白塔中学2015年秋期中测试八年级数学试卷

合集下载

2015-2016学年八年级数学上册期中检测试卷参考答案及评分标准201510

2015-2016学年八年级数学上册期中检测试卷参考答案及评分标准201510

12015—2016学年度第一学期期中检测八 年 级 数 学 试 题(友情提醒:全卷满分100分,考试时间90分钟,请你掌握好时间.)一、选择题(每小题3分,共30分)(请将正确答案序号填入以下表格相应的题号下,否则不得分)1. 下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是( ☆ )A .B .C .D .2. 以下列各组线段为边,能组成三角形的是( ☆ )A . 2cm ,3cm ,5cmB . 5cm ,6cm ,10cmC . 1cm ,1cm ,3cmD . 3cm ,4cm ,9cm3. 已知点M (a ,3),点N (2,b )关于y 轴对称,则(a+b )2015的值( ☆ )A .-3B . -1C .1D . 34. 如图1,∠B=∠D=90°,CB=CD ,∠1=30°,则∠2=( ☆ )A . 30°B . 40°C . 50°D . 60°5. 十二边形的外角和是( ☆ )A. 180°B. 360°C.1800 ° D2160°6. 已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为( ☆)A .14 B . 16 C . 10 D . 14或16 7. 如图2,△ABC 中,AB=AC ,D 为BC 的中点,以下结论:(1)△ABD ≌△ACD ; (2)AD ⊥BC ;(3)∠B=∠C ; (4)AD 是△ABC 的角平分线.其中正确的有( ☆ ) A . 1个 B . 2个 C . 3个 D . 4个8. 已知△DEF ≌△ABC ,AB=AC ,且△ABC 的周长是23cm ,BC=4cm ,则△DEF 的边长中必有一边等于( ☆ )A . 9.5cmB . 9.5cm 或9cmC . 4cm 或9.5cmD . 9cm 9. 下列条件中,能判定△ABC ≌△DEF 的是( ☆ ) AC=,∠10. 如图3,BE 、CF 是△ABC 的角平分线,∠ABC=80°,∠ACB=60°,BE 、CF 相交于D ,则∠CDE 的度数是( ☆ )(图1)(图2)(图3)2A 、110°B 、70°C 、80°D 、75°二、填空题(每小题3分,共30分)11. 三角形的三边长分别为5,x ,8,则x 的取值范围是 .12. 已知如图4,△ABC ≌△FED ,且BC=DE ,∠A=30°,∠B=80°,则∠FDE= . 13. 如图5,则∠A+∠B+∠C+∠D+∠E+∠F 的度数为 .(图6)(图5)(图4)14. 如图6,已知AD 平分∠BAC ,要使△ABD ≌△ACD ,根据“AAS ”需要添加条件 _________ . 15. 如图7,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的 .16. 如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角 度. 17. 在直角坐标系中,如果点A 沿x 轴翻折后能够与点B (-1,4)重合,那么A ,B 两点之间的距离等于 .18. 如图8,在△ABC 中,AB =AC ,AF 是BC 边上的高,点E 、D 是AF 的三等分点,若△ABC 的面积为12cm 2,则图中全部阴影部分的面积是 ___cm 2.19. 如图9,已知∠ABD=40°,∠ACD=35°,∠A=55°,则∠BDC= .20. 如图10,△ABC 和△FED 中,BD=EC ,∠B=∠E .当添加条件 时,就可得到△ABC ≌△FED ,依据是 (只需填写一个你认为正确的条件).三、解答题(共40分)21. (7分) 完成下列证明过程.如图11,已知AB ∥DE ,AB=DE ,D ,C 在AF 上,且AD =CF ,求证:△ABC ≌△DEF .证明: ∵ AB ∥DE∴∠_________=∠_________( )∵ AD=CF ∴AD+DC=CF+DC 即_____________ 在△ABC 和△DEF 中AB DCEF( 图11 )( 图10 )( 图9 )A( 图8 )E3AB=DE__________________________∴△ABC ≌△DEF ()22.(8分)如图12,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°, 且BC =CE .请完整说明为何△ABC 与△DEC 全等的理由.23.(5分)如图13,已知△ABC 的三个顶点分别为A (2,3)、B (3,1)、C (-2,-2)。

2015-2016学年八年级上学期期中考试数学试卷

2015-2016学年八年级上学期期中考试数学试卷

2015.11
7 D 8 C
三.解答题(共 56 分) 1 3 19. (共 8 分) (1)原式=4+ + ……(3 分) 2 2 =6 ……(4 分) (2)原式=3+ 2-1-1……(3 分) = 2+1……………(4 分) 27 (2) (x+1)3= ……………(1 分) 64 3 x+1= …………………(2 分) 4 1 x=- ………………(4 分) 4
B.
C.
D.
5.等腰三角形的两边长分别为 3cm 和 7cm,则周长为………………………………………… B.17 cm C.13 cm 或 17 cm D.11 cm 或 17 cm
6. 如图, 已知 AB=AD, 那么添加下列一个条件后, 仍无法判定△ABC ≌ △ADC 的是……… ) B.∠BAC=∠DAC A
C
A.CB=CD
D
C.∠BCA=∠DCA
பைடு நூலகம்
D.∠B=∠D=
F B C
G E H D
(第 8 题)
(第 7 题)
7.如图,已知△ABC 与△CDE 都是等边三角形,点 B、C、D 在同一条直线上,AD 与 BE 相交于点 G, BE 与 AC 相交于点 F, AD 与 CE 相交于点 H, 则下列结论①△ACD≌△BCE ② ∠AGB=60° ③BF=AH ④△CFH 是等边三角形 ⑤连 CG,则∠BGC=∠DGC.其中正 确的个数是…( A.2 上; △A1B1A2、 △A2B2A3、 △A3B3A4…均为等边三角形. 若 OA1=1, 则△A2015B2015A2016 的边长为… ) B.3 C.4 D.5
2.平方根等于它本身的数是………………………………………………………………………

2014—2015学年度第二学期期中考试试卷八年级数学

2014—2015学年度第二学期期中考试试卷八年级数学

2014—2015学年度第二学期期中考试试卷八年级数学2015.04本试卷由填空题、选择题和解答题三大题组成,共28题,满分130分.考试用时120分钟. 注意事项:l 、答题前,考生务必将学校、姓名、考场号、座位号、考试号填写在答题卷相应的位置上.2、答题必须用0.5mm 黑色墨水签字笔写在答题卷指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题.3、考生答题必须在答题卷上,答在试卷和草稿纸上一律无效.一、选择题:(本大题共有10小题,每小题3分,共30分,以下各题都有四个选项,其中只有一个是正确的,选出正确答案,并在答题卡上将该项涂黑.) 1.分式12x x -+的值为0时,x 的值是A .0B .1C .-1D . -2 2.下列事件中,属于不可能事件的是 A .明天某地区早晨有雾B .抛掷一枚质地均匀的骰子,向上一面的点数是6C .一个不透明的袋子中有2个红球和1个白球,从中摸出1个球,该球是黑球D .明天见到的第一辆公交车的牌照的末位数字将是偶数 3.已知平行四边形ABCD 中,∠B=4 ∠A ,则∠C=A .180︒B .36︒C .72︒D .144︒ 4.下列计算错误的是A .0.220.77a ba ba b a b ++=-- B .3223xx yx y y=C .1a b b a--=- D .123ccc+=5.已知四边形ABCD 中,∠A=∠B=∠C=90︒,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是A .∠D=90︒B .AB=CDC .AD=BCD .BC=CD6.已知:菱形ABCD 中,对角线AC 与BD 相交O .E 是BC 中点E , AD =6,则OE 的长为A .6B .4C .3D .2 7.若双曲线k y x=与直线y =2x +1的一个交点的横坐标为-1,则k 的值为A .-1B .1C .-2D .28.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有A .4个B .3个C .2个D .1个9.函数y=mx+n 与y =n mx,其中m ≠0,n ≠0,那么它们在同一坐标系中的图象可能是10.如图,将矩形ABCO 放在直角坐标系中,其中顶点B 的坐标为(10, 8),E 是BC 边上一点,:博△ABE 沿AE 折叠,点B 刚好与OC 边上点D 重合,过点E 的反比例函数y=k x的图象与边AB 交于点F , 则线段AF的长为 A .154B. 2 C .158D .32二、填空题:(本大题共8小题,每小题3分,共24分,把答案直接填在答题卡相对应的位置上) 11.已知反比例函数y=13m x- (m 为常数)的图象在一、三象限,则m 的取值范围为 ▲ .12.分式方程3220xx --=的解为x = ▲ .13.某学校计划开设A ,B ,C ,D 四门校本课程供全体学生选修,规定每人必须并且只能选修其中一门.为了了解各门课程的选修人数,现从全体学生中随机抽取了部分学生进行调查,并把调查结果绘制成如图所示的条形统计图.已知该校全体学生人数为1200名,由此可以估计选修C 课程的学生有 ▲ 人.14.如图,在矩形ABCD 中,AB =3,BC =5,以点B 为圆心,BC 长为半径画弧,交边 AD于点E ,则AE ·ED = ▲ . 15.已知1112ab+=,则ab a b+的值是 ▲ .16.如图,点O 是菱形ABCD 两条对角线的交点,过O 点的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线的长分别为6和8时,则阴影部分的面积为 ▲ . 17.如图,已知正方形ABCD 的边长为1,连接AC 、BD ,CE 平分∠ACD 交BD 于点E , 则DE = ▲ . 18.如图,△OAC 和△BAD 都是等腰直角三角形,∠A CO =∠ADB =90︒,反比例函数y=k x在第一象限的图象经过点B ,若OA 2-AB 2=6,则k 的值为 ▲ .三、解答题:(本大题共10小题,共76分.把解答过程写在答题卡相应的位置上,解答时应写出必要的计算过程、推演步骤或文字说明). 19.(本题满分8分,每小题4分)约分: (1) 262ab b-; (2)22222a a bab b-++ .20.(本题满分5分) 解方程:22210224x x x x x -++--=-21.(本题满分6分)先化简,再求值:21211x x ---,其中x =1.22.(本题满分6分)下面是小明和同学做“抛掷质地均匀的硬币试验”获得的数据.(1)填写表中的空格; (2)画出折线统计图; (3)当试验次数很大时,“正面朝上”的频率在 ▲ 附近摆动.23.(本题满分7分)如图,在矩形ABCD 中,M 、N 分别是边AD 、BC 的中点,E 、F 分别是线段BM 、CM 的中点. (1)求证:△ABM ≌△DCM ;(2)判断四边形MENF 是什么特殊四边形,并证明你的结论;24.(本题满分6分) 如图,已知点A 、B 的坐标分别为(0,0),(4,0),将△ABC 绕点A 按逆时针方向旋转90°得到△AB ′C '. (1)画出AAB 'C ';(2)写出点C ′,的坐标 ▲ ; (3)线段BB ′的长为 ▲ .25.(本题满分6分)给出下列命题: 命题l :直线y=x 与双曲线y=1x有一个交点是(1,1);命题2:直线y=8x 与双曲线y=2x有一个交点是(12,4);命题3:直线y=27x 与双曲线y=3x有一个交点是(13,9);命题4:直线y=64x 与双曲线y=4x有一个交点是(14,16);(1)请你阅读、观察上面命题,猜想出命题n (n 为正整数); (2)请验证你猜想的命题n 是真命题.26.(本题满分10分)如图,点P 是正方形ABCD 边AB 上一点(不与点A ,B 重合),连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE ,PE 交边BC 于点F ,连接BE ,DF .(1)求证:∠ADP =∠EPB ; (2)求∠CBE 的度数;(3)当点P 是AB 的中点且AB=2,则BF 的长为 ▲ .27.(本题满分10分)如图,在直角坐标系中,O 为坐标原点. 已知反比例函数y=k x的图象经过点A (2,m ),过点A 作AB 上⊥x 轴于点B ,且△A OB 的面积为12.(1)则m = ▲ ,k = ▲ ;(2)点C (x ,y )在该反比例函数的图象上,求当1≤x ≤3时函数值y 的取值范围;(3)过原点O 的直线l 与该反比例函数的图象交于P 、Q 两点,试根据图象直接写出线段PQ 长度的最小值.28.(本题满分12分) 已知,矩形ABCD 中.AB =4cm ,BC =8cm ,对角线AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图1,连接AF 、CE ,试证明:四边形AFCE 为菱形; (2)求AF 的长;(3)如图2,动点P 以每秒5cm 的速度自A →F →B →A 运动、同时点Q 以每秒4cm 的速度自C →D →E →C 运动,当点P 到达A 点时两点同时停止运动. 若运动t 秒后,以A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.。

