实验四:丙烯酰胺水溶液的聚合

合集下载

丙烯酰胺水溶液聚合实验报告

丙烯酰胺水溶液聚合实验报告

丙烯酰胺水溶液聚合实验报告摘要:本实验通过在水溶液中进行丙烯酰胺聚合反应,探究了丙烯酰胺的水溶液聚合特性。

实验结果表明,丙烯酰胺能够在水溶液中发生聚合反应,形成聚丙烯酰胺。

引言:聚丙烯酰胺是一种重要的高分子材料,在水处理、油田开发、纺织品加工等领域具有广泛应用。

其水溶液聚合方法简单、成本低廉,因此备受研究者关注。

本实验旨在通过对丙烯酰胺水溶液聚合反应的研究,深入了解该反应的特性。

实验方法:1. 实验材料准备a. 丙烯酰胺b. 水c. 过硫酸铵d. 氯化亚铁e. 硝酸银f. 醋酸g. 玻璃仪器:烧杯、移液管、搅拌棒等2. 实验步骤a. 将一定质量的丙烯酰胺溶解于适量的水中,得到丙烯酰胺水溶液。

b. 在丙烯酰胺水溶液中加入过硫酸铵作为引发剂,控制温度,并搅拌均匀。

c. 观察水溶液的颜色变化和粘度变化。

d. 取适量的聚合液滴于硝酸银溶液中,观察是否产生沉淀反应。

e. 用醋酸对聚合液进行中和处理,观察是否产生沉淀反应。

实验结果:1. 丙烯酰胺水溶液经过聚合反应后,呈现出浑浊的乳白色液体。

2. 随着聚合时间的增加,丙烯酰胺水溶液的粘度逐渐增大。

3. 将聚合液滴于硝酸银溶液中,观察到产生了白色沉淀,证明聚合液中存在氯离子。

4. 用醋酸对聚合液进行中和处理,观察到产生了白色沉淀,证明聚合液中存在银离子。

讨论:根据实验结果可以得出以下结论:1. 丙烯酰胺能够在水溶液中发生聚合反应,形成聚丙烯酰胺。

2. 过硫酸铵在水溶液中起到引发剂的作用,引发丙烯酰胺的聚合反应。

3. 聚合液中存在氯离子和银离子,可能是由于丙烯酰胺的原料或引发剂中含有这些离子而导致。

结论:通过本实验我们成功地在丙烯酰胺水溶液中实现了聚合反应,并观察到了聚丙烯酰胺的形成。

该实验结果对于深入研究丙烯酰胺的水溶液聚合特性具有重要意义,并为丙烯酰胺的应用提供了实验基础。

致谢:感谢实验中给予我指导和帮助的老师和同学们的支持。

实验4_丙烯酰胺的水溶液聚合

实验4_丙烯酰胺的水溶液聚合

实验4_丙烯酰胺的水溶液聚合
丙烯酰胺是一种功能性单元,用于合成各种多功能的材料。

其在生物材料,药物载体,新能源,高分子材料和能源存储材料等方面有着广泛应用。

丙烯酰胺的水溶液聚合是一种在水中发生聚合反应的反应方式。

它是将两个或多个丙
烯酰胺单体分子结合起来,形成多聚物的绿色合成方法。

原位分子聚合反应可以在水溶液
中进行,也可以在乙醇中进行,用途比较广泛。

实验4:丙烯酰胺的水溶液聚合实验,主要用于揭示丙烯酰胺的水溶液中聚合反应的
机理。

该实验首先准备了酸性的己二酸酐溶液,再将丙烯酰胺单体加入溶液中,调整pH值
7.0至8.0,恒定温度。

当反应完成时,检测两个加料量比,采用氢原子吸收测定其聚合率。

通过试验,发现丙烯酰胺的水溶液聚合反应的聚合率和加料量比、pH值和反应温度的变化等因素有关。

当溶液温度增加时,聚合反应的反应程度会加快,但高温比较高时反应终止;当pH
值下降时,聚合反应的速率也会增加,而大量的氢离子可以促进物质的聚合;另外,加料
量比也是影响反应速率的原因,若加料量比偏小,聚合反应会比较缓慢,而加料量比偏大时,反应会有加速作用。

通过该实验,可知丙烯酰胺水溶液聚合反应的反应过程是十分复杂的,而且受温度、pH值及加料量比的影响很大。

理解其聚合机理,有利于改进丙烯酰胺工艺,提高生产产品的质量,提高生产效率。

丙烯酰胺水溶液聚合

丙烯酰胺水溶液聚合

丙烯酰胺水溶液聚合
1. 什么是聚丙烯酰胺水溶液聚合?
聚丙烯酰胺水溶液聚合是一种利用聚丙烯酰胺(又被称为聚胺酯)和水作为基体进行聚合反应的技术。

它可以制备出高分子量的高分子材料,用于制造高质量的各种仪器、工具和家具等。

2. 聚丙烯酰胺水溶液聚合的特点
1. 电子产品、机械件的表面保护
由于聚丙烯酰胺水溶液能够制备出高分子材料,可用于电子产品、机械件所需的表面抛光处理,从而提升其外观和耐磨性,从而起到保护作用。

2. 建筑材料的制备
聚丙烯酰胺水溶液可以制备出耐磨抗老化的建筑材料,可以在耐候、高温和高湿环境中长时间使用,并且具有优异的热阻、电绝缘性能,可大大延长建筑寿命。

3. 包装材料的制备
聚丙烯酰胺水溶液的主要成分具有良好的耐溶剂性和耐水力学性能,更适合应用于制备各类包装材料,如膜、纸、塑料件等,以便进行食品、化工等各类品牌产品的包装。

