21.3 实际问题与一元二次方程 教案 【新人教版九年级上册数学】

合集下载

人教版九年级数学上册21.3实际问题与一元二次方程(教案)

人教版九年级数学上册21.3实际问题与一元二次方程(教案)
二、核心素养目标
1.培养学生运用数学知识解决实际问题的能力,使学生能够从现实情境中抽象出一元二次方程,提高模型建立与求解的素养。
2.强化学生对方程思想的理解,培养学生通过化简、变形、求解等过程,掌握一元二次方程的求解方法,提升逻辑思维与推理能力。
3.培养学生的数据分析素养,让学生在解决实际问题时,能够对数据进行整理、分析,找到关键信息,提高解决问题的效率。
课堂上,我尝试通过生动的案例引入一元二次方程,希望以此激发同学们的兴趣。从大家的反应来看,这个方法还是起到了一定的效果。不过,我也注意到,有些同学在案例分析时仍然显得有些迷茫,可能是我讲解得不够细致,或者案例选择上还有待优化。
在新课讲授环节,我强调了求解一元二次方程的方法,特别是因式分解和配方法。通过反复举例和练习,多数同学能够掌握这些解题技巧。然而,仍有部分同学在运用这些方法时出现错误,这提示我在后续的教学中,还需加强对这些难点的辅导和巩固。
3.面积问题中的应用:通过计算不规则图形的面积,如梯形、圆形等,引入一元二次方程,让学生掌握解决面积问题的方法。
4.速度与路程问题中的应用:结合运动场景,如物体匀加速运动、追击问题等,建立一元二次方程,让学生学会解决速度与路程相关的问题。
5.课堂练习:针对本章内容,设计具有代表性的练习题,巩固学生对一元二次方程在实际问题中应用的理解和掌握。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了实际问题与一元二次方程的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对一元二次方程的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现同学们对于一元二次方程解决实际问题的部分掌握得还不错,但在从实际问题中抽象出方程模型这一环节上,大家普遍感到有些困难。这让我意识到,在今后的教学中,我需要更加注重培养学生们的问题分析能力和模型构建能力。

人教版九年级数学上册第二十一章一元二次方程《21.3实际问题与一元二次方程》第1课时教学设计

人教版九年级数学上册第二十一章一元二次方程《21.3实际问题与一元二次方程》第1课时教学设计

人教版九年级数学上册第二十一章一元二次方程《21.3实际问题与一元二次方程》第1课时教学设计一. 教材分析人教版九年级数学上册第二十一章一元二次方程《21.3实际问题与一元二次方程》第1课时,主要介绍了如何将实际问题转化为一元二次方程,并通过求解方程得到实际问题的解答。

本节课的内容是学生对一元二次方程知识的进一步拓展和应用,有助于提高学生的数学应用能力。

二. 学情分析学生在学习本节课之前,已经掌握了一元二次方程的基本概念、解法和应用。

但实际问题与一元二次方程的结合,对学生而言是一个新的挑战。

因此,在教学过程中,教师需要关注学生对实际问题转化为数学问题的能力的培养,引导学生学会用数学的眼光看待实际问题。

三. 教学目标1.理解实际问题与一元二次方程之间的关系,学会将实际问题转化为一元二次方程。

2.掌握一元二次方程的解法,并能应用于实际问题的解答。

3.培养学生的数学思维能力,提高学生的数学应用能力。

四. 教学重难点1.教学重点:实际问题转化为一元二次方程的方法。

2.教学难点:如何引导学生发现实际问题与一元二次方程之间的联系。

五. 教学方法1.案例分析法:通过分析具体案例,引导学生发现实际问题与一元二次方程之间的关系。

2.问题驱动法:教师提出问题,引导学生思考和探索,激发学生的学习兴趣。

3.合作交流法:鼓励学生之间相互讨论、分享心得,提高学生的合作能力。

六. 教学准备1.教学课件:制作课件,展示实际问题与一元二次方程之间的关系。

2.案例素材:准备一些实际问题,作为教学案例。

3.练习题:准备一些练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题,引导学生思考实际问题与数学问题之间的关系,激发学生的学习兴趣。

2.呈现(10分钟)教师展示几个实际问题,让学生尝试将其转化为一元二次方程。

学生在课堂上进行讨论,分享自己的思路。

教师引导学生总结实际问题转化为一元二次方程的方法。

3.操练(10分钟)教师给出一些实际问题,学生独立将其转化为一元二次方程,并求解。

21.3 实际问题与一元二次方程+教学设计+2024—2025学年人教版数学九年级上册

21.3  实际问题与一元二次方程+教学设计+2024—2025学年人教版数学九年级上册

21.3 实际问题与一元二次方程+教学设计+2024—2025学年人教版数学九年级上册【学情分析】一元二次方程是中学数学的主要内容,在初中数学中占有重要的地位.其中一元二次方程的应用也是初中数学应用问题的重点内容,同时也是难点.它是一元一次方程应用的继续,二次函数学习的基础,具有承前启后的作用,是研究现实世界数量关系和变化规律的重要数学模型.【教学目标】1.能根据具体问题中的数量关系,列出一元二次方程并求解,体会一元二次方程是刻画现实世界某些问题的一个有效的数学模型.2.熟练掌握“增长率”型问题的解题规律,会检验所得结果是否合理,培养分析问题、解决问题的能力.【重点难点】重点:列一元二次方程解决实际应用问题.难点:寻找问题中的等量关系.【新课导入】问题:谚语“一传十、十传百、百传千千万”的意思是什么?学生自主思考后,小组内讨论交流,形成思维上的模型.问题:若A同学患了流感,每轮传染中能传染6个人,且受感染的其他同学每轮也以相同的速度传染其他人,则第一轮传染过后共有多少人患了流感?第二轮传染过后共有多少人患了流感呢?师生共同讨论,运用表格或图形的方式给予表示,从表格中得到问题的答案.【新课讲解】【课堂小结】1.本节课我们学习了哪种类型的应用题?2.请把本节课的涉及增长率和利润的关系式总结并阐述它们的意义?【布置作业】1.某种数码产品原价每只400元,经过连续两次降价后,现在每只售价为256元,则平均每次降价的百分率为()A.20% B.80% C.180% D.20%或180%2.某厂今年一月份的总产量为500吨,三月份的总产量为720吨,平均每月增长率是x,列方程( )A.500(1+2x)=720B.500(1+x)2=720C.500 (1+x2)=720D.720(1+x)2=5003.为提高经济效益,某公司决定对一种电子产品进行降价促销.根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低2元,每天可多售出4个.已知每个电子产品的固定成本为100元,如果降价后公司每天获利30000元,那么这种电子产品降价后的销售单价为多少元?设这种电子产品降价后的销售单价为x元,则所列方程为()A.(x﹣100)[300+4(200﹣x)]=30000B.(x﹣200)[300+2(100﹣x)]=30000C.(x﹣100)[300+2(200﹣x)]=30000D.(x﹣200)[300+4(100﹣x)]=300004.小强为活动小组购买统一服装,经理给予如下优惠:如果一次性购买不超过10件,单价为80元,如果一次性购买超过10件,那么每多买一件,购买的所有服装的单价降低2元,但单价最终不低于50元.小强一次性购买这种服装花费1200元,则他购买了这种服装的件数是()A.20件B.24件C.20件或30件D.30件5.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使设每盆多植x 株,则一株的盈利为元.6.某校去年对实验器材的投资为2万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为__________________。