2015学年第一学期八年级数学期中考试答案及评分标准(定稿)

2015学年第一学期八年级数学期中考试答案及评分标准(定稿)

2015学年第一学期八年级数学期中考试答案及评分标准一、填空:(每题2分,共30分) 1、23x ≥-; 2、27; 31; 45、3-a ;6、9020m m <≠且; 7、±2; 8、120,2x x ==-; 9、(3)(3)x y x y -+--;10、9+; 11、如果两个三角形是全等三角形,那么它们的对应角相等; 12、10%; 13、15; 14、- 15、40;二、选择题:(每题3分,共12分)16、D 17、D 18、C 19、B 三 、简答题:(每题5分,共20分)38(0)82'61'2'21.mm m m mm>===4'1'20==、222121223.36101201'32(1)2'3112'331133xx x x x x x xx -+=-+=-==+=+∴=+=-+原方程的解是:2121222.2(3)3(3)129803'992'449944x x x x x x x x x ---=-+===∴==原方程的解是:(..)3'1'1'124.'ABC ABD ABC ABD s s s CBA DA AC BD B EA EB M AB EM A AD C B BA BB A ≅∴∠==∠⊥∴==∴=∴⎧⎪⎨⎪⎩在和中是的中点21212684203056844830 12 1(684)2402'176001252'2 AB x x x x x x AB x x x x x x =-=<=-=>-=-+====25.解:设的长为米1'当时,,当时,,不符合题意舍去。

1'所以,是原方程的解。

答:的长是米。

1'(2)CD=15或CD=5……每个2分22222(5)215(3)(3)2311'2'2(53)(31)1'1'2106311'1'2-+++-=+=-=+=解:26.1'1',1'1801'1'1801'1'AD G DG AD CG AD DG ADB GDC BD DC ABD GCDAB CG ABD GCD AB CGBAC ACG ABE ACF BAC EAF ACG EAF EAF F G E AC ==⎧⎪∠=∠⎨⎪=⎩≅∴=∠=∠∴∴∠+∠=︒∴∠∠︒∴∠+∠=︒∴∠=∠∴≅∴=27.证:延长至点,使,联结和是等腰直角三角形EAB =FAC =90,AF =AC 21'AG EF AD∴=11'60,601201'1'60,601'1'1'AE DB EF BCEAF ABC AFE ACB AEF DBE EFC ED ECD ECB DEB D ECF ECB DEB ECF DBE EFC DB EF AE EFAE DB =∴∠=∠=︒∠=∠=︒∴∴∠=∠=︒=∴∠=∠∠=︒-∠∠=︒-∠∴∠=∠∴≅∴==∴=28、()填空:证:是等边三角形。

2015年秋学期期中学业质量测试八年级数学试卷附答案

2015年秋学期期中学业质量测试八年级数学试卷附答案

2015年秋学期期中学业质量测试八年级数学试卷注意:1.本试卷共6页,满分为150分,考试时间为120分钟. 2.答题前,考生务必将本人的学校、班级、姓名、学号填写在答题纸相应的位置上. 3.考生答题必须用0.5毫米黑色墨水签字笔,写在答题纸指定位置处,答在试卷、草稿纸等其他位置上一律无效.一、选择题(本大题共6小题,每小题3分) 1.下列交通标志是轴对称图形的是( ▲ )A .B .C .D .2.在下列实数中,无理数是 ( ▲ )A .227BC .2π+ D3. 下列各组数是勾股数的是( ▲ )A . 5,12,13B . 4,5,6C . 7,12,13D . 9,12,134. 在三角形面积公式S=12ah 中,a=2,下列说法正确的是( ▲ ) A . S 、a 是变量,12h 是常量 B .S 、h 是变量,12是常量C . S 、h 是变量,12a 是常量D .S 、h 、a 是变量,12是常量5. 若一个三角形成轴对称图形,且有一个内角为60°,则这个三角形一定是( ▲ ) A .直角三角形 B .等腰直角三角形C .等边三角形D .底和腰不相等的等腰三角形6.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的( ▲ )二.填空题(本大题共10小题,每小题3分,共30分)7.16的算术平方根是 ▲.B. A .C.D . (1) (2) (3) (4)(第6题图)8.奥运火炬接力传递的总路程约为137000000米,这个数用科学记数法表示为▲米.9.取圆周率π=3.1415926…的近似值时,若要求精确到0.001,则π≈▲.10.已知等腰三角形的两边长分别为2和5,则它的周长为▲.11.有一个数值转换机,原理如下:(第11题图)当输入的x=81时,输出的y= ▲.12.如图,在△ABC中,∠C=28°,∠ABC的平分线BD交AC于点D,如果DE垂直平分BC,那么∠A= ▲°.B(第12题图)(第13题图)(第14题图)(第15题图)13. 如图,点A的坐标是(1,1),如果将线段OA绕点O按逆时针方向旋转135°,那么点A旋转后的对应点的坐标是▲.14.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的边长分别是3、4、2、3,则最大正方形E的面积是▲.15.如图,在等边△ABC中,点D、E分别在边BC、AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.若CD=1,则EF的长为▲.16.在一个长为8分米,宽为5分米,高为7分米的长方体上,截去一个长为6分米,宽为5分米,深为2分米的长方体后,得到一个如图所示的几何体. 一只蚂蚁要从该几何体的顶点A处,沿着几何体的表面到几何体上和A相对的顶点B处吃食物,那么它需要爬行的最短路径的长是▲分米.三.解答题(本大题共10小题,共102分)17.(本题满分12分)求下列各式中的x:(第16题图)-3-2-154321(1) 已知3216x =-,求x ; (2)18. (本题满分8分)作图题(不写作法,保留作图痕迹):(1)如图,已知△ABC ,∠C =Rt ∠,AC <BC ,D 为BC 上一点,且到A 、B 两点的距离相等. 用直尺和圆规,作出点D 的位置;(第18题①图)(2)用直尺和圆规在如图所示的数轴上作出表示的点.(第18题②图)19. (本题满分8分)如图,把长方形纸片ABCD 沿EF 折叠后,使得点D 与点B 重合,点C 落在点C ′的位置上.(1)△BEF 是等腰三角形吗?试说明理由; (2)若AB =8,DE =10,求CF 的长度.B(第19题图)20. (本题满分8分)在弹性限度内,弹簧长度y (cm )是所挂物体的质量x (g )的一次函数.已知一根弹簧挂10g 物体时的长度为11cm ,挂30g 物体时的长度为15cm . (1)求y 与x 的函数表达式;(2)当所挂物体的质量为14g 时,求弹簧的长度.21.(本题满分10分)按下列要求确定点的坐标.(1)已知点A 在第四象限,且到x 轴距离为1,到y 轴距离为5,求点A 的坐标; (2)已知点B (a -1,-2a +8),且点B 在第一、三象限的角平分线上,求a ;(3)试判断(1)、(2)中的点A、B与坐标原点O围成的△ABO是何种特殊三角形?并说明理由.(第21题图)22.(本题满分10分)如图,在8×8网格纸中,每个小正方形的边长都为1.(1)请在网格纸中建立平面直角坐标系,使点A、C的坐标分别为(-4,4),(-1,3),并写出点B的坐标为▲;(2)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;(3)在y轴上求作一点P,使△P AB的周长最小,并直接写出点P的坐标.(第22题图)23.(本题满分10分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现,当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2证明:连结DB,过点D作BC边上的高DF,则DF=EC=b﹣a.∵S四边形ADCB=S△ACD+S△ABC=12b2+12ab.又∵S四边形ADCB=S△ADB+S△DCB=12c2+12a(b﹣a).∴12b2+12ab=12c2+12a(b﹣a),∴a2+b2=c2.图1 图2(第23题图)请参照上述证法,利用图2完成下面的证明.将两个全等的直角三角形按图2所示摆放,其中∠ABC=90°.求证:a2+b2=c2.证明:24.(本题满分10分)如图,在△ABC中,CE⊥BA的延长线于E,BF⊥CA的延长线于F,M为BC的中点,分别连接ME、MF、EF.(1)若EF=3,BC=8,求△EFM的周长;(2)若∠ABC=28°,∠ACB=48°,求△EFM的三个内角的度数.FB(第24题图)25.(本题满分12分)如图,点N是△ABC的边BC延长线上的一点,∠ACN=2∠BAC,过点A作AC的垂线交CN于点P.(1)若∠APC=30°,求证:AB=AP;(2)若AP=8,BP=16,求AC的长;(3)若点P在BC的延长线上运动,∠APB的平分线交AB于点M. 你认为∠AMP的大小是否发生变化?若变化,请说明理由;若不变化,求出∠AMP的大小.B(第25题图)26.(本题满分14分)如图,长方形ABCO的顶点A、C、O都在坐标轴上,点B的坐标为(8,3),M为AB的中点.(1)试求点M的坐标和△AOM的周长;(2)若P是OC上的一个动点,它以每秒1个单位长度的速度从点C出发沿射线..CO 方向匀速运动,设运动时间为t秒(t>0).①若△POM的面积等于△AOM的面积的一半,试求t的值;②是否存在某一时刻t,使△POM是等腰三角形?若存在,求出此时t的值;若不存在,试说明理由.(第26题图)(备用图)2015年秋学期期末学业质量测试八年级数学参考答案与评分标准一、选择题(本大题共有6小题,每小题3分,共18分) 1.D ;2.C ;3.A ;4.C ;5.C ;6.B.二、填空题(本大题共有10小题,每小题3分,共30分)7.4; 8.1.37×108; 9.3.142; 10.12; 11. 12.96;13.( ; 14.38; 15. 16. 149得3分; 13或157得2分 .三、解答题(共10题,102分.下列答案....仅供参考....,有其它答案或解法.......,参照标准给分.......) 17.(本题满分12分)(1)(本小题6分)38x =-(3分);2x =-(3分).(2)(本小题6分)原式=3-2+5(3分,每对1个得1分)=6(3分). 18.(本题满分8分)(1)(本小题4分)作图正确(3分),标出点D (1分).(2)(本小题4分)作图正确(3分),标出点(1分)(的点且正确得2分) 19. (本题满分8分)(1)(本小题4分)(课本63页改编)△BEF 是等腰三角形(1分);沿EF 折叠得∠DEF =∠BEF (1分),由长方形纸片的上下两边平行,可得∠DEF =∠BFE (1分),所以∠BEF=∠BFE ,根据“等角对等边”可知△BEF 是等腰三角形(1分); (2)(本小题4分)由勾股定理得AE=6(2分);CF=6(2分)。