1. 使用前必须清洁工作台及工具,防止有污染物污染聚合液,防止产生二次污染。

2. 必须采用高品质的原料,使用质量保证级t工业聚丙烯酰胺及其赋能剂,这
样能够保证聚合水溶液的质量。

3. 聚合过程必须有专人操作,并且应定期监测反应温度和湿度。

4. 聚丙烯酰胺水溶液具有很高的可燃性,聚合过程必须注意防火安全,及时处理失控反应,以防发生火灾事故。

丙烯酰胺水溶液聚合

丙烯酰胺水溶液聚合

一、丙烯酰胺水溶液聚合一、实验目的1.掌握溶液聚合的方法和原理。

2.学习如何选择溶液。

3.掌握聚合物的处理方法。

二、实验原理将单体溶于溶剂中而进行聚合的方法叫做溶液聚合。

生成聚合物有的溶解有的不溶,前一种情况称为均相聚合,后者则称为沉淀聚合。

自由基聚合,离子型聚合和缩聚均可用溶液聚合的方法。

在沉淀聚合中,由于聚合物处在非良溶剂中,聚合物链处于卷曲状态,端基被包裹,聚合一开始就出现自动加速现象,不存在稳态阶段。

随着转化率的提高,包裹程度加深,自动加速效应也相应增强,沉淀聚合的动力学行为与均相聚合有明显不同。

均相聚合时,依双基终止机理,聚合速率与引发剂浓度的平方根成正比。

而沉淀聚合一开始就是非稳态,随包裹程度的加深,其只能单基终止,故聚合速率将与引发剂的浓度的一次方成正比。

在均相溶液聚合中,由于聚合物是处在良溶剂环境中,聚合物处于比较伸展状态,包裹程度浅链扩散容易,活性端基容易相互靠近而发生双基终止。

只有在高转化率时,才开始出现自动加速现象,若单体浓度不高,则有可能消除自动加速效应,使反应遵循正常的自由基聚合动力学规律。

因而溶液聚合是实验室中研究聚合机理及聚合动力学等常用的方法之一。

进行溶液聚合时,由于溶剂并非完全是惰性的,其对反应会产生各种影响,选择溶剂时应考虑以下几个问题:(1)对引发剂分解的影响:偶氮类引发剂(偶氮二异丁腈)的分解速率受溶剂的影响很小,但溶剂对有机过氧化物引发剂有较大的诱导分解作用。

这种作用按下列顺序依次增大:芳烃、烷烃、醇类、醚类、胺类,诱导分解的结果使引发剂的引发效率降低。

(2)溶剂的链转移作用:自由基是一个非常活泼的反应中心,它不仅能引发单体分子,而且还能与溶剂反应,夺取溶剂分子的一个原子,如氢或氯,以满足它的不饱和原子价。

溶剂分子提供这种原子的能力越强,链转移作用就越强。

链转移的结果使聚合物分子量降低。

若反应生成自由基活性降低,则聚合速度也将减小。

(3)对聚合物的溶解性能,溶剂溶解聚合物的性能控制着活性链的形态(卷曲或舒展)及其粘度,它们决定了链终止速度与分子量的分布。

丙 烯 酰 胺 的 水 溶 液 聚 合

丙 烯 酰 胺 的 水 溶 液 聚 合

丙烯酰胺的水溶液聚合一、实验目的:1、掌握溶液聚合的方法及原理;2、学习如何正确的选择溶剂。

二、实验原理:与本体聚合相比,溶液聚合体系具有粘度低、搅拌和传热比较容易,不易产生局部过热、聚合反应容易控制等优点,但由于溶剂的引入,溶剂的回收和提纯使聚合过程复杂化;只有在直接使用聚合物溶液的场合,如涂料、胶粘剂、浸渍剂、合成纤维纺丝液等,使用溶液聚合才最有利。

进行溶液聚合时,由于溶液并非完全是惰性的,对反应要产生各种影响,选择溶剂时要注意其对引发剂分解的影响、链转移作用、对聚合物的溶解性能的影响,丙烯酰胺为水溶性单体,其聚合物也溶于水,在本实验采用水为溶剂进行溶液聚合,与有机物作溶剂的溶液聚合相比,只有廉价、无毒、链转移常数小、对单体和聚合物的溶解性能好的优点,聚丙烯酰胺是一种优良的絮凝剂、水溶性好,广泛应用于石油开采、选矿、化学工业及污水处理等方面。

过硫酸铵是一种白色晶体,常作强氧化剂使用,也可以作单体聚合引发剂。

它几乎不吸潮,由于能达很高的纯度而具有特别好的稳定性,便于储存。

另外,它还具有使用方便、安全等优点。

三、实验仪器和试剂:三口瓶、球形冷凝管、温度计、丙烯酰胺(5g)、甲醇(25ml)、过硫酸铵(0.05g)四、注意事项:1、使用水浴锅时,水浴锅的外壳不能碰到谁,防止短路,破坏仪器;水浴锅底部不可与三口瓶接触;2、甲醇为有毒的易挥发液体,在使用时注意尽量避免吸入鼻子中,使用后要进行回收处理。

3、沉淀剂的选择符合:①沉淀剂与聚合物完全不溶;②沉淀剂与溶剂要完全互溶;③沉淀剂一般为溶剂的4~5倍。

五、实验步骤、现象及其解释实验步骤现象现象解释在250ml的三口瓶中,中间口安装搅拌器,另外两口分别装上一个温度计,一个冷凝管。

将5g丙烯酰胺和80ml蒸馏水加入反应瓶中,开动搅拌器,用水浴加热至30℃,使单体溶解;然后把溶解在10ml蒸馏水中0.05g过硫酸铵加入反应瓶中,并用10ml蒸馏水冲洗,逐步升温到90℃,在90℃反应2~3h丙烯酰胺为白色晶体物质,加入溶解中,在搅拌下逐渐溶解,过硫酸铵很快溶解在溶剂中,随着反应的进行,搅拌速度逐渐降低,即反应液的粘度逐渐变大,甚至可能出现“爬杆现象”。

丙烯酰胺水溶液聚合的几种氧化还原引发体系的研究.

