二元一次方程组的教学设计
二元一次方程教案
二元一次方程教案二元一次方程教案(精选8篇)作为一名为他人授业解惑的教育工作者,总不可避免地需要编写教案,教案有助于学生理解并掌握系统的知识。
怎样写教案才更能起到其作用呢?下面是店铺为大家整理的二元一次方程教案,供大家参考借鉴,希望可以帮助到有需要的朋友。
二元一次方程教案篇1一、教学目标:1.理解二元一次方程及二元一次方程的解的概念;2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;4.在解决问题的过程中,渗透类比的思想方法,并渗透德育教育二、教学重点、难点:重点:二元一次方程的意义及二元一次方程的解的概念难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程三、教学方法与教学手段:通过与一元一次方程的比较,加强学生的类比的思想方法;通过“合作学习”,使学生认识数学是根据实际的需要而产生发展的观点四、教学过程:1.情景导入:新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=902 880。
2.新课教学:引导学生观察方程80a+150b=902 880与一元一次方程有异同?得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程做一做:1.根据题意列出方程:①小明去看望奶奶,买了5 kg苹果和3 kg梨共花去23元,分别求苹果和梨的单价,设苹果的单价x元/kg ,梨的单价y元/kg;②在高速公路上,一辆轿车行驶2时的路程比一辆卡车行驶3时的路程还多20千米,如果设轿车的速度是a千米/小时,卡车的速度是b千米/小时,可得方程:(2)课本P80练习2.判定哪些式子是二元一次方程方程。
合作学习:活动背景爱心满人间——记求是中学“学雷锋、关爱老人”志愿者活动。
问题:参加活动的36名志愿者,分为劳动组和文艺组,其中劳动组每组3人,文艺组每组6人,团支书拟安排8个劳动组,2个文艺,单从人数上考虑,此方案是否可行?为什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右两边有没有相等?由学生检验得出代入方程后,能使方程两边相等,得出二元一次方程的解的概念:使二元一次方程两边的值相等的一对未知数的值叫做二元一次方程的一个解。
二元一次方程组教学设计
二元一次方程组教学设计篇1:二元一次方程组教学设计教学目标1、认识二元一次方程和二元一次方程组.2、了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.重点、难点重点:理解二元一次方程组的解的意义难点:求二元一次方程的正整数解教学过程一、复习导入什么是一元一次方程?“元”指什么?“次”指什么?什么是方程的解?设计意图:通过学生复习以前的内容,知道用元与次的含义,为这节课所学的二元一次方程组奠定基础。
二、观看视频观看洋葱视频关于二元一次方程组的内容,通过熟悉的鸡兔同笼问题来引发思考。
视频内容设计意图:用视频吸引学生注意力,引起学生的认知冲突,从而激发学生的学习兴趣和求知欲望,通过视频内容,学生已激发了强烈的求知欲望,产生了强劲的学习动力,此时我把学生带入下一环节。
三、探究新知根据视频内容归纳出二元一次方程的定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程.把两个二元一次方程合在一起,就组成了一个二元一次方程组.提问:对比两个方程,你能发现它们之间的关系吗?师生共同总结二元一次方程组的概念像这样方程组中有两个个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.探究二元一次方程组的解:满足x+y=10的值有哪些?请填入表中:使二元一次方程两边相等的未知数的值,叫做二元一次方程的解,记作.满足方程2x+y=16且符合问题的实际意义的x 、y的值如下表:不难发现x=6,y=4既是x+y=10的解,也是2x+y=16的解,也就是说是这两个方程的公共解,我们把它们叫做方程组的解。
归纳二元一次方程组的解的定义:二元一次方程组中的两个方程的公共解叫做二元一次方程组的解.思考:3x+y=10的解有多少个?一个解有几个数?正整数解有几个?带着问题让学生观看洋葱数学视频二元一次方程组的解视频内容设计意图:现代数学教学论指出,数学知识的教学必须在学生自主探索,经验归纳的基础上获得,教学中必须展现思维的过程性,在这里,通过学习用坐标表示平移观察分析、独立思考、小组交流等活动,引导学生归纳。
湘教版数学七年级下册《二元一次方程组》教学设计
湘教版数学七年级下册《二元一次方程组》教学设计一. 教材分析《二元一次方程组》是湘教版数学七年级下册的教学内容,主要目的是让学生掌握二元一次方程组的概念、解法及其应用。
本节课的内容是学生学习一元一次方程的延伸和拓展,为后续学习更高级的方程和不等式打下基础。
教材通过丰富的例题和习题,引导学生掌握解二元一次方程组的方法,培养学生的逻辑思维能力和解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了一元一次方程的知识,具备了一定的数学基础。
但部分学生对概念的理解不够深入,解题技巧和方法有待提高。
同时,学生对于实际应用题的解决能力较弱,需要老师在教学中加强引导和训练。