2015八年级(下)期中数学试卷 附答案

2015八年级(下)期中数学试卷 附答案

八年级(下)期中数学试卷一、精心选择,一锤定音!(本题10小题,每小题3分,共30分,每小题只有一个选项是正确的)1.计算的结果是()A.﹣3 B.3 C.﹣9 D.92.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x>13.下列各组数能成为直角三角形三边的是()A.32、42、52 B.、、C.、2、D.、、14.下列各式中,属于最简二次根式的是()A.B.C.D.5.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.7 B. 6 C. 5 D. 46.已知△ABC的各边长度分别为3cm、4cm、5cm,则连接各边中点的三角形周长为()A.2cm B.7cm C.5cm D.6cm7.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30° B.60° C.90° D.120°8.如图,在菱形ABCD中,AB=3,∠ABC=60°,则对角线AC=()A.12 B.9 C. 6 D. 39.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤1310.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1 D.n二、耐心填空,准确无误(每题3分,共计18分)11.计算﹣=.12.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件,使ABCD成为菱形(只需添加一个即可)13.如图,已知OA=OB,那么数轴上点A所表示的数是.14.已知y=+﹣3,则2xy的值为.15.直角三角形的两边长为5和7,则第三边长为.16.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为.三、用心做一做,显显你的能力(本大题共8小题,共72分)17.(+)﹣2﹣.18.先化简,再求值:.19.如图,直角三角形纸片ABC,∠C=90°,AC=6,BC=8.(1)作图:用尺规作AB的垂直平分线,交BC于D,交AB于H.(保留作图痕迹)(2)在满足(1)的情况下,求BD的长.20.如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:分割线画成实线.21.阅读下列材料,并解决相应问题:阅读:分母有理化就是把分母中的根号化去.例如:===+应用:用上述类似的方法化简下列各式:(1)(2)++…+.22.在海洋上有一近似于四边形的岛屿,其平面图如图,小明据此构造出该岛的一个数学模型(如图四边形ABCD)来求岛屿的面积,其中∠B=∠D=90°,AB=BC=15千米,CD=3千米,请求出四边形ABCD的面积.(结果保留根号)23.已知矩形ABCD中,M、N分别是AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌DCM;(2)判断四边形MENF是(只写结论,不需证明);(3)在(1)(2)的前提下,当等于多少时,四边形MENF是正方形,并给予证明.24.已知:如图(1)四边形ABCD和四边形GCEF为正方形,B、C、E在同一直线.(1)试判断BG、DE的位置关系,请直接写出结论:;(2)若正方形GCEF绕C点顺时针旋转到图(2)的位置,(1)的结论是否仍成立?若成立,给予证明,若不成立?请说明理由.(3)在图(2)中,若正方形ABCD的边长为6,正方形CEFG边长为3,连结BE,DG 求BE2+DG2的值.参考答案与试题解析一、精心选择,一锤定音!(本题10小题,每小题3分,共30分,每小题只有一个选项是正确的)1.计算的结果是()A.﹣3 B.3 C.﹣9 D.9考点:二次根式的性质与化简.专题:计算题.分析:原式利用二次根式的化简公式计算即可得到结果.解答:解:原式=|﹣3|=3.故选:B.点评:此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.2.式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x>1考点:二次根式有意义的条件.分析:根据二次根式的性质,被开方数大于等于0,解不等式即可.解答:解:根据题意得:x﹣1≥0,即x≥1时,二次根式有意义.故选:B.点评:主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.3.下列各组数能成为直角三角形三边的是()A.32、42、52 B.、、C.、2、D.、、1考点:勾股定理的逆定理.分析:分别计算每一组中,较小两数的平方和,看是否等于最大数的平方,若等于就是直角三角形,否则就不是直角三角形.解答:解:A、因为(32)2+(42)2≠(52)2,所以不能构成直角三角形,此选项错误;B、因为()2+()2≠()2,所以不能构成直角三角形,此选项错误;C、因为()2+22≠()2,所以不能构成直角三角形,此选项错误;D、因为()2+()2=12,能构成直角三角形,此选项正确.故选D.点评:本题主要考查了勾股定理的逆定理,已知三条线段的长,判断是否能构成直角三角形的三边,判断的方法是:计算两个较小的数的平方和是否等于最大数的平方即可判断.4.下列各式中,属于最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、被开方数含开的尽的因数,故A错误;B、被开方数含分母,故B错误;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C正确;D、被开方数含开的尽的因数,故D错误;故选:C.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.5.等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.7 B. 6 C. 5 D. 4考点:勾股定理;等腰三角形的性质.专题:压轴题.分析:根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.解答:解:∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=BC=3,AD同时是BC上的高线,∴AB==5,故选C.点评:本题考查勾股定理及等腰三角形的性质.解题关键是得出中线AD是BC上的高线,难度适中.6.已知△ABC的各边长度分别为3cm、4cm、5cm,则连接各边中点的三角形周长为()A.2cm B.7cm C.5cm D.6cm考点:三角形中位线定理.分析:根据三角形的中位线平行于第三边并且等于第三边的一半可得中点三角形的周长等于原三角形的周长的一半求解即可.解答:解:∵△ABC的周长=3+4+5=12cm,∴连接各边中点的三角形周长=×12=6cm.故选D.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,熟记定理并判断出中点三角形的周长等于原三角形的周长的一半是解题的关键.7.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30° B.60° C.90° D.120°考点:矩形的性质.专题:几何图形问题.分析:根据矩形的对角线互相平分且相等可得OB=OC,再根据等边对等角可得∠OBC=∠ACB,然后根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.解答:解:∵矩形ABCD的对角线AC,BD相交于点O,∴OB=OC,∴∠OBC=∠ACB=30°,∴∠AOB=∠OBC+∠ACB=30°+30°=60°.故选:B.点评:本题考查了矩形的性质,等边对等角的性质以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.8.如图,在菱形ABCD中,AB=3,∠ABC=60°,则对角线AC=()A.12 B.9 C. 6 D. 3考点:菱形的性质;等边三角形的判定与性质.分析:根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.解答:解:∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC为等边三角形,∴AC=AB=3.故选D.点评:本题考查了菱形的性质和等边三角形的判定,难度一般,解答本题的关键是掌握菱形四边相等的性质.9.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是()A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤13考点:勾股定理的应用.专题:压轴题.分析:最短距离就是饮料罐的高度,最大距离可根据勾股定理解答.解答:解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.即a的取值范围是12≤a≤13.故选:A.点评:主要是运用勾股定理求得a的最大值,此题比较常见,难度不大.10.如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()A.n B.n﹣1 C.()n﹣1 D.n考点:正方形的性质;全等三角形的判定与性质.专题:规律型.分析:根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n﹣1)个阴影部分的和.解答:解:由题意可得一个阴影部分面积等于正方形面积的,即是×4=1,5个这样的正方形重叠部分的面积和为:1×4,n个这样的正方形重叠部分的面积和为:1×(n﹣1)=n﹣1.故选:B.点评:此题考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分的面积和的计算方法,难点是求得一个阴影部分的面积.二、耐心填空,准确无误(每题3分,共计18分)11.计算﹣=.考点:二次根式的加减法.分析:先进行二次根式的化简,然后合并.解答:解:原式=3﹣=.故答案为:.点评:本题考查了二次根式的加减法,解答本题的关键是掌握二次根式的化简以及同类二次根式的合并.12.如图,ABCD是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件OA=OC,使ABCD成为菱形(只需添加一个即可)考点:菱形的判定.专题:开放型.分析:可以添加条件OA=OC,根据对角线互相垂直平分的四边形是菱形可判定出结论.解答:解:OA=OC,∵OB=OD,OA=OC,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,故答案为:OA=OC.点评:此题主要考查了菱形的判定,关键是掌握菱形的判定定理.13.如图,已知OA=OB,那么数轴上点A所表示的数是﹣.考点:勾股定理;实数与数轴.分析:首先根据勾股定理得:OB=.即OA=.又点A在数轴的负半轴上,则点A对应的数是﹣.解答:解:由图可知,OC=2,作BC⊥OC,垂足为C,取BC=1,故OB=OA===,∵A在x的负半轴上,∴数轴上点A所表示的数是﹣.故答案为:﹣.点评:熟练运用勾股定理,同时注意根据点的位置以确定数的符号.14.已知y=+﹣3,则2xy的值为﹣15.考点:二次根式有意义的条件.分析:根据非负数的性质列式求出x的值,再求出y的值,然后代入代数式进行计算即可得解.解答:解:根据题意得,2x﹣5≥0且5﹣2x≥0,解得x≥且x≤,所以,x=,y=﹣3,所以,2xy=2××(﹣3)=﹣15.故答案为:﹣15.点评:本题考查的知识点为:二次根式的被开方数是非负数.15.直角三角形的两边长为5和7,则第三边长为2或.考点:勾股定理.专题:分类讨论.分析:分7为斜边与7为直角边两种情况考虑,分别利用勾股定理即可求出第三边.解答:解:若7为斜边,根据勾股定理得:第三边为=2;若7为直角边,根据勾股定理得:第三边为=,故答案为:2或点评:此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.16.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为6.考点:轴对称-最短路线问题;正方形的性质.专题:计算题.分析:连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE的最小值,进而可得出结论.解答:解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.点评:本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.三、用心做一做,显显你的能力(本大题共8小题,共72分)17.(+)﹣2﹣.考点:二次根式的加减法.分析:先把二次根式为最简二次根式,再计算即可.解答:解:原式=2+﹣﹣=.点评:本题考查了二次根式的加减运算,把二次根式化为最简二次根式是解题的关键.18.先化简,再求值:.考点:二次根式的化简求值;分式的化简求值.分析:此题要对代数式先通分,最简公分母是xy(x+y),再相减,能够熟练运用因式分解的方法进行约分.代值的时候,熟练合并同类二次根式.解答:解:原式=﹣===.当时,=.点评:此题综合考查了二次根式的混合运算和二次根式的加减运算.19.如图,直角三角形纸片ABC,∠C=90°,AC=6,BC=8.(1)作图:用尺规作AB的垂直平分线,交BC于D,交AB于H.(保留作图痕迹)(2)在满足(1)的情况下,求BD的长.考点:作图—基本作图;线段垂直平分线的性质.分析:(1)垂直平分线的作法为:将圆规的圆心分别处于线段的两端,各做一个圆弧(半径大于线段长的一半),并让其相交,将其交点相连即为该线段垂直平分线;(2)首先利用勾股定理求得斜边的长,从而求得BH的长,然后利用△BHD∽△BCA求得BD的长即可.解答:解:(1)如图:(2)∵∠C=90°,AC=6,BC=8,∴AB==10,∵HD垂直平分AB,∴AH=BH=5,∵△BHD∽△BCA,∴,即:,解得:BD=.点评:本题考查了尺规作图的知识,要牢记:将圆规的圆心分别处于线段的两端,各做一个圆弧(半径大于线段长的一半),并让其相交,将其交点相连即为该线段垂直平分线;20.如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处),请按要求将图甲、图乙中的指定图形分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.(1)图甲中的格点正方形ABCD;(2)图乙中的格点平行四边形ABCD.注:分割线画成实线.考点:作图—应用与设计作图.专题:作图题.分析:(1)利用三角形的形状以及各边长进而拼出正方形即可;(2)利用三角形的形状以及各边长进而拼出平行四边形即可.解答:解:(1)如图甲所示:(2)如图乙所示:点评:此题主要考查了应用设计与作图,利用网格结合三角形各边长得出符合题意的图形是解题关键.21.阅读下列材料,并解决相应问题:阅读:分母有理化就是把分母中的根号化去.例如:===+应用:用上述类似的方法化简下列各式:(1)(2)++…+.考点:分母有理化.专题:阅读型.分析:(1)根据分式的性质,分子分母都乘以分母两个数的和,可得答案;(2)根据分式的性质,分子分母都乘以分母两个数的和,可得实数的运算,根据实数的运算,可得答案.解答:解:(1)原式===+;(2)原式=++…+=﹣1+﹣+…+﹣=﹣1.点评:本题考查了分母有理化,利用分式的性质:分子分母都乘以分母分母两个数的和或差得出平方差是解题关键.22.在海洋上有一近似于四边形的岛屿,其平面图如图,小明据此构造出该岛的一个数学模型(如图四边形ABCD)来求岛屿的面积,其中∠B=∠D=90°,AB=BC=15千米,CD=3千米,请求出四边形ABCD的面积.(结果保留根号)考点:勾股定理的应用.分析:连接AC,根据AB=BC=15千米,∠B=90°得到∠BAC=∠ACB=45° AC=15,再根据∠D=90°利用勾股定理求得AD的长后即可求面积;解答:解:连接AC∵AB=BC=15千米,∠B=90°∴∠BAC=∠ACB=45° AC=15千米,又∵∠D=90°,∴AD==12(千米)∴面积=S△ABC+S△ADC=112.5+18(平方千米).点评:本题考查了解直角三角形的应用,与实际问题相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解.23.已知矩形ABCD中,M、N分别是AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌DCM;(2)判断四边形MENF是菱形(只写结论,不需证明);(3)在(1)(2)的前提下,当等于多少时,四边形MENF是正方形,并给予证明.考点:矩形的性质;全等三角形的判定与性质;菱形的判定;正方形的性质.分析:(1)由矩形的性质得出AB=DC,∠A=∠D,再由M是AD的中点,根据SAS即可证明△ABM≌△DCM;(2)先由(1)得出BM=CM,再由已知条件证出ME=MF,EN、FN是△BCM的中位线,即可证出EN=FN=ME=MF,得出四边形MENF是菱形;(3)先证出∠AMB=45°,同理得出∠DMC=45°,证出∠BMC=90°,即可得出结论.解答:(1)证明:∵四边形ABCD是矩形,∴∠A=∠D=90°,AB=DC,∵M是AD的中点,∴AM=DM,在△ABM和△DCM中,,∴△ABM≌△DCM(SAS);(2)解:四边形MEBF是菱形;理由如下:由(1)得:△ABM≌△DCM,∴BM=CM,∵E、F分别是线段BM、CM的中点,∴ME=BE=BM,MF=CF=CM,∴ME=MF,又∵N是BC的中点,∴EN、FN是△BCM的中位线,∴EN=CM,FN=BM,∴EN=FN=ME=MF,∴四边形MENF是菱形;(3)解:当=2时,四边形MENF是正方形;证明如下:当=2时,AB=AM,∴△ABM是等腰直角三角形,∴∠AMB=45°,同理:∠DMC=45°,∴∠BMC=90°,∴四边形MENF是正方形.点评:本题考查了矩形的性质、全等三角形的判定与性质、菱形的判定、正方形的判定;熟练掌握矩形的性质以及菱形、正方形的判定方法,证明三角形全等是解决问题的关键.24.已知:如图(1)四边形ABCD和四边形GCEF为正方形,B、C、E在同一直线.(1)试判断BG、DE的位置关系,请直接写出结论:BG⊥DE;(2)若正方形GCEF绕C点顺时针旋转到图(2)的位置,(1)的结论是否仍成立?若成立,给予证明,若不成立?请说明理由.(3)在图(2)中,若正方形ABCD的边长为6,正方形CEFG边长为3,连结BE,DG 求BE2+DG2的值.考点:四边形综合题.分析:(1)根据已知,利用SAS判定△BCG≌△DCE,全等三角形的对应角相等,所以∠CBG=∠CDE,∠BGC=∠DEC,因为∠CBG+∠BGC=90°,所以∠BHE=90°,得出结论;(2)四边形ABCD是正方形推出△BCG≌△DCE.全等三角形的对应角相等,所以∠CBG=∠CDE,等量代换得出∠DOH=90°,推出BG⊥DE;(3)利用勾股定理得出BE2+DG2=OB2+OE2+OG2+OD2=BD2+GE2,进而得出答案即可.解答:(1)解:延长BG与DE交于点H,∵四边形ABCD、四边形CEFG都是正方形,∴BC=CD,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∵在△BCG与△DCE中,,∴△BCG≌△DCE(SAS),∴∠CBG=∠CDE,∠BGC=∠DEC,∵∠CBG+∠BGC=90°,∴∠CBG+∠DEC=90°,∴∠BHE=90°,∴BG⊥DE,故答案为:BG⊥DE.(2)仍成立.证明:∵四边形ABCD、四边形CEFG都是正方形∴BC=CD,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∵在△BCG与△DCE中,,∴△BCG≌△DCE(SAS),∴∠CBG=∠CDE,又∵∠BHC=∠DHO,∠CBG+∠BHC=90°,∴∠CDE+∠DHO=90°,∴∠DOH=90°,∴BG⊥DE.(3)∵BG⊥DE,∴BE2+DG2=OB2+OE2+OG2+OD2=BD2+GE2,又∵AB=6,CE=3,∴BD=6,GE=3,∴BD2+GE=+=90,∴BE2+DG2=90.点评:此题主要考查了全等三角形的判定与性质和勾股定理的应用,熟练利用全等三角形的性质是解此题关键.。