丙烯酰胺水溶液聚合的几种氧化还原引发体系的研究.
-4-0. 1320. 2650. 5301. 062. 655. 3010. 621. 252. 9
4
10751009100811901216443. 9328. 8357. 0340. 1
实验结果表明,随着引发剂浓度的增加, PAM分子量基本呈上升趋势,但引发剂浓度在
本实验范围内对分子量的影响不是很明显,分子
丙烯酰胺(AM单体在水溶液中聚合时,其聚合物分子量的大小与引发剂种类及浓度、引发温度、体系pH值、单体浓度及单体质量等诸多因素都有密切的关系。通过使用不同的引发体系,可以合成不同分子量的聚丙烯酰胺(PAM。不同分子量的PAM在不同的领域有不同的应用。研究引发体系与分子量的关系,以便合成不同分子量的PAM产品,以满足不同领域的需要具有重要意义。迄今为止,国内外大量报道了有关不同分子量PAM的合成方法,分子量范围从几万到上千万。目前国内的研究热点主要集中在高分子量PAM的研制。本文主要对AM水溶液聚合的四
以氯酸钠-亚硫酸钠作为氧化还原引发体系,在不同的聚合条件下,可合成300~1200万的不同分子量的PAM ,而要获得1000万以上的高分子量PAM ,聚合条件是:引发温度50℃,体系pH控制在2. 2左右,引发剂浓度应控制在[N aC l O 3]00. 156~3. 13×10-4m o l L , [N a 2SO 3]00. 132~2. 65×10-4m o l L ;单体浓度
参 考 文 献
1国家技术监督局发布.中华人民共和国国家标准GB 12005. 1
-879
3M isra G S and Bhattachaya S N . Journal of Po lym er Science :
22
m o l L , m o l L ;

丙烯酰胺水溶液聚合中本体溶液浓度和引发剂用量研究

丙烯酰胺水溶液聚合中本体溶液浓度和引发剂用量研究

丙烯酰胺水溶液聚合 中本体 溶液浓度和 引发剂用量研 究
唐 天 龙 ( 中石油 大庆炼化公 司聚合物 一厂丙烯 酰胺 一车 间,黑龙江 大庆 1 6 3 0 0 0 )
摘 要 : 主要对 丙烯酰胺水溶液 的浓度和 引发 剂用量进 行研 究 。 关键词 :丙烯酰胺 ; 聚 丙烯酰胺 ;引发剂 ;聚合 中图分类号 : T Q3 1 6 _ 3; T E 3 9 文献标 志码 : B 文章编号 :1 0 0 3 — 6 4 9 0( 2 0 1 7 )1 2 — 0 1 2 8 — 0 1
St udy o n Co nc e nt r a t i o n a nd I ni t i a t i o n Do s e o f Bo dy S o l ut i o n i n Ac r y l a mi de Aq ue o us So l ut i o n Po l y me r i z a t பைடு நூலகம் o n
第4 3 卷第 1 2 期
2 0 1 7 年l 2 月
研 究与开 发
Re s e a r c h a n d De v e l o p me n t






Ch e mi c a l E n g i n e e i r n g De s i g n Co mmu n i c a t i o n s
T a n g T i an — l o ng
Ab s t r a c t: T h e a r t i c l e ma i n l y s t u d i e s t h e c o n c e n t r a t i o n o f a c r y l a mi d e a q u e o u s s o l u t i o n a n d t h e i n i t i a t o r d o s a g e . Ke y wo r d s:a c r y l a mi d e;p o l y a c r y l a mi d e;i n i t i a t o r; p o l y me i r z a t i o n; p o l y me iz r a t i o n

实验4_丙烯酰胺的水溶液聚合

实验4_丙烯酰胺的水溶液聚合

高分子化学实验报告10高二丙烯酰胺水溶液聚合实验四危平福1014122030丁胜10141220072013/5/20与本体聚合相比,溶液聚合体系具有粘度低、搅拌和传热比较容易、不易产生局部过热、聚合反应容易控制等优点。

丙烯酰胺水溶液聚合一、实验目的1. 掌握溶液聚合的方法及原理;2. 学习如何正确的选择溶剂。

二、实验原理与本体聚合相比,溶液聚合体系具有粘度低、搅拌和传热比较容易、不易产生局部过热、聚合反应容易控制等优点。

但由于溶剂的引入,溶剂的回收和提纯使聚合过程复杂化。

只有在直接使用聚合物溶液的场合,如涂料、胶粘剂、浸渍剂、合成纤维纺丝液等,使用溶液聚合才最为有利。

进行溶液聚合时,由于溶剂并非完全是惰性的,对反应要产生各种影响,选择溶剂时要注意其对引发剂分解的影响、链转移作用、对聚合物的溶解性能的影响。

丙烯酰胺为水溶性单体,其聚合物也溶于水,本实验采用水为溶剂进行溶液聚合。

与以有机物作溶剂的溶液聚合相比,具有价廉、无毒、链转移常数小、对单体和聚合物的溶解性能好的优点。

聚丙烯酰胺是一种优良的絮凝剂,水溶性好,广泛应用于石油开采、选矿、化学工业及污水处理方面。

合成聚丙烯酰胺的化学反应简式如下:三、主要仪器和试剂三口瓶,球形冷凝管,温度计,丙烯酰胺,甲醇,过硫酸钾(或过硫酸铵),氮气四、实验步骤与分析1.【在250mL 的三口瓶中,中间口安装搅拌器,分别装上一个温度计和一个冷凝管。