三. 教学目标1.了解二元一次方程组的概念,理解二元一次方程组的解及其性质。
2.学会用加减消元法、代入法解二元一次方程组。
3.能够运用二元一次方程组解决实际问题,提高解决问题的能力。
4.培养学生的逻辑思维能力、合作交流能力和创新意识。
四. 教学重难点1.重点:二元一次方程组的概念、解法及其应用。
2.难点:二元一次方程组的解的判断、加减消元法和代入法的运用。
五. 教学方法1.情境教学法:通过生活实例引入二元一次方程组,激发学生的学习兴趣。
2.引导发现法:引导学生发现二元一次方程组的解法,培养学生的探究能力。
3.合作学习法:分组讨论、交流解题方法,提高学生的合作能力。
4.实践操作法:让学生通过动手操作,加深对二元一次方程组解法的理解。
六. 教学准备1.教学PPT:制作包含教学内容、例题、习题的PPT。
2.教学素材:准备一些实际应用题,用于巩固和拓展学生的知识。
3.学习小组:将学生分成若干小组,便于合作交流。
七. 教学过程1.导入(5分钟)利用生活实例引入二元一次方程组,激发学生的学习兴趣。
如:某商店同时销售两种商品,一件商品售价100元,另一件商品售价120元。
若一件商品的利润是40元,另一件商品的利润是50元,问商店同时销售这两种商品时,每件商品的售价和利润分别是多少?2.呈现(10分钟)呈现二元一次方程组的概念,引导学生理解二元一次方程组的解及其性质。
2023-2024学年沪科版七年级数学上册教学设计:3.4二元一次方程组的应用教学设计
2023-2024学年沪科版七年级数学上册教学设计:3.4二元一次方程组的应用教学设计一. 教材分析本节课的教学内容是沪科版七年级数学上册的3.4二元一次方程组的应用。
这部分内容是在学生已经掌握了二元一次方程组的基础知识之后进行学习的,旨在让学生能够运用二元一次方程组解决实际问题,提高学生的数学应用能力。
二. 学情分析通过对学生的了解,我发现他们在学习了二元一次方程组之后,对于如何将其应用到实际问题中还存在一定的困难。
因此,在教学过程中,我需要引导学生将理论知识与实际问题相结合,提高他们的解题能力。
三. 教学目标1.知识与技能目标:让学生能够理解二元一次方程组的应用,学会如何将实际问题转化为数学问题,并运用二元一次方程组进行解答。
2.过程与方法目标:通过解决实际问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 教学重难点1.重点:让学生学会如何将实际问题转化为二元一次方程组,并熟练运用解题方法。
2.难点:如何引导学生将实际问题与数学知识相结合,提高他们的解题能力。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动思考、探索。
2.通过实例分析,让学生了解二元一次方程组在实际问题中的应用。
3.采用小组合作学习的方式,培养学生的团队协作能力。
4.对学生进行分层指导,满足不同层次学生的学习需求。
六. 教学准备1.准备相关的实际问题,用于引导学生进行思考和讨论。
2.准备多媒体教学设备,用于展示和分析实例。
3.准备练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何用数学知识解决问题。
例如:小明的妈妈买了苹果和香蕉两种水果,苹果每千克3元,香蕉每千克2元,妈妈一共花了25元,问妈妈买了苹果和香蕉各多少千克?2.呈现(10分钟)呈现几个类似的实际问题,让学生尝试将其转化为数学问题,并运用二元一次方程组进行解答。
二元一次方程组教案3 篇
二元一次方程组教案3 篇一、学习内容分析:执教者钱嘉颖时间XXXX年6月12日1、选自初一年级(下)数学学科第八章(第一单元)第一节(课)(1课时45分钟)2、教材内容简要分析教材以引言中的一个实际例子,“一班和二班进行篮球比赛,总共打了22场。
每胜一场得2分,每负一场得1分,已知比赛结束一班累计得了40分,思考:一班胜了多少场,负了多少场”来开展这次课程。
以本例来首先回忆已学过的一元一次方程的知识内容,以此作为切入点,引导学生思考用两个未知数来表示方程,借此进入二元一次方程的介绍。
之后,引导学生利用一元一次方程的解法特点来思考二元一次方程组的解答方法,本次课程内容主要介绍了代入解答法(也称消元法)的详细解答过程,以及二元一次方程组的实际运用及解答,让学习者更好的吸收及掌握二元一次方程组和二元一次方程组的消元法。
另外,在本单元结束介绍了作为课外知识的“二元一次方程古代表示方法”。
3、学习内容分析表:知识点重点难点编号内容1二元一次方程组定义及特点二元一次方程组的两个特点二元一次方程组成立的条件(未知数要同时满足两个条件)2二元一次方程组代入消元法代入消元法的具体解法消元法与一元一次方程解法间的联系3二元一次方程组实际运用以实际例题列出方程并解答未知数的假设以及运用已知条件列出正确方程。
二、学习者分析:本次教学的对象是云南省某中学的初中一年级学生,平均年龄12岁。
初一年级是学生由幼稚的童年向青年转化和个性逐渐成型的重要转折点,初一年级学生具有其特殊性。
初一年级学生由于刚刚接触完全不同于小学的学习生活而有手足无措的情况。
而在这个时期的学生生理和心理飞速发展变化,自我意识开始强烈,有了自己的兴趣,独立性增强,感情趋于丰富复杂化,有一定独立思考的能力、一定程度的抽象思维能力和逻辑思维能力,处于识记能力最强的时期。