2015八年级(下)期中数学试卷附答 案

2015八年级(下)期中数学试卷附答 案

八年级(下)期中数学试卷一、细心选一选,你一定准!(每小题3分,共30分;每小题只有一个选项符合题意)1.下列式子是分式的是()A.B.C.+y D.2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.21×10﹣63.化简的结果是()A.B.C.D.4.分式方程的解是()A.﹣1 B.1 C.﹣2 D.25.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()A.B.C.D.6.函数y=x+m与(m≠0)在同一坐标系内的图象可以是()A. B. C.D.7.如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A 重合,折痕为DE,则BE的长为()A.4cm B.5cm C.6cm D.10cm8.把直角三角形的两直角边同时扩大到原来的3倍,则其斜边扩大到原来的()A.3倍B.6倍C.9倍D.18倍9.在一直角坐标系中,点A、点B的坐标分别为(﹣6,0)、(0,8),则坐标原点O到线段AB的距离为()A.6 B.8 C.10 D.4.810.如图,是反比例函数y=和y=(k1>k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k1﹣k2的值是()A.1 B.2 C.4 D.8二、填空题(共6小题,每小题3分,满分18分)11.已知点M(a,1)在双曲线上,则a=.12.如图,已知OA=OB,那么数轴上点A所表示的数是.13.如图,已知OA=6,∠AOB=30°,则经过点A的反比例函数的解析式为.14.已知,则=.15.函数的图象如图所示,则结论:①两函数图象的交点A的坐标为(2,2);②当x>2时,y2>y1;③当x=1时,BC=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是.16.如图所示,沿DE折叠长方形ABCD的一边,使点C落在AB边上的点F处,若AD=8,且△AFD 的面积为60,则△DEC的面积为.三、认真做一做,你一定棒!(共52分.写出详细的解答或证明过程)1)计算:;(2)化简:.18.解方程:.19.如图,反比例函数y=(k≠0)和一次函数y=ax+b(a≠0)的图象交于A(4,),B(﹣2,n)两点.(1)根据图象写出:当x为何值时,一次函数值大于反比例函数值;(2)求反比例函数的解析式和n的值.20.已知原来从遂宁到内江公路长150km,高速公路路程缩短了30km,如果一辆小车从遂宁到内江走高速公路的平均速度可以提高到原来的1.5倍,需要的时间可以比原来少用1小时10分钟.求小汽车原来和走高速公路的平均速度分别是多少?21.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上找一点P,使PA+PB最小.求P点坐标?22.如图,CD是AB上的高,AC=4,BC=3,DB=.(1)求CD的长;(2)△ABC是直角三角形吗?请说明理由.23.如图,梯形ABCD中,AD∥BC,∠ABC=45°,∠ADC=120°,AD=DC,AB=2,求BC的长.参考答案与试题解析一、细心选一选,你一定准!(每小题3分,共30分;每小题只有一个选项符合题意)1.下列式子是分式的是()A.B.C.+y D.考点:分式的定义.分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.解答:解:,+y,的分母中均不含有字母,因此它们是整式,而不是分式.的分母中含有字母,因此是分式.故选:A.点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.2.已知一粒大米的质量约为0.000021千克,这个数用科学记数法表示为()A.0.21×10﹣4B.2.1×10﹣4C.2.1×10﹣5D.21×10﹣6考点:科学记数法—表示较小的数.专题:应用题.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.解答:解:0.000 021=2.1×10﹣5.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3.化简的结果是()A.B.C.D.考点:分式的加减法.专题:计算题.分析:先把x2﹣9因式分解得到最简公分母为(x+3)(x﹣3),然后通分得到,再把分子化简后约分即可.解答:解:原式=﹣===.故选B.点评:本题考查了分式的加减法:先把各分母因式分解,确定最简公分母,然后进行通分化为同分母的分式,再把分母不变,分子相加减,然后进行约分化为最简分式或整式.4.分式方程的解是()A.﹣1 B.1 C.﹣2 D.2考点:解分式方程.分析:方程两边乘最简公分母x,可以把分式方程转化为整式方程求解.解答:解:方程的两边同乘x,得2+x﹣1=2x,解得x=1.检验:把x=1代入x=1≠0.∴原方程的解为:x=1.故选B.点评:本题考查了解分式方程,解题的关键是注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.5.已知甲、乙两地相距s(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间t(h)与行驶速度v(km/h)的函数关系图象大致是()A.B.C.D.考点:反比例函数的应用.专题:数形结合.分析:根据实际意义,写出函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.解答:解:根据题意有:v•t=s;故v与t之间的函数图象为反比例函数,且根据实际意义v>0、t>0,其图象在第一象限.故选:C.点评:现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.6.函数y=x+m与(m≠0)在同一坐标系内的图象可以是()A. B. C.D.考点:反比例函数的图象;一次函数的图象.分析:先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.解答:解:A、由函数y=x+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故错误;B、由函数y=x+m的图象可知m>0,由函数y=的图象可知m>0,正确;C、由函数y=x+m的图象可知m>0,由函数y=的图象可知m<0,相矛盾,故错误;D、由函数y=x+m的图象可知m=0,由函数y=的图象可知m<0,相矛盾,故错误.故选B.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.7.如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A 重合,折痕为DE,则BE的长为()A.4cm B.5cm C.6cm D.10cm考点:翻折变换(折叠问题).分析:在Rt△ABC中,可求出AB的长度,根据折叠的性质可得出AE=EB=AB.解答:解:∵AC=6cm,BC=8cm,∴AB==10cm,∵由折叠的性质得,∠B=∠DAE,DE⊥AB,∴AE=EB=AB=5cm.故选B.点评:本题考查的是翻折变换,熟知图形翻折不变性的性质是解答此题的关键.8.把直角三角形的两直角边同时扩大到原来的3倍,则其斜边扩大到原来的()A.3倍B.6倍C.9倍D.18倍考点:勾股定理.分析:设原来直角三角形的两直角边为a、b,斜边为c,根据勾股定理得出a2+b2=c2,即可求出答案.解答:解:设原来直角三角形的两直角边为a、b,斜边为c,则根据勾股定理得:a2+b2=c2,所以(3a)2+(3b)2=9(a2+b2)=9c2=(3c)2,即把直角三角形的两直角边同时扩大到原来的3倍,则其斜边扩大到原来的3倍,故选A.点评:本题考查了勾股定理的应用,能正确根据勾股定理进行计算是解此题的关键,注意:直角三角形的两直角边的平方和等于斜边的平方.9.在一直角坐标系中,点A、点B的坐标分别为(﹣6,0)、(0,8),则坐标原点O到线段AB的距离为()A.6 B.8 C.10 D.4.8考点:勾股定理;坐标与图形性质.分析:在直角坐标系中利用勾股定理求出线段AB的长,然后利用面积相等的方法求得原点到线段AB的距离.解答:解:在坐标系中,OA=6,OB=8,∴由勾股定理得:AB==10,设点O到线段AB的距离为h,∵S△ABO=OA•OB=AB•h,∴6×8=10h,解得h=4.8.故选D.点评:本题考查了勾股定理的知识,利用面积相等求直角三角形的斜边上的高是长采用的方法.10.如图,是反比例函数y=和y=(k1>k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k1﹣k2的值是()A.1 B.2 C.4 D.8考点:反比例函数系数k的几何意义.分析:设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd,根据三角形的面积公式求出cd﹣ab=2,即可得出答案.解答:解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S△AOB=4,∴ab﹣cd=4,∴ab﹣cd=8,∴k1﹣k2=8,故选D.点评:本题主要考查对反比例函数系数的几何意义,反比例函数图象上点的坐标特征,三角形的面积等知识点的理解和掌握,能求出ab﹣cd=8是解此题的关键.二、填空题(共6小题,每小题3分,满分18分)11.已知点M(a,1)在双曲线上,则a=2.考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征求解.解答:解:∵点M(a,1)在双曲线上,∴a•1=2,∴a=2.故答案为2.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.12.如图,已知OA=OB,那么数轴上点A所表示的数是﹣.考点:勾股定理;实数与数轴.分析:首先根据勾股定理得:OB=.即OA=.又点A在数轴的负半轴上,则点A对应的数是﹣.解答:解:由图可知,OC=2,作BC⊥OC,垂足为C,取BC=1,故OB=OA===,∵A在x的负半轴上,∴数轴上点A所表示的数是﹣.故答案为:﹣.点评:熟练运用勾股定理,同时注意根据点的位置以确定数的符号.13.如图,已知OA=6,∠AOB=30°,则经过点A的反比例函数的解析式为.考点:反比例函数综合题.分析:首先过A作AC⊥x轴,利用直角三角形30°角所对的直角边等于斜边的一半可得AC的长,再利用勾股定理算出OC的长,即可得到A点的坐标,最后利用待定系数法求出反比例函数关系式即可.解答:解:过A作AC⊥x轴,∵∠AOB=30°,∴,∵OA=6,∴AC=3,在Rt△ACO中,OC2=AO2﹣AC2,∴,∴A点坐标是:(3,3),设反比例函数解析式为,∵反比例函数的图象经过点A,∴,∴反比例函数解析式为.点评:此题主要考查了直角三角形的性质,勾股定理的应用,以及待定系数法求函数关系式,解决问题的关键是求出A点坐标.14.已知,则=﹣.考点:比例的性质.分析:根据题意设x=3a,y=4a,z=5a,进而代入求出即可.解答:解:∵,∴设x=3a,y=4a,z=5a,∴===﹣.故答案为:﹣.点评:此题主要考查了比例的性质,假设出未知数进而代入求出是解题关键.15.函数的图象如图所示,则结论:①两函数图象的交点A的坐标为(2,2);②当x>2时,y2>y1;③当x=1时,BC=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.