】现象与分析:安装搅拌器时,应先保证搅拌桨竖直,并且应该遵循自下而上的安装顺序,然后开启搅拌器,查看是否安装稳定,为了防止温度计打到搅拌桨,也可以暂时不安装温度计,等需要测量时再关闭搅拌器,用温度计测量即可。

2.【将5 g(0.14 mol)丙烯酰胺和40 mL 蒸馏水加入反应瓶中,开动搅拌器,约350到400转每分钟,用水浴加热至30 ℃①,使单体溶解。

然后把溶解在5 mL 蒸馏水中的0.025 g 过硫酸钾加入反应瓶中,逐步升温到90 ℃,这时聚合物便逐渐形成,在90 ℃下反应2~3 h。

丙烯酰胺水溶液聚合

丙烯酰胺水溶液聚合

丙烯酰胺水溶液聚合提示A.实验装置与丙烯酰胺-丙烯酸共聚实验相同;B.引发剂为过硫酸铵,在50℃以上均可引发,适宜引发温度在60~65℃;引发剂的加量在0.2~0.4g之间;C.要求加入引发剂前每2min记录反应溶液的温度,至两次温度变化小于±2℃时,才能滴加引发剂,时间在3~5min完成;加入引发剂后20min内,继续每2min记录一次温度;20min后,每10~15min记录一次温度,最后在实验报告中要绘出温度-时间变化曲线,并进行机理解释;D.同丙烯酰胺-丙烯酸共聚实验一样,最后计算反应产物浓度(质量浓度,wt%),贴好标签,并保留样品。

聚丙烯酰胺的纯化提示A.每组将第四周丙烯酰胺-丙烯酸共聚实验产物配制成为质量浓度为3%~5%的溶液约50mL,注意充分搅拌,保证溶液的均匀性,配制过程中可适当加热(不高于70℃);B.量取20mL配制好的聚合物溶液,在玻璃棒搅拌条件下逐渐滴加到60mL无水乙醇中(在100或200mL烧杯中,约10~15min),滴加过程中注意观察、记录现象,描述沉淀发生时的状态、沉淀产物的形貌;C.量取100mL无水乙醇在玻璃棒搅拌条件下逐渐滴加入聚合物溶液中,每2~3min滴加10mL,停止滴加,充分搅拌1min,观察、记录现象,特别注意沉淀大量出现时所对应的乙醇浓度;沉降10min后,进行减压抽滤,得到固态沉淀物,两次用10mL无水乙醇洗涤沉淀物,注意:不要进行二次沉淀;剪碎沉淀物,置于表面皿中(为了计算收率,应对表面皿质量进行称量),贴好标签,保留备用;对干烘后的样品进行称量,计算聚合物提纯的收率(下一次实验时完成);D.对比两种提纯方式对沉淀出现现象、沉淀物形态以及溶液状态的不同影响,并分析原因。

1.再次强调对预习实验报告的要求,凡是没有预习实验报告的同学不予安排实验;注意预习实验报告内容应该结合我的最新修改:a)预习报告和正式实验报告可以是一个,老师只检查,不收取;b)预习实验报告主要包括:实验目的、原理、仪器、药品、步骤、对思考题的初步解答、注意事项及疑问;c)正式实验报告可以在预习报告基础上添加内容完成。

丙烯酰胺水溶液聚合

丙烯酰胺水溶液聚合

丙烯酰胺水溶液聚合
丙烯酰胺水溶液聚合是化学工程中应用较广的一种聚合方法,本文主要介绍丙烯酰胺水溶液聚合的原理,及其在有机合成中的应用。

一、丙烯酰胺水溶液聚合的原理
丙烯酰胺水溶液聚合是一种聚合反应,反应方程式为:丙烯酰胺(R-COOH)+水(H2O)→(R-COOH)2+ H2O,具体来说,丙烯酰胺水溶液聚合发生在水溶液中,反应原理是在水溶液中,丙烯酰胺是弱酸,而水为强碱,两者反应形成一种双分子聚合物,即经过聚合的丙烯酰胺。

二、丙烯酰胺水溶液聚合的应用
丙烯酰胺水溶液聚合在有机合成中有广泛的应用,主要包括以下几种:
1、应用于有机分子结构改造:丙烯酰胺水溶液聚合可以用来改造有机分子结构,例如将烷基化合物(例如甲基丙烯酸酯(MMA))转换成更高级别的聚苯乙烯(PS)。

2、用于改性油品:丙烯酰胺水溶液聚合可以用来改性油品,例如可以将油品和丙烯酰胺反应,制得甘油硬脂酸。

3、用于制备水性涂料:丙烯酰胺水溶液聚合可以用于制备水性涂料,这种涂料是由聚合物材料(如丙烯酰胺聚合物)和溶剂(如水)组成的,可以用来涂覆各种表面,以改善和保护表面。