此时,进行的教育可以更加重视独立思考,在数学教学中更加重视引导教学,致使学习者能够更加深刻的理解所学知识,达到教学目标。
二元一次方程组教学设计
二元一次方程组教学设计二元一次方程组教学设计作为一名人民教师,通常会被要求编写教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。
那么什么样的教学设计才是好的呢?下面是作者为大家收集的二元一次方程组教学设计,欢迎阅读,希望大家能够喜欢。
二元一次方程组教学设计1二元一次方程组是一元一次方程教学的延续与深化。
很多一元一次方程应用题均可用二元一次方程组来解决而得以简化,如:数学课外兴趣小组成员去建设工地参加实践活动,男同学戴白色安全帽,女同学戴红色安全帽,在每个男同学看来,红白安全帽一样多,而在女同学看来,白色安全帽是红色安全帽的2倍,问男女同学各是多少名?——这个问题若用一元一次方程来解,有两种解法:(1)可设男同学x名,则女同学(x—1)名,根据“男同学人数=2(女同学人数—1)”(2)设女同学y名,则男同学2(y—1)这个等量关系可列方程:x=2×[(x—1)—1];名,根据“男同学人数—1=女同学人数”这个等量关系可列方程:2(y—1)—1=y。
如此解决问题比较“绕”,数学的'特点是“趋简”、“趋明了”,于是促生了“寻找另外的简捷的办法”的欲望。
由于本题有两个等量关系:男同学人数=2(女同学人数—1)、男同学人数—1=女同学人数;两个未知数:男生人数、女生人数,如果设男生x人,女生y人,可以得到两个方程:(1)x—1=y,(2)x=2(y—1),要解决这个问题,就须寻找满足两个方程的x、y值,于是就延伸到了解二元一次方程组的问题。
由于学生已经学会了用一元一次方程解决这个问题,一旦提及求二元一次方程组的解,学生自然会隐隐约约地想到它们之间必然存在某种联系,于是引导学生观察、联系、联想,可以“化归”为一元一次方程解决这个问题:从而实现问题的解决。
课程结束后,还要引导学生对所学知识进行升华:列一元一次方程解应用题,与列二元一次方程组解应用题,有什么特点?学生们经过思考争辩,最终达成如下意见即可视为完成教学任务:(1)列一元一次方程时,需要将其中的一个量用含有另一个量的式子表示出来,也就是说,寻找相等关系容易,列方程要相对困难一些。
初二数学上册第七章《二元一次方程组》教案设计(优秀7篇)
初二数学上册第七章《二元一次方程组》教案设计(优秀7篇)元一次方程教学设计篇一一、教材分析1、教材的地位和作用函数、方程和不等式都是人们刻画现实世界的重要数学模型。
用函数的观点看方程(组)与不等式,使学生不仅能加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美。
本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义。
2、教学重难点重点:一次函数与二元一次方程(组)关系的探索。
难点:综合运用方程(组)、不等式和函数的知识解决实际问题。
3、教学目标知识技能:理解一次函数与二元一次方程(组)的关系,会用图象法解二元一次方程组。
数学思考:经历一次函数与二元一次方程(组)关系的探索及相关实际问题的解决过程,学会用函数的观点去认识问题。
解决问题:能综合应用一次函数、一元一次方程、一元一次不等式、二元一次方程(组)解决相关实际问题。
情感态度:在探究活动中培养学生严谨的科学态度和勇于探索的科学精神,在师生、生生的交流活动中,学会与人合作,学会倾听、欣赏和感悟,体验数学的价值,建立自信心。
二、教法说明对于认知主体——学生来说,他们已经具备了初步探究问题的能力,但是对知识的主动迁移能力较弱,为使学生更好地构建新的认知结构,促进学生的发展,我将在教学中采用探究式教学法。
以学生为中心,使其在“生动活泼、民主开放、主动探索”的氛围中愉快地学习。
三、教学过程(一)感知身边数学学生已经学习过列方程(组)解应用题,因此可能列出一元一次方程或二元一次方程组,用方程模型解决问题。
结合前面对一次函数与一元一次方程、一元一次不等式之间关系的探究,我自然地提出问题:“一次函数与二元一次方程组之间是否也有联系呢?”,从而揭示课题。
[设计意图]建构主义认为,在实际情境中学习可以激发学生的学习兴趣。
北师大版数学八年级上册2《求解二元一次方程组》教案1
北师大版数学八年级上册2《求解二元一次方程组》教案1一. 教材分析《求解二元一次方程组》是人教版初中数学八年级上册的一章内容。
这一章主要让学生掌握二元一次方程组的解法,以及应用方程组解决实际问题。
此章节在数学知识体系中起着承前启后的作用,为后续学习更复杂的方程组和函数打下基础。
二. 学情分析学生在学习本章内容前,已经掌握了方程和一元一次方程的解法,但对于二元一次方程组,他们可能还缺乏直观的认识和解决方法。
因此,在教学过程中,需要引导学生从实际问题中抽象出二元一次方程组,并通过实例让学生感受方程组的意义和应用。
三. 教学目标1.理解二元一次方程组的含义,掌握二元一次方程组的解法。
2.能够应用二元一次方程组解决实际问题。
3.培养学生的抽象思维能力和解决问题的能力。
四. 教学重难点1.重点:二元一次方程组的解法及应用。
2.难点:如何引导学生从实际问题中抽象出二元一次方程组,以及解二元一次方程组的方法。
五. 教学方法1.采用问题驱动的教学方法,引导学生从实际问题中提出问题,并探索解决问题的方法。
2.使用多媒体教学,通过动画和实例,帮助学生直观地理解二元一次方程组的概念和解法。