其中正确结论的序号是①③④.考点:反比例函数与一次函数的交点问题.专题:计算题;压轴题;数形结合.分析:①将两函数解析式组成方程组,即可求出A点坐标;②根据函数图象及A点坐标,即可判断x>2时,y2与y1的大小;③将x=1代入两函数解析式,求出y的值,y2﹣y1即为BC的长;④根据一次函数与反比例函数的图象和性质即可判断出函数的增减性.解答:解:①将组成方程组得,,由于x>0,解得,故A点坐标为(2,2).②由图可知,x>2时,y1>y2;③当x=1时,y1=1;y2=4,则BC=4﹣1=3;④当x逐渐增大时,y1随着x的增大而增大,y2随着x的增大而减小.可见,正确的结论为①③④.故答案为:①③④.点评:本题考查了反比例函数与一次函数的交点问题,知道函数图象交点坐标与函数解析式组成的方程组的解之间的关系是解题的关键.16.如图所示,沿DE折叠长方形ABCD的一边,使点C落在AB边上的点F处,若AD=8,且△AFD的面积为60,则△DEC的面积为.考点:翻折变换(折叠问题).分析:由AD=8,且△AFD的面积为60,即可求得AF与DF的长,由折叠的性质,可得CD=DF,然后在Rt△BEF中,利用勾股定理即可求得CE的长,继而求得△DEC的面积.解答:解:∵四边形ABCD是矩形,∴∠A=∠B=90°,BC=AD=8,CD=AB,∵△AFD的面积为60,即AD•AF=60,解得:AF=15,∴DF==17,由折叠的性质,得:CD=DF=17,∴AB=17,∴BF=AB﹣AF=17﹣15=2,设CE=x,则EF=CE=x,BE=BC﹣CE=8﹣x,在Rt△BEF中,EF2=BF2+BE2,即x2=22+(8﹣x)2,解得:x=,即CE=,∴△DEC的面积为:CD•CE=×17×=.故答案为:.点评:此题考查了矩形的性质、折叠的性质、勾股定理以及三角形面积问题.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意折叠中的对应关系.三、认真做一做,你一定棒!(共52分.写出详细的解答或证明过程)1)计算:;(2)化简:.考点:实数的运算;分式的混合运算;零指数幂.专题:计算题.分析:(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用乘法法则计算,第四项利用乘方的意义计算即可得到结果;(2)原式第一项约分后,相减即可得到结果.解答:解:(1)原式=5+1﹣1+1=6;(2)原式=﹣=0.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.解方程:.考点:解分式方程.分析:观察可得最简公分母是(x+1)(x﹣1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解答:解:方程两边都乘以(x+1)(x﹣1),得4﹣(x+1)(x+2)=﹣(x2﹣1),整理,3x=1,解得x=.经检验,x=是原方程的解.故原方程的解是x=.点评:本题考查了分式方程的解法,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.19.如图,反比例函数y=(k≠0)和一次函数y=ax+b(a≠0)的图象交于A(4,),B(﹣2,n)两点.(1)根据图象写出:当x为何值时,一次函数值大于反比例函数值;(2)求反比例函数的解析式和n的值.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)观察函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的取值范围即可;(2)先根据反比例函数图象上点的坐标特征把A点坐标代入y=可求出k,从而得到反比例函数解析式,然后把B(﹣2,n)代入反比例函数解析式即可求出n的值.解答:解:(1)根据图象可得:当x>4或﹣2<x<0时,一次函数的值大于反比例函数的值;(2)把A(4,)代入y=得k=4×=6,所以反比例函数的解析式为y=把B(﹣2,n)代入y=得﹣2n=6,解得n=﹣3.点评:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.20.已知原来从遂宁到内江公路长150km,高速公路路程缩短了30km,如果一辆小车从遂宁到内江走高速公路的平均速度可以提高到原来的1.5倍,需要的时间可以比原来少用1小时10分钟.求小汽车原来和走高速公路的平均速度分别是多少?考点:分式方程的应用.分析:设小汽车原来的平均速度为x千米/时,走高速公路的平均速度是1.5x千米/时,根据题意可得,小汽车不走高速公路走120千米的路程所用的时间=走高速公路150千米所用时间+1小时10分钟,据此列方程求解.解答:解:设小汽车原来的平均速度为x千米/时,走高速公路的平均速度是1.5x千米/时,根据题意,得,解这个方程,得:x=60.经检验:x=60是所列方程的解,这时1.5x=1.5×60=90且符合题意.答:小汽车原来的平均速度是60千米/时,走高速公路的平均速度是90千米/时.点评:本题考查了分式方程的应用,解答本题的关键是读懂题意,根据题意设出适当的未知数,找出等量关系,列方程求解,注意检验.21.如图,正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限图象上的点(点B与点A不重合),且B点的横坐标为1,在x轴上找一点P,使PA+PB最小.求P点坐标?考点:反比例函数综合题.专题:综合题;压轴题.分析:(1)根据反比例函数图象上的点的横纵坐标的乘积为函数的系数和△OAM的面积为1可得k=2,即反比例函数的解析式为y=.(2)由正比例函数y=x的图象与反比例函数y=(k≠0)在第一象限的图象交于A点求得A为(2,1).要使PA+PB最小,需作出A点关于x轴的对称点C,并连接BC,交x轴于点P,P为所求点.A点关于x轴的对称点C(2,﹣1),而B为(1,2),故BC的解析式为y=﹣3x+5,即可求得P点的坐标.解答:解:(1)设A点的坐标为(a,b),则b=∴ab=k∵ab=1,∴k=1∴k=2,∴反比例函数的解析式为y=.(3分)(2)根据题意画出图形,如图所示:得=x,解得x=2或x=﹣2,∵点A在第一象限,∴x=2把x=2代入y=得y=1,∴A为(2,1)(4分)设A点关于x轴的对称点为C,则C点的坐标为(2,﹣1).令直线BC的解析式为y=mx+n∵B点的横坐标为1,B为反比例函数在第一象限图象上的点,∴xy=2,∴y=2,∴B为(1,2),将B和C的坐标代入得:,解得:∴BC的解析式为y=﹣3x+5(6分)当y=0时,x=,∴P点为(,0).(7分)点评:本题考查反比例函数和一次函数解析式的确定、图形的面积求法、轴对称等知识及综合应用知识、解决问题的能力.有点难度.22.如图,CD是AB上的高,AC=4,BC=3,DB=.(1)求CD的长;(2)△ABC是直角三角形吗?请说明理由.考点:勾股定理的逆定理;勾股定理.分析:(1)在△CDB中利用勾股定理计算出CD长即可;(2)首先利用勾股定理计算出AD2,再计算出AD,然后可得AB长,再利用勾股定理逆定理可证出△ABC是直角三角形.解答:解:(1)∵CD是AB上的高,∴,∴CD=;(2)△ABC是直角三角形理由是:∵,∴,∵,又∵32+42=52,∴△ABC是直角三角形.点评:此题主要考查了勾股定理和勾股定理逆定理,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方;三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.23.如图,梯形ABCD中,AD∥BC,∠ABC=45°,∠ADC=120°,AD=DC,AB=2,求BC的长.考点:梯形.专题:计算题.分析:过点A作AE⊥BC于点E,过点D作DF⊥BC,则AD=EF,再分别求出BE、CF的长,即可得出答案.解答:解:过点A作AE⊥BC于点E,过点D作DF⊥BC,则AD=EF,∵∠ABC=45°,AB=2,∴BE=AE=2,又∠ADC=120°,∴∠CDF=30°,∴AD=DC==,CF=,∴BC=BE+EF+CF=2+=2+2.点评:本题考查了梯形的知识,难度不大,注意熟练应用梯形的性质是关键.。

2015—2016学年八年级上学期数学期中试卷(5套)

2015—2016学年八年级上学期数学期中试卷(5套)

2015—2016学年八年级上学期数学期中试
卷(5套)
2015年八年级上册数学期中考试题整理
八年级上册数学期中考试试卷:附答案
最新:初中二年级上册数学期中考试模拟试卷
2015—2016学年初二上学期数学期中试卷
八年级数学期中卷2015
一个学期一次的期中考试马上就要开始了,同学们正在进行紧张的复习。

这就是我们为大家准备的八年级上学期数学期中试卷,希望能够及时的帮助到大家。

为大家策划了八年级上册期中复习专题,为大家提供了八年级期中考试复习知识点、八年级期中考试复习要点、八年级期中考试模拟题、八年级期中考试试卷、八年级语文期中复习要点、八年级数学期中模拟题、八年级英语期中模拟题等相关内容,供大家复习参考。

2015-2016学年八年级 期 中 考 试数学试题

2015-2016学年八年级 期 中 考 试数学试题

2015-2016学年八年级 期 中 考 试数学试题(新人教版)时间120分钟. 满分120分 2015.10.26一、选择题(本大题共8个小题,每小题3分,共24分,每小题只有一个正确选项.) 1.下列变形正确的是( )A 、12122-=-)(B 、754925±=C 、-43169-= D 、(-5)2=25 2.方程|4x -8|+0=--m y x ,当y >0时,m 的取值范围是( )A 、0<m <1B 、m ≥ 2C 、m ≤2D 、 m <23. 点P 在第二象限内,P 到x 轴的距离是5,到y 轴的距离是3,那么点P 的坐标为( ) A 、(-5,3) B 、(-3,-5)C 、(-3,5)D 、(3,-5) 4.如图1,直线L 上有3个正方形a 、b 、c ,若a 、c 的面积分别为5和11,则b 的面积( ) A 、4B 、6C 、16D 、5552所示,则化简|1-a|+2a 的结果( )A 、1B 、-1C 、1-2aD 、2a -1 6.如图3,一次函数图像经过点A ,且与正比例函数y=-x 的图像交于点B ,则该一次函数的表达式为( )A 、y=-x+2B 、y=x+2C 、y=x -2D 、y=-x -2二、填空题(本大题共6小题,每小题3分,共18分)7.16的算术平方根是8.若a 、b 为有理数,且18+9+81=a+b 2,则ba = 9.在平面直角坐标系中,点P(a -2,a+4)在二四象限的角平分线上,则a 2013=10.已知(x 1,y 1)和(x 2,y 2)是直线y=-3x+6上的两点,且x 1>x 2,则y 1 y 2(填 “>”“<”或“=”号)11.如图4,以等腰直角三角形AO B 的斜边为直角边向外作第2个等腰直角三角形ABA 1,再以等腰直角三角形ABA 1的斜边为直角边向外作第3个等腰直角三角形A 1BB 1……如此下图3去,若OA=OB=1,则第n 个等腰直角三角形面积S n =12.如图5,在圆柱的截面ABCD 中,AB=π16,BC=12,动点P 从A 点出发,沿着圆柱的侧面移动到BC 的中点S 的最短距离为13.如图6,在长方形ABCD 中,边AB 的长为3,AD 的长为2,AB 在数轴上,以原点A为圆心,AC 的长为半径画弧,交负半轴于一点,则这个点表示的实数是14.当m= 时,函数y=(m+3)x 2m+1+4x -5(x ≠0)是一次函数。