总之,丙烯酰胺水溶液聚合是一种应用广泛的聚合方法,在有
机合成中可以用来改造有机分子结构,改性油品以及制备水性涂料。

聚合反应需要适当的条件,并受到外界因素的影响,大多数操作步骤是固定的,但个别步骤有调节的空间,有针对性的操作可以更有效地完成聚合反应。

丙烯酰胺水溶液法合成高分子量低毒(食品级)聚丙烯酰胺

丙烯酰胺水溶液法合成高分子量低毒(食品级)聚丙烯酰胺

网址:
介绍了一种聚丙烯酰胺粉末降尘技术。通过室内评定、工业化降尘应用试验和现场配注应用试验证明,该涂层剂具有很好的降低聚丙烯酰胺粉末扬尘效果。室内对照实验表明涂层后聚丙烯酰胺的抗剪切能力、耐盐能力和热稳定性均有一定程度的提高,说明涂层后的聚丙烯酰胺更适用于三次采油领域。涂层操作简便易行,利用聚丙烯酰胺生产现有工艺设备就可进行工业化生产。采用本降尘技术可在聚丙烯酰胺正常生产中和处理库存细粉中创巨大的经济效益和社会效益,同时,大大改善了生产装置和现场配制的粉尘问题,给生产和应用操作人员创造了更好的工作环境。
从油田堵水的角度出发,对镁皂石聚丙烯酰胺水凝胶体系的流变性质,以及这些性质随镁皂石浓度、聚丙烯酰胺浓度、高价阳离子、水矿化度、温度、体系流动时的剪切速率等因素的变化进行了研究。结果表明(1)若将镁皂石与聚丙烯酰胺复配,混合体系具有更加优异的流变性质,其粘度大大高于同浓度时单一体系的粘度。而且通过复配可大大降低其使用浓度;(2)通过改变镁皂石和聚丙烯酰胺的用量,可以在很大范围内调节体粘度,以满足各种需要;(3)混合体系有较强的抗Ca2+、Mg2+能力,在试验的浓度范围,Ca2+、Mg2+对体系流变性质影响不大;(4)混合体系有良好的耐温性能,在所试验的温度范围,体系流变性质对温度不敏感;(5)混合体系具有触变性。以上性能均有利于油田堵水,因而镁皂石聚丙烯酰胺水凝胶体系可作为油田堵水剂,以代替目前常用的聚丙烯酰胺堵水剂。
聚丙烯酰胺(polyacrylamide,简称PAM)水溶液具有高粘度、增稠性、絮凝性等多种重要的性能,可广泛应用于现代工农业的多个领域,包括污水处理、油田开采、造纸、制碱、制糖、洗煤、选矿、土壤改良、吸湿等,对国民经济的发展具有重要意义。大多数时候,PAM分子量越高越好,因此,从上世纪五十年代开始,提高PAM分子量一直是一个重要的课题。由于单体丙烯酰胺(Acrylamide,简称AM)毒性较大,所以无论在什么应用领域总是希望聚合物中残留的丙烯酰胺单体越少越好,在食品和饮用水应用领域对单体残留则有严格的规定。聚丙烯酰胺主要以干粉形式储存和运输,在使用时常需先溶于水,因此也希望溶解时间尽可能短,不溶物尽可能少。由此可见,高分子量、低单体残留、速溶型聚丙烯酰胺是绝大多数应用场合的共同要求。 本试验用水溶液聚合法制备出了聚丙烯酰胺,分别采用了五种氧化还原引发体系:APS(过硫酸铵,英文:Ammonium persulfate)—DA(四甲基乙二胺,英文:1,2-did(dimethylamino)ethane),APS—PMS(偏重亚硫酸钾,英文:potassiummetabisulfite),APS—SBS(亚硫酸氢钠,英文:Sodiumbisulfite),PPS(过硫酸钾,英文:Potassium persulfate)—PMS,PPS—DA。通过比较,APS—DA引发体系得到的分子量最高,APS—PMS次之;还原剂对聚合速率起主要作用,采用DA聚合速率最快,PMS和SBS聚合速率较慢;各体系对转化率影响不明显。从聚合产物性能而言,APS—DA为最佳引发体系,但考虑到DA毒性较大,实际应用受到限制,所以最终确定APS—PMS为最佳聚合体系。确定了在APS—PMS体系下的最佳聚合条件:单体浓度23%,采用APS(0.08%)—PMS(0.08%)引发体系,氨浓度0.2%,温度为40℃,聚合时间8h,pH为10。此时PAM分子量在1300~1500,转化率接近100%,并且没有水不溶物。另外,在试验中发现当采取低单体浓度(20%)或低温(30℃)聚合时分子量可以达到1900万左右。 考察了最佳聚合条件下杂质对聚合物的影响,铁离子(Fe3+)和氢氰酸在考察范围内对分子量影响不明显,有机杂质(包括丙烯腈、丙烯酸、β-羟基丙腈、乙腈、丙酮)均需达到较高浓度(1000ppm以上)时才会对分子量造成明显影响,一般AM单体中不会存在如此高浓度的杂质,所以AM单体水溶液聚合时也可以不考虑这些杂质对分子量的影响。只有铜离子(Cu2+)对PAM分子量影响很大,浓度应严格控制在0.2ppm以下。在所有实验中,均未发现杂质造成转化率的明显降低。 对APS—DA和APS—PMS体系引发的PAM进行了结构和性能分析。通过对红外光谱的分析,两种引发体系的聚合产物结构基本相同,主要成分都是PAM。通过TGA分析,两种聚合产物的热失重曲线非常接近:200℃前样品无分解;200~300℃样品发生脱氨分解,失去部分重量;300~450℃时样品快速失重,450℃时样品几乎完全炭化。该变化规律与理论值比较符合,说明聚合产物热稳定性较好。通过气相色谱分析,测得两种引发体系的单体残留量均小于0.05%,表明在单体残留方面达到了食品级的要求。

实验4_丙烯酰胺的水溶液聚合

实验4_丙烯酰胺的水溶液聚合

高分子化学实验报告10高二丙烯酰胺水溶液聚合实验四危平福1014122030丁胜10141220072013/5/20与本体聚合相比,溶液聚合体系具有粘度低、搅拌和传热比较容易、不易产生局部过热、聚合反应容易控制等优点。