21.3 实际问题与一元二次方程+教学设计+2024—2025学年人教版数学九年级上册

21.3  实际问题与一元二次方程+教学设计+2024—2025学年人教版数学九年级上册

21.3 实际问题与一元二次方程+教学设计+2024—2025学年人教版数学九年级上册【学情分析】一元二次方程是中学数学的主要内容,在初中数学中占有重要的地位.其中一元二次方程的应用也是初中数学应用问题的重点内容,同时也是难点.它是一元一次方程应用的继续,二次函数学习的基础,具有承前启后的作用,是研究现实世界数量关系和变化规律的重要数学模型.【教学目标】1.能根据具体问题中的数量关系,列出一元二次方程,并根据具体问题的实际意义,检验结果是否合理.2.经历将实际问题抽象为数学问题的过程,体会一元二次方程是刻画现实世界的一个有效的数学模型.3.感受与“增长率、下降率”相关的数学模型中的数量关系,提高用数学模型解释现实问题的能力,培养分析问题和解决问题的能力.【重点难点】重点:掌握建立数学模型以解决平均变化率问题.难点:分析题意,建立正确的数学模型【新课导入】复习:用方程解决实际问题的步骤是什么?设计意图:梳理前一节课所学,体会建立数学模型解决实际问题的思想和方法,为本节课后续学习做好铺垫.【新课讲解】2019年,研究人员在某杂志发表论文说,他们分析了两颗卫星的观测数据,发现在2000年至2017年间全球绿化面积增加了5%.其中约四分之一来自中国,贡献比例居全球首位.研究人员认为原因是中国在植树造林和集约农业等方面有突出表现.经调查,2000年全球绿化面积大约是38亿公顷,则2017年全球绿化面积大约是多少亿公顷?如果保持此增长率继续增长,那么到2034年,全球绿化面积约能达到多少呢?如果增长率是6%,那么2017年和2034年的全球绿化面积又该怎么表示呢?如果增长率用x表示,那么2017年和2034年的全球绿化面积又该怎么表示呢?设计意图:(1)-(4)通过层层递进的问题,帮助学生理解“增长率”的含义:并自然生成关于连续增长的数量关系,形成数学模型,建立一元二次方程和平均变化率实际问题之间的联系.当增长率为多少时,2034年的全球绿化面积可以达到45亿公顷?(精确到1%)设计意图:在形成和熟悉增长率有关模型的前提下,建立方程,解决实际问题..在解决问题的过程中,在此巩固用方程解决实际问题的思想和流程.归纳小结:类似地,这种变化率的问题在实际生活普遍存在,例如人口增长率、成本下降率等.本节讨论的是两轮(即两个时间段)的平均变化率,它可以用一元二次方程作为数学模型,设平均变化率为x,则有下列关系:变化前数量×( 1±x )²=变化后数量.设计意图:通过小结,归纳变化率问题的共同特征,并在一元二次方程和连续增长两次的问题之间建立知识联系,帮助学生形成解决同类问题的策略,并适时补充下降率的有关知识.【课堂小结】用一元二次方程解决实际问题的基本步骤阅读分析题意,建立模型,列出一元二次方程,将实际问题转化为数学问题.选择合适的方法求解一元二次方程.经过检验,找到符合题意的答案,解决实际问题.设计意图:一元二次方程是刻画现实世界中某些数量关系的有效数学模型.在运用一元二次方程分析、表达和解决实际问题的过程中,要注意体会建立数学模型解决实际问题的思想和方法.【布置作业】1.有一人患了流感,经过两轮传染后共有100人患了流感,则每轮传染中,平均一个人传染的人数为(C)A.11人B.10人C.9人D.8人2.两个相邻正整数的平方和比这两个数中较小的数的2倍大51,则这两个数是5,6.3.某人用手机发短信,获得信息人也按他的发送人数发送该条短信,经过两轮短信的发送,共有90人手机上获得同一条信息,则每轮发送短信中,平均一个人向9个人发送短信.【板书设计】21.3实际问题与一元二次方程第3课时用一元二次方程解决几何图形问题图形的面积(或体积)建立模型【教学反思】一元二次方程是刻画现实世界中某些数量关系的有效数学模型.在运用一元二次方程分析、表达和解决实际问题的过程中,要注意体会建立数学模型解决实际问题的思想和方法.。

人教版九年级上册《实际问题与一元二次方程》教案

人教版九年级上册《实际问题与一元二次方程》教案

人教版九年级上册《实际问题与一元二次方程》教案21.3实际问题与一元二次方程(一)学习目标:1、会依据详细问题(按肯定传播速度传播问题、数字问题和利润问题)中的数量关系列一元二次方程并求解;2、能依据问题的实际意义,检验所得结果是否合理;3、进一步把握列方程解应用题的步骤和关键.学习重点:列一元二次方程解决实际问题学习难点:找出实际问题中的等量关系教学过程:●学问回忆1、一元二次方程组的解法有;2、列方程解应用题的一般步骤:1);2);3);4);5):●课前预习:阅读课本探究1.弄清列一元二次方程组解应用题的根本思想与列一元一次方程解应用题的根本思想一样,一般步骤也一样;理解列一元二次方程组解实际题───设未知数x,找出两个相等关系,列出方程;对于求得的方程组的解,必需检验它是否符合实际意义或题意,再“答”题.●自主学习【问题1】有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?【分析】设每轮传染中平均一个人传染x个人,⑴开头有一人患了患流感,第一轮的传染源就是这个人,他传染了x 个人,用代数式表示第一轮后,共有人患了流感;其次轮传染中,这些人中每一个人又传染了x人,用代数式表示,其次轮后,共有人患流感;⑵依据等量关系列方程:;⑶解这个方程得:;⑷平均一个人传染了个人.⑸假如根据这样的传播速度,三轮传染后,有人患流感.解:●合作探究【例1】某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?【分析】设每个支干长出x个小分支。