2015-2016学年八年级上学期期中考试数学试卷带答案

2015-2016学年八年级上学期期中考试数学试卷带答案

2015(全卷满分120分,班级 姓名 分数 一. 符合题目要求的。

本大题共15小题,每小题3分,计1.下列计算中正确的是 ( )A .5322a b a =+B .44a a a =÷C .842a a a =⋅D .()632a a -=-2.等腰三角形的两边分别为3和6,则这个三角形的周长是 ( ).A .12B .15C .9D .12或153.下面是某同学在一次测验中的计算摘录,其中正确的个数有 ( ) ①()523623x x x -=-⋅; ②()a b a b a 22423-=-÷;③()523a a =; ④()()23a a a -=-÷-A .1个B .2个C .3个D .4个4.已知210x y -=,则124+-y x 的值为( )A .10B .21C .10-D .21-5.下列各式是完全平方式的是 ( )A .412+-x x B .21x + C .1++xy x D .122-+x x6.若3x =15,3y =5,则3x -y 等于 ( )A .5B .3C .15D .107. 从五边形的一个顶点作对角线,把这个五边形分成三角形的个数是( )A. 5个B. 4个C. 3个D.2个8.我们约定1010a b a b ⊗=⨯,如23523101010⊗=⨯=,那么48⊗为( )A.32B.3210C.1210D.10129. 下列图形中有稳定性的是 ( )A. 正方形B. 长方形C. 直角三角形D. 平行四边形10.到三角形三边距离相等的点是( )A .三边垂直平分线的交点B .三条高线交点C .三条中线的交点D .三条角平分线的交点11.如图,用尺规作图画角平分线:以O 为圆心,任意长为半径画弧交OA ,OB 于点C ,D ,再分别以C ,D 为圆心,以大于CD 21长为半径 画弧,两弧交于点P ,由此得△POC ≌△POD 依据是( ) A .AAS B. SAS C.SSS D .ASA 12.如图,已知CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于点O ,且13.若(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为 ( ) A. –3 B. 3 C. 0 D. 1 14.若一个三角形的三个内角的度数之比为1:2:3,那么相对应的三个外角的度数之比为 ( ) A .3:2:1 B .1:2:3 C .3:4:5 D . 5:4:3 15.在ABC Rt ∆中,︒=∠90A ,BD 平分ABC ∠交AC 于点D ,AD=2, AC=5,则D 到BC 的距离是( ) A .2 B .3 C .4 D .5 二、解答题:(请将解答结果书写在答题卡上指定的位置.本大题共9小题,16~17每小题6分,18~19每小题7分,20~21每小题8分,22题10分,23题11分,24题12分,合计75分) 16、计算:2(2)(2)x x x ++- 17.先化简,再求值. 2(3)(3)(3)x x x --+-, 其中x=1 18. 如图,AD 是△ ABC 中∠ BAC 的平分线,DE ⊥ AB 于点E ,DF ⊥AC 交AC 于点F ,S ABC △ =7,DE=2,AB=4, 求AC 的长 19如图,在ABC Rt ∆中,︒=∠90ABC ,点F 在CB 的延长线上且AB=BF ,过F 作AC EF ⊥交AB 于D ,求证:DB=BCDCPOC D C B F A D E20. 如图,在ABC ∆中,090=∠ACB ,CE BE BC AC ⊥=,于E ,AD CE ⊥于D .(1)求证:△ADC ≌△CEB (2)若AD=8cm ,DE=5cm ,求BE 的长度21. (1)已知 (a +b )2=7,(a -b )2=4,求a 2+b 2,ab 的值.(2)已知:x 2+y 2+4x -6y +13=0,x 、y 均为有理数,求x y 的值.22.两个大小不同的等腰直角三角形三角板如图①所示放置,图②是由它抽象出的几何图形B C E ,,在同一条直线上,连结DC .(1).请找出图②中的全等三角形,并给予说明(注意:结论中不得含有未标识的字母);(2).请判断DC 与BE 的位置关系,并证明;(3).若CE=2,BC=4,求△DCE 的面积.23. 如图,△ABC 中,AB =AC ,∠BAC =90°, (1)CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上,BE 的延长线交CA 的延长线于M ,补全图形,并探究BE 和CD 的数量关系,并说明理由; (2)若BC 上有一动点P ,且∠BPQ =12∠ACB ,BQ ⊥PQ 于Q ,PQ 交AB 于F ,试探究BQ 和PF 之间的数量关系,并证明你的结论. 24.正方形四条边都相等,四个角都是90°.如图,已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,点E 是直线MN 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)如图1,当点E 在线段BC 上(不与点B 、C 重合)时: ①判断△ADG 与△ABE 是否全等,并说明理由; ②过点F 作FH ⊥MN ,垂足为点H ,观察并猜测线段BE 与线段CH 的数量关系,并说明理由; (2)如图2,当点E 在射线CN 上(不与点C 重合)时: ①判断△ADG 与△ABE 是否全等,不需说明理由;②过点F 作FH ⊥MN ,垂足为点H ,连CF ,已知GD=4,求△CFH 的面积. (12分)ABC DE① ②D图2图1C答案:1-15,DBBBA BCCCD CCADA16, 224x -17.化简后是22223x x a -++,结果是718,AC=319,证△ABC ≌△FBD (AAS 或ASA )20,(1)用AAS 或ASA 证三角形全等(2)由△ADC ≌△CEB 得BE=CD,CE=AD,所以BE=CD=CE-DE=AD-DE=3cm 21,(1) △ABE ≌△ACD(SAS)(2) DC BE ⊥(3)6 22,(1)a 2+b 2=112, ab=3423(1)BE=12CD (2) BQ=12PF 24,(1)①全等,用AAS 或ASA 证三角形全等;②BE=CH(2)①全等②8。

2015年秋学期期中考试试题初二数学附答案

2015年秋学期期中考试试题初二数学附答案

学校 班级 姓名 考试号………………………………………………………………………………………………………………………………………………………………2015年秋学期期中考试试题初二数学(说明:本试卷满分120分,考试时间:100分钟) 一、选择题(本大题共10题,每小题3分,共计30分)1.以下分别为绿色食品、回收、节能、节水标志,其中是轴对称图形的是 ----- ( )2.下列实数:2、2、227、0.1010010001、327、π,其中无理数的个数为 ----- ( ) A .1 B .2C .3D .43.下列说法正确的是 -------------------------------------------------------------------------( ) A .(-3)2的平方根是3 B .16=±4 C .1的平方根是1 D .8的立方根是2 4.等腰三角形的两边长分别为2cm 和7cm ,则其周长为-------------------------( )A .11cmB .13cmC .16cmD .11cm 或16cm 5.在下列各组条件中 不能说明△ABC ≌△DEF 的是 -----------------------------( ) A .AB =DE ,∠B =∠E ,∠C =∠F B .AC =DF , BC =EF ,∠A =∠D C .AB =DE ,∠A =∠D ,∠B =∠E D .A B =DE , BC =EF , AC =DF 6.如图,BC 的垂直平分线分别交AB 、BC 于点D 和点E ,连接CD ,AC =DC ,∠B =25° 则∠ACD 的度数是 ------------------------------------------------------------ ( )A .50°B .60°C .80°D .100°7.如图,在数轴上表示1、2的点分别为A 、B ,点B 关于点A 的对称点为C ,则C 点所表示的是--------------------------------------------------------------------------( )A .2- 2B .2-2C .1- 2D .2-18.一个钝角三角形的两边长为5、12,则第三边可以为 -----------------------------------( ) A .11 B .13 C .15 D .179.如图,已知△ABC (AB <BC <AC ),用直尺和圆规在AC 上确定一点P ,使PB +PC =AC ,则下列选项中,一定符合要求的作图痕迹是------------------------------------------( )A .B .C .D .CBAA A第6题图 第7题图C O A EDCB AB A第10题图10.如图,在△ABC 中,AC =BC ,∠ ACB =90°,AE 平分∠BAC 交BC 于E , BD ⊥AE 于 D ,DF ⊥AC 交AC 的延长线于F ,连接C D ,给出三个结论: ①AE =2BD ; ②AB -AC =CE ; ③CE =2FC ;其中正确的结论有-------------------------------------------------------( )A .0个B .1个C .2个D .3个 二、填空题(本大题共8题,每空2分,共计18分) 11.9的平方根是 ; 的立方根是-2. 12.式子x +2有意义,则x 的取值范围是 .13.若一个正数的两个不同的平方根为2m -5与m +2,则这个正数为 . 14.若等腰三角形的一个外角为80°,则它的顶角是为 °.15.如图,已知AB ∥CF ,E 为DF 的中点,若AB =7 cm ,BD =3 cm ,则CF = cm .16.如图,△ABC 中,CD ⊥AB 于D ,E 是AC 的中点,若AD =6,CD =8,则DE 的长等于 .17. 如图,△ABC 中,∠ACB =90°,以AC 为底边在△ABC 外作等腰△ACD ,过点D 作∠ADC 的平分线分别交AB 、AC 于点E 、F .若AC =12cm ,BC =5cm ,点P 是直线DE 上的一个动点,则△PBC 的周长的最小值是_________cm .18.如图,四边形ABCD 中,AD ∥BC ,∠B =90°,AB =AD =4cm ,BC =7cm ,现要在形 如四边形ABCD 的纸片上剪下一个腰长为3cm 的等腰三角形 (要求:等腰三角形的一个顶点与四边形ABCD 的一个顶点 重合,其余两个顶点在四边形ABCD 的边上),则剪下的等腰 三角形的底边的长度的值有 种可能.三、解答题(本大题共9题,共计72分.解答需写出必要的文字说明或演算步骤.)) 19.计算题.(每小题5分,共10分)(1)计算:16-3-8+20150; (2)(-5)2 +|1-2|-(12)-2.20.求出下列x 的值.(每小题5分,共10分)FEDCBAEDCB A第15题图 第16题图 第17题图BA班 姓名 考试号………………………………………………………………………………………………………………DEC BA GDECBA (1)4x 2-9=0 ; (2) (x +1)3=-27.21.(本题满分6分) 在4×4的方格中有三个同样大小的正方形如图摆放,请你在图1—图3中的空白处添加一个正方形方格(涂黑),使它与其余三个正方形组成的新图形是一个轴对称图形.22.(本题满分6分) 已知x -2的算术平方根是3,2x -y +12的立方根是1,求x +y 的值.23.(本题满分6分)如图,C 为线段AB 的中点,CD ∥BE ,CD =BE .求证:AD ∥CE .24.(本题满分8分)如图,将长方形纸片ABCD 沿对角线BD 折叠得到△BDE ,DE 交AB 于点G .(1)求证:DG =BG ; (2) 若AD =4,AB =8,求△BDG 的面积.25.(本题满分8分)爱动脑筋的小明在学习了全等三角形和等腰三角形有关知识后作了如下探索:图1H G DCBA(1)已知,如图,△ABC 中,∠BAC 是锐角,AB =AC ,高AD 、BG 所在的直线相交于点H , 且AG =BG ,则AH 和BC 的关系是:_____________________;(2)若把⑴中的“∠BAC 是锐角”改为“∠BAC 是钝角”(如图2),其他条件都不变, AH 和BC 的关系是否仍然成立, 若成立,请在图2中用三角板和量角器画出完整的图形并证明;若不成立,请说明理由.26.(本题满分9分)已知:如图1,射线MN ⊥AB ,AM =1cm ,MB =4cm. 点C 从M 出发以2cm/s 的 速度沿射线MN 运动,设点 C 的运动时间为t (s) (1) 当△ABC 为等腰三角形时,求t 的值; (2)当△ABC 为直角三角形时,求t 的值;(3)当t 满足条件:__________时,△ABC 为钝角三角形; 当_________时,△ABC 为锐角三角形.N BA N BANBA图1 备用图 备用图图2GB A CFD图327.(本题满分9分)【问题背景】如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.小明同学的方法是将△ABE 绕点A 逆时针旋转120°到△ADG 的位置,然后再证明△AFE ≌△AFG ,从而得出结论:___________________. 【探索延伸】如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E ,F 分别是BC ,CD 上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立,并说明理由.【结论应用】如图3,在某次军事演习中,舰艇甲在指挥中心(O 处)北偏东60°的A 处,舰艇乙在指挥中心南偏西20°的B 处,并且两舰艇到指挥中心的距离相等.接到行动指令后,舰艇甲向正南方向以40海里/小时的速度前进,舰艇乙沿南偏东40°的方向以50海里/小时的速度前进,2小时后,指挥中心观测到甲、乙两舰艇分别到达E ,F 处,且两舰艇与指挥中心O 之间夹角∠EOF =70°,试求此时两舰艇之间的距离.图1 图2BA CFD2015年秋学期期中考试参考答案及评分标准 2015.11初二数学一、选择题(每题3分,共30分)1.A 2.B 3.D 4.C 5.B 6.C 7.A 8.C 9.C 10.D 二、填空题(每空2分,共16分)11. 3 -8; 12.x ≥-2; 13.9; 14.100; 15.4 ; 16. 5; 17.18; 18.7. 三、解答题(本大题共10小题,共84分)19.(1)16-3-8+20150 (2)(-5)2 +|1-2|-(12)-2=4-(-2)+1 …… 3分 = 5+(2-1)-4…… 3分=7…… 5分 = 2 …… 5分20.(1)4x 2-9=0 ; (2) (x +1)3=-274x 2=9 …… 1分 x +1=-3 …… 3分 x 2=94 …… 3分 x =-4 …… 5分x =±32 …… 5分21.(略 ,每画出一个正确图形给2分)22. x -2=9 …… 1分 23. 证得 AC =BC …… 1分 2x -y +12=1 …… 2分 ∠ACD =∠B …… 2分 解得x =11 ……3分 △ACD ≌△CBE …… 4分 y =33 ……4分 AD ∥CE …… 6分 ∴x +y =44 ……6分24.(1)由折叠可知 ∠CDB =∠GDB …… 1分 由矩形ABCD 可证 ∠CDB =∠DBG …… 2分∴ ∠GDB =∠DBG …… 3分∴DG =BG …… 4分 (其他证法参照给分) (2)设DG =BG =x ,则AG =8-x 在△ADG 中,∠A =90°∴ 42+(8-x )2=x 2 …… 6分 解得x =5 ……7分所以△BDG 的面积=12×5×4=10 ……8分25.(1) AH 平分BC 且AH =BC ……2分 (每回答出一种得1分)(2)答:成立 ……3分正确画出图形 …… 5分 证出AH 平分BC ……6分 △AHG ≌△BCG ……7分 AH =BC …… 8分26.(1)当CB =AB 时,在Rt △MCB ,由勾股定理得: t =32 ……2分当AB =AC 时,在Rt △MCA ,由勾股定理得:t =242……4分 当AC =BC 时,C 在AB 的垂直平分线上,与条件不合 ……5分 (2)由题意∠ACB =90°时,∴AC 2+BC 2 =AB 2设CM =x ,在Rt △MCB 中由勾股定理得:BC 2=x 2+42在Rt △MCA 中,由勾股定理得:AC 2=x 2+12 ……6分∴x 2+42+x 2+12=52x =2 t =1 ………7分(3)0<t <1;t >1 (每空1分) ………9分27.问题背景:EF =BE +FD . ……… 2分 探索延伸: EF =BE +FD 仍然成立. ……… 3分 证明:延长FD 到点G ,使DG =BE ,连接AG… 可证△ABE ≌△ADG .∴AE =AG ,∠BAE =∠DAG , ……… 4分 可证△AEF ≌△AGF . ∴EF =FG .又∵FG =DG +DF =BE +DF .∴EF =BE +FD . ……… 5分结论应用:连接EF ,∵∠AOB =30°+90°+20°=140°,∠FOE =70°=12∠AOB , ……… 6分又∵OA =OB ,∠A +∠B =60°+120°=180°,符合探索延伸中的条件,∴结论EF =AE +FB 成立. ……… 8分 即,EF =AE ++FB =2×40+2×50=180(海里)答:此时两舰艇之间的距离为180海里. ……… 9分。