3.学生进行小组讨论和合作交流,培养学生的团队协作能力。
六. 教学准备1.多媒体教学设备。
2.教学课件和教学素材。
3.练习题和实际问题。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生提出二元一次方程组的问题,激发学生的学习兴趣。
2.呈现(10分钟)介绍二元一次方程组的概念,并通过多媒体展示实例,让学生直观地理解二元一次方程组的意义。
3.操练(10分钟)引导学生通过小组讨论,探索解二元一次方程组的方法。
教师在旁边给予指导,并引导学生总结解法。
4.巩固(10分钟)让学生独立解决一些简单的二元一次方程组问题,检验学生对解法的掌握情况。
5.拓展(10分钟)引导学生思考如何应用二元一次方程组解决实际问题,并让学生举例说明。
6.小结(5分钟)教师引导学生总结本节课所学内容,强调二元一次方程组的概念和解法。
《代入法解二元一次方程组》教学设计(推荐五篇)[修改版]
第一篇:《代入法解二元一次方程组》教学设计消元——二元一次方程组的解法(代入消元法)学情分析: 因为学生已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
三维目标知识与技能1、会用代入法解二元一次方程组2、初步体会二元一次方程组的基本思想---“消元”过程与方法: 通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养学生观察能力,体会化归思想。
情感态度与价值观:通过研究解决问题的方法,培养学生合作交流意识和探究精神。
教学重点:用加减消元法解二元一次方程组。
教学难点:理解加减消元思想和选择适当的消元方法解二元一次方程组。
教学过程(一)创设情境,激趣导入在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场),x y22可以列方程组2x y40 表示本章引言中问题的数量关系。
如果只设一个未知数(设胜x场),这个问题也可以用一元一次方程________________________[1]来解。
分析:[1]2x+(22-x)=40。
观察上面的二元一次方程组和一元一次方程有什么关系?[2] [2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。
这正是下面要讨论的内容。
(二)新课教学可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。
解这个方程,得x=18。
把x=18代入y=22-x,得y=4。
从而得到这个方程组的解。
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。
初中二元一次方程数学教案范文模板优秀3篇
初中二元一次方程数学教案范文模板优秀3篇【教学目标】读书破万卷下笔如有神,以下内容是本文范文为您带来的3篇《初中二元一次方程数学教案最新范文模板》,如果对您有一些参考与帮助,请分享给最好的朋友。
元一次方程教学设计篇一教学目标:1、会用加减消元法解二元一次方程组。
2、能根据方程组的特点,适当选用代入消元法和加减消元法解二元一次方程组。
3、了解解二元一次方程组的消元方法,经历从“二元”到“一元”的转化过程,体会解二元一次方程组中化“未知”为“已知”的“转化”的思想方法。
教学重点:加减消元法的理解与掌握教学难点:加减消元法的灵活运用教学方法:引导探索法,学生讨论交流教学过程:一、情境创设买3瓶苹果汁和2瓶橙汁共需要23元,买5瓶苹果汁和2瓶橙汁共需33元,每瓶苹果汁和每瓶橙汁售价各是多少?设苹果汁、橙汁单价为x元,y元。
我们可以列出方程3x+2y=235x+2y=33问:如何解这个方程组?二、探索活动活动一:1、上面“情境创设”中的方程,除了用代入消元法解以外,还有其他方法求解吗?2、这些方法与代入消元法有何异同?3、这个方程组有何特点?解法一:3x+2y=23①5x+2y=33②由①式得③把③式代入②式33解这个方程得:y=4把y=4代入③式则所以原方程组的解是x=5y=4解法二:3x+2y=23①5x+2y=33②由①—②式:3x+2y-(5x+2y)=23-333x-5x=-10解这个方程得:x=5把x=5代入①式,3×5+2y=23解这个方程得y=4所以原方程组的解是x=5y=4把方程组的两个方程(或先作适当变形)相加或相减,消去其中一个未知数,把解二元一次方程组转化为解一元一次方程,这种解方程组的方法叫做加减消元法(eliminationbyadditionorsubtraction),简称加减法。
三、例题教学:例1.解方程组x+2y=1①3x-2y=5②解:①+②得,4x=6将代入①,得解这个方程得:所以原方程组的解是巩固练习(一):练一练1。
代入法解二元一次方程组教案