则主干上长出x个分支,x个分支上共长出x2个小分支。

主干、支干和小分支的总数可用代数式1+x+x2表示。

依题意可列方程:1+x+x2=91解:设每个支干长出x个小分支,依题意可列方程:1+x+x2=91解这个方程,得:x1=9x2=-10(负根不合题意,合去)答:每个支干长出9个小分支。

人教版九年级数学上册:21.3 实际问题与一元二次方程 教学设计1

人教版九年级数学上册:21.3 实际问题与一元二次方程  教学设计1

人教版九年级数学上册:21.3 实际问题与一元二次方程教学设计1一. 教材分析人教版九年级数学上册第21.3节“实际问题与一元二次方程”是本册教材的重要内容,旨在让学生通过解决实际问题,掌握一元二次方程的解法和应用。

本节内容通过引入实际问题,让学生理解一元二次方程的模型,培养学生的数学建模能力,提高学生解决实际问题的能力。

二. 学情分析九年级的学生已经掌握了代数基础知识,对一元二次方程有一定的了解,但解决实际问题的能力还有待提高。

因此,在教学过程中,要注重培养学生的数学建模能力,引导学生将实际问题转化为数学问题,并用一元二次方程进行解决。

三. 教学目标1.理解实际问题与一元二次方程的关系,掌握一元二次方程的解法。

2.培养学生将实际问题转化为数学问题的能力,提高学生的数学建模能力。

3.培养学生解决实际问题的能力,提高学生的综合素质。

四. 教学重难点1.教学重点:理解实际问题与一元二次方程的关系,掌握一元二次方程的解法。

2.教学难点:将实际问题转化为数学问题,并用一元二次方程进行解决。

五. 教学方法采用问题驱动法,情境教学法,案例教学法和小组合作学习法。

通过引入实际问题,激发学生的学习兴趣,引导学生主动探究,培养学生解决实际问题的能力。

六. 教学准备1.准备相关实际问题,用于引导学生理解和应用一元二次方程。

2.准备多媒体教学设备,用于展示和讲解。

七. 教学过程1.导入(5分钟)通过展示一些实际问题,如物体运动问题、面积问题等,引导学生关注实际问题中的一元二次方程,激发学生的学习兴趣。

2.呈现(10分钟)讲解一元二次方程的定义和解法,让学生理解一元二次方程的模型,并能熟练运用解法求解。

3.操练(10分钟)让学生分组讨论,将导入环节中的实际问题转化为数学问题,并用一元二次方程进行解决。

教师巡回指导,帮助学生解决问题。

4.巩固(10分钟)让学生独立完成一些类似的实际问题,巩固所学知识,提高解决实际问题的能力。

人教版数学九年级上册21.3《实际问题与一元二次方程(2)》教学设计

人教版数学九年级上册21.3《实际问题与一元二次方程(2)》教学设计

人教版数学九年级上册21.3《实际问题与一元二次方程(2)》教学设计一. 教材分析人教版数学九年级上册21.3《实际问题与一元二次方程(2)》这一节内容,是在学生已经掌握了一元二次方程的解法、定义等基础知识的基础上进行讲解的。

这部分内容主要是培养学生运用一元二次方程解决实际问题的能力,让学生通过解决实际问题,进一步理解和掌握一元二次方程的知识。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于一元二次方程的知识也有了一定的了解。

但是,学生在解决实际问题时,往往会因为不能正确地将实际问题转化为数学问题,或者在列方程时出现错误,导致解题的失败。

因此,在教学过程中,需要引导学生正确地将实际问题转化为数学问题,并熟练地运用一元二次方程进行解答。

三. 教学目标1.让学生掌握将实际问题转化为数学问题的方法。

2.使学生能够熟练地运用一元二次方程解决实际问题。

3.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.重点:将实际问题转化为数学问题的方法,一元二次方程的解法。

2.难点:如何将实际问题正确地转化为数学问题,并运用一元二次方程进行解答。

五. 教学方法采用问题驱动法,引导学生通过自主探究、合作交流的方式,解决实际问题。

同时,运用讲解法、示范法等,为学生提供解题的思路和方法。

六. 教学准备1.准备相关的实际问题,用于引导学生进行思考和解答。

2.准备PPT,用于展示和解题过程的演示。

七. 教学过程1.导入(5分钟)通过一个简单的实际问题,引导学生思考如何将实际问题转化为数学问题,并激发学生解决问题的兴趣。

2.呈现(10分钟)呈现一系列的实际问题,让学生尝试解决。

在学生解答过程中,教师进行讲解和指导,引导学生掌握将实际问题转化为数学问题的方法,并熟练地运用一元二次方程进行解答。

3.操练(10分钟)让学生分组进行合作交流,共同解决一些实际问题。

教师在旁边进行指导和讲解,帮助学生巩固所学知识。

4.巩固(10分钟)通过一些练习题,让学生独立进行解答,巩固所学知识。

人教版九年级数学上册优秀教学案例:21.3实际问题与一元二次方程(面积)