2015年秋季期中考试初二年数学试卷附答案

2015年秋季期中考试初二年数学试卷附答案

2015年秋季期中考试初二年数学试卷班级 号数 姓名一、 选择题:(每小题3分,共21分)1、4的平方根是( )A. ±2B. 2C. -2D. ±42.下列实数中,是无理数的为( )A 、-3B 、722 C 、-3 D 、03、下列运算中,计算结果正确的是( ) A .1234a a a =⋅ B .333)(ab b a =⋅ C .523)(a a = D . 236a a a =÷4、下列命题中是真命题的是( )A .B .相等的角是对顶角 C.2141= D .-27没有立方根 5、下列运算正确的是 ( ) A .222)(y x y x -=-B .9)3(22+=+a aC .22))((b a b a b a -=--+D .22))((y x x y y x -=+-6.下列因式分解错误的是( )A .22()()x y x y x y -=+-B .222()x y x y +=+C .2()x xy x x y +=+D .2269(3)x x x ++=+ 7.一个正方形的边长为acm ,若它的边长增加cm 4,则面积增加了( )2cmA.16B. 8aC. (16+4a )D. (16+8a )二、填空题:(每小题4分,共40分)8、 64的立方根为 .9、计算:2(615)3x xy x -÷= .10.把命题“同旁内角互补,两直线平行”改写成“如果……,那么……”的形式: ________________ _______.11. 比较大小:2 512、因式分解:42-a = .13、若)()(=+-35x x 152-+kx x ,则k 的值为 .14、30y -=,则化简:()y x a = .15、已知多项式)21)(5(x mx -+展开后不含x 的一次项,则m 的值是16. 当整数k = 时,多项式42++kx x 恰好是另一个完全平方式.17. 我们把分子为1的分数叫做理想分数,如21,31,41,…,任何一个理想分数都可以写成两个不同理想分数的和,如613121+=;1214131+=;2015141+=;=51 ;﹍根据对上述式子的观察,请你思考:如果理想分数n 1(n 是不小于2的整数)ba 11+=,那么=+b a .(用含n 的式子表示).三、解答题:(共89分)18、(919(9分)计算: 232)3()129(x x x -÷-20、(9分)因式分解:22242y xy x +-21、(9分)先化简,再求值: ()()()2212121x x x +-+-,其中x = 2-22. (9分)若10=+b a ,6=ab . 求:(1)22ab b a +的值;(2)22b a +的值.23、(9分)若m n y x 23-与n m y x 3-的积与3421y x 是同类项,求n m +4的平方根24、(9分)如图,有一块长为a a +2,宽为a 2的长方形铁皮,将其四个角 分别剪去一个边长为21-a (a >1)的正方形,剩余的部分可制成一个无盖 的长方体盒子。

2015-2016学年八年级上数学期中考试试卷(2)含答案

2015-2016学年八年级上数学期中考试试卷(2)含答案

A D
A' A
D B'
B
C
B
C
16 题图
17 题图
16.如图,在△ABC 中,∠A=900,BD 平分∠ABC,AC=8cm,CD=5cm,那么 D 点到直线 BC
的距离是
cm.
17.如图,把△ABC 绕 C 点顺时针旋转 30°,得到△A’B’C, A’B’交 AC 于点 D,
若∠A’DC=80°,则∠A=
-2x=-4
x=2
......
.经检验:x=2 是原方程的解. .....
∴原方程的解为:x=2
24. 解:设甲工厂每天能加工 x 件新产品,则乙工厂每天能加工 1.5x 件新产品. ...1 分
据题意: 1200 1200 10 x 1.5x
解得: x 40 经检验: x 40 是原方程的解.
A.两锐角对应相等
B.斜边和一条直角边对应相等
C.两直角边对应相等 5. 计算(- 2a )3 的结果是(
b
D.一个锐角和斜边对应相等 ).
A. 2a3 b3
B. 6a3 b3
C. 8a3 b3
8a3 D.
b3
6.如图,AC 与 BD 交于 O 点,若 OA=OD,用“SAS” 证明△AOB≌△DOC,还需条件为 .( ) A. AB=DC B.OB=OC C. ∠A=∠D D. ∠AOB=∠DOC
A.2 个
B.3 个
C.4 个
D.5 个
10.把一个正方形纸片折叠三次后沿虚线剪断①②两部分,则展开①后 得到的是( )
① ②
A.
B.
C.
D
二.、耐心填一填(每小题 2 分,共 16 分)

2015—2016学年度第二学期八年级数学期中考试试题

2015—2016学年度第二学期八年级数学期中考试试题

2015-2016学年度第二学期八年级期中考试数 学 试 题(分值:120分 考试时间:120分钟)一、选择题(每小题3分,共36分),,A .6B .C .9D .4. □ABCD 中,∠A:∠B =1:2,则∠C 的度数为( ).A .30°B .45°C .60°D .120°5. 下列说法中正确的是( )A .两条对角线相等的四边形是矩形B .两条对角线互相垂直的四边形是菱形C .两条对角线互相垂直且相等的四边形是正方形D .两条对角线互相平分的四边形是平行四边形6 如图,菱形ABCD 中,E 、F 分别是AB 、AC 的中点,若EF =3,则菱形ABCD 的周长是( ) A .12 B .16 C .20 D .247、 如图,正方形ABCD 中,以对角线AC 为一边作 菱形AEFC ,则∠FAB 等于( ) A .22.5° B .45° C .30° D .135°8、 如图,在□ABCD 中,已知AD =5cm ,AB =3cm ,AE 平分∠BAD 交BC 边于点E ,则EC 等于A.1cmB.2cmC.3cmD.4cm7题 8题 9题9、如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D’处,则重叠部分△AFC 的面积为( ).A .6B .8C .10D .12 10 能判定四边形ABCD 为平行四边形的条件是( )A 、AB ∥CD ,AD=BC; B 、∠A=∠B ,∠C=∠D;C 、AB ∥CD ,∠C=∠A; D 、AB=AD ,CB=CD6题A B C D F D’11 等腰三角形的一腰长为13,底边长为10,则它的面积为( )A.65B.60C.120D.13012.先化简再求值:当a=9时,求221a a a +-+的值,甲乙两人的解答如下:甲的解答为:原式1)1()1(2=-+=-+=a a a a ;乙的解答为:原式1712)1()1(2=-=-+=-+=a a a a a .在两人的解法中( )A .甲正确B .乙正确C .都不正确D .无法确定。

四川省南充白塔中学八年级数学上学期二次月考试题(无

四川省南充白塔中学八年级数学上学期二次月考试题(无

6)5(652--=--x x x x )3)(2(652--=+-x x x x 65)3)(2(2--=--x x x x )3)(2(652++=+-x x x x 四川省南充白塔中学2015-2016学年八年级数学上学期二次月考试题(考试时间:120分钟 满分120分)一、选择题(每小题3分,共30分)1.在以下永洁环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形是( )A B C D2.已知三角形的两边长分别为4和9,则下列数据中能作为第三边长的是( )A.13B.6C.5D.43.一个多边形的内角和是900°,则这个多边形的边数为( ) A.6 B.7 C.8 D.94.下列计算错误的是( )A. 3a ·2b =5abB. -a 2·a =-a 3C. ()()936-x -x =x ÷ D. ()2362a4a -=5.下列式子变形是因式分解的是( )A. B. C. D. 6.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是( )第5题图 第6题图 A . 180° B . 220° C . 240° D . 300°7 . 如图,已知∠1=∠2,要得到△A BD≌△ACD ,还需从下列条件中补选一个,则错误的选法是( ) A . AB=AC B . DB=DC C . ∠A DB=∠ADC D . ∠B=∠C8.下列各式:①a 0=1;②a 2•a 3=a 5;③a 2•b 2=(ab)4;④﹣(3﹣5)+(﹣2)4÷8×(﹣1)=0;⑤x 2+x 2=2x 2,其中正确的是( ) A . ①②③ B . ①③⑤ C . ②③④ D . ②④⑤9.图(二)中有四条互相不平行的直线l 1、l 2、l 3、l 4所截出的七个角。