代入法解二元一次方程组教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、教学总结、教学计划、教学心得、教学反思、说课稿、好词好句、教案大全、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of classic sample essays for everyone, such as work summaries, teaching summaries, teaching plans, teaching experiences, teaching reflections, lecture notes, good words and sentences, lesson plans, essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!代入法解二元一次方程组教案代入法解二元一次方程组教案(通用5篇)作为一位无私奉献的人民教师,很有必要精心设计一份教案,教案是教材及大纲与课堂教学的纽带和桥梁。
二元一次方程组教学设计(共7篇)
二元一次方程组教学设计(共7篇)第1篇:二元一次方程组教学设计《二元一次方程组》(自主课堂教学设计)学习内容:义务教育课程人教板七年级数学下册88—89页。
教学目标知识与技能:1、使学生了解二元一次方程的概念,能举例说明二元一次方程及其中的已知数和未知数;2、使学生理解二元一次方程组和它的解等概念,会检验一对数值是不是某个二元一次方程组的解。
过程与方法:学会用类比的方法迁移知识,体验二元一次方程组在处理实际问题中的优越性。
情感、态度与价值观:通过对二元一次方程(组)的概念的学习,感受数学与生活的联系,感受数学的乐趣教学重点:二元一次方程(组)的概念及检验一对数是否是某个二元一次方程(组)的解。
教学难点:二元一次方程组的解的含义。
教学步骤:一、知识回顾1.什么叫做一元一次方程?解方程2X+3=5,X=2.2X+3Y=5是几元几次方程?二、指导自学—问题引领自学指导请认真看P.92—94的内容.思考:1、在P.92引例(篮球赛)中,你能用一元一次方程解吗?对于引例中的这两种解法:一种是设一个未知数,另一种是设两个未知数,哪种解法更好理解呢?:2.把两个二元一次方程合在一起,就形成一个二元一次方程组,是通过什么符号实现的?归纳二元一次方程(组)的概念。
3.如何检验一对数是否是某个二元一次方程(组)的解。
6分钟后,比谁能说出以上问题答案.三.学生自学学生按照自学指导看书,教师巡视,确保人人学得紧张高效.四.老师点拔:1.涉及二元一次方程(组)的概念问题时,要注意二元、一次,整式三方面;2.二元一次方程组的相同的字母它们所表示的意义一样。
并不是任意两个二元一次方程都能组成二元一次方程组。
(举例分析)3、二元一次方程组的解与一元一次方程的解它们有什么异同点?不同点:二元一次方程组的解是满足每一个二元一次的,并且是成对出现的解相同点:都是方程的解,代入方程都会使方程左右两边成立)五.检查自学效果自学检测题1、3x+2y=6,它有______个未知数,且未知数是___次,因此是_____元______次方程2、3x=6是____元____次方程,其解x=_____,有______个解,3x+2y=6,当x=0时,y=_____;当x=2时,y=_____;当y=5时,x=____(因此,使二元一次方程左右两边相等的______个未知数的值,叫作二元一次方程的解。
实际问题与二元一次方程组教案
实际问题与二元一次方程组教案实际问题与二元一次方程组教案(通用6篇)作为一位无私奉献的人民教师,常常要根据教学需要编写教案,教案是保证教学取得成功、提高教学质量的基本条件。
那么教案应该怎么写才合适呢?以下是店铺为大家收集的实际问题与二元一次方程组教案(通用6篇),欢迎阅读,希望大家能够喜欢。
实际问题与二元一次方程组教案篇1教学目标:1.使学生会借助二元一次方程组解决简单的实际问题,让学生再次体会二元一次方程组与现实生活的联系和作用2.通过应用题教学使学生进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性3.体会列方程组比列一元一次方程容易4.进一步培养学生化实际问题为数学问题的能力和分析问题,解决问题的能力重点与难点:重点:能根据题意列二元一次方程组;根据题意找出等量关系;难点:正确发找出问题中的两个等量关系课前自主学习1.列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的()2.一般来说,有几个未知量就必须列几个方程,所列方程必须满足:(1)方程两边表示的是()量(2)同类量的单位要()(3)方程两边的数值要相符。
3.列方程组解应用题要注意检验和作答,检验不仅要求所得的解是否(),更重要的是要检验所求得的结果是否()4.一个笼中装有鸡兔若干只,从上面看共42个头,从下面看共有132只脚,则鸡有(),兔有()新课探究看一看问题:1.题中有哪些已知量?哪些未知量?2.题中等量关系有哪些?3.如何解这个应用题?本题的等量关系是(1)()(2)()解:设平均每只母牛和每只小牛1天各需用饲料为xkg和ykg根据题意列方程,得解这个方程组得答:每只母牛和每只小牛1天各需用饲料为()和(),饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算()出入。