人教版九年级数学上册优秀教学案例:21.3实际问题与一元二次方程(面积)
五、案例亮点
1.实际问题引入:通过设计具有挑战性和启发性的实际问题,如“一个长方形的长比宽多20%,求长方形的面积”,引导学生主动探索、思考和解决问题。这种教学方法能够激发学生的学习兴趣,培养他们的数学思维水平,提高他们运用数学知识解决实际问题的能力。
2.一元二次方程的解法展示:在教学过程中,我通过示例演示了一元二次方程的解题过程,让学生掌握解题方法。我详细解释了一元二次方程的公式法、因式分解法等解法,并通过步骤演示了如何应用这些解法解决实际问题。这种教学方法有助于学生理解和掌握一元二次方程的解法,提高他们的数学素养。
(三)小组合作
1.将学生分成小组,鼓励他们合作交流、共同解决问题。教师给予适当的引导和指导,帮助学生建立合作学习的意识。
2.设计小组讨论的问题,如“你们小组认为一元二次方程在解决实际问题中的应用有哪些?”引导学生进行深入讨论和思考。
3.组织小组展示和分享,鼓励学生表达自己的观点和解决问题的方法,培养他们的沟通能力和团队合作精神。
2.引导学生运用一元二次方程的解法,通过实践操作和合作交流,提高他们的数学操作能力和团队协作能力。
3.设计拓展问题,让学生尝试运用一元二次方程解决更复杂的问题,培养他们的创新思维和拓展能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和自信心,使他们能够积极主动地参与数学学习。
2.培养学生勇于尝试、不断探索的精神,让他们在解决实际问题的过程中感受到数学的价值。
三、教学策略
(一)情景创设
1.利用多媒体展示实际问题,如动画演示一个长方形的长比宽多20%,让学生直观地感受一元二次方程在解决实际问题中的应用。
2.通过生活实例,如测量教室的长和宽,计算教室的面积,让学生感受到数学与生活的紧密联系。

人教版九年级上册(新)数学同步教案21.3 实际问题与一元二次方程 (第1课时)

人教版九年级上册(新)数学同步教案21.3 实际问题与一元二次方程 (第1课时)

21.3实际问题与一元二次方程(第1课时)一、内容和内容解析1.内容列一元二次方程解决实际问题.2.内容解析本节课学习如何用一元二次方程解决实际问题.分析两轮传播中每个周期内相应的数量关系,从而将实际问题转化为数学问题,再次体现数学建模思想.在此过程中培养分析问题和运用一元二次方程解决实际问题的能力.本课时中解方程属于已学内容,因此教学重点是分析实际问题中的数量关系,正确列出一元二次方程.二、目标和目标解析1.目标(1)能根据实际问题中的数量关系,正确列出一元二次方程;(2)通过列方程解应用题体会一元二次方程在实际生活中的应用,经历将实际问题转化为数学问题的过程,提高数学应用意识.2.目标解析达成目标(1)的标志是:通过审题,分析出“传播问题”中每个周期的传播源和传播后的总数各是什么,从而选择合适的未知数,列出相应的代数式;分析等量关系,正确列出方程,解决实际问题.达成目标(2)的标志是:对用方程解决实际问题的步骤(审、设、列、解、验、答)及需注意的事项进行回顾、总结和深化.体会一元二次方程是解决实际问题的一种数学模型.三、教学问题诊断分析九年级学生已具备一定的建模思想,也接触了一些实际问题,了解将实际问题转化为数学问题的一般步骤,积累了一定的解题经验和方法.本课时的实际问题中的数量关系比之前遇到过的更复杂一些,学生理解题意的困难是:“第一轮”,“第二轮”中的传染源及被传染总人数是多少.在弄清问题背景,明确数量关系后,还要解决第二轮被传染总人数的代数式如何表示的问题.练习第2题,学生可能将此题与前面所学细菌繁殖类型混淆,从而列出1+x+x(1+x)=91.可采用图示分析植物主干与分支再长出分支的意义.四、教学过程设计1.分析“传播问题”的特征问题1列方程解应用题的一般步骤是什么?师生活动:教师提问,学生回答.设计意图:回顾列方程解应用题的一般步骤.问题2观察生活中的细胞分裂以及疾病传播这类问题,“传播”这类问题具有什么特征?展示以“细胞分裂”为背景的图片,学生观察图片,说明细胞分裂过程,教师进行适当补充:细胞在分裂过程中,由1个分裂为2个,再分裂成4个,如此分裂下去…展示以“疾病传染”为背景的图片,学生观察图片,教师介绍问题背景:甲流肆虐期间,有确诊病例后要对密切接触者进行筛查,以防止扩大传染范围.设计意图:从实际问题中归纳“传播”类问题的特征.2.解决“传播问题”问题3有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?师生活动:学生独立思考,回答.教师在学生活动过程中可提出如下提示性问题.追问1:(1)本题要解决什么问题?(传播问题)(2)已知条件中描述数量关系的语句有哪些?(有一人患了流感;经过两轮传染后共有121人患了流感;每轮传染中平均一个人传染了几个人.)(3)“第一轮”,“第二轮”中传染源人数和被传染人数各是多少?如何表示?(第一轮传染源人数为1人,被传染人数为x人;第二轮传染源人数为(x+1)人,被传染人数为x(x+1)人.)设计意图:本问题是在问题2的基础上,针对具体情景分析其中的数量关系.学生理解的难点就是“第一轮”、“第二轮”的含义,以及如何表示每一轮传染源人数和被传染人数.因此在此处设问,以帮助学生理解.追问2:你能发现本题中的等量关系吗?你能解决这个问题吗?师生活动:学生独立思考完成,再分组交流.等量关系:1+第一轮新被传染的人数+第二轮新被传染人数=121.解:设每轮传染中平均一个人传染了x个人.根据题意得1+x+x(1+x)=121.解得:x1=10,x2=-12(舍去).答:平均一个人传染了10个人.设计意图:让学生经历完整的解题过程,提高分析和解决问题的能力.追问3:按照这样的传染速度,三轮传染后有多少人患流感?师生活动:学生独立思考、回答,得出121+121×10=1331人.设计意图:让学生进一步熟悉“传播问题”的特征.3.练习、巩固教科书第22页练习4.师生活动:由学生独立完成,再进行全班交流.要整理出解题的基本思路:审、设、列、解、验、答,从而提高学生分析和解决此类问题的能力.4.小结问题4你能所说本节课所研究的“传播问题”的基本特征吗?解决此类问题的关键步骤是什么?师生活动:学生先思考再作答,教师帮助整理.得出:“传播问题”的基本特征是:以相同速度逐轮传播.解决此类问题的关键步骤是:明确每轮传播中的传染源个数,以及这一轮被传染的总数.设计意图:通过归纳,明确“传播问题”的基本特征,以及解决此类问题的一般过程和方法.5.布置作业教科书第25页复习题21第7题.6.目标检测设计某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?设计意图:检测“传播问题”的掌握情况.。