丙烯酰胺水溶液聚合一、实验目的1. 掌握溶液聚合的方法及原理;2. 学习如何正确的选择溶剂。

二、实验原理与本体聚合相比,溶液聚合体系具有粘度低、搅拌和传热比较容易、不易产生局部过热、聚合反应容易控制等优点。

但由于溶剂的引入,溶剂的回收和提纯使聚合过程复杂化。

只有在直接使用聚合物溶液的场合,如涂料、胶粘剂、浸渍剂、合成纤维纺丝液等,使用溶液聚合才最为有利。

进行溶液聚合时,由于溶剂并非完全是惰性的,对反应要产生各种影响,选择溶剂时要注意其对引发剂分解的影响、链转移作用、对聚合物的溶解性能的影响。

丙烯酰胺为水溶性单体,其聚合物也溶于水,本实验采用水为溶剂进行溶液聚合。

与以有机物作溶剂的溶液聚合相比,具有价廉、无毒、链转移常数小、对单体和聚合物的溶解性能好的优点。

聚丙烯酰胺是一种优良的絮凝剂,水溶性好,广泛应用于石油开采、选矿、化学工业及污水处理方面。

合成聚丙烯酰胺的化学反应简式如下:三、主要仪器和试剂三口瓶,球形冷凝管,温度计,丙烯酰胺,甲醇,过硫酸钾(或过硫酸铵),氮气四、实验步骤与分析1.【在250mL 的三口瓶中,中间口安装搅拌器,分别装上一个温度计和一个冷凝管。

】现象与分析:安装搅拌器时,应先保证搅拌桨竖直,并且应该遵循自下而上的安装顺序,然后开启搅拌器,查看是否安装稳定,为了防止温度计打到搅拌桨,也可以暂时不安装温度计,等需要测量时再关闭搅拌器,用温度计测量即可。

2.【将5 g(0.14 mol)丙烯酰胺和40 mL 蒸馏水加入反应瓶中,开动搅拌器,约350到400转每分钟,用水浴加热至30 ℃①,使单体溶解。

然后把溶解在5 mL 蒸馏水中的0.025 g 过硫酸钾加入反应瓶中,逐步升温到90 ℃,这时聚合物便逐渐形成,在90 ℃下反应2~3 h。

丙烯酰胺水溶液聚合

丙烯酰胺水溶液聚合

丙烯酰胺水溶液聚合
丙烯酰胺水溶液聚合是指将丙烯酰胺溶解在水中,并通过引发剂的作用,使丙烯酰胺分子发生聚合反应,在水中形成聚丙烯酰胺。

丙烯酰胺水溶液聚合是一种常用的水处理化学反应。

聚丙烯酰胺具有良好的吸附性能和絮凝性能,可以用于水处理中的悬浮物去除和浊度的降低。

在水处理过程中,丙烯酰胺分子会与水中的悬浮物或颗粒结合在一起,形成较大的团聚体,并通过重力或电荷作用使其沉降或浮升,从而达到去除悬浮物的目的。

丙烯酰胺水溶液聚合的过程通常需要引发剂的参与。

引发剂的作用是通过引发剂中的自由基引发丙烯酰胺分子的聚合反应,使其形成长链聚合物。

常用的引发剂包括过氧化钠、过硫酸铵等。

丙烯酰胺水溶液聚合可以通过溶液聚合法或乳液聚合法进行。

溶液聚合法是将丙烯酰胺溶解在水中,再加入引发剂
进行聚合反应;乳液聚合法是将丙烯酰胺和乳化剂等混合,形成乳液,并在乳化剂的作用下进行聚合反应。

丙烯酰胺水溶液聚合具有使用方便、操作简单、效果明显
等优点,并且对环境无污染。

因此,它广泛应用于水处理、纸浆造纸、石油开采、纺织等领域。

丙烯酰胺的聚合反应原理

丙烯酰胺的聚合反应原理

丙烯酰胺的聚合反应原理
丙烯酰胺是一种常用的单体,它可通过自由基聚合反应进行聚合。

聚合反应的过程如下:
1. 开始反应时,自由基引发剂会引发单体中的一个双键上的自由基,生成活性的自由基。

2. 活性自由基会与另一个单体发生加成反应,形成一个长链分子中的自由基。

3. 这个长链分子中的自由基会与更多的单体发生加成反应,生成更长的链分子。

4. 由于自由基引发剂的存在,聚合反应会持续进行,生成越来越长的链分子,最终形成聚丙烯酰胺。

5. 反应结束时,聚合产物可以通过分离、纯化等方式得到。

聚丙烯酰胺的聚合反应是一种自由基聚合反应,其反应原理类似于其他常见的自由基聚合反应,如聚乙烯和聚丙烯等。

丙烯酰胺的聚合

丙烯酰胺的聚合

丙烯酰胺的聚合1 丙烯酰胺的基本特性丙烯酰胺是一种无色透明的液体,具有低粘度和易挥发的特点。

它的化学式为C3H5NO,分子量约为71。

丙烯酰胺易水解,在水中自发地聚合形成高分子聚合物,即聚丙烯酰胺(PAM)。

聚丙烯酰胺是一种具有优异性能的高分子化合物,广泛应用于油田、水处理、土壤改良等领域。

2 聚合反应的机理丙烯酰胺的聚合反应是一种自由基聚合反应。

聚合反应通常分为三个步骤:起始阶段、传递阶段和终止阶段。

起始阶段:通常使用自由基引发剂(如过氧化物)对丙烯酰胺进行活化,生成自由基;传递阶段:由于丙烯酰胺的高亲核性,可以与自由基发生加成反应,形成较长链的丙烯酰胺聚合物;终止阶段:由于聚合反应中自由基的不断生成和消耗,反应在特定条件下经历终止阶段,形成具有不同分子量的聚合物。