(“有”或“没有”)练一练:1、某所中学现在有学生4200人,计划一年后初中在样生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?2、有大小两辆货车,两辆大车与3辆小车一次可以支货15.50吨,5辆大车与6辆小车一次可以支货35吨,求3辆大车与5辆小车一次可以运货多少吨?3、某工厂第一车间比第二车间人数的少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的,问这两车间原有多少人?4、某运输队送一批货物,计划20天完成,实际每天多运送5吨,结果不但提前2天完成任务并多运了10吨,求这批货物有多少吨?原计划每天运输多少吨?小结用方程组解应用题的一般步骤是什么?实际问题与二元一次方程组教案篇2教学目标:通过学生积极思考,互相讨论,经历探索事物之间的数量关系,形成方程模型,解方程和运用方程解决实际问题的过程进一步体会方程是刻划现实世界的有效数学模型重点:让学生实践与探索,运用二元一次方程解决有关配套与设计的应用题难点:寻找等量关系教学过程:看一看:课本99页探究2问题:1、“甲、乙两种作物的单位面积产量比是1:1、5”是什么意思?2、“甲、乙两种作物的总产量比为3:4”是什么意思?3、本题中有哪些等量关系?提示:若甲种作物单位产量是a,那么乙种作物单位产量是多少?思考:这块地还可以怎样分?练一练一、某农场300名职工耕种51公顷土地,计划种植水稻、棉花、和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备奖金如下表:农作物品种每公顷需劳动力每公顷需投入奖金水稻4人1万元棉花8人1万元蔬菜5人2万元已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?问题:题中有几个已知量?题中求什么?分别安排多少公顷种水稻、棉花、和蔬菜?教材106页:探究3:如图,长青化工厂与A、B两地有公路、铁路相连,这家工厂从A地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B地。
二元一次方程教学设计
二元一次方程教学设计作业内容二元一次方程(组)教学设计教学目标:1、认识二元一次方程和二元一次方程组;2、了解二元一次方程和二元一次方程组的解,会求二元一次方程的正整数解.教学重难点:1.理解二元一次方程组及其解得含义;2.能区分二元一次方程的解和二元一次方程组的解;教学过程:1.提问:什么叫做一元一次方程?只含有一个未知数并且未知数的次数是1的整式方程叫做一元一次方程。
2.练习:(判断哪些式子是一元一次方程?)3x=6 4x+55x-3=2xy=0 2x+y=10 5 x+2y=183.观察:2x+y=10 5x+2y=18这两个式子从未知数和未知数的次数有怎样的特征?4.引出二元一次方程的概念每个方程都含有两个未知数(x和y),并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程.二、讲授新课1.用多种方法解决下题:去年我们学校组织了初中部篮球比赛,规定每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.705班在10场比赛中得到16分,那么705班胜负场数分别是多少?(只列式,不计算)方法1:解:设705班赢了x场,则输了(10-x)场;2x+(10-x)=16方法2:解:设705班赢了x场,输了y场;x+y=102x+y=162.此时的x和y要同时满足上面两个方程,所以我们把这两个方程合在一起就组成了方程组。
3.观察:方程组有几个未知数?未知数的项的次数是多少?二元一次方程组的概念:像这样方程组中有两个未知数,含有每个未知数的项的次数都是1,并且一共有两个方程,像这样的方程组叫做二元一次方程组.注意:方程组总共有两个未知数而不是每个方程都要有两个未知数。
三、探究二元一次方程(组)的解满足方程x+y=10,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.满足方程2x+y=16,且符合问题的实际意义的x、y的值有哪些?把它们填入表中.总结:一般地,使二元一次方程两边的值相等的未知数的值,叫做二元一次方程的解.观察:上表中哪对x、y的值既满足x+y=10 又满足2x+y=16?我们还发现,上表中当x=6,y=4时既满足方程x+y=10又满足方程2x+y=16. 即x=6,y=4 是这两个方程公共解.讨论:不结合本道题的实际情况,还有哪些值满足上述两个方程?总结:二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
人教版七年级数学下册 教学设计8.1 第1课时《二元一次方程组》
人教版七年级数学下册教学设计8.1 第1课时《二元一次方程组》一. 教材分析《二元一次方程组》是人教版七年级数学下册的教学内容,本节课的主要内容是让学生掌握二元一次方程组的定义、解法和应用。
通过学习,学生能够解决实际问题,提高解决问题的能力。
教材通过丰富的例题和练习题,帮助学生巩固知识点,提高解题技巧。
二. 学情分析学生在学习本节课之前,已经掌握了整式、方程等基础知识,具备一定的逻辑思维能力和问题解决能力。
但部分学生对抽象的数学概念理解仍有困难,需要教师在教学中给予关注和引导。
同时,学生对于实际问题的解决方法还不够熟练,需要在教学中加强训练。
三. 教学目标1.知识与技能:理解二元一次方程组的定义,学会解二元一次方程组的方法,能够应用二元一次方程组解决实际问题。
2.过程与方法:通过自主学习、合作交流,培养学生解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.重点:二元一次方程组的定义、解法和应用。
2.难点:如何将实际问题转化为二元一次方程组,以及解二元一次方程组的方法。