九年级数学上册《实际问题与一元二次方程-增长(降低)率问题》教学设计(人教版)

九年级数学上册《实际问题与一元二次方程-增长(降低)率问题》教学设计(人教版)

21.3实际问题与一元二次方程——增长(降低)率问题一、教材分析:本节是第二十一章一元二次方程的第三部分实际问题与一元二次方程的第二课时。

学生在七八年级已经学习了方程的有关知识。

本章的前两部分学习了一元二次方程的概念和解法,这一部分学习一元二次方程的应用。

让学生经历从实际问题中抽象出数学模型,建立一元二次方程解决实际问题的过程,将数学知识和实际生活进行有机结合,体现数学的现实意义。

一元二次方程与二次函数也有着重要的联系。

本节课的学习也是后面继续学习列方程解决实际问题,用二次函数解决实际问题的基础。

二、学情分析:学生已经学过了用一元一次方程、二元一次方程组、可化为一元一次方程的分式方程的有关知识解决实际问题。

在此基础上学习列一元二次方程解决实际题,从简单到复杂符合学生的认知规律。

对学生来说列方程解决实际问题的步骤很熟悉,分析题意、设未知数、列方程、解方程,检验解、答。

与以前的实际问题相比,本节课的问题在分析数量关系方面更复杂,对于学生来说很困难。

还是不能直接“设元”的问题,学生会感到无从下手。

基于所教学生的基础很差,所以我这节课只涉及一种类型的实际问题,就是降低率增长率问题。

给学生充足的时间审题,思考,交流。

设计的思考问题有简单到复杂层层递进。

三、教法学法:因为学生已经学习了有关方程的知识和用一元二次方程解决传播问题,积累了一些经验,所以在讲课时采用对比法,启发引导,小组合作,讲练结合。

学生小组讨论,合作交流,经历由具体问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界的一个有效的数学模型。

四、教学目标:知识与技能1、掌握增长(降低)率问题的基本数量关系。

能根据这些数量关系列方程解决问题。

2、通过实际问题的解答,让学生认识到要检验方程的解是不是符合实际意义。

过程与方法经历分析和解决实际问题的过程,体会一元二次方程的数学模型作用。

培养学生的“数学建模思想”和对数学的“应用意识”。

情感态度与价值观通过用一元二次方程解决实际问题,让学生感知数学来源于生活,又服务于生活,体会数学的应用价值,提高学生学数学的兴趣。

人教版数学九年级上册21.3实际问题与一元二次方程教学设计

人教版数学九年级上册21.3实际问题与一元二次方程教学设计
三、教学重难点和教学设想
(一)教学重难点
1.一元二次方程的定义和性质:学生需要理解一元二次方程的一般形式,以及方程的解的判别式Δ的意义。
2.求根公式的推导和应用:学生需要掌握求根公式的推导过程,并能灵活运用求根公式解一元二次方程。
3.实际问题与一元二次方程的转化:学生需要学会将实际问题转化为一元二次方程,并运用数学知识解决问题。
五、作业布置
在布置作业时,我会遵循以下原则:
1.针对性:作业应针对本节课的教学内容,帮助学生巩固和巩固所学知识。
2.适量性:作业数量要适中,避免过多过少,给学生足够的思考空间。
3.层次性:作业应涵盖不同难度的问题,以适应不同学生的学习需求。
4.实践性:鼓励学生运用所学知识解决实际问题,提高学生的实践操作能力。
(四)课堂练习
在学生进行了充分的讨论之后,我会给出一些练习题,让学生独立完成。这些练习题会涵盖本节课的主要内容,包括一元二次方程的定义、求根公式的运用等。通过这些练习题,我可以检查学生对知识的理解和掌握程度,同时也可以帮助他们巩固和提高解题技巧。
(五)总结归纳
在课堂的最后,我会引导学生总结本节课的主要内容和知识点。我会鼓励学生用自己的语言来表达对这些知识的理解,这样可以检验他们对知识的理解深度和广度。同时,我也会强调一元二次方程在实际问题中的应用价值,引导学生认识到学习数学的重要性。
4.引导反思,总结提升:在解决问题的过程中,引导学生反思解题思路和方法,总结提升解题技巧,培养学生的逻辑思维和分析问题的能力。
5.拓展延伸,提高思维:通过设计一些拓展性的问题,激发学生的思维,提高学生的创新意识和解决问题的能力。
6.反馈评价,激励发展:及时给予学生反馈,鼓励他们积极参与课堂,激励他们不断发展和提高。

