosity.Therefore,determine the flow range is actually determine actual usable the low limit of flow.The best working flow in sensor range1/2-2/3places.Step one:according to the practical use the flow and check out the table3preliminary ensure flowmeter monly used in flow should select the high limit50%~70%. Pay attention to the gas is to point to working condition flow,such as for standard condition flow please use formula(3)will be converted to the working condition flow.In formula:Q—working condition flowQ N—standard condition flowP N---standard atmospheric pressure(0.101325MPa)P----Under the working condition of medium absolute pressure(the pressure of meter+ atmospheric pressure)T------Under the working condition of medium absolute temperature【(273.15+t)K】t-------Under the working condition of medium temperature(℃)T n-----Standard absolute temperature(273.15K)Step2:according to the formula(4)calculate by working condition density of medium decision the low limit of flow Q PuIn formula:Q p-----Under working condition density,the medium low limit of flow.Q0----the list of water or air low limit of flow(Liquid check water,gas check air)P0----reference the medium of density,water1000kg/m3air1.205kg/m3p-----Measured the medium of working condition density(kg/m3)When the medium of density is bigger,the medium low limit of flow is lowerStep3:according to the formula(5)calculate by working condition kinematic viscosity of medium decision the low limit of flow Q vIn formula:Qv----Under working condition kinematic viscosity,the medium low limit of flow.Q0----the list of water or air low limit of flow(Liquid check water,gas check air)v-----Measured the working condition kinematic viscosity of mediumV0----reference the medium of kinematic viscosity,water:1x10-6m2/s,air:15x10-6m2/s,Kinematic viscosity and dynamic viscosity the conversion formula is as follows:In formula:V----Kinematic viscosity(m2/s)n----dynamic viscosity[kg/(m.s)]p---density(kg/m3)When the kinematic viscosity of medium is less,be measured low limit of flow is lowerCompare Qp and Qv,ensure available low limit of flow and linear low limit of flowQp<Qv,the measuring range of flow is Qp~Qmax,linear range of flow is Qp~Qmax Qp≥Qv,the measuring range of flow and linear range of flow are Qp~QmaxQ max is point to the provisions in table3of the high limit of flow.Liquid maximum velocity should be less than10m/s,gas maximum velocity should be less than70m/s.High viscosity liquid of linear low limit flow were much higher than water,such as requirement of the low limit flow is lower,then not suitable for vortex flowmeter use.(Two)steamWhen the user measurement medium is steam,commonly used mass flow measurement unit,such as t/h or kg/h,etc.Because of the steam in different of temperature and pressure,the density is different,so the steam flow range can be calculated by formula(7)Step1From the table3found air flow range of corresponding caliber flowmeterStep2:according to the steam pressure and temperature parameters,check the pertinentdata get the density of steam。