五. 教学方法1.情境教学法:通过生活实例引入二元一次方程组,激发学生的学习兴趣。
2.自主学习法:引导学生自主探究二元一次方程组的解法,培养学生的自主学习能力。
3.合作交流法:学生进行小组讨论,共同解决问题,提高学生的团队合作能力。
4.实践操作法:让学生通过解决实际问题,巩固二元一次方程组的应用。
六. 教学准备1.教学课件:制作课件,展示二元一次方程组的相关知识点。
2.练习题:准备一些有关二元一次方程组的练习题,用于巩固所学知识。
3.教学道具:准备一些实物道具,帮助学生更好地理解二元一次方程组的概念。
七. 教学过程1.导入(5分钟)利用生活实例,如购物问题,引入二元一次方程组的概念,激发学生的学习兴趣。
2.呈现(10分钟)呈现二元一次方程组的定义和解法,引导学生自主学习,理解相关知识点。
解二元一次方程组教案优秀9篇
解二元一次方程组教案优秀9篇课前预习:篇一一、阅读教材P96-P98的内容二、独立思考:1、满足方程组的x的值是-1,则方程组的解是_____________.2、用代入法解方程组比较容易的变形是()、A、由①得B、由①得C、由得D、则得3、用代入消元法解方程以下各式正确的是()A、B、C、D、4、如果是二元一次方程,则的值是多少?二元一次方程篇二数学七年级下册《二元一次方程》数学教案一、教学目标:1、认知目标:1)了解二元一次方程组的概念。
2)理解二元一次方程组的解的概念。
3)会用列表尝试的方法找二元一次方程组的解。
2、能力目标:1)渗透把实际问题抽象成数学模型的思想。
2)通过尝试求解,培养学生的探索能力。
3、情感目标:1)培养学生细致,认真的学习习惯。
2)在积极的教学评价中,促进师生的情感交流。
二、教学重难点重点:二元一次方程的意义及二元一次方程的解的概念。
难点:把一个二元一次方程形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。
三、教学过程(一)创设情景,引入课题1、本班共有40人,请问能确定男女生各几人吗?为什么?(1)如果设本班男生x人,女生y人,用方程如何表示?(x+y=40)(2)这是什么方程?根据什么?2、男生比女生多了2人。
设男生x人,女生y人、方程如何表示?x,y的值是多少?3、本班男生比女生多2人且男女生共40人、设该班男生x人,女生y人。
方程如何表示?两个方程中的x表示什么?类似的两个方程中的y都表示?像这样,同一个未知数表示相同的量,我们就应用大括号把它们连起来组成一个方程组。
4、点明课题:二元一次方程组。
(设计意图:从学生身边取数据,让他们感受到生活中处处有数学)(二)探究新知,练习巩固1、二元一次方程组的概念(1)请同学们看课本,了解二元一次方程组的的概念,并找出关键词由教师板书。
[让学生看书,引起他们对教材重视。
找关键词,加深他们对概念的了解、](2)练习:判断下列是不是二元一次方程组,学生作出判断并要说明理由。
沪科版数学七年级上册《二元一次方程组的解法——代入消元法》教学设计4
沪科版数学七年级上册《二元一次方程组的解法——代入消元法》教学设计4一. 教材分析《二元一次方程组的解法——代入消元法》是沪科版数学七年级上册的教学内容。
本节课的主要任务是让学生掌握代入消元法的步骤和应用,能够解决简单的二元一次方程组问题。
教材通过引入实例,引导学生发现代入消元法的原理,并通过大量的练习题,帮助学生巩固所学知识。
二. 学情分析学生在学习本节课之前,已经学习了二元一次方程的基本概念和简单性质,具备了一定的数学基础。
但部分学生在解决实际问题时,仍然存在一定的困难,对于代入消元法的理解和应用还不够熟练。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行指导和帮助。
三. 教学目标1.知识与技能目标:让学生掌握代入消元法的步骤和应用,能够解决简单的二元一次方程组问题。
2.过程与方法目标:通过实例分析,培养学生发现问题、解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 教学重难点1.教学重点:代入消元法的步骤和应用。
2.教学难点:如何引导学生发现代入消元法的原理,以及如何在实际问题中灵活运用。
五. 教学方法1.情境教学法:通过引入实例,让学生在实际问题中发现代入消元法的原理。
2.引导发现法:引导学生通过合作、讨论,发现代入消元法的步骤和应用。
3.练习法:通过大量的练习题,帮助学生巩固所学知识。
六. 教学准备1.教学课件:制作课件,展示代入消元法的步骤和实例。
2.练习题:准备一些具有代表性的练习题,用于课堂练习和巩固。
3.小组讨论材料:准备一些卡片,上面写有不同类型的二元一次方程组,用于小组讨论。
七. 教学过程1.导入(5分钟)利用实例引入二元一次方程组的概念,引导学生回顾已学的解法,为新课的学习做好铺垫。
2.呈现(10分钟)展示代入消元法的步骤和实例,让学生初步了解代入消元法的原理。
3.操练(10分钟)让学生独立完成一些简单的二元一次方程组,运用代入消元法进行求解。
沪科版数学七年级上册《二元一次方程组》教学设计1
沪科版数学七年级上册《二元一次方程组》教学设计1一. 教材分析《二元一次方程组》是沪科版数学七年级上册的教学内容,本节课的主要内容是让学生掌握二元一次方程组的定义、解法及其应用。
通过前面的学习,学生已经掌握了整式的加减、一元一次方程的知识,为本节课的学习打下了基础。