人教版九年级上册数学 21.3 实际问题与一元二次方程 教案

人教版九年级上册数学  21.3 实际问题与一元二次方程   教案

21.3 实际问题与一元二次方程【本讲内容】一. 教学内容:实际问题与一元二次方程1. 根据实际问题列出一元二次方程,并会求出符合实际问题的解.2. 在分析解决问题的过程中逐步深入地体会一元二次方程作为一种数学模型的应用价值.二. 重点难点:本讲的重点是,进一步反映一元二次方程与实际问题的密切联系,再次体现数学建模思想,加强培养运用一元二次方程分析和解决实际问题的能力.由于本讲问题的背景和表达都比较贴近实际,其中的有些数量关系比较隐蔽,所以在探究过程中正确地建立一元二次方程是主要难点.突破难点的关键是弄清问题背景,把有关数量关系分析透彻,特别是找出可以作为列方程依据的主要相等关系.三. 知识要点:1. 列一元二次方程解应用题的一般步骤与列一元一次方程解应用题一样,列一元二次方程解应用题的一般步骤也归结为:审、设、列、解、检验、答.(1)审:是指读懂题目,弄清题意,明确哪些是已知量,哪些是未知量以及它们之间的等量关系.(2)设:是指设元,也就是设未知数.(3)列:就是列方程,这是非常重要的关键步骤,一般先找出能够表达应用题全部含义的一个相等关系,然后列代数式表示相等关系中的各个量,就得到含有未知数的等式,即方程.(4)解:就是解方程,求出未知数的值.(5)检验:是指检验方程的解能否保证实际问题有意义.(6)答:就是写出答案.2. 列一元二次方程解决实际问题的常见题型(1)销售问题;(2)数字问题;(3)面积问题;(4)平均增长(降低)率问题.3. 列一元二次方程解实际问题的注意事项(1)要搞清现实生活中的一些数量关系,例如:距离=速度×时间,工作量=工作效率×工作时间,溶质重量=溶液重量×浓度等等.(2)还有一些关键词语也要搞清,如“多”、“倍”、“差”、“提前”、“同时”、“早到”、“迟到”、“增加几倍”等.对于“增长率”问题,要注意区分“增”与“减”,如人口的减少、利率的降低、汽车的折旧等等,都是在原来基数上减少,不能与增加混淆.(3)列方程解应用题时,要对所求出的未知数进行检验,检验的目的有两个:其一,检验求出来的未知数的值是否满足方程;其二,检验求出的未知数的值是不是满足实际问题的要求,对于适合方程而不适合实际问题的未知数的值应舍去.【典型例题】例1. 小明将1000元钱存入银行,定期一年后取出500元购买学习用品,剩下的500元和应得的利率又全部按一年定期存入,若存款的年利率保持不变,到期后取出660元,求年利率.分析:本题属本息问题,第一年:本金=1000元,利率为x ,本息和为1000(1+x );第二年:本金[1000(1+x )-500]元,利率为x ,本息和为[1000(1+x )-500](1+x )=660.解:设存款年利率为x ,由题意得[1000(1+x )-500](1+x )=660整理得50x 2+75x -8=0解得x 1=110,x 2=-85(不合题意舍去), 取x =110=10% 答:存款的年利率为10%.评析:将各数据代入本息和计算公式即可求得结果.应熟记利率的计算公式,本息和=本金×(1+利率)年数.例2. 三个连续正整数,最大数的立方与最小数的立方差比中间数的40倍大16,求这三个数.分析:∵相邻的两个连续整数之间相差1,∴这三个连续正整数用一个未知数表示的方法是x ,x +1,x +2或x -1,x ,x +1或x -2,x -1,x ,根据题中相等关系:(最大数的立方)-(最小数的立方)=40×(中间数)+16,此题设中间数为x 比较方便.解:设中间数为x ,则最大数为x +1,最小数为x -1,由题意得(x +1)3-(x -1)3=40x +16,整理得3x 2-20x -7=0,解得x 1=7,x 2=-13. ∵x =-13不合题意舍去,∴只取x =7. ∴x +1=8,x -1=6.答:这三个连续正整数是6、7、8.评析:解数字问题的关键是正确而巧妙地设未知数,一般采用间接设元法,如有关三个连续整数(或连续奇数,连续偶数)的问题,一般设中间一个数为x ,再用含x 的代数式表示其余两个数.例3. 用一块长方形的铁片,在它的四个角上各自剪去一个边长是4cm 的小正方形,然后把四边折起来,恰好做成一个没有盖的盒子,已知铁片的长是宽的2倍,做成盒子的容积是1536cm 3,求这块铁片的长和宽.分析:如图所示,设铁片的宽为xcm ,则长为2xcm ,做成的盒子的底面积就是图中虚线围成的长方形面积:(2x -4-4)(x -4-4)cm 2.盒子的高应等于小正方形的边长4cm ,盒子的容积可用代数式表示为4(2x -8)(x -8)cm 3.。