3 聚丙烯酰胺在水处理中的应用聚丙烯酰胺在水处理中是一种广泛应用的高分子药剂。

它具有吸附、絮凝、过滤的特性,可用于降低水中的浑浊度和COD值,减少悬浮颗粒的排放和水质改善。

聚丙烯酰胺的使用需要根据水源特性和处理标准进行不同的选择和配置。

4 聚丙烯酰胺在土壤改良中的应用聚丙烯酰胺还可以作为土壤改良剂使用。

它具有保水、减少土壤侵蚀和提高肥力的作用。

将聚丙烯酰胺与种子混合后定向喷撒在植物根系附近,可提高水分的平均供应量,增加植物生长所需的水分量。

此外,聚丙烯酰胺的吸附作用可以减少土壤中对养分的流失和排放。

5 聚丙烯酰胺在油田中的应用丙烯酰胺在油田生产过程中也有着广泛的应用。

塞水、废水处理等领域都离不开聚丙烯酰胺的使用。

在油井水驱过程中,聚丙烯酰胺作为一种水密封剂,可有效地堵住水沟、防止水侵袭油层。

在钻井泥浆的处理过程中,聚丙烯酰胺可以作为增稠剂、抗砂剂,提高泥浆的粘度和稳定性。

6 总结随着人们对于环境保护和资源利用的重视,聚丙烯酰胺作为一种优秀的高分子母体逐渐受到广泛关注和应用。

在水处理、土壤改良和油田等领域,聚丙烯酰胺具有着越来越重要的应用价值和前景。

22偶氮二2甲基丙基咪二盐酸盐 丙烯酰胺的水溶液聚合; -回复

22偶氮二2甲基丙基咪二盐酸盐 丙烯酰胺的水溶液聚合; -回复

22偶氮二2甲基丙基咪二盐酸盐丙烯酰胺的水溶液聚合; -回复题目:22偶氮二2甲基丙基咪二盐酸盐丙烯酰胺的水溶液聚合过程引言:聚合是一种重要的化学过程,通过将单体分子连接在一起,形成高分子化合物。

丙烯酰胺是一种常用的单体,可以通过不同的方法进行聚合。

本文将以22偶氮二2甲基丙基咪二盐酸盐作为引发剂,探讨丙烯酰胺的水溶液聚合过程,并逐步解释每个步骤。

第一步:制备溶液在进行聚合实验之前,首先需要制备丙烯酰胺的水溶液。

将一定量的丙烯酰胺加入到适量的水中,并充分搅拌,直到丙烯酰胺完全溶解。

此时得到的溶液是一种粘稠的液体,已经准备好进行聚合实验。

第二步:加入引发剂将22偶氮二2甲基丙基咪二盐酸盐加入到丙烯酰胺的水溶液中。

22偶氮二2甲基丙基咪二盐酸盐是一种引发剂,能够引发单体的聚合反应。

通过加入适量的引发剂,可以控制聚合的速度和效果。

第三步:搅拌混合在加入引发剂后,需充分搅拌混合水溶液,以确保引发剂均匀分布。

此步骤的目的是将引发剂与丙烯酰胺溶液相互接触,从而引发聚合反应。

第四步:调整温度在混合搅拌之后,需要将水溶液的温度调整到适当的范围。

通常来说,丙烯酰胺的聚合反应适宜在较低的温度下进行,例如20-30摄氏度。

通过调整温度,可以控制聚合的速率和质量。

第五步:观察反应在温度调整完成后,观察水溶液中的反应情况。

在聚合过程中,丙烯酰胺单体会逐渐连接形成高分子化合物,溶液的粘度也会逐渐增加。

通过适当的时间间隔,观察和记录溶液的变化,可以判断聚合反应的进行程度。

第六步:终止反应当观察到溶液的粘度已经达到期望的水平,或者聚合反应已经进行到一定程度时,需要终止反应。

通常,可以通过加入一些化学试剂来中和酸性催化剂或引发剂,从而停止聚合反应的进行。

第七步:过滤和干燥在终止反应后,可将溶液通过滤纸进行过滤,以去除其中的杂质。

过滤后的溶液通常是浓稠的高聚物溶液。

为了得到实际应用所需要的聚合物产品,还需要将溶液进行干燥,以去除其中的水分。

实验3丙烯酰胺的水溶液聚合

实验3丙烯酰胺的水溶液聚合

丙烯酰胺水溶液聚合一、实验目的1、掌握溶液聚合的方法及原理。

2、学习如何正确的选择溶剂。

3、掌握丙烯酰胺溶液聚合的方法。

二、实验原理与本体聚合相比,溶液聚合体系具有粘度低、搅拌和传热比较容易、不易产生局部过热、聚合反应容易控制等优点。

但由于溶剂的引入,溶剂的回收和提纯使聚合过程复杂化。

只有在直接使用聚合物溶液的场合,如涂料、胶粘剂、浸渍剂、合成纤维纺丝液等,使用溶液聚合才最为有利。

进行溶液聚合时,由于溶剂并非完全是惰性的,对反应要产生各种影响,选择溶剂时要注意其对引发剂分解的影响、链转移作用、对聚合物的溶解性能的影响。

丙烯酰胺为水溶性单体,其聚合物也溶于水,本实验采用水为溶剂进行溶液聚合。

与以有机物作溶剂的溶液聚合相比,具有价廉、无毒、链转移常数小、对单体和聚合物的溶解性能好的优点。

聚丙烯酰胺是一种优良的絮凝剂,水溶性好, 广泛应用于石油开采、选矿、化学工业及污水处理等方面。

合成聚丙烯酰胺的化学反应简式如下:O^-NHn O=C-NH.链引发:引发剂活性集团的形成:K2S2q — 2Ksq带电引发离子与丙烯酰胺作用生成活性中心:O HKSO4 + H2C—CHC——- O3SO CH r COC—NH2O HII 〜,丄OH+ H2C—CH C NF2 一HO CH2 COC—NH20--C —NH 2 O c —NH 26SO —C&-CO 二C三、实验药品及仪器N药品:丙烯酰胺、甲醇2过硫酸钾(或过硫酸铵2仪器:三口瓶、球形冷凝管、温度计、搅拌器、烧杯、一次性杯子、玻璃棒 实验装置如下图:四、实验步骤及现象及其解释实验步骤现象现象解释在250ml 的三口瓶中, 中间口安装搅拌器,另外两 口分别装上一个温度计,一 个冷凝管。