教材从实际问题出发,引入二元一次方程组的概念,让学生通过合作交流、探究发现,掌握解二元一次方程组的方法,培养学生的数学思维能力和解决问题的能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于整式运算和一元一次方程有一定的了解。
但学生在解决实际问题时,还存在着将实际问题转化为数学问题的能力不足、对于数学概念的理解不够深入等问题。
因此,在教学过程中,需要关注学生的知识基础,引导学生将实际问题转化为数学问题,并通过合作交流、探究发现,深入理解二元一次方程组的定义和解法。
三. 教学目标1.知识与技能目标:理解二元一次方程组的定义,掌握解二元一次方程组的方法,能够应用二元一次方程组解决实际问题。
2.过程与方法目标:通过合作交流、探究发现,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学与生活的紧密联系。
四. 教学重难点1.重点:二元一次方程组的定义、解法及其应用。
2.难点:二元一次方程组的解法,以及如何将实际问题转化为数学问题。
五. 教学方法1.情境教学法:通过实际问题的引入,激发学生的学习兴趣,引导学生将实际问题转化为数学问题。
2.合作学习法:学生进行小组合作交流,共同探究二元一次方程组的解法,培养学生的团队合作意识。
3.引导发现法:教师引导学生发现问题、解决问题,培养学生的数学思维能力和解决问题的能力。
六. 教学准备1.教学课件:制作课件,展示二元一次方程组的定义、解法及其应用。
2.教学素材:准备一些实际问题,作为学生练习的题目。
3.学生活动材料:为学生提供练习纸,方便学生进行练习。
八年级数学上册《认识二元一次方程组》教案、教学设计
3.使学生认识到数学知识在解决实际问题中的重要作用,增强学生的应用意识。
在教学过程中,教师应关注学生的个体差异,充分调动学生的积极性,激发学生的学习兴趣。以下是具体的教学设计:
1.导入:通过生活中的实际问题,引导学生发现并认识二元一次方程组。
(1)过程性评价:关注学生在课堂上的参与程度、合作交流能力、问题解决能力等;
(2)总结性评价:通过课后作业、测试等方式,评价学生对二元一次方程组知识的掌握程度;
(3)个性化评价:根据学生的个体差异,给予有针对性的评价和建议,激发学生的学习动力。
4.教学反馈:
(1)及时了解学生的学习情况,针对学生存在的问题进行针对性的辅导;
八年级的学生已经具备了一定的数学基础,掌握了线性方程的相关知识,但对于二元一次方程组的认识还不够深入。在此阶段,学生的抽象逻辑思维能力逐渐增强,但仍然需要通过具体实例来理解和掌握抽象的数学概念。此外,学生在解决实际问题时,可能存在将问题转化为数学模型的困难,需要教师在教学过程中给予适当的引导和帮助。
3.鼓励学生主动提问,积极参与课堂讨论,提高自身数学素养。
五、作业布置
为了巩固学生对二元一次方程组知识的掌握,提高学生的解题能力和应用意识,特布置以下作业:
1.基础练习题:完成课本P56页第1-6题,要求学生熟练掌握二元一次方程组的定义、一般形式及其解法。
2.实践应用题:根据课堂所学的代入法、消元法,解决以下实际问题:
(1)小红和小李同时从同一地点出发,小红以每小时5公里的速度向北走,小李以每小时4公里的速度向东走,问两小时后,两人相距多远?
2.教师提问:让学生尝试用之前学过的知识解决这个问题,并引导学生发现问题的难点,即需要同时考虑两个未知数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、教学内容:8.1二元一次方程组
二、教学目标:
1、知识与技能:
弄懂二元一次方程组合他们解得含义并学会检验
2、过程与方法:
学会用类比的方法迁移知识,检验二元一次方程组在实际问题中的应用
3、情感、态度与价值观
通过对于一元二次方程组的概念学习,感受数学与生活的联系
三、重难点:
1、重点:
二元一次方程、二元一次方程组以及解得含义
2、难点:
弄懂二元一次方程组解得含义
四:教学设计:
1、创设情境,导入新课
小明和小刚比赛国际象棋,规则如下:赢一局得3分,输一局得1分,(假如无平局)。
他们总计下了8局,其中小刚总得分18分,请问小刚赢几局,输几局?
2、探究概念
用一元一次方程如何解决该题
那么,能设两个未知数吗?比如设胜x局,负y局;你能根据题意列出方程吗?
由题意知:
用方程表示为:
x+y=8
3x+y=18
老师板书1:
⎩⎨⎧=+=+⎩⎨⎧=+=+162101838y x y x y x y x
概念:含有2个未知数,并且含有未知数的项得次数都是1的方程,叫做二元一次方程。
把2个二元一次方程合在一起,九组成了二元一次方程组。
二元一次方程组的特点:
(1)、由2个未知数组成
(2)、未知数项得次数为1
(3)、由2个方程组成
(4)符号用“ ”来表述
(5)等式两边都是整式 {
符合以上五个条件的称为“二元一次方程组”
使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.它的解有无数个.
二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.显然二元一次方程组只有一对解,记作
二元一次方程(组)的解
X=
y=
3、总结:
1、二元一次方程与二元一次方程组的定义;
2、他们各自的特点;
3、对二元一次方程与二元一次方程组如何判断。