人教版九年级数学上册《实际问题与一元二次方程》教案

人教版九年级数学上册《实际问题与一元二次方程》教案

21.3 实际问题与一元二次方程第1课时实际问题与一元二次方程(1)【知识与技能】会根据具体问题中的数量关系,列出一元二次方程并求解,能根据问题中的实际意义,检验所得结果的合理性.【过程与方法】经过“问题情境——建立模型——求解——解释与应用”的过程中,进一步锻炼学生的分析问题,解决问题的能力.【情感态度】通过建立一元二次方程解决实际问题,体验数学的应用价值,增强学习数学的兴趣.【教学重点】构建一元二次方程解决实际问题.【教学难点】会用代数式表示问题中的数量关系,能根据问题的实际意义,检验所得结果的合理性.一、情境导入,初步认识问题在上一节的习题21.2中,我们遇见过一些用列方程来求解的实际应用问题,你能说说列方程解应用问题的步骤是怎样的?学生在相互讨论交流中可得出结论为:①审题;②设未知数;③列方程;④解方程;⑤答.【教学说明】让学生在回顾解实际问题过程中的思路方法,为进一步学习新的问题作好铺垫,导入新课.二、思考探究,获取新知探究1 有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均1个人传染了几个人?【教学说明】教师展示出问题后,先让学生仔细分析题意,尝试着寻求解决问题的方法.为了让学生更好地理解题意,不妨设置如下几个问题:(1)若设平均每轮传染中一个人可传染x个人,则第一轮传染后共有人患了流感;(2)第二轮传染后,被传染的人数为人,故第二轮传染后共人患了流感.最后师生共同完成解答过程:解:设每轮传染中平均一个人传染了x个人,则第一轮传染后共有(1+x)人患了流感,第二轮传染后共[1+x+(1+x)·x]人患流感,依题意可列方程为1+x+(1+x)·x=121方程可整理为(1+x)(1+x)=121,即(1+x)2=121.∴x1=10,x2=-12(不合题意,应舍去),故平均一个人传染了10个人.想一想(1)照上述传染速度,三轮传染后患流感的人数共有多少人?(2)通过对上述问题的探究,你对类似的传播问题中的数量关系,有新认识吗?【教学说明】(1)的问题学生可通过前面的分析获得结论,进一步加深对传播问题中数量关系的理解和认识;(2)中问题应让学生相互交流,总结规律.探究2两年前生产1t甲种药品的成本是5000元,生产1t乙种药品的成本为6000元.随着生产技术的进步,现在生产1t甲种药品的成本为3000元,生产1t乙种药品的成本为3600元.哪种药品成本的年平均下降率较大?思考(1)甲种药品成本的年平均下降额与乙种药品的年平均下降额分别是多少?它与年平均下降率是否是一回事?(2)若设甲种药品的年平均下降率为x,则第一年后的成本为元,第二年后的成本为元,你能列出相应的方程并求出问题的解吗?对于乙种药品呢?【教学说明】思考(1)旨在让学生感受成本下降问题中,成本下降额和成本下降率这两个接近而不同的概念,前者表示绝对变化量,单位是元,后者表示相对变化量,是表示比率的数字,从而全面比较对象的变化状况;思考(2)则进一步让学生感受到两个时间段的平均变化率,如经济增长率、人口增长率等,设平均变化率为x,则有变化前数量×(1+x)2=两年后的数量,由此可得到一元二次方程的数学模型,并确定方程和问题的解,教学过程中,教师应引导学生积极思考,寻求出实际问题中所蕴含的等量关系,让学生体会到寻找等量关系是解决问题的关键,最后师生共同完成解答过程.三、典例精析,掌握新知例1某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少个小分支?解:设每个支干长出x个小分支,由题意可列方程为1+x+x2=91,解得x1=9,x2=-10(不合题意,应舍去),即每个支干长出9个小分支.例2某银行经过最近的两次降息,使一年期存款的年利率由2.25%降至1.98%,平均每次降息的百分率是多少?解:设平均每次降息的百分率为a%,依题意可列方程为:2.25%(1-a%)2=1.98%解得a1≈6.19,a2≈193.81(不合题意,应舍去).即平均每次降息的百分率约为6.19%.【教学说明】让学生独立思考,自主探究,找出题目中的等量关系,并能构建合适的一元二次方程来解决问题,加深对知识的领悟,其中例2可借助计算器来帮助解决问题.教学时,教师在学生探究期间应巡视全场,帮助困难学生找出解决问题的思路方法,最后给出完整解答过程,培养学生良好的解题习惯.四、运用新知,深化理解1.一台电视机的成本价为a元,原销售价比成本价增加25%,因库存积压,两次降价处理,若每次降价的百分率为x%,则最后销售价应为.2.某养鸡场一只患禽流感的小鸡经过两天的传染后,使养鸡场共有169只小鸡感染禽流感,那么在每一天的传染中平均一只小鸡传染了几只小鸡?3.某校坚持对学生进行近视眼的防治,近视眼人数逐年减少.据统计,2013年和2012年的近视眼人数只占2011年人数的75%,这两年平均每年近视眼人数下降的百分率是多少?【教学说明】设置这几道题有利于学生进一步掌握一元二次方程应用题的解法,题目稍难,老师应巡视给予指导,然后共同完成.【答案】1.(1+25%)a·(1-x%)2元2.设每一天的传染中平均一只小鸡传染了x只小鸡,由题意,得(1+x)+(1+x)·x=169,解得x1=12,x2=-14(不合题意,舍去),故每一天平均一只小鸡传染了12只小鸡.3.设平均每年的近视眼人数下降的百分率为x,2011年的近视眼人数为a人,由题意有(1-x)a+(1-x)2·a=75%a,解得x1=0.5,x2=2.5,显然x=2.5不合题意,应舍去,即平均每年近视眼人数下降的百分率为50%.五、师生互动,课堂小结通过这节课的学习,你对传播类和增长率(下降率)的应用问题的处理有哪些体会和收获?谈谈你的看法.【教学说明】教师可向学生提问,以进一步巩固列方程解应用题的方法和解题步骤,为后续学习作好铺垫.1.布置作业:从教材“习题21.3”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.教师引导学生熟悉列一元二次方程解应用题的步骤,创设问题推导出列一元二次方程解应用题的步骤,有利于学生熟练掌握用一元二次方程解应用题的步骤.2.传播类和增长率问题是一元二次方程中的重点问题,本设计问题中反映出不同的“传播”和增长率,有利于学生更好地掌握这一问题.课后小知识--------------------------------------------------------------------------------------------------小学生每日名人名言1、读书要三到:心到、眼到、口到2、一日不读口生,一日不写手生。

新人教版九年级上册 第21章 21.3实际问题与一元二次方程 教案

新人教版九年级上册 第21章 21.3实际问题与一元二次方程 教案

师生行为
点题,板书课 题.
教师提出问 题,并指导学 生进行阅读, 独立思考,学 生根据个人理 解,回答教师 提出的问题. 弄清题意,设 出未知数,并 表示相关量, 根据相等关系 尝试列方程, 求根.根据实 际问题要求, 对根进行选择 确定问题的 解.教师组织
二次备 课 .
1
○1 正中央的长方形与整个封面的长宽比例 相同,是什么含
学生合作交 流,达到共 识,
师生汇总生活 中常见的类似 问题,总结这 类题的做题技 巧.
教师提出问 题,让学生结 合画图独立理 解并解答问 题,培养学生 对几何图形的 分析能力,将 数学知识和实 际问题相结合 的 应用意识
教师总结,学 生体会
学生独立完 成,教师巡视 指导,了解学 生 掌握情况, 并集中订正
个面积为 8m2•的长方形花台,要使花坛四周的宽地宽度一
样,则这个宽度为多少?
四小结 归纳
谈一节课的收获和体会.
五、作业设计
必做:P48:4-8
选做:P49:10
补充作业:
某林场•上口宽比渠深多 2m,渠底比渠深多 0.4m.
(1)渠道的上口宽与渠底宽各是多少?
教 学 目 标
教学重点 教学难点 教学过程设计
实际问题与一元二次方程
知识 技能
过程 方法 情感 态度
1.能根据○1 以流感为问题背景,按一定传播速度 逐步传播的问题;○2 以封面设计为问题背景,边衬 的宽度问题中的数量关系列出一元二次方程,体会 方程刻画现实世界的模型作用. 2.培养学生的阅读能力与分析能力. 3.能根据具体问题的实际意义,检 验结果是否合 理. 通过自主探究,独立思考与合作交流,使学生弄清 实际问题的背景,挖掘隐藏的数量关系,把有关数 量关系分析透彻,找出可以作为列方程依据的主要 相等关系,正确的建立一元二次方程. 在分析解决问题的过程中逐步深入地体会一元二 次方程的应用价值.