链增长:QSO-CF2—C +O C Nf▼ Ch"2— CnCf- CO c Nf O C NF! 链终止:OSQCH? —C O C2 O 3SO —CH ? —C CH 2 C五、实验产品: 在三颈瓶中为无色均相溶液,滴加到25ml乙醇中,振动, 得到棉絮状白色物质。

丙烯酰胺聚合方法

丙烯酰胺聚合方法

丙烯酰胺聚合方法
丙烯酰胺的聚合方法有多种,包括水溶液聚合法、反相乳液聚合法和悬浮聚合法。

水溶液聚合法是最常用的方法,其聚合过程隐患小,经济效益相对较大,被大多数人所接受。

此方法通过选择引发剂系统、调节反应介质的酸碱度、选择添加剂和溶剂、以及控制聚合温度等来影响产品的吸水性能。

反相乳液聚合法中,丙烯酰胺单体、阴离子功能单体、引发剂、乳化剂、水相、连续相等共同组成了丙烯酰胺反相乳液聚合法系统。

该方法制备的聚丙烯酰胺具有相对分子质量高、溶解快、降解慢、稳定性好的特点。

悬浮聚合法则是将不溶于水的单体在搅拌下悬浮在水中进行聚合的方法。

可以根据实际需要选择合适的聚合方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。










实验四:丙烯酰胺水溶液聚合
一、实验目的
1)、掌握溶液聚合的方法及原理
2)、学习如何正确的选择溶剂
二、实验药品、仪器及装置
药品:丙烯酰胺,甲醇,过硫酸钾(或过硫酸铵)
仪器:三口瓶,球形冷凝管,温度计
装置图:
三、实验原理
与本体聚合相比,溶液聚合体系具有粘度低、搅拌和传热比较容易、不易产生局部过热、聚合反应容易控制等优点。

但由于溶剂的引入,溶剂的回收和提纯使聚合过程复杂化。

只有在直接使用聚合物溶液的场合,如涂料、胶粘剂、浸渍剂、合成纤维纺丝液等,使用溶液聚合才最为有利。

选择溶剂时要注意其对引发剂分解的影响、链转移作用、对
聚合物的溶解性能的影响。

丙烯酰胺为水溶性单体,其聚合物也溶于水,本实验采用水为溶剂进行溶液聚合。

与以有机物作溶剂的溶液聚合相比,具有价廉、无毒、链转移常数小、对单体和聚合物的溶解性能好的优点。

聚丙烯酰胺是一种优良的絮凝剂,水溶性好,广泛应用于石油开采、选矿、化学工业及污水处理等方面。

合成聚丙烯酰胺的化学反应简式如下:
四、实验步骤及现象
1、250ml三口瓶,中间安装搅
拌器,两侧安装温度计、冷凝

2、将10g丙烯酰胺+80ml蒸馏
水加入三口瓶中,搅拌,水浴
加热至30℃,单体溶解!
溶解后溶液呈澄清,油状
3、将溶解在10ml蒸馏水中的
0.05g过硫酸钾从冷凝管上方加
入三口瓶中,并用10ml水冲洗
冷凝管
过硫酸钾溶液澄清
4、逐步升温到90℃,反应2-3小时
随反应进行,aq中气泡逐渐↑,粘度逐渐↑;本组几乎没
有爬杆现象;最后气泡消失,aq又变澄清
5、反应完,将产物倒入150ml 甲醇中,边到边搅拌,聚丙烯酰胺便沉淀下来
沉淀出团状的绵软白色聚合物(倒时搅拌不及时,聚合物未分离)
6、向烧杯中加入少量甲醇,
观察是否还有沉淀生成,若有,
则再加入少量甲醇(5-15ml),
使沉淀完全!
沉淀完全
7、用布氏漏斗抽滤,少量甲醇洗涤三次,产物转移到一次性杯子中,30℃烘干,称重!
最后烘干得到较软,较透明的硬胶状聚合物
五、实验结果
称重为16.16g,附上结果图如下:
六、实验分析
1)、进行溶液聚合时,选择溶剂应注意哪些问题?
答:进行溶液聚合时,由于溶剂并非完全是惰性的,对反应要产生各种影响,选择溶剂时要注意其对引发剂分解的影响、链转移作用、对聚合物的溶解性能的影响。

2)、工业上在什么情况下采用溶液聚合?
答:只有在直接使用聚合物溶液的场合,如涂料、胶粘剂、浸渍剂、合成纤维纺丝液等,使用溶液聚合才最为有利,工业上才会大多选择溶液聚合!
3)、什么是絮凝剂?
答:絮凝剂主要是带有正电(负)性的基团中和一些水中带有负(正)电性难于分离的一些粒子或者叫颗粒,降低其电势,使其处于不稳定状态,并利用其聚合性质使得这些分散的颗粒集中而形成絮凝物,并通过物理或者化学方法分离出来,一般为达到这种目的而使用的药剂,称之为絮凝剂。

絮凝剂按照其化学成分总体可分为无机絮凝剂和有机絮凝剂两类。

其中无机絮凝剂又包括无机凝聚剂和无机高分子絮凝剂;有机絮凝剂又包括合成有机高分子絮凝剂、天然有机高分子絮凝剂和微生物絮凝剂。

相关文档
最新文档