关于这七个角的度 数关系,下列正确的是( )A .742∠∠∠+= B.613∠∠∠+= C .︒∠∠∠180641=++ D.︒∠∠∠360532=++()()()()11121121222131323112122222222+=+⨯++=+⨯++=+⨯++=++……n n n 10.如图1,在△ABC 中,∠ABC 的平分线BF 与∠ACB 的平分线CF 相交于F ,过点F 作DE∥BC,交直线AB 于点D ,交直线AC 于点E ,通过上述条件,我们不难发现:BD+CE=DE ;如图2,∠ABC 的平分线BF 与∠ACB 的外角平分线CF 相交于F ,过点F 作DE∥BC,交直线AB 于点D ,交直线AC 于点E ,根据图1所得的结论,试猜想BD ,CE ,DE 之间存在什么关系?( ) A . B D ﹣CE=DE B . B D+CE=DE C . C E ﹣DE=BD D . 无法判断 二、填空题(每小题3分,共24分) 11. 计算:3243)()(a a -•- = . 12.等腰三角形中有一个角地外角等于50°,则此三角形的顶角度数为 . .13.若2294y mxy x +-是完全平方式,则m = . 14.=-⨯20162015)4()25.0( .15.===+ba ba 3210,210,310则若 .16.如图,边长为m+4的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为 。

2015学年第一学期八年级数学期中测试卷-刘玲玲

2015学年第一学期八年级数学期中测试卷-刘玲玲

2015学年第一学期八年级数学学科期中质量调研试卷(时间 90 分钟,满分100分)一、填空题(每题2分,共32分) 1. 代数式x2-有意义,则x 的取值范围是 2. = ,其中3-=x . 3. 已知0>a ,化简:__________4=-ba.. 4.写出y x -的一个有理化因式: 5. x 33<-的解集是 6. 若最简二次根式b a b ba ++32与是同类二次根式,则ab =__________7. 如果圆的面积与正方形的面积相等,那么正方形的周长与圆的周长的比值是 8. 若代数式1692+-mx x 能配成一个完全平方式,则m 的值为 ; 9. 已知m 、n 为实数,且()()的值为那么222222,201n m n m n m +=-++ ; 10. 一块长方方形绿地的面积为1200平方米,并且长比宽多10米,如果设长为x 米,那么列出的方程是 11. 在实数范围内分解因式:22342y xy x -+= .12. 已知关于x 的方程12)1(2=++x x m 有实数根,则实数m 的取值范围是 .13. 人们从长期的实践中总结出来的真命题叫做 . 14. 已知:如图,AB ∥CD ,AB =CD ,点O 是BD 上一点, 过点O 的直线分别交DA 和BC 的延长线于点E 、F , 则图中共有 对全等三角形15. 设等腰三角形的三条边分别是a,b,c,已知a =5,b 、c是关于x 的方程042=+-m x x的两个根,则m 的值是______________.16.在△ABC 中,AB =AC ,把△ABC 折叠,使点B与点A 重合,折痕交AB 于点M ,交BC 于点N .如果△CAN 是等腰三角形,则∠B 的度数为______________. 二、选择题(每题3分,共15分) 17. ( )(A ) 1个 (B) 2 个 (C) 3个 (D) 4个 18. 下列方程中一元二次方程的个数是)6(,72)4(2)5(3242)4(,63)3(25431)2(,0)1(222222=++-=+=+=+=-=c bx ax x x x x x x xx x x (A) 1个 (B) 2个 (C) 3 个 (D)4个 19. 如果3323+-=+a a a a成立,则a 的取值范围是---( )(A) a ≥-3 (B) a ≤0 (C) 0≤a ≤-3 (D) -3≤a ≤020. 关于x 的方程012=-++a ax x 的根的情况是( )(A)有两个相等的实数根; (B)有两个实数根; (C) 有两个不相等的实数根; (D)无法确定; 21. 以下说法中,正确的个数是( )(1)有两条边和其中一边所对的角对应相等的两个三角形全等 (2)全等三角形的中线相等(3)有两条边和第三条边上的高对应相等的两个三角形全等。

白塔中学初二期中试卷数学

白塔中学初二期中试卷数学

1. 下列各数中,正数是()A. -3.14B. -1/2C. 0D. 3.142. 下列各数中,有理数是()A. √9B. √16C. √-1D. √03. 若a、b是实数,且a < b,则下列不等式中正确的是()A. a + 1 < b + 1B. a - 1 > b - 1C. a + 1 > b + 1D. a - 1 < b - 14. 下列代数式中,同类项是()A. 2x^2yB. 3xy^2C. 4x^2yD. 5x^2y^25. 若一个等腰三角形的底边长为4,腰长为5,则该三角形的面积是()A. 6B. 8C. 10D. 126. 下列函数中,是二次函数的是()A. y = 2x + 3B. y = x^2 + 2x + 1C. y = 3x^2 + 2x - 1D. y =x^3 + 2x^2 - 17. 下列方程中,有唯一解的是()A. 2x + 3 = 0B. 2x + 3 = 2xC. 2x + 3 = 2x + 1D. 2x + 3 = 2x - 18. 下列命题中,正确的是()A. 平行四边形一定是矩形B. 矩形一定是正方形C. 正方形一定是菱形D. 菱形一定是矩形9. 下列图形中,中心对称图形是()A. 正方形B. 等边三角形C. 等腰梯形D. 长方形10. 若一个数的平方是81,则这个数是()A. 9B. ±9C. ±81D. 011. 计算:-2 + 3 - 4 + 5 - 6 + ... + 100 - 101 + 102 = _______12. 已知a、b是实数,且a - b = 2,ab = -1,则a^2 + b^2 = _______13. 解方程:2x - 3 = 514. 已知y = 3x - 2,当x = 4时,求y的值15. 已知一个等腰三角形的底边长为6,腰长为8,则该三角形的周长是 _______16. 已知一次函数y = kx + b,当x = 2时,y = 3,当x = 3时,y = 6,求k和b的值17. 解不等式:3x - 2 < 518. 已知a、b是实数,且a + b = 5,ab = -6,则a^2 + b^2的值是 _______三、解答题(每题20分,共80分)19. 已知一次函数y = kx + b,当x = 1时,y = 2,当x = 3时,y = 7,求k和b的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

白塔中学2015年秋期中测试八年级数学试卷
(满分120分,120分钟完卷) 班级 姓名 成绩 一、选择题(每小题3分,共30分)
1.下列各图中,具有稳定性的是 ( )
(A ) (B ) (C ) (D )
2. 下列各组数可能是一个三角形的边长的是( ).
(A ) 1,2,4 (B )4,5,9 (C )4,6,8 (D )5,5,11
3.如图,AB ∥CD ,AD 和BC 相交于点O ,∠A =20°,∠COD =110°,则∠C 的度数是( ).
(A )80° (B ) 70° (C ) 60° (D ) 50°
第3题图 第5题图
4.下列说法中:① 有一个锐角和斜边对应相等的两个直角三角形全等;② 有两角和一边对应相等的两个三角形全等; ③ 腰相等的两个等腰三角形全等; ④ 有一边相等的两个等边三角形全等。

其中正确的个数有( ).
(A )1个 (B )2个 (C )3个 (D )4个
5.如图,已知BF =CE ,AC ∥DF ,则下列条件中不一定能使△ABC ≌△DEF 的是 ( ).
(A ) AB=DE (B ) AC=DF (C ) ∠A=∠D (D )AB ∥DE
6.下列图形中,从几何性质上看和其它几个图形不一样的是( ).
(A ) (B ) (C ) (D )
7.已知实数a ,b 满足480a b --=,则以a ,b 的值为两边长的等腰三角形的周长为 ( ).
(A) 16 (B) 20 (C) 16或20 (D) 以上都不对
8. 如图,将长方形纸片先沿虚线AB 按箭头方向向右对折,接着将对折后的纸片沿虚线CD 按箭头方向向下对折,然后剪下一个小三角形,再将纸打开则打开后的图形是( )
(A ) (B) (C) (D)
9. 如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,7ABC S ∆=,DE =2,AB =4 ,则AC 的长是( )
(A) 4 (B) 3 (C) 6 (D) 5
第9题图 第10题图
10. 如图所示的钢架中,焊上等长的7根钢条来加固钢架,若11223788AP PP P P P P P A ===== ,则∠A 的度数是( )
(A) 12° (B) 15° (C) 20° (D) 25°
二、填空题(每小题3分,共24分)
11. 一个多边形的内角和是外角和的2倍,则这个多边形是 边形。

12. 如图,将△ABC 沿直线DE 折叠,使点B 与点A 重合,BC =12cm ,AC =5cm ,△ADC 的周长是 。

13. 如图,一副分别含有30°和45°角的两个直角三角板,按如图所示摆放,其中∠C =90°, ∠B =45°,∠E=30°。

则∠BFD 的度数是 。

第12题图 第13题图 第15题图 14. 若a,b,c 是△ABC 的三边长,且()()0a b b c --=,则△ABC 是 三角形。

15. 如图,AD 是等边△ABC 的中线,E 为AC 的中点,P 是AD 上一动点,若AB =2,
AD PC +PE 的最小值为 .
16. 如图,已知在Rt △ABC 中,AC =6,BC =8,AB =10,O 点是三条角平分线的交点,OD ⊥BC 于D ,则OD = ,
第16题图 第17题图 第18题图
17. 己知Rt △ABC 中,∠BAC = 90°,AB=AC ,将其放在如图所示的直角生标系中,若点A 坐标为(1,0).点B (-1,1),则点C 的坐标是 .
18.如图,E,F 分别在正方形ABCD 的边CD 、AD 上,且CE =DF , AE 和BF 相交于点O ,下列结论:①AE =BF ;②AE ⊥BF ;③AO =OE ;④AOB DEOF S S ∆=四边形.你认为正确的结论有 (只填序号)
三、解答题(每小题6分,共12分)
19. 已知点P (m +2n ,4)与点Q (一3,3m +n ),关于y 轴对称,求m 和n 的值.
20. 如图,△ABC 中,CD 平分∠ACB ,点F 在BC 的延长线上.且EF ∥CD ,若∠A =35°, ∠F =40°,求∠B 的度数.
四、(每小题8分,共16分)
21. 如图,在△ABC 中,AB =AC ,∠BAC =120°,DE 是AC 的垂直平分线,若CD =5cm ,求BD 的长.
22. 如图,AD 是△ABC 的中线,点F 为AD 的中点,过点A 平行于BC 的直线交CF 的延长线于点E ,求证:AE =BD .
23. 如图,在边长为1的正方形两格上有一个△ABC 。

(1)作△ABC 关于直线MN 的对称图形A B C '''∆;
(2)作△A B C ''''''与A B C '''∆对称轴EF ;
(3)设EF 与MN 相交于点O ,则∠BOB ''的度数是 .
24. 如图,AD为△ABC的角平分线,DE⊥AB于E,DF⊥AC于F,连接EF,试判断AD与EF的关系,并说明理由.
25. 如图,在△ABC中,D、E分别是AB、AC上的两点,BE、CD相交于O,∠OBC=∠OCB,OE=OD.
(1)求证:△OEC≌△ODB;
(2)求证:AE=AD.
26.如图1,△ABC和△CDE均是等边三角形,点A,C,D在同一条直线上,AE与BC 相交于点M,BD与CE相交于点N.
(1)求证:AE=BD;
(2)求证:△C MN是等边三角形;
(3)若AE与BD相交于点O,求∠AOB的度数;
(4)在图2中,求证:点C在∠AOD的角平分线上。

图1 图2。

相关文档
最新文档