人教版九年级数学上册:21.3 实际问题与一元二次方程 握手问题和互赠礼物问题 教学设计

人教版九年级数学上册:21.3 实际问题与一元二次方程  握手问题和互赠礼物问题  教学设计

人教版九年级数学上册:21.3 实际问题与一元二次方程握手问题和互赠礼物问题教学设计一. 教材分析人教版九年级数学上册第21.3节实际问题与一元二次方程,主要通过握手问题和互赠礼物问题,让学生学会运用一元二次方程解决实际生活中的问题。

本节内容紧密联系生活,激发学生学习兴趣,培养学生解决实际问题的能力。

教材以问题为导向,引导学生自主探究,合作交流,从而提高学生的数学素养。

二. 学情分析九年级的学生已具备一定的数学基础,对一元二次方程有一定的了解。

但解决实际问题的能力有待提高,特别是将实际问题转化为数学模型,运用一元二次方程求解。

因此,在教学过程中,要关注学生的个体差异,引导他们主动探究,培养他们解决实际问题的能力。

三. 教学目标1.理解握手问题和互赠礼物问题的实际背景,掌握解决这类问题的方法。

2.会运用一元二次方程解决实际生活中的问题。

3.培养学生的数学思维能力,提高解决实际问题的能力。

四. 教学重难点1.重点:掌握握手问题和互赠礼物问题的解决方法,能运用一元二次方程解决实际问题。

2.难点:将实际问题转化为数学模型,求解一元二次方程。

五. 教学方法1.启发式教学:引导学生主动探究,发现规律,培养学生解决问题的能力。

2.案例教学:通过具体案例,让学生理解并掌握解决实际问题的方法。

3.合作交流:鼓励学生相互讨论,分享解题心得,提高沟通与合作能力。

六. 教学准备1.准备相关案例资料,如握手问题和互赠礼物问题的实际背景。

2.准备课件,展示解题过程,引导学生思考。

3.准备练习题,巩固所学知识。

七. 教学过程1.导入(5分钟)利用课件展示握手问题和互赠礼物问题的实际背景,引导学生关注生活中的数学问题。

2.呈现(10分钟)呈现握手问题和互赠礼物问题,让学生尝试解答。

引导学生发现这些问题都可以转化为求解一元二次方程。

3.操练(10分钟)分组讨论,让学生尝试解决握手问题和互赠礼物问题。

教师巡回指导,解答学生疑问。

4.巩固(10分钟)总结解题方法,引导学生归纳出一元二次方程解决实际问题的步骤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

21.3 实际问题与一元二次方程
教学内容
21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.
教学目标
1. 掌握用“倍数关系”、“面积法”等建立数学模型,并利用它解决实际问题.
2. 掌握建立数学模型以解决增长率与降低率问题.
3. 经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.
教学重点
根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.
教学难点
根据“倍数关系”、“面积法”等之间的等量关系建立一元二次方程的数学模型.课时安排
3课时.
1
教案A
第1课时
教学内容
21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.
教学目标
1.掌握用“倍数关系”建立数学模型,并利用它解决实际问题.
2.经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点
用“倍数关系”建立数学模型.
教学难点
用“倍数关系”建立数学模型.
教学过程
一、导入新课
师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?
生:审题、设未知数、找等量关系、列方程、解方程,最后答题.
试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.
二、新课教学
探究1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?
教师引导学生审题,让学生思考怎样设未知数,找等量关系列出方程.
分析:设每轮传染中平均一个人传染了x个人.
开始有一个人患了流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示,第一轮后共有个人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有个人患了流感.
列方程
1+x+x(x+1)=121,
整理,得
x2+2x-120=0.
解方程,得
x1=10,x2=-12(不合题意,舍去)
2
答:每轮传染中平均一个人传染了10个人.
思考:按照这样的传染速度,经过三轮传染后共有多少人患流感?
121+121×10=1331(人)
通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?
后一轮被传染的人数是前一轮患病人数的x倍.
三、巩固练习
某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?
解:设每个支干长出x个小分支,则
1+x+xx=91,

x2+x-90=0.
解得x1=9,x2=-10(不合题意,舍去)
答:每个支干长出9个小分支.
四、课堂小结
本节课应掌握:
1.利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法解它.2.解一元二次方程的一般步骤:一审、二设、三列、四解、五验(检验方程的解是否符合题意,将不符合题意的解舍去)、六答.
五、布置作业
习题21.3 第6题.
第2课时
教学内容
21.3实际问题与一元二次方程(2):建立一元二次方程的数学模型,解决增长率与降低率问题.
教学目标
掌握建立数学模型以解决增长率与降低率问题.
教学重点
如何解决增长率与降低率问题.
教学难点
解决增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x是增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.
教学过程
一、导入新课
同学们好,我们上节课学习了探究1关于“倍数”的问题,知道了解一元二次方程的一般步骤.今天,我们就学习如何解决“增长率”与“降低率”的问题.
二、新课教学
探究2:两年前生产1 t甲种药品的成本是5 000元,生产1 t乙种药品的成本是6 000
3
元,随着生产技术的进步,现在生产1 t甲种药品的成本是3 000元,生产1 t乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?
分析:根据题意,很容易知道甲种药品成本的年平均下降额为(5 000-3 000)÷2=1 000(元);乙种药品成本的年平均下降额为(6 000-3 600)÷2=1 200(元).
显然,乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下降率(百分数).
解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5 000(1-x)元,两年后甲种药品成本为5 000(1-x)2元,于是有
5 000(1-x)2=3 000.
解方程,得
x1≈0.225,x2≈1.775.
根据药品的实际意义,甲种药品成本的年平均下降率约为22.5%.
答:甲种药品成本的年平均下降率约为22.5%.
算一算:乙种药品成本的年平均下降率是多少?试比较这两种药品成本的年平均下降率.
解:设乙种药品成本的年平均下降率为x,则一年后乙种药品成本为6 000(1-x)元,两年后甲种药品成本为6 000(1-x)2元,于是有
6 000(1-x)2=3 600.
解方程,得
x1≈0.225,x2≈1.775.
同理,乙种药品成本的年平均下降率约为22.5%.
甲、乙两种药品成本的年平均下降率相同,均约为22.5%.
思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应怎样全面地比较对象的变化状况?
经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.
小结:类似地,这种增长率的问题有一定的模式.若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)n=b(增长取+,降低取-).
三、巩固练习
某人将2 000元人民币按一年定期存入银行,到期后支取1 000元用于购物,剩下的1 000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1 320元,求这种存款方式的年利率.
分析:设这种存款方式的年利率为x,第一次存2 000元取1 000元,剩下的本金和利息是1 000+2 000x×80%;第二次存,本金就变为1 000+2000x×80%,其它依此类推.
解:设这种存款方式的年利率为x,则
1 000+
2 000x×80%+(1 000+2 000x×8%)x×80%=1 320.
整理,得
1 280x2+800x+1 600x=320,

8x2+15x-2=0.
解得
4。

相关文档